
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

5-2018

Covering Arrays for Equivalence Classes of Words
Joshua Cassels

Anant Godbole
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Discrete Mathematics and Combinatorics Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Cassels, Joshua and Godbole, Anant, "Covering Arrays for Equivalence Classes of Words" (2018). Undergraduate Honors Theses. Paper
446. https://dc.etsu.edu/honors/446

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by East Tennessee State University

https://core.ac.uk/display/214081164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=dc.etsu.edu%2Fhonors%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Covering Arrays for Equivalence

Classes of Words

Joshua Cassels and Anant Godbole

East Tennessee State University

casselsj@etsu.edu; godbolea@etsu.edu

April 12, 2018

Abstract

Covering arrays for words of length t over a d letter alphabet are

k × n arrays with entries from the alphabet so that for each choice of

t columns, each of the dt t-letter words appears at least once among

the rows of the selected columns. We study two schemes in which all

words are not considered to be different. In the first case, words are

equivalent if they induce the same partition of a t element set. In

the second case, words of the same weighted sum are equivalent. In

both cases we produce logarithmic upper bounds on the minimum size

k = k(n) of a covering array. Most definitive results are for t = 2, 3, 4.

1

1 Introduction

Covering arrays for words of length t over a d letter alphabet are n×k arrays

with entries from the alphabet so that for each choice of t columns, each of

the dt t-letter words appears at least once among the rows of the selected

columns. A definitive survey of the field is the one by [3]. A central question

in the area is the following: given n, t, and d what is the minimum number

k0 = k0(n, t, d) of rows so that a n× k covering array exists? In papers such

as [10], [14], the focus was on asymptotics, i.e., finding bounds on k0(k, t, d)

as n → ∞ with t, d being held fixed. For example, the thesis of Roux [?],

cited in [14] exhibited the fact that for d = 2 and t = 3, we have

k0(n, 3, 2) ≤ 7.56 lg n(1 + o(1)),

where lg denotes log2. In [10], the authors used the Lovász local lemma [1]

(denoted here by L3) to yield the general upper bound

k0(k, t, q) ≤ (t− 1)
lg n

lg
(

qt

qt−1

)(1 + o(1)),

which only yields the bound 10.33 lg n for t = 3, q = 2. Borrowing Roux’s

technique of randomly assigning an equal number of ones and zeros to the

n columns, the authors of [10] were then able to match the bound 7.56 lg n,

also via L3.

There have been several efforts to improve the bounds from [10] for general

values of the parameters. In [6], a technique was used that was intermediate

between (i) a straightforward use of the L3 with nk independent uniform

random variables determining the array; and (ii) L3 in conjunction equal

weight columns. Specifically, in [6], columns were tiled with small segments

2

that had equal numbers of each letter of the alphabet. In [15], an effort was

made to stick with equal weight columns and conquer the more complicated

sums that arose for values of the parameters other than t = 3, q = 2. The

algorithmic use of the L3, via a method called entropy compression, was

adopted in the paper [8]. Almost at the same time, the authors of [12] used

alteration to give an improvement of an elementary bound (that uses linearity

of expectation) that led to a two-stage construction algorithm. Bounds from

the L3 were improved upon in a different manner in [12], by examining group

actions on the set of symbols.

There have been several variations on the basic definition of covering

arrays. In [4], and [5], the authors considered the notion of covering arrays

of permutations. In [2] and [7], partial covering arrays are related to an

Erdős-Ko-Rado property. Partial covering arrays are also studied extensively

in [13]. In the statistically relevant paper [9], only consecutive sets of t

columns are considered. The paper [11] is just one of many in which variable

strength covering arrays (where the interactions to be covered in the array

are studied by modeling them as facets of an abstract simplicial complex);

covering arrays on graphs; and mixed covering arrays (different alphabet

sets in different columns). See also the contributed talks in the sessions

on Generalizations of Covering Arrays at https://canadam.math.ca/2011/

program/schedule_contributed_mini

In this paper, we offer two more variations on the definition of covering

arrays, and find upper bounds on the size of these arrays using some of the

techniques mentioned above. In particular, the L3, either with or without

fixed weight columns, will continue to be used in this paper, together with

3

techniques from [6] and [15]. It would be interesting to see what improve-

ments can be made using entropy compression, or group actions, etc. In both

of our schemes, all words are not considered to be different. In the first case

words are equivalent if they induce the same partition of a t element set.

In the second case, words of the same weight are equivalent. In both cases

we produce logarithmic upper bounds on the minimum size n = n(k) of a

covering array. Most definitive results are for t = 2, 3, 4.

2 Covering Arrays for Set Partitions

This section will focus on covering arrays for set partitions. The basic defi-

nition is as follows, where B(t) denote the unordered Bell numbers, namely

the number of partitions of a t-element set into an arbitrary number of parts.

Definition 2.1. An k × n array with entries from the alphabet {1, 2, . . . , d}

is a covering array for partitions of a set into t or fewer parts if for each

choice of t columns each of the B(t) partitions of [t] appears as a word (or

word pattern) across the rows of the selected columns.

Given n, t, and d what is the minimum number k0 = k0(n, t, d) of rows

so that a k × n covering array exists for set partitions? This is the key

question that we will address in this section. The minimum value of this k0

can be found manually for small n, which was our first step. The following

constructions (which we call t-scattering arrays, where each equivalence class

of set partitions can be found) show that for n = 4, d = 2, and t = 3 we need

only 5 rows in order to find all partitions (note, with d = 2, there are only 5

partitions to find) and for n = 5, d = 2, and t = 3 we only need 7 rows.

4

A B C D

1 1 1 1

1 2 3 4

1 2 1 2

2 2 1 1

1 2 2 1

Table 1: t-scattering array for n = 4, t = 3, and d = 2

ABC ABD ACD BCD

xyz xyz xyz xyz

x|y|z x|y|z x|y|z x|y|z

y|xz x|yz z|xy y|xz

z|xy z|xy x|yz x|yz

x|yz y|xz y|xz z|xy

Table 2: Verification of Partition Occurrence

A B C D E

1 1 1 1 1

1 2 3 4 5

1 2 2 1 2

2 1 2 1 2

2 2 1 1 2

2 2 1 1 1

1 1 1 2 2

Table 3: t-scattering array for n = 5, t = 3 and d = 2

5

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

xyz xyz xyz xyz xyz xyz xyz xyz xyz xyz

x|y|z x|y|z x|y|z x|y|z x|y|z x|y|z x|y|z x|y|z x|y|z x|y|z

x|yz y|xz x|yz y|xz x|yz z|xy z|xy xyz y|xz y|xz

y|xz x|yz y|xz xyz xyz y|xz y|xz x|yz x|xy y|xz

z|xy z|xy xyz z|xy y|xz y|xz x|yz y|xz y|xz z|xy

— — z|xy x|yz x|yz x|yz — x|yz x|yz xyz

— — — — z|xy — — z|xy — x|yz

Table 4: Verification of Partition Occurrence

As before, we will seek bounds on k0(n, t, d) as d and t are fixed, but

n → ∞; at times we allow d → ∞ as well. The first proposition (among

other results) illustrates the role that d plays; in particular d may be (far)

larger than the size t of the set we are trying to partition.

Proposition 2.1. k0(n, 2, n) = 2.

Proof. We consider the case for a k × n scattering array for words of length

t = 3. There are only two B(2) = 2 partitions to find. We fill the first row

of our array with all like elements and the second row with the elements 1

through n. Hence, any random choice of two columns will always result in

the desired (xy) and (x)(y) sets.

Lemma 2.2. No more than 2 elements are needed to optimize k0(n, 3, 2).

Proof. There are
(
d
2

)
ways to form the 3 unique partitions we are looking

for, where d is the size of our alphabet. Each of these partitions will appear

twice, as 001 = 110 and so on; thus, there are
(
d
2

)
· 2 = d(d − 1) ways to

6

choose a combination of two elements. There are d3 unique words of length

3 and therefore a probability of (1− d(d−1)
d3

) that one of our k0 rows will not

contain one of our partitions. For d = 2, (1− d(d−1)
d3

) = 3
4
. We wish to see if

(1− d(d−1)
d3

) > 3
4
for d > 2.

1− d(d− 1)

d3
>

3

4
if

1− (d− 1)

d2
>

3

4
if

d− 1

d2
<

1

4
if

d2 − 4d + 4 > 0 if

(d− 2)2 > 0, which is always true.

(1)

Thus to optimize k0(n, 3, 2) it is sufficient to use a two-letter alphabet.

Proposition 2.3. k0(n, 3, 2) ≤ 7.23 lg(n).

Proof. We consider the case for a k × n scattering array for words of length

t = 3. From the Bell numbers, B(3) = 5. We satisfy the partitioning of n

elements into exclusively unique sets by filling the first row with 1, 2, 3, ...n.

We can also satisfy the partitioning n elements into the same set by filling

our second row with all like elements. Our remaining partitions are xxy,

xyx and yxx. Note; we are only interested in finding word patterns. As per

Lemma 2.2, we only need to find one instance of these partitions and all of

these partitions can be found using only a d = 2 alphabet.

Let X be defined as the number of ‘bad’ columns, where ‘bad’ implies at

least one of our word equivalence classes is missing from any random choice

7

of three columns. We wish for the expected value of X, E(X), to be less

than one, as this would imply that P (X = 0) > 0.

There are
(
n
3

)
choices of columns in our array. There are three unique

partitions and 23 = 8 total words. Two of these are accounted for in the first

two rows of our matrix, so we need only find 6. There are
(
d
2

)
=
(
2
2

)
= 1

ways to find these partitions, but as each of our partitions has one equivalent

representation, this number would be doubled to allow for equivalency. Thus,

the probability that one of our partitions will be missing from a random choice

of three columns is given by (1 − (2
8
))k0 =

(
3
4

)k0 . Therefore, E(X) is given

by

E(X) =

(
n

3

)
· 3 · (3

4
)k0

.

We wish for this value to be less than 1, therefore(
n

3

)
· 3 · (3

4
)k0 < 1 if

n3

6
· 3 · (3

4
)k0 < 1 if

lg[
n3

6
· 3 · (3

4
)k0] < lg(1) if

(2)

3 lg(n) + lg(
3

6
)− k0 · lg(

4

3
) < 0 if

3 lg(n) + lg(1
2
)

lg(4
3
)

< k0 if

3 lg(n)(1 +
(lg 1

2
)

3 lg(n)
)

lg 4
3

< k0 if

3 lg(n)(1 + o(1))

lg 4
3

< k0 if

7.23 lg(n)(1 + o(1)) < k0

(3)

8

Hence, it is possible that there are no ’bad’ columns if k0(n, 3, 2) ≤ 7.23 lg(n).

Proposition 2.4. k0(n, 4, 3) ≤ 36.025 lg(n).

Proof. We consider the case for a k × n scattering array for words of length

t = 4. From the Bell numbers, B(4) = 15. As before, we satisfy the parti-

tioning of n elements into exclusively unique sets by filling the first row with

1, 2, 3, ...n. We can also satisfy the partitioning n elements into the same set

by filling our second row with all like elements. Thus we are left with 13

partitions to find.

Let X be defined as the number of ‘bad’ columns, where ‘bad’ implies at

least one of our word equivalence classes is missing from any random choice

of four columns. We wish for the expected value of X, E(X) to be less than

one, as this would imply that P (X = 0) > 0.

There are
(
n
4

)
choices of columns in our array.

From inspection, we can see that the bell number B(n) =
∑n

i=1 S(n, i),

where S(n, i) is the Stirling number of the second kind; i.e. the number of

ways of obtaining groups of i elements from a set of n. For S(4, 2) and d = 3

there are
(
3
1

)
= 3 ways to chose the element for the first set and thus

(
2
1

)
= 2

ways to chose the element for the second set. Thus a total number of 6 ways

of constructing each partition.

For S(4, 3) and d = 3, there are
(
3
1

)
= 3 ways to chose the element for the

first set and thus
(
2
1

)
= 2 ways to chose the element for the second set and(

1
1

)
= 1 ways to choose the element for the third set. Thus, as before, there

are 6 ways of constructing each of these partitions. There are 34 = 81 total

words and thus the probability that any one of those partitions is missing is

9

given by (1− 6
81

)k0 =
(
75
81

)k0 . Therefore, E(X) is given by

E(X) =

(
n

4

)
· 13 · (75

81
)k0

We wish for this value to be less than 1, therefore(
n

4

)
· 13 · (75

81
)k0 < 1 if

=
n4

24
· 13 · (75

81
)k0 < 1 if

= lg[
n4

24
· 13 · (75

81
)k0] < lg(1) if

= 4 lg(n) + lg(
13

24
)− k0 · lg(

81

75
) < 0 if

=
4 lg(n) + lg(13

24
)

lg(81
75

)
< k0 if

=
4 lg(n)(1 +

lg(13
24

)

4 lg(n)
)

lg(81
75

)
< k0 if

=
4 lg(n)(1 + o(1))

lg(81
75

)
< k0 if

= 36.036 lg(n)(1 + o(1)) < k0

(4)

Hence, it is possible that there are no ’bad’ columns if k0(n, 4, 3) ≤ 36.036 lg(n).

Lemma 2.5. Lovász Local Lemma [1]

Let A1, A2, . . . An be events in an arbitrary probability space. Suppose that

each event Ai is mutually independent of a set of all the other events Aj but

at most d and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n if

ep(d + 1) ≤ 1,

then Pr(∧ni=1Āi) > 0.

10

Here, ‘e’ is Euler’s irrational number, namely e ≈ 2.71828, ‘p′ is the

probability that at least one of our words is missing from a choice of t,

and we let the dependence number m = d + 1, which is the number of t

columns that are dependent on a fixed column. Where before we wanted our

E(X) < 1, now we want our epd < 1.

Proposition 2.6. k0(n, 3, 2) ≤ 4.8188 lg(n).

Proof. We wish to make an improvement on our previous bound for k0(n, 3, 2)

by employing the Lovász Local Lemma.

We consider the case for a k×n scattering array for words of length t = 3.

From the Bell numbers, B(3) = 5. We satisfy the partitioning of n elements

into exclusively unique sets by filling the first row with 1, 2, 3...n. We can

also satisfy the partitioning n elements into the same set by filling our second

row with all like elements, leaving us with 3 partitions to find.

From Lovász, we wish for our e · p · m < 1 where e ≈ 2.71828, p is the

probability that any one of our partition sets is missing from a choice of 3

columns and m is the dependence number.

The probability that any one of our partition sets is missing from a choice

of t columns was found in Proposition 2.1 to be 3 · (3
4
)k0 . For our m value, we

chose any one from of our set of three columns to be part of the intersection.

We then choose two columns from the remaining n − 3 columns to fill the

pair. Conversely, we can choose two columns from our set of three and one

11

more from the remaining n− 3 columns. This gives us

m =

(
3

1

)(
n− 3

2

)
+

(
3

2

)(
n− 3

1

)
=

3!

1!2!

(n− 3)!

2!(n− 5)!
+

3!

2!1!

(n− 3)!

1!(n− 4)!

=
3(n− 3)(n− 4)

2
+ 3(n− 3)

=
3(n2 − 7n + 12)

2
+

6n

2
− 18

2

=
3n2

2
− n

2
− 6

2

≤ 3n2

2
. Thus,

e · p ·m < 1 if

e · 3 · (3

4
)k0 · 3n2

2
< 1.

Employing logarithms, we have

lg[e · 3 · (3

4
)k0 · 3n2

2
< 1] if

lg(e) + 2 lg(3n) + lg(
3

2
)− k0 lg(

4

3
) < 0 if

2 lg(3n) + lg(
3

2
) < k0 lg(

4

3
).

Rearranging in terms of k0, we have

2 lg(3n) + lg(3
2
)

lg(4
3
)

< k0 if

2 lg(3n)(1 +
lg(3

2
)

2 lg(3n)
)

lg(4
3
)

< k0 if

2 lg(3n)(1 + o(1))

lg(4
3
)

< k0 if

2 lg(3n)

lg(4
3
)

=
2 lg(3) + 2 lg(n)

lg(4
3
)

<
2 lg(n)

lg 4
3

< k0 if

4.8188 lg(n) < k0.

(5)12

Thus, k0(n, 3, 2) ≤ 4.8188 lg(n).

Proposition 2.7. k0(n, 4, 3) ≤ 27.019 lg(n)

Proof. We wish to make an improvement on our previous bound for k0(n, 4, 3)

by employing the Lovász Local Lemma.

We consider the case for a k×n scattering array for words of length t = 4.

From the Bell numbers, B(4) = 15. We satisfy the partitioning of n elements

into exclusively unique sets by filling the first row with 1, 2, 3, ...n. We can

also satisfy the partitioning n elements into the same set by filling our second

row with all like elements, leaving us with 13 partitions to find.

From Lovasz, we wish for our e · p · m < 1 where e ≈ 2.71828, p is the

probability that any one of our partition sets is missing from a choice of 4

columns and m is the dependence number.

The probability that any one of our partition sets is missing from a choice

of t columns was found in Proposition 2.2 to be 13·(75
81

)k0 . For ourm value, we

chose any one from of our set of four columns to be part of the intersection.

We then choose two columns from the remaining n − 4 columns to fill the

pair. Conversely, we can choose two columns from our set of four to be part

of the intersection and two from the remaining n − 4 columns, or choose 3

columns from our set of four and one from the remaining n−4 columns. This

gives us

m =

(
4

1

)(
(n− 4)

3

)
+

(
4

2

)(
(n− 4)

2

)
+

(
4

3

)(
(n− 4)

1

)
=

4!

1!3!

(n− 4)!

3!(n− 7!)
+

4!

2!2!

(n− 4)!

2!(n− 6)!
+

4!

3!1!

(n− 4)!

1!(n− 5!)

=
4

6
(n− 4)(n− 5)(n− 6) +

18

6
(n− 4)(n− 5) +

24

6
(n− 4)

(6)

13

=
4

6
(n3 − 15n2 + 74n− 120) +

18

6
(n2 − 9n + 20) +

24

6
(n− 4)

=
4

6
n3 − 42

6
n2 +

158

6
n +

936

6

= m ≤ 4n3

6
.

(7)

Therefore,

e · p ·m < 1 if

e · 4n3

6
· 13(

75

81
)k0 < 1.

Employing logarithms, we have

lg[e · 4n3

6
· 13(

75

81
)k0 < 1] if

lg(e) + lg
4n3

6
+ lg(13) + k0lg(

75

81
) < 0 if

3lg(4n)− k0lg(
81

75
) < 0.

Rearranging in terms of k0, we have

3lg(4) + 3lg(n)

lg 81
75

< k0 if

3lg(n)(1 + o(1))

lg 81
75

< k0 if

27.1953lg(n) < k0.

(8)

Hence, it is possible that there are no ’bad’ columns if k0(n, 4, 3) ≤ 27.019 lg(n).

14

3 Covering Arrays for Weight-Equivalent Words

This section will focus on covering arrays for words when words with the

same weight are equivalent, and we only need to find a single word of a given

weight.

Definition 3.1. An k × n array with entries from the alphabet {1, 2, . . . , d}

is a covering array for weight-equivalent words of length t over [d] if for each

choice of t columns a word of each weight between t and dt appears at least

once across the rows of the selected columns.

Given n, t, and d what is the minimum number kw = kw(n, t, d) of rows

so that a k × n covering array exists for weight-equivalent words? This is

the key question that we will address in this section. The methods of finding

these bounds are very similar to the propositions in Section 2, except now

instead of finding equivalent partitions (i.e. 110 = 001) we’re looking for

partitions of equal weight (i.e. 100 = 010 = 001).

Proposition 3.1. kw(n, 3, 2) ≤ 2.95 lg(n).

Proof. In Section 2, we filled our first two rows with like and unique elements

respectively to account for the individual partitions of every elements in the

same set and every element in its own set. Now, using a two-letter (0, 1)

alphabet, we fill the first row with 0s to allow for words of weight 0 and the

second row with 1s to allow for words of weight 3. Thus, we need only find

two different words; a word of weight 1, and a word of weight 2. There are

three ways to find each word, namely

100 = 010 = 100,

15

110 = 101 = 011.

and dt = 23 = 8 total possible words. Therefore, the probability that one of

our two words will be missing from a random choice of 3 columns is given by

(1− 3
8
)kw = (5

8
)kw . Employing Lovasz, with m = n2 we find that our expected

value is given by

e · n2 · 2(
5

8
)kw < 1 if

lg[e · n2 · 2(
5

8
)kw] < lg(1) if

lg(e) · lg(n2) · lg((
5

8
)kw) < 0 if

2lg(n)− kwlg(
8

5
) < 0 if

2lg(n)

lg(8
5
)

< kw if

2.95lg(n) < kw.

(9)

Hence, it is possible that there are no ’bad’ columns if kw(n, 3, 2) ≤

2.95 lg(n).

Proposition 3.2. kw(n, 4, 2) ≤ 7.23 lg(n).

Proof. Using a two-letter (0, 1) alphabet, we fill the first row with 0s to allow

for words of weight 0 and the second row with 1s to allow for words of weight

4. Thus, we need find four different words; a word of weight 1, weight 2, and

weight 3. There are four ways to find a word of weight one, six ways to find

a word of weight two, and four ways to find a word of weight 3, namely

1000 = 0010 = 0100 = 1000,

16

0011 = 0110 = 1100 = 1001 = 0110 = 1010 = 0101,

0111 = 1011 = 1101 = 1110.

There are dt = 24 = 16 total possible words. Therefore, the probability that

one of our three words will be missing from a random choice of 4 columns is

less than, or equal to (1 − 4
12

)kw = (12
16

)kw . Employing Lovász, with m = n3

we find

e · n3 · 2(
12

16
)kw < 1 if

lg[e · n3 · 2(
3

4
)kw] < lg(1) if

lg(e) · lg(n3) · lg((
3

4
)kw) < 0 if

3lg(n)− kwlg(
4

3
) < 0 if

3lg(n)

lg(4
3
)

< kw if

7.23lg(n) < kw.

(10)

Hence, it is possible that there are no ’bad’ columns if kw(n, 4, 2) ≤

7.23 lg(n).

Proposition 3.3. kw(n, 3, 3) ≤ 11.77 lg(n).

Proof. Using a three-letter (0, 1, 2) alphabet, we fill the first row with 0s to

allow for words of weight 0 and the second row with 2s to allow for words of

weight 6. Thus, we need find five different words; a word of weight 1, weight

2, and weight 3, weight 4 and weight 5. There are three ways to find a word

of weight one, six ways to find a word of weight two, seven ways to find a

17

word of weight 3, six ways to find a word of weight 4, and three ways to find

a word of weight 5, namely

100 = 010 = 001,

110 = 101 = 011 = 200 = 020 = 002,

111 = 120 = 102 = 012 = 210 = 021 = 201,

112 = 121 = 211 = 022 = 202 = 220,

122 = 212 = 221.

There are dt = 33 = 27 total possible words. Therefore, the probability that

one of our five words will be missing from a random choice of 3 columns is

less than, or equal to (1 − 3
27

)kw = (24
27

)kw . Employing Lovász, with m = n2

we find that our expected value is given by

E(X) = e · n2 · 2(
24

27
)kw < 1

= lg[e · n2 · 2(
24

27
)kw] < lg(1)

= lg(e) · lg(n2) · lg((
24

27
)kw) < 0

= 2lg(n)− kwlg(
27

24
) < 0

=
2lg(n)

lg(27
24

)
< 0

= 11.77lg(n) < 0.

(11)

Hence, it is possible that there are no ’bad’ columns if kw(n, 3, 3) ≤

11.77 lg(n).

18

4 Open Questions

(i) What are some exact values that one might find via constructions?

(ii) Why do fixed weight columns appear to do no better in some cases,

but play a critical role in improvements in other cases?

(iii) What are some applications of our schema, beyond those noted in

the beginning of Section 3? What other equivalence classes of words might

we consider?

References

[1] N. Alon and J. Spencer (1992). The Probabilistic Method. Wiley, New

York.

[2] P. Carey and A. Godbole (2010). “Partial covering arrays and a general-

ized Erdös-Ko-Rado property," J. Combinatorial Designs 18, 155–166.

[3] C. Colbourn (2004), “Combinatorial aspects of covering arrays," Le

Matematiche (Catania) 58, 121–167.

[4] Y. M. Chee, C. Colbourn, D. Horsley, and J. Zhou (2013). “Sequence

covering arrays", SIAM Journal on Discrete Mathematics 27, 1844–

1861.

[5] , S. deGraaf, A. Godbole, Z. Koch, and K. Lan (2017+). “t-scrambling

permutations and t-covering arrays," Preprint.

[6] M. Donders and A. Godbole (2013). “t-covering arrays generated by a

tiling probability model," Congressus Numerantium 218, 111– 116.

19

[7] P. Erdős, P. Frankl, and Z. Furedi (1982). “Families of finite sets in which

no set is covered by the union of two others," J. Combin. Theory Ser.

A 33, 158–166.

[8] N. Francetić and B. Stevens (2017). “Asymptotic size of covering arrays:

an application of entropy compression," J. Combinatorial Designs 25,

243–257.

[9] A. Godbole, M. Koutras, and F. Milienos (2011). “Binary consecutive

covering arrays," Annals of the Institute of Statistical Mathematics 63,

559–584.

[10] A. Godbole, D. Skipper, and R. Sunley (1996). “t-covering arrays: upper

bounds and Poisson approximations,” Combinatorics, Probability and

Computing 5, 105–118.

[11] S. Raaphorst, L. Moura, B. Stevens (2017+), “Variable strength covering

arrays," To appear.

[12] K. Sarkar and C. Colbourn (2017). “Upper bounds on the size of covering

arrays", SIAM Journal on Discrete Mathematics 31, 1277–1293.

[13] K. Sarkar, C. Colbourn, A. De Bonis, and U. Vaccaro (2017+). “Partial

Covering Arrays: Algorithms and Asymptotics," Theory of Computing

Systems, to appear.

[14] Sloane, N. J. A. (1993). “Covering arrays and intersecting codes," Jour-

nal of Combinatorial Designs 1, 51–63.

20

[15] R. Yuan, Z. Koch, and A. Godbole (2015). “Covering array bounds using

analytical techniques," Congressus Numerantium 222, 65–73.

21

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2018

	Covering Arrays for Equivalence Classes of Words
	Joshua Cassels
	Anant Godbole
	Recommended Citation

	tmp.1523891512.pdf.FAtta

