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ABSTRACT 

Characterization of Pro-inflammatory and Anti-inflammatory Microglia in the Anterior 

Cingulate Cortex in Autism Spectrum Disorder 

by 

Aubrey N. Sciara 

 

Autism spectrum disorder (ASD) is associated with functional abnormalities of the anterior 

cingulate cortex (ACC), a brain area that mediates social behavior.  Given evidence of a role of 

inflammation in ASD, markers of pro-inflammatory and anti-inflammatory microglia were 

studied using postmortem ACC tissues from ASD and age-matched typically developed control 

donors.  Gene expression levels of pro-inflammatory (CD68, HLA-DRA, IL1B, NOS2, PTGS2) 

and anti-inflammatory (ARG1, IGF1, MRC1, PPARG) microglial genes were measured using 

quantitative real-time PCR.  Additionally, brain sections were immunohistochemically stained 

for a microglial marker.  Expression levels of IGF1 were modestly higher, while the expression 

of MRC1 was modestly lower in ASD donors when compared to control donors.  No other 

differences in gene expression levels between the two groups of donors were observed.  

Statistical significance for changes in expression levels IGF1 and MRC1 did not survive 

correction for multiple comparisons.  Further research on anti-inflammatory microglial 

involvement in ASD is warranted. 
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CHAPTER 1 

INTRODUCTION 

Autism Spectrum Disorder 

Autism spectrum disorder (ASD) is a collection of disorders that encompasses 

neurodevelopmental disorders such as Autistic Disorder, Asperger Syndrome, and Pervasive 

Developmental Disorder-Not Otherwise Specified.  ASD is associated with deficits in an 

individual’s language and speech, social interaction, and/or motor function.  Since the first 

epidemiological survey in 1966, the prevalence of autism has increased from 1 in 2,000 

individuals to approximately 1 in 160 individuals globally (World Health Organization 2013).  In 

the United States, it affects 1 in 68 children with a male to female ratio of 5:1 (Baio 2014).  It is 

argued that improved diagnostic tools and increased awareness of ASD in the last 50 years have 

had an effect on the increase in ASD prevalence (Vargas et al. 2005; Wing et al. 2011). 

The median age of ASD diagnosis is approximately 4.5 years, even though it is possible 

for a child to be diagnosed as early as the age of 2 (Baio 2014).  There are a variety of tools used 

to diagnose ASD; however, access to these tools still remains a challenge to low income 

countries.  The detection of ASD in the adult population proves to be more difficult than 

diagnoses of children because it requires alternative diagnostic tools.  Early diagnosis of ASD 

allows for increased time to develop routines and assist in behavioral management of the 

individual (World Health Organization 2013).    

With such a high occurrence rate, the cost of treating and assisting autistic individuals in 

the United States is astronomical.  Diagnosis usually comes early in life and can bring life-long 

costs.  Moreover, if the individual has intellectual disabilities, the cost of care increases because 

of the need for additional services.  No current treatments or pathognomonic markers for ASD 
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are known to exist currently, vastly increasing the need to understand ASD neuropathology.  A 

thorough understanding of the pathobiology of this disorder also has the potential to contribute to 

the development of advanced diagnostic tools that could lead to more precise diagnoses.      

As a spectrum disorder, the behavioral phenotype of individuals diagnosed with ASD is 

variable and is often further differentiated.  Autistic Disorder is defined by these specific deficits: 

repetitive motor behavior, impaired social interaction, decreased intellectual ability, and 

compromised verbal communication skills.  Conversely, individuals with Asperger Syndrome 

have normal language skills and those with Pervasive Developmental Disorder-Not Otherwise 

Specified have some, but not all of the deficits required for an autism diagnosis (Bill and 

Geschwind, 2009).  It is been proposed that Asperger Syndrome and Pervasive Developmental 

Disorder-Not Otherwise Specified are less severe forms of Autistic Disorder, even though a clear 

distinction between the subtypes is sometimes difficult to make, partially due to the lack of 

biological markers (Worley and Matson 2012).  Current revisions to the diagnostic criteria, now 

DSM-V, have removed these subgroups and have categorized Autistic Disorder, Asperger 

Syndrome, and Pervasive Developmental Disorder-Not Otherwise Specified as ASD (reviewed 

by Kim, 2015).   

 

Etiology  

 Throughout the past century, scientists have debated about the etiology of ASD from two 

distinct perspectives: (1) ASD is caused by a genetic mutation or abnormality or (2) that ASD is 

the product of exposure to particular environmental elements.  The true pathophysiology of ASD 

remains unknown, keeping scientists searching for answers.  Recent research has provided data 

supporting both viewpoints, leading the scientific community to conclude that the etiology of 
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ASD is likely the product of a combination of genetic abnormalities and exposure to some yet 

unknown environmental insult. 

Studies performed on identical and fraternal twins reveal a syndromic link to ASD (Bill 

and Geschwind, 2009).  More recently, research shows that gene mutations contribute to 

approximately 55% of ASD cases (Hallmayer et al. 2011).  Currently, there are 25+ loci that are 

considered autism susceptibility candidate genes.  Additionally, there are rare Mendelian 

mutations specific to ASD such as a de novo (not in parents) copy number variation (CNV) that 

are being intensely investigated (Bill and Geschwind, 2009).  In contrast to single nucleotide 

polymorphisms (SNPs), a change in one nucleotide in the DNA, CNV is a type of change in the 

genome that results in the deletion or duplication of a genomic region that is greater than 1,000 

nucleotides (Sebat et al. 2007; Geschwind 2008).   

Approximately 35% of children diagnosed with ASD have a recognized genetic disorder 

or a distinguishable chromosomal duplication or deletion.  Many of the recognized genetic 

syndromes associated with ASD originate from single gene mutations linked to the mammalian 

target of rapamycin (mTOR) pathway, such as Rett’s syndrome, fragile X mental retardation 1 

(FMR1), and tuberous sclerosis complex (TSC1/2) (McFadden and Minshew, 2013).  The mTOR 

pathway functions as a regulator of cell development, proliferation, and survival.  Many 

components of the pathway are located near neuronal synapses where they mediate 

synaptogenesis by regulating the morphology of dendritic spines and synaptic protein synthesis.  

Mutations in individuals with FMR1, TSC1/2, and other disorders such as neurofibromatosis 1 

(NFM1) and phosphatase and tensin homolog (PTEN) have been found to lead to an overactive 

mTOR signaling pathway (reviewed by Sawicka and Zukin 2012).  Specifically, in FMR1, the 

upregulated mTOR pathway results in an increase of cap-dependent protein translation.  Mice 
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studies have shown that when there is an increase in the components of the cap-dependent 

translation initiation complex, the mice display enhanced repetitive behavior (Huber et al. 2015).  

Based off of the role the mTOR pathway plays in other ASD-like disorders, it has been 

suggested that persons with ASD may have an irregular mTOR pathway as well (reviewed by 

Sawicka and Zukin 2012).  Although Rett’s syndrome, FMR1, and TSC1/2 are associated with 

ASD, the pathophysiology of each disorder stems from a different genetic abnormality (reviewed 

by Strathearn, 2009).  Because genetic abnormalities do not account for 100% of the cause, it is 

speculated that in addition to specific gene mutations, environmental risk factors, increased ages 

of parents, and a general lack of parental nurture may be correlated with an increased risk for 

ASD (Durkin et al. 2008; Strathearn 2009; World Health Organization 2013).  

Additionally, studies have suggested that maternal autoimmune disorders and various 

teratogens may play a role in the pathogenesis of ASD (Strömland et al. 1994; Atladóttir et al. 

2009; Keil et al. 2010; reviewed by Dufour-Rainfray et al. 2011; Stevens et al. 2013; Chen et al. 

2016).  A Danish study of 3325 children who had been diagnosed with ASD showed an 

increased risk when the mother had a history of an autoimmune disorder such as celiac disease or 

rheumatoid arthritis.  The researchers also concluded that there is a potential genetic link 

between maternal and/or paternal type 1 diabetes (T1D) based on the parental history of T1D and 

the number children with ASD (Atladóttir et al. 2009).  Epidemiological studies have also 

reported a correlation between the exposure of a fetus to teratogens such as valproic acid 

(antiepileptic drug), thalidomide (sedative), and misoprostol (drug for gastric ulcers) and a 

diagnosis of ASD (reviewed by Dufour-Rainfray et al. 2011).  Furthermore, ethanol consumption 

by pregnant women not only causes abnormalities in the child such as fetal alcohol syndrome, 

but researchers are hypothesizing it may have teratogenic effects on cellular regulation and may 
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cause abnormal gene expression via epigenetic modifications.  Researchers are currently 

attempting to determine what effect exposure time has on these teratogenic defects (reviewed by 

Dufour-Rainfray et al. 2011).  While these studies do not encompass all of the components of the 

pathophysiology of the disorder, they do show the complexity of the etiology of ASD. 

 

Anterior Cingulate Cortex and ASD 

The central nervous system is composed of: gray matter, where neuronal cell bodies and 

glia are located, and white matter, which houses primarily neuronal axons and glia.  In the gray 

matter, information is processed from stimuli and signals are transmitted through short- and 

long-range neuronal axons.  Gray matter in the cerebral cortex envelops the brain in sulci and 

gyri, while white matter is immediately adjacent to the inner layer of the cortex.  Specialized 

cells in white matter, oligodendrocytes, provide insulation for neuronal axons that pass through 

the area, facilitating the transmission of signals along axons.  Microglial cells and macroglial 

cells (including oligodendrocytes and astrocytes) are abundantly present in the white matter, 

while there are very few neuronal cell bodies found in white matter.  Divided into two 

hemispheres, four lobes, the spinal cord, and complex brain areas, the central nervous system is 

able to rapidly communicate between areas of different functions via the transmission of signals 

through neurons, ultimately sending information to each region of the body. 

The cingulate cortex is located in the medial portion of the cerebral hemispheres and is a 

part of the limbic system, making it a major component in emotional processes.  The cingulate 

cortex is divided into two sections: the anterior cingulate cortex (ACC) and the posterior 

cingulate cortex (Vogt et al. 1992; Know your Brain 2015).  It is primarily hypothesized that the 

cingulate cortex, as a whole, processes cognitive and emotional, sensory, and motor information 
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(reviewed by Bush, Luu, & Posner, 2000).  Secondly, the cingulate cortex assimilates 

information from different networks including motivation, cognition, emotion, and evaluation of 

error.  The anterior cingulate cortex, also referred to as Brodmann area 24 (BA24), has been 

recognized as a brain area that displays abnormalities in individuals with ASD.  The ACC 

subserves many behavioral functions, demonstrated in studies using neuroimaging and electrical 

recordings, and influences activity in other various brain regions to regulate endocrine, motor, 

cognitive, and visceral responses (reviewed by Bush, Luu, & Posner, 2000).  Differentiated into 

many distinct sub-regions, the ACC assists in tasks that range from basic to complex.  During 

complex tasks, the ACC becomes activated in combination with the prefrontal cortex, suggesting 

that it is essential in higher-order thinking (Margulies et al. 2007).   

A meta-analysis, including 21 research publications, reported that the ACC is a brain area 

that demonstrates abnormalities in individuals with ASD (DeRamus and Kana 2015).  MRI 

comparisons revealed decreased ACC gray matter volume in ASD individuals when compared to 

typically developed controls (Greimel et al. 2013).  Several studies have utilized functional 

magnetic resonance imaging (fMRI), useful for the inspection of neural structures, to 

demonstrate decreased synchronization of critical cortical regions during complex task 

performance when comparing individuals with ASD to typically developed control subjects.  

This functional decrease was specifically localized to connectivity between the frontal (anterior 

cingulate and other prefrontal cortices) and more posterior cortical regions (reviewed by 

McFadden and Minshew, 2013).  Additionally, fMRI studies have demonstrated hypoactivation 

of the ACC during visual stimulation, attentional and cognitive processing, and during social 

response tasks in ASD subjects (reviewed by Gomot et al. 2006; Silk et al. 2006; Kohls et al. 

2013; Urbain et al. 2015).  A separate meta-analysis of 24 studies examining social processes 
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concluded that there was hypoactivation in the perigenual ACC of ASD subjects solely during 

social tasks (Di Martino et al. 2009).  While the meta analyses and fMRI studies agree, 

inconsistences in methods, analyses, and subject criteria (i.e. only subjects with Asperger’s 

syndrome, inclusion of subjects on medications, or comorbidities), make it challenging to 

compare the findings of these studies (Dichter et al. 2009).  It is likely that the subjects of some 

ASD studies are mostly individuals with moderate- to highly-functional ASD, potentially 

excluding the individuals with severe ASD who lack verbal skills, whose disruptive behaviors 

prevent participation, and those who are unable to interact with researchers.  The exclusion of 

these individuals would depend on the type of analysis performed.  From this, it is simple to see 

how difficult it can be to obtain reliable results from ASD studies. 

Mainly, imaging methods demonstrating disruption of the function of the anterior 

cingulate cortex in ASD are interpreted as gray matter deficits; however, white matter deficits 

have also been implicated in ASD.  White matter pathology is typically examined in vivo by 

diffusion tensor imaging, a technique that measures the amount of diffusion throughout the brain 

matter.  Under normal conditions in the brain, white matter is less permissive of the diffusion of 

water in comparison to gray matter.  In ASD subjects, increased diffusion of water through the 

white matter has been detected in comparison to control subjects, leading researchers to 

hypothesize that ASD brains have surplus interstitial space in white matter (Groen et al. 2011).  

Several studies have indicated an increase in white matter volume and a decrease in the structural 

integrity of white matter in individuals with ASD, abnormalities that may contribute to motor 

impairment and disruption in cognitive processing in ASD (Noriuchi et al. 2010; Groen et al. 

2011; Ingalhalikar et al. 2011).  White matter pathology, as indicated in these imaging studies, 
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implies that cells found in the white matter are abnormal and/or there are structural changes in 

neuronal axons coursing through white matter.  

Thus far, most of the published research on the cellular pathology of ASD has focused on 

neurons.  Previously, we investigated the possible role of macroglia in white matter ASD 

pathology and abnormal gene expression changes of macroglial markers MOG and GFAP 

(Crawford et al. 2015).  Other researchers have hypothesized that microglia play a role in the 

pathophysiology of ASD (reviewed by Takano 2015).  Microglia are of particular interest 

because they are the immune cell of the CNS and play a role in synaptic maturation during 

development.  It has been reported that children with ASD suffer from chronic 

neuroinflammation, which could potentially lead to neuronal cell death and a loss of synaptic 

connections from upregulated inflammatory mediators (reviewed by Pardo et al. 2005; 

Zimmerman et al. 2005; reviewed by Rodriguez and Kern 2011).  In addition to a possible link 

between inflammation in the CNS and neural network deficits, Vargas and coworkers found that 

microglia are consistently activated, suggesting microglia are continually working to protect the 

CNS from injury or threat of damage, in all brain regions in ASD subjects (Vargas et al. 2005; 

reviewed by Edmonson et al. 2016).  The microglial responses in ASD individuals were 

comparable to responses seen in other neurodegenerative disorders, such as Parkinson’s disease 

and Alzheimer’s disease (Vargas et al. 2005).  Suzuki and coworkers found evidence of 

microglia involvement in ASD, reporting an increase in a microglial binding ligand in multiple 

brain regions including the ACC in young adults with ASD (Suzuki et al. 2013).  These early 

findings support the investigation of the alleged role of microglia in the ACC in ASD pathology.  
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Microglia  

 In addition to the evidence supporting microglia’s possible role in white matter pathology 

in ASD, microglia have been linked to autism through various other mechanisms.  Located 

throughout the brain and spinal cord, microglial cells are responsible for immune system and 

central nervous system (CNS) protection against pathogenic factors (reviewed by Saijo & Glass, 

2011). Microglia, the macrophages of the CNS, originate in the yolk-sac, arising from 

erythromyeloid progenitors (EMPs), and migrate to the brain during early fetal development 

(reviewed by Casano & Peri, 2015; Saijo & Glass, 2011). In contrast, neurons and macroglia 

originate from the neuroectoderm (Eglitis and Mezey 1997; Glees 2005). 

 

Forms 

Ramified.  Structured similarly to astrocytes, each microglial cell has multiple branching 

processes that extend in all directions.  In the ramified state, also termed the ‘resting’ or 

‘inactivated’ form, these microglial branches continuously survey their surroundings in the CNS 

and have temporary contact with local synaptic structures (reviewed by Saijo & Glass, 2011; 

Tremblay, Lowery, & Majewska, 2010).  Ramified microglia represent the quickest moving 

structures in the brain with an average velocity of 5.44 ± 2.33 µm/min.  The rapid velocity of 

microglial processes allow for swift surveillance and immediate detection of injury and the 

initiation of an active response, eventually prompting complete microglial activation (Lee et al. 

2008).   

 

Activated.  When injury or the threat of damage to the CNS is present, ramified microglia are 

able to rapidly modify their morphology, function, and gene expression to provide protection.  
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This highly regulated progression of alteration is defined as microglial activation.  The once 

extended branching processes retract, giving the cell the appearance of an amoeba.  With the 

microglia no longer focused on surveillance, they promptly migrate to the site of infection or 

injury via chemotactic gradients (reviewed by Kettenmann et al. 2011).    

 

General Functions 

During early CNS development and in adulthood, microglia function as the “maid,” 

removing accumulating apoptotic neurons and reducing inflammation.  Microglia are also 

involved in the creation of synapses in the postnatal brain, a process termed synaptogenesis.  In 

the adult brain, microglia serve as the “guards,” ready to protect, as well as the homeostatic 

regulators of the CNS (reviewed by Kettenmann et al. 2011).  Abnormalities detected in nearby 

neuronal synapses initiate synaptic remodeling by microglia, which is necessary for maturation 

and homeostasis.  During the removal of damaged synapses, microglia release cytokines, 

reactive oxygen species (ROS), and growth factors (Kettenmann et al. 2013).  The phagocytic 

and synaptic pruning abilities of microglia are suggested to be imperative for normal brain 

development and neurogenesis (reviewed by Saijo & Glass, 2011).  In transgenic mice models, 

when a microglia-expressed chemokine receptor gene was knocked out, microglia were found in 

reduced cell density when compared to wild-type mice.  In addition to decreased microglial 

density, reduced synaptic pruning and circuit maturation was observed.  These changes in the 

knockout mice suggest that alterations were due to decreased microglial activity (Paolicelli et al. 

2011).  
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Apoptotic Signaling  

A study by Sieger et al., using transgenic calcium reporter zebrafish, has helped 

researchers understand the mechanism by which microglia are precisely-guided to areas of 

apoptotic neurons.  Targeted laser ablations of neurons were performed in the brains of the 

zebrafish and rapid Ca2+ gradient waves were established around the ablation site.  Sieger et. al. 

determined that through a possible ATP gradient created by Ca2+ signaling, microglia were being 

guided to specific apoptotic neuronal sites (Sieger et al. 2012).  Additionally, reversible exposure 

of phosphatidylserine on the surface of neurons is stimulated by an increase in Ca2+ or the release 

of ROS by lipopolysaccharides (LPS) from activated microglia (Neher et al. 2011; Brown and 

Neher 2012).  Chemotactic signals released by apoptotic neurons and exposed 

phosphatidylserine residues on the neuronal surface are indicative of phagocytic readiness for 

microglia (reviewed by Casano & Peri, 2015). 

 Microglia mainly phagocytize apoptotic neurons in order to promote a reduction of 

inflammation and synaptic remodeling.  Conversely, cells that are not undergoing apoptosis can 

also be phagocytized by microglia.  Phosphatidylserine, normally found on the inside of healthy 

cells, can also be exposed on the surface of viable neurons if they become stressed.  The 

exposure of phosphatidylserine is recognized by microglia and can result in the phagocytosis of 

the viable neuron.  This response by microglia is considered primary phagocytosis, while 

secondary phagocytosis would follow apoptosis or necrosis, and has been coined ‘phagoptosis’ 

(Brown and Neher 2012).  The potential effects of phagoptosis in a chronically inflamed brain 

area suggest that the abnormal phagocytosis of viable neurons by microglia may contribute to 

neurodegeneration and subsequent disease.  
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Activation Pathways  

When the CNS undergoes a damaging event, microglia are immediate responders to the 

site of damage.  Comparable to a macrophage response outside of the CNS, microglia may be 

activated through two distinct pathways, which are just beginning to be characterized in the 

literature (Shechter et al. 2013).  Microglia can demonstrate a pro-inflammatory (M1) phenotype, 

otherwise known as the “classically activated” phenotype.  Activated by interferon gamma 

(IFNϒ) and toll-like receptors, pro-inflammatory microglial cells produce cytokines and assume 

phagocytic roles that promote defense mechanisms and digest neurons.  Conversely, the anti-

inflammatory (M2) microglial phenotype is also referred to as “alternatively activated” 

microglia.  M2 microglia are mainly activated in the presence of IL-4 and facilitate CNS healing 

by participating in phagocytosis, neuronal remodeling, and tissue regeneration (Table 1) 

(Gordon 2003; Arnold et al. 2007; Kigerl et al. 2009).  

 A signaling pathway directs information from the cellular surface of the inactivated 

microglial cell to its nucleus, where specific genes are activated that determine the resulting 

activated phenotype of the cell.  The main difference in phenotypes that can occur is dependent 

on the isoform of galectin that interacts with the microglial cell.  For differentiation to the M1 

phenotype, galectin-3 is released by activated microglia, binds, and activates the microglial toll-

like receptor 4 (TLR4).  This activation creates a chain of further pro-inflammatory microglial 

activation (Burguillos et al. 2015).  Conversely, the binding of galectin-1 to CD45 on the 

microglial surface inhibits the production of pro-inflammatory mediators, upregulating the anti-

inflammatory phenotype through modulation of the CREB, NF-ᴋB, and p38-MAPK pathways 

(Starossom et al. 2012).  Additionally, the transcription of distinct pro-inflammatory or anti-

inflammatory markers have been found to be regulated by second messengers, such as cAMP 
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and Ca2+, and miRNAs, that can promote one phenotype by downregulating the expression of the 

other (Schebesch et al. 1997; Martinez-Nunez et al. 2011).     

 With the main goal of pro-inflammatory microglia being to protect the CNS against 

invading pathogens, the upregulation of M1 receptors and cytokines assist with the defense 

mechanisms.  Communication with pro-inflammatory microglia and other immune cells is 

possible through the presentation of the human leukocyte antigen-antigen D related (HLA-DR), 

Fcϒ, and CD86 (Taylor et al. 2005).  Additionally, the production of IL-12, ROS, and inducible 

nitric oxide synthase (iNOS) assist with the M1 phenotype classification (Mantovani et al. 2004; 

Kigerl et al. 2009). 

 Contrarily, the main purpose of the anti-inflammatory microglial mediators and receptors 

is to promote repair, downregulate inflammation, and to encourage healthy CNS functions.  

Some of the best characterized anti-inflammatory markers include the mannose receptor CD206, 

a heparin-binding lectin Ym1, FIZZ1, and the enzyme arginase 1 (ARG 1), which has the ability 

to decrease the production of iNOS (Stein et al. 1992; Corraliza et al. 1995; Hung et al. 2002; 

Raes et al. 2002).   

The anti-inflammatory phenotype is diverse; it can be broken down into subtypes.  The 

M2a subtype mainly focuses on suppressing inflammation and is induced by IL-4 and IL-13, 

leading to the upregulation of ARG 1 (Stein et al. 1992).  The exposure to IL-10, TGF-β, or 

glucocorticoids allows for the M2c subtype, which appears to be involved in healing damaged 

tissues after the pro-inflammatory phenotype is downregulated (Table 1) (Mantovani et al. 

2004).  The least understood subtype is the M2b classification, which slightly resembles the pro-

inflammatory phenotype by lacking the anti-inflammatory markers previously discussed (Mosser 

and Edwards 2008).  The M2b microglia have a response most similar to the anti-inflammatory 
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microglia in general, thus are listed as an M2 subtype.  The lack of full understanding the M2 

subtypes should yield caution to researchers attempting to study these subtypes separately, and 

encourages viewing the M2 subtype as a spectrum within the anti-inflammatory phenotype 

(Hanisch 2013). 

 

Table 1. Characteristics of microglial phenotypes and subtypes 

Phenotype/Subtype Polarization 
Cytokines 

Released 
Markers Functions 

M1 
IFNγ and LPS-
TLR4 signaling 

IL-1, IL-6, IL-
12, IL-15, IL-
23, and TNFα 

CD16, CD32, 
CD86, MHCII, 

and iNOS 

Phagocytosis for 
defense against 

pathogens, 
release of NO, 

and neuron 
digestion 

M2a IL-4 or IL-13 

IGF 1, IL-10, 
TGFβ, PDGF, 
IL-1Ra, and 
fibronectin 1 

CD163, CD204, 
CD206, ARG 1, 
Fizz1, and YM1 

Inflammation 
suppression, 

tissue repair, and 
immune 

response against 
parasites 

M2b 
FcγR, IL1B, or 
LPS-signaling 

IL-1β, IL-6, IL-
10, and TNFα 

CD86, CD163, 
MHCII, IL-10 
(high), IL-12 

(low), SPHK1 

Pro-
inflammatory 

and anti-
inflammatory 

functions 

M2c IL-10 or TGFβ Unknown 
CD163, CD204, 
CD206, ARG 1 

Healing 
functions and 

debris 
scavenging 

Adapted from “Repertoire of microglial and macrophage responses after spinal cord injury,” S. 
David & A. Kroner, 2011, Nature Reviews. Neuroscience, 12(7), 388–99. 

 

Following injury to the CNS, the pro-inflammatory response can be maintained during 

the subacute and chronic phases, upholding a neurotoxic environment for the site of injury. The 

anti-inflammatory response is limited to the subacute phase (Kigerl et al. 2009).  In a study 

performed by Kigerl et al., following a spinal cord injury, iNOS levels were increased drastically 
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within the first three days of injury, a primary M1 response.  During the monitored one-month 

time period after the injury, M1 surface receptors CD86, CD16, and CD32 increased over time 

(Kigerl et al. 2009).  Anti-inflammatory microglia were upregulated initially, with IL-4 receptor 

expression levels increasing more than twofold after 72 hours post injury, but M2 gene 

expression returned to pre-injury levels by the seventh day.  The decrease in the anti-

inflammatory phenotype suggests that chemokines and cytokines may cause existing microglia 

to differentiate into the pro-inflammatory phenotype (Kigerl et al. 2009). 

 

Microglia and ASD 

Neuroinflammatory processes caused by chronically activated microglia can contribute to 

the loss of synaptic connections and can cause neuronal death.  The normal response to 

inflammation is initiated by the pro-inflammatory microglial phenotype to encourage an immune 

response against invaders and to engulf apoptotic neurons (Soehnlein and Lindbom 2010).  The 

response is then altered to an anti-inflammatory response, where angiogenesis is promoted and 

cellular debris is cleared (Varin and Gordon 2009).  When the pro-inflammatory response 

continues rampantly, it can result in overproduction of inflammatory cytokines and ROS that 

further induce tissue damage and cellular death (Kigerl et al. 2009). 

Microglial dysfunction, shown in a mouse model of Rett syndrome, leads to neural 

circuitry dysfunction and abnormal behavior.  When microglial cells functioning abnormally, the 

CNS becomes crowded with damaged cells, that impairs neural function (Derecki et al. 2012).  

Additionally, when there is a lack of synaptic pruning, there is increased connectivity and 

superfluous inputs between the synapses, also causing deficits in motor learning and associated 

memory (Paolicelli et al. 2011).  Neural function impairment and abnormal immune responses 
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are distinct characteristics of ASD and have led scientists to hypothesize that there is a 

connection between ASD and microglial responses.          

During chronic neuroinflammation, the inflammatory reaction by microglia begins with 

the typical pro-inflammatory response.  The typical pro-inflammatory response is eventually 

overtaken by the pro-inflammatory response, but during chronic neuroinflammation, the pro-

inflammatory response becomes self-generating and does not cease.  A destructive inflammatory 

cycle is created, increasing inflammation and microglial activation further.  The general shift 

away from anti-inflammatory reparative processes has been hypothesized to be caused by a 

failed anti-inflammatory microglial response (Amor et al. 2010; Rao et al. 2012).  This failed 

response might be due to decreased numbers of anti-inflammatory microglia or decreased 

production of neuroprotective factors produced by the M2 phenotype.   

Several studies have investigated the possibility that individuals with ASD suffer from 

chronic neuroinflammation related to over-active microglia.  One study in particular, performed 

by Vargas and colleagues, examined the activation of microglia and astroglia in brains and 

cerebral spinal fluid of autistic subjects.  They found activation of astroglia and microglia, along 

with active neuroinflammation in the white matter of the cerebral cortex and cerebellum.  These 

glial responses were proposed to be neuroinflammatory reactions of the CNS innate immune 

system with microglial activation being the leading cellular response (Vargas et al. 2005).  

In general, the majority of the studies that have studied microglial activation in various 

other disorders have not specifically studied the different microglial phenotypes.  While Vargas 

et al. studied pro-inflammatory microglial cytokines and their putative role in chronic 

neuroinflammation in ASD, this group did not study the anti-inflammatory microglial phenotype.  

The paucity of data regarding the role of the different types of microglia in ASD drove the 
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present investigation of both the pro-inflammatory and the anti-inflammatory microglial 

phenotypes in ASD.  
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CHAPTER 2 

METHODS 

Brain Tissue 

Flash-frozen postmortem BA24 tissue blocks from thirteen ASD donors and thirteen 

typically developed control donors were acquired from Autism BrainNet (formerly Autism 

Tissue Program, Harvard Brain Tissue Resource Center, Belmont, MA) and Neurobiobank 

(formerly NICHD Brain and Tissue Bank for Developmental Disorders, Baltimore, MD).  This 

study was reviewed by the Institutional Review Board of East Tennessee State University, who 

determined that it does not constitute human research under the Department of Health and 

Human Services exemption 45 CFR 46.101(b) relating to the use of publicly available 

unidentifiable pathology specimens.  ASD and control donors were matched prior to 

experimentation by gender, age, and RNA quality.  Age and RNA quality were matched as 

closely as possible with a difference of no more than three years in age and one RNA integrity 

number for ASD and control donor pairs (Table 2).  

ASD donors were diagnosed by the Autism Diagnostic Interview-Revised (ADI-R) and 

met diagnostic criteria outlined in the Diagnostic and Statistical Manual (DSM) IV for autistic 

disorder.  For the protection of the identity of the ASD and control subjects, causes of death were 

not incorporated in Table 2.  Control donors died by drowning (3 donors), asphyxia (2 donors), 

heart attack (2 donors), unspecified injuries (2 donors), dilated cardiomyopathy (1 donor), motor 

vehicle accident (1 donor), pneumonia (1 donor), respiratory insufficiency (1 donor), asthma (1 

donor), commotio cordis (1 donor), abdominal injuries (1 donor), and unknown cause (1 donor).  

ASD donors died by asphyxia (2 donors), cardiac arrhythmia (2 donors), acute respiratory 

distress syndrome (1 donor), bowel obstruction (1 donor), cancer (1 donor), congestive heart 
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failure (1 donor), diabetic ketoacidosis (1 donor), motor vehicle accident (1 donor), stopped 

breathing (1 donor), head trauma (1 donor), cardiopulmonary arrest (1 donor), skull fractures (1 

donor), complications from seizure disorder (1 donor), and subdural hemorrhage (1 donor).  

 

Table 2. Subject Demographic Information 

Controls 

Pair ID
a Age Gender RIN

b 
PMI

c 

(hours) 
Toxicology 

Tissue 

Preservation 

Matter 

Type used 

for qPCR
d 

1 AN14757 24 M 7.8 21.33  Frozen WMe 

2 AN07176 21 M 7.6 29.91 
 

Frozen WM, GMf 

3 AN07444 17 M 6.1 30.75 Sertraline Frozen WM 

4 5408 6 M 5.8 16 
 

Frozen WM 

4* 4203 7 M NA 24  Fixed NA 

5 4848 16 M 7.5 15 
 

Frozen WM, GM 

6 5342 22 M 8.0 14 
 

Fixed, Frozen WM, GM 

7 5079 33 M 5.3 16 Ethanol Frozen WM, GM 

8 M3231M 37 M 4.9 24 
 

Frozen WM, GM 

9 AN12137 31 M 4.5 32.92 
 

Frozen 
 

WM, GM 

10 AN03217 19 M 5.3 18.58 
 

Frozen WM, GM 

11 AN00544 17 M 5.8 28.92 
 

Frozen WM, GM 

12 AN17425 16 M 6.8 26.16 
 

Frozen WM, GM 

13 4590 20 M 6.8 19  Fixed, Frozen WM, GM 

14 4670 4 M 6.2 17  Frozen WM, GM 

17 4787 12 M 5.7 15 

Singular, 
Albuterol, 

Prednisone, 
Claritin 

Frozen GM 

18 1105 16 M 7.8 17  Frozen GM 

 
MEAN 18.71 

 
6.37 21.50 

   

 
SEM 2.21 

 
0.27 1.52 
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Table 2 (continued) 

ASD 

Pair ID Age Gender RIN 
PMI

 

(hours) 
Toxicology 

Tissue 

Preservation 

Matter 

Type used 

for qPCR 

1 AN04166 24 M 8.1 18.51  Frozen WM 

2 AN03935 19 M 7.0 28 
 

Frozen WM, GM 

3 AN02987 15 M 6.7 30.83 
 

Frozen WM 

4 5144 7 M 8.0 3 
 

Fixed, Frozen WM 

5 5302 16 M 4.8 20 

Risperdal, 
Luvox, 

Clonidine, 
Insulin 

Frozen WM, GM 

6 5176 22 M 5.1 18 Risperdal Fixed, Frozen WM, GM 

7 5297 33 M 2.5 50 

Seroquel, 
Prozac, 

Depakote, 
Geodon 

Frozen WM, GM 

8 5027 37 M 4.7 26 
Risperdal, 

Luvox 
Frozen WM, GM 

9 AN11989 30 M 5.7 16.06 
 

Frozen WM, GM 

10 AN07817 19 M 4.5 14.83 
 

Frozen WM, GM 

11 AN00764 20 M 5.9 23.66 Minocycline Frozen WM, GM 

12 AN04682 15 M 5.6 23.23 
 

Frozen WM, GM 

13 4999 20 M 7.0 14  Fixed, Frozen WM, GM 

14 5308 4 M 7.0 21  Frozen WM, GM 

17 5565 12 M 7.0 22  Frozen GM 

18 5403 16 M 6.6 35  Frozen GM 

 
MEAN 19.31  6.01 22.76 

   

 
SEM 2.18  0.36 2.60 

   

 
P-value

g
 0.85 

 
0.45 0.67 

   
4* used as a control match for ASD (ID 5144) for fixed tissue stain only 
IDa= identification number 
RINb= RNA integrity number 
PMIc= post-mortem interval 
qPCRd= quantitative real-time polymerase chain reaction 
WMe= white matter 
GMf= gray matter 
P-valueg= results of an independent t-test comparing control and ASD groups, statistically significant when p<0.05 
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Tissue Preparation and Sectioning 

 Frozen BA24 tissue was sectioned at thicknesses of 50 µm and 10 µm at -20°C using a 

cryostat microtome (Leica CM3050S) for differential gene expression analysis and 

immunohistochemical identification respectively.  Tissue sections were mounted on room 

temperature (22°C) slides and were desiccated at room temperature for 5 minutes before being 

stored at -80°C.  To avoid cross contamination between subjects, the internal elements of the 

microtome were cleaned using 100% ethanol.  Tissue sections from subject pairs were prepared 

on the same day to guarantee equal storage time.  

 

Laser Capture Microdissection and Punch-Dissection 

  Areas 4.5 mm2 of white matter from 20 µm-thick frozen tissue sections were captured by 

laser capture microdissection (LCM) using an Arcturus XT (Life Technologies, Grand Island, 

NY) instrument.  An ultraviolet laser cut the white matter sections from the surrounding tissue 

and these were then placed onto CapSure macrocaps by infrared laser spotting.  Additionally, 

white and gray matter, containing superficial and deep matter, from 50 µm tissue sections were 

grossly punch-dissected, using a disposable 3.5 mm trephine.  The LCM white matter was 

removed from the cap using lysis buffer incubation at 42°C.  Dissected tissues were stored at -

80°C and were later homogenized for RNA isolation.  

   

RNA and cDNA Preparation  

Total RNA was isolated from the LCM white matter and some of the white matter 

punches (used to study the expression of CD68 and IL1B) using a Maxwell 16 LEV simplyRNA 

Tissue Kit (Promega, Madison, WI).  A Direct-zol RNA MicroPrep Kit (Zymo Research, Irvine, 



33 
 

CA) was used extract total RNA from the gray matter and remaining white matter punches for 

the analysis of the expression of the remaining genes.  RNA quality was assessed by measuring 

RIN values with the Bioanalyzer RNA 6000 Nano chip (Agilent Technologies, Santa Carla, CA) 

and the Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, CA) respectively.  Double 

stranded cDNA was made by reverse transcription of the RNA samples using the Superscript III 

kit (Life Technologies; Grand Island, NY) that utilized both oligodTs and random hexamer 

primers during synthesis. 

 

Polymerase Chain Reactions 

Five primers were purchased (Qiagen; Valencia, CA) while the remaining seven primers 

were designed using PrimerQuest software (Integrated DNA Technologies, Coralville, IA) Table 

3.  The gene sequences for the designed primers are listed in Appendix B.  For primer 

temperature and cycle number optimization, end-point polymerase chain reaction (PCR) was 

performed using a T100 Thermo Cycler (Bio-Rad, Hercules, CA).  Each reaction contained 

SYBR Green Master Mix (Qiagen; Valencia, CA), cDNA template, and gene specific primers.   

Gene expression results from LCM white matter and white matter punches were 

compared by quantitative real-time polymerase chain reaction (qPCR) to determine which tissue 

isolation technique ultimately yielded sufficient amounts of RNA for the gene expression 

studies.  Once determined, qPCR was performed for all gene expression analyses.  Each PCR 

reaction was performed in triplicate and a standard curve was used to determine the efficiency of 

reactions.  Medians of triplicates were used for statistical analysis to reduce the impact of 

outliers. 
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Table 3. Introduction to the reference genes, pro-inflammatory microglial markers, and anti-
inflammatory microglial markers used for gene expression and immunohistochemistry 

Gene 

Name 
Alias 

Protein 

Name 
Brief Description of Function 

Reference Genes 

GAPDH 
Glyceraldehyde-3-phosphate 

dehydrogenase 
GAPDH Catalyzes an energy-yielding step in glycolysis 

TATA 

(TBP) 
TATA-box binding protein TBP Transcription factor 

Pro-inflammatory Microglial Markers 

CD68 Cluster of differentiation 68 CD68 
Cell surface protein that clears cellular debris, and 

promotes phagocytosis 

HLA-DRA 

Major histocompatibility 

complex, class II, DR alpha 

chain 

HLA-DRA 
Presents peptide antigens that are able to create an 

immune response 

IL1B Interleukin 1 beta IL1β 
Cytokine mediator in inflammatory responses and 
involved in cell proliferation, differentiation, and 

apoptosis 

NOS2 Nitric oxide synthase 2 iNOS 
Enzyme that generates nitric oxide (reactive free 

radical) 

PTGS2 

Prostaglandin-endoperoxide 

synthase 2 (inducible)/ 

cyclooxygenase 

COX2 
Enzyme responsible for prostanoid biosynthesis 

involved in inflammation and mitogenesis 

Anti-inflammatory Microglial Markers 

ARG1 Arginase 1 ARG1 
Enzyme that converts arginine into compounds used 

for wound repair and down-regulates nitric oxide 

IGF1 Insulin like growth factor 1 IGF1 
Ligand that stimulates proliferation of 

oligodendrocytes (supports myelination of neuronal 
axons) 

MRC1 Mannose receptor, C type 1 CD206 
Receptor that binds and internalizes mannosylated 

ligands on potentially pathogenic microorganisms so 
they can be neutralized by phagocytic engulfment 

PPARG 
Peroxisome proliferative 

activated receptor gamma 
PPARγ 

Receptor that inhibits pro-inflammatory gene 
expression 

 

Statistical Analysis 

Expression data for target genes was normalized to reference genes GAPDH and TATA.  

Fold changes in the expression of genes of interest comparing ASD to control subjects were 

obtained using the 2-∆∆Ct method of Livak and Schmittgen (Livak and Schmittgen 2001).  For 

these calculations, the geometric means of Ct values of reference genes were used for 

normalizations.  SPSS (version 22, IBM, New York, NY) was used to identify and remove 

extreme outliers in data sets based on the outlier labeling rule that utilizes the third and first 
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quartiles and a multiplying factor of 2.2 (Hoaglin and Iglewicz 1987).  Normality tests were run 

using GraphPad Prism (version 5.0b, GraphPad Software, Inc.) and regressions were performed 

using SPSS.  GraphPad Prism was used to analyze the data using an independent student’s t-test.  

Data that was not normally distributed were analyzed using the Mann-Whitney non-parametric 

test.  Results were considered statistically significant when p-value< 0.05.  Statistical results are 

reported before and after Holm’s Bonferroni correction for the number of gene comparisons. 

 

Immunohistochemistry 

Pro-inflammatory 

 For visualization of pro-inflammatory microglial cells, frozen tissue sections, n=8 pairs, 

were immunohistochemically stained for the HLA-DRA pro-inflammatory microglial protein.  

The slides that were used for analysis were removed from the -80°C freezer and were 

immediately transferred into -20°C acetone (13 min).  Endogenous peroxidase activity in the 

tissue was neutralized in 0.1M PBS/ 1.5% H2O2 (15 min).  After the tissue was blocked with 3% 

BSA (1 h), the sections were incubated with a monoclonal mouse anti-human HLA-DR antigen, 

alpha-chain clone TAL.1B5 (Dako, Carpinteria, CA) at a dilution of 1:100 (overnight at 4°C).  

Following primary antibody incubation, the sections were incubated in a corresponding 

secondary antibody, Vectastain mouse IgG ABC kit (Vector Laboratories Inc, Burlingame, CA) 

(2 h), and then with avidin-biotinylated horseradish peroxidase complex (1 h).  Sections were 

washed in 0.1M PBS (10 min), then 0.05 M Tris (2 times for 10 min each).  The pro-

inflammatory microglial cells were then visualized by incubating sections in 50 mL of 0.05M 

Tris, 0.3% ammonium nickel sulfate, and 3,3’-diaminobenzidine tetrahydrochloride (5 min), then 

in another 50 mL of the same solution, but also containing 50 µl H2O2  (5 min).  Between all 
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remaining incubation steps, excluding between blocking and primary antibody incubation, 

sections were washed in 0.1M PBS (3 times for 10 min each).  Sections were dehydrated in 

sequential washes of 75%, 95%, and 100% ethanol (30 sec each).  The final dehydration step 

was in xylene (5 min) and the sections were then dried in the hood (5 min) in preparation for 

analysis.  The attempted protocols during the optimization process can be found in sequential 

order in Table 4.         

 

Table 4. Attempted protocols for the HLA-DRA immunohistochemical stain on frozen and fixed tissue 

Buffer Block 

Primary 

Antibody 

Manufacturer 

and Dilution 

Components 

for Primary 

Antibody 

Incubation 

Secondary 

Antibody 

Manufacturer 

and Dilution 

Components for 

Secondary 

Antibody 

Incubation 

Developer 

0.05M TBS NHSa/ 0.05M 
TBS + 0.2% 

Triton-X-100 + 
2% SA 

Dakob 

1:100 
NHS/ 0.05M 
TBS + 0.2% 

Triton-X-100 + 
2% SA 

Vectorc 

1:200 
Horse Serumd/ 
0.05M TBS + 

0.2% Triton-X-
100 

DABe 

*0.05M TBS NHS/ 0.05M 
TBS + 0.2% 

Triton-X-100 + 
2% SA 

Dako 
1:100 

NHS/ 0.05M 
TBS + 0.2% 

Triton-X-100 + 
2% SA 

Vector 
1:200 

Horse Serum/ 
0.05M TBS + 

0.2% Triton-X-
100 

DAB 

0.1M PBS 3% BSA/ 0.1M 
PBS 

Dako 
1:100 

NHS/ 0.1M 
PBS 

Vector 
1:200 

Horse Serum/ 
0.1M PBS 

DAB 

0.1M PBS 3% BSA/ 0.1M 
PBS 

Dako 
1:100 and 

1:200 

NHS/ 0.1M 
PBS 

Vector 
1:200 

Horse Serum/ 
0.1M PBS 

DAB 

0.05M PBS 3% BSA/ 
0.05M PBS 

Dako 
1:100 

NHS/ 0.05M 
PBS 

Vector 
1:200 

Horse Serum/ 
0.05M PBS 

DAB 

0.1M PBS 3% BSA/ 0.1M 
PBS 

Dako 
1:100 

NHS/ 0.1M 
PBS 

Vector 
1:400 

Horse Serum/ 
0.1M PBS 

DAB 

**0.1M PBS 3% BSA/ 0.1M 
PBS + 0.2% 
Tween 20 

Dako 
1:100 

NHS/ 0.1M 
PBS + 0.2% 
Tween 20 

Vector 
1:400 

Horse Serum/ 
0.1M PBS + 

0.2% Tween 20 

DAB 

**0.1M PBS 6% BSA/ 0.1M 
PBS + 0.2% 
Tween 20 

Dako 
1:100 

NHS/ 0.1M 
PBS + 0.2% 
Tween 20 

Vector 
1:400 

***Horse Serum/ 
0.1M PBS + 

0.2% Tween 20 

DAB 
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Table 4 (continued) 

**0.1M PBS 3% BSA/ 0.1M 
PBS + 0.2% 
Tween 20; 
NHS/ 0.1M 
PBS + 0.2% 
Tween 20 

Dako 
1:100 

NHS/ 0.1M 
PBS + 0.2% 
Tween 20 

Vector 
1:400 

Horse Serum/ 
0.1M PBS + 

0.2% Tween 20 

DAB 

* **0.1M 
PBS 

NHS/ 0.1M 
PBS + 0.1% 
Tween 20; 
NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Dako 
1:100 

NHS/ 0.1M 
PBS + 0.1% 
Tween 20; 
NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:400 

Horse Serum/ 
0.1M PBS + 

0.1% Tween 20; 
NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

DAB 

**0.1M PBS NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Dako 
1:100 

NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:400 

***Horse 
Serum/ 0.1M 
PBS + 0.2% 
Triton-X-100 

DAB 

**0.1M PBS 3% BSA/ 0.1M 
PBS + 0.2% 

Triton-X-100; 
3% BSA/NHS/ 

0.1M PBS + 
0.2% Triton-X-

100 

None-
Negative 

Optimization 

NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:400 

Horse Serum/ 
0.1M PBS + 

0.2% Triton-X-
100 

DAB 

**0.1M PBS 6% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

None-
Negative 

Optimization 

NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:400 

Horse Serum/ 
0.1M PBS + 

0.2% Triton-X-
100 

DAB 

**0.1M PBS 3% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

None-
Negative 

Optimization 

NHS/ 0.1M 
PBS + 0.2% 

Triton-X-100; 
NHS/ 0.1M 

PBS 

Vector 
1:400 

Horse Serum/ 
0.1M PBS + 

0.2% Triton-X-
100; Horse 

Serum/ 0.1M 
PBS 

NovaREDf 

**0.1M PBS 1% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Dako 
1:100 

1% BSA/ 0.1M 
PBS + 2% 

Triton-X-100 

Jackson 
AffiniPureg 

1:400 

1% BSA/ 0.1M 
PBS + 2% 

Triton-X-100 

NovaRED 

**0.1M PBS 1% BSA/ 0.1M 
PBS 

Dako 
1:100 

1% BSA/ 0.1M 
PBS 

Jackson 
AffiniPure 

1:400 

1% BSA/ 0.1M 
PBS 

NovaRed 

**Wash 
Bufferh 

Blocking 
Bufferh 

Dako 
1:100 

Blocking 
Buffer 

Life 
Technologiesi 

1:3000 

Blocking Buffer DAB/Metal 
Concentrateh 

0.1M PBS 0.1M PBS + 
0.2% Triton-X-

100 

Dako 
1:100 

NHS/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:200 

Horse Serum/ 
0.1M PBS + 

0.2% Triton-X-
100 

None-Fixed 
Tissue 

*Stain incubated at 37°C instead of 25°C 
**Stain performed by Emma E. Pendola under my supervision 
***incubated for 2 separate amounts of time 
NHSa= Normal Horse Serum 
Dakob=Monoclonal Mouse Anti-Human HLA-DR Antigen, Alpha-Chain Clone TAL.1B5 
Vectorc=Mouse IgG ABC kit used for bright-field microscopy 
Horse Serumd= component of the Vector Mouse IgG ABC kit 
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DABe= 3,3’-diaminobenzidine tetrahydrochloride 
NovaREDf=Vector NovaRED Peroxidase (HRP) Substrate Kit 
Jackson AffiniPureg= Peroxidase-conjugated AffiniPure Donkey Anti-Mouse IgG used for bright-field microscopy 
Wash Buffer, Blocking Buffer, and DAB/Metal Concentrateh= components of the Thermo Pierce Peroxidase Detection Reagent 
Pack 
Life Technologiesi= HRP-Goat Anti-Mouse IgG 

 

Anti-inflammatory 

As an attempt to visualize the anti-inflammatory microglial cells, the mannose receptor, 

CD206, was chosen as the cellular marker.  For bright-field and fluorescent microscopy, a Pierce 

mannose receptor/CD206 antibody (Thermo Fisher, Rockford, IL) and purified mouse anti-

human CD206 antibody (BD Pharmigen, San Jose, CA) were used for primary antibody 

incubations.  The secondary antibodies used for bright-field microscopy included: a secondary 

antibody from a Vectastain mouse IgG ABC kit (Vector Laboratories Inc, Burlingame, CA), an 

ECL anti-mouse IgG horseradish peroxidase linked whole antibody (GE Healthcare UK Limited, 

Buckinghamshire, UK) and a peroxidase-conjugated AffiniPure donkey anti-mouse IgG (Jackson 

Immuno, West Grove, PA).  An Alexa Fluor 488-conjugated AffiniPure donkey anti-mouse IgG 

(Jackson Immuno, West Grove, PA) was used as the secondary antibody for fluorescent 

microscopy.  For bright-field microscopy, all slides were immediately transferred from the -80°C 

freezer into cold acetone (stored at -20°C) for fixation of the tissue to the slide (rapid stain (r): 5 

min; overnight stain (o): 10 min).  For fluorescent microscopy, all slides were transferred from 

the -80°C freezer to a desiccator (5-10 min) prior to fixation by acetone.  Endogenous peroxidase 

activity in the tissue was neutralized in 0.1M PBS/H2O2 (bright-field only).  After the tissue was 

blocked (r: 10 min; o: 2 h), the sections were incubated in primary antibody at various dilutions.  

Following primary antibody incubation (r: 15 min; o: overnight), the sections were incubated in a 

corresponding secondary antibody (r: 10 min; o: 2 h) and then with avidin-biotinylated 

horseradish peroxidase complex (r:10 min; o:1 h), excluding the protocols when the Thermo 
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Pierce Peroxidase Detection Reagent Pack was used.  When the Thermo Pierce Pack was not 

used, sections were washed in the corresponding buffer and were visualized by incubating 

sections in 50 mL of 0.05M Tris, 0.3% ammonium nickel sulfate, and 3,3’-diaminobenzidine 

tetrahydrochloride (r and o: 5 min), then in another 50 mL of the same solution, but also 

containing 50 µl H2O2 (r: 5 min; o: 10 min).  The Thermo Pierce Pack did not require the 

previous step, but instead, the sections were incubated in the Thermo Pierce DAB/Metal 

Concentrate (r: 5 min).  Between all remaining incubation steps, excluding between blocking and 

primary antibody incubation, sections were washed in the corresponding buffer.  All sections for 

bright-field microscopy were dehydrated before analysis sequentially in 75%, 95%, and 100% 

ethanol (30 sec each) and xylene (5 min), while the sections for fluorescent microscopy were 

prepared for analysis using a Slowfade Antifade Kit (Invitrogen, Rockford, IL).  The components 

for the intermediate steps of each attempted protocol are listed in Table 5. 

 

Table 5. Attempted protocols for the CD206 immunohistochemical stain on frozen tissue 

Buffer Block 

Primary 

Antibody 

Manufacturer 

and Dilution 

Components 

for Primary 

Antibody 

Incubation 

Secondary Antibody 

Manufacturer and 

Dilution 

Components for 

Secondary 

Antibody 

Incubation 

Developer 

0.1M 
PBS 

3% BSA/ 
0.1M PBS 

Thermo Fishera 
1:500 

NHS/ 0.1M PBS 
Vector 

1:200 
Horse Serum/ 0.1M 

PBS 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS 

Thermo Fisher 
1:250 

NHS/ 0.1M PBS 
Vector 
1:200 

Horse Serum/ 0.1M 
PBS 

DAB 

0.05M 
TBS 

3% BSA/ 
0.1M PBS 

Thermo Fisher 
1:500 

NHS/ 0.1M PBS 
Vector 
1:200 

Horse Serum/ 0.1M 
PBS 

DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:500 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:250 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 
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Table 5 (continued) 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

None-Negative 
Optimization 

1% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

None-Negative 
Optimization 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:125 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

None-Negative 
Optimization 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Jackson AffiniPureb 

1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:125 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Jackson AffiniPure 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:250 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:125 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:400 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:125 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:400 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:125 

1% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Jackson 
1:200 

1% BSA/ 0.1M PBS 
+ 0.2% Triton-X-

100 
Nova RED 

0.1M 
PBS 

3% BSA/ 
0.1M PBS 

Thermo Fisher 
1:125 

1% BSA/ 0.1M 
PBS 

Vector 
1:400 

1% BSA/ 0.1M PBS DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS 

Thermo Fisher 
1:125 

1% BSA/ 0.1M 
PBS 

Jackson AffiniPure 
1:200 

1% BSA/ 0.1M PBS Nova RED 

0.1M 
PBS 

3% BSA/ 
0.1M PBS 

Pharmigenc 

1:500 
NHS/ 0.1M PBS 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS 

DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Pharmigen 
1:250 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

None-Negative 
Optimization 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 
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Table 5 (continued) 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Thermo Fisher 
1:250 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Pharmigen 
1:125 

1% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Vector 
1:400 

1% BSA/ 0.1M PBS 
+ 0.2% Triton-X-

100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Pharmigen 
1:250 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:200 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Pharmigen 
1:125 

NHS/ 0.1M PBS 
+ 0.2% Triton-

X-100 

Vector 
1:400 

Horse Serum/ 0.1M 
PBS + 0.2% Triton-

X-100 
DAB 

0.1M 
PBS 

3% BSA/ 
0.1M PBS + 
0.2% Triton-

X-100 

Pharmigen 
1:125 

1% BSA/ 0.1M 
PBS + 0.2% 
Triton-X-100 

Jackson AffiniPure 
1:200 

1% BSA/ 0.1M PBS 
+ 0.2% Triton-X-

100 
NOVA Red 

Wash 
Buffer 

Blocking 
Buffer 

None-Negative 
Optimization 

Blocking Buffer 
GE Healthcare UK 

Limitedd 

1:200 
Blocking Buffer 

DAB/Metal 
Concentrate 

Wash 
Buffer 

Blocking 
Buffer 

None-Negative 
Optimization 

Blocking Buffer 
GE Healthcare UK 

Limited 
1:500 and 1:1000 

Blocking Buffer 
DAB/Metal 
Concentrate 

Wash 
Buffer 

Blocking 
Buffer 

None-Negative 
Optimization 

Blocking Buffer 
Thermo Fisher 

1:1000 
Blocking Buffer 

DAB/Metal 
Concentrate 

Wash 
Buffer 

Blocking 
Buffer 

None-Negative 
Optimization 

Blocking Buffer 
None-Negative 
Optimization 

Blocking Buffer 
DAB/Metal 
Concentrate 

0.1M 
PBS 

3% BSA/ 
0.1M PBS 

None-Negative 
Optimization 

NHS/ 0.1M PBS 
None-Negative 
Optimization 

Horse Serum/ 0.1M 
PBS 

DAB 

Wash 
Buffer 

Blocking 
Buffer 

None-Negative 
Optimization 

Blocking Buffer 
None-Negative 
Optimization 

Blocking Buffer 
DAB/Metal 
Concentrate 

 
0.1M 
PBS 

 
10% Donkey 
Serum/ 3% 
BSA/ 0.1M 

PBS 

 
Thermo Fisher 

1:125 

 
1% BSA/ 0.1M 

PBS 

 
Jackson Immunoe 

1:500 

 
1% BSA/ 0.1M PBS 

 
NA 

0.1M 
PBS 

10% Donkey 
Serum/ 0.1M 
PBS + 0.1% 
Tween 20 

Pharmigen 
1:75 and 1:250 

0.1M PBS + 
0.1% Tween 20 

Jackson Immuno 
1:500 

0.1M PBS + 0.1% 
Tween 20 

NA 

Thermo Fishera= Pierce Mannose Receptor/CD206 used for bright-field microscopy 
Jackson AffiniPuref= Peroxidase-conjugated AffiniPure Donkey Anti-Mouse IgG used for bright-field microscopy 
Pharmigeng=Purified Mouse Anti-Human CD206 used for bright-field microscopy 
GE Healthcare UK Limitedi=ECL Anti-Mouse IgG, Horseradish Peroxidase linked whole antibody used for bright-field 
microscopy 
Jackson Immunoj= Alexa Fluor 488-conjugated AffiniPure Donkey Anti-Mouse IgG used for fluorescence microscopy 
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Immunohistochemical Analysis 

ImageJ software (version 1.44o) was used to calculate the area fraction of HLA-DRA 

labeled microglial cells.  To calculate the amount of HLA-DRA immunoreactivity in a specific 

area, images of HLA-DRA labeled tissue from control and ASD subjects were converted into an 

8-bit image.  Ten randomized images were taken for each tissue section and a fixed threshold 

was determined by taking the average threshold from all slides.  Fractional area was calculated 

by dividing the HLA-DRA positive area (µm2) in the 8-bit image by the total area of the image 

frame.  The data were analyzed using an independent and dependent student’s t-test for ASD and 

age-matched control donors.  Results were considered statistically significant when p<0.05. 
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CHAPTER 3 

RESULTS 

Subject Demographics  

 Control and ASD donors were matched by gender, age, and RIN.  Donors were matched 

within 3 years of age and 1 RIN value (Auer et al. 2003).  While PMI was not a factor in 

matching donor pairs, it was analyzed and compared statistically to ensure there was no 

difference between ASD and matched control donors.  There was no significant difference in the 

average age (p= 0.920; Figure 1), RIN values (p= 0.446; Figure 2), nor PMI (p= 0.649; Figure 

3) when comparing ASD to matched control donors. 

 

 
Figure 1. Comparison of average age of ASD and matched control donors (n=18 pairs).  No 
statistically significant difference was observed. 
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Figure 2. Comparison of average RIN value of ASD and matched control donors (n=18 pairs).  
No statistically significant difference was observed. 

 

 

 

 
Figure 3. Comparison of average PMI of ASD and matched control donors (n=18 pairs).  No 
statistically significant difference was observed. 
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Gene Expression 

White Matter 

In initial work, it was determined that gross punch-dissection of human BA24 white 

matter yielded sufficient amounts of RNA for gene expression studies so that the laser capture 

microdissection of white matter would not be required.  Following the conclusion that punches 

could be used, expression levels of both pro-inflammatory and anti-inflammatory microglial 

target genes were measured in punch-dissected white matter from ASD and control donors.  

Target gene expression data was normalized to two reference genes, GAPDH and TATA, after it 

was determined that there was no significant difference in the GAPDH/TATA ratio comparing the 

typically developed control donors and ASD donors (p= 0.088; Figure 4A), (p= 0.263; Figure 

4B).  

 

 
Figure 4. Ratio of housekeeping genes GAPDH/TATA used for the normalization of the gene 
expression data for CD68, IL1B (A, n=11 pairs), ARG1, HLA-DRA, IGF1, MRC1, NOS2, 
PPARG, and PTGS2 (B, n= 10 pairs) in white matter of typically developed control and ASD 
donors. No statistically significant differences were observed when the two groups of donors 
were compared. 

 

The expression of five pro-inflammatory microglial genes were measured by qPCR in 

post-mortem BA24 tissue that was punch-dissected from the white matter of individuals with 



46 
 

ASD and matched controls.  Figure 5 displays expression levels of the five pro-inflammatory 

microglial genes in white matter tissues.  There were no statistically significant differences in the 

expression levels of CD68 (p= 0.493), HLA-DRA (p= 0.995), IL1B (p= 0.149), NOS2 (p= 1.000), 

nor PTGS2 (p= 0.657) comparing ASD and control groups.   
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Figure 5. Expression of pro-inflammatory microglial genes HLA-DRA (A), NOS2 (B), PTGS2 
(C), CD68 (D), and IL1B (E) in white matter from matched pairs of ASD (closed symbols) and 
control (open symbols) donors (A, B, and C, n=10 pairs; D and E, n=11 pairs).  Gene expression 
levels were normalized to the geometric mean of stable reference genes (GAPDH and TATA).  
Mean values are indicated by horizontal lines.  No statistically significant differences were 
observed when the two groups of donors were compared. 
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Likewise, analyses of the expression levels of four anti-inflammatory microglial 

expressed genes also demonstrated no statistically significant differences when comparing the 

two groups of donors (Figure 6); ARG1 (p= 0.500), MRC1 (p= 0.553), and PPARG (p= 0.336).  

In contrast, IGF1 expression levels were significantly higher in ASD donors as compared to 

control donors (p= 0.014).  

 

 

Figure 6. Expression of target anti-inflammatory microglial genes ARG1 (A), IGF1 (B), MRC1 
(C), and PPARG (D) in white matter from matched pairs of typically developed control (open 
symbols) and ASD (closed symbols) donors (n=10 pairs).  Gene expression levels were 
normalized to the geometric mean of stable reference genes (GAPDH and TATA).  Mean values 
are indicated by horizontal lines and statistical significance is indicated above the data points. 
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Gray Matter 

Target gene expression data was normalized to two reference genes, GAPDH and TATA, 

after it was determined that there was no significant difference in the GAPDH/TATA ratio when 

comparing typically developed control donors and ASD donors (p= 0.558; Figure 7). 

 

 
Figure 7. Ratio of housekeeping genes GAPDH/TATA used for the normalization of the gene 
expression data for HLA-DRA, IGF1, IL1B, and MRC1 in the gray matter of typically developed 
control and ASD donors (n=13 pairs).  No statistically significant difference was observed when 
the two groups of donors were compared. 

 

Chosen for examination in gray matter was IGF1 because its expression demonstrated 

differences between the two study groups in white matter.  In addition, pro-inflammatory, HLA-

DRA, and anti-inflammatory microglial genes, MRC1, were selected to parallel the markers used 

in the immunohistochemistry portion of the study.  Although there was no significant difference 

in IL1B expression levels in white matter comparing the two groups of donors, the expression of 

IL1B exhibited a wide range of Ct values in the ASD donors (Figure 5E) and was chosen as 

well.   
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The expression levels of MRC1 in gray matter were significantly lower in ASD donors as 

compared to typically developed control donors (p= 0.034; Figure 8A).  In contrast to the white 

matter results, there was no significant difference in the expression of anti-inflammatory IGF1 in 

gray matter (p= 0.273; Figure 8B).  The expression of HLA-DRA was similar when comparing 

ASD to matched control donors (p= 0.301; Figure 9). 
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Figure 8. Expression of anti-inflammatory MRC1 (A, n= 12 control and 13 ASD donors) and 
IGF1 (B, n=13 pairs) in gray matter in typically developed control (open symbols) and ASD 
(closed symbols) donors.  Gene expression levels were normalized to the geometric mean of 
stable reference genes (GAPDH and TATA).  Mean values are indicated by horizontal lines and 
statistical significance is indicated above the data points.  
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Figure 9. Expression of pro-inflammatory HLA-DRA in gray matter in typically developed 
control (open symbols) and matched ASD (closed symbols) donors (n=13 control and 12 ASD 
donors).  Gene expression levels were normalized to the geometric mean of stable reference 
genes (GAPDH and TATA).  Mean values are indicated by horizontal lines.  No statistically 
significant difference was observed when the two groups of donors were compared.  

 

The expression levels of IL1B demonstrated wide variation in comparison to the other 

gene expressions that were studied, just as occurred in IL1B expression levels in white matter 

(Figure 5E).  While there was no significant difference in the expression of IL1B when 

comparing ASD to matched control donors, this wide variation of IL1B expression fold changes 

comparing the two groups is interesting.  We provide a combination of two figures for IL1B 

expression in gray matter (Figure 10); the circular and diamond symbols combined depicts the 

range of data before outliers were removed by the outlier labeling rule (with the statistical 

comparison generating a p= 0.719), while the circular symbols alone illustrate the data after 3 

outliers were removed (generating a p= 0.951).  One outlier was removed from the control data 

(open diamond symbol), while two outliers were removed from the ASD data set (closed 

diamond symbols).  Hence, removing outliers in the IL1B dataset, as was performed for all data 

sets, resulted in hiding the fact that IL1B expression levels were highly variable in ASD subjects.    
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Figure 10. Expression of anti-inflammatory IL1B in gray matter pre-removal of outliers with the 
outlier labeling rule (diamond symbols and dotted horizontal lines) (n=13 pairs) and post-
removal of the outliers (circular symbols and solid horizontal lines) (n=12 control and 11 ASD 
donors) in typically developed control (open symbols) and ASD (closed symbols) donors.  Gene 
expression levels were normalized to the geometric mean of stable reference genes (GAPDH and 
TATA).  Mean values are indicated by horizontal lines. No statistically significant differences 
were observed when the two groups of donors were compared, whether outliers are removed or 
not. 

 

Statistical Limitations of the Study 

 Due to the number of statistical comparisons of gene expression levels, it was necessary 

to report corrected p-values to reduce the chance of a type I error.  Hence, the Holm’s Bonferroni 

correction was used to adjust p-values (Table 6).  After the correction, the group comparison of 

IGF1 expression levels in white matter was no longer statistically significant (p’=0.112).  

Likewise, the comparison of MRC1 expression levels in gray matter in the two groups also failed 

to reach statistical significance (p’=0.136). 
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Table 6. P-values after Holm's Bonferroni correction for multiple independent student’s t-tests of 
gene expression from ACC white and gray matter in ASD and control donors 

WHITE MATTER 

Gene p-value p’ (Adjusted p-value) Outcome 

IGF1 0.014 0.112 Not significant 
IL1B 0.149 1.000 Not significant 

PPARG 0.336 1.000 Not significant 
CD68 0.493 1.000 Not significant 
ARG1 0.500 1.000 Not significant 
MRC1 0.553 1.000 Not significant 

PTGS2 0.657 1.000 Not significant 

HLA-DRA 0.995 1.000 Not significant 

NOS2 1.000 1.000 Not significant 

GRAY MATTER 

Gene p-value p’ (Adjusted p-value) Outcome 

MRC1 0.034 0.136 Not significant 

IGF1 0.273 0.819 Not significant 

HLA-DRA 0.301 0.819 Not significant 

IL1B with outliers 0.719 0.819 Not significant 

IL1B outliers removed 0.951 0.951 Not significant 

Calculations adapted from “A simple sequential rejective method procedure,” S. Holm, 1979, 

Scandinavian Journal of Statistics, 6, 65-70. 

 

Immunohistochemistry  

HLA-DRA 

Frozen BA24 tissue (20 µm thick) sections were stained using an antibody directed 

against HLA-DRA.  Area fraction (area of positive staining as a fraction of the entire area 

analyzed) averages were calculated from ten randomly selected white matter areas per subject 
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(Figure 11).  No statistically significant difference was found when comparing control and ASD 

donors (p= 0.250; Figure 12; n=8 pairs).   

 

       CONTROL (20x)             ASD (20x) 

 
Figure 11.  Immunohistochemical stain for the pro-inflammatory microglial marker HLA-DRA 
in a representative typically developed control donor and paired ASD donor. 
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Figure 12. Comparison of area fractions of immunohistochemically stained HLA-DRA in 
control and ASD donor postmortem tissue (n= 8 pairs).  No statistically significant difference 
was observed when the two donor groups were compared. 

 

CD206 

 For each procedure, excluding the protocols for negative optimization, there was a 

positive stained and background slide.  The positive stained slide was incubated in both primary 

and secondary antibody, while the background slide was incubated in buffer with only the 

secondary antibody (minus the primary antibody).  The purpose of having both conditions was to 

verify that what is being stained is not artifactual.  During the process of optimization, it 

appeared that there might be some type of artifact as a result of freezing the tissue.  Despite 

testing multiple primary and secondary antibodies for the mannose receptor, CD206, in the 

immunohistochemistry experiments, there was no successful identification of this anti-

inflammatory microglial protein marker in white matter.   
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CHAPTER 4 

DISCUSSION 

ASD is considered a spectrum disorder of atypical connections between brain areas, 

causing deficits in speech, motor skills, and social interaction.  Most research to date has focused 

on the role of neurons in ASD pathology, while other major cell types in the brain have received 

far less attention.  In the past, our lab has investigated the role of neurons and macroglia 

(astrocytes and oligodendrocytes) in ASD pathology, but not microglia.  As the immune cells for 

the CNS, microglia protect the brain from pathogenic factors and preserve homeostatic 

conditions via synaptic pruning and phagocytosis of apoptotic neurons.  Microglia are 

differentiated into two distinct phenotypes: pro-inflammatory and anti-inflammatory.  Pro-

inflammatory microglia produce cytokines and assume phagocytic roles that promote defense 

mechanisms and digest neurons.  In contrast, anti-inflammatory microglia facilitate CNS healing 

by participating in phagocytosis, neuronal remodeling, and tissue regeneration.  Given these 

extremely important roles of microglia in the CNS, it is imperative to characterize and determine 

the potential contributory role of these cells to the pathology of ASD. 

Within the field of ASD research, pathology studies using postmortem brain tissues have 

been mainly limited to examining brain areas as a whole, without considering potential 

differences in white and gray matter.  It is known that microglia reside in both white and gray 

matter, however; it is still unknown whether there is a difference in the functions of microglia 

that exist in white as compared to those that occur in gray matter, such as is the case for 

macroglia (McKay et al. 2007).  The present research is the first study to begin to characterize 

microglial phenotypes at the cellular level in both white and gray matter in ASD.  The primary 

findings of this study demonstrate a significantly high level of expression of insulin-like growth 
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factor 1 gene, IGF1, in ACC white matter and a significantly low level of expression of mannose 

receptor type 1, MRC1, in ACC gray matter from donors with ASD when compared to typically 

developed controls.   

IGF1 is a mitogenic factor imperative for fetal brain development and growth.  In the 

brain, IGF1 encourages the differentiation and maturation of oligodendrocytes, myelination, and 

neuronal survival.  It is also able to act as an opponent to ROS-related processes by inactivating 

mediators that participate in cell death (reviewed by Homolak et al. 2015).  In humans, there is 

an age-related decline in IGF1 levels and there is increasing evidence that IGF1 expression is 

reduced in neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease 

(reviewed by Bassil et al. 2014).  Interestingly, a case study reported that a 15-year-old boy with 

mental retardation had a homozygous partial deletion of the IGF1 gene (Woods et al. 1996).  

Likewise, IGF1 knockout mice display postnatal lethality, developmental retardation, defects in 

organ systems, and infertility (Liu et al. 2000). A pilot study involving 9 children with Phelan-

McDermid syndrome, a highly penetrant cause of ASD, reported an association between three 

months of IGF1 treatment and substantial improvement in social impairment and behavior 

(Kolevzon et al. 2014).  Oddly, reduced levels of IGF1 is associated with an extended lifespan in 

invertebrates and rodents (Yang et al. 2005).  In fact, it is thought that IGF1 antagonists, used to 

decrease IGF1 signaling, could impede cancerous cell proliferation and the process of aging 

(reviewed by Bassil et al. 2014).  In contrast to the effects of reduced IGF1 action, there is a 

significant upregulation of IGF1 in subcortical white matter after traumatic brain injury (TBI) in 

male mice, suggesting that sustained IGF1 levels offer neuroprotection after TBI (Madathil et al. 

2010).  However, IGF1 overexpression may lead to cell death by speeding up the cell cycle and 

the process of aging (Yang et al. 2005; reviewed by Bassil et al. 2014).  These studies 
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demonstrate the importance of IGF1 to normal development and aging.  It can be hypothesized 

that tight regulation of IGF1 expression in humans is essential to prevent morbidities that are 

linked with conditions of deficient or excessive IGF1 expression (Yang et al. 2005).     

IGF1 binds tightly with the insulin-like growth factor 1 receptor (IGF-1R), triggering the 

auto-phosphorylation of the intracellular β-subunit kinase domain of IGF-1R.  This auto-

phosphorylation recruits adaptor proteins and subsequently, activates several pathways such as 

the MAP kinase and PI3-kinase/Akt pathways (Moloney et al. 2008).  Through the MAP kinase 

signaling pathway, the binding of IGF1 to IGF-1R initiates cell proliferation and differentiation 

(Conti et al. 2011; Fernandez and Torres-Alemán 2012).  Activation of the PI3-kinase pathway 

inhibits cellular apoptosis, oxidative stress, and inflammation (Conti et al. 2011; Fernandez and 

Torres-Alemán 2012).  Both the MAP kinase and PI3-kinase/Akt pathways activate mTOR, 

which through increasing the cap-dependent translation initiation complex, can increase mRNA 

translation that can influence multiple developmental functions (Levitt et al. 2009).  

Interestingly, Faridar and coworkers (2014) reported increased activation of the MAP kinase 

pathway in mice with ASD-like social and behavioral deficits (Faridar et al. 2014).  The increase 

in IGF1 expression in white matter found in the present study could translate to elevated mTOR 

activation because the mTOR pathway is downstream of IGF1 signaling.  If this is occurring, an 

upregulation of mTOR and its activity in individuals with ASD would confirm a hypothesis 

made by other researchers that mTOR is in fact upregulated in ASD, causing an increase in 

unregulated protein synthesis (Sawicka and Zukin 2012; Wang and Doering 2013; Chen et al. 

2014). 

The high level of IGF1 expression in ASD donors relative to control donors may reflect a 

compensatory mechanism of the brain in response to altered neurotransmission in the ACC, to 
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decreased structural integrity of the ACC white matter, or deficits in cognitive processing by 

encouraging the proliferation of oligodendrocytes and myelination.  Increasing proliferation and 

differentiation of oligodendrocytes by IGF1 would in turn potentially myelinate neuronal axons, 

increase synchronization between brain areas, and increase white matter structural integrity. 

Hence, it is not possible at this point to know whether IGF1 gene expression changes are casual 

in the pathology of autism or as a result of cellular processes that are activated to correct deficits 

that have their root causes in other pathological mechanisms.  With the prevalence of 

myelinating oligodendrocytes in the white matter, it is plausible that the demand for IGF1 in the 

white matter of ASD individuals may be higher than in the gray matter, consistent with our 

findings.  Additionally, the increase in IGF1 expression could possibly be compensating for low 

IGF-1R levels, in which case, the expression of IGF-1R could be a limiting factor in the efficacy 

of IGF1 actions in the CNS (Madathil and Saatman 2015).   

While the liver is the principal source of circulating IGF1, IGF1 is also expressed by 

neurons, microglia, macrophages, and astrocytes in the CNS (Mascotti et al. 1997; Kettenmann 

and Ransom 2013).  The main source of IGF1 in the brain remains a mystery; some report that 

microglia and macrophages are the main expressers, while others state that neurons 

predominantly express IGF1 (Suh et al. 2013; reviewed by Madathil and Saatman 2015).  

Because the main source of IGF1 in the CNS remains controversial and the dissection method 

that was used in the present work is not specific for a particular cell type, the IGF1 expression 

changes found in this study may not be solely expressed by anti-inflammatory microglia.  Other 

prominent cell types within the white matter, such as astrocytes and oligodendrocytes, could be 

the source of the elevated IGF1 expression.  Given the fact that neurons do not normally reside in 

the white matter, it is highly unlikely the elevated IGF1 expression in ASD is occurring in 
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neurons.  In fact, we did not observe an elevation of IGF1 expression in ASD in gray matter, 

where neurons occur in high numbers.   

IGF1 also has the ability to inactivate ROS, suggesting the increase in IGF1 expression 

may be indicative of increased pro-inflammatory microglia, and thus ROS, in individuals with 

ASD.  This theory could only be upheld if IGF1 was in fact, being expressed by anti-

inflammatory microglia.  Moreover, overactive pro-inflammatory microglia in ASD individuals 

is not the most convincing hypothesis.  One would reason that if pro-inflammatory microglia 

were causing chronic inflammation in individuals with ASD, we should have also seen a 

significant increase in one or more of the pro-inflammatory genes investigated in this study.  

This conclusion leads to the possibility that another cell type (but not neurons) in the CNS is 

responsible for the increased levels of IGF1.  Despite what is known about IGF1, further 

research is required in order to determine the cellular source of the elevated IGF1 expression 

levels and the potential role those levels play in the pathology of ASD. 

Studies that have attempted to characterize anti-inflammatory microglia have reported 

MRC1 as an M2 expressed gene (reviewed by Cherry et al. 2014; Benson et al. 2015; Walker et 

al. 2015).  CD206, the protein form of MRC1, is a single domain transmembrane receptor that 

recognizes mannose, fucose, or N-acetylglucosamine residues on the surface proteins of various 

microorganisms such as C. albicans, Leishmania donovani, Mycobacterium tuberculosis, 

Pneumocystis carinii, HIV, and Dengue virus (Gazi and Martinez-Pomares 2009; Kerrigan and 

Brown 2009).  After recognition by CD206, cellular F-actin depolymerizes so that the foreign 

material can be engulfed by the cell and digested via the endocytic pathway (reviewed by Gazi 

and Martinez-Pomares 2009).  While the full functions of MRC1 expression by anti-
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inflammatory microglia in the brain are still unknown, CD206 is important for endocytosis and 

pinocytosis (of surrounding fluids in the CNS) (Lively and Schlichter 2012).  

In this present study, lower MRC1 expression levels in gray matter in ASD donors were 

found as compared to typically developed controls.  This finding is novel in ASD research as 

there are no existing studies reporting the involvement of the mannose receptor in ASD.  One 

study found that the expression of the mannose receptor was lower in mouse serum during the 

early stages of inflammation, but was upregulated during the later stages of inflammation.  

During the later stages of inflammation, the mannose receptor clears inflammatory mediators.  In 

fact, some inflammatory inducers have been shown to down-regulate the expression of the 

mannose receptor, such as LPS and INFγ (Shepherd et al. 1990; Lee et al. 2002).  While this is 

an interesting connection between the literature and our findings, it is important to point out that 

the findings by Lee and coworkers was in serum and not in brain tissue.  In this regard, the lower 

MRC1 expression levels found by Lee et al. are most likely expressed by macrophages and not 

microglia, since microglia are only found in the CNS.  Unfortunately, the distinction between 

macrophages and microglia in the brain is not clear.  While microglia are considered the 

“macrophages of the CNS,” macrophages from other locations in the body are able to cross 

through the blood brain barrier during an inflammatory response.  Additionally, most markers 

that are stated to be expressed by M1 and M2 microglia are also expressed by M1 and M2 

macrophages.  With regards to our results, we are not able to confidently say that the lower 

MRC1 expression levels in gray matter were being expressed by anti-inflammatory microglia.  If 

the ASD donors happen to have elevated levels of pro-inflammatory mediators, it is possible that 

the lower MRC1 expression is occurring from macrophages that have migrated into the CNS.  
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This reinforces the need, in future studies, to isolate anti-inflammatory microglia and study the 

expression of the differentially expressed genes found in this study.   

IL1β (encoded by the gene IL1B) is an inflammatory cytokine that can stimulate 

inflammation in tissues by activating immune cells in early stages of an immune response 

(reviewed by Goines and Ashwood 2013).  Piton and coworkers (2008) found an association 

between IL1β receptor associated proteins and ASD, while Ashwood and coworkers (2011) 

found increased plasma IL1β levels in children with ASD (Piton et al. 2008; Ashwood et al. 

2011).  It has also been reported that in children with ASD, there is excessive production of IL1β 

in response to LPS (reviewed by Goines and Ashwood 2013).  In our study, we found no 

statistically significant differences in the expression levels of IL1B in white nor gray matter from 

ASD compared to control donors; however, we did find high levels of variability in the 

expression levels of IL1B in the ASD donors in both matter types.  While the variability of IL1B 

expression could suggest an increased pro-inflammatory response in some ASD donors, it is 

important to consider the cause of donor death.  A cause of death such as infection or drowning 

may cause in increase in pro-inflammatory cytokines and ROS, thus may not accurately 

represent typical cytokine expression levels in ASD (Bierens 2014).    

In summary, while we are not able to distinguish the origin of the differential expression 

levels for IGF1 and MRC1, we are able to conclude that there is an increase of IGF1 expression 

and a decrease of MRC1 expression in the ASD.  These findings give strong justification for 

future investigations of the specific roles of IGF1, CD206, and pro-inflammatory and anti-

inflammatory microglia in ASD pathology.  The current findings advance ASD research by 

providing information for the experimental design to study glia pathology, which could 

ultimately lead to the development of novel therapeutic options and advanced diagnostic tools. 
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Limitations 

 While white matter and gray matter were analyzed separately, each homogenate of matter 

contained many different CNS cell types such as neurons, astrocytes, oligodendrocytes, 

microglia, etc.  As noted above, a distinction between these two types of brain matter is the 

general lack of neurons in white matter and thus, the enrichment of glia in white matter relative 

to gray matter.  The anti-inflammatory microglial phenotype is difficult to characterize due to the 

lack of anti-inflammatory microglial specific markers.  Specifically, when discussing the 

significant expression differences of IGF1 and MRC1, it is difficult to decipher the source of 

these differential expression levels because they are expressed on a wide array of cells.  Reported 

M2 microglial phenotypic polarizers (stimulators) IL10, IL4, IL13, TGFβ, TNFα, and INFγ are 

released by and activate a variety of CNS cell types such as neurons, astrocytes, pericytes, 

dendritic cells, and other immune cells (Feuerstein et al. 1994; Ledeboer et al. 2002; Gottfried-

Blackmore et al. 2009; Kovac et al. 2011; Gadani et al. 2012; Chhor et al. 2013; Villapol et al. 

2013; Benson et al. 2015).  Additionally, ARG1 has been reported to be expressed by anti-

inflammatory microglia in mice, yet it has been debated in the literature to be expressed in 

humans.  Our study showed low levels of ARG1 expression in ACC white matter and no 

statistically significant difference comparing ASD and control donors.  Similar to ARG1, other 

reported anti-inflammatory microglial makers such as YM1, FIZZ1, Dectin-1, and CD301 have 

been observed in animal studies or have been found to be expressed by human M2 macrophages, 

but the expression of those genes by human M2 microglia is argued (reviewed by Cherry et al. 

2014).  Other M2 microglial markers CD163 and CD204 are known to be expressed by anti-

inflammatory microglia, but are also reported to be expressed by additional cell types, such as 

macrophages and monocytes (Holfelder et al. 2011; Prosniak et al. 2013).  While it is necessary 
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to isolate anti-inflammatory microglia in order to determine its role in ASD pathology, the lack 

of definitive markers for the M2 phenotype remains a major limitation of this line of research. 

 The availability of postmortem ASD brain tissues is also limited, preventing us from 

working with larger sample sizes.  For all gene expression data, p-values were corrected for the 

number of comparisons of dependent variables (gene expressions) using the Holm’s Bonferroni 

correction.  Corrected p-values indicated no statistically significant difference between ASD and 

control donors for all of the genes studied, including IGF1 and MRC1 (Table 6).  We attribute 

lack of Bonferroni-adjusted significance of IGF1 and MRC1 expression levels to our small 

sample size.  The immunohistochemistry portion of this study was originally attempted using 

frozen BA24 tissue, however; after many attempts with CD206 antibodies, protocol changes, and 

negative slide (no primary antibody) optimizations, an immunohistochemical stain for the anti-

inflammatory mannose receptor was not successful.  At the time of the study, we had not 

received fixed BA24 tissue, so an immunohistochemical stain on fixed tissue was not feasible.  

Additionally, because of the limited availability of tissues, some ASD and control donors were 

exposed to medications (Table 2) that might potentially influence the outcomes of this study.  

When donors were matched, variation between pairs was reduced as much as possible. 

Due to the lack of understanding regarding the anti-inflammatory microglial phenotype, 

we decided to first examine four anti-inflammatory microglial markers, in addition to five pro-

inflammatory microglial markers, using punch-dissected white and gray matter.  While punch-

dissections of white and gray matter capture microglia along with various additional cell types 

present in the tissue, this approach was ideal for the initial investigation of microglia in ASD.  

Specifically capturing microglia via laser capture microdissection methods were limited by time 

and financial resources.  The decision was made that if significant changes in gene expression 
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between ASD and control donors were found in this study, we would then proceed to specifically 

capture microglial cells for further analysis. 

Finally, an elevation of the expression levels of a gene does not necessarily translate to an 

increase in protein levels of the product of that gene.  Translation of protein from mRNA is 

regulated by a variety of factors.  Hence, further research will be required to confirm that 

elevated IGF1 or reduced MRC1 mRNA levels translate to elevated IGF1 or reduced MRC1 

protein levels.  Regardless of whether there is a like change in protein levels for these genes, it is 

certain that a difference in gene expression levels (comparing ASD and control donors) implies a 

pathological process involving these genes in ASD. 

 

Future Studies 

 While we are not able to confidently say our findings are specific to microglia, the results 

of this study do provide a basis for future investigations using immunohistochemistry to identify 

anti-inflammatory microglia and laser capture microdissection to specifically select microglia 

from white and gray matter BA24 tissue for further gene expression studies.  While the literature 

indicates successful immunohistochemical identification of CD206 in fixed brain tissue, the late 

arrival of fixed BA24 tissue in our lab did not allow for optimization due to time constraints.  

Continuation of this study would begin with the immunohistochemical identification of CD206 

in fixed brain tissue and then the explicit capture of anti-inflammatory microglia using laser 

capture microdissection.  Once anti-inflammatory microglia are captured, the expression of IGF1 

in white matter and MRC1 in gray matter can be analyzed to determine if anti-inflammatory 

microglia are the source of these differential expression levels.  The mentioned methods can also 

be used to capture astrocytes as a secondary investigation in the study.   
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Increasing the donor sample size and isolating glial cells in ACC white and gray matter 

are needed to confirm the differential expression levels of IGF1 and MRC1 identified in ASD in 

the present study.  This work is currently underway in the laboratory.  The gene and protein 

expression of IGF-1R is also an imperative aspect to examine.  If there is differential expression 

of IGF-1R in ASD individuals, it could theoretically affect the efficiency of increased IGF1 

levels that are implicated to occur in ASD by the result of this study.  Furthermore, studying the 

individual components of the mTOR pathway (downstream of IGF1 signaling) in individuals 

with ASD is a necessary step to further ASD research.  Identifying potential abnormalities in a 

specific component(s) of the mTOR pathway could provide clues for the development of 

therapeutic agents.      

 

  



68 
 

REFERENCES 

Amor S, Puentes F, Baker D, van der Valk P. 2010. Inflammation in neurodegenerative diseases. 

Immunology 129:154–69. 

Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud 

B. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into 

antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–69. 

Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. 2011. Elevated 

plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction 

and are associated with impaired behavioral outcome. Brain. Behav. Immun. 25:40–5. 

Atladóttir HO, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, Parner ET. 

2009. Association of family history of autoimmune diseases and autism spectrum 

disorders. Pediatrics 124:687–94. 

Auer H, Lyianarachchi S, Newsom D, Klisovic MI, Marcucci  uido, Kornacker K. 2003. 

Chipping away at the chip bias: RNA degradation in microarray analysis. Nat. Genet. 35:292 

293. 

Baio J. 2014. Prevalence of Autism Spectrum Disorders among Children Aged 8 Years  

Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 

2010. 

Bassil F, Fernagut P-O, Bezard E, Meissner WG. 2014. Insulin, IGF-1 and GLP-1 signaling in 

neurodegenerative disorders: Targets for disease modification? Prog. Neurobiol. 118:1 

18. 

Benson MJ, Manzanero S, Borges K. 2015. Complex alterations in microglial M1/M2 markers 

during the development of epilepsy in two mouse models. Epilepsia 56:895–905. 



69 
 

Bierens JJLM, editor. 2014. Drowning: Prevention, Rescue, Treatment. Second Edi. Verlag 

Berlin Heidelberg: Springer. 

Bill BR, Geschwind DH. 2009a. Genetic advances in autism: heterogeneity and convergence on 

shared pathways. Curr. Opin. Genet. Dev. 19:271–278. 

Bill BR, Geschwind DH. 2009b. Genetic advances in autism: heterogeneity and convergence on 

shared pathways. Curr. Opin. Genet. Dev. 19:271–8. 

Brown GC, Neher JJ. 2012. Eaten alive! Cell death by primary phagocytosis: “phagoptosis”. 

Trends Biochem. Sci. 37:325–32. 

Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, 

Santiago M, Viceconte N, Oliva-Martin MJ, Osman AM, et al. 2015. Microglia-Secreted 

Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial 

Activation. Cell Rep. 10:1626–1638. 

Bush G, Luu P, Posner MI. 2000. Cognitive and emotional influences in anterior cingulate 

cortex. Trends Cogn. Sci. 4:215–222. 

Casano AM, Peri F. 2015. Microglia: Multitasking Specialists of the Brain. Dev. Cell Rev. 32:9. 

Chen J, Alberts I, Li X. 2014. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway 

in autism spectrum disorders. Int. J. Dev. Neurosci. 35:35–41. 

Chen S-W, Zhong X-S, Jiang L-N, Zheng X-Y, Xiong Y-Q, Ma S-J, Qiu M, Huo S-T, Ge J, 

Chen Q. 2016. Maternal autoimmune diseases and the risk of autism spectrum disorders in 

offspring: A systematic review and meta-analysis. Behav. Brain Res. 296:61–9. 

Cherry JD, Olschowka JA, O’Banion MK. 2014. Neuroinflammation and M2 microglia: the 

good, the bad, and the inflamed. J. Neuroinflammation 11:98. 

Chhor V, Le Charpentier T, Lebon S, Oré M-V, Celador IL, Josserand J, Degos V, Jacotot E, 



70 
 

Hagberg H, Sävman K, et al. 2013. Characterization of phenotype markers and neuronotoxic 

potential of polarised primary microglia in vitro. Brain. Behav. Immun. 32:70–85. 

Conti E, Musumeci MB, De Giusti M, Dito E, Mastromarino V, Autore C, Volpe M, Jeschke 

MG, Barrow RE, Suzuki F, et al. 2011. IGF-1 and atherothrombosis: relevance to 

pathophysiology and therapy. Clin. Sci. (Lond). 120:377–402. 

Corraliza IM, Soler G, Eichmann K, Modolell M. 1995. Arginase induction by suppressors of 

nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived 

macrophages. Biochem. Biophys. Res. Commun. 206:667–73. 

Crawford JD, Chandley MJ, Szebeni K, Szebeni A, Waters B, Ordway GA. 2015. Elevated 

GFAP Protein in Anterior Cingulate Cortical White Matter in Males with Autism 

Spectrum Disorder. Autism Res.:9. 

David S, Kroner A. 2011. Repertoire of microglial and macrophage responses after spinal cord 

injury. Nat. Rev. Neurosci. 12:388–99. 

DeRamus TP, Kana RK. 2015. Anatomical likelihood estimation meta-analysis of grey and 

white matter anomalies in autism spectrum disorders. NeuroImage Clin. 7:525–536. 

Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SBG, Guyenet PG, Kipnis J. 2012. Wild-type 

microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–9. 

Dichter GS, Felder JN, Bodfish JW. 2009. Autism is characterized by dorsal anterior cingulate 

hyperactivation during social target detection. Soc. Cogn. Affect. Neurosci. 4:215–226. 

Dufour-Rainfray D, Vourc’h P, Tourlet S, Guilloteau D, Chalon S, Andres CR. 2011. Fetal 

exposure to teratogens: evidence of genes involved in autism. Neurosci. Biobehav. Rev. 

35:1254–65. 

Durkin MS, Maenner MJ, Newschaffer CJ, Lee L-C, Cunniff CM, Daniels JL, Kirby RS, Leavitt 



71 
 

L, Miller L, Zahorodny W, et al. 2008. Advanced parental age and the risk of autism 

spectrum disorder. Am. J. Epidemiol. 168:1268–76. 

Edmonson CA, Ziats MN, Rennert OM. 2016. A Non-inflammatory Role for Microglia in 

Autism Spectrum Disorders. Front. Neurol. 7:9. 

Eglitis MA, Mezey E. 1997. Hematopoietic cells differentiate into both microglia and macroglia 

in the brains of adult mice. Proc. Natl. Acad. Sci. U. S. A. 94:4080–5. 

Faridar A, Jones-Davis D, Rider E, Li J, Gobius I, Morcom L, Richards LJ, Sen S, Sherr EH, 

Samuels I, et al. 2014. Mapk/Erk activation in an animal model of social deficits shows a 

possible link to autism. Mol. Autism 5:57. 

Fernandez AM, Torres-Alemán I. 2012. The many faces of insulin-like peptide signalling in the 

brain. Nat. Rev. Neurosci. 13:225–239. 

Feuerstein GZ, Liu T, Barone FC. 1994. Cytokines, inflammation, and brain injury: role of tumor 

necrosis factor-alpha. Cerebrovasc. Brain Metab. Rev. 6:341–60. 

Gadani SP, Cronk JC, Norris GT, Kipnis J. 2012. IL-4 in the Brain: A Cytokine To Remember. 

J. Immunol. 189:4213–4219. 

Gazi U, Martinez-Pomares L. 2009. Influence of the mannose receptor in host immune 

responses. Immunobiology 214:554–561. 

Geschwind DH. 2008. Autism: many genes, common pathways? Cell 135:391–5. 

Glees P. 2005. The Human Brain. Cambridge University Press. 

Goines PE, Ashwood P. 2013. Cytokine dysregulation in autism spectrum disorders (ASD): 

possible role of the environment. Neurotoxicol. Teratol. 36:67–81. 

Gomot M, Bernard FA, Davis MH, Belmonte MK, Ashwin C, Bullmore ET, Baron-Cohen S. 

2006. Change detection in children with autism: an auditory event-related fMRI study. 



72 
 

Neuroimage 29:475–84. 

Gordon S. 2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23–35. 

Gottfried-Blackmore A, Kaunzner UW, Idoyaga J, Felger JC, McEwen BS, Bulloch K. 2009. 

Acute in vivo exposure to interferon-enables resident brain dendritic cells to become 

effective antigen presenting cells. Proc. Natl. Acad. Sci. 106:20918–20923. 

Greimel E, Nehrkorn B, Schulte-Rüther M, Fink GR, Nickl-Jockschat T, Herpertz-Dahlmann B, 

Konrad K, Eickhoff SB. 2013. Changes in grey matter development in autism spectrum 

disorder. Brain Struct. Funct. 218:929–42. 

Groen WB, Buitelaar JK, van der Gaag RJ, Zwiers MP. 2011. Pervasive microstructural 

abnormalities in autism: a DTI study. J. Psychiatry Neurosci. 36:32–40. 

Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins 

J, Smith K, et al. 2011. Genetic heritability and shared environmental factors among twin 

pairs with autism. Arch. Gen. Psychiatry 68:1095–102. 

Hanisch U-K. 2013. Functional diversity of microglia - how heterogeneous are they to begin 

with? Front. Cell. Neurosci. 7:65. 

Hoaglin DC, Iglewicz B. 1987. Fine-Tuning Some Resistant Rules for Outlier Labeling. J. Am. 

Stat. Assoc. 82:1147–1149. 

Holfelder K, Schittenhelm J, Trautmann K, Haybaeck J, Meyermann R, Beschorner R. 2011. De 

novo expression of the hemoglobin scavenger receptor CD163 by activated microglia is 

not associated with hemorrhages in human brain lesions. Histol. Histopathol. 26:1007–

17. 

Homolak J, Janeš I, Filipović M. 2015. The role of IGF-1 in neurodegenerative diseases. Gyrus 

3:162–167. 



73 
 

Huber KM, Klann E, Costa-Mattioli M, Zukin RS. 2015. Dysregulation of Mammalian Target of 

Rapamycin Signaling in Mouse Models of Autism. J. Neurosci. 35:13836–13842. 

Hung S-I, Chang AC, Kato I, Chang N-CA. 2002. Transient expression of Ym1, a heparin 

binding lectin, during developmental hematopoiesis and inflammation. J. Leukoc. Biol. 

72:72–82. 

Ingalhalikar M, Parker D, Bloy L, Roberts TPL, Verma R. 2011. Diffusion based abnormality 

markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage 

57:918–27. 

Keil A, Daniels JL, Forssen U, Hultman C, Cnattingius S, Söderberg KC, Feychting M, Sparen 

P. 2010. Parental autoimmune diseases associated with autism spectrum disorders in 

offspring. Epidemiology 21:805–8. 

Kerrigan AM, Brown GD. 2009. C-type lectins and phagocytosis. Immunobiology 214:562–75. 

Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. 2011. Physiology of microglia. Physiol. 

Rev. 91:461–553. 

Kettenmann H, Kirchhoff F, Verkhratsky A. 2013. Microglia: New Roles for the Synaptic 

Stripper. Neuron 77:10–18. 

Kettenmann H, Ransom BR. 2013. Neuroglia. Third. New York: Oxford University Press. 

Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. 2009. 

Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either 

Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. J. Neurosci. 29:13435–

13444. 

Kim SK. 2015. Recent update of autism spectrum disorders. Korean J. Pediatr. 58:8–14. 

Know your brain-Cingulate cortex. 2015. Neurosci. Challenged . [accessed 2016 Jun 28]. 



74 
 

http://www.neuroscientificallychallenged.com/blog//know-your-brain-cingulate-cortex 

Kohls G, Schulte-Rüther M, Nehrkorn B, Müller K, Fink GR, Kamp-Becker I, Herpertz 

Dahlmann B, Schultz RT, Konrad K. 2013. Reward system dysfunction in autism 

spectrum disorders. Soc. Cogn. Affect. Neurosci. 8:565–72. 

Kolevzon A, Bush L, Wang AT, Halpern D, Frank Y, Grodberg D, Rapaport R, Tavassoli T, 

Chaplin W, Soorya L, et al. 2014. A pilot controlled trial of insulin-like growth factor-1 

in children with Phelan-McDermid syndrome. Mol. Autism 5:54. 

Kovac A, Erickson MA, Banks WA, Neuwelt E, Abbott N, Abrey L, Banks W, Blakley B, Davis 

T, Engelhardt B, et al. 2011. Brain microvascular pericytes are immunoactive in culture: 

cytokine, chemokine, nitric oxide, and LRP-1 expression in response to 

lipopolysaccharide. J. Neuroinflammation 8:139. 

Ledeboer A, Brevé JJP, Wierinckx A, van der Jagt S, Bristow AF, Leysen JE, Tilders FJH, Van 

Dam A-M. 2002. Expression and regulation of interleukin-10 and interleukin-10 receptor 

in rat astroglial and microglial cells. Eur. J. Neurosci. 16:1175–85. 

Lee JE, Liang KJ, Fariss RN, Wong WT. 2008. Ex vivo dynamic imaging of retinal microglia 

using time-lapse confocal microscopy. Invest. Ophthalmol. Vis. Sci. 49:4169–76. 

Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, 

Nussenzweig MC, et al. 2002. Mannose receptor-mediated regulation of serum 

glycoprotein homeostasis. Science 295:1898–901. 

Levitt P, Campbell DB, Newschaffer CJ, Knudsen EI, Thatcher R, Hammock EAD, Levitt P, 

Dawson G, Beauchaine TP, Strassberg Z, et al. 2009. The genetic and neurobiologic 

compass points toward common signaling dysfunctions in autism spectrum disorders. J. 

Clin. Invest. 119:747–754. 



75 
 

Liu JL, Yakar S, LeRoith D. 2000. Conditional knockout of mouse insulin-like growth factor-1 

gene using the Cre/loxP system. Proc. Soc. Exp. Biol. Med. 223:344–51. 

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–8. 

Lively S, Schlichter LC. 2012. Age-Related Comparisons of Evolution of the Inflammatory 

Response After Intracerebral Hemorrhage in Rats. Transl. Stroke Res. 3:132–146. 

Madathil SK, Evans HN, Saatman KE. 2010. Temporal and regional changes in IGF-1/IGF-1R 

signaling in the mouse brain after traumatic brain injury. J. Neurotrauma 27:95–107. 

Madathil SK, Saatman KE. 2015. IGF-1/IGF-R Signaling in Traumatic Brain Injury: Impact on 

Cell Survival, Neurogenesis, and Behavioral Outcome. CRC Press/Taylor & Francis. 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. 2004. The chemokine system 

in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–86. 

Margulies DS, Kelly  a. MC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. 2007. 

Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37:579–

588. 

Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. 2011. The interleukin 13 (IL-13) pathway in 

human macrophages is modulated by microRNA-155 via direct targeting of interleukin 

13 receptor alpha1 (IL13Ralpha1). J. Biol. Chem. 286:1786–94. 

Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP. 2009. Functional 

brain correlates of social and nonsocial processes in autism spectrum disorders: an 

activation likelihood estimation meta-analysis. Biol. Psychiatry 65:63–74. 

Mascotti F, Cá Ceres A, Pfenninger KH, Quiroga S. 1997. Expression and Distribution of IGF-1 

Receptors Containing a ␤ -Subunit Variant (␤  gc ) in Developing Neurons. J. Neurosci. 



76 
 

17:1447–1459. 

McFadden K, Minshew NJ. 2013a. Evidence for dysregulation of axonal growth and guidance in 

the etiology of ASD. Front. Hum. Neurosci. 7:671. 

McFadden K, Minshew NJ. 2013b. Evidence for dysregulation of axonal growth and guidance in 

the etiology of ASD. Front. Hum. Neurosci. 7:671. 

McKay SM, Brooks DJ, Hu P, McLachlan EM, Hauben E, Schwartz M, Popovich P, Jones T, 

Popovich P, Wei P, et al. 2007. Distinct types of microglial activation in white and grey 

matter of rat lumbosacral cord after mid-thoracic spinal transection. J. Neuropathol. Exp. 

Neurol. 66:698–710. 

Moloney AM, Griffin RJ, Timmons S, O ’connor R, Ravid R, Neill CO’. 2008. Defects in IGF - 

1 receptor , insulin receptor and IRS - 1 / 2 in Alzheimer ’ s disease indicate possible 

resistance to IGF - 1 and insulin signalling. 

Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. 

Immunol. 8:958–69. 

Neher JJ, Neniskyte U, Zhao J-W, Bal-Price A, Tolkovsky AM, Brown GC. 2011. Inhibition of 

microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J. Immunol. 

186:4973–83. 

Noriuchi M, Kikuchi Y, Yoshiura T, Kira R, Shigeto H, Hara T, Tobimatsu S, Kamio Y. 2010. 

Altered white matter fractional anisotropy and social impairment in children with autism 

spectrum disorder. Brain Res. 1362:141–9. 

Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, 

Guiducci E, Dumas L, et al. 2011. Synaptic pruning by microglia is necessary for normal 

brain development. Science 333:1456–8. 



77 
 

Pardo C a, Vargas DL, Zimmerman AW. 2005. Immunity, neuroglia and neuroinflammation in 

autism. Int. Rev. Psychiatry 17:485–495. 

Piton A, Michaud JL, Peng H, Aradhya S, Gauthier J, Mottron L, Champagne N, Lafrenière RG, 

Hamdan FF, S2D team, et al. 2008. Mutations in the calcium-related gene IL1RAPL1 are 

associated with autism. Hum. Mol. Genet. 17:3965–74. 

Prosniak M, Harshyne LA, Andrews DW, Kenyon LC, Bedelbaeva K, Apanasovich T V, Heber 

Katz E, Curtis MT, Cotzia P, Hooper DC, et al. 2013. Glioma grade is associated with the 

accumulation and activity of cells bearing M2 monocyte markers. Clin. Cancer Res. 

19:3776–86. 

Raes G, Noël W, Beschin A, Brys L, de Baetselier P, Hassanzadeh GHG. 2002. FIZZ1 and Ym 

as tools to discriminate between differentially activated macrophages. Dev. Immunol. 

9:151–9. 

Rao JS, Kellom M, Kim H-W, Rapoport SI, Reese EA. 2012. Neuroinflammation and synaptic 

loss. Neurochem. Res. 37:903–10. 

Rodriguez JI, Kern JK. 2011. Evidence of microglial activation in autism and its possible role in 

brain underconnectivity. Neuron Glia Biol. 7:205–13. 

Saijo K, Glass CK. 2011. Microglial cell origin and phenotypes in health and disease. Nat. Rev. 

Immunol. 11:775–87. 

Sawicka K, Zukin RS. 2012. Dysregulation of mTOR Signaling in Neuropsychiatric Disorders: 

Therapeutic Implications. Neuropsychopharmacology 37:305–306. 

Schebesch C, Kodelja V, Muller C, Hakij N, Bisson S, Orfanos CE, Goerdt S. 1997. 

Alternatively activated macrophages actively inhibit proliferation of peripheral blood 

lymphocytes and CD4+ T cells in vitro. Immunology 92:478–486. 



78 
 

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, 

Krasnitz A, Kendall J, et al. 2007. Strong association of de novo copy number mutations 

with autism. Science 316:445–9. 

Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim K-W, Klein E, 

Kalchenko V, Bendel P, et al. 2013. Recruitment of Beneficial M2 Macrophages to 

Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus. Immunity 38:555–

569. 

Shepherd VL, Abdolrasulnia R, Garrett M, Cowan HB. 1990. Down-regulation of mannose 

receptor activity in macrophages after treatment with lipopolysaccharide and phorbol 

esters. J. Immunol. 145:1530–6. 

Sieger D, Moritz C, Ziegenhals T, Prykhozhij S, Peri F. 2012. Long-range Ca2+ waves transmit 

brain-damage signals to microglia. Dev. Cell 22:1138–48. 

Silk TJ, Rinehart N, Bradshaw JL, Tonge B, Egan G, O’Boyle MW, Cunnington R. 2006. 

Visuospatial processing and the function of prefrontal-parietal networks in autism 

spectrum disorders: a functional MRI study. Am. J. Psychiatry 163:1440–3. 

Soehnlein O, Lindbom L. 2010. Phagocyte partnership during the onset and resolution of 

inflammation. Nat. Rev. Immunol. 10:427–39. 

Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci 

DO, Cerliani JP, Delacour D, et al. 2012. Galectin-1 deactivates classically activated 

microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–

63. 

Stein M, Keshav S, Harris N, Gordon S. 1992. Interleukin 4 potently enhances murine 

macrophage mannose receptor activity: a marker of alternative immunologic macrophage 



79 
 

activation. J. Exp. Med. 176:287–92. 

Stevens SA, Nash K, Koren G, Rovet J. 2013. Autism characteristics in children with fetal 

alcohol spectrum disorders. Child Neuropsychol. 19:579–87. 

Strathearn L. 2009. The elusive etiology of autism: nature and nurture? Front. Behav. Neurosci. 

3:11. 

Strömland K, Nordin V, Miller M, Akerström B, Gillberg C. 1994. Autism in thalidomide 

embryopathy: a population study. Dev. Med. Child Neurol. 36:351–6. 

Suh H-S, Zhao M-L, Derico L, Choi N, Lee SC. 2013. Insulin-like growth factor 1 and 2 (IGF1, 

IGF2) expression in human microglia: differential regulation by inflammatory mediators. 

J. Neuroinflammation 10:37. 

Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, Yoshihara Y, 

Omata K, Matsumoto K, Tsuchiya KJ, et al. 2013. Microglial Activation in Young Adults 

With Autism Spectrum Disorder. JAMA Psychiatry 70:49. 

Takano T. 2015. Role of Microglia in Autism: Recent Advances. Dev. Neurosci. 37:195–202. 

Taylor PR, Martinez-Pomares L, Stacey M, Lin H-H, Brown GD, Gordon S. 2005. Macrophage 

receptors and immune recognition. Annu. Rev. Immunol. 23:901–44. 

Tremblay M-È, Lowery RL, Majewska AK. 2010. Microglial interactions with synapses are 

modulated by visual experience. PLoS Biol. 8:e1000527. 

Urbain CM, Pang EW, Taylor MJ. 2015. Atypical spatiotemporal signatures of working memory 

brain processes in autism. Transl. Psychiatry 5:e617. 

Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo C a. 2005. Neuroglial 

activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 

57:67–81. 



80 
 

Varin A, Gordon S. 2009. Alternative activation of macrophages: immune function and cellular 

biology. Immunobiology 214:630–41. 

Villapol S, T. T, J. A. 2013. Role of TGF-β Signaling in Neurogenic Regions After Brain Injury. 

In: Trends in Cell Signaling Pathways in Neuronal Fate Decision. InTech. 

Vogt BA, Finch DM, Olson CR. 1992. Functional Heterogeneity in Cingulate Cortex: The 

Anterior Executive and Posterior Evaluative Regions. Cereb. Cortex 2:435–443. 

Walker DG, Lue L-F, McGeer P, Itagaki S, McGeer E, Perry V, Nicoll J, Holmes C, Waller R, 

Woodroofe M, et al. 2015. Immune phenotypes of microglia in human neurodegenerative 

disease: challenges to detecting microglial polarization in human brains. Alzheimers. 

Res. Ther. 7:56. 

Wang H, Doering LC. 2013. Reversing autism by targeting downstream mTOR signaling. Front. 

Cell. Neurosci. 7:28. 

Wing L, Gould J, Gillberg C. 2011. Autism spectrum disorders in the DSM-V: better or worse 

than the DSM-IV? Res. Dev. Disabil. 32:768–73. 

Woods KA, Camacho-Hübner C, Savage MO, Clark AJL. 1996. Intrauterine Growth Retardation 

and Postnatal Growth Failure Associated with Deletion of the Insulin-Like Growth Factor 

I Gene. N. Engl. J. Med. 335:1363–1367. 

World Health Organization. 2013. Autism spectrum disorders & other developmental disorders: 

From raising awareness to building capacity. Geneva, Switzerland: WHO Press. 

Worley JA, Matson JL. 2012. Comparing symptoms of autism spectrum disorders using the 

current DSM-IV-TR diagnostic criteria and the proposed DSM-V diagnostic criteria. Res. 

Autism Spectr. Disord. 6:965–970. 

Yang J, Anzo M, Cohen P. 2005a. Control of aging and longevity by IGF-I signaling. Exp. 



81 
 

Gerontol. 40:867–72. 

Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP. 2005. 

Cerebrospinal Fluid and Serum Markers of Inflammation in Autism. Pediatr. Neurol. 

33:195–201. 

 



82 
 

APPENDICES 

APPENDIX A: ABBREVIATIONS 

Abbreviation Definition 

ACC anterior cingulate cortex 
ADI-R Autism Diagnostic Interview-Revised 
ARG1 arginase 1 

ASD autism spectrum disorder 
BA24 Brodmann area 24 
CD68 cluster of differentiation 68 

CNS central nervous system 
CNV copy number variation 
DAB 3,3'-Diaminobenzidine tetrahydrochloride 
DSM Diagnostic and Statistical Manual 
EMP erythromyeloid progenitor 

FMR1 fragile X mental retardation 1 
fMRI functional magnetic resonance imaging 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GM gray matter 
HLA-DRA human leukocyte antigen-antigen D related, alpha chain 

ID identification number 
IGF1 insulin-like growth factor 1 

IGF-1R Insulin-like growth factor 1 receptor 
IL1B interleukin 1 beta 

iNOS inducible nitric oxide synthase 
Kb kilobase 

LPS lipopolysaccharide 
M1 pro-inflammatory/classically activated/neurotoxic 
M2 anti-inflammatory/alternatively activated/neuroprotective 

MRC1 mannose receptor type 1 

mTOR mammalian target of rapamycin 
NFM1 Neurofibromatosis 1 
NHS normal horse serum 
NO nitric oxide 

NOS2 nitric oxide synthase 2, inducible 

PMI post-mortem interval 
PPARG peroxisome proliferator-activated receptor gamma 

PTEN phosphatase and tensin homolog  
PTGS2 prostaglandin-endoperoxide synthase 2 

qPCR quantitative real-time polymerase chain reaction 
RIN RNA integrity number 
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ROS reactive oxygen species 
SNP single nucleotide polymorphism 

TATA TATA-box binding protein 

T1D type 1 diabetes 
TLR4 toll-like receptor 4 

TSC1/2 tuberous sclerosis complexes 1 and 2 
WM white matter 
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APPENDIX B: PRIMER SEQUENCES OF REFERENCE AND MARKER GENES 

Target or 

Reference 

Gene 

Genbank Accession 

Number 
Primer Sequence 

PCR Product 

Size (bp) 

ARG1 (set A) 
NM_001244438, 

NM_000045 

(f) 5'-GGT GAC TCC CTG TAT ATC TGC CAA G-3' 
(r) 5'-GCC AAT TCC TAG TCT GTC CAC TTC AG-

3' 
136 

CD68 
NM_001040059, 

NM_001251 
Not available (Qiagen) 73 

GAPDH NM_002046 
(f) 5'-TGC ACC ACC AAC TGC TTA GC-3'  

(r) 5'-GGC ATG GAC TGT GGT CAT GAG-3' 
87 

HLA-DRA 

(set C) 
NM_019111 

(f) 5'-GTG GAC AAA GCC AAC CTG GAA ATC-3' 
(r) 5'-GGA CGT TGG GCT CTC TCA GTT C-3' 

121 

IGF1 

(set B) 

NM_001111283, 
NM_001111284, 

NM_000618 

(f) 5'-TCC CTT TCA AGC CAC CCA TTG A-3' 
(r) 5'-AGT GTG TTT AGC AGC GGG TAC AAG-3' 

115 

IL1B 
NM_000576, 

XM_006712496 
Not available (Qiagen) 117 

MRC1 
NM_001009567, 

NM_002438 
Not available (Qiagen) 86 

NOS2 
NM_006554 (1399 

bp) 

(f) 5'-GGC TGT CGT TGA GAT CAA CAT TGC 
TGT G-3'  

(r) 5'-CGG GAC CGG TAT TCA TTC TGC ATG 
TAC T-3' 

123 

PPARϒ 
NR_027850 (1603 

bp) 

(f) 5'-TCT CAA ACG AGA GTC AGC CT-3' 
(r) 5'-GAG TGG GAG TGG TCT TCC ATT AC-3' 

120 

PTGS2 
(set B) 

XM_006712199 
(1229 bp) 

(f) 5'-CTC TGG CTA GAC AGC GTA AAC T-3' 
(r) 5-CCG TAG ATG CTC AGG GAC TTG-3' 

143 

TATA 
NM_001172085, 

NM_003194 
Not available (Qiagen) 132 
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