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ABSTRACT

Modeling Student Enrollment at East Tennessee State University Using a

Discrete-Time Markov Chain Model

by

Lohuwa Mamudu

Discrete-time Markov chain models can be used to make future predictions in many

important fields including education. Government and educational institutions today

are concerned about college enrollment and what impacts the number of students en-

rolling. One challenge is how to make an accurate prediction about student enrollment

so institutions can plan appropriately. In this thesis, we model student enrollment at

East Tennessee State University (ETSU) with a discrete-time Markov chain model

developed using ETSU student data from Fall 2008 to Spring 2017. In this thesis,

we focus on the progression from one level to another within the university system

including graduation and dropout probabilities as indicated by the data. We further

include the probability that a student will leave school for a limited period of time

and then return to the institution. We conclude with a simulation of the model and

a comparison to the trends seen in the data.
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1 INTRODUCTION

The enrollment of students in a university system across the nation between 2001

and 2011 increased by 32%, from 15.9 million to 21.0 million [1]. In 2014, reported fed-

eral projections showed college enrollment would rise by only 14% through 2022 which

is about a third of the pace in the past decade. The enrollment figures were contained

in a broader report released by the National Center for Education Statistics[1].

For years, America’s college campuses swelled with more and more students, but

enrollment peaked in 2010 at just over 21 million students. Attendance has dropped

every year since 2010 [2]. There were over 800,000 fewer students walking around

college campuses by fall 2014 [2]. Some indicate that there is no need to be remorse;

the drop is happening as a result of improvement in the economy. Their rational is

that more people are going back to work instead of signing up for additional degrees

[2]. President Obama, in his statement last year said,“A college degree is the surest

ticket to the middle class” [2]. He proposed making community colleges free for two

years, because he perceived them as the gateway to higher education and better jobs

for many Americans [2].

Having a college degree versus only a high school diploma makes a big difference

when it comes to employment and wages [3]. About only 2.5% of college graduates

are unemployed, compared to 5.6% of high school graduates [3]. In 2015, college

enrollment in the spring semester fell nearly 2% from the previous year, to 18.6 million

in the U.S. [4]. The bulk of the decline came among students over 24, whose numbers

fell by 264,000, or 3.6 percent [4]. Among the 1,271 ranked schools that submitted

this data to U.S. News in an annual survey, the average undergraduate enrollment
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for fall 2015 was slightly over 6,000 [5]. The average among the 10 schools with the

highest undergraduates enrollment was more than seven times higher at 43,936 [5].

These statistics indicates there is a continuous fall in college enrollment in the U.S.

1.1 Background

Discrete-time Markov chains have been used over some years to date in several

disciplines including health in predicting the disease progression [8], education in

predicting enrollment [10], and other forecast projects based on present events. For

instance, a discrete-time Markov chain model has been used to forecast daily admis-

sion scheduling and resource planning in a cost or capacity constrained health care

system [6]. Another area where discrete-time Markov chain have been used was in

investigating the effects of treatment programs and health care protocols for chronic

diseases [8]. One major characterization of discrete-time Markov chains is that the

next event to occur depends only on the present state of the system and does not

depend on the history of the system. Hence, this Markov chain process is said to be

“memory-less”.

A discrete-time Markov chain is said to be a stochastic process which satisfies the

Markov property given by

P (Xn+1 = j|Xn=in , Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = j|Xn = i) (1)

where Xn is a sequence of random variables with discrete time steps t0, t1, ..., tn. A

discrete-time Markov chain can be homogeneous or non-homogeneous. A homoge-

neous Markov chain is the one in which the probability transition matrices do not

change over time from one state to the other (i.e cycles) and across subjects. In a
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non-homogeneous Markov chain, the probability transition matrices change over time

from state to state and/or across subjects [19].

In this thesis, we use a discrete-time Markov chain model to predict student enroll-

ment at ETSU. We assume that the discrete-time Markov chain is non-homogeneous

so that the probability transition matrix changes over the observation time. A

discrete-time Markov chain model is applicable to this study, because the state to

which a student transitions depends on only the current state (or academic year) and

not on the past. Therefore, student enrollment from semester to semester satisfies the

Markov property with the time increments being semesters. This makes it possible

for us to model student enrollment and then use the model to predict graduation

rates, dropout rates and total student enrollment using data obtained on student

progression. Enrollment retention rates are an accepted indicator of a university’s

success in providing quality degree programs and learning environments which will

lead to a student’s continued enrollment and timely graduation from the university

campus [9].

1.2 Overview of Thesis

We will be using a discrete-time Markov chain to predict student enrollment based

on transitioning from a freshman to a senior. Similar work was done by Helbert

[10] in 2015 which focused on modeling enrollment at a regional university using a

discrete-time Markov chain. The states considered in his model included freshman,

sophomore, junior, senior, drop out, and graduate, similar to our model as discussed

below. However, his model predicted that 21% of students graduated in five years
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[10]. This was seen as a discrepancy in his model prediction because his data initially

indicated that 1,085 students graduated in five years out of 3,079 total freshmen. This

represents 35% of freshman present in Fall 2008 graduated by Spring 2013 (5 years)

[10]. In this thesis, we identify some of the discrepancies and try to correct them to

enhance our model prediction.

This thesis is organized into seven chapters. The first chapter introduces and gives

some background information about student enrollment and discrete-time Markov

chains. Chapter two overviews the data and includes an initial analysis of the data

set, describing the trend and nature of student population, graduation and dropouts

at ETSU. In chapter three, we develop the initial transition matrices which describe

the Markov chain model for students who transition from one semester to the next

or who dropout or graduate. Chapter four provides a detailed explanation about the

students who take one or more semesters off before returning to ETSU (as a state we

call hiatus). We then incorporate this information into the final Markov chain model.

In chapter five, we perform an analysis of incoming students which will be included

in the simulation of our model discussed in chapter six. We conclude in chapter seven

with a summary and future work.
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2 DESCRIPTION AND PRELIMINARY ANALYSIS OF THE DATA SET

2.1 Data Description

This thesis uses data obtained from the office of institutional research ETSU on

student enrollment from Fall 2008 to Spring 2017. The data set provides a multitude

of information about the students. Each student had a randomly generated student

ID, so the student’s identity was not revealed. For each student, there were approx-

imately 60 different factors tabulated, some of which are summarized in Table 1.

Over 195,000 students are included in this data set. For the purpose of developing a

discrete-time Markov chain model that describes the transition in student enrollment,

only a handful of the 60 parameters were needed. We note that the excluded factors in

the data set could possibly affect student enrollment and may be useful in a different

type of predictive model; however, those same factors are not necessary in developing

the type of Markov chain model considered in this thesis. We are only interested

in students as they transition from freshman through senior including graduating or

dropping out as well as those who take some time off from ETSU before returning.

This implies graduate students or post graduates were left out as well as those who

enter the college as undergraduate or graduate to pursue special programs which do

not lead to a final degree. The parameters included in this model development include

the student ID, the class level of the student, the semester or term of enrollment and

whether or not the student has graduated during the semester.
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Table 1: Description of Factors in the Data Set

Factors Explanation and Description

Student ID The ID number from each student

Academic period The current academic year of student

Year term Fall or Spring semester with the year

Year of registration The year student registered into the program

Student level Undergraduate or graduate

Reporting degree Student degree upon admission

Graduated Yes or No

Age during term The age of student during corresponding term

Gender Male or Female

Resident In-state or out-of-state resident

Lottery resident
In-state or out-of-state resident defined by lot-

tery scholarship

Zip code Student resident zip code

Citizenship Whether or not student is U.S. citizen

Previous registration
Pre-college student, first time student, return-

ing student or readmitted student

Class Level Freshman, Sophomore, Junior, or Senior

Registration type

The student registered as transferred student,

transient, first time college, first time gradu-

ate or professional student and or student not

classified in the categories given

Total term hour
The total credit hours student has earned in

the semester

ACT score The score student received in the ACT test

Ethnicity
White, Black, Hispanic, Asian, American,

non-resident or unknown
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2.2 Trend in Student Enrollment

We first looked at the trends exhibited in the data. To do this, the data was

filtered and sorted into each term. Each semester was further sorted into class levels

(freshman, sophomore, junior and senior) and then copy and pasted in Minitab.

Figures 1-4 show the trends.

Figure 1: Trend of undergraduates student enrollment.

Figure 1 above shows the trend of undergraduate (freshman, sophomore, ju-

nior and senior) students at ETSU from fall 2008 to spring 2017 excluding sum-

mer semester. The output shows more students are enrolled in fall semesters than

spring semesters across the course of the data. Indeed, this is most likely due to

more students dropping out in spring semester than in fall semester as seen in Figure

4. There was an upward trend of students from 2008 to 2011 and thereafter enroll-

ment continued to decline. “Historically, as the economy improves and Americans

get back to work, college enrollment declines,” says U.S. Under Secretary of Edu-
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cation Ted Mitchell [2]. For instance, considering the recent economic recession in

the U.S. between December 2007 and June 2009, which saw many jobs shut down

and laborers were laid off, resulted in an increased unemployment rate of 10% and a

negative GDP of 5.1% [16]. Overall, enrollments of new students rose to slightly over

2 million in 2010, up from slightly less than 2 million in 2006, an increase of 6.8%

[16]. Dewayne Matthews, vice president of strategy for the Indianapolis-based edu-

cation nonprofit Lumina Foundation, outlined that College enrollment trends tend to

be counter-cyclical in terms of employment, i.e. “When employment rates are low,

enrollment goes up, and when employment rates are up, enrollment goes down.”[17]

This mimics the trend in Figure 1 above.

We further break down the trend of total undergraduates by their class levels.

One may ask which class level actually contributes most to the trend we are seeing in

Figure 1. Figure 2 below depicts the trend of enrollment of undergraduate students

by class. We can see from Figure 2 that the trend in freshman’s enrollment is most

predominantly similar to that seen in Figure 1. Approximately 500-600 more freshman

are enrolled during the fall semester than spring semester across the course of the data.

The trend of sophomores and juniors enrolled are fairly uniform; however, there is a

cyclic pattern, although less predominant than that seen in the freshman data, from

fall to spring semester as well.
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Figure 2: Trend of undergraduate student enrollment by class level.

However, the enrollment of students at the senior level in the Figure 2 shows a

different trend from the other class levels. Here, more students are enrolled in the

spring semester than the fall semester. This is most likely due to the fact that more

students graduate during the spring semester thus less are enrolled the following fall

semester. Figure 3 below shows the trend in the number of students graduating.

Figure 3: Trend of senior graduation.
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It is also interesting to analyze students’ dropout trends. Figure 4 which shows

the trend in percentage of undergraduates who dropout by semester at ETSU. It can

be seen that the percentage of students who dropout in spring semester is higher than

for fall semester. The trend seen at ETSU is similar to that across the United States

where thirty percent of college and university students drop out after their first year

and as well as half never graduate, and college completion rates in the United States

have been stalled for more than three decades [11]. Examining Figure 4, we found

that in fall 2008, about 6% of students dropped out of ETSU. The percentage dropout

is fairly stable across all fall semesters though the trend shows a slight growth in the

dropout rate starting fall 2010 by about a 0.3% margin. The growth margin seem

to continue throughout the rest of fall semester. There is a continuous increase in

the dropout rate for spring semesters until spring 2012 where it attains the highest

percentage dropout of about 13%. Most researchers on college student dropout in the

U.S. have attributed the cause of the alarming rate of dropout as a result of economic

growth and expansion [16]. The rate of dropout is troubling considering how well

U.S. college educational systems are structured. However, “one cause of the dropout

is also due to unprepared students signing up for school because they think a degree

is their passport to the middle class” [13]. Just 56% of students who embark on a

bachelor’s degree program finish within six years, according to a 2011 Harvard study

titled Pathways to Prosperity [13].

18



Figure 4: Trend of undergraduate student dropout.

Figure 5: Trend of undergraduate student dropout for each class levels.

Figure 5 shows the trend for dropout percentages for freshmen, sophomores, ju-

niors and seniors; In figure 5, we can see that freshmen represent the highest per-

centage of dropout in both fall and spring semesters, followed by sophomores, juniors

and then seniors. In the past 20 years, more than 31 million students have enrolled

in college, only to leave without a degree or certificate and a third of these students

dropped out of school before the start of their sophomore year [12]. The first year on

a college campus can be daunting for freshmen, with one out of three students not

returning to that same institution for their sophomore year, according to report a
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media group in Michigan [14]. This is why freshmen have the greatest dropout rate,

and we see this same trend at ETSU.

20



3 MODEL DEVELOPMENT AND ANALYSIS

In this section, we discuss the development of the discrete-time Markov chain

model using the data described in Section 2. As mentioned earlier, the Markov chain

model is a stochastic process satisfying a memory-less property. We first analyze the

model by visualizing a probability transition diagram for the model in Section 3.1

and then formalize the model in Section 3.2 with the probability transition matrices.

3.1 Discrete-Time Markov Chain Probability Transition Diagram

Figure 6 below depicts the transition state diagram for our Markov chain model

for the progression of undergraduate students at ETSU. The transition probability

diagram consists of seven (7) states, namely freshman, sophomore, junior, senior,

dropout, graduation and hiatus. In the model, we assume there are only forward

transitions and no backward transitions. For example, in the schematic in Figure

6, we assume, freshman can retain their freshman class level or progress to either a

sophomore, junior, senior, graduate, drop out or take a break or hiatus from school.

Sophomores either retains their status of sophomore or transition to junior, senior,

graduate, drop out or hiatus, but sophomores cannot move back to freshman. Juniors

and seniors follow a similar progression as freshmen and sophomores. However, some

of the transitions are uncommon (such as freshman to senior), but they are included

in the schematic because the data indicates these potential transitions (most likely

due to erroneous classification of students within the data). Also, there are some

backward transitions also indicated in the data which are believed to be errors in the

incorrect categorization of transfer students initially. However, in the later years of
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data collection, these backward transitions are infrequent. We disregard all backward

transitions in the calculation of probability measurements. The hiatus state will be

discussed in more detail in Section 4.

Figure 6: Discrete-Time Markov Chain Probability Transition Diagram

In the diagram α, β, γ, δ and ρ are the probabilities of transitions by freshmen,

sophomores, juniors, seniors and hiatus state respectively to other states. Graduation

and dropout states are said to be absorbing states. An absorbing state is a state that

once entered, cannot be left; i.e. once a student enters this state, they are assumed

to no longer transition to any other states within the system. The hiatus state is

the only state that allows a student to enter, leave and re-enter or return. This can
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be described as a ‘pendulum state’. It allows for free entry and exit of other states.

However, we assume that there is no direct transition from the hiatus state to any of

the two absorbing states.

3.2 Discrete-Time Markov Chain Transition Probability State Matrices

Now, we build a general probability transition matrix which is constructed of four

smaller matrices, P1, P2, P3, and P4,

P =

(
P1 P2
P3 P4

)
. (2)

A discrete-time Markov chain is represented by a probability transition matrix P

where pij(n) = Prob{Xn+1 = j|Xn = i} is the probability that a student is in state j

in semester n+1 given that he was in state i during semester n, i, j = 1, 2, ...N , where

N is the total number of semesters (i.e N = 18). The entry pij ≥ 0 and
∑

pij = 1.

Considering matrix P in Equation (2), P1 represents the college to college probability

transitions (e.g., freshmen to sophomore, junior, senior, dropout, and graduate but

not to the hiatus state), P2 represents the transitions from the hiatus state to any of

the college states (freshman, sophomore, junior, senior, dropout, and graduate), P3

the represents college to hiatus probability transitions and P4 represents college to

hiatus probability transition matrix. Note that P1 and P3 are complements and the

same for P2 and P4. Therefore, the sum of the first column of P1 and first column

of P3 will equal 1. For example, all probabilities of the transition of freshmen in P1

plus probabilities of the transition of freshmen in P2 equal to 1. This is the same for

P2 and P4. We discuss the formulation of P1 in this section and P2, P3 and P4 in

23



Section 4. The matrix P1 has the form.

P1 =

Current− State
Fr So Jr Sr Dr Gr


αFr 0 0 0 0 0 Fr
αSo βSo 0 0 0 0 So
αJr βJr γJr 0 0 0 Jr Next− State
αSr βSr γSr δSr 0 0 Sr
αDr βDr γDr δDr 1 0 Dr
αGr βGr γGr δGr 0 1 Gr

.

In the transition matrix P1, p11 = αFr is the probability that a freshman at the

current time/semester remains a freshman at the next time step. p12 = αSo is the

probability that a freshman during the current semester transitions to a sophomore

during the next semester, etc. The sum of all probabilities involving transitioning

by a freshman to other states is equal to one. This is the same for all transitions by

other class states.

To calculate the probabilities in the transition matrix we start with the randomly

generated student id in the data. We have 18 semesters worth of data. We initially

considered all semesters separately which resulted in 17 probability transition matri-

ces initially for analysis, and then the data is combined to form a single fall semester

probability transition matrix and a single spring semester probability transition ma-

trix.

The data set in Excel was filtered and sorted according to semester and then re-

coded for ease in use. We coded 1 for if the student has graduated and 0 if the student

has not graduated. The class levels were coded 1 for freshman, 2 for sophomore, 3 for

junior and 4 for senior. This Excel file was saved and imported in Matlab. In Matlab,
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each student id was use to find the student in each class during a semester and track

their class in the next semester. If a student is not found in the data for the next

semester, we check whether the student has either graduated, taken a break (hiatus)

or dropped out. We then divided the number of students in each state by the total

number of students in the given class for the semester. For instance, αFr = number

of freshmen next semester / total number of freshmen this semester, i.e. we obtain

the total number of freshmen this semester who are still freshmen next semester and

divide by the total number of freshmen this semester. The same calculation was made

for all entries in the matrix.

The following are four of the 17 resulting probability transition matrices of P1;

fall 2009 to spring 2010, spring 2010 to fall 2010, fall 2010 to spring 2011 and spring

2011 to fall 2011.

P1F ′09S′10 =


0.633 0 0 0 0 0
0.220 0.550 0 0 0 0
0.004 0.337 0.567 0 0 0
0.003 0.007 0.352 0.746 0 0
0.110 0.073 0.052 0.036 1 0
0.000 0.001 0.003 0.190 0 1

 (3)

P1S′10F ′10 =


0.342 0 0 0 0 0
0.396 0.404 0 0 0 0
0.001 0.403 0.405 0 0 0
0.003 0.011 0.466 0.594 0 0
0.213 0.140 0.088 0.046 1 0
0.002 0.004 0.010 0.320 0 1

 (4)

P1F ′10S′11 =


0.630 0 0 0 0 0
0.229 0.540 0 0 0 0
0.002 0.356 0.568 0 0 0
0.001 0.004 0.360 0.754 0 0
0.116 0.068 0.049 0.036 1 0
0.001 0.001 0.001 0.182 0 1

 (5)
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P1S′11F ′11 =


0.348 0 0 0 0 0
0.382 0.410 0 0 0 0
0.000 0.408 0.415 0 0 0
0.001 0.004 0.456 0.579 0 0
0.232 0.146 0.090 0.053 1 0
0.001 0.001 0.009 0.334 0 1

 (6)

It can be seen that there is not much variation for all the probabilities in the tran-

sition matrices for fall to spring semester; all spring to fall semester probability tran-

sition matrices are similar as well. For instance, in fall 2009 to spring 2010 (F’09S’10)

the probability of transitioning from freshman to freshman is 63.3%, freshman to

sophomore is 22%, freshman to junior is .4%, freshman to senior is .3%, freshman to

dropout is 11% and 0% for freshman to graduation. Thess probabilities are virtually

the same as that of fall 2010 to spring 2011. Spring 2010 to fall 2010 also has almost

the same probabilities as spring 2011 to fall 2011. This runs through almost all of

the 17 matrices with a few exceptional cases.

A student cannot graduate as a freshman, sophomore, junior or senior, but the

data presents such instances in which this happened. We attribute this to errors in

the data set. For example, in spring 2010 there is .3% and .2% of freshmen who

transition to senior and graduation respectively. The matrices show further evidence

that more students graduate or dropout in spring semester than fall semester. In

spring 2011, 23.2% of freshmen dropout compared to 11.6% in fall 2010. Similarly,

33.4% of seniors graduated in spring 2011 as compare to 18.2% who graduated in fall

2011. This also corresponds to the data seen in figure 3 and 5 above, which showed

the trends for graduation and dropouts respectively.

Now, after calculating and analyzing the 17 individual semesters which include
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9 fall to spring semesters (2008 to 2016) and 8 spring to fall semesters for P1 (2009

to 2017) matrices, we then combined all fall semester data and all spring semester

data to form one probability transition matrix for fall semester and one for spring

semester. We used the same method as discussed previously; however, we did this

on combined data for all fall and spring semesters. For instance, for the fall semester

probability transition matrix, the probability of freshman to freshman is the addition

of the number of all freshman to freshman for fall to spring semesters divided by the

total number of freshmen for all fall to spring semesters. Below are the two resulting

matrices for fall and spring semester;

P1AllFall =


0.603 0 0 0 0 0
0.238 0.537 0 0 0 0
0.004 0.357 0.552 0 0 0
0.002 0.005 0.368 0.747 0 0
0.127 0.072 0.053 0.037 1 0

0 0.002 0.002 0.189 0 1

 (7)

P1AllSpring =


0.327 0 0 0 0 0
0.397 0.413 0 0 0 0
0.001 0.406 0.407 0 0 0
0.003 0.006 0.473 0.560 0 0
0.229 0.136 0.084 0.059 1 0
0.001 0.001 0.006 0.348 0 1

 . (8)

The probability of transitioning between the various states doesn’t change much

compared to the individual fall and spring semester matrices with more students

graduating or dropping out in the spring than the fall. Also, more freshmen dropout at

the end of each semester as well as more seniors graduate in each semester. Examining

the probability transition matrices in Equations (7) and (8), 12.7% and 22.9% of

freshmen dropout during the fall semester and spring semester respectively. The

percentage of seniors who graduated in fall and spring is 18.9% and 34.8% respectively.
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The percentage of seniors who dropout within this period is 3.7% for fall and 5.9% for

spring. Even though this percentage is not large, these percentages signify a decent

number of students who have worked for several years to gain senior status and then

not finish. In November 2014, it was reported that the U.S. has the lowest college

completion rate in the developed world, at least among the 18 countries tracked by

the Organization for Economic Cooperation and Development [13, 18]. Also, about

53% of undergraduates who attended full time or part time struggled with one-third

dropping out entirely, others finished in six years and those who spend more than six

years have a greater chance of dropout [18].

3.2.1 Matrix Comparison

In this section, we compare the probability transition matrices for fall and spring

to see whether there is difference between them. We hypothesized that H0 : there is

no difference in the two matrices (null hypothesis) and H1 : there a is difference in

the two matrices (alternate hypothesis). We tested for the difference in the matrix

using a pair sample t-test. The decision rule is that we reject H0 if the p − value is

less than an α level of significance of 0.05 and conclude on H1.

First, we compare the various individual fall matrices to the probability transition

matrix for fall using all the data. We tested for whether there is a difference between

Fall 2009 and the all-data Fall matrix. This resulted to a p− value = 0.8672; hence

we fail to reject H0 and conclude there is no significant difference in the two matrices.

We performed another test to see whether Fall 2010 matrix is different from Fall

matrix using all the data. We had the same conclusion with a p− value = 0.9099. In
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general, we conclude that the fall matrix using all the data is sufficient for modeling

purposes.

Next, we performed the test for whether the individual spring matrices are different

from the spring matrix using all the data. When we compare Spring 2010 and Spring

2011 to the Spring matrix using all the data in which we had p − values of 0.9034

and 0.6934 respectively. Hence, we also fail to reject the null hypothesis and conclude

that the spring matrix using all the data is sufficient for modeling purposes.

Note that another way to check for whether the matrices are different is finding

the eigenvalues of their difference. If the eigenvalues are positive it means the two

matrices are not different. If the resulting eigenvalues of their difference are negative,

we conclude the two matrices are different. We reached the same conclusion as using

the t-test procedure.

We concluded statistically that there is no difference between the matrices using

individual semester data for fall verses that using all the data for a fall matrix or

individual spring verses the spring matrix using all the data or fall verses the spring

semester matrices. However, although there is no significant difference, we can see

the difference in Section 2 in the trends graphically when comparing spring and

fall semesters and in the elements of the matrix given above. For this reason, it

is appropriate to ‘measure the distance’ between the matrices. To do this, we find

the matrix norm of the differences of the matrices.

A matrix norm of a matrix ||P || is any mapping from Rn×n to R with the prop-

erties:

• ||P || > 0 if P 6= 0,
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• ||αP || = |α|||P || for any α ∈ R and

• ||P1 + P2|| ≤ ||P1|| + ||P2|| (triangular inequality) for any matrix P1, P2 ∈

Rn×n.

There are many types of matrix norms but for the purpose of this thesis we consider

just two of them, i.e. the matrix 2-norm and the Frobenius norm. The induced

2-norm is defined by

||P ||2 = s1

where s1 is largest singular value of P. On the other hand, the Frobenius norm of

P ∈ Cm×n is defined as:

||P ||2F =
∑
ij

|pij| =
∑
i

||Pi∗||22 =
∑
j

||P∗j||22 = trace(P × P )

Note that ||P ||2 ≤ ||P ||2F

The above two types of matrix norms gives different results, but the conclusions are

similar; therefore, we use the matrix 2-norm. For example, we compare Fall 2009 and

Fall 2010 probability transition matrices with the fall semester matrix using all the

data for fall semester by taking the matrix norm of their difference. The matrix norm

of the difference for the Fall 2009 probability transition matrix and the fall semester

matrix using all the data is 0.04 and between the Fall 2010 probability transition

matrix and the fall semester matrix using all the data is .03. Similar calculations for

Spring 2010 and Spring 2011 probability transition matrices verses the spring semester

matrix using all the data resulted to a matrix norm of 0.04 and 0.037 respectively.

The matrix norm of the difference between the fall and spring semester probability

transition matrices resulted to 0.337. We can clearly see that fall semester matrices
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are similar to one another since their matrix norms are close implying there is little

difference among them. However, fall and spring semester matrices have a larger

norm implying there is a larger difference between them. Therefore, for the purposes

of modeling enrollment at ETSU, we choose to model spring and fall transitions

separately.
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4 DISCUSSION AND ANALYSIS OF THE HIATUS STATE

Hiatus literally means to take a break. In the course of the initial analysis of the

data set, we discovered that there are students who are enrolled one semester, not

enrolled the next semester but enrolled in a future semester (two or more semesters

after the current semester of analysis). In other words, the student ‘takes a break’

from East Tennessee State University for one or more semesters. The class status

of the student (freshman, sophomore, junior and senior) upon leaving may or may

not change upon returning. Some students come back to the same class while others

progress in their class status. We assume that some students may take a break for a

semester or more to earn money to pay for college or for other reasons while others

may transfer to another university, take some classes, and then return to ETSU in

a later semester. If enough credits are earned, the student could change their class

status. In the thesis by Helbert [10], such students were classified as having dropped

out; it was assumed that once students left ETSU, they never returned [10]. This

was a misclassification and could lead to the inflation of dropout. In order to correct

the issue of misclassification, we include the hiatus state.

There are many reasons why a student may want to take a semester or more off

from particular university. Burnout is one of the top reasons students take a break,

i.e. a student may take break to regain focus after a long term of working too hard.

At ETSU, it is also hypothesized that students sometimes take time off to earn money

to support themselves. It is advisable for a student faced with problems of finance

such as the inability to pay tuition and ordinary expenses to take a break rather

than accumulating student loans which may jeopardize their career success. This
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way the student can work for some time to take care of the expenses accrued. As a

student, one should also be able to validate his/her career option. Having a doubt

about one’s career choice along the way may require taking a break. This can give the

student some valuable hands-on experience in the chosen field and help develop more

a realistic idea of what the career field is like, and help him/her validate his/her goals.

Having physical and emotional health problems can make your college life miserable

and prevent you from doing your best in school. If the problem is starting to get in

the way of your studies, taking a break and giving oneself some time to heal may be

the best option [15].

Any student who returns back to ETSU after leaving a particular semester is

classified in the hiatus state in our model. In our model, hiatus is the only state that

allows for transitions both in and out of the state. Thus, a student can enter hiatus

more than once. The description of the hiatus state has been summarized in Table 2

below.

Table 2: A table showing the description of variables to analyze for students taking

a break

Explanation / Description

Students ID

The semester the student left on hiatus

The semester the student returns after hiatus

The number of semesters the student spent out of ETSU on hiatus

The class level of the student before hiatus

The class level of the student after hiatus

The number of class levels the student has progressed while on a break
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There are eighteen semesters in total from fall 2008 to spring 2017. A student can

leave from the first (fall 2008) through the sixteenth semester (fall 2016) and return

from the third (fall 2009) through the eighteenth semester (spring 2017). Our analysis

does not include or account for students who left fall 2016 since we cannot anticipate

when they will return. This enables us to obtain the number of semesters the student

spends in hiatus before returning to ETSU. For example, if a student is enrolled in

fall 2008 and then not enrolled again until fall 2009, the student has spent only one

semester on hiatus. To obtain the class level upon returning from hiatus, we track

the status of the student before and after hiatus. For example, if the student was a

freshman before hiatus and still returns as a freshman after hiatus, the student made

no transition and still remains in the same class. If the student was a sophomore

and returned as a junior, then the student has made a transition by one class level.

Hence, zero represents students who maintain their class levels or status after hiatus,

one represents students who made one transition to the next level, say from freshman

to sophomore or from junior to senior and two represents students who made a double

move, say from freshman to junior or from sophomore to senior. The jump in class

status after a student has taken a break from ETSU is possible as a result of transfer

credit hours. We do not expect a student to make a backward transition after hiatus;

in other words, a student cannot return at a class level lower than that which they

left (e.g. return as a freshman when they left as a sophomore).
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Figure 7: Number of students who transitions to the various classes after hiatus

There are 5,394 students total who took a break from ETSU for one or more

semesters (i.e. transition to a hiatus state within the model), between fall 2008

and fall 2016 (within the 16 semesters). Out of this number, 1374 are freshmen

representing about 25.5%, 1118 are sophomores representing about 20.7%, 1044 are

juniors representing about 19.4% and 1858 are seniors representing about 34.4%. In

Figure 7, out of the number of students who took a break, 4,008 (74.3%) return

to the same class status or level they left, 1,143 (21.2%) of them made a one step

progression of class status, about 192 (4.6%) returned with a class status two levels

above that which they left and 31 (.6%) made a three step transition (i.e freshman

to senior). This is not unexpected based on the many reasons or circumstances for

which students take a break as discussed above. Some students take a break due to

burnout or from financial constraint; therefore, these students would not be expected

to take classes at another institution and thus they return at the same class level.

In addition, it is very rare or unusual to have a student who left the college in a

particular semester as a freshman to return after some period as a senior. Therefore,
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it is not surprising this transition is the lowest.

When a student is on hiatus, how many semesters do they actually spend away

from ETSU? Figure 8 gives a boxplot showing all sixteen semesters in which students

left at ETSU and the number of semesters they spent away before returning. We can

infer from the plot that on average a student who leaves after fall semester spends

a median of only one semester off before returning. For example, a student who left

after fall 2008 might not enroll for spring 2009 but returns in fall 2009. In contrast,

the median number for students who take a break after the spring semester is two

i.e. a student who leaves after spring semester (who doesn’t return the following

fall semester), will most likely take an entire year off before returning to ETSU. For

instance, a student who takes a break after spring 2009 is most likely to return in

fall 2010, thereby spending fall 2009 and spring 2010 on hiatus. The boxplots show

a decreasing number of outliers in the data for this analysis. This is most likely due

to the fact, that there is a longer period for which the student might return in the

earliest data.

Figure 8: Side by side boxplot on the number of semester spent on hiatus
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Figure 9: Bar plot of student status left

Figure 9 shows the percentages of students who took break across the various class

levels in a particular semester. For instance, in spring 2016 about 20% of student who

left were freshmen, about 25% were sophomore, about 15% were junior and about

35% were senior. Seniors constitute the majority who took the break, followed by

freshman, sophomore and then junior.

It is also necessary to consider the class status/level of a student when returning

from hiatus. This is because not all students’ maintain their status whilst returning

from break. Figure 10 shows students class status after taking a break. For example,

of the students who took a break in Fall 2008, 42% return as a senior, 20% return as

a junior level, 20% return as sophomore and 18% returned as freshmen.
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Figure 10: Bar plot of student status Return

We are probably more interested in knowing to which class each class of students

return. When we consider freshmen, we may be interested in knowing what percentage

of them return as freshman or transition to other class level. We also do the same

for sophomores and juniors as well. Figures 11-13 show the class status of students

in ETSU after taking a break for freshman, sophomore and junior respectively for

each of the 18 semesters data. In Figure 11, out of the Freshmen who returned from

hiatus in Fall 2008, 60% returned as Freshmen, 23% returned as Sophomores, 15%

retuned as Junior and 2% returned as Senior. It can be seen that about an average

of 62% of Freshmen who take break for one or more semesters in ETSU return as

freshmen, an average of 25%, 10% and 3% returned as sophomores, juniors and seniors

respectively. In Figure 12, in Fall 2008, 70% of sophomores who took a break returned

as Sophomore, 22% returned as junior and about 8% returned as Seniors. On average

60% of sophomores do return as sophomore after taking a break. Figure 13 shows that

most juniors who take a break return as junior with an average of 70%. Spring 2009

was an exceptional situation in which the same number of students returned to junior
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as the number of those returning as seniors. In general, we expected more students

to return to the same class they left, and the diagrams clearly show that. We know

that a senior who takes a break must return as a seniors. There are no backward

transitions and no student can enter any of the two absorbing states (graduation and

dropout) from hiatus.

Figure 11: Bar plot of Freshman status Return

Figure 12: Bar plot of Sophomore status Return
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Figure 13: Bar plot of Junior status Return

4.1 Development of the Hiatus Model

In this section, we expand the hiatus transition state in Figure 6 to obtain a

more precise probability transition diagram for the hiatus state. We also consider

the other transition probability matrices P2, P3 and P4 in the general probability

transition matrix P in Equation (2). These matrices show which class level a student

transitions to after taking a break (P2) or probability transitions from ETSU to hiatus

(P3) or from hiatus to hiatus (P4). The three matrices sum up our analysis on the

hiatus state. Figure 14 below represents the probability transition diagram for the

hiatus state where α, β, γ and δ represent the transition probabilities of students for

freshman, sophomore, junior and senior respectively to other states and ρ represents

probability of transition from the hiatus state to other states. ρHF , ρHSo, ρHJr

and ρHSr represent freshmen, sophomores, juniors and seniors who are on break.
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Figure 14: The transition probability diagram for hiatus.

We consider matrices P2, P3 and P4 for fall and spring semesters using all the

data and then merge them with P1 in Section 3 to formulate our general matrix P in

Equation (2). The matrix P2 has the form

P2 =

Current− State
HFr HSo HJr HSr


ρFrFr 0 0 0 Fr
ρFrSo ρSoSo 0 0 So
ρFrJr ρSoJr ρJrJr 0 Jr Next− State
ρFrSr ρSoSr ρJrSr ρSrSr Sr

0 0 0 0 Dr
0 0 0 0 Gr

,

where ρFrFr represents the probability that a freshman who took a break from

ETSU as a freshman (HF) will return as a freshman. Similarly, ρFrSo represents the
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probability that a student who took a break as a freshman will return as a sophomore,

etc. It is assumed that no student transitions directly from hiatus to either dropping

out or graduating; therefore, these entries are all 0. Also, there are no backward

transitions; therefore, the matrix is upper triangular. Equations (9) and (10) are

the resulting matrices for P2 for fall and spring semesters, respectively. To calculate

the entry ρFrFr we divide the number of freshmen who took a break and returned

as a freshmen by the total number of students who took a break as a freshman.

Similarly, ρFrSo is equal to the number of freshmen who took a break and returned as

a sophomore divided by the total number of students who took a break as a freshman

state.

P2AllFall =


0.298 0 0 0
0.114 0.298 0 0
0.001 0.160 0.305 0

0 0.006 0.175 0.478
0 0 0 0
0 0 0 0

 (9)

P2AllSpring =


0.406 0 0 0
0.142 0.431 0 0
0.006 0.219 0.407 0
0.003 0.004 0.212 0.552

0 0 0 0
0 0 0 0

 (10)

In P2, the probability that a freshman on break in a fall semester returns as a

freshman is 29.8%, the probability that a freshman returns as a sophomore is 11.4%;

there is 0.1% probability that a freshman returns as a junior and 0% probability that

a freshman returns as a senior after hiatus. Also, the probability that a freshman on

break in the spring semester returns as a freshman is 40.6%, return as a sophomore

14.2%, 0.6% as a junior and 0.3% as a senior. It can be seen that there is a higher

probability that a freshman after taking a break returns as a freshman in spring
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semester than in fall semester. A similar analysis applies to sophomores, juniors and

seniors.

The probability transition matrix of students transitioning from college (from the

various class states) to the hiatus state is given by

P3 =

Current− State
Fr So Jr Sr Dr Gr


αHs 0 0 0 0 0 HFr

0 βHs 0 0 0 0 HSo Next− State
0 0 γHs 0 0 0 HJr
0 0 0 δHs 0 0 HSr

In the matrix P3, Fr, So, Jr, Sr, Dr and Gr represents the current states and the

next state (the hiatus state) is represented by HFr, HSo, HJr and HSr. Also, α, β,

γ and δ play a similar role as described in P2. Equations (11) and (12) are the resulting

matrices for fall and spring semesters for P3. To calculate αHs, we divide the number

of freshmen who took a break by the total number of freshmen; βHs is equal to the

number of sophomores who took a break divided by the total number of sophomores.

The same calculation was done for γHs and δHs. In fall semester (Equation (11)),,

there is 2.6%, 2.8%, 2.5% and 2.7% probability of a freshmen, sophomore, junior and

senior taking a break respectively. For spring semester (Equation (12)), there is a

4.2%, 3.9%, 3.1% and 2.3% probability of freshmen, sophomores, juniors and seniors

taking a break respectively. It can be seen that more students at ETSU take a break

after spring semesters than fall semesters for freshmen, sophomores and juniors except

seniors. Fewer seniors take break in spring semester than fall semester, because more

seniors graduate in spring than fall as seen in Figure 3.
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P3AllFall =


0.026 0 0 0 0 0

0 0.028 0 0 0 0
0 0 0.025 0 0 0
0 0 0 0.027 0 0

 (11)

P3AllSpring =


0.042 0 0 0 0 0

0 0.039 0 0 0 0
0 0 0.031 0 0 0
0 0 0 0.023 0 0

 (12)

Matrix P4 is the matrix representing the transition of students from hiatus to

hiatus state, that is the probability of students who take a break and remain on the

break the next semester. In this matrix, the state represents the class level of the

student upon leaving ETSU; therefore, they will not transition to any other hiatus

state than that which they are currently. The matrix P4 is given by

P4 =

Current− State
HFr HSo HJr HSr


ρHHFr 0 0 0 HFr

0 ρHHSo 0 0 HSo Next− State
0 0 ρHHJr 0 HJr
0 0 0 ρHHSr HSr

we calculate ρHHFr by dividing the number of freshmen who took a break and

remains on break the next semester by the total number of freshmen in hiatus state.

Similar calculations are done for ρHHSo, ρHHJr and ρHHSr. ρ represents probability of

transition from Hiatus state to other states. The resulting matrix for fall and spring

semester semesters are given in Equations (13) and (14) respectively. In fall semester,

there is a 58.7%, 53.6%, 52.0% and 52.2% probability of freshmen, sophomores, juniors

and seniors who took a break respectively still remains on break. For spring semester,

there is a 44.3%, 34.4%, 37.1% and 44.7% probability of freshmen, sophomores, juniors
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and seniors respectively still remains on break.

P4AllFall =


0.587 0 0 0

0 0.536 0 0
0 0 0.520 0
0 0 0 0.522

 (13)

P4AllSpring =


0.443 0 0 0

0 0.344 0 0
0 0 0.371 0
0 0 0 0.447

 (14)

By putting together P1, P2, P3 and P4 we get the general transition matrix (P)

of the Markov chain model

P =

Fr So Jr Sr Dr Gr HFr HSo HJr HSr



αFr 0 0 0 0 0 ρFrFr 0 0 0 Fr
αSo βSo 0 0 0 0 ρFrSo ρSoSo 0 0 So
αJr βJr γJr 0 0 0 ρFrJr ρSoJr ρJrJr 0 Jr
αSr βSr γSr δSr 0 0 ρFrSr ρSoSr ρJrSr ρSrSr Sr
αDr βDr γDr δDr 1 0 0 0 0 0 Dr
αGr βGr γGr δGr 0 1 0 0 0 0 Gr
αHs 0 0 0 0 0 ρHHFr 0 0 0 HFr

0 βHs 0 0 0 0 0 ρHHSo 0 0 HSo
0 0 γHs 0 0 0 0 0 ρHHJr 0 HJr
0 0 0 δHs 0 0 0 0 0 ρHHSr HSr

PAllFall =

Fr So Jr Sr Dr Gr HFr HSo HJr HSr



0.603 0 0 0 0 0 0.298 0 0 0 Fr
0.238 0.537 0 0 0 0 0.114 0.298 0 0 So
0.004 0.357 0.552 0 0 0 0.001 0.160 0.305 0 Jr
0.002 0.005 0.368 0.747 0 0 0 0.006 0.175 0.478 Sr
0.127 0.072 0.053 0.037 1 0 0 0 0 0 Dr

0 0.002 0.002 0.189 0 1 0 0 0 0 Gr
0.026 0 0 0 0 0 0.587 0 0 0 HFr

0 0.028 0 0 0 0 0 0.536 0 0 HSo
0 0 0.025 0 0 0 0 0 0.520 0 HJr
0 0 0 0.027 0 0 0 0 0 0.522 HSr
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for fall semester and for spring by

PAllSpring =

Fr So Jr Sr Dr Gr HFr HSo HJr HSr



0.327 0 0 0 0 0 0.406 0 0 0 Fr
0.397 0.413 0 0 0 0 0.142 0.431 0 0 So
0.001 0.406 0.407 0 0 0 0.006 0.219 0.407 0 Jr
0.003 0.006 0.473 0.560 0 0 0.003 0.004 0.212 0.552 Sr
0.229 0.136 0.084 0.059 1 0 0 0 0 0 Dr
0.001 0.001 0.006 0.348 0 1 0 0 0 0 Gr
0.042 0 0 0 0 0 0.443 0 0 0 HFr

0 0.039 0 0 0 0 0 0.344 0 0 HSo
0 0 0.031 0 0 0 0 0 0.371 0 HJr
0 0 0 0.033 0 0 0 0 0 0.448 HSr

.

Considering the matrix P for transitioning from fall semester to spring semester,,

the probability that a freshman maintains the same class as freshman the following

semester is 60.3%, probability that a freshman transitions to a sophomore is 23.8%;

there is 0.4% probability that a freshman progresses to junior and 0.2% of a freshman

progressing to the senior class. Also, the probability that a freshman dropouts is

12.7%; there is 0% probability of freshmen graduating and 2.6% probability that a

freshman takes a break from fall to spring semester. The remaining states follow the

same analysis as the freshman state.

4.2 Analysis and Long-Term Future Prediction

In this section, we look at where students transition after one year and five years.

We also make long-term distribution of students to the various states. Now, we

combine the spring and fall matrix of P to form a full one year probability transition

matrix. This is calculated by multiplying the two matrices in order, i.e. spring P
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matrix times fall P matrix. The one year matrix is of the form

POneY ear =

Fr So Jr Sr Dr Gr HFr HSo HJr HSr



0.208 0 0 0 0 0 0.336 0 0 0 Fr
0.341 0.234 0 0 0 0 0.249 0.355 0 0 So
0.099 0.369 0.235 0 0 0 0.051 0.303 0.341 0 Jr
0.006 0.175 0.472 0.433 0 0 0.004 0.083 0.353 0.556 Sr
0.298 0.175 0.121 0.082 1 0 0.084 0.054 0.036 0.028 Dr
0.002 0.006 0.133 0.449 0 1 0 0.003 0.063 0.166 Gr
0.037 0 0 0 0 0 0.273 0 0 0 HFr
0.009 0.030 0 0 0 0 0.004 0.196 0 0 HSo

0 0.011 0.026 0 0 0 0 0.005 0.202 0 HJr
0 0 0.012 0.037 0 0 0 0 0.006 0.250 HSr

.

In analyzing the one year probability transitions of students in ETSU, it can be

seen that if a student starts as a freshman, there is 20.8% probability that the student

remains a freshman, 34.1% probability that a freshman progresses to a sophomore,

9.9% probability that a freshman transitions to a junior and 0.6% probability that a

freshman transitions to a senior after one year. A freshman has a 29.8% and 0.2% of

dropping out and graduating respectively. The probability that a freshman progresses

to a senior or graduates after a year is unexpected but these transitions are seen in

the data most likely due to classification errors in the data. The reasons have been

outlined on Section 3. It is important to recognize that a freshman has 3.7% probabil-

ity of taking a break after 1 year and 0.9% probability of taking break as sophomore.

Also, it can be seen that a freshman on hiatus has 33.6% probability to return as a

freshman, 24.9% probability to return as a sophomore, 5.1% probability return as a

junior, 0.4% of returning as a senior and 8.4% of dropping out. A freshman on hiatus

has a 27.3% probability of remaining on break after 1 year. It is necessary to know

that after one year, a student at the senior level has 43.3% of remaining a senior, 8.2%

probability of dropping out, 44.9% probability of graduating and 3.7% probability of
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taking a break. Next, we look at the behavior of the probability transitions of the

states after 5 year below.

P5Y ears
=

Fr So Jr Sr Dr Gr HFr HSo HJr HSr



0.002 0 0 0 0 0 0.008 0 0 0 Fr
0.010 0.002 0 0 0 0 0.028 0.006 0 0 So
0.027 0.011 0.002 0 0 0 0.055 0.024 0.005 0 Jr
0.102 0.092 0.055 0.027 0 0 0.139 0.133 0.086 0.057 Sr
0.585 0.388 0.253 0.149 1 0 0.502 0.332 0.210 0.142 Dr
0.260 0.495 0.683 0.820 0 1 0.246 0.489 0.687 0.793 Gr
0.001 0 0 0 0 0 0.004 0 0 0 HFr
0.002 0.001 0 0 0 0 0.004 0.001 0 0 HSo
0.003 0.002 0 0 0 0 0.005 0.003 0.001 0 HJr
0.008 0.010 0.007 0.004 0 0 0.010 0.012 0.010 0.008 HSr

.

Most colleges expect or hope that most freshmen will graduate within five years. It is

interesting to know that given the model, it shows that after 5 years, a freshman at

ETSU has a 26.0% probability of graduating and 58.5% probability of dropping out.

A sophomore has 38.8% probability of dropping out and 49.5% of graduating. If the

student is a junior, then after five years the expected probability of dropping out is

25.3% and graduating is 68.3%. A senior level student may graduate at a probability

of 82.0% or dropout at a probability of 14.9% after 5 years. Furthermore, we consider

the long-term probability transition trend of the states below.
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P50Y ears
=

Fr So Jr Sr Dr Gr HFr HSo HJr HSr



0 0 0 0 0 0 0 0 0 0 Fr
0 0 0 0 0 0 0 0 0 0 So
0 0 0 0 0 0 0 0 0 0 Jr
0 0 0 0 0 0 0 0 0 0 Sr

0.617 0.408 0.263 0.154 1 0 0.561 0.364 0.226 0.152 Dr
0.384 0.592 0.737 0.846 0 1 0.439 0.636 0.774 0.848 Gr

0 0 0 0 0 0 0 0 0 0 HFr
0 0 0 0 0 0 0 0 0 0 HSo
0 0 0 0 0 0 0 0 0 0 HJr
0 0 0 0 0 0 0 0 0 0 HSr

.

By removing the zeros, we are left with

P50Y ears
=

Fr So Jr Sr Dr Gr HFr HSo HJr HSr( )
0.617 0.408 0.263 0.154 1 0 0.561 0.364 0.226 0.152 Dr
0.384 0.592 0.737 0.846 0 1 0.439 0.636 0.774 0.848 Gr

.

In the very long-run, all other states transition to the two absorbing states (i.e.

dropout and graduation) as shown in the 50 years probability transition matrix. This

is also summarized in Table 3 below.

Table 3: Prediction of Long-Term Probability Transitions of the States

States % Dropout (Dr) % Graduation (Gr)

Freshman (Fr) 61.7 38.4

Hiatus Freshmen (HFr) 56.1 43.9

Sophomore (So) 40.8 59.2

Hiatus Sophomore (HSo) 36.4 63.6

Junior (Jr) 26.3 73.7

Hiatus Junior (HJr) 22.6 77.4

Senior (Sr) 15.4 84.6

Hiatus Senior (HSr) 15.2 84.8
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According to the model, in the long-term, there is a 61.7%, 40.8%, 26.3% and

15.4% of a freshman, a sophomore, a junior and a senior at ETSU dropping out

respectively. On the other hand, there is a 38.4%, 59.2%, 73.3% and 84.6% of a

freshman, a sophomore, a junior and a senior graduating respectively. It is important

to know that, according to the model, a student who takes a break at some point from

any of the states has a lesser probability of dropping out and a higher probability

of graduating as compared to a student who never had a break. For instance, a

freshman who took a break has 5.5% more chance of graduating than the probability

of a freshman who did not take a break. Also, similar analysis shows the same trend

is also true for sophomores, juniors and seniors. However, the difference in dropout

and graduation rates for seniors who take a break and those who do not take a break

is very minimal (i.e. just 0.2%). This was expected considering the reasons why a

student may take a break as outlined in the beginning of Section 4.
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5 MODELING THE ENROLLMENT OF NEW STUDENTS

In this section, we consider incorporating the enrollment of new incoming students

into our model. New incoming students are those entering ETSU for the first time

irrespective of the class level they starts from, whether freshman, sophomore, junior

or seniors. Although we have 18 semesters of data, we only considered new students

enrolled starting from spring 2009 through Spring 2017. We do not have data on new

students enrolled in fall 2008, hence it was excluded. In Matlab, we track the student

id; if the id appears for the first time in a particular semester, the student is counted

as newly enrolled. There are a total of 33,913 new students enrolled at ETSU for all 17

semesters in our data set. For all 8 fall semesters in the data, 28,017 were enrolled and

5,896 were enrolled for all 9 spring semesters. On average, approximately 3,503 and

656 new students were enrolled for each fall and each spring semester respectively.

We can have a clear visualization of the total number of new students enrolled in

ETSU from spring 2009 through spring 2017 from Figure 15 below.

Figure 15: The Total New Student Enrolled

In Figure 15, we have the total new students per semester. For instance, in
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Spring 2009 and Fall 2009 there are about 1,000 and 4,000 new students enrolled

respectively. It can be seen from Figure 16 that the majority of new students are

freshmen, followed by juniors, sophomores and seniors. Out of the total number of

new students enrolled in our data, slightly over 20,000 are freshmen, slightly less than

4,000 are sophomores, about 6,000 are juniors and about 3,800 are seniors representing

60.2%, 11.6%, 16.9% and 11.4 respectively. For fall semesters slightly over 18,000

(64.8%) freshmen, slightly less than 3,000 (10.3%) sophomores, slightly more than

4,200 (15.2%) juniors and about 2,700 (9.7%) are enrolled. For Spring semesters,

about 2,300 (38.4%) freshmen, about 1,050 (17.8%) sophomores, about 1,450 (24.6%)

juniors and about 1,150 (19.4%) senior are enrolled.

We can see that there is a continuous decline in the trend for the total number

of new students for each fall semester at ETSU. For the trend of new enrollment

for each spring semester, the decrease in the number of new students enrolled from

Spring 2009 to Spring 2011 is higher than for the following semesters.

It is necessary to look at the statistics of newly enrolled students for the various

class levels to have a clear picture of what is happening. In Figure 16, we show

the total number of new students and percentages for each semester. We can see

that more new students are enrolled in fall semester than spring. There is an overall

decrease in the total number of freshmen. However, the percentage of new freshmen

students enrolled each fall is slightly increasing. Also, there is somewhat stability

in the percentage of new students enrolled as sophomores, juniors and seniors in fall

semester. Therefore, although the total number of new students is decreasing, the

percentage enrolled into each class level is fairly stable. Similar features can be seen
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for juniors and seniors in spring semester except new freshmen which rise in spring

2009, attained slight stability from spring 2010 to spring 16 and then start falling.

Figure 16: The Total New Student Enrolled By Class Level

In Figure 15, we approximate a regression equation for the total enrollment of new

students for the past five years for fall semester which is given by ŷ = −106x+3618.5

where y is the number of new students and x is the number of semesters, with x = 0

indicating Fall 2012. The slope is given by -106, this means the total number of new

students enrolled each fall decreases on average by about 106 students per semester.

For spring semester, the regression equation is giving by ŷ = −22.3x + 646.1.3. The

slope for spring semester is -22.3, i.e. the total number of new students enrolled in

spring semester decreases by about 22 students per semester. We use this equation

when approximating how many students will enroll each semester in the simulations

performed in the next section.
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6 SIMULATION OF THE MODEL

In this section, we simulate the model to test the accuracy of the discrete-time

Markov chain model in making predictions about student enrollment at ETSU. In

the simulation, we look at the past five years (thus, from spring 2012 to spring 2017)

and compare the trends. The simulation algorithm is given by the following:

Step 1: Initialize the number of student for the various ten states (we use the exact

number of students in spring 2012).

Step 2: Initialize probability transition matrices Pfall and Pspring.

Step 3: Initialize the number of years or steps of the simulation (n = 5 years)

Step 4: Set i = 1 to 2n (indicating two semester per year), do the following:

Step 4a: Set P equal to the appropriate transition matrix depending on the semester

(fall to spring or spring to fall).

Step 4b: Initialize the number of students in all states for the next semester to zero.

Step 4c: Estimate the number of new students for the semester using the appropri-

ate regression equation for either fall or spring semester.

Step 4d: For each class of students, do the following:

Step 4d.i: Determine the transitions for the class using the appropriate column

(Pj) of the transition matrix corresponding to the given class j.

Step 4d.ii: Generate a vector r of uniformly distributed numbers between 0 and

1 with length equal to the total number of students of the given class.
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Step 4d.iii: Determine the number of students who transition to each state by

determining the number of random numbers in r which are less than

the cumulative sum of probabilities in Pj from Step 4d.i

Step 4d.iv: Add the total number of students for each class which come from all

other states plus the new incoming students in each class. Label this

vector vi for semester i.

Figures 17-20 display the output of the simulations for five runs. Note that each

run will be slightly different due to the vector of uniformly distributed random num-

bers from Step Step 4d.ii in the simulation algorithm. Figures 17 and 18 represents

the total number of studentS enrollment at ETSU and their class levels respectively.

Figures 19 and 20 show the total number of new students enrollment and their class

levels respectively. From the figures, we compare the estimated number of student

to the exact numbers given in the data and analyze the differences. If the plot of

the estimated number of students equates or intersects the plot of the exact number

of students, we assume there is a fairly accurate prediction. If the plot of the exact

number of students is below the plot of the estimated number of student, we assume

the number of students is overestimated and vice versa.
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Figure 17: Simulation of Total Student Enrolled

Figure 18: Simulation of Total Student Enrolled By Class Level

In Figure 17, the total number of students is overestimated by the model. From

Spring 2012, the estimated total number of students enrolled rise above the exact

total indicated by the data. Although both trends are decreasing, the total number

of students is overestimated by approximately 10%. For instance, in fall 2012 we

estimated about 12500 total students compared to about 11500 indicated by the

data. It is also interesting to examine the behavior of the total number of students

when divided according to class level as shown in Figure 18. In Figure 18, the initial

behavior of the plot shows that there is somewhat accuracy in the prediction of the

total number of seniors until Fall 2013. Thereafter, there is an overestimation of
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seniors as the estimated number continues to spread apart from the exact number of

seniors.This is most likely error in the estimated graduation rate for seniors. There is

fairly good prediction for freshmen from spring 2012 to spring 2013 and from spring

2014 to fall 2015 since the total number of freshmen for both plots are fairly similar.

For both sophomores and juniors we can see initially that there is an overestimation

of the total number of students from spring 2012 to spring 2015. From Fall 2015 the

prediction seems fairly accurate for both sophomores and juniors.

Figure 19: Simulation of Total New Student Enrolled

Figure 20: Simulation of Total New Student Enrolled by Class Level

In Figures 19 and 20, we simulate the total number of new student enrollment.

We can see that there is a better prediction of the total number of new enrollment in
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Figures 19 and 20 compared to the total number of students in Figures 17 and 18. The

prediction of the enrollment of the total number of new student for the various class

levels (Figure 20) is quite accurate except in a few cases such as freshmen for fall 2013

which can be seen to be slightly overestimated. Also, there is a slight overestimation

in fall 2015 for juniors and seniors and in fall 2014 for sophomores.
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7 CONCLUSION AND FUTURE WORK

In conclusion, in this thesis, we have used ETSU data from Fall 2008 to Spring

2017 to create a discrete-time Markov chain to model for undergraduate enrollment

at ETSU. Initial analysis of the data indicates that more students are enrolled in fall

semesters than spring semesters except seniors which has the opposite trend. On the

contrary, more students dropout after spring semester as compared to fall semester.

We used the data to build probability transition matrices to analyze how students

transition through the various class levels. We concluded that the individual fall

matrices are significantly not different from one another. Similar conclusions were

made for spring matrices. By contrast, fall and spring matrices are shown to be

different when using the matrix norm. Furthermore, the hiatus state was introduced

to reduce the error in our model due to misclassification of dropouts. We determined

that seniors are the most likely to take a break, representing 34.4% of the total

number of students who took a break at some point. Also, when students take a

break after fall semester (i.e. take spring semester off), they spend an average of one

semester off and spend an average of two semesters off when taking a break after

spring semester, i.e. if a student does not return for fall semester, the student is more

likely to take an entire year off. We combined the hiatus states with the class level

states to form a general probability transition matrix for fall and spring semester

and then analyze potential trends using these probability transition matrices. In five

years, it was predicted that there is a 26.0% probability of a freshman graduating and

58.5% probability of freshman dropping out. There is 82.0% of seniors graduating

and 14.9% probability of seniors dropping out in five years. In the long-term, students
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who take a break are seen to have a higher probability of graduating compared to

those who do not take a break.

The inclusion of the hiatus state into our Markov chain model was necessary, and

it increased the graduation rate of the number of freshmen after five years to 26%

compared to the 21% predicted by Helbert’s model [10]. The actual rate of graduation

of a freshman after five years is 35% as indicated by the data. This means there are

still discrepancies associated with our model. The simulation of the model shows it

is fairly close to making accurate predictions about the total number of new students

enrolled but overestimates the total number of students entirely. Hence, the reasons

for the inaccurate prediction by the model is not only associated with misclassification

of students but there are other factors which need to be considered in future work

using the model. We hypothesize that in the future it might be necessary to reexamine

how the probabilities are generated for the matrices.
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