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ABSTRACT 

Tapering for Strength-Power Individual Event and Team Sport Athletes 

by  

Caleb Daniel Bazyler 

The overall purpose of this dissertation was to address mechanistic and performance changes 

following a peaking phase in individual event and team sport strength-power athletes. This 

purpose was addressed by conducting 4 separate investigations with track and field athletes, 

volleyball athletes, and a national level weightlifter. The following are the primary findings from 

these investigations. Division I collegiate throwers increased competition throwing performance, 

jumping performance, and preserved muscle architecture characteristics following an overreach 

and taper. There were moderate decreases in division I female collegiate volleyball athlete’s 

vastus lateralis muscle thickness with no statistical changes in jumping performance following a 

taper with no prior overreach in. There were moderate to very large differences in 

countermovement jump height supercompensation during the peaking phase in favor of the 

returners over the new players on a similar team of female volleyball athletes. Changes in serum 

concentrations of inflammatory, hypertrophic and endocrine markers corresponded with 

alterations in training volume-load and partially explained changes in jump, dynamic mid-thigh 

pull, and weightlifting performance following multiple competition phases in a national level 

weightlifter. Additionally, vastus lateralis cross-sectional area can be maintained following a 

competition phase in a high level weightlifter provided large changes in body mass are not 

attempted close to competition. The findings of these investigations support the use of overreach 

and tapering for strength-power athletes and provide an underlying biochemical, morphological, 

and biomechanical basis for the observed changes in performance. 
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CHAPTER 1 

INTRODUCTION 

Tapering in athletics has been previously defined as a “progressive nonlinear reduction of 

the training load during a variable period of time, in an attempt to reduce the physiological and 

psychological stress of daily training and optimize sports performance” (Mujika & Padilla, 

2003). Traditionally, it is the final period in a sequence of mesocycles leading up to a major 

competition or tournament (Pyne, Mujika, & Reilly, 2009). The taper can be best conceptualized 

along a training-load continuum with overtraining characterizing one end and detraining the 

opposite end. Athletes from various sport backgrounds have used tapers for decades to recover 

and enhance performance prior to important competitions (Banister, Carter, & Zarkadas, 1999; 

Garhammer, 1979; Mujika et al., 1996; Shepley et al., 1992). Despite numerous studies 

describing the mechanistic and performance enhancing effects of tapering for endurance athletes 

(Banister et al., 1999; Luden et al., 2010; Mujika, Padilla, Pyne, & Busso, 2004; Murach et al., 

2014; Neary, Martin, & Quinney, 2003; Thomas & Busso, 2005; Trappe, Costill, & Thomas, 

2000) a paucity of similar research exists with individual event strength-power athletes (Busso et 

al., 1992; Hakkinen, Pakarinen, Alen, Kauhanen, & Komi, 1987; Stone et al., 2003; Zaras et al., 

2016). Moreover, there are few studies examining methods used by high level team sport athletes 

to peak for competition (Claudino et al., 2016; Coutts, Reaburn, Piva, & Murphy, 2007; Freitas, 

Nakamura, Miloski, Samulski, & Bara-Filho, 2014; Gibson, Boyd, & Murray, 2016; Papacosta, 

Gleeson, & Nassis, 2013).  

Muscle architecture has demonstrated plasticity to heavy strength and plyometric training 

(Aagaard et al., 2001; Alegre, Jimenez, Gonzalo-Orden, Martin-Acero, & Aguado, 2006; 

Blazevich, Gill, Bronks, & Newton, 2003; Kawakami, Abe, & Fukunaga, 1993; Kawakami, Abe, 
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Kuno, & Fukunaga, 1995). Quantifying changes in athlete’s muscle architecture following a 

peaking phase can provide a non-invasive means of explaining corresponding performance 

changes. Considering the contribution of muscle architectural characteristics to a muscle’s force-

producing capabilities, changes in muscle architecture should hypothetically be expressed in 

sport-related movement kinetics. Previous studies have observed changes in single muscle fiber 

morphology, contractile properties, and enzymatic activity (Luden et al., 2010; Murach et al., 

2014; Neary et al., 2003; Trappe et al., 2000) following overreaching and tapering periods 

(ORT). Furthermore, multiple studies have noted improvements in maximal strength, explosive 

ability, and repeated sprint ability in individual event and team sport athletes (Claudino et al., 

2016; A. Coutts et al., 2007; Zaras et al., 2016). Therefore, it is reasonable to believe that 

changes in muscle architecture would occur following a peaking phase corresponding with 

performance changes. However, only one known study has examined changes in muscle 

architecture following a taper in strength-power athletes (Zaras et al., 2016).  

Jumping is a task common to many team sport sports. Vertical jump performance 

provides an indirect measurement of an athlete’s explosive ability and competitive readiness. 

Squat and countermovement jumps (SJ and CMJ, respectively) have been used previously with 

various athletes to monitor training responses during a competitive season (Freitas et al., 2014; 

Gibson et al., 2016). Monitoring jump performance during the competition phase may provide an 

effective means to determine an athlete’s response to training without causing undue fatigue. 

Additionally, a force-time trace from a SJ or CMJ can provide a more comprehensive analysis of 

changes in jumping performance following a peaking phase (Mizuguchi, Sands, Wassinger, 

Lamont, & Stone, 2015; Sole, Mizuguchi, Sato, Moir, & Stone, 2015). Jump performance has 

also been to shown to discriminant between levels of play (elite, sub-elite, collegiate) in various 
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sports such as weightlifting (Carlock et al., 2004), sprinting (Peterson, Alvar, & Rhea, 2006), and 

volleyball (Pion et al., 2015). Therefore, determining changes in jumping performance following 

a peaking phase can provide an indirect measure of sport performance changes. 

Few studies have addressed the molecular basis for changes in athlete’s muscle 

architecture and sport performance following a peaking phase. The hypothalamic-pituitary-

adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axis have been implicated in 

overreaching and overtraining (Smith, 2000). While hormonal changes have been the 

predominate focus of these studies, inflammatory cytokines, chemokines, and myokines have 

also been studied. Various biochemical markers have been shown to mediate the inflammatory 

and hypertrophic responses to training (Busso et al., 1992; Farhangimaleki, Zehsaz, & Tiidus, 

2009; Fry et al., 1994; Main et al., 2010; Nieman et al., 2014; Storey, Birch, Fan, & Smith, 2016; 

Tuan et al., 2008); however, more research is needed examining changes in these markers 

following a peaking phase. Additionally, to our knowledge, no published research has examined 

these markers in conjunction with morphological changes in skeletal muscle, sport-related 

kinetic variables, and sport performance following a peaking phase. 

Dissertation Purposes 

1. To examine the effects of an ORT on individual-event strength-power athletes preparing for 

conference championships. 

2. To examine changes in team sport athletes throughout a competitive season in preparation for 

conference championships. 

3. To examine differences in the effects of a peaking phase between new and returning team 

sport athletes in order to identify variables that best explain the variation in performance 

changes. 
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4. To examine changes in a national level female weightlifter following three separate 

competition phases. 

Operational Definitions 

1. Allometric scaling: the absolute value of a variable divided by the body mass of the subject 

raised to the two thirds power (Jaric, Mirkov, & Markovic, 2005).  

2. Biomarker: substance measured in serum that provides an indication of the presence of some 

phenomenon such as inflammation, tissue damage or repair, or glucose metabolism (Strimbu & 

Tavel, 2010).  

3. Endocrine: hormones or glands that secrete hormones directly into the blood.  

4. Endurance: the ability to maintain or repeat a given force or power output (Stone et al., 2006).  

5. Muscle architecture: includes measures of muscle thickness (MT), fascicle pennation angle 

(PA) and length (FL) often measured via ultrasonography (Abe, Kumagai, & Brechue, 2000). 

6. Overreach: an accumulation of training and/or non-training stress resulting in short-term 

decrement in performance capacity with or without related physiological and psychological signs 

and symptoms of maladaptation in which restoration of performance capacity may take from 

several days to several weeks (Kreider, Fry, & O’Toole, 1998); Functional overreaching (FOR) 

results in an initial decrease in performance that is reversed with a short rest period. During non-

functional overreaching (NFOR) the recovery period is delayed and takes longer than desired 

(Meeusen et al., 2013). 

7. Peaking phase: training period an athlete completes prior to a major competition comprised of 

a taper with or without a prior overreach 

8. Performance: outcome of a competition, laboratory assessment or field-based test 
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9. Rating of perceived exertion (RPE): measure of the athlete’s perception of training intensity; 

in the context of session RPE, it is quantified on a modified 0-10 Borg scale developed and 

validated by Foster et al. 2001.  

10. Rating of perceived exertion training load (RPETL): an athlete’s RPE score on a modified 

Borg scale (0-10) multiplied by the duration of the training session (Foster et al., 2001). 

11. Strength: the ability of the neuromuscular system to produce force (Stone, Stone, & Sands, 

2007). 

12. Strength-Power: used to describe athletes or sports where the anaerobic energy system is the 

primary provider of adenosine tri-phosphate used during play. 

13. Supercompensation- increase in a dependent variable above baseline levels following a taper 

period (Stone et al., 2007).  

14. Taper: a progressive nonlinear reduction of the training load during a variable period of time; 

used in an attempt to reduce the physiological and psychological stress of daily training and 

optimize sports performance (Mujika & Padilla, 2003). 

15. Training Load: the combination of training volume, intensity, and frequency. External 

training load is used to describe the work the athlete performs, while internal training load is 

used to describe relative physiological and psychological response to the work they perform 

(Halson, 2014). 

16. Volume-load multiplied by displacement (Vld): resistance training external load lifted for an 

exercise multiplied by the total number of repetitions performed across all sets and the concentric 

bar displacement measured manually using a tape measure (Haff, 2010). 

17. Volume-load (VL): resistance training external load lifted for an exercise multiplied by the 

total number of repetitions performed across all sets (Haff, 2010). 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 The purpose of the taper is to reduce fatigue accumulated during previous training to 

express changes in fitness and thereby maximize performance (Mujika, 2010). Training load 

during the taper has been divided into various subcomponents, namely: intensity, volume, 

frequency, duration and type of taper (Mujika & Padilla, 2003). A meta-analysis by Bosquet et 

al. (2007) demonstrated maintaining training intensity and frequency, and exponentially reducing 

training volume over a 2-week tapering period resulted in the largest magnitude of improvements 

in endurance performance. Previous investigations on tapering for sport performance have 

mostly involved endurance athletes and current tapering recommendations are based on these 

studies (Aubry, Hausswirth, Louis, Coutts 2014). Because limited research exists examining the 

efficacy of tapering for strength-power athletes, no evidence based tapering standards have been 

established, although recommendations have been made similar to those for endurance 

performance (Pritchard, Keogh, Barnes, & McGuigan, 2015).  

Various mechanisms have been studied to explain the performance enhancing effects of 

the taper. These include glycogen supercompensation (Houmard & Johns, 1994; Shepley et al., 

1992), improved anabolic to catabolic hormonal profile (Fry et al., 2000; Fry et al., 1994), 

increased muscle shortening velocities resulting from myosin isoform shifting (Type IIa to IIx) 

(J. Andersen & Aagaard, 2000; L. Andersen et al., 2005; Terzis, Stratakos, Manta, & Georgiadis, 

2008) and possibly increased FL (Alegre et al., 2006; Blazevich et al., 2003), increased myosin 

heavy chain IIa fiber size, peak force and absolute power (Luden et al., 2010; Trappe et al., 

2000), altered regulation of growth-related genes (fibroblast growth factor-inducible 14, muscle 

ring finger protein-1) in MHC IIa fibers (Luden et al., 2010; Murach et al., 2014), increased 
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muscle activation (Hakkinen, Kallinen, Komi, & Kauhanen, 1991), and recruitment of high 

threshold motor units (Cormie, McGuigan, & Newton, 2011). 

Considering previous reviews of tapering literature have primarily addressed endurance 

performance, it would be prudent and benefit sport scientists and coaches to have a 

comprehensive review of the mechanistic factors and associated performance changes in both 

endurance and strength-power athletes following a peaking phase in preparation for the 

remaining dissertation chapters. Thus, the purposes of this review are to: 1) discuss various 

components of the peaking phase, 2) review mechanisms mediating peaking phase performance 

outcomes, 3) describe peaking phase performance outcomes in individual event and team sport 

athletes. 

Peaking Phase Components 

Training Load  

 Training load has been previously described as the combination of training volume, 

intensity, and frequency (Wenger & Bell, 1986). Training load is reduced during a tapering 

period to mitigate fatigue effects from training allowing for improvements in fitness (i.e. cross-

sectional area (CSA), rate coding, mitochondrial density, aerobic enzymes) to be expressed. 

Training load has been categorized as external and internal (Halson, 2014). Briefly, external 

training load is used to describe the work the athlete performs, while internal training load is 

used to describe the relative physiological and psychological response to the work they perform 

(Halson, 2014). Various methods for quantifying external and internal training load have been 

proposed (Halson, 2014). Measures of external training load include: speed, distance covered, 

load lifted, and acceleration; measures of internal training load include: heart rate, lactate 

response, rating of perceived exertion, and sleep quantity. Generally, external training load is 
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easier to quantify for individual sports (weightlifting, sprinting, and swimming) than team sports 

(rugby, volleyball, tennis). However, with the advent of wearable global positioning system 

(GPS) units, quantifying training load with team sport athletes has become more promising 

(Aughey, 2011).  

Foster et al. (1995) proposed the use of session RPETL, which is the product of the 

athlete’s rating of the training session intensity and the duration of the training session in 

minutes. Rating of perceived exertion is quantified on a modified Borg scale (0-10) with verbal 

descriptions of session intensity. Foster and colleauges found strong relationships between 

session RPE and heart rate and blood lactate response in steady state (1995) and intermittent 

training conditions (2001). These authors concluded RPETL is a valid and practical means of 

quantifying training load for aerobic exercise, intermittent training, resistance training and 

plyometric training. However, objections include: assuming that equal RPETLs in different 

training modalities result in the same amount of strain and fatigue on an athlete, subjectivity of 

the measure requires corroboration with physiological data, and scores could be biased based on 

difficulty of the drill or exercise performed at the end of a session.  

Endocrine and non-endocrine serum markers have been used to quantify internal training 

load. Previous markers include inflammatory cytokines and myokines (i.e. interleukin-6 (IL-6), 

tumor necrosis factor alpha (TNFα), C-reactive protein (CRP), myostatin, decorin), endocrine 

hormones (testosterone (T), cortisol (C), epinephrine, and norepinephrine), immune cells 

(neutrophils, CD4 and CD8 lymphocytes) and amino acids (glutamine, glutamate, branched-

chain amino acids). These markers, however, are not often observed on a routine basis with 

athletes possibly due to time constraints, and expense. Although these markers provide insight 
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into the mechanistic underpinnings of an athlete’s response to training they are often impractical 

to collect in an applied setting with a large number of athletes.  

Questionnaires have been commonly used to provide information of the athlete’s 

subjective response to training. A number of questionnaires have been described in the literature 

including: profile of mood states (POMS), the recovery-stress questionnaire for athletes (REST-

Q-Sport), and the daily analysis of life demands for athletes (DALDA) (Morgan, Brown, Raglin, 

O'Connor, & Ellickson, 1987; Rushall, 1990). However, limitations include athletes’ over- or 

under-estimating training load, and the frequency, timing, and length of the questionnaire. While 

questionnaires are relatively easy to implement, physiological data should also be collected to 

corroborate.  

Previous authors have suggested a systems-based approach that involves entering GPS 

data, heart rate data, RPETL data, and questionnaire data into a data management system that 

allows for easy access and retrieval of information to more efficiently inform training. 

Commercially available systems include Training Peaks TSS, Kinetic Athlete, and Smartabase, 

which are becoming increasingly popular. The utility of the Training Peaks system has been 

described previously (Halson, 2014). A useful application is monitoring chronic and acute 

training load to gauge an athlete’s response to training, their susceptibility to injury, and 

predicting future performance. As stated previously, integrating external and internal training 

load data in a seamless manner is the future for fatigue management in sport (Pyne & Martin, 

2011).  

Pre-Taper Overreach 

 Coaches and athletes have used overreaching periods for decades in an attempt to achieve 

a performance supercompensation during the subsequent taper (Hellard et al., 2013; Stone et al., 
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1993; Thomas & Busso, 2005) In  a joint position statement from the American College of 

Sports Medicine and European College of Sport Science, the authors adopted the following 

definition previously used by Kreider et al. (1998) to define an overreach: “an accumulation of 

training and/or non-training stress resulting in short-term decrement in performance capacity 

with or without related physiological and psychological signs and symptoms of maladaptation in 

which restoration of performance capacity may take from several days to several weeks.” 

Overreaching can be further categorized as functional (FOR) or non-functional (NFOR) (Halson 

& Jeukendrup, 2004). During a FOR state the athlete experiences a temporary decline in 

performance; however, given an appropriate recovery period, the athlete may experience a 

supercompensation effect where performance is enhanced above baseline levels (Meeusen et al., 

2013). When this intensified training continues, the athlete could reach a NFOR state resulting in 

stagnation or decrease in performance without supercompensation following sufficient recovery. 

During a NFOR state the athlete will likely experience both quantitative (increased training load) 

and qualitative (psychological, neuroendocrine perturbations) signs and symptoms of 

overreaching (Meeusen et al., 2013).  

 It has long been believed by many coaches and researchers that a FOR period prior to a 

taper will result in a greater supercompensation effect (Hellard et al., 2013; Stone et al., 1993; 

Thomas & Busso, 2005). Using mathematical modeling simulations, Thomas and Busso (2005) 

reported greater improvements in endurance performance as a result of 20% increase in training 

load during 28 day period leading up to taper compared to habitual training during that period. 

Their findings also demonstrated that a more intense overreach period prior to the taper was 

more effective at enhancing performance, but required a longer taper. Le Meur et al. (2013) 

found a 9% decrease in performance in triathletes after a 3-week overreaching phase. After a 
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recovery week the athletes increased performance over pre-testing levels by 7.9% and exhibited 

greater supercompensation effects than a control group that performed “normal” training during 

the same period. Coutts et al. (2007) had 7 rugby players (V̇O2max ~ 56.1 ml/kg/min) complete a 

6-week progressive OR followed by a 1-week taper that decreased training time by 55% and 

intensity by 17%. The overreaching period reduced their capacity to produce force at slower 

movement velocities during an isokinetic knee flexion and reduced their performance during a 

multi-stage fitness test. Following the taper, only isokinetic measures of set work at 1.05 and 

5.25 rad/s and peak hamstring torque at 5.25 rad/s were significantly improved from baseline. In 

another study, Coutts et al. (2007) compared 4 weeks of overreaching and a 2-week taper to 4 

weeks of “normal” training and a 2-week taper in triathletes. Athlete’s 3km time trial 

performance decreased after the overreaching phase by 3.7% and rebounded following the taper 

by 7%; the “normal” training group increased performance by 3% after 4 weeks. However, no 

statistical difference in performance improvements from pre-training to post-taper were observed 

between groups. The authors concluded the taper may not have been long enough for the 

overreaching group to fully recover. These findings demonstrate mixed results for overreaching 

prior to the taper with some studies showing no change or an increase from pre-overreach values 

following the taper. Differences between findings are likely related to differences between 

athlete’s training status, and the length, volume, and intensity of the overreaching phase and 

subsequent taper.  

In a recent investigation, Aubry et al. (2014) divided 34 well trained male cyclists into a 

control and overreaching training group. Cyclists were tested prior to and following the 3-week 

overreaching phase. Cyclists who decreased cycling performance on a V̇O2max test were 

assigned to the FOR group, while those who maintained or increased were assigned to an acutely 



25 
 

fatigue group. The cyclists were then tested on the same performance measure each week during 

a 4-week taper. Those assigned to the FOR group returned to pre-overload values, but a 

supercompensation effect was observed in the acutely fatigued group with significantly greater 

improvements than the FOR group observed at the end of the second week of the taper. 

Additionally, there were increased incidences of upper respiratory tract infections in the FOR 

condition. These findings indicate that responses to an overreaching phase and taper vary 

amongst a group of similar athletes and the importance of monitoring an athlete’s response to an 

overreach phase.   

Previous investigations have found increases in stress-related symptoms following an 

ovrreaching phase in various groups of athletes (Aubry et al., 2014; Freitas et al., 2014; Fry et 

al., 1994; Storey et al., 2016). Fry et al. (1994) examined changes in T concentrations in elite 

junior weightlifters following a fatiguing testing battery (jumps, snatches to failure, snatch pulls) 

before and after an overreach and before and after 1 year of training. Decreases in T were 

observed after the testing battery during year 1, but not during year 2 indicating a greater 

tolerance to high workloads. These findings demonstrate that an athlete’s training status (i.e. 

work capacity) plays a role in how they respond to an overreach. More recently, Storey et al. 

(2016) reported symptoms of stress from a DALDA questionnaire and negative mood state were 

worse than normal during a 2-week overreach in international level weightlifters. The increase in 

stress-related symptoms also corresponded with decreases in maximal snatch and vertical jump 

height (JH) during the overreach; however, all were restored following a 1-week period of 

reduced training.  

The findings of these investigations demonstrate differences in how athletes respond to 

ORT phases. Importantly, not all studies have observed performance supercompensation 
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following an ORT. Many studies report physiological, biochemical, and sport performance 

measures that return to baseline levels following the taper. However, differences between 

findings may be related to the intensity, length, and type of ORT implemented. Also, differences 

in individual responses could be due to the athlete’s work capacity, training experience, maximal 

strength, or genetic characteristics. Future research should further investigate which variables 

explain response differences between athletes to an ORT.  

Taper 

 The taper has been previously defined as “a progressive nonlinear reduction of the 

training load during a variable period of time, in an attempt to reduce the physiological and 

psychological stress of daily training and optimize sports performance” (Mujika & Padilla, 

2003). The tapering period presents a unique opportunity for athletes to maximize performance 

for a crucial competitive event (Bosquet et al., 2007; Le Meur, Hausswirth, & Mujika, 2012; 

Mujika & Padilla, 2003). Mujika et al. (2002) has previously demonstrated that the training an 

Olympic athlete undertakes during the tapering period can make the difference between winning 

gold and not making the podium. To further illustrate this point, during the Beijing 2008 

Olympics Michael Phelps beat his opponent Milorad Cavic by only a hundredth of a second in 

the 100m butterfly despite trailing Cavic most of the race. Therefore, the training load prescribed 

during the taper is of utmost importance for athletes seeking to obtain an edge over their 

opponents.  

Tapering involves the manipulation of various factors including training volume, 

intensity, frequency, and duration (Mujika & Padilla, 2003). Based on a meta-analysis, Bosquet 

et al. (2007) reported the largest magnitude of change in endurance performance following a 2-

week taper during which training volume is exponentially reduced by 41-60%, without any 
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modification in training intensity or frequency. The magnitude of change in swimming, cycling, 

rowing, running, and triathlon performance following the taper is ~3% (0.5-6%) (Mujika & 

Padilla, 2003). Previous investigations on tapering for sport performance have mostly involved 

endurance athletes and current tapering recommendations are based on these studies (Aubry et 

al., 2014; Le Meur et al., 2012; Mujika & Padilla, 2003). Because limited research exists 

examining the efficacy of tapering for strength-power athletes no evidence based tapering 

standards have been established, although recommendations have been made similar to those for 

endurance performance (Pritchard et al., 2015).  

The training load during a tapering period can be characterized with the intensity, 

volume, and frequency of training (Le Meur et al., 2012). Decreases in training load should be 

programmed so that the balance between fatigue reduction and fitness preservation is 

maximized. While reducing training load is important, detrimental effects on performance can 

occur if the training load remains low for an extended period (detraining). Arguably the most 

important variable influencing performance outcomes following the taper is training intensity 

(Mujika, 2010). In one of the earliest studies examining adaptations following a reduced training 

period, Hickson et al. (1985) had 12 moderately active subjects run and cycle for 40 min, 6 

days/week for 10 weeks. Training intensity was reduced for an additional 15 weeks by 1/3 (n=6) 

or 2/3 (n=6). The authors reported decreased VO2 max, left ventricular mass, short-term and 

long-term exercise endurance in both groups with greater decrements in the group that reduced 

their intensity by 2/3. In further support of this, Mujika et al. (1995) found that performance 

improvement in 18 elite level swimmers following a competition period was highly correlated 

(r=0.69) with their mean training intensity during the season, but not with volume or frequency. 

Iaia et al. (2009) had endurance runners reduce their weekly running volume from 45 km to 10 
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km for weeks, while supplementing their training with 8-12, 30 s sprint runs 3-4 times/week. 

These authors observed maintenance of muscle oxidative capacity, capillarization, and 10 km 

running performance with improved running economy at submaximal running speeds. Zaras et 

al. (2014) examined the effects of a 2-week taper using light versus heavy loads in 13 

international level track and field throwers. Heavy resistance training (>85% 1-repetition 

maximum (RM)) resulted in greater improvements in leg press 1RM, rate of force development 

(RFD), SJ power, and shot throws than light resistance training (30% 1RM). These findings are 

corroborated by Stone et al. (2003) who demonstrated strong positive relationships among 

maximal strength (isometric mid-thigh pull peak force), dynamic mid-thigh pull (MTP) peak 

power (PP), and throwing performance (shot-put and weight throw) in collegiate throwers. In 

this study, the ORT period (strength-power block) resulted in improved 1RM power snatch, 

isometric MTP peak force, dynamic MTP peak RFD, and throwing performance. The findings of 

these investigations support training intensity as the most important variable influencing 

performance outcomes following the taper in endurance and strength-power athletes. 

In regards to training volume, previous investigators have found that this training load 

parameter can be reduced without losing training induced adaptations, and is in fact crucial for 

attaining performance benefits from a taper (Bosquet et al., 2007; Le Meur et al., 2012). Previous 

literature reviews and a meta-analysis examining the endurance performance improvements 

following a taper have concluded that training volume should be reduced by at least 41% during 

a taper (Bosquet et al., 2007; Le Meur et al., 2012; Mujika & Padilla, 2003). Shepley et al. 

(1992) had 9 male middle-distance runners (V̇O2 max: 66-71 ml/kg/min) complete 3 different 7-

day tapers (high intensity, low-intensity, complete rest) in a cross-over design. The greatest 

improvements in muscle glycogen concentrations, treadmill run to exhaustion, total blood 
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volume, red blood cell volume, and citrate synthase activity were observed in the high intensity 

taper condition where run volume was reduced from 60-80 km/week to 7.5 km (composed of 

strictly interval training). Importantly, the reduction in training load should be commensurate 

with the training load prior to the taper. Using computer simulations, Thomas and Busso (2005) 

determined that a 20% increase in training load over a 28-day period prior to a taper requires a 

step-taper of ~65% over 3 weeks compared to only 2 weeks when no overreach period is 

performed. Gibala et al. (1994) had 8 strength trained males perform 10 days of training 

following a 3-week training phase. Resistance training intensity was maintained while volume 

was reduced by 72%. The authors reported significant improvements in maximal voluntary 

isometric (MVIC) elbow extension torque following the taper. Additionally, MVIC and maximal 

low-velocity isokinetic peak torque of the elbow flexors were improved at days 2, 4, 6, and 8 of 

the taper. These findings demonstrate that maximal strength of the elbow extensors and flexors 

can be improved with as little as 2 days of tapering. Therefore, it has been recommended that 

training volume be reduced by 30-70% and intensity maintained or slightly increased during a 

tapering period for strength-power athletes (Pritchard et al., 2015).  

It has been recommended that training frequency be maintained during a tapering period 

for endurance and strength-power athletes (Bosquet et al., 2007; Mujika & Padilla, 2003; 

Pritchard et al., 2015). However, Johns et al. (1992) reported increased power output and 

swimming performance in competitive swimmers when training frequency was reduced by 50%. 

Additionally, Dressendorfer et al. (2002) found improvements in a simulated 20-km cycling time 

trial after training frequency was reduced by 50% during a 10-day taper. Graves et al. (1988) had 

24 men and 26 women reduce their strength training frequency from 3 to 2 days per week, 2 to 1 

day per week or 1 to 0 day per week for 12 weeks. Mean peak MVIC increased by 21% in the 
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groups that trained twice or one day per week, whereas the group that stopped training decreased 

MVIC by 68%. These findings demonstrate the importance of maintenance of a minimal training 

stimulus to prevent losses in strength and that strength can be maintained in recreationally 

subjects with minimal training. Support for maintaining training frequency with athletes is 

supported by Mujika et al. (2002) who reported that highly trained middle distance runners 

achieved significant improvements in an 800-m race with daily training during a 6-day taper, 

whereas no improvements were observed when the athletes rested every third day of the taper. 

These findings support previous recommendations that training frequency should be maintained 

above 80% for higher trained athletes, and that low to moderately trained individuals can sustain 

performance with fairly low training frequencies (~50%). However, considering the overlap 

between training frequency and volume, it is difficult to isolate the effects of either on 

performance outcomes following a taper.  

Confounding Factors  

 While the above literature provides a strong support for the taper, there are many 

confounding variables that affect decisions coaches make when planning a peaking phase for 

their athletes. An obvious, but often overlooked factor, is the individual differences between 

athletes. This is important when considering the training load prescribed by a coach. Wallace et 

al. (2009) found a clear discrepancy between coaches’ perception of athlete’s internal training 

load using session RPETL and athlete’s reported RPETL. The athlete’s reported greater RPETL 

than coaches for sessions that were intended to be easy, and lower RPETL for sessions intended 

to be hard. Therefore, coaches should closely monitor prescribed training load during the taper 

and individual athlete’s perception of the prescribed training load to ensure they are similar. It is 

also important to quantify what is a meaningful change in performance for individual athletes. 
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Hopkins (2000) recommends using typical error determined from a reliability study of the 

performance measure and the smallest worthwhile change (SWC) based on the athlete’s previous 

competition performances. Using this information, the probability (precision) that an athlete’s 

performance is a greater than a reference value can be quantified, as well as the probability that 

there is a worthwhile change from one performance to the next.  

 The majority of tapering studies have been conducted with individual sport athletes (Pyne 

et al., 2009). This is likely because it is easier to quantify training load and performance in these 

sports compared to team sports, combat sports, and racquet sports (Mujika, 2007; Pyne et al., 

2009). Also, clear moderate to large correlations have been observed between physiological 

factors, training intensity, and volume and competitive performance (Pyne et al., 2009). An 

additional difficulty with team sport research is differences in demands placed on athletes 

depending on their position on a team, starters and non-starters, and new players and returners. 

Previous research has demonstrated that maximal strength, JH, and power output are different 

between starters and non-starters and between different levels of athletes for various sports 

(Fleck, Case, Puhl, & Van Handle, 1985; Forthomme, Croisier, Ciccarone, Crielaard, & Cloes, 

2005; Fry & Kraemer, 1991; Gabbett, 2009; Gabbett, Kelly, Ralph, & Driscoll, 2009; Pion et al., 

2015; Sheppard et al., 2008; Smith, Roberts, & Watson, 1992). Considering these differences, it 

is likely that responses to an ORT would vary amongst these subgroups. Future research should 

therefore address differences in how starters/non-starters, new players/returners, elite/sub-elite 

athletes respond to an ORT.  

 Further compounding the issue, new lucrative commercial sponsorships are driving 

increases in the number of competitions in an already busy sporting calendar (Pyne et al., 2009). 

Now athletes are attempting to peak for several major competitions per year as compared to one 
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or two. The competition schedule presents one of the biggest challenges to team sport athletes 

seeking to peak for a series of competitions. It has been suggested that an ideal approach to 

peaking for team sport athletes would include a period of recovery after regular-season play 

followed by a return to fitness/rebuilding period and finalized with a pre-tournament taper (I 

Mujika, 2007). However, the competition schedule does not always work out this conveniently. 

Teams may finish regular season play and have only a week to recover prior to tournament play. 

While training through early competitions in a tournament is an option for stronger teams, 

weaker teams run the risk of peaking too early and ruining their chances of progressing further. 

An alternative option is overreaching 2-3 weeks prior to the end of regular season play and 

unloading the week following regular season play prior to the tournament. Future research on 

tapering for team sport should examine different strategies for preparing for post-season play.   

 Another difficulty when preparing for an important competition is travel. Crossing 

multiple time zones causes desynchronization of human circadian rhythms resulting in travel 

fatigue commonly known as jet lag. Decrements in maximal strength, reaction time, and arousal 

have been observed following travel (Reilly, Atkinson, & Budgett, 2001). Differences in 

response to long travel can be due to the number of time zones crossed, direction of travel, and 

times of departure and arrival. It is recommended that training load be reduced until the athlete 

accommodates to the new time zone to reduce injury risk (Pyne et al., 2009). Additionally, 

napping at inappropriate times of the day following long travel could interfere with re-

synchronization (Minors & Waterhouse, 1981). Training load prescribed should be adjusted 

based on individual athlete’s “body clock” resynchronization.  
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Peaking Phase Mechanistic Factors  

Muscular  

 Trappe et al. (2000) were the first to demonstrate changes in single muscle fiber 

morphology and contractile properties following a tapering phase with athletes. Muscle biopsies 

from the posterior deltoid were obtained from six highly trained male swimmers prior to and 

following a 21-day taper. Increases in Type II fiber CSA, peak contractile force, shortening 

velocity, and PP were observed without any significant change in Type I fibers. These findings 

were corroborated in a later study with collegiate cross-country runners following a 3-week taper 

(Luden et al., 2010). These authors found significant increases in gastrocnemius Type IIa fiber 

diameter, peak force, and absolute power following the tapering period with no changes in Type 

I fibers. Additionally, a distinct post-taper gene response was observed following an 8 km run. 

Expression of proteolytic genes (MuRF-1) was reduced following the taper, whereas myogenic 

(MRF4) and protective cellular processes (HSP 72, and MT-2A) displayed an exaggerated 

response. Using the same subjects, Murach et al. (2014) found an increased gene expression of 

fibroblast growth factor-inducible 14 (FN14) following an 8 km time trial in a tapered compared 

to an overreached state. Fibroblast growth factor-inducible 14 has been shown to correlate 

strongly with Type II fiber growth in response to exercise (Raue, Slivka, Minchev, & Trappe, 

2009; Schmutz et al., 2006). Therefore, changes in FN14 provide a molecular basis for the 

observed hypertrophy of Type II fibers following the taper.  

 Andersen and Aagaard (2000) previously demonstrated that strength training induced a 

myosin isoform shift from type IIx to IIa, whereas a reduced training period can cause an 

overshoot in the shift back to type IIx in sedentary males. However, it is important to note that 

this overshoot was observed following a 3-month detraining period and that maximal isometric 
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knee extension strength returned to baseline levels. Therefore, it is unknown whether athletes 

would experience similar myosin isoform shifts following a tapering phase. It is more likely that 

alterations in Type II fiber morphology, enzymatic activity, and contractile properties explain the 

performance enhancing effects of the taper in athletes (Luden et al., 2010; Murach et al., 2014; 

Neary et al., 2003; Trappe et al., 2000).  

 While research on single-fiber gene expression and mechanical characteristics has 

provided great insight into the mechanisms underlying the performance enhancing effects of the 

taper (Luden et al., 2010; Murach et al., 2014; Trappe et al., 2000), this process is expensive, 

invasive, requires highly trained personnel, and coaches who are willing to allow their athletes to 

participate in the rigors of such testing. Over the past few decades, ultrasonography has been 

used as a reliable, less invasive method of determining changes in muscle architecture following 

training (Ikai & Fukunaga, 1970; Kawakami et al., 1995; Wells et al., 2014; Zaras et al., 2016). 

Increases in MT and PA have been observed following heavy strength training (Aagaard et al., 

2001; Kawakami et al., 1995); however studies where subjects trained with high-velocity 

contractions and lighter loads (<60% 1RM) have reported increases in FL with no changes in PA 

(Alegre et al., 2006; Blazevich et al., 2003). Moderate to strong relationships have been observed 

between vastus lateralis MT and 1RM back squat and deadlift (r=0.82, 0.79), SJ and CMJ height 

(r=0.63-0.8), isometric MTP peak force (r=0.6), isometric leg press peak force (r=0.85), hang 

power clean (r=0.71), relative 1RM power clean (r=0.51) and shot-put front throw (r=0.66) in 

various groups of athletes (Brechue & Abe, 2002; McMahon, Turner, & Comfort, 2015; Secomb 

et al., 2015; Zaras et al., 2016). Recently, Zaras et al. (2016) reported no statistical alterations in 

muscle architecture following the taper. The lack of observable changes may have been due to 
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the short duration of the taper (2 weeks). Further research is needed examining the effects of 

tapering on muscle architecture. 

Neural  

In one of the earliest investigations examining the effects of overreaching on strength-

power athlete’s performance, Barker et al. (1990) found greater anterior bar displacement during 

a snatch after 1-week of increased training volumes (30,000 kg/week to 90,000 kg/week) in elite 

junior weightlifters. Considering the well-established link between fatigue and motor output, it 

has been suggested that technique changes are among the earliest observable effects of 

overreaching and reduced training (Stone et al., 1993). It has already been established that at 

high levels of performance, milliseconds and centimeters can make the difference between 

winning and losing. Therefore, recovery and supercompensation of motor output could partially 

explain the beneficial effects of tapering. Hakkinen et al. (1991) found greater average 

electromyography (EMG) of vastus lateralis, vastus medialis, and rectus femoris during an 

isometric knee extension following a 1-week taper in well trained Finish powerlifters, but not for 

the weaker non-competitive lifters. However, Gibala et al. (1994) found no statistical changes in 

motor unit activation (interpolated twitch technique), or maximum rate of torque development 

following a 10-day taper in strength-trained subjects. They surmised that the interpolated twitch 

technique may have been too insensitive to detect changes, and using integrated EMG may have 

been more effective. Dupuy et al. (2014) found slower reaction times during a Stroop task in 

overreached (2 weeks, 100% above normal training) endurance athletes, which returned to 

baseline following a 1-week taper (50% below normal training). Flanagan et al. (2014) found 

greater cortical motor output via electroencephalography in a back squat high volume protocol 

(6x10 at 80% 1RM) from set 1 through set 6 than other protocols (high force: 6x3 at 95% 1RM, 
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high power: 6x3 at 30% 1RM, control condition- stand with bar on back for 20 s). The increases 

in motor output were directly related to fatigue evidenced by the greatest fall-off in PP from sets 

1 through 6 in the high volume protocol. Although no research has examined the direct effects of 

an ORT on cortical motor output, it is probable based on Flanagan and colleague’s acute findings 

that periods of sustained increases in training volumes would result in significant perturbations to 

cortical motor output, while tapering periods would allow for recovery. The above findings 

demonstrate that neural mechanisms likely contribute significantly to performance changes 

following ORT periods; however, considering the paucity of research it is difficult to draw any 

conclusions.  

Biochemical   

Observational and experimental studies have examined the effects of an ORT on 

biochemical profile and sport performance (Busso et al., 1992; Coutts et al., 2007; Fry et al., 

1994; Hakkinen et al., 1987; Le Meur et al., 2014). Hakkinen and colleagues (1987) found 

decreases in the T:C ratio following a 2-week overreach in trained weightlifters. The T:C ratio 

returned to baseline levels following 2 weeks of normal training and a 2-week taper primarily 

due to reductions in C. Additionally, there was a positive relationship between change in the 

T/sex hormone binding globulin (SHBG) ratio and change in clean and jerk performance 

following the normal training and tapering period. Similarly, Fry et al. (2000) found increases in 

the T:C ratio following a 1-week overreach and 3 weeks of normal training in elite weightlifters. 

Also, the change in the T:C ratio during the normal training period was positively related to the 

change in clean and jerk performance. Additionally, Fry et al. (1994) found that one year of 

weightlifting experience and prior exposure to an overreaching period results in an attenuated 

post-training lactate response indicating a higher level of fitness.  
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Fry et al. (2006) had strength trained subjects perform a daily 1RM on a hack squat 

machine for 2 weeks to induce a state of overtraining. Decreases in 1RM squat over the 2 weeks 

corresponded with reduced β2 receptor sensitivity (ratio of nocturnal urinary epinephrine 

excretion to β2 receptor density) in an overtrained state compared to a control group. Epinephrine 

exerts its effects on muscle contractile force by binding to β2 receptors, which activate protein 

kinase A causing an increase in extracellular Ca2+ entry and intracellular Ca2+ release from 

sarcoplasmic reticulum (Cairns & Borrani, 2015). Therefore, Fry and colleagues concluded that 

the decreases in β2 receptor sensitivity likely explained the observed decreases in 1RM squat in 

the overtrained group. Although it has not been studied directly, it is possible these changes 

occur to a lesser extent in an overreached state.  

Myostatin has been implicated as an important myokine, which limits myocyte 

differentiation and growth by binding to the activin type II receptor on the myocyte surface and 

subsequently inhibiting Akt-induced muscle protein synthesis (Kim, Cross, & Bamman, 2005). 

Myostatin mRNA expression has been shown to decrease following heavy strength training 

(Hulmi et al., 2007; Kim et al., 2005; Roth et al., 2003), however, not all studies agree (de Souza 

et al., 2014; Willoughby, 2004). Decorin is a proteoglycan that is part of the myocyte 

extracellular matrix and has been shown to bind myostatin and possibly trap it in the 

extracellular matrix (Miura et al., 2006). Kanzleiter and colleagues (2014) found a positive 

relationship between acute changes in serum decorin levels following a strength training session 

and subject’s 8RM leg press strength. Additionally, these authors found a positive relationship 

between changes in decorin mRNA expression and changes in leg press strength following a 12-

week strength and endurance training program. Therefore, these myokines may provide insight 

into how the hypertrophic response is regulated following an ORT.  
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Interleukin-6, and TNF-ὰ are acute phase proteins that promote secretion of acute phase 

reactants (i.e., C-reactive protein (CRP), fibrinogen, plasminogen) in response to injury, 

infection, and tissue damage (Biffl, Moore, Moore, & Peterson, 1996; Smith, 2000). Interleukin-

6 has been implicated as an anti-inflammatory myokine responsible for initiating satellite cell 

proliferation and differentiation, and inhibiting TNF-ὰ expression (Vierck et al., 2000). Both IL-

6 and TNF-ὰ have been found to increase glucocorticoid production via interaction with 

hypothalamic receptors resulting in the secretion of corticotropin releasing hormone (Schobitz, 

Reul, & Holsboer, 1994). There is also evidence that elevated IL-6 and TNF-ὰ reduce 

hypothalamic secretion of gonadotropin-releasing hormone possibly leading to reduced T 

secretion (Schobitz et al., 1994; Wu & Wolfe, 2012). Previous evidence demonstrates TNF-ὰ 

reduces muscle protein synthesis via inhibition of insulin receptor substrate 1 and increases 

protein degradation (Copps & White, 2012). Both IL-6 and TNF-ὰ have been shown to be 

elevated following an overreaching phase (Main et al., 2010; Nieman et al., 2014), and 

subsequently reduced following a 3-week taper (Farhangimaleki et al., 2009) in endurance 

athletes. Recently, Storey et al. (2016) reported increased plasma protein carbonyls, increased 

symptoms of stress, and decreased maximal snatch performance during an overreaching period 

compared to a reduced training period in international-level weightlifters. These findings 

demonstrate the profound effects an athlete’s training volume has on endocrine and non-

endocrine molecules and subsequent sport performance.  

Peaking Phase Performance Outcomes  

Individual Event  

 Mujika et al. (2002) followed 99 male and female Olympic swimmers from different 

countries who competed in the Melbourne Grand Prix Series and 21-28 days later in the Sydney 
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Olympics. He found 91 out of 99 athletes improved swimming performance following the 3-

week tapering period with an overall performance improvement of 2.18%, which was greater 

than the average difference between first and fourth place (1.62%). Interestingly, the change in 

performance was statistically greater in males than females (2.57% vs 1.78%, respectively). 

These findings provide a strong practical argument for the taper. Zaras et al. (2016) found greater 

improvements in impulse and RFD at 100ms, 150ms, 200ms, and 250ms during an isometric leg 

press in the condition that trained with heavy loads (>85% 1RM) compared to the condition that 

trained with light loads (30% 1RM) during the 2-week taper. However, no differences were 

observed between conditions in throwing performance (shot, disc, javelin, hammer). Stone et al. 

(2003) found that a 4-week ORT period (strength-power block) resulted in improved 1RM power 

snatch, isometric MTP peak force, dynamic MTP peak RFD, and throwing performance in track 

and field throwers. Hellard et al. (2013) monitored 32 male and female elite swimmers during 6-

week periods (3-week overreach, 3-week taper) prior to a major competition with competitions 

before and after each 3-week period. The training pattern that resulted in the greatest 

improvement in swimming performance following an overreaching period was a peak in training 

load the first week followed by a linear slow decay during the following 2 weeks of the 

overreach. The training pattern associated with greatest improvements in performance following 

tapering periods was a training load peak during the first week followed by a slow decay. 

Importantly, they found that a moderate training load during the overreach that was sustained 

during the taper was more beneficial earlier in the athlete’s career, while a large increase in 

training load during the overreach and a steep decrease during the taper was more beneficial later 

in their career. In a simulation study, Banister et al. (1999) found that an exponential reduction in 

training volume was more effective than a step-taper in improving endurance performance. 
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These findings were confirmed a group of triathletes; the exponential reduction in training load 

resulted in a significantly greater improvement in a cycle to exhaustion than the step-taper. 

Additionally, the fast exponential taper was more effective than the slow exponential taper at 

improving cycling time to exhaustion, but not 5 km time trial performance. The above findings 

demonstrate the efficacy of a peaking phase for improving maximal strength, endurance, and 

explosive ability in a wide range of individual event performances.  

Team Sport  

To assess the effects of tapering on maximal strength, Izqueirdo et al. (2007) had 11 

national Basque ball players perform a 4-week taper involving a progressive increase in training 

intensity and decrease in volume. The taper resulted in statistical improvements in 1RM half 

squat and bench press. In the only known study examining ORT responses in volleyball athletes, 

Freitas et al. (2014) found significantly greater creatine kinase, RPETL, training monotony, and 

training strain in half of a team of male volleyball players who performed an 11-day overreach 

compared to the other half of the team who continued with normal training. The authors 

concluded that CMJ performance should not be used to evaluate training adaptations in 

volleyball athletes because no significant within-group changes were observed in JH during the 

overreach or the 14-day taper that followed. In contrast, Claudino et al. (2016) showed that 

monitoring CMJ JH using the minimal detectable difference could be used to regulate a training 

phase that elicited FOR and tapering in team sport athletes. The authors divided 17 male futsal 

players into a control and regulated group. The weekly training load in the regulated group was 

determined using weekly CMJ results; no changes in CMJ height were observed in the control 

group during the 2-week taper, whereas the regulated group increased CMJ JH during week 2 of 

the taper. Gibson et al. (2016) recently demonstrated that CMJ JH can be preserved in elite rugby 
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sevens players during a 3-week period prior to international competitions when training load is 

managed appropriately. Coutts et al. (2007) found significance decreases in distance covered 

during a multi-stage fitness test, meaningful decreases in vertical jump, 3RM squat, 3RM bench 

press, and chin-ups to failure following a 6-week overreaching phase in trained rugby players. 

Values during each test tended to return to baseline following a 1-week taper; it is likely the 

taper was not long enough for athletes to fully recover from the overreach. The above findings 

show disparate results for ORT with team sport athletes with some studies showing an increase, 

decrease, or no change in sport-related performance measures. Future research should address 

what factors explain differences in how athletes within a team respond to a peaking phase.  

Conclusion 

The purpose of this dissertation is to examine changes following a peaking phase in 

individual event and team sport strength-power athletes. We can conclude the following from the 

literature review: 1) A peaking phase prior to important competitions has been shown to alter 

mechanistic variables and performance outcomes in endurance and strength-power athletes, 2) 

These mechanistic variables include profound changes to an athlete’s muscle contractile 

properties, motor output, and biochemical profile that partially explain the observed changes in 

performance, 3) There are clear beneficial performance outcomes in individual event athletes 

following a peaking phase; however, sport-related performance changes in team sport athletes 

are less clear.  

 

 

 



42 
 

CHAPTER 3 

CHANGES IN MUSCLE ARCHITECTURE, EXPLOSIVE ABILITY, AND THROWING 

PERFORMANCE IN NCAA DIVISION I TRACK AND FIELD THROWERS 

THROUGHOUT A COMPETITIVE SEASON AND FOLLOWING A TAPER 

Authors: 1Caleb D. Bazyler, 1Satoshi Mizuguchi, 1Alex P. Harrison, 1Sato Kimitake, 1Ashley A. 

Kavanaugh, 1Brad H. DeWeese, 1Michael H. Stone 

Affiliations: 1Center of Excellence for Sport Science and Coach Education, Department of Exercise and 

Sport Science, East Tennessee State University, Johnson City, TN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

ABSTRACT 

The purpose of this study was to examine the effects of a coach-designed overreach and taper on 

measures of muscle architecture, jumping, and throwing performance in Division I collegiate 

throwers preparing for conference championships. Six collegiate track and field throwers (3 

hammer, 2 discus, 1 javelin) trained for 12 weeks using a block-periodization model culminating 

with a one week overreach followed by a 3 week taper (ORT). Session rating of perceived 

exertion training load (RPETL) and strength training volume-load times bar displacement (VLd) 

were recorded weekly. Athletes were tested pre- and post-ORT on measures of vastus lateralis 

architecture, squat and countermovement jump performance with 0kg and 40kg, underhand and 

overhead throwing performance, and competition throwing performance. There was a statistical 

reduction in weight training VLd/session (d=1.21, p<0.05) and RPETL/session (d=0.9, p<0.05) 

between the in-season and ORT training phases. Five of six athletes improved overhead throw 

and competition throwing performance following the ORT (d=0.50, p<0.05). Vastus lateralis 

muscle thickness statistically increased following the in-season training phase (d=0.28, p<0.05), 

but did not change following the ORT. Unloaded countermovement jump peak force and relative 

peak power improved significantly following the ORT (d=0.59, p<0.05, d=0.31, p<0.05, 

respectively). These findings demonstrate that an overreaching week followed by a 3-week taper 

is an effective means of improving explosive ability and throwing performance in collegiate 

track and field throwers despite the absence of detectable changes in muscle architecture.  

 

KEYWORDS: muscle thickness, overreaching, strength training, hammer, discus, javelin 
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INTRODUCTION 

The tapering period presents a unique opportunity for athletes to maximize performance 

for a crucial competitive event (7, 22, 27). Tapering involves the manipulation of various factors 

including training volume, intensity, frequency, and duration (27). Based on a meta-analysis, 

Bosquet et al. (7) reported the largest magnitude of change in endurance performance following 

a 2-week taper where training volume was exponentially reduced by 41-60%, without any 

modification in training intensity or frequency. The magnitude of change in swimming, cycling, 

rowing, running, and triathlon performance following the taper was ~3% (0.5-6%) (27). Previous 

investigations on tapering for sport performance have mostly involved endurance athletes and 

current tapering recommendations are based on these studies (4, 22, 27). Because limited 

research exists examining the efficacy of tapering for strength-power athletes no evidence based 

tapering standards have been established, although recommendations have been made similar to 

those for endurance performance (30).  

Track and field throwing events require athletes to generate high force outputs over a 

short time period (<250ms) (42). It has been previously established that neuromuscular fatigue 

negatively affects rate of force development (RFD) during maximal leg extension tasks (24, 45). 

Thus, the taper provides an opportunity for throwers to dissipate fatigue and express higher 

RFDs. This was demonstrated recently by Zaras et al. (43) who reported improved throwing 

performance following a 2-week taper in collegiate throwers regardless of the resistance training 

intensity. However, heavy resistance training (>85% 1-RM (repetition maximum)) resulted in 

greater improvements in leg press 1-RM, RFD, squat jump power, and shot throws than light 

resistance training (30% 1-RM). These findings are corroborated by Stone et al. (34), who 

demonstrated strong positive relationships among maximal strength (isometric mid-thigh pull 
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peak force), dynamic mid-thigh pull peak power, and throwing performance (shot-put and weight 

throw) in collegiate throwers. In this study, the overreach and taper period (strength-power 

block) resulted in improved 1-RM power snatch, isometric mid-thigh pull peak force, dynamic 

mid-thigh pull peak RFD, and throwing performance. In contrast, a 4-week detraining period 

following 14 weeks of strength training has been shown to decrease 1-RM squat, backward 

overhead throw and squat underhand throw in novices (37). These studies highlight the 

importance of tapering for maximizing throwing performance.  

Tapering for strength-power athletes not only involves a reduction in training volume, but 

should also involve a greater emphasis on power development (33). These stimuli result in 

specific neuromuscular adaptations that may explain the performance improvements following 

the taper. These adaptations include increased muscle shortening velocities resulting from a 

myosin isoform shift (Type IIa to IIx) (3, 37), and increased fascicle length (FL) (2, 6), increased 

myosin heavy chain (MHC) IIa fiber size, peak force and absolute power (23, 39), altered 

regulation of growth-related genes in MHC IIa fibers (23, 28), and increased muscle activation 

(15).  

Research on single-fiber gene expression and mechanical characteristics has provided 

great insight into the mechanisms underlying the performance enhancing effects of the taper (23, 

28, 39). However, this process is expensive, invasive, requires highly trained personnel, and 

coaches who are willing to allow their athletes to participate in the rigors of such testing. Over 

the past few decades, ultrasonography has been used as a reliable, less invasive method of 

determining changes in muscle architecture following training (19, 20, 41, 44). Increases in 

muscle thickness (MT) and pennation angle (PA) have been observed following heavy strength 

training (1, 20); however, studies where subjects trained with high-velocity contractions and 
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lighter loads (<60% 1-RM) have reported increases in FL with no changes in PA (2, 6). 

Moderate to strong relationships have been observed between vastus lateralis MT and 1-RM 

back squat and deadlift (r=0.82, 0.79), squat and countermovement jump (SJ and CMJ, 

respectively) height (r=0.63-0.8), isometric mid-thigh pull peak force (r=0.6), isometric leg press 

peak force (r=0.85), hang power clean (r=0.71), relative 1-RM power clean (r=0.51) and shot-

put front throw (r=0.66) in various groups of athletes (8, 25, 31, 44). Recently, Zaras et al. (44) 

reported no statistical alterations in muscle architecture (MT, PA, or FL) following the taper. The 

lack of observable changes may have been due to the short duration of the taper (2 weeks). 

Further research is needed examining the effects of tapering on muscle architecture. 

Furthermore, there is a paucity of research examining the efficacy of training programs 

implemented by coaches with their athletes. Previous training studies with athletes have been 

concerned with determining the outcome of an intervention with strict internal controls rather 

than preserving ecological validity (29, 35). While these investigations are important for 

establishing causality, studies with greater ecological validity are also necessary for greater 

external validity to athletic populations, educating coaches, and developing relevant research 

questions for future inquiry. There is often a disconnect between what track and field coaches 

typically implement in their training, and what current research advocates for the development of 

strength and power with these athletes (9, 11). Further research is needed to bridge this gap, and 

enhance coaches’ education. Thus, the purpose of this study was to examine the effects of an 

overreach and taper (ORT) on measures of muscle architecture, jumping, and throwing 

performance in Division I collegiate throwers preparing for conference championships. Based on 

previous training studies (1, 2, 6), we hypothesized that MT and PA would increase following 

the pre/in-season training period (strength-endurance and strength emphasis blocks) and FL 



47 
 

would increase following the ORT (strength-power emphasized block). Corresponding with the 

changes in FL, we also hypothesized CMJ and SJ variables, overhead shot-put throw (OHT), 

underhand shot-put throw (UHT), and competition throwing performance (TP) would increase 

following the ORT. 

METHODS 

Experimental Approach to the Problem 

A repeated measures design was used to examine the effect of the ORT on muscle 

characteristics, jumping and throwing performance measures. The study was conducted over a 

12-week period consisting of the pre-season (3 weeks) and outdoor track and field competitive 

season (9 weeks). Athletes were tested at the beginning of the pre-season to use as a baseline (T1) 

for comparing pre-ORT (T2) and post-ORT (T3) testing.  

Athletes 

Seven National Collegiate Athletic Association (NCAA) Division I throwers were 

recruited for the study; however, one athlete failed to complete the final testing session, therefore 

only 6 were included in the analyses (4 male: 2 hammer, 2 discus; 2 female: 1 javelin, 1 hammer) 

(20.6 ± 0.93 years, 182.3 ± 8.3 cm, 103.2 ± 23.1 kg). All 6 athletes were healthy and received no 

nutritional supplements during the study period. All athletes signed an informed consent in 

accordance with the guidelines set forth by the university’s Institutional Review Board.  

Training 

The throwers strength trained using a block periodization model comprised of sequenced 

phases: strength-endurance, strength, and power over a 12-week period (Table 3.1). Maximal 

strength was increased prior to explosiveness development through a combination of traditional 

resistance training and weightlifting exercises using relative intensities to calculate loads. The 
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first 3 weeks were part of the specific preparation phase, and the following 9 weeks were part of 

the outdoor track and field competitive season. During the specific preparation phase, emphasis 

was placed on preparing the athletes for the competitive season. During the competitive season, 

strength training volume was reduced and emphasis was placed on throw training and technique. 

Strength training was conducted 2-4 days per week. Throwing training was implemented by the 

coach 2-3 days per week. Prior to the taper, an overreaching week of increased strength training 

volume was implemented at the coaches’ discretion. During the 3-week taper, training volume 

was reduced exponentially leading up to the conference championship (Figure 3.1a and 3.1b). 

The ORT implemented in this study was similar to the strength-power block performed by the 

throwers in Stone et al. (34).  

 

 
Figure 3.1a and 3.1b: Exponential reduction in strength training VLd and RPETL during ORT. VLd-volume-load 

multiplied by bar displacement, RPETL- rating of perceived exertion training load, ORT-overreach and taper 
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Table 3.1 Training program 

BS-back squat, PP-push  press, IBP-incline bench press, CP-clean pull, SLDL-stiff-leg deadlift, BOR-bent over row, PU-pull-up, PJ-push jerk, FS-front squat, 

CGBP-clean grip bench press, MTP-mid-thigh pull, SP-snatch pull, PC-power clean, SJ-split jerk, EPU-explosive push-ups

  Strength Training (1-3 days) SetxRep Relative Intensity Throwing Drills (2-3 days) Conditioning (1-2 days) 

Week 1  BS, PP, IBP, CP, SLDL, 

BOR, PU 

3x10 MH (85-90%) turns with implement (no throws) 10x5, knee drop drill 

5x5, half turn drill 3x5, clock drill 3x5 

sprints- 2x10, 15m, 1x20m; 

jumps- 4-stair and unilateral 2 

stair 2x6, hurdle hops 3x5 

Week 2 same as week 1 3x10 H (90-95%) same as week 1 same as week 1 

Week 3 same as week 1 3x5 L (70-75%) turns with implement (no throws) 10x5, knee drop drill 

5x5; clock drill 3x5, half turns 2-5reps, 3/4 turns 2-

5reps, 5-10 full throws 

none 

Week 4 1/2 squat w/ext., PJ, FS, 

CGBP, IBP, MTP, SP, BOR, 

SLDL, PU 

5x5 MH (85-90%) knee drops 2x5, turn with implement 2x5, partial 

throws 3-5, 3/4 turns 3-6, 10 full throws 

sprints- 2x10, 15m; jumps- 4-

stair 4x6, unilateral 2 stair 2x6, 

single-leg broad jump 3x3 

Week 5 same as week 4 3x5 H (90-95%) knee drops 2x5, turn with implement 2x5, partial 

throws 3-5, 2-3 half turns, 3-6 reps ¾ turns, 15 full 

throws 

same as week 1 

Week 6 same as week 4 3x5 VH (95-100%) same as week 5 same as week 1 

Week 7 1/2 squat w/ext., PJ, FS, 

CGBP, IBP, MTP, SP, BOR, 

SLDL, PU 

3x5 L (70-75%) 2x5 knee drops, turn with implement 2x5, 2 standing 

throws, 2 half turns, 3 reps ¾ turns, 3 partial throws, 5 

full throws 

 

Week 8 1/4 squat w/ext., SJ, BS, 

IBP, PC, SP, SLDL, PU, PP, 

MTP 

3x3 M (80-85%) 2x5 knee drops, 2x5 of turn with implement, 2-3 

standing throws, 2-3 half turns, 3-6 reps ¾ turns, 3-5 

partial throws, 15 full throws 

same as week 1 

Week 9 1/4 squat w/ext., 1/2 squat 

w/ext. SJ, IBP, PC, SP, CP, 

BOR, PU 

5x5 MH (85-90%) turn with implement 2x5, 2-3 standing throws, 2-3 

step-half turns, 3-6 reps ¾ turns, 3-5 partial throws, 15 

full throws 

Sprints- 2x10m, 15, 20, 1x30m; 

Jumps- 4-stair 4x6, unilateral 2 

stair 2x6, single-leg lateral 

jumps 2x5, hurdle hops 3x5 

Week 10 1/4 squat w/ext., SJ, IBP, 

PC, SP, BOR, PU 

3x3 H (90-95%) same as week 9 same as week 9 

Week 11 1/4 squat w/ext., SJ, IBP, 

PC, SP, BOR, PU, PP, MTP 

3x2 MH (85-90%) 3 partial throws, 1-2 standing throws, 2-3 step-half 

turns, 5-10 full throws 

same as week 9 plus broad to 

vertical jumps 2x3 

Week 12 1/4 squat w/ext., SJ, IBP, 

EPU 

2x2 ML (75-80%) 1-3 partial throws, 1-2 standing throws, 1-2 half turns, 

1 3/4 turn, 3-5 full throws; mock competition to 

preparation for conference championship 

none 
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Training Load 

Internal training load was estimated using a session rating of perceived exertion (sRPE) collected 

on a 1-10 subjective scale. Based on previously established methods, sRPE was multiplied by the duration 

of the session in minutes to form a rating of perceived exertion training load (RPETL) for all competitions 

practices, and strength training sessions (12). Strength training volume load (VLd) was recorded weekly 

for 12 weeks for all barbell lifts and was calculated using the following equation (14): 

Volume Load (kg*m) = Mass of External Load (kg) x Repetitions x Displacement (m) 

Vertical bar displacement was measured with a tape measure from the start position to terminal position 

of the eccentric phase. Total RPETL and VLd were scaled per session for each athlete to compare training 

volume completed between testing time points (T1-T2 compared to T2-T3). 

Testing 

Testing occurred at the beginning of each training week at least 48 hours following a 

competition and after a scheduled off day from training. Athletes were instructed to refrain from 

practicing and strength training 24 hours prior to each testing session. Athletes were given a 24-

hour dietary log to complete prior to T1 and were instructed to replicate the log prior to all 

subsequent testing sessions. Athletes were tested on measures of vastus lateralis MT, PA, FL, 

squat jump height (SJH), peak power and peak force allometrically scaled for body mass (SJPP, 

and SJPF, respectively), and countermovement jump height (CMJH), peak power and peak force 

allometrically scaled for body mass (CMJPP, CMJPF, respectively). Both jump conditions were 

performed with 0kg and 40kg. Additionally, OHT, and UHT were performed at all three testing 

sessions (T1, T2 and T3). Throwing performance was the best throw recorded at scheduled 

outdoor competitions pre- and post-taper (T2 and T3). 

Anthropometrics. Body mass was measured using a digital scale (Tanita B.F. 350, Tanita 

Corp. of America, Inc., Arlington Heights, IL), and percent body fat was estimated from the sum 
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of 7 skinfold sites using a skinfold caliper (Lange, Beta Technology Inc., Cambridge, MD) (5). 

All anthropometrics were measured at the same time of day by the same experienced assistant 

for all testing sessions.   

Muscle Architecture. Following anthropometric measures, muscle architecture 

measurements of MT, PA, and FL were collected using non-invasive ultrasonography by the 

same technician. Subjects laid supine with knees fully extended, and sampling location for the 

vastus lateralis was determined by the point of intersection between the VL and 50% of the 

distance between the greater trochanter and the lateral epicondyle of the femur (21). This 

location was marked with permanent ink and the probe oriented longitudinally in the sagittal 

plane, parallel to the muscle for each sample. The femur length of each athlete was recorded and 

used for subsequent testing sessions to ensure proper placement of the probe. Muscle thickness 

and PA were quantified in still images captured longitudinally in the transverse plane using the 

measuring features of the ultrasound machine. Muscle thickness was determined as the distance 

between subcutaneous adipose tissue-muscle interface and inter-muscular interface, and PA was 

determined as the angles between the echoes of the deep aponeurosis of the muscle and the 

echoes from interspaces among the fascicles (41). Fascicle length was calculated from MT and 

PA using the following equation (21):  

FL = MT · SIN (PA)-1 

The ultrasound examiner took five images from each sonogram and those which showed the 

largest and the smallest muscle thickness were excluded. The means of MT, PA, and FL were 

assessed from the three remaining images (2). Repeated measurements yielded a coefficient of 

variation of 0.05%, 2.6%, and 1.0% for MT, PA, and FL, respectively. 
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Squat and Countermovement Jumps. Following a dynamic warm-up, SJs with 0kg and 

40kg were measured using dual force plates affixed side by side with a sampling frequency of 

1000 Hz (Rice Lake, WI). The tester instructed the athlete to perform a squat to 90° of knee 

flexion, measured using a handheld goniometer, and hold the position until the force-time trace 

was stable. Once the force-time trace was stable, the tester shouted “3,2,1...jump” and the athlete 

performed a maximal effort jump. Countermovement jumps with 0kg, and 40kg were performed 

following SJs. During the CMJ the athletes were instructed to remain stable in an upright 

position. Once the force-time trace was stable the tester shouted “3,2,1...jump” and the athlete 

performed a maximal CMJ from a self-selected depth. All jump trials were recorded and 

analyzed using a custom program (LabView 8.5.1, 8.6, and 2010, National Instruments Co., 

Austin, TX). Jump height was estimated from flight time using the formula: g·flight time2·8-1, 

where “g” is the acceleration due to gravity. The average of two trials within 2cm was used for 

analysis. Additional trials were performed when the difference in jump height between trials was 

greater than 2cm. Peak power was determined as the maximal value obtained from the product of 

the velocity-time and force-time trace and was allometrically scaled for athlete’s body mass.  

Shot-Put Tests. Following the laboratory tests, athletes were tested on overhead shot put 

throw (OHT) and underhand shot put throw (UHT) with a 7.26kg implement measured on the 

same indoor throwing ring. These tests have been used previously to measure changes in 

throwing performance in field athletes (37, 42). The OHT and UHT have also been shown to 

correlate strongly with shot-put performance (36), and exhibit moderate to strong relationships 

with MT measured via ultrasonography (44). A familiarization period was not prescribed as the 

athletes regularly performed these throwing movements in their daily training warm-up. Athletes 

were given at least 2 attempts for each throw with full recovery between throws. The average of 
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two throws within 30cm was used for analysis. Additional throws were performed when the 

difference between throws was greater than 30cm.   

Competition Throwing Performance. Throwing performance was measured during two 

regularly scheduled outdoor competitions pre- and post-ORT (T2 and T3) according to NCAA 

track and field rules. After completing a dynamic warm-up followed by 2-4 standing and partial 

throws, athletes performed 3-6 maximal effort throws. Considering the athletes specialized in 

different events, TP was normalized across events using z-scores calculated from the top 500 

throws/year in division I over the past 5 years (z-score: -1.28 ± 0.99). The best competition 

throw was converted to a z-score and used for statistical analysis.  

Statistical Analyses 

All data are reported as mean ± standard deviation (SD). Intraclass correlation 

coefficients (ICCs) for all dependent variables ranged from 0.96 to 0.99. A Shapiro-Wilks 

normality test was used to determine if the data were normally distributed. One-way repeated 

measures ANOVA were calculated for all dependent variables to determine if there was a main 

effect for time. Mauchly’s test of sphericity was calculated for the repeated measures analysis to 

determine if the variance between all possible pairs of levels of the independent variable (time) 

were equal. Pairwise comparisons between time points were calculated for all dependent 

variables. Considering the exploratory nature of the study and to reduce the probability of 

committing a Type II error, no correction was made for multiple comparisons. Alpha level for all 

analyses was set at p≤0.05. Cohen’s d with 95% confidence intervals (CI) were calculated from 

mean differences of all pairwise comparisons and were used to determine the magnitude of 

performance change. Effect sizes values of 0.0, 0.2, 0.6, 1.2, 2.0, and 4.0 were interpreted as 

trivial, small, moderate, large, very large, and nearly perfect, respectively (18). Analyses were 
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performed using SPSS software version 22 (IBM Co., New York, NY, USA), and Microsoft 

Excel 2010 version 14 (Microsoft Corporation, Redmond, WA, USA). 

RESULTS 

There was a statistical reduction in weight training VLd/session (d=1.21, 95% CI [0.41, 

2.0], p=0.01) and RPETL/session (d=0.96 [0.07, 1.9], p=0.04) between in-season (T1-T2) and 

ORT (T2-T3) training phases. There were statistical time effects for MT (F(2,10)=4.703 p=0.04), 

CMJPP 0kg (F(2,12)=4.187, p=0.04), and CMJPF 0kg (F(2,10)=7.051, p=0.01). Fisher’s least 

significant difference revealed statistical improvements with small to moderate effect sizes for 

MT (T1-T2: d=0.28 [0.04, 0.52], p=0.03; T1-T3: d=0.41 [0.15, 0.67], p=0.01) (Figure 3.2), 

CMJPP with 0kg (T2-T3: d=0.31 [0.02, 0.6], p=0.04), CMJPF 0kg (T2-T3: d=0.59 [0.21, 0.97], 

p=0.01; T1-T3: d=0.43 [0.03, 0.83], p=0.04) (Figure 3.3), and TP (T2-T3: d=0.50 [0.03, 0.97], 

p=0.04) (Table 3.2). The average percentage improvement in TP was 6.3%. It is also worth 

noting 5 out of 6 athletes improved OHT and TP pre- to post-ORT (Figure 3.4).  
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Table 3.2 Changes in dependent variables (mean±SD) 

  T1 T2 T3 

Anthropometrics     

Mass (kg) 103.23±23.14 102.63±24.22 102.49±23.56 

Body Fat (%) 21.58±8.37 21.85±8.86 21.52±9.05 

Muscle Architecture    

Thickness (cm) 2.66±0.45 2.78±0.5* 2.84±0.5* 

Pennation Angle (degrees) 21.74±4.46 22.57±2.28 21.58±4.23 

Fascicle Length (cm) 7.42±2.06 7.28±1.3 7.85±1.18 

Jumps    

SJH 0kg (m) 0.28±0.07 0.27±0.08 0.27±0.08 

SJPP 0kg (W/kg0.67) 217.57±52.15 213.36±51.76 220.17±58.53 

SJPF 0kg (N/kg0.67) 102.09±16.24 101.14±14.9 104.04±16.21 

SJH 40kg (m) 0.17±0.05 0.16±0.05 0.17±0.06 

SJPP 40kg (W/kg0.67) 208.24±53.66 209.48±52.74 211.51±61.47 

SJPF 40kg (N/kg0.67) 117.9±14.92 117.51±13.04 120.59±13.46# 

CMJH 0kg (m) 0.32±0.08 0.31±0.09 0.33±0.1 

CMJPP 0kg (W/kg0.67) 230.08±54.46 223.26±46.63 237.81±60.78# 

CMJPF 0kg (N/kg0.67) 101.91±10.87 99.49±11.99 106.56±14.07*# 

CMJH 40kg (m) 0.19±0.06 0.19±0.06 0.2±0.07 

CMJPP 40kg (W/kg0.67) 222.75±57.38 222.34±45.12 227.9±57.63 

CMJPF 40kg (N/kg0.67) 116.06±10.23 114.89±8.07 119.57±8.67# 

Throws    

OHT (m) 11.88±2.35 11.83±2.29 12.43±3.35 

UHT (m) 11.25±2.14 11.61±2.63 11.48±2.47 

TP (z-score)   -1.22±1.07 -0.68±1.1# 
*significantly different from T1 (p<0.05), #significantly different from T2 (p<0.05), SJH-squat jump height, SJPP-

squat jump peak power, SJPF-squat jump peak force; CMJH-countermovement jump height; CMJPP-

countermovement jump peak power; CMJPF-countermovement jump peak force; OHT-overhead throw; UHT-

underhand throw, TP-competition throwing performance  
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Figure 3.2: Changes in MT overlaying weekly RPETL. *significantly different from T1 (p<0.05). MT-muscle 

thickness, RPETL- rating of perceived exertion training load 
 

 

 
 

 
Figure 3.3: Changes in CMJPF 0kg overlaying weekly RPETL. *significantly different from T1 (p<0.05), 

#significantly different from T2 (p<0.05). CMJPF-countermovement jump relative peak force, RPETL- 

rating of perceived exertion training load 
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Figure 3.4: Individual changes in OHT and TP following ORT. OHT-overhead throw, TP-competition 

throwing performance, ORT-overreach and taper 

 

DISCUSSION 

The purpose of this study was to examine the effects of a coach-designed overreaching 

week followed by a 3-week taper on measures of muscle architecture, jumping, and throwing 

performance in NCAA division I collegiate throwers preparing for conference championships. 

The primary findings of this investigation are: 1) Increases in vastus lateralis MT and PA 

following in-season training without any further alterations in muscle architecture after the ORT, 

and 2) enhanced TP, CMJPF 0kg, and CMJPP 0kg following the ORT. Previous investigations 

have reported similar improvements in strength and power outcomes following a tapering period 

(34, 43). A finding unique to this study is the significant increase in vastus lateralis MT 

corresponding with the greater weight training VL/session during the in-season training period 

compared to the ORT.  
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These findings agree with previous research showing that there is lag time between the 

initiation of a training stimulus and when its effects are realized (16, 40). This concept, known as 

the long-term lag of the training effect, was originally proposed by Verkhoshansky (40) and 

forms the basis of block periodization. This is evidenced by the improvements in measures of 

throwing performance and explosive ability following the ORT even though weight training 

VLd/session and RPETL/session were statistically reduced and there were no further observable 

alterations in MT.  

Increases in MT measured via ultrasonography have been observed following heavy 

strength training (1, 20). Additionally, previous investigations have reported strong positive 

correlations between vastus lateralis MT and the maximal isometric leg extension force (44). 

Therefore, it appears the increases in MT during the pre/in-season training period may have 

facilitated the later improvements in TP, CMJPP 0kg, and CMJPF 0kg following the ORT. In 

agreement with Zaras et al. (44), no statistical alterations in muscle architecture (MT, PA, or FL) 

were found following the tapering period. Blazevich et al. (6) reported increases in vastus 

lateralis FL and MT following 5 weeks of sprint/jump training with athletes; however, groups 

performing concurrent strength training and sprint/jump training increased PA and MT. In the 

present study, strength and plyometric training volumes were statistically reduced during the 

ORT, which may have attenuated further alterations in muscle architecture.  

Training volume reductions coupled with greater emphasis on developing neuromuscular 

power have been shown to result in myosin isoform shifts (IIa to IIx) (37), increases in MHC IIa 

fiber size, peak force and absolute power (23, 39), and greater muscle activation (15). 

Considering the training performed during the taper in the present study, these adaptations may 

also be responsible for the observed performance improvements. However, these adaptations 
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were not quantified in the current investigation. Future research is necessary examining changes 

in electromyographic activity, spinal and supra-spinal fatigue, muscle fiber gene expression and 

contractile properties during the taper with strength-power athletes.  

It has long been believed by coaches and researchers that a period of intensified training 

prior to a taper (i.e. an overreach) will result in a greater supercompensation effect (17, 32, 38). 

Functional overreaching results in an initial decrease in performance that is reversed and is often 

accompanied by supercompensation following a short rest period. During non-functional 

overreaching the recovery period is delayed and takes longer than desired with no performance 

supercompensation (26). While overreaching has been shown to be an effective means of 

improving endurance parameters and performance during a taper (4, 17, 38), limited evidence 

exists supporting its efficacy with strength-power athletes (10, 13, 32). It is important to note that 

CMJPF 0kg is the only variable that exhibited an observable supercompensation over baseline 

values following the ORT. Also, it is unclear whether the overreaching week prior to the taper 

was responsible for the performance improvements. Experimental studies with strength-power 

athletes comparing tapering with and without a prior overreaching phase are necessary.  

Mujika and Padilla (27) stated a realistic performance improvement to expect following a 

taper is ~3% (0.5-6%) based on a review of the tapering literature with swimmers, runners, 

cyclists, rowers, and triathletes. The findings of the current study agree with Zaras et al. (43) and 

Stone et al. (34), who reported enhanced throwing performance following the tapering period in 

collegiate throwers. Zaras and colleagues reported a mean performance improvement of 5.2% 

following the taper with national level throwers. Stone and colleagues observed a shot put throw 

improvement of 3.1% and weight throw improvement of 4.3% following an overreach and taper 

with collegiate throwers. A similar mean improvement of 6.3% was found in the current study 
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following the taper. Considering the difference between first and fourth place for men’s discus at 

the 2015 NCAA division I national championships was <2.5%, the taper could make the 

difference between winning a medal or failing to make the podium.  

In conclusion, the pre/in-season training appeared to elicit increases in MT, whereas the 

ORT resulted in improved explosive ability in the absence of further detectable changes in 

muscle architecture. Additionally, the ORT appeared to augment TP at the conference 

championships and national ranking, which may have been due to the reduced RPETL and VLd. 

Collegiate throwers may benefit from an ORT phase where training load is exponentially 

reduced prior to an important competition. 

PRACTICAL APPLICATIONS  

The findings of this study show that an overreaching week followed by a 3-week taper is 

an effective means of improving explosive ability and throwing performance in collegiate track 

and field throwers. Coaches working with collegiate throwers should develop an annual plan 

based on the athlete’s competition schedule and highlight the most important competition(s) to 

appropriately plan the taper. During the taper, coaches should significantly reduce training 

volume while maintaining or increasing relative training intensity (≥85% 1-RM). Greater 

emphasis should be placed on developing neuromuscular power using variations of the 

weightlifting movements, potentiation complexes, ballistic and plyometric drills performed with 

maximal movement intent. Based on this study and previous findings with track and field 

throwers, coaches and athletes can realistically expect a 3.1-6.3% performance improvement 

following the taper.  
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ABSTRACT 

PURPOSE: The purpose was to examine changes in muscle architecture and explosive ability in 

NCAA division I collegiate volleyball players throughout a competitive season. METHODS: 

Ten female volleyball players (20.4 ± 1.1 y, 178.3 ± 4.8 cm, 72.6 ± 5.3 kg) were tested at pre-

season (T1), pre-taper (T2), and post-taper (T3) on measures of vastus lateralis muscle thickness 

(MT), pennation angle (PA) and fascicle length (FL) using ultrasonography, and unloaded and 

loaded squat jump height (SJH) and peak power allometrically scaled for body mass (SJPPa) on 

a force platform. Total rating of perceived exertion training load (RPETL) and strength training 

volume-load multiplied by displacement (VLd) were monitored weekly. RESULTS: There was a 

reduction in VLd/wk (p<0.001, d=3.1) and RPETL/wk (p<0.001, d=2.7) between in-season (T1-

T2) and tapering (T2-T3) training phases. Athlete’s MT (p<0.001, d=2.8) and PA increased 

(p=0.02, d=3.9) following in-season training. However, MT decreased following the taper 

(p=0.01, d=0.6), but remained elevated above pre-season values (p<0.001, d=1.7). There were no 

statistical changes in FL, SJH or SJPPa. Large to very large, negative relationships (r=-0.51 to -

0.81) were observed between relative maximal strength at T1 and changes in SJH and SJPPa 

with various loads over the season. CONCLUSION: In-season training resulted in favorable 

changes in muscle architecture, which remained elevated above pre-season values following the 

taper; however, these changes did not appear to appreciably alter explosive ability throughout the 

competitive season. Stronger athletes may benefit from an overreaching microcycle prior to the 

taper to preserve previously accrued muscular adaptations and explosive ability.  

 

Keywords: jump height, peak power, muscle thickness, strength, training load 
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INTRODUCTION 

Volleyball is a sport characterized by intermittent bouts of jumping, short sprints, diving, 

blocking, and hitting. The average work to rest ratio during a volleyball match ranges from 1:1-

1:3 with rallies lasting 6-10 s interspersed with 11-15 s rest periods. 1 Depending on the number 

of sets played, matches can last 2-3 hours. 1,2 Based on these observations, it is clear that 

volleyball athletes must possess the ability to repeat high power outputs over long periods of 

time. Previous research has also demonstrated a positive relationship between volleyball-specific 

fitness characteristics (countermovement jump height and take-off velocity, maximal strength, 

and motor coordination) and performance indicators (spike velocity, spike jump reach, impact 

height, and level of achievement). 3-5 Additionally, higher level performers exhibit greater spike 

velocities, jump heights, impact heights and lower body fat percentages compared to lower level 

performers. 3,6,7 These findings demonstrate the importance of enhancing these volleyball-

specific fitness characteristics.  

The tapering period presents an opportunity to enhance these volleyball-specific fitness 

characteristics by reducing training load and fatigue prior to the most important matches at the 

end of the competitive season. While numerous studies have demonstrated the beneficial effects 

of tapering on endurance performance 8-13 and have examined possible underlying mechanisms, 

14-21 similar studies with team sport athletes are scarce. 22-25 To our knowledge, only one 

published study has examined mechanistic and performance changes in volleyball athletes 

following the taper. 25  

Ultrasonography has commonly been used to assess changes in an athlete’s muscle 

architectural properties following training. Increases in muscle thickness (MT) and pennation 

angle (PA) have been observed following heavy strength training 26-28; however, studies where 
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subjects trained with high-velocity contractions (e.g. sprint/jump training) and lighter loads 

(<60% 1-RM) have reported increases in fascicle length (FL) with no changes in PA. 29,30 

Previous evidence has also demonstrated contraction mode specific alterations in PA and FL. 

Specifically, Franchi et al. 31 have demonstrated eccentric loading of the knee extensors increases 

vastus lateralis FL and heavy concentric loading increases PA. Considering volleyball athletes 

perform both eccentric and concentric contractions during stretch-shortening cycle actions in 

practice and strength training sessions, it is possible that increases in PA and FL may occur 

following training.  

Moderate to strong correlations have been observed between vastus lateralis MT, FL and 

squat (SJ) and countermovement height, isometric mid-thigh pull peak force, 1-RM (repetition 

maximum) back squat and sprint performance in various athletic groups. 32-35 Considering these 

findings, leg extensor muscle architecture appears to play an important role in fitness 

characteristics specific to volleyball performance and may explain alterations in these 

characteristics following training. Also, to our knowledge, no published research has examined 

changes in muscle architecture with volleyball athletes throughout the competitive season and 

following a taper. Therefore, the purpose of this study was to examine changes in muscle 

architecture and explosive ability in National Collegiate Athletic Association (NCAA) division I 

collegiate volleyball players throughout a competitive season in preparation for conference 

championships. 

METHODS 

Athletes 

Fourteen Division I NCAA volleyball players were recruited for the study; however, four 

athletes failed to complete all testing sessions, and therefore only ten were included in the 
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analyses (age: 20.4 ± 1.1 y, height: 178.3 ± 4.8 cm, mass: 72.6 ± 5.3 kg). All athletes had at least 

1 year of strength training experience and received no nutritional supplements during the study 

period. The study was performed as part of the athlete’s training in preparation for conference 

championships. All subjects signed an informed consent form in accordance with the guidelines 

set forth by the University’s Institutional Review Board.  

Procedures 

Training. The athletes trained using a block periodization model that comprised of 

sequenced phases: strength, strength-speed, speed-strength, and a taper over a 15-week period 

(Table 4.1). Maximal strength was increased prior to explosiveness development through a 

combination of traditional resistance training and weightlifting exercises using relative intensities 

to calculate loads. The first two weeks were part of the specific preparation phase and the 

following 13 weeks were part of the NCAA competitive season. During the specific preparation 

phase, emphasis was placed on preparing the athletes for the competitive season. During the 

competitive season, strength training volume was reduced and emphasis was placed on 

maximizing neuromuscular power and managing fatigue. Strength training was conducted 1-2 

days per week during the season with most weeks consisting of 3-4 practice sessions and two 

competitions. Strength training volume loads were calculated using percentage of RM values for 

sets and repetitions.  

 

Table 4.1: Strength training program 

Week Testing Block 

Frequency 

(days/week) Set x rep 

Relative 

Training 

Intensity Exercises 

Week1  T1 

Strength 

2 3x5 (1x5) M (80-85%) 
MTP, MTC, BS, 

MGBP, BOR 
Week2  2 3x5 (1x5) MH (85-90%) 

Week3  2 3x3 (1x5) H (90-95%) 
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Week4   2 3x3 (1x5) ML (75-80%) 

Week5   

Strength-

Speed 

2 3x5 (1x5) M (80-85%) 

MTP, MTSP, BS, 

CGBP, DBBOR 

Week6  2 3x3 (1x5) MH (85-90%) 

Week7  1 3x3 (1x5) MH (85-90%) 

Week8   2 3x2 (1x5) L (70-75%) 

Week9  
Speed-

Strength 

1 3x3 L (70-75%) 
MTP, BS, CGBP, 

MBCP 
Week10  2 3x3 MH (80-85%) 

Week11   0 did not lift   

Week12 T2  

Taper 

1 3x5 (1x5) MH (85-90%) 
MTP, BS (week 1 

only), 1/4 BS, IBP, 

MBS, MBCP 

Week13  1 3x3 (1x5) M (80-85%) 

Week14  1 3x2 (1x5) H (90-95%) 

Week15   0 did not lift   

Week16 T3 Active Rest 0 did not lift     

MTP-mid-thigh pull, MTC-mid-thigh clean, BS-back squat, mid-grip bench press, BOR-bent over row, MTSP-mid-

thigh snatch pull, CGBP-clean grip bench press, DBBOR-dumbbell bent over row, MBCP-medicine chest pass, 

IBP-incline bench press, MBS-medicine ball slam 

 

Training Load. Internal training load was estimated using a session rating of perceived 

exertion collected on a 1-10 subjective scale. Rating of perceived exertion was multiplied by the 

duration of the session in minutes to form a rating of perceived exertion training load (RPETL) 

for all competitions, practices, and strength training sessions. 36 Strength training volume-load 

(VLd) was recorded weekly for all barbell lifts and was calculated using the following equation 

37: Volume Load (kg*m) = Mass of External Load (kg) x Repetitions x Displacement (m) 

Vertical bar displacement was measured manually from the start position to terminal position of 

the lift. Total RPETL and VLd were scaled per week for each athlete to compare training volume 

completed between testing time points (T1-T2 compared to T2-T3). Total RPETL was reduced by 

47 ± 11% over the 4-week taper leading up to the conference championship (Figure 4.1a and 

4.1b). 
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Figure 4.1a and 4.1b: Changes in weekly total RPETL and VLd  

Testing 

The study was conducted over a 15-week period consisting of the pre-season and 

competitive season. Body mass, body fat percentage, vastus lateralis MT, PA, FL, squat jump 

height (SJH), and peak power allometrically scaled for body mass (SJPPa) with 0kg, 11kg, 20kg, 

30kg, and 40kg were assessed during the pre-season (T1), pre-taper (T2), and post-taper (T3). 

Back squat 1-RM was estimated from the Epley equation (1985) using the athlete’s 3RM back 

squat from week three training and was allometrically scaled for body mass (BS 1RMa) to 

provide a descriptive measure of relative maximal strength. Testing was conducted at the 

beginning of the week at the same time of day (06:30-08:30 h) for all testing sessions. Athletes 

were instructed to refrain from practicing and strength training 24 hours prior to each testing 

session.  

Anthropometrics. Body mass was measured using a digital scale (Tanita B.F. 350, Tanita 

Corp. of America, Inc., Arlington Heights, IL), and body fat percentage was estimated from the 

sum of 7 skinfold sites using a skinfold caliper (Lange, Beta Technology Inc., Cambridge, MD) 

38. All anthropometrics were measured at the same time of day by the same experienced assistant 

for all testing sessions.   
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Muscle Architecture. Following anthropometric measures, vastus lateralis MT, PA, and 

FL were collected using non-invasive ultrasonography (LOGIQ P6, General Electric Medical 

Systems, Wauwatosa, WI) by an experienced technician (>500 ultrasounds performed on 

athletes). The athlete laid on their left side with their hips perpendicular to the examination table 

in the axial plane with a knee angle set at 120 ± 5º angle as measured by a goniometer. Sampling 

location for the vastus lateralis was determined as 5cm medial to 50% of the distance between 

the greater trochanter and the lateral epicondyle of the femur. 39 The location was marked with 

permanent ink and the probe oriented parallel to the muscle length for each sample. The femur 

length of each athlete was recorded and used for subsequent testing sessions to ensure proper 

placement of the probe. Muscle thickness and PA were quantified in still images captured 

longitudinally in the transverse plane using the manufacturer’s measuring features. Muscle 

thickness was determined as the distance between subcutaneous adipose tissue-muscle interface 

and inter-muscular interface, and PA was determined as the angle between the echoes of the deep 

aponeurosis of the muscle and the echoes from interspaces among the fascicles. 39 Fascicle 

length was calculated from MT and PA using the following equation 40: FL = MT · SIN (PA)-1 

The ultrasound examiner took five images from each sonogram and those which showed the 

largest and the smallest MT were excluded. The means of MT, PA, and FL were assessed from 

the three images left and used for further analysis. 30 Repeated measurements yielded a 

coefficient of variation (CV) of 0.03%, 3.29%, 2.69% and intraclass correlation coefficients 

(ICCs) of 0.99, 0.86, 0.95 for MT, PA, and FL, respectively. 

Squat Jumps. Following a dynamic warm-up, SJs were performed on dual force plates 

affixed side by side with a sampling frequency of 1000 Hz (Rice Lake Weighing Systems, Rice 

Lake, WI). The SJs were performed with a polyvinyl coated pipe (0kg) and loaded barbell (11kg, 
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20kg, 30kg, and 40kg) placed across the shoulders. The tester instructed the athlete to perform a 

squat to 90° knee angle, measured using a handheld goniometer, and hold the position until the 

force-time trace was stable. Once the force-time trace was stable, the tester shouted 

“3,2,1...jump” and the athlete performed a maximal effort jump. All jump trials were recorded 

and analyzed using a custom program (LabView 8.5.1, 8.6, and 2010, National Instruments Co., 

Austin, TX). Jump height was estimated from flight time using the formula: g·flight time2·8-1, 

where “g” is a constant of 9.81 m∙s-2 for the acceleration due to gravity. 41 Peak power was 

determined as the maximal value obtained during the concentric phase of the jump. 42 The 

average of two best trials within a 2cm difference in jump height was used for analysis. 

Additional trials were performed when the difference between two trials was greater than 2cm. 

Intraclass correlation coefficients for all SJ variables ranged from r=0.93 to 0.99. 

Statistical Analyses 

All data are reported as mean ± standard deviation (SD). A Shapiro-Wilks normality test 

was used to determine if the data were normally distributed. One-way repeated measures 

ANOVA were calculated for body mass, body fat percentage, MT, PA, and FL. A 3 x 5 (time by 

load) repeated measures ANOVA was used to analyze changes in SJH and SJPPa. Mauchly’s 

test of sphericity was calculated for the repeated measures analysis to determine if the variance 

between all possible pairs of levels of the independent variables were equal. If sphericity was 

violated Huynh-Feldt results were reported when the epsilon correction factor was >0.75, and 

Greenhouse-Geisser results were reported when the epsilon correction factor was <0.75 43. 

Statistical time effects were followed by post-hoc comparisons. Alpha level for all analyses was 

set at p≤0.05 and a Benjamini-Hochberg adjustment was used to correct for multiple 

comparisons and control the false discovery rate. 44 Cohen’s d with 95% confidence intervals 
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(CI) were calculated for all statistical post-hoc comparisons and were used to determine the 

magnitude of performance change. Effect sizes values of 0.0, 0.2, 0.6, 1.2, 2.0, and 4.0 were 

interpreted as trivial, small, moderate, large, very large, and extremely large, respectively. 45 

Relationships between estimated back squat 1-RM, mean change in muscle architecture and SJ 

variables, and training load completed from T1 to T3 were evaluated using Pearson product-

moment zero order correlation coefficients. Effect size magnitudes for correlations were based 

on the following scale: trivial, ≤0.10; small, 0.10–0.29; moderate, 0.30–0.49; large, 0.50–0.69; 

very large, 0.70–0.89; and nearly perfect, ≥0.90. 45 Analyses were performed using SPSS 

software version 23 (IBM Co., New York, NY, USA), and Microsoft Excel 2013 version 15 

(Microsoft Corporation, Redmond, WA, USA). 

RESULTS 

There were statistical changes in multiple dependent variables across time (Table 4.2). 

There was a statistical reduction in weight training VLd/session (p<0.001, d=3.12, 95% CI [2.3, 

3.0]) and RPETL/session (p<0.001, d=3.12 [0.07, 1.9]) between training phases (T1-T2 compared 

to T2-T3). There were statistical time effects for body mass (F(2,18)=5.98, p=0.03), body fat 

percentage (F(2,18)=9.33, p=0.01), MT (F(2,18)=37.78 p<0.001), and PA (F(2,18)=4.57, 

p=0.03). There were no statistical time effects for FL. There were no statistical time by load 

interactions or time effects for SJH and SJPPa. Post-hoc comparisons revealed statistical 

decreases in body mass (T1-T3: p=0.03, d=0.32 [0.12, 0.87]; T2-T3: p=0.02, d=0.22 [0.07, 0.74]), 

and body fat percentage (T1-T3: p=0.008, d=0.48 [0.29, 0.78]; T2-T3: p<0.001, d=0.48 [0.34, 

0.68]). MT statistically increased from T1-T2 (p<0.001, d=2.8 [1.7, 4.6]) and from T1-T3 

(p<0.001, d=1.7 [1.3, 2.2]); however there was a statistical decrease from T2-T3 (Figure 4.2, 

p=0.01, d=0.6 [0.42, 0.86]). PA statistically increased from T1-T2 (p=0.02, d=3.9 [1.3, 12]).  



77 
 

 

Table 4.2: Changes in dependent variables over time 

 Mean±SD  Cohen's d 

  T1 T2 T3   T1-T2 T1-T3 T2-T3 

Anthropometrics         

Mass (kg) 72.57±5.31 71.69±4.93 70.79±4.55*#  0.17 0.34 0.18 

Body Fat (%) 22.29±4.3 21.82±3.31 20.24±3.25*#  0.11 0.48 0.48 

Muscle Architecture        

Thickness (cm) 2.1±0.3 2.96±0.54* 2.63±0.36*#  2.87 1.77 0.61 

Pennation Angle (degrees) 12.59±0.81 15.76±3.38* 15.37±3.86  3.91 3.43 0.12 

Fascicle Length (cm) 9.52±1.91 11.31±1.83 10.45±1.56  0.94 0.49 0.47 

Jumps        

SJH 0kg (m) 0.28±0.03 0.29±0.02 0.29±0.03  0.33 0.33 0.00 

SJPPa 0kg (W·kg-0.67) 212.18±21.79 216.82±19.37 210.59±22.08  0.21 0.07 0.32 

SJH 11kg (m) 0.24±0.04 0.25±0.02 0.25±0.03  0.25 0.25 0.00 

SJPPa 11kg (W·kg-0.67) 208.24±25 209.43±16.9 204.74±24.02  0.05 0.14 0.28 

SJH 20kg (m) 0.21±0.04 0.2±0.03 0.21±0.03  0.25 0.00 0.33 

SJPPa 20kg (W·kg-0.67) 206.93±24.26 208.39±17.45 204.64±20.79  0.06 0.09 0.21 

SJH 30kg (m) 0.18±0.03 0.18±0.02 0.17±0.03  0.00 0.33 0.50 

SJPPa 30kg (W·kg-0.67) 203.95±25.35 209.16±22.25 203.73±19.1  0.21 0.01 0.24 

SJH 40kg (m) 0.15±0.04 0.14±0.03 0.14±0.02  0.25 0.25 0.00 

SJPPa 40kg (W·kg-0.67) 197.57±26.28 203.08±22.26 197.74±20.24   0.21 0.01 0.24 

*significantly different from T1 (p<0.05), #significantly different from T2 (p<0.05). SJH-squat jump height, SJPPa-

squat jump peak power allometrically scaled for body mass 

 

 

 

 

 



78 
 

 

Figure 4.2: Changes in vastus lateralis MT and PA from T2 to T3. MT-muscle thickness, PA-pennation 

angle  

 

There was a nearly perfect, positive relationship between BS 1RMa and VLd completed 

from T1 to T3 (r=0.93, p<0.001). There were large to very large, negative relationships between 

BS 1RMa and mean change in SJPPa from T1 to T3 with 0kg (Figure 4.3, r=-0.8, p<0.01), 11kg 

(r=-0.7, p=0.02), 20kg (r=-0.81, p<0.01), 30kg (r=-0.55, p=0.1), 40kg (r=-0.51, p=0.13). 

Similarly, there were large negative relationships between BS 1RMa and mean change in SJH 

from T1 to T3 with 20kg (r=-0.53, p=0.12), 30kg (r=-0.64, p=0.04), and 40kg (r=-0.53, p=0.12). 

Changes in MT, PA, and FL from T1 to T3 were not statistically related to any other variable 

assessed. Also, there were no statistical relationships between RPETL completed from T1 to T3 

and any other variable assessed.  

 

 

 

T2: Pre-Taper T3: Post-Taper 

1: MT 

2: PA 

1: MT 

2: PA 
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Figure 4.3: Relationship between BS 1RMa and mean change from T1 to T3 in SJPPa with 0kg. The two 

strongest athletes are circled above for applications stated in the discussion. 

 

DISCUSSION 

The primary findings in this investigation include positive alterations in collegiate female 

volleyball athletes vastus lateralis muscle architecture, and preserved explosive ability over the 

competitive season while performing a periodized training program. Additionally, the tapering 

period resulted in large decreases in body fat percentage and moderate decreases in vastus 

lateralis MT with no statistical changes in jumping performance. Although no time effect was 

observed, effect sizes indicated a small decreasing trend in SJPPa with all loads following the 

tapering period. Large to very large, negative relationships were observed between maximal 

strength and changes in SJPPa and SJH with various loads. Additionally, there were no statistical 

relationships between changes in muscle architecture variables over the course of the season and 

any other variables assessed. These findings indicate: 1) explosive ability and vastus lateralis 

muscle architecture can be maintained close to pre-season levels following a taper despite large 

reductions in practice and strength training volumes, and 2) vastus lateralis architecture is highly 
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adaptable during in-season play; however, these changes are not strongly related to changes in 

squat jump performance in a sample of collegiate volleyball athletes.  

The observed decreases in body fat percentage are similar to previous research 

demonstrating positive alterations in female’s body composition resulting from sport training. 46-

50 Previous investigations have reported increases in vastus lateralis MT and PA in response to 

heavy strength training. 26-28 However, a limited number of studies have examined changes in 

muscle architecture in response to concurrent sport and strength training, 29,34,51 and only one of 

these studies has examined changes following a taper. 51 In this study, Zaras et al. 51 reported no 

statistical alterations in vastus lateralis MT, PA, and FL following a two week taper in track and 

field throwers. The moderate decreases in vastus lateralis MT observed in the present study 

following the taper may have been due to the long duration (4 weeks) and very large, statistical 

reduction in strength and practice training volume during the taper. However, MT remained 

elevated above pre-season levels following the taper. In contrast, the greater practice and 

strength training volumes during in-season training were accompanied by large to very large 

increases in MT and PA from T1 to T2. These in-season changes are in agreement with previous 

findings by Blazevich et al., 29 who reported increases in vastus lateralis MT and PA in a 

combined group of male and female athletes following strength training and sprint/jump training.  

Considering the observed decreases in MT following the taper in the present study, athletes may 

benefit from a short-term overreaching microcycle (i.e. a period of higher training volume) prior 

to the taper where strength training volume is acutely increased to preserve muscular adaptations 

accrued prior to the competitive season.  
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In one of the few published studies examining longitudinal changes in female athlete’s 

muscle architecture, Nimphius et al. 34 found moderate increases in FL (d=0.80) with no 

statistical changes in MT and PA over the course of the pre-season/in-season in softball players. 

These changes in FL primarily occurred from mid to post testing during a period of lower 

volume, high-velocity training in preparation for a national tournament. No statistical changes in 

FL were observed in the present study; however, a moderate increase was observed from pre-

season to pre-taper (T1 to T2: d=0.94). Additionally, these authors observed moderate to large 

relationships between change in FL and sprint performance, whereas no statistical relationships 

were observed between changes in muscle architecture and changes in any SJ variable over the 

course of the season in the present study. The difference in findings may be attributed to 

differences in the mode of sport training (softball vs. volleyball), conditioning sessions (1-2 

sessions/week vs. none), strength training frequency during the peaking phase (2 sessions/week 

vs. 1 session/week), and testing modality (sprints vs. jumps).  

Previous evidence indicates a possible relationship between the force-velocity 

characteristics of exercises used in training and the corresponding muscle architectural changes. 

29,40 Abe et al., 40 found FL was longer in 100m sprinters compared to long-distance runners and 

concluded these differences may have been related to training adaptations, with longer FLs 

favoring greater muscle fiber shortening velocities in the sprinters. In support of this, Blazevich 

et al. 29 found that athletes who trained with a combination of strength training and speed/jump 

training exercises for five weeks achieved statistical increases in vastus lateralis PA and MT, 

whereas athletes who ceased performing strength training and performed sprint/jump training 

alone increased vastus lateralis FL and MT. However, these changes were not observed in the 

present study during the tapering period. A possible explanation is that the volume and/or 
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intensity of jump training (practice and competition) during the taper was insufficient to produce 

increases in FL. It is also possible that differences in adaptations exist within the team between 

starters and non-starters; however, considering most of the athletes who completed the study 

were starters (7 of 10), this comparison was not possible. Future research should assess the 

relationship between playing time and response to the taper in team sport athletes.  

Importantly, more recent findings have demonstrated contraction-specific adaptations in 

FL. 31,52 These studies demonstrated knee extensor eccentric contractions increase vastus lateralis 

FL and concentric contractions increase vastus lateralis PA. During the tapering phase, athletes 

primarily performed lower extremity strength training exercises that involved concentric 

contractions of the vastus lateralis (MTP, ¼ BS), which may partially explain why no changes in 

FL were observed during this period. Also, the method of determining FL in the present study 

may have mis-estimated the athlete’s true FL because it does not account for changes in fascicle 

curvature. 53  

Although no statistical changes were observed in SJ performance following the taper in 

the present study, the small decreasing effect sizes for SJPPa indicate the tapering period (4 

weeks) may have been too long. Additionally, it is possible the athletes peaked earlier than the 

week they were tested. In a meta-analysis summarizing results of tapering studies in endurance 

events (swimming, cycling, running), Bosquet et al. 11 found that peak performances occurred 

during the second week of the taper. Considering these findings, future research on tapering for 

team sport athletes should assess sport-related performance weekly to determine when athletes 

peak.  

It is also possible that the strength training volumes in the present study were insufficient 

to produce increases in SJH and SJPPa. In further support of this, large to very large negative 
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relationships were found between BS 1RMa and changes in SJH and SJPPa with multiple loads 

from T1 to T3. These results are more convincing when considering that 8 out of 10 possible SJ 

variables had correlation coefficients ranging from r=-0.51 to -0.81. One possible explanation is 

that the training stimulus may have been insufficient for the stronger athletes, which negatively 

affected their SJ performance. In support of this, Figure 4.3 shows the two strongest athletes 

(relative to body mass) decreased SJPPa at 0kg from T1 to T3. Although there was a nearly 

perfect linear relationship between athletes relative strength level (BS 1RMa) and strength 

training volume completed from T1 to T3 (VLd), the SJ correlation results indicate these strength 

training volumes may have been sufficient for weaker, but not stronger athletes suggesting a 

possible curve linear relationship. The relationship between BS 1RMa and VLd is likely 

explained by the large proportion of lower extremity exercises included in the strength training 

program. Additionally, the lack of association between RPETL from T1 to T3 and change in any 

SJ variables indicates athletes perception of the difficulty of training had no relationship with 

how they performed on the SJ. Nevertheless, the correlation data should be interpreted with 

caution considering the small sample size.    

In summary, these findings demonstrate that relatively low volumes of strength training 

performed concurrently with sport training are capable of preserving unloaded and loaded SJ 

performance during a tapering period in female volleyball athletes. Additionally, concurrent 

strength and sport training resulted in increases in vastus lateralis MT, and PA. However, 

training volumes did not appear sufficient to maintain vastus lateralis MT during the tapering 

period. One solution may be to perform an overreaching microcycle prior to the taper in an 

attempt to preserve previously accrued muscular adaptations. These findings also demonstrate 

that fluctuations in muscle architecture measures during in-season play are not strongly related to 
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changes in SJ performance in collegiate volleyball athletes. Negative correlations observed 

between relative maximal strength and changes in SJ performance may be due to an insufficient 

strength training stimulus for the stronger athletes. Furthermore, differences may exist between 

starters and non-starters in response to the taper. Future research on tapering for team sport 

athletes should address weekly changes in performance measures and determine which factors 

(e.g. playing time, experience, strength level, opponent strength, etc.) may explain the variation 

in response.   
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ABSTRACT 

PURPOSE: To examine differences in countermovement jump performance changes between 

new players and returners in a group of female collegiate volleyball players following a peaking 

phase, and to determine which variables best explain the variation in performance changes. 

METHODS: Fourteen female volleyball players were divided into two groups: returners (n=7, 

20.66±0.89 y, 68.67±3.69 kg, 176.14±6.82 cm) and new players (n=7, 18.82±0.97 y, 

72.86±10.58 kg, 176.43±6.95 cm). Vastus lateralis muscle architecture, relative maximal back 

squat strength, unloaded countermovement jump height (JH), and relative peak power (PPa) 

were measured prior to the season to determine between-group differences. Total rating of 

perceived exertion training load (RPETL), strength training volume-load (VL), JH, PPa, and sets 

played were recorded weekly during the peaking phase. RESULTS: There were large to very 

large (cohen’s d ± 90% CI: 1.66 ± 1.70, p=0.002), and trivial to very large (1.06 ± 1.00, p=0.08) 

differences in changes in JH the first and second week of the taper, and moderate to very large 

(1.74 ± 0.96, p=0.007), and trivial to very large (1.09 ± 0.98, p=0.07) differences in JH and PPa 

supercompensation during the peaking phase in favor of returners over new players, respectively. 

The number of sets played during the peaking phase (r=0.78 ± 0.21, p=0.003) and athlete’s pre-

season relative maximal strength (r=0.54 ± 0.35, p=0.05) were the strongest correlates of JH 

supercompensation during the peaking phase. These findings demonstrate that new players and 

returners respond differently to an overreach and taper. Training prescription during this phase 

should differ between athletes based on their relative maximal strength and time spent 

competing.  

 

Keywords: jump height, peak power, muscle cross-sectional area, strength, training load 
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INTRODUCTION 

Tapering in athletics has been previously defined as a “progressive nonlinear reduction of 

the training load during a variable period of time, in an attempt to reduce the physiological and 

psychological stress of daily training and optimize sports performance.” 1 Conceptually it is the 

final period in a sequence of mesocycles leading up to a major competition or tournament. 2 The 

purpose of the taper is to reduce fatigue accumulated during previous training to express changes 

in fitness and thereby maximize performance. 3-5 While numerous studies have demonstrated the 

beneficial effects of tapering on endurance performance, 1,3,6-9 and have examined possible 

underlying mechanisms, 10-17 similar studies with team sport athletes are scarce. 18-20 The paucity 

of research on tapering for team sport athletes has been attributed to difficulties such as long 

competitive periods, multiple important competitions in close succession, and difficulty in 

quantifying training load and sport performance. 2,21 It has been suggested that an ideal approach 

to peaking for team sport athletes would include a period of recovery after regular-season play 

followed by a return to fitness/rebuilding period and finalized with a pre-tournament taper. 22  

Previous research has focused on the effect of an overreaching period on performance 

supercompensation during the subsequent taper. 4,10,23,24 The theoretical basis for performing an 

overreach prior to the taper is derived from the fitness-fatigue paradigm. 25 The overreaching 

period results in an acute increase in fitness and fatigue; however fatigue masks the expression of 

the athlete’s improved fitness. The tapering period allows for accumulated fatigue to dissipate 

and fitness to be expressed leading to enhanced performance. Using mathematical modeling, 

previous investigators have found that greater increases in volume and intensity during the 

overreaching period lead to larger improvements in performance; however, this requires a larger 

and longer reduction in training load. 4,6,26 Physiological mechanisms explaining performance 
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supercompensation during the taper may include glycogen supercompensation, 8,27 improved 

anabolic to catabolic hormonal ration profile, 24,28 increased muscle shortening velocities 

resulting from myosin isoform shifting (Type IIa to IIx) 29-31 and increased fascicle length (FL), 

32,33 increased myosin heavy chain (MHC) IIa fiber size, peak force and absolute power, 13,14 

altered regulation of growth-related genes (fibroblast growth factor-inducible 14, muscle ring 

finger protein-1) in MHC IIa fibers, 14,15 increased muscle activation, 34 and recruitment of high 

threshold motor units. 35 Additionally, there appears to be distinct differences in how athletes 

respond to an overreach with recent evidence demonstrating that functionally overreached 

cyclists exhibit an impaired cardiac response to exhaustive exercise possibly due to reduced 

epinephrine excretion, decreased central command and lower chemoreflex activity. 17,36 

Considering differences in sport experience and work capacity between athletes within a team, 

it’s possible differences exist in corresponding performance changes following an overreach and 

taper. Previous research has used countermovement or squat jumps as a monitoring tool to 

examine performance changes following a taper in rugby, 19,37 futsal, 20 judo, 38 and volleyball 

athletes. 39 Strong, positive relationships have been observed between countermovement jump 

(CMJ) height and volleyball performance indicators (spike velocity, spike jump reach, impact 

height, and athlete’s level of achievement). 40-42 Therefore, weekly CMJ testing during the taper 

period can provide an indication of volleyball athlete’s neuromuscular status and elucidate 

possible differences in preparedness between athletes within a team.  

In a previous investigation, Bazyler et al. 43 found that changes in female collegiate 

volleyball athlete’s squat jump performance following the taper were inversely related to pre-

season maximal strength scaled for body mass. Additionally, the authors found statistical 

decreases in vastus lateralis muscle thickness (MT) following the taper. It was hypothesized that 
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these findings may have been due to an insufficient strength training stimulus for the stronger 

athletes and an overreaching microcyle was recommended prior to the taper. Yet, it is unknown 

whether differences in overreaching and taper responses exist between players within a team. 

Thus, the purpose of this investigation was to examine differences in countermovement jump 

(CMJ) performance changes between new players and returners in a group of female collegiate 

volleyball platers following a peaking phase and to determine which variables best explain the 

variation in performance changes.  

METHODS 

Athletes 

Fourteen National Collegiate Athletic Association (NCAA) division I volleyball players 

completed the study and were divided into 2 groups for analysis: returners (n=7, age: 20.66±0.89 

y, body mass: 68.67±3.69 kg, height: 176.14±6.82 cm) and new players (n=7, 18.82±0.97 y, 

72.86±10.58 kg, 176.43±6.95 cm). All athletes had at least 1 year of prior strength training 

experience and received no nutritional supplements during the study period. The study was 

performed as part of the athlete’s training in preparation for conference championships. All 

subjects signed an informed consent form in accordance with the guidelines set forth by the 

University’s Institutional Review Board.  

Procedures 

Training. The athletes trained using a block periodization model comprised of sequenced 

phases: strength, strength-speed, strength, and an overreach-taper over a 15-week period (Table 

5.1). Maximal strength was increased prior to explosiveness development through a combination 

of traditional strength training and weightlifting exercises using percentage of repetition 

maximum (RM) values for sets and repetitions to calculate loads. Strength training was 
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conducted 1-2 days per week during the season with most weeks consisting of 3-4 practice 

sessions and 2-3 competitions. The first 2 weeks were part of the specific preparation phase and 

the following 13 weeks were part of the NCAA competitive season. The focus of this study was 

the training performed during the peaking phase, which was the final 5 weeks of training (weeks 

11-15) prior to conference championships at the end of week 15. Training during the peaking 

phase began with an overreaching microcycle prior to reducing training volumes during the 

taper. The week of conference championships, a second short overreach was implemented for the 

first 2 training days followed by 3 lighter training sessions.  
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Table 5.1: Strength training program 

Week Testing Block 
Frequency 

(days/week) 
SetxRep 

Relative 

Training 

Intensity 

Exercises Competitions  

Week1  Baseline 

Strength 

2 3x3 (1x5) MH (85-90%) 

BS, SLDL, BP, BOR 

 

Week2  2 3x3 (1x5) H (90-95%)  

Week3  2 3x3 (1x5) ML (75-80%) $,$,$ 

Week4  2 3x3 (1x5) M (80-85%) $,$,$ 

Week5  2 3x3 (1x5) MH (85-90%) $,$,$ 

Week6   

Strength-Speed 

2 3x5, 3x3 (1x5) MH (80-85%) 

BS, CPK, IBP, PU 

$,$,$ 

Week7  1 3x3 (1x5) L (70-75%) $,$$,$ 

Week8   2 3x3 (1x5) L (70-75%) $$,$ 

Week9   
Strength 

2 3x5, 3x3 (1x5) MH (85-90%) 
BS, SLDL, BP, PU 

$$ 

Week10   1 3x3 (1x5) VL (65-70%) $,$$,$ 

Week11 Pre-OR1 

Overreach-Taper 

2 5x5, 3x3 (1x5) M (80-85%) 

BS, SLDL, IBP, BOR 

$,$ 

Week12 Post-OR1 2 3x3 (1x5) L (70-75%) $$,$ 

Week13 T1 2 3x3 (1x5) L (70-75%) $,$$ 

Week14 T2 2 3x5, 3x3 (1x5) M (80-85%) $$,$$ 

Week15 Pre-OR2 Overreach-Taper 2 5x5, 3x5  H (90-95%) 
BS, 1/2 BS, SLDL, MTP, 

BP, PU, 1ADBR 
$$$,$$$ 

Week16 Post-OR2 Active Rest 0 did not lift       

MTP-mid-thigh pull, MTC-mid-thigh clean, CPK-clean pull from knee, BS-back squat, BOR-bent over row, MTSP-mid-thigh snatch pull, 

CGBP-clean grip bench press, 1ADBR-one arm dumbbell row, MBCP-medicine chest pass, MGBP-mid-grip bench press, IBP-incline bench 

press, MBS-medicine ball slam, PU-pull-up; H-heavy, MH-moderately heavy, M-moderate, ML-moderately light, L-light, VL-very light; 

compertitions: $least important, $$moderately important, $$$most important 
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Training Load. Internal training load was estimated using a session rating of perceived 

exertion collected on a 1-10 scale. Based on previously established methods, rating of perceived 

exertion was multiplied by the duration of the session in minutes to form a rating of perceived 

exertion training load (RPETL) for practice and strength training sessions. 44 Strength training 

volume-load (VL) was recorded weekly for all barbell lifts and was calculated using the 

following equation 45: Volume Load (kg) = Mass of External Load (kg) x Repetitions 

Additionally, sets played in each match during the peaking phase were recorded for each athlete 

and used for correlational analyses.  

Testing 

Baseline testing was conducted prior to the pre-season to examine differences between 

new players and returners. Groups were initially compared at this time point to avoid the 

potential confounding effects of training. CMJ testing was conducted weekly during the peaking 

phase to examine changes within and between groups relative to the first week of the overreach-

taper (pre-OR1). Athletes were instructed to refrain from practicing and strength training 24 

hours prior to each testing session. During the baseline testing session athletes were tested on 

measures of body mass, body fat percentage (BF%), vastus lateralis MT, PA, FL, cross-sectional 

area allometrically scaled for body mass (CSAa), CMJ height (JH), and peak power 

allometrically scaled for body mass (PPa) with 0kg. Additionally, as a descriptive measure of 

maximal strength, athlete’s back squat 1-RM allometrically scaled for body mass (BS1RMa) was 

estimated from the Epley equation 46 using athlete’s heaviest set of 3 repetitions during the back 

squat from week 2 training.  

Anthropometrics. Body mass was measured using a digital scale (Tanita B.F. 350, Tanita 

Corp. of America, Inc., Arlington Heights, IL), and BF% was estimated from the sum of 7 
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skinfold sites using a skinfold caliper (Lange, Beta Technology Inc., Cambridge, MD). 47 All 

anthropometrics were measured at the same time of day by the same experienced assistant for all 

testing sessions.   

Muscle Architecture. A 7.5 MHz ultrasound probe was used to measure vastus lateralis 

CSAa, MT, PA and FL of the right leg (LOGIQ P6, General Electric Healthcare, 

Wauwatosa, WI). For vastus lateralis measurements, the athlete laid on their left side with their 

hips perpendicular to the examination table in the axial plane with a knee angle set at 120 ± 5º 

angle as measured by a goniometer. This positioning was selected to improve image clarity 

during cross-sectional scans and it was easier for athletes to relax their knee extensors. Sampling 

location for the vastus lateralis was determined by the point of intersection between the vastus 

lateralis and 5cm medial to 50% of the femur length, which was defined as the distance between 

the greater trochanter and the lateral epicondyle of the femur. 48 The location was marked with a 

permanent marker and the probe oriented longitudinally in the sagittal plane, parallel to the 

muscle for each sample. The ultrasonography probe was covered with water-soluble transmission 

gel to aid acoustic coupling and avoid depression of the skin, which may cause changes in the 

measured parameters. 49 Vastus lateralis MT and PA were quantified in still images captured 

longitudinally in the sagittal plane using the measuring features of the ultrasound device (Figure 

5.1a). Vastus lateralis MT was determined as the distance between subcutaneous adipose tissue-

muscle interface and inter-muscular interface, PA was determined as the angles between the 

echoes of the deep aponeurosis of the muscle and the echoes from interspaces among the 

fascicles. 48 Vastus lateralis CSAa was measured by placing the probe perpendicular to the 

muscle and moving it in the transverse plane to collect a cross-sectional image using the 

LogiqView function of the ultrasound device (Figure 5.1b). The reliability of this method has 
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been determined previously. 50 Vastus lateralis CSAa was measured by tracing the inter-

muscular interface in the cross sectional images. 51-53 Vastus lateralis FL was calculated from 

MT and PA using the following equation 48,54,55: FL = MT · SIN (PA)-1. The ultrasound examiner 

took three longitudinal and three cross-sectional images from each sonogram. The means from 

the three images of MT, PA, FL, and CSAa were assessed from the images and used for further 

analysis. 56 Repeated measurements yielded coefficients of variation of 0.01%, 1.12%, 0.49%, 

and 1.32% for MT, PA, FL, and CSAa respectively. 

 
 

Figure 5.1a and 5.1b: Vastus lateralis longitudinal and cross-sectional measurements 

 

 

Countermovement Jumps. Following a dynamic warm-up, CMJs were measured using 

dual force plates affixed side by side with a sampling frequency of 1000 Hz (Rice Lake 

Weighing Systems, Rice Lake, WI). Countermovement jumps were performed while holding a 

nearly weightless polyvinyl chloride pipe across their shoulders (0kg) to prevent arm swing and 

strictly measure performance of the lower extremities. Countermovement jumps with 0kg were 

performed during baseline testing and were performed weekly during the peaking phase. During 

the CMJs athletes were instructed to remain stable in an upright position. Once the force-time 

trace was stable the tester shouted “3,2,1...jump” and the athlete performed a maximal CMJ from 

1: MT 

2: PA 
1: CSA 
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a self-selected depth. All jump trials were recorded and analyzed using a custom program 

(LabView 8.5.1, 8.6, and 2010, National Instruments Co., Austin, TX). Jump height was 

estimated from flight time using the formula: g·flight time2·8-1, where “g” is a constant of 9.81 

m∙s-2 for the acceleration due to gravity. 57 Peak power was determined as the maximal value 

obtained from the product of the velocity-time and force-time trace and was allometrically scaled 

for athlete’s body mass. The average of two best trials within a 2cm difference in jump height 

was used for analysis. Additional trials were performed when the difference between two trials 

was greater than 2cm. The week peak JH occurred for each athlete during the peaking phase and 

the change in JH from pre-OR1 to peak (supercompensation) were determined for further 

analyses.  

Statistical Analyses 

Intraclass correlation coefficients (ICC) for all dependent variables ranged from r=0.92 to 

0.99. Homogeneity of between-group variance was assessed using a Levene’s test. Group 

descriptive data were compared using an independent samples t-test. Peaking phase CMJ and 

training load data was analyzed using a 2 x 6 (group by time) repeated measure ANOVA for the 

mean scores to determine within and between group differences, and a 2 x 5 (group by time) 

repeated measures ANOVA for the change in mean scores relative to pre-OR1 to determine 

within and between-group difference in changes. Main effects were followed by post-hoc 

comparisons using a Benjamini-Hochberg adjustment to correct for multiple comparisons and 

control the false discovery rate. 58 Magnitude of within-group and difference in between-group 

changes relative to pre-OR1 were determined using Cohen’s d effect sizes with 90% confidence 

intervals (CI). A Welch-Satterhwaite approximation to the degrees of freedom was used to 

calculate 90% CI for variables with unequal variances between groups. Effect sizes with CIs 
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were assessed using the following scale: trivial, 0.0-0.2; small 0.2-0.6; moderate 0.6-1.2; large, 

1.2-2.0; very large, 2.0-4.0. 59 Effects were deemed unclear when the 90% CI overlapped 

positive and negative outcomes (90% CI upper bound >0.2 and lower bound <-0.2). Pearson 

product-moment zero order correlations with 90% CIs were calculated to determine the 

relationship between other variables and JH supercompensation during the peaking phase. 

Correlation coefficients with CIs were based on the following scale: trivial, ≤0.10; small, 0.10–

0.3; moderate, 0.30–0.5; large, 0.50–0.70; very large, 0.70–0.90; and nearly perfect, ≥0.90. 59 

Correlations were deemed unclear when the 90% CI overlapped positive and negative 

relationships (90% CI upper bound >0.1 and lower bound <-0.1). Tests with p-values ≤0.05 were 

considered statistically significant, and tests with p-values ≤0.10 were deemed as “approached 

significance” for all analyses. Analyses were performed using SPSS software version 23 (IMB 

Co., New York, NY, USA), and Microsoft Excel 2013 (Microsoft Corporation, Redmond, WA, 

USA). 

RESULTS  

Baseline  

There was a large to very large difference in age with returners being older than new 

players (mean ± standard deviation (SD): 20.66 ± 0.89 vs 18.82 ± 0.97 years, p<0.001, 

respectively). There were trivial to large differences in favor of the returners over new players 

for vastus lateralis PA (15.20 ± 2.19 vs 12.92 ± 2.17°, p=0.08, respectively), and CSAa (1.80 ± 

0.22 vs 1.58 ± 0.20 cm2·kg-0.67, p=0.08, respectively). Differences between groups at baseline for 

height, body mass, BF%, and vastus lateralis FL were unclear. There were moderate to very 

large differences in favor of returners over new players for BS1RMa (5.11 ± 0.86 vs 3.27 ± 1.07 

kg·kg-0.67, p=0.004, respectively). There were small to large and trivial to large differences in 
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favor of returners over new players for JH (0.33 ± 0.02 vs 0.28 ± 0.05 m, p=0.03), and PPa 

(201.40 ± 13.46 vs 180.37 ± 22.47 W·kg-0.67, p=0.06), respectively (Figure 5.2).  

 

Figure 5.2: Differences between groups at baseline in descriptive and performance characteristics. BF%- 

body fat percentage, MT-muscle thickness, PA-pennation angle, FL-fascicle length, CSAa-cross-sectional 

area allometrically scaled for body mass, BS1RMa-estimated back squat 1-repetition maximum 

allometrically scaled for body mass, JH-jump height, PPa-peak power allometrically scaled for body mass 

 

Rating of Perceived Exertion Training Load and Volume-Load 

There were no group by time interactions or group effects for any training load variables. 

There were significant time effects for practice RPETL (p<0.001), strength training RPETL 

(p<0.001), total RPETL (p<0.001), and strength training VL (p<0.001) during the peaking phase. 

There were significant increases in total RPETL during OR1 (p<0.001, p=0.02) and significant 

decreases in total RPETL during the second week of the taper compared to in-season training for 

returners and new players (p<0.001, p<0.001), respectively (Table 5.2). Additionally, there were 

significant differences in sets played during the peaking phase with returners playing more than 

new players (36.14 ± 6.52 vs 22.71 ± 12.28 sets, p=0.03, respectively).  
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Table 5.2: Changes in weekly average RPETL and strength training VL during the peaking phase relative to in-season training 

(mean±SD) 
    

    Training Phase   In-season   OR1       Taper       OR2 

  Duration (Weeks)   8   1   1   1   1   1 

New 

Players 
Strength Training RPETL (A.U.)  275±109  367±130  117±64**  437±162*  409±121*  688±216** 

 Practice RPETL score (A.U.)  1302±364  1831±575*  1830±1051  438±91**  
329±278*

* 
 803±722 

 Total RPETL score (A.U.)  1528±346  2198±555**  1947±1075  750±246**  
739±279*

* 
 1491±903 

 Strength Training VL (kg)  5743±524  8313±809**  5350±566  6140±692  6162±973  
11893±1110*

* 

              

Returners Strength Training RPETL score (A.U.)  222±45  356±149  196±40  248±121  331±121*  570±296** 

 Practice RPETL score (A.U.)  1096±164  2041±454**  1441±493  353±70**  748±401*  1032±406 

 Total RPETL score (A.U.)  1161±210  2296±396**  1525±559  465±148**  1078±468  1602±658 

  Strength Training VL (kg)   5494±1655   7810±2542*   5185±1102   5636±1163   
5511±205

3 
  9533±3242** 

within group changes relative to In-season phase: *p≤0.10, **p≤0.05. OR1-first overreach, OR2-second overreach, RPETL-rating of perceived exertion training load, VL-volume-load 

 
Table 5.3: Weekly JH and PPa during the peaking phase (mean±SD) 

  Testing Week Pre-OR1 Post-OR1 T1 T2 Pre-OR2 Post-OR2 

Returners 

JH (m) 0.29±0.02 0.31±0.03* 0.31±0.02** 0.32±0.03** 0.30±0.02* 0.31±0.03** 

ΔJH (m) N/A 0.02±0.02# 0.01±0.01## 0.03±0.02# 0.01±0.01 0.02±0.02 

PPa (W·kg-0.67) 190.66±11.9 199.62±13.57 197.20±15.72* 202.85±19.28** 196.01±13.08* 206.66±16.98** 

ΔPPa (W·kg-0.67) N/A 8.95±14.04 6.54±8.42 12.19±10.77 5.34±7.5 16.00±12.16 

        

New Players 

JH (m) 0.27±0.05 0.27±0.04 0.26±0.05** 0.28±0.05 0.27±0.04 0.27±0.04 

ΔJH (m) N/A 0.00±0.02 -0.01±0.01 0.01±0.03 0.00±0.01 0.00±0.02 

PPa (W·kg-0.67) 180.58±21.18 185.49±16.74 181.94±16.6 189.9±24.25** 180.97±16.14 187.15±18.17 

ΔPPa (W·kg-0.67) N/A 4.91±8.95 1.35±6.54 9.31±12.19 0.39±5.34 6.57±16 

Within group change relative to pre-OR1: *p≤0.10, **p≤0.05. Difference in between-group changes relative to pre-OR1: #p≤0.10, ##p≤0.05. OR1-first overreach, OR2-second overreach, T1-second week 

of taper, T2-third week of taper, JH-jump height, PPa-peak power allometrically scaled for body mass  



 
 

Peaking Phase 

There were no group by time interactions for JH and PPa or change in mean JH and PPa 

scores relative to pre-OR1 during the peaking phase. There were statistical time effects (p=0.01, 

p=0.01) and group effects approaching statistical significance (p=0.06, p=0.10) for JH and PPa, 

respectively. There were significant time effects (p=0.04) and group effects (p=0.01) for change 

in mean JH scores relative to pre-OR1. The time effect for change in mean PPa scores relative to 

pre-OR1 approached significance (p=0.07).  

Changes in JH for the returners relative to pre-OR1 were nearly statistically trivial to very 

large at post-OR1 (p=0.07), statistically small to large (p=0.03) at T1, moderate to very large 

(p=0.009) at T2, and small to large (p=0.03) at post-OR2. Changes in PPa for the returners 

relative to pre-OR1 were statistically small to large (p=0.02) at T2, and moderate to very large 

(p=0.01) at post-OR2. Changes in JH and PPa for the new players relative to pre-OR1 were 

statistically trivial to small (p=0.03) at T1, and trivial to moderate (p=0.02) at T2, respectively 

(Table 5.3).  

Between-group differences in change from pre-OR1 for JH were nearly statistically trivial 

to very large at post-OR1 (p=0.10), statistically large to very large (p=0.002) at T1, and nearly 

statistically trivial to very large (p=0.08) at T2 (Figure 5.3).  
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Figure 5.3: Within-group changes and differences in between-group changes in JH relative to pre-OR1. 

Changes are reported as (d±90%CI). White color marker indicates unclear between-group difference in 

change from pre-OR1; grey color marker indicates trivial to very large; black indicates large to very large. 

JH-jump height, OR-overreach. T-taper 

 

Peak and Nadir Performance 

Jump height and PPa supercompensation for the returners were statistically large to very 

large (p<0.001), and large to very large (p<0.001), respectively. Jump height and PPa 

supercompensation for the new players were statistically trivial to small (p=0.05), and small to 

moderate (p=0.004), respectively. Between-group differences in JH and PPa supercompensation 

were statistically moderate to very large (p=0.007), and nearly statistically trivial to very large 

(p=0.07), respectively (Figure 5.4a and 5.4b). Irrespective of group, the majority of athletes 

achieved peak JH at T2 (7 of 14) and nadir JH at pre-OR2 (6 of 14) (Figure 5.5a and 5.5b).  
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Figure 5.4a and 5.4b: Within-group changes and differences in between-group changes in JH and PPa 

from pre-OR1 to peak performance during the peaking phase. Within group change relative to pre-OR1: 

*p≤0.05, **p≤0.001. Difference in between-group changes relative to pre-OR1: #p≤0.10, ##p≤0.05. Gray 

dashed lines are individual changes and black lines are group mean changes.  

 

 

Figure 5.5a and 5.5b: Occurrence of individual JH peak and nadir week during the peaking phase. JH-

jump height. 

 

Variables Explaining JH Performance Supercompensation 

Jump height supercompensation exhibited a statistically large to nearly perfect, positive 

relationship with sets played during the peaking phase (r=0.78 ± 0.21, p=0.003), and a 

statistically small to very large, positive relationship with athlete’s BS1RMa (r=0.54 ± 0.35, 

p=0.05) (Figure 5.6). There was a trivial to very large non-statistical relationship between sets 
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played during the peaking phase and BS1RMa (r=0.44 ± 0.39, p=0.12). Additionally, BS1RMa 

exhibited a statistically moderate to nearly perfect relationship with PA (r=0.72 ± 0.25¸ p=0.003) 

and MT (r=0.74 ± 0.24, p=0.003), and a statistically large to nearly perfect relationship with 

CSAa (r=0.78 ± 0.21, p=0.001).   

 
 

Figure 5.6: Relationships between JH supercompensation and other variables. JH-jump height, MT-

muscle thickness, PA-pennation angle, CSAa-cross-sectional area allometrically scaled for body mass, 

BS1RMa-estimated back squat 1-repetition maximum allometrically scaled for body mass, VL OR1- 

volume-load during first overreach, Total RPETL OR1- total rating of perceived exertion training load 

during the first overreach 

 

DISCUSSION 

The purpose of this investigation was to determine if performance changes during a 

peaking phase differed between returners and new players in a group of female collegiate 

volleyball players and to determine which variables best explained the variation in performance 

changes. The primary findings of this investigation include: a) large to very large differences in 

age, trivial to large differences in vastus lateralis muscle architecture, trivial to very large 
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differences in relative maximal strength and CMJ performance in favor of returners over new 

players at baseline, b) trivial to very large differences in changes in JH following the initial 

overreach in favor of returners over new players, c) moderate to very large, and trivial to very 

large differences in JH and PPa supercompensation during the peaking phase, respectively, d) 

number of sets played during the peaking phase and athlete’s baseline BS1RMa were the 

strongest correlates of JH supercompensation during the peaking phase.  

The baseline testing results demonstrate that the returners were older, had a more 

advantageous muscle architectural profile, greater relative maximal strength and greater CMJ 

performance. These findings are in agreement with similar previous research demonstrating 

maximal strength, jump height, and power output are different between starters and non-starters 

and between different levels of athletes for various sports. 40-42,60-64  

In the only other known study examining overreaching and tapering responses in 

volleyball athletes, Freitas et al. 39 found significantly greater creatine kinase, RPETL, training 

monotony, and training strain in half a team of male volleyball players who performed an 11-day 

overreach compared to the other half of the team who continued with normal training. The 

authors concluded that CMJ performance should not be used to evaluate training adaptations in 

volleyball athletes because no significant within-group changes were observed in JH during the 

overreach or the 14-day taper that followed. In contrast, we found large to very large, and trivial 

to small increases in JH during the taper for the returners and new players, respectively. The 

differences between Freitas and colleagues findings and the present study, may have been due to 

differences in how JH was measured (contact mat vs. uniaxial force plates) and the caliber of 

athletes (national vs. collegiate level). Sole et al., 65 recently demonstrated that mechanistic 

variables (RFD, stretching phase duration, acceleration-propulsion phase shape factor, etc.) 
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obtained from force-time curve data provide a more comprehensive assessment of jumping 

performance than JH alone. We conclude, given the appropriate instrumentation, CMJ 

performance can be used to monitor training adaptations in volleyball athletes and that greater 

attention should be given to mechanistic variables. 

Despite differences in between group changes, the within group changes relative to pre-

OR1 followed a similar trend in returners and new players. In support of this, peak and nadir JH 

occurred at similar time points in both groups with a fairly even distribution between weeks. 

Irrespective of group, 7 of 14 athletes achieved peak JH at T2, and nadir JH occurred at pre-OR2 

for 6 of 14. These findings agree with the meta-analysis results from Bosquet and colleagues, 7 

who demonstrated that peak endurance performance occurred after 2 weeks of tapering and 

diminished after 3 and 4 weeks of tapering. The athlete’s competition schedule may also explain 

the timing of peak and nadir performance. The team played their two worst opponents the week 

prior to their best jumping performance, and their two best opponents the week prior to their 

worst jumping performance. Previous research has demonstrated that volleyball matches induce 

significant increases in blood lactate, and increases in reaction time and decreased knee joint 

position sense resulting in decreased sensorimotor system acuity. 66,67 It is possible that the rest 

period between matches and weekly jump testing sessions was insufficient to completely 

dissipate fatigue effects of play. Additional confounding variables explaining the timing of peak 

and nadir performance may include psychological readiness, nutritional status, and other external 

stressors (school, relationships, job, etc.).  

Both returners and new players perceived total training load to be more difficult during 

the initial overreach and lighter during the second week of the taper compared to in-season 

training. Also, both groups completed greater strength training VLs during the two overreaching 
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microcycles compared to in-season training. Despite these similarities, the weekly CMJ data 

demonstrate that the returners consistently achieved greater JH improvements compared to the 

new players during a similar overreach and taper. These findings beg the question, which 

variables best explain the variation in JH supercompensation response? There was a large to 

nearly perfect positive relationship between sets played during the peaking phase and JH 

supercompensation. A trivial to very large relationship was observed between sets played during 

the peaking phase and athlete’s BS1RMa. Also, previous research has demonstrated that stronger 

individuals have greater fatigue resistance at a given absolute workload as an adaptation to 

repetitive high load training. 24,68-70 Therefore, a possible explanation is that athletes who played 

more also had greater relative maximal strength, which in turn provided them with a greater 

work tolerance enhancing their ability to respond to the overreach and subsequent taper. In 

support of this hypothesis, the returners, who had a greater BS1RMa, achieved larger 

improvements in JH than the new players following the initial overreach. Another important 

consideration is that returners in this investigation were accustomed to periodized training from 

previous seasons with the team, whereas new players were introduced to periodized training at 

the beginning of the pre-season. Previous research has demonstrated that the inflammatory 

response is greatest when a novel stimulus is applied and is attenuated following successive 

bouts of similar training. 71-73 This phenomenon has been termed the repeated bout effect. 74,75 

Coutts and colleagues 18 have also shown that overreaching prior to a taper results in significant 

increases in creatine kinase and decreases in the testosterone to cortisol ratio and the glutamine 

to glutamate ratio in semi-professional rugby league players. Considering the differences in 

training experience, it is possible that the overreaching period resulted in greater fatigue after 

effects in the new players compared to the returners. 
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The proposed hypothesis highlights the importance of lower extremity relative maximal 

strength to jumping performance supercompensation following an overreach and taper. The 

correlation results also demonstrate that relative maximal strength was largely related to muscle 

architectural characteristics, namely, vastus lateralis MT, CSAa, and PA. Previous research has 

demonstrated large relationships between vastus lateralis MT and relative maximal strength, 

jumping, sprinting and throwing ability in various groups of athletes. 76-80 Furthermore, 

longitudinal studies have observed increases in MT and PA following periodized strength 

training. 33,81-83 Therefore, improving muscle architectural characteristics and relative maximal 

strength of the lower extremities through periodized strength training may enhance volleyball 

athlete’s ability to respond to an overreach and taper. Future research should develop and test a 

model to determine the unique contribution of different variables (relative maximum strength, 

training load, work tolerance, sport experience, etc.) to performance supercompensation during 

the taper.  

In summary these findings demonstrate that differences in muscle architecture, relative 

maximal strength, and CMJ performance exist between female collegiate volleyball returners and 

new players. Returners achieved greater CMJ performance supercompensation following the 

initial overreach and during the subsequent taper compared to new players. The greater CMJ 

performance supercompensation during the peaking phase in the returners appears to be related 

to their greater relative maximal strength and number of sets played during this phase. A possible 

explanation is that athletes who played more sets during the peaking phase had greater relative 

maximal strength, which may have enhanced their ability to tolerate higher training loads 

resulting in greater CMJ performance supercompensation during the taper. These results suggest 

that training prescription during the peaking phase should differ between athletes based on their 
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relative maximal strength, time spent competing, and training experience. Additionally, emphasis 

should be placed on developing lower extremity muscle architectural characteristics to enhance 

strength of the musculature contributing to volleyball performance.  Thus, when prescribing 

training during a peaking phase for returners and new players, sport coaches and strength 

coaches should consider these factors to ensure athletes are prepared for important competitions.  
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ABSTRACT 

The purpose of this study was to examine changes in anthropometrics, muscle cross-sectional 

area, biomarkers, and performance measures in a national level female weightlifter following 

three competition phases. Training volume-load, body mass, vastus lateralis cross-sectional area, 

and unloaded and loaded squat jump performance were assessed weekly during each competition 

phase. Sum of seven skinfolds, serum biomarkers, and dynamic mid-thigh pulls were assessed 

pre- and post-competition phase. Weightlifting performance goals were met for the first 

competition (total: 200 kg) and the second (193 kg), but not the third (196 kg). Her body mass 

decreased to a greater extent in preparation for COMP3 (-6.0 kg) compared to COMP1 (-2.5 kg) 

and COMP2 (+2.2 kg). Cross-sectional area very likely decreased following COMP3 

(probability: 99%, cohen’s d: 2.08). Her T:C ratio likely increased (88%, 2.64), while IL-6 (79%, 

2.47) and TNFα (81%, 3.59) likely decreased following COMP3. Myostatin (99%, 1.95) and 

decorin (99%, 1.96) very likely decreased following COMP2. Unloaded squat jump height likely 

increased the final week of COMP1 (89%, 0.95) and COMP2 (99%, 1.83), whereas unloaded 

and loaded squat jump height possibly (69%, 0.99) and likely (82%, 1.52) decreased the final 

week of COMP3. Changes in endocrine, inflammatory, and hypertrophic markers corresponded 

with training volume-load; however, body mass, muscle cross-sectional area, squat jump and 

dynamic mid-thigh pull performance provided a clearer indication of her competition 

performance. These findings provide a biochemical, morphological, and biomechanical basis for 

alterations in performance following multiple competition phases in a national level weightlifter.   

 

Keywords: taper, testosterone, myostatin, jump height, clean and jerk, snatch 
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INTRODUCTION 

There is a paucity of research monitoring longitudinal changes in physiological, 

biochemical, and performance measures with high level (e.g. national, international, elite) 

athletes (Mujika, 2014). This is likely due to the expectation placed on researchers to conduct 

studies with sample sizes large enough to achieve sufficient statistical power. This expectation, 

however, is often unrealistic when conducting research with high level athletes. Thus, case 

studies and single subject designs are viable alternatives to traditional training studies for sport 

scientists working with high level athletes. Case studies can often provide coaches and sport 

scientists with a better understanding of how individual athletes respond to a given stimulus. 

Training results in individual-specific adaptations that depend on an athlete’s training age, 

genetics, and fatigue state (Banister & Calvert, 1980; Bouchard, Dionne, Simoneau, & Boulay, 

1992). Case studies can give an indication of the athlete’s progress and can be used to aid with 

training decisions. Previous studies monitoring longitudinal changes in performance using a 

single-subject design or case study have been conducted with an Olympic-level weightlifter 

(Gisslen, Ohberg, & Alfredson, 2006), Olympic-level diver (Baker, 2001), world class triathlete 

(Mujika, 2014), national champion boxer (Halperin, Hughes, & Chapman, 2016), well trained 

powerlifters (Zourdos et al., 2016), and collegiate volleyball players (Kavanaugh, 2014). These 

studies ranged from 2 months to 4 years and have monitored training load, anthropometrics, 

body composition, tendon structural changes, kinetic and kinematic variables, and agility 

performance. The results of these studies demonstrate positive alterations in these variables 

along with improvements in competitive performance over the training periods examined. 
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The tapering period is an important component of the training process that has not been 

extensively researched in strength-power athletes. Previous research has primarily focused on 

tapering for endurance performance and thus most literature reviews and meta-analyses on the 

topic have focused on running, cycling, and swimming (Bosquet, Montpetit, Arvisais, & Mujika, 

2007; Le Meur, Hausswirth, & Mujika, 2012; Mujika & Padilla, 2003). Despite weightlifting 

being one of oldest Olympic sports, tapering research with high-level weightlifters is scarce 

(Busso et al., 1992; Hakkinen, Pakarinen, Alen, Kauhanen, & Komi, 1987; Stone et al., 1996). 

Observational and experimental studies have examined the effects of overreaching and tapering 

on biochemical profile and weightlifting performance (Busso et al., 1992; Fry et al., 1994; 

Hakkinen et al., 1987). Hakkinen and colleagues (1987) found decreases in the 

testosterone:cortisol (T:C) ratio following a 2-week overreach in trained weightlifters. The T:C 

ratio returned to baseline levels following 2 weeks of normal training and a 2-week taper 

primarily due to reductions in cortisol. Additionally, there was a positive relationship between 

change in the T/sex hormone binding globulin (SHBG) ratio and change in clean and jerk 

performance following the normal training and tapering period. Similarly, Fry et al., (2000) 

found increases in the T:C ratio following a 1-week overreach and 3 weeks of normal training in 

elite weightlifters. Also, the change in the T:C ratio during the normal training period was 

positively related to the change in clean and jerk performance.  

Recent advancement in biochemical assay techniques have provided greater insight into 

molecular responses to training. Results of recent studies demonstrate the profound effects an 

athlete’s training volume has on endocrine and non-endocrine molecules and subsequent sport 

performance. Interleukin-6 (IL-6) has been implicated as an anti-inflammatory myokine 

responsible for initiating satellite cell proliferation and differentiation, and inhibiting tumor 
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necrosis factor alpha (TNF-ὰ) expression (Vierck et al., 2000). Both IL-6 and TNF-ὰ have been 

shown to be elevated following an overreaching phase (Main et al., 2010; Nieman et al., 2014), 

and subsequently reduced following a 3-week taper (Farhangimaleki, Zehsaz, & Tiidus, 2009) in 

endurance athletes. Myostatin is a myokine that limits myocyte differentiation and growth by 

binding to the activin type II receptor on the myocyte surface and subsequently inhibiting Akt-

induced muscle protein synthesis (Kim, Cross, & Bamman, 2005). Myostatin mRNA expression 

has been shown to decrease following heavy strength training (Hulmi et al., 2007; Kim et al., 

2005; Roth et al., 2003). However, not all studies agree (de Souza et al., 2014; Willoughby, 

2004). Decorin is a proteoglycan that is part of the myocyte extracellular matrix and has been 

shown to bind myostatin and possibly trap it in the extracellular matrix (Miura et al., 2006). 

Kanzleiter and colleagues (2014) found a positive relationship between acute changes in serum 

decorin levels following a strength training session and subject’s 8-repetition maximum (RM) 

leg press strength. Additionally, these authors found a positive relationship between changes in 

decorin mRNA expression and changes in leg press strength following a 12-week strength and 

endurance training program. Therefore, these myokines may provide insight into how the 

hypertrophic response is regulated following an overreach and taper.  

Previous research has demonstrated a strong relationship between weightlifting 

performance and vertical jump height (JH) (Haff et al., 2005; Kawamori et al., 2006). Squat and 

countermovement jumps have been used previously with various athletes to monitor training 

responses during a competitive season (Freitas, Nakamura, Miloski, Samulski, & Bara-Filho, 

2014; Gibson, Boyd, & Murray, 2016). Therefore, monitoring jump performance during the 

competition phase may provide an effective means to determine a weightlifter’s response to 

training without causing undue fatigue. The dynamic mid-thigh pull (MTP) has also been used to 
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assess an athlete’s explosive ability at various loads (Haff et al., 2005; Kawamori et al., 2006). 

Dynamic MTP peak rate of force development and peak force have been shown to be strongly 

related to vertical jump (r=0.61-0.88) and weightlifting performance (r=0.69-0.74) in elite female 

weightlifters (Haff et al., 2005). Additionally, changes in athlete’s muscle architecture have been 

observed following a competition phase (Bazyler, Suchomel, et al., 2016); however, other 

studies have reported no changes (Bazyler, Mizuguchi, et al., 2016a; Zaras et al., 2016). 

Currently, no studies have examined changes in biochemical markers, muscle architecture, and 

kinetic and kinematic variables in conjunction with weightlifting performance during multiple 

competition phases. Therefore, the purpose of this study was to examine changes in 

anthropometrics, muscle CSA, biomarkers, and performance measures in a national level female 

weightlifter following three separate competition phases.  

METHODS 

Athlete Characteristics 

The athlete was a U.S. national level female weightlifter competing in the 69kg weight 

class (age: 21.82 years, body mass: 70.7 kg, height: 161 cm). Her accolades include two first 

place finishes at University National Championships, two second place finishes at the American 

Open, and one third place finish at Senior Nationals. She also competed internationally at the 

Pan-American Junior Championships and Junior World Championships. The athlete had been 

training competitively for 6 years, and performed 4-7 weightlifting sessions per week using a 

block-periodization model. The athlete was informed of the risks and benefits of participating in 

the study and provided written informed consent. The study was approved by the universities’ 

institutional review board.  
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Procedures 

The study occurred over a ten month period consisting of 3 competitions. Each 

competition phase was a 4-week mesocycle where VL was reduced based on the importance of 

the competition (Figure 6.1). The first competition phase (COMP1) led up to a regional 

championship, the second competition phase (COMP2) led up to a local meet that she trained 

through (i.e. didn’t attempt to peak) prior to the third competition phase (COMP3), which lead 

up to the national championship. Training prior to regional and national championships consisted 

primarily of the competition lifts and variations followed by assistance exercises (Table 6.1). 

External training load was estimated using strength training volume-load (VL) (Haff, 2010).  

 

Figure 6.1: Competition phase weekly training volume-load. Black lines represent “normal” average training 

VL±95% confidence limits (broken lines) per week for the macrocycle corresponding with each competition phase. 

VL during COMP1 was reduced by 59%. VL during COMP2 was reduced by 47%. VL during COMP3 was reduced 

by 71%. Changes in average VL relative to normal were -28% for COMP1, -10% for COMP2, and –19% for 

COMP3. VL-volume-load, COMP-competition phase, OR-overreach, T1-taper week 1, T2-taper week 2, T3-taper 

week 3 

 

Table 6.1: Final week of training prior to the third competition 

Time Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

AM  
FS/Jerk : 2x1@75-

80% 
Rest 

Snatch tech: 6x2-

3@50-55% 
Rest Jerk: 2x1@70% 

Snatch: 

2x2@40-45% 
Compete 

   SGSS: 3x5@70-75%  
DB OHP: 3x5@65-

70% 

C&J: 2x2@50-

55% 
 

   Snatch: 2x1@65%     

        

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

OR T1 T2 T3 OR T1 T2 T3 OR T1 T2 T3

COMP1 COMP2 COMP3

V
L

 (
k
g

)



130 
 

PM 
Partial Squat: 

3x2@75-80% 
 

Snatch tech: 6x2-

3@45-50% 
    

 
DB OHP: 3x5@75-

80% 
 CGSS: 3x5@70-75%     

   MTP: 3x2@70-75%     

      SLDL: 3x5@70-75%       

FS/Jerk- front squat followed by a split jerk, DB OHP- dumbbell overhead press, tech-technique; SGSS- snatch grip shoulder 

shrug, CGSS-clean grip shoulder shrug, MTP-mid-thigh pull, SLDL- stiff leg deadlift, C&J- clean and jerk 

 

The athlete completed 18 testing sessions during the three competition phases including 2 

baseline testing sessions at the beginning of the 10-month period. The athlete participated in an 

ongoing athlete monitoring program and was familiar with all tests performed. A full testing 

battery was conducted pre-and post-competition phase (Figure 6.2), whereas selected tests were 

performed weekly (i.e. OR, T1, T2, T3) during each competition phase to avoid significant 

interference with her training. During the full testing battery the athlete completed 

anthropometrics followed by blood draws and squat jumps the first day of the training week after 

an off day from training; dynamic MTPs were performed >48 hrs. later after an off day from 

training. The first day of every training week during each competition phase the athlete 

completed anthropometrics, ultrasonography measurements, and squat jumps. During the two 

baseline testing sessions (>72 hrs. apart during a de-load week) the athlete completed the full 

testing battery.  

 

 

Figure 6.2: Competition phase testing timeline. COMP-competition phase, OR-overreach, T1-taper week 

1, T2-taper week 2, T3-taper week 3 
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Anthropometrics. Standing and seated height were measured to the nearest 0.01 meters 

using a stadiometer (Cardinal Scale Manufacturing Co., Webb City, MO), body mass was 

measured using a digital scale (Tanita B.F. 350, Tanita Corp. of America, Inc., Arlington 

Heights, IL), and the sum of 7 skinfold sites (tricep, subscapular, mid-axillary, supraspinale, 

chest, abdominal, quadricep) were measured by the same examiner at all testing sessions using 

Harpenden skinfold calipers (Baty International, Burgess Hill, UK). The following 

anthropometric measurements were also recorded to determine somatotype using the Heath-

Carter method (Carter, 1975): bicep and medial calf skinfolds, bicep girth (flexed 90° and 

tensed), standing calf girth, abdominal and hip girth, bi-epicondylar femur and humerus breadth.  

Biomarkers. All blood draws were conducted between 7am-9am following an overnight 

fast. Blood was drawn from the antecubital vein into a serum clot tube. The blood was allowed to 

clot for 20 min. at room temperature. The samples were then centrifuged at 3400 rpm for 15 min. 

at room temperature. Serum was pipetted into smaller centrifuge tubes and stored in a -80°C 

freezer. Blood draws were obtained following an off-day from training at the beginning of a de-

load week prior to each competition phase and >72 hours following competitions. Two blood 

draws were obtained at the beginning of the 10-month training period during a de-load week 

within 72hrs to use as a baseline. Cortisol and SHBG were measured in duplicate using an 

IMMULITE 1000 automated immunoassay analyzer (Siemens Healthcare, Erlangen, Germany). 

The coefficient of variation ranged for these assays ranged from 4.9% to 13.7%. Total 

testosterone, IL-6, TNF-ὰ, myostatin and decorin were measured in duplicate using a solid-phase 

sandwich enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s 

procedures (R&D systems, Minneapolis, MN; ThermoFisher Scientific Waltham, MA). Sample 

concentrations were determined by interpolating their respective absorbance values obtained 
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from standard concentrations plotted on a 4-parameter logistic curve using a SpectraMax 340 

microplate reader and SoftMax Pro analysis software (Molecular Devices, Sunnyvale, CA). The 

coefficient of variation for these assays ranged from 1.09% to 8.37%. Bioavailable testosterone 

was calculated from total testosterone, SHBG, and albumin using the Sodergard equation 

(Sodergard, Backstrom, Shanbhag, & Carstensen, 1982).  

Ultrasound. A 7.5 MHz ultrasound probe was used to measure CSA of the vastus lateralis 

(LOGIQ P6, General Electric Healthcare, Wauwatosa, WI). The athlete laid on their left side 

with their hips perpendicular to the examination table in the axial plane. Sampling location for 

the vastus lateralis was 50% of the femur length, which was defined as the distance between the 

greater trochanter and the lateral epicondyle of the femur (Abe, Kumagai, & Brechue, 2000). The 

location was marked with a permanent marker and the ultrasonography probe was covered with 

water-soluble transmission gel to aid acoustic coupling and avoid depression of the skin. Vastus 

lateralis CSA was measured by placing the probe perpendicular to the muscle and moving it in 

the transverse plane to collect a cross-sectional image using the LOGIQView function of the 

ultrasound device (Figure 6.3). The reliability of this method has been determined previously 

(Howe & Oldham, 1996). Vastus lateralis CSA was measured by tracing the inter-muscular 

interface in the cross sectional images. The ultrasound examiner took three cross-sectional 

images from each sonogram and the mean of these images was used for analysis. Intra-session 

reliability has been previously established for this measurement by the same examiner in our 

laboratory (intra-class correlation coefficient (ICC): 0.99) (Bazyler, Mizuguchi, et al., 2016b).  
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Figure 6.3: Vastus lateralis CSA using β-mode ultrasonography. CSA-cross-sectional area 

Squat Jumps. Following a standardized dynamic warm-up, squat jumps were performed 

on dual uniaxial force plates affixed side by side with a sampling frequency of 1000 Hz (Rice 

Lake Weighing Systems, Rice Lake, WI). The squat jumps were performed with a polyvinyl 

coated pipe (0kg) and loaded barbell (20kg) placed across the shoulders. The tester instructed the 

athlete to perform a squat to 90° knee angle, measured using a handheld goniometer, and hold 

the position until the force-time trace was stable. Once the force-time trace was stable, the tester 

shouted “3,2,1...jump” and the athlete performed a maximal effort jump. All jump trials were 

recorded and analyzed using a custom program (LabView 8.5.1, 8.6, and 2010, National 

Instruments Co., Austin, TX). Voltage data from the force platforms were converted to vertical 

ground reaction forces using laboratory calibrations and were smoothed using a 4th order 

Butterworth filter. Jump height was estimated from flight time using the formula: g·flight 

time2·8-1, where “g” is a constant of 9.81 m∙s-2 for the acceleration due to gravity. Peak power 

was determined as the maximal value during the concentric phase obtained from the product of 

the velocity-time and force-time trace and was allometrically scaled for the athlete’s body mass 
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(PPa). The average of the two best trials within a 2 cm difference in JH was used for analysis. 

Additional trials were performed when the difference between two trials was greater than 2cm. 

Intra-session reliability of this method has been previously established in our laboratory (ICC: 

0.96-0.99) (Kraska et al., 2009).  

Dynamic Mid-Thigh Pulls. Following a standardized dynamic warm-up, dynamic MTPs 

were performed in a custom built power rack on dual uniaxial force plates (Rice Lake Weighing 

Systems, Rice Lake, WI) synchronized with 4 string potentiometers (2 on each side of the bar) 

(Celesco Measurement Specialties, Chatsworth, CA) collecting at a sampling frequency of 1000 

Hz using a BNC 2110 connector with an analog to digital converter (DAQCard-6063E, National 

Instruments, Austin, TX) as described previously (Cormie, McBride, & McCaulley, 2007). The 

same absolute loads and bar height were used for each testing session to assess changes over 

time. The athlete performed the MTPs in the following order for each testing session: 1 set of 3 

repetitions (1x3) at 50% of estimated 3RM (150kg) from training, 1x3 at 70% of 3RM, and 1x3 

at 90% of 3RM. These loads were chosen because they are similar to what the athlete used on 

this exercise during training. The athlete was allowed to wear straps for all sets and was 

instructed to rest the bar on the rack between repetitions. All MTP trials were recorded and 

analyzed using a custom program (LabView 8.6, and 2010, National Instruments Co., Austin, 

TX). Concentric peak force was determined as the maximal value obtained from the concentric 

force-time trace and was allometrically scaled for body mass (PFa). Maximal concentric vertical 

displacement (VD) was calculated by triangulating the position of the barbell relative to the front 

and back linear position transducers given the known distance between the two linear position 

transducers in conjunction with their displacement data. The mean PFa and VD of three 

repetitions for each load were used for analysis. Intra-session reliability of this method has been 
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previously established in our laboratory (ICC: 0.99 for both measures) (Goodin, DeWeese, Sato, 

Mizuguchi, & Kavanaugh, 2015). 

Statistical Analyses 

The precision (probability) of weekly changes relative to pre-OR values during each 

competition phase was determined using previously described methods (Hopkins, 2000). 

Qualitative terms corresponding to the probability values associated with weekly changes 

relative to pre-OR for each competition phase were classified as almost certainly not (< 1%), 

very unlikely (< 5%), unlikely (< 25%), possibly (25-75%), likely (>75%), very likely (> 95%), 

and almost certain (> 99%). Cohen’s d effect sizes were calculated for the mean differences 

between pre-OR and subsequent weekly testing sessions during each competition phase using the 

pooled standard deviation across sessions. Effect sizes were classified as trivial (<0.25), small 

(0.25-0.5), moderate (0.5-1.0), and large (>1.0) (Rhea, 2004). The smallest worthwhile change 

(SWC) was used to determine whether changes were meaningful relative to pre-OR values. 

Smallest worthwhile change was calculated for each dependent variable by multiplying the 

pooled standard deviation of all time points over ten months of training by 0.3 (Halperin et al., 

2016; Hopkins, 2004). Alpha level for all analyses was set at p≤0.05. Probabilities of clinically 

meaningful changes were calculated using a published online spreadsheet (Hopkins, 2000). All 

other analyses were performed using Microsoft Excel 2013 (Microsoft Corporation, Redmond, 

WA, USA). 
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RESULTS 

Volume-Load 

Average training VL during COMP1 was reduced by 59% from the first week to the final 

week of the phase. Average training VL during COMP2 was reduced by 47% from the first week 

to the final week of the phase. Average training VL during COMP3 was reduced by 71% from the 

first week to the final week of the phase. Changes in average training VL for each competition 

phase relative to normal average training VL during the corresponding macrocycle were -28% for 

COMP1, -10% for COMP2, and –19% for COMP3. 

Anthropometrics and Cross-Sectional Area 

The athlete was characterized as an endomorphic mesomorph (3.5-6.9-0.4). Her standing 

height was 162cm, femur length was 41cm, and her initial body fat percentage calculated from the 

sum of skinfolds was 15.4%. She met performance goals for the first competition (total: 200kg) 

and the second (total: 193kg), but not the third (total: 196kg). Body mass very likely increased 

following COMP2 (99%, ES=2.61), and very likely decreased following COMP3 (99%, ES=1.87) 

compared to pre-OR values. Similarly, sum of skinfolds very likely increased following COMP2 

(99%, ES=0.9), and very likely decreased following COMP3 (99%, ES=1.18). Vastus lateralis 

CSA very likely decreased following COMP3 (99%, ES=1.93) (Figure 6.4). 
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Figure 6.4: Weekly changes in body mass, CSA, and unloaded JH during each competition phase. Shaded region 

represents smallest worthwhile change (SWC) from pre-overreach values for each competition phase. Gray marker 

represents week of competition. *precision>75% (likely) and **precision>95% (very likely) change from pre-

overreach values. CSA-cross-sectional area, JH-unloaded squat jump height, OR-overreach, T1-taper week 1; T2-

taper week 2, T3-taper week 3, DL- de-load week. 
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Biomarkers 

Baseline values for all biomarkers were as follows: total testosterone (127.50 ± 17.68 ng/dl), 

SHBG (95.25 ± 30.76 nmol/L), bioavailable testosterone (27.33 ± 10.92 ng/dl), cortisol (13.45 ± 

4.45 ug/dl), T:C ratio (10.26 ± 4.71 A.U.), IL-6 (0.28 ± 0.06 pg/ml), TNFα (10.44 ± 0.30 pg/ml), 

decorin (5573.26 ± 336.95 pg/ml), myostatin (4554.51 ± 599.72 pg/ml). Total testosterone likely 

decreased following COMP2 (89%, ES=1.5) and likely increased following COMP3 (82%, 

ES=1.17). Sex hormone binding globulin likely increased following COMP3 (76%, ES=1.08). 

Bioavailable testosterone likely decreased following COMP2 (85%, ES=1.23), and possibly 

increased following COMP3 (72%, ES=0.81). Cortisol likely decreased following COMP1 (75%, 

ES=0.96), very likely decreased following COMP2 (97%, ES=1.84) and possibly decreased 

following COMP3 (70%, ES=0.88). The T:C ratio possibly decreased following COMP2 (67%, 

ES=1.25), and likely increased following COMP3 (88%, ES=2.64). Interleukin-6 and TNFα 

concentrations likely decreased following COMP3 (79%, ES=2.47, 81%, ES=3.59, respectively). 

Decorin concentrations very likely decreased following COMP2 (99%, ES=1.95). Myostatin 

concentrations very likely increased following COMP1 (99%, ES=1.21) and very likely decreased 

following COMP2 (99%, ES=1.96) (Figure 6.5).  
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Figure 6.5: Changes in biomarkers pre- to post-competition phase. *precision>75% (likely) and **precision>99% 

(almost certain) change from pre-overreach value. T:C-testosterone to cortisol ratio, IL-6-interleukin 6, COMP-

competition 

 

Squat Jumps 

Squat JH with 0kg likely increased the third week of the taper during COMP1 (89%, 

ES=0.95), very likely increased the third week of the taper during COMP2 (99%, ES=1.83), and 

possibly decreased the third week of the taper during COMP3 (69%, ES=0.99). There were no 

worthwhile changes in PPa with 0kg during the third week of the taper for any competition. 

Squat JH with 20kg likely decreased the third week of the taper during COMP3 (82%, ES=1.52). 

Squat jump peak power allometrically scaled with 20kg likely decreased the third week of the 

taper during COMP1 (86%, ES=2.1) and COMP2 (88%, ES=1.19).  

Dynamic Mid-Thigh Pulls 

Concentric VD50% likely increased following COMP1 (94%, ES=0.81) and very likely 

increased following COMP3 (97%, ES=0.95). Concentric VD70% likely increased following 

COMP1 (81%, ES=0.84). Concentric VD90% likely increased following COMP1 (93%, 

ES=0.84), and likely decreased following COMP2 (83%, ES=0.61), and COMP3 (94%, 

ES=0.87). Concentric PFa50% very likely decreased following COMP2 (98%, ES=1.47), and 

possibly decreased following COMP3 (70%, ES=0.54). Concentric PFa70% likely increased 

following COMP1 (85%, ES=0.84), and likely decreased following COMP2 (94%, ES=1.14). 
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Concentric PFa90% likely increased following COMP1 (81%, 0.6), and very likely decreased 

following COMP2 (99%, ES=1.39).  

DISCUSSION 

The purpose of this investigation was to examine changes in anthropometric, muscle 

CSA, biochemical, and performance measures in a national level female weightlifter following 

three separate competition phases. The primary results of this investigation include: a) 

weightlifting performance goals were met for COMP1 and COMP2, but not COMP3, b) vastus 

lateralis CSA increased or was preserved following each competition phase except for COMP3, 

c) the T:C ratio likely increased, IL-6 and TNFα likely decreased following COMP3, whereas 

myostatin and decorin very likely decreased following COMP2, d) unloaded squat JH likely 

increased the final week of COMP1 and COMP2, whereas unloaded and loaded squat JH 

possibly and likely decreased the final week of COMP3, e) MTP concentric VD90% likely 

increased following COMP1 and likely decreased following COMP3.  

Descriptive Characteristics 

The athlete’s somatotype (endomorphic mesomorph) matched previous descriptions of 

high level female weightlifters (Stone, Pierce, Sands, & Stone, 2006). She was younger (21.82 y) 

than the average age of a group of seven U.S. elite female weightlifters (23 ± 4 y) (Stone et al., 

2006). Her height (162 cm) was similar (161.1 ± 5.8 cm), whereas her initial body mass (70.8 

kg) was slightly higher than the average reported in this group (68.9 ± 7.5 kg). Her baseline body 

fat percentage (15.4%) was lower than the average reported in this group (19.6 ± 4.4%). Her 

baseline maximal snatch (90 kg) and clean and jerk (110 kg) were similar to the average reported 

from a group of six U.S. female weightlifters (90.8 ± 8.0 kg, 110 ± 16 kg) who had a higher 

average body mass (82.8 ± 18.9 kg) (Haff et al., 2005). Her baseline unloaded squat JH (0.24 m) 
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and PPa (177.57 W/kg0.67) were slightly lower than those reported in this same group (0.29 ± 

0.05 m, 185.53 ± 37.45 W/kg0.67). Her baseline total (127.5 ng/dl) and bioavailable testosterone 

concentrations (27.33 ng/dl) were greater than the normal ranges reported for pre-menopausal 

females (8-60 ng/dl, 0.8-10 ng/dl, respectively) (Mayo Clinic, 2016c). Her baseline serum 

cortisol (13.45 ug/dl) and SHBG (95.25 nmol/L) concentrations were within the normal range for 

females (7-25 ug/dl, 18-144 nmol/L, respectively) (Mayo Clinic, 2016a, 2016b). Interleukin-6 

and TNFα, were similar to normal physiological values (<5 pg/ml, <22 pg/ml) (ARUP, 2014; 

Fayad et al., 2001). While concerns have been raised about detecting mature myostatin in serum 

due to poor specificity of previous assays, the athlete’s serum myostatin concentration (4,554.54 

pg/ml) was similar to those reported for young females using a mass-spectrometry based assay 

(5,500 ± 2,100 pg/ml) (Bergen et al., 2015). Normative serum decorin concentrations have not 

been established. Nonetheless, the athlete’s (5,573.26 pg/ml) concentrations were higher than 

previously reported values in healthy control subjects (1,514.9 ± 391.2 pg/ml) (Tanino et al., 

2014). 

Anthropometrics and Cross-Sectional Area Changes 

Changes in her sum of skinfolds following each competition corresponded with the 

changes in body mass and varied between competition periods. Body mass increased weekly 

during the competition phase leading up to COMP2; however, she was training through this 

competition so weight loss was not attempted. Despite the large decrease in training VL during 

each competition phase, there were no worthwhile reductions in vastus lateralis CSA. The 

overreaching microcycle implemented in the first week of each competition phase may have 

helped preserve CSA during the following tapering weeks. A decrease in CSA was observed 

following COMP3, which may be due to the large, abrupt decreases in body mass over this 
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competition phase (-6.0 kg) compared to the others (COMP1: -2.5 kg, COMP2: +2.2 kg), 

particularly during the final week (-3.5 kg). An alternative explanation could be the larger 

decrease in average training VL across this competition phase (71%) compared to the others 

(COMP1: 59%, COMP2: 47%). The poor weight loss strategy used coupled with the decreases in 

CSA following COMP3 could at least partially explain why she did not meet performance goals 

for this competition.  

Biomarker Changes  

Changes in testosterone, cortisol, T:C, and SHBG were consistent with previous studies 

on overreaching and tapering with weightlifters (Busso et al., 1992; Fry et al., 1994; Hakkinen et 

al., 1987). Total and bioavailable testosterone only increased following the competition phase 

with the largest decrease in VL (COMP3), whereas moderate to large decreases in cortisol were 

observed following each competition phase. Increases in the T:C ratio following COMP3 were 

primarily due to increases in total testosterone rather than decreases in cortisol. Despite very 

likely decreases in cortisol following COMP2, there was a possible decrease in T:C due to the 

likely decrease in total testosterone. Considering she was training through COMP2, reductions in 

T:C are likely due to the greater training stress during this period. The large reduction in VL 

leading up to COMP3 likely explains the increased T:C. As expected, SHBG mirrored changes 

in total testosterone with increases observed following COMP3 indicating a homeostatic 

regulation of free testosterone. Despite the greater testosterone bioavailability, CSA was not 

preserved following COMP3 demonstrating that changes in testosterone concentrations over this 

period were more indicative of changes in training stress than changes in hypertrophic signaling. 

We also acknowledge that changes in these biomarkers may be due to normal variation 

throughout her menstrual cycle; however, none of the blood draws occurred around her ovulation 
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window, which decreases the probability that testosterone changes were due to a luteinizing 

hormone surge.  

Serum myostatin has been shown to be inversely related with skeletal muscle mass and is 

a potent inhibitor of muscle protein synthesis (Bergen et al., 2015). Decorin has been shown to 

antagonize myostatin and serum levels have been found to increase following strength training 

(Kanzleiter et al., 2014). Therefore, these biomarkers may provide an indication of changes in 

hypertrophic/atrophic signaling following training. Serum decorin and myostatin changed in a 

similar manner following each competition phase, and the changes corresponded with training 

VL. Specifically, average training VL during COMP1 was 28% lower than her normal average 

training VL during this macrocycle, which corresponded with a very likely, large increase in 

myostatin. In contrast, average training VL during COMP2 was only 10% lower than her normal 

average training VL during this macrocycle with 3 of the 4 weeks having a similar VL to the 

macrocycle average. The relatively higher average VL during this competition phase 

corresponded with a very likely, large decrease in myostatin and decorin. These findings provide 

evidence that serum concentrations of these myokines may be related to changes in training VL. 

The large decreases in serum decorin and myostatin following COMP2 suggest a homeostatic 

regulation of these myokines. However, caution should be applied in interpreting these findings 

as changes in resting serum myostatin and decorin can be contributed to by tissue other than 

muscle. Changes in serum decorin could also be indicative of tendon restructuring as it has been 

shown to have a crucial role in the early repair process (Dunkman et al., 2014).  

Interleukin-6 and TNF-ὰ are acute phase proteins that promote secretion of acute phase 

reactants (i.e. C-reactive protein, fibrinogen, plasminogen) in response to injury, infection, and 

tissue damage (Biffl, Moore, Moore, & Peterson, 1996; Smith, 2000). Systemic elevations of 
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these cytokines have been observed following injury and various disease states (Peake, Della 

Gatta, Suzuki, & Nieman, 2015). They are also implicated in chronic fatigue syndrome and 

upper respiratory tract infections limiting athletic performance. Systemic inflammation can lead 

to “sickness behaviors” such as tiredness, drowsiness, and lethargicness, which promote return to 

homeostasis (Smith, 2000). Elevated IL-6 and TNFα have been observed following overreaching 

periods and are subsequently reduced following a taper (Farhangimaleki et al., 2009; Main et al., 

2010). Worthwhile reductions in IL-6 and TNFα were only observed following COMP3. 

Considering the role of IL-6 and TNF-ὰ in the inflammatory response to training it is possible 

that decreases in these markers are related to the greater reduction in training VL during this 

competition phase compared to the others. While reduced inflammation is advantageous for 

recovery, reduced mechanical and metabolic stress also decrease hypertrophic signaling 

(Schoenfeld, 2013). Therefore, reduced training-induced inflammation may also explain the 

decreases in CSA observed following COMP3.  

Furthermore, the observed decreases in IL-6 and TNFα coupled with increases in the T:C 

ratio following COMP3 provide evidence that these circulating cytokines influence the 

hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis in response to 

significant decreases in training VL. In support of this, IL-6 and TNF-ὰ have been found to 

increase glucocorticoid production via interaction with hypothalamic receptors resulting in the 

secretion of corticotropin releasing hormone (Schobitz, Reul, & Holsboer, 1994). There is also 

evidence that elevated IL-6 and TNF-ὰ disrupt hypothalamic secretion of gonadotropin-releasing 

hormone possibly leading to reduced testosterone secretion (Schobitz et al., 1994; Wu & Wolfe, 

2012). Therefore, reductions in IL-6 and TNF-ὰ following COMP3 may have indirectly 

attenuated cortisol secretion and promoted greater testosterone secretion explaining the elevated 
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T:C ratio following COMP3. These findings demonstrate that training during a competition 

phase is as a balance between reducing training stress and inflammation (fatigue) while 

preserving and expressing previously accrued adaptations (fitness) to optimize performance 

(Stone, Stone, & Sands, 2007). 

Squat Jump and Mid-Thigh Pull Performance Changes 

Squat jump and MTP performance provide an indication of the athlete’s explosive ability 

prior to and following the competition phase. Overall, squat jump and MTP performance 

changes correspond with weightlifting performance at each competition. Increases in unloaded 

squat JH were observed the final week of the competition phase prior to COMP1, whereas 

decreases in unloaded and loaded squat JH were observed the final week of the competition 

phase prior to COMP3. Similarly, MTP concentric VD90% increased following COMP1, and 

decreased following COMP3. Squat and MTP performance changes were inconsistent (positive 

and negative) following COMP2 making it difficult to characterize the athlete’s response. 

However, MTP PFa was consistently reduced at all loads following COMP2, which is more 

likely reflective of the increase in body mass during this period rather than changes in peak 

force. Also, training VL during COMP2 was greater than her normal training VL except for the 

week of competition because she was not peaking. Overreaching periods have been shown to 

alter weightlifting technique and cognitive function (Dupuy et al., 2014; Stone et al., 1993), 

which may explain why changes in her squat jump and dynamic MTP performance were 

inconsistent following COMP2.  

Interestingly, concentric VD50% increased although VD90% decreased following 

COMP3. These findings indicate that heavier loads may be necessary to identify sport-specific 

performance changes in weightlifters. Considering the relative ease, low fatigue, and low injury 
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risk associated with performing dynamic MTPs, performing this test with heavier loads is not a 

concern from an athlete monitoring standpoint. The unloaded squat jump performance 

improvements and dynamic MTP performance improvements corresponded with increases in 

CSA and successful weightlifting performance during her first competition. In contrast, the 

decreases in unloaded and loaded squat jump performance and dynamic MTP performance 

corresponded with decreases in CSA and unsuccessful weightlifting performance during her 

third competition.  

CONCLUSION 

In summary, the athlete’s competition weightlifting performance can be explained by 

changes in body mass, muscle CSA, biochemical, kinetic and kinematic factors following a 

competition phase. Specifically, these findings demonstrate that vastus lateralis CSA can be 

maintained following a competition phase in a high level weightlifter provided large changes in 

body mass are not attempted close to competition. Changes in circulating cytokines (IL-6 and 

TNFα) may explain the alterations in testosterone and cortisol concentrations corresponding with 

the changes in weightlifting training VL observed in the present study and in previous 

investigations following a taper. However, reduced muscle damage-induced inflammation can 

reduce hypertrophic signaling, which may have partially explained the observed decreases in 

CSA and corresponding decreases in squat jump and dynamic MTP performance following 

COMP3. Conversely, increases in squat jump and dynamic MTP performance likely explain 

successful performance during her first competition. The athlete trained through her second 

competition, which may explain the reductions in total and bioavailable testosterone, possible 

reductions in the T:C ratio, and corresponding decreases in loaded squat jump and dynamic MTP 

performance. Concurrent changes in serum decorin and myostatin suggest homeostatic 
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regulation and appeared to correspond with changes in training VL. Overall, these findings 

provide a biochemical, morphological, and biomechanical basis for alterations in performance 

outcomes following multiple competition phases in a national level weightlifter.   
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CHAPTER 7 

SUMMARY AND FUTURE INVESTIGATIONS 

 The purpose of this dissertation was to examine changes following a peaking phase in 

individual event and team sport strength-power athletes. This purpose was addressed by 

conducting individual research investigations: 1) examining the effects of an ORT on individual-

event strength-power athletes preparing for conference championships, 2) examining changes in 

team sport athletes throughout a competitive season in preparation for conference 

championships, 3) examining differences in the effects of a peaking phase between new and 

returning team sport athletes in order to identify variables that best explain the variation in 

performance changes, and 4) examining changes in a national level female weightlifter following 

three separate competition phases.  

 The results of study I demonstrated that pre/in-season training appeared to elicit increases 

in MT, whereas the ORT resulted in improved explosive ability in the absence of further 

detectable changes in muscle architecture. Additionally, the ORT appeared to augment throwing 

performance at conference championships and national ranking, which may have been due to the 

reduced RPETL and VLd. The findings of this study show that an overreaching week followed 

by a 3-week taper is an effective means of improving explosive ability and throwing 

performance in collegiate track and field throwers. Collegiate throwers and athletes in similar 

sports may benefit from an ORT phase where training load is exponentially reduced prior to an 

important competition. 

 In order to assess whether an ORT would benefit team sport athletes preparing for 

conference championships, we conducted two further studies (study II and III) with NCAA 

division I female collegiate volleyball athletes. In study II, we found positive alterations in 
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female volleyball athletes vastus lateralis muscle architecture and preserved explosive ability 

over the competitive season while performing a periodized training program. Additionally, the 

tapering period resulted in large decreases in body fat percentage and moderate decreases in 

vastus lateralis MT with no statistical changes in jumping performance. Large to very large, 

negative relationships were observed between maximal strength and changes in SJPPa and SJH 

with various loads (0kg to 40kg). One possible explanation is that the training stimulus may have 

been insufficient for the stronger athletes, which negatively affected their SJ performance. In 

support of this, the two athletes with the greatest relative strength decreased SJ performance over 

the course of the season suggesting an insufficient strength training stimulus. A solution we 

suggested was to perform an overreaching microcycle prior to the taper in an attempt to preserve 

previously accrued muscular adaptations.  

 In a follow up study with a similar team of volleyball athletes (study III), we had players 

perform an overreach microcyle prior to the taper and an abbreviated overreach the week of 

conference championships followed by a sharp reduction in training load. We found large to very 

large differences in age, trivial to large differences in vastus lateralis muscle architecture, trivial 

to very large differences in relative maximal strength and CMJ performance in favor of returners 

over new players at baseline. We also found moderate to very large, and trivial to very large 

differences in CMJ JH and PPa supercompensation during the peaking phase in favor of the 

returners over the new players. These findings of this study demonstrated that returners 

responded better to the ORT than the new players. Upon further examination, we found that the 

number of sets played during the peaking phase and athlete’s baseline back squat 1RMa were the 

strongest correlates of JH supercompensation during the peaking phase. A possible explanation 

is that athletes who played more sets during the peaking phase had greater relative maximal 
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strength, which may have enhanced their ability to tolerate higher training loads resulting in 

greater CMJ performance supercompensation during the taper. These findings suggest that 

training prescription during the peaking phase should differ between athletes based on their 

relative maximal strength and time spent competing. Strength coaches should emphasize 

developing lower extremity muscle architectural characteristics to enhance strength of the 

musculature contributing to volleyball performance. 

 A fourth study was conducted to provide a more comprehensive evaluation of changes a 

strength-power athlete undergoes during and following a peaking phase. The national level 

female weightlifter had a similar somatotype and weightlifting total to those previously reported 

for high level U.S. weightlifters. The findings showed that vastus lateralis CSA can be 

maintained following a competition phase in a high level weightlifter provided large changes in 

body mass are not attempted close to competition. Changes in circulating cytokines (IL-6 and 

TNFα) may explain the alterations in T and C concentrations, which corresponded with the 

changes in weightlifting training VL. The athlete trained through COMP2, which may explain 

the reductions in total and bioavailable T, possible reductions in the T:C ratio, and corresponding 

decreases in loaded SJ and dynamic MTP performance. Changes in serum myostatin and decorin 

following the competition periods appeared to correspond with changes in training VL with 

increases in training VL leading to decreases in myostatin and decorin indicating a homeostatic 

regulation of these muscle growth-related markers in serum. The findings of this study provide a 

biochemical, morphological, and biomechanical basis for alterations in performance outcomes 

following multiple competition phases in a national level weightlifter. 

 Overall, the findings of these investigations support the use of an ORT for strength-power 

athletes and provide an underlying biochemical, morphological, and biomechanical basis for the 
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observed changes in performance. The investigations were, however, observational and did not 

control for multiple confounding variables that could influence the outcomes. Therefore, future 

research should use an experimental design and address changes in muscle architecture and sport 

performance in individual event and team sport strength-power athletes following a taper with or 

without a prior overreach. Future studies should also examine the effect of inflammatory 

cytokines on GnRH and subsequent production of LH and T following an ORT in male and 

female strength-power athletes. Additional mechanistic research should examine changes in the 

serum concentrations of decorin and myostatin in conjunction with expression of its receptor 

(Activin-II) on the myocyte surface following ORT phases. Providing additional information of 

the biochemical, morphological, and biomechanical changes following ORT periods will greatly 

enhance how these characteristics can be modified to optimize performance at crucial 

competitions with individual event and team sport strength-power athletes.  
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