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ABSTRACT 

 

Ecological Informatics: An Agent Based Model on Coexistence Dynamics 

 by  

Shiva Thapa 

The coexistence of species is probably one of the most interesting and complex phenomenon in 

nature. We constructed an agent based model to study the coexistence dynamics of prey - 

predator populations by varying productivity levels of producers in fragmented and connected 

habitats along with different levels of quality of predators. Our results indicated that productivity 

levels of producers in fragmented and connected habitats along with levels of predator quality 

are significantly responsible for overall predator - prey population size and survivorship. In the 

absence of predation, competition between identical prey populations is more probable in 

connected habitats than in unfragmented or fragmented habitats. Implementing low quality 

predators in the habitats positively influences the overall coexistence dynamics whereas 

implementing high quality predators tend to decrease the prey populations. Fragmented habitats 

provide for greater prey population survival time in highly productive environments but low prey 

population survival time in less productive environments.  
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CHAPTER 1 

INTRODUCTION 

 

Habitat Fragmentation 

 

One form of habitat fragmentation occurs when anthropogenic habitat changes lead to 

mosaic landscapes of habitat patches which is surrounded by more or less optimal habitats 

impeding movements of organisms (Wu 2009). Habitat fragmentation can be defined as the 

discontinuity in the spatial distribution of resources and other vital elements supporting survival 

conditions that then negatively influences occupancy, reproduction and survival of populations 

(Franklin et al. 2002). Fragmentation affects populations by reducing the size of optimal habitats 

which results in smaller population sizes that are vulnerable to bigger changes even under 

minimal fluctuations of demographic factors (Krohne 2001, 137 – 139 p).  Fragmentation of 

landscapes is a universal source of environmental and global species change (Fischer and 

Lindenmayer 2007; Gliwicz and Wrzosek 2008; Blackburn et al. 2017) . The four basic and most 

prominent effects of fragmentation on habitat patterns are decrease in amount of habitat, increase 

in patchiness of habitat, reduction in size of the habitat patches and increase in isolation of 

habitat patches (Fahrig 2003).  Habitat loss and habitat fragmentation occur together (Fahrig 

1997) and are one of the major challenges to biodiversity and ecosystem conservation processes 

(Schweiger et al. 2000; Fahrig 2003; Aguirre and Dirzo 2008; Salau et al. 2012; Brudvig et al. 

2015; Prugh 2009).The effects of habitat fragmentation intensify the effects of habitat loss and 

hence, lead to greater population decline (Bender et al. 1998). Fragmentation also exposes 

organisms to different physical and biological conditions at an ecosystem boundary or within 

connecting ecosystems creating edge effects (Fisher and Lindenmayer 2007). Edge effects might 
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cause altercation in biotic and abiotic conditions (physical conditions) which in return affects the 

organisms living in such fragmented habitats (Murcia 1995). A study conducted in ecologically 

critical sagebrush communities in Utah indicated that the proportion of active burrows, photo 

counts and fecal pellets for inhabiting pygmy rabbits was reduced significantly in edge habitats, 

suggesting a smaller population near habitat edge (Pierce et al. 2011). Fragmented habitats which 

have been stripped of their attractiveness are also responsible for reduced plant – pollinator 

interactions which eventually leads to reduced diversity and abundance of producers and results 

in extinction of populations in such habitats (Rathcke and Jules 1993; Aguirre and Dirzo 2008; 

Andrieu et al. 2009). A study carried out to measure the effect of forest fragmentation on male 

euglossine bees’ population by Powell and Powell (1987). It was observed that the rate at which 

the bees visited the same three chemical attractants was lower in small forest fragments than in 

continuous forests. Also, it has been shown that the smaller the size of the fragmented land, the 

lesser the presence of pollinator species in such locations (Aguirre and Dirzo 2008). Habitat 

fragmentation also leads to formation of regional metapopulation (Taylor 1991; Krohne 1997; 

Fahrig 2003; Wu 2009). Metapopulation theory differs from island biogeography (MacArthur 

and Wilson 1967) in that it focuses on networks of small patches lacking mainland habitat and is 

restricted to dynamics of only one species (Harrison and Bruna 1999). Metapopulations are 

basically a group of sub-populations with local extinctions and regional recolonization or 

dispersal (Wu 2009). Studies done on Glanville fritillary butterfly (Melitaea cinxia), suggested 

that metapopulations in smaller patch networks are often more at risk than the metapopulations 

in large and well connected networks (Hanski 1998). The effects of habitat fragmentation could 

be more complex because its results depend upon how species react to the features in fragmented 

habitats and their interactions with other species in such habitats. Species confined to fragmented 
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habitats also have less time to adapt to the newly changed environment especially for the non-

edge species which adds to the detrimental effects of habitat fragmentation (Wu 2009). 

Corridor Connectivity 

 

A relative level to which landscapes assist or hinder the movement of organisms between 

resource patches can be defined as connectivity (Tischendorf and Fahrig 2000). Connectivity is a 

fundamental concept and is basically a measure of habitat patch, rather than of total function of 

landscapes (Moilanen and Hanski 2001; Taylor et al. 2006). Corridors, which are narrow strips 

of habitats establish connectivity among different isolated habitats (Rosenberg et al. 1997; Levey 

et al. 2005; Watkins et al. 2011; Brudvig et al. 2012) thereby connecting two or more larger 

habitat patches, improving and maintaining the viability of specific species’ population in those 

habitat patches (Beier and Noss 1998; Fisher and Lindenmayer 2007). Corridors connect local 

sub-populations into a single meta-population, hence, lowering the risks of local extinctions 

caused by human activities and ensuring long – term survival (Watkins et al. 2011). Landscape 

connectivity is also vital for preserving the ecological and genetical diversity of populations 

threatened by habitat fragmentation and climate change (Rayfield et al. 2016). The problem 

arising due to resources scarcity and habitat fragmentation could be addressed by allowing 

species to move freely between the patches of fragmented landscapes (Watkins et al. 2011; Salau 

et al. 2012). One of the pioneering studies in the field of corridor connectivity was conducted in 

a vole population to see the effects of biological corridors (La Polla and Barrett 1993). The study 

demonstrated that male voles’ movements between the patches with corridors was significantly 

higher than between the patches lacking corridors (La Polla and Barrett 1993). Similarly, studies 

done in movement patterns of Oregon salamander (Ensatina eschscholtzii) (Rosenberg et al. 

1997) and butterflies at the Savannah River Site in South Carolina  (Haddad 1999) suggested that 
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corridors do have effects that increase inter-patch movements and hence, population density. A 

study performed on the role of  shrub strips’ as corridor by passerine birds in northeastern Poland 

showed that corridors not only facilitated birds’ movement towards littoral lakes in search of 

prey (dipterans, hymenopterans and lepidopteran larvae), but also helped them guide their 

directions of flight (Dmowski and Kozakiewicz 1990). According to Ament et al. (2014), one 

importance of connectivity besides daily travel and migration is that it provides dispersal. 

Dispersal is movement of individuals that allow continued genetic and demographic connectivity 

among populations (Holyoak and Lawler 1996; Ament et al. 2014). Dispersal is vital for efficient 

connectivity (Vasudev et al. 2015). Recent studies have shown that Canada lynx (Lynx 

canadensis) populations which listed as threatened under the US Endangered Species Act (Bayne 

et al. 2008) in northern Rocky Mountains, rely on such dispersal behaviors using corridors to 

maintain healthy population connectivity between Canada and the US (Squires et al. 2013). 

Biodiversity conservation in landscapes experiencing climate and land – use changes requires 

planning that incorporates habitat networks facilitating dispersal at various spatial scales 

(Rayfield et al. 2016). The effectiveness of corridors has also been highlighted by many studies 

involving habitat patch connectivity and population survival, in white – footed mice  (Fahrig and 

Merriam 1985), designing a conservation plan for protecting the habitat for white giant pandas in 

the Qionglai mountain range in China (Xu et al. 2006), studying the coexistence dynamics of 

predator – prey population dynamics (Karsai and Kampis 2011), studying movement of jaguars 

through conservation corridors (Watkins et al. 2011) and studying conditions preventing 

extinctions of cougar population in the Santa Ana Mountains of southern California (Beier 

1993).  
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Corridors have not always been shown to be effective by all the studies. In one of such 

cases, it has been shown that that open corridor connectivity could lead to increased invasion of 

exotic species which could eventually lead to decreased red ants species diversity (Resasco et al. 

2014). In another such study, it was shown that corridors were responsible for elevated local fire 

temperatures during burns because of increased inter – patch connectivity and through within-

patch edge effects (Brudvig et al. 2012).  

Competition, Predation, and Coexistence 

 

The model for growth of single species in an unchanging environment, proposed by 

Thomas R. Malthus (1798) which theorized exponential population growth written as 
ⅆ𝑥

ⅆ𝑡 
 = r∙x, 

where x = the number of population and r = constant rate of increase, served as the backbone for 

all deterministic models of interactions between species (Wangersky 1978). It was not until 1838 

when P.F. Verhulst, a Belgian mathematician proposed a logistic growth rate for population 

increase (Bacaer 2011, 31 – 41 p). The logistic growth rate modified the exponential growth rate 

by introducing the idea of density dependence or intraspecific competition which means that the 

performance of a population is determined by the number of individuals within that population 

and is written as 
ⅆ𝑁

ⅆ𝑡
 = r∙N (

𝐾−𝑁

𝐾
) where K = carrying capacity, N = population density and r = 

is the rate of intrinsic growth under specified environmental conditions  (Ayala 1970; 

Vandermeer 2010). The logistic growth equation can easily be expanded to the cases of two or 

more species competing for the same resource (Ayala 1970). Lotka (1925) and Volterra (1931) 

considered two species interactions in their famous competition equation which is written as  

𝑑𝑁1

𝑑𝑡
= 𝑟1𝑁1 (

𝐾1 − 𝑁1 − 𝛼𝑁2

𝐾1
) 
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𝑑𝑁2

𝑑𝑡
= 𝑟2𝑁2 (

𝐾2 − 𝑁2 − 𝛽𝑁1

𝐾2
) 

where N1 and N2= population size of species I and species II respectively, t = time, r1 and r2= 

intrinsic rates of population increase and K1 and K2 = carrying capacity of population I and 

population II respectively, α = effect an individual of species 2 has on the carrying capacity of 

species 1, β = effect an individual of species 1 has on the carrying capacity of species 2 (Ayala 

1970; Tilman 1980; Jungck 1997; Karsai et al. 2016). 

Gause’s principle (1934) which stated that identical competitors cannot coexist was 

conceived as an empirical testing of Lotka – Volterra equations (Hardin 1960). For coexistence 

to occur, the two-competing species either compete for different resources or each species use 

different resources (Ayala 1970). This idea of competitive exclusion has been one of the most 

important ecological principles for the past century (Neill et al. 2009). This principle however, 

contradicts with the observed biodiversity (Kalmykov and Kalmykov 2012). Indeed, the 

competitive exclusion principle is only valid in the case of fixed resource densities (Armstrong 

and McGehee 1980) and based on oversimplified theories about the nature of competition 

process between species (Ayala 1970).  Another flaw of the model is that it neglects the ages and 

sizes of the participating individual organisms (Vance 1984). The model fails to accommodate 

density – independent factors such as age related deaths, accidental deaths, sex ratio, mating 

success and gender related mortality which could alter the speed of population growth and hence, 

the population of interacting species (Schmickl and Karsai 2010). It lacks explanation of how 

species use a resource and how they hinder each other’s abilities to acquire the resource (Vance 

1984). A study done on five species of congeneric warblers and their homogenous habitats in 

boreal forests showed that variation of feeding position within the tree, difference in individual 
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behavior and nesting dates helped reduce competition and allowed coexistence (MacArthur 

1958). The outcome of such competition need not be extinction of one of the participating 

species, but rather adaptive changes within the species that enhance survival (Levin 1970). 

Competition and coexistence are the major ecological processes that shape the structure of a 

closed community, its constituent elements and response to disturbance (Fargione and Tilman 

2002). Competition effects the natural balance between species either by character displacement 

which leads to separation of morphological and physiological traits in species in the long run, or 

by extinction of one of the species because of interspecific competition as a short – term effect 

(Krohne 2001, 228 – 232 p).  

Predation of competing species, on the other hand, has been regarded as a potentially 

important factor leading to coexistence (Caswell 1978; Chase et al. 2002). Competition and 

predation are not independent of one another (Gurevitch et al. 2000). Carnivory and herbivory 

are two forms of predation (Krohne 2001, 245 p). Animal species diversity in a habitat may 

results from predator effects on herbivores (Paine 1966; Gliwicz and Wrzosek 2008). A study 

done on structure of freshwater animal communities showed that fish predation played a role in 

maintaining coexistence among zooplankton (Hall et al. 1970). Similarly, the work by Paine 

(1966) showed that after elimination of predator starfish Pisaster, the number of overall species 

present around the coastline was reduced from 15 to 8, which shows that lack of predation 

resulted in a less diverse local community. Both systems studied above are large and complex 

enough to resemble an open model system containing many different cells for prey refuge where 

predation is irregular rather than continuous (Caswell 1978). Fluctuations in such intensity of 

predation was the key to maintain the overall aquatic community structure of Chaoborus species 

in the study done by (Garcia and Mittelbach 2008) 
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The explanations for coexistence within a given trophic level are usually tied to  

competition by understanding species’ interactions where competition does not exclude members 

of the assemblage (Caswell 1978). Gurevitch et al. (2000) concluded from their experiment that 

predation does reduce the intensity of the competition, but other studies have shown an increase, 

a decrease or no significant effect at all on competition (Chase et al. 2002). This diversity of 

results can be attributed to the dependence of coexistence on the ratio of interspecific effects to 

intraspecific effects, and how these effects depend upon other factors like resource availability 

and predation (Chase et al. 2002; Karsai et al. 2016). For a clearer understanding of when and 

why predation affects competition, it is essential that biases in experimental systems be 

considered (Chase et al. 2002). The review of interactions between predation and competition by 

Chase et al. (2002) is based on top down (stepwise design) models (Karsai et al.2016). The 

authors emphasize that new theories should not solely concentrate on adding extra details to 

remedy the issue of simplifications such as homogenous population and constant life history 

parameters of top down models, but rather implement relative frequencies of positive and 

negative effects of predation on coexistence and spatial and other forms of heterogeneity in non 

– equilibrial open systems.  

Role of Agent Based Models in Studying Population Dynamics 

 

Implementing positive and negative effects of predation on species coexistence can be 

done via the dispersal of the predator and prey and its resultant effects on the extinction rates of 

the prey (Shurin and Allen 2001). Creating spatial and other forms of heterogeneity through 

dispersal could be achieved by effective landscape connectivity (Fahrig and Merriam 1994; 

Tischendorf and Fahrig 2000; Watkins et al. 2011). Modeling such predator mediated 

coexistence studies requires a balance of parametric values (Caswell 1978) as such dynamics 
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results principally from the behavior of the individual members of the population and local 

interactions between them. Hence, it is important to understand behaviors of individual members 

and their interactions to successfully model population dynamics (Karsai et al. 2016). The search 

for such knowledge is often assisted by bottom – up simulation models such as cellular automata 

and agent-based models (Grimm et al. 2005). In cellular automata (von Neumann 1966), agents 

simultaneously perform actions at constant time steps (Castiglione 2006).  Beginning with von 

Neumann’s work as cellular automata (1966), agent – based computer modeling techniques have 

been applied to study diverse complex systems such as human social phenomenon, migration, 

interaction with the environment, propagation of diseases, and population dynamics (Epstein et 

al. 1996, 2 - 26 p). Bottom- up simulation modeling helps us to accumulate relevant information 

about individuals at a lower level of the system and observe the emergence of system – level 

properties related to complex systems (Auyang 1999, 2 – 174 p; Grimm et al. 2005). Such 

system – level properties are then observed as emergent behavior (emergent properties) 

(Castiglione 2006). This global behavior emerges as an outcome of many individuals, following 

behavioral rules, living together within a given environment, and interacting with each other and 

with the environment (Borshchev and Filippov 2004). Agent based models can also be used to 

investigate how population-level effects like stability, persistence and coexistence can be based 

upon local interactions and movements of organisms (DeAngelis and Mooij 2005). Agent based 

models allow the inclusion of individual variation in greater detail (DeAngelis and Mooij 2005) 

than classical differential – equation and difference equation models such as Lotka (1925) and 

Volterra (1931), which is vital for continued development of ecological and evolutionary theory. 

Agent based models are also better in comparison to classical differential models in representing 

situations in which even small fluctuations can drive a system into unknown and totally different 
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states such as prey – predation systems. This is vital in the case of complex biological systems, 

as a single entity (such as a virus or a malignant cell) could possibly affect the entire system. In 

contrast, differential equation models tend to model the average behavior of the system and fail 

to address smaller variability (Castiglione 2006). Bottom – up models are virtual laboratories 

where controlled experiments are used to differentiate noise from signal. Theories of complex 

systems are unlikely to be reducible to analytic equations alone, but are more likely to be 

represented by sets of conceptually simple mechanisms that produce different dynamics and 

outcomes in different contexts (Koch 1973; DeAngelis and Mooij 2005; Grimm et al. 2005).  

The goal of this study was to explore the coexistence dynamics of prey - predator 

populations within fragmented and connected fragmented habitat systems using a minimalistic 

agent based model. The habitat systems were comprised of producers having variable 

regeneration times along with prey populations and predators with various quality levels. In the 

model system, producers with varying regeneration time were the main source of energy that 

were consumed by prey populations (herbivores) as their source of energy. The prey population 

was then consumed by predators (carnivores). The predator and prey populations each have 

unique life history parameters. The response to varying levels of regeneration times of producers 

combined with quality of predators within the habitats types was studied via population size and 

survival times. Apart, from tri – trophic coexistence dynamics, the study also explored how 

competition between two prey populations sharing similar life history parameters (Prey 

Population type I and Prey Population type II) and predators influenced the overall coexistence 

dynamics. In the present model, only consumption, reproduction and predation are assumed at 

the individual level (Karsai and Kampis 2011) while density-dependent and other dynamics arise 
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as emergent consequences of the context – independent individual interactions. This study tested 

the following hypotheses: 

H0: Different habitat types with varying producer regeneration times and levels of predator 

quality have no significant effect on overall predator – prey population size and survivorship. 

HA: There is significant influence of different habitat types combined with varying producer 

regeneration times and levels of predator quality on overall predator – prey population size and 

survivorship. 

H1: In absence of predators, coexistence between two identical prey populations is more probable 

in connected habitats.  

HII: Within different habitats with two identical prey populations, implementing low quality 

predators enhances their survival of both prey populations hence, positively influencing the 

coexistence dynamics. 

HIII: Within the different habitats with two identical prey populations, implementing high quality 

predators leads to decline of prey populations hence, negatively influencing the coexistence 

dynamics.  

HIV: In highly productive environment with predators, fragmented habitats provide for better 

coexistence between two identical prey populations.  

HV: In less productive environment with predators, unfragmented and connected habitats provide 

for better coexistence between two identical prey populations. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

A coexistence dynamics agent based model was built using Netlogo 5.2.0 with sub-

models that allowed parameter sweeps for habitat types, quality levels of predators and 

regeneration times of producers. For each combination of input conditions, the population 

dynamics simulations were iterated 50 times; each simulation was run for 10,000 time-ticks 

using behaviorspace in Netlogo 5.2.0 which allowed to systematically vary the model’s settings 

and record the results of each of such model run. The obtained data was saved in Microsoft Excel 

2016. The data was then imported to conduct various general linear mixed model Anova (Type 

III) analyses and Kruskal – Wallis Tests (with Dunn’s Test for pairwise tests) to study the level 

of significance of studied parameters on prey-predator population size and survivorships using 

RStudio (version 3.3.1).  

Purpose 

 

 The purpose of the model is to study the coexistence dynamics within simulated habitat 

systems with varying degrees of connectivity containing a single producer species with varying 

regeneration times, two different consumers, and a predator species having varying levels of 

quality. The resulting population size and their persistence times are emergent outcomes of the 

model system. The model is minimalistic in terms of agents, and their interactions with other 

agents and their environment. The model is driven by simple energy flow within trophic levels. 

The goal of this study is to be able to understand various driving factors behind the coexistence 

of species within such systems.  
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State Variables and Scales 

 

The model consists of a varying number of producers, prey and predators in a habitat 

system. The models have three different kinds of mobile agents: prey agents type I (Prey I), prey 

agents type II (Prey II) and predator agents (Predator); each with their individual life history 

parameters and rule set (Table 1). Both predators and preys are consumers. All agents belonging 

to the same species are identical except for their identity, heading, positon and individual energy 

level. These variables are randomized at the start of each simulation, which is updated during 

each step. The same type of agents add up after each iteration to form a population, that is 

updated every tick (time unit). The two types of prey consume the producers in the similar 

manner. The producers in the habitat systems are represented by random green patches. 

Producers regenerate after varied amount of time (Timeregeneration) while the prey population 

reproduces per their fixed reproduction rate (RpreyI, RpreyII and Rpredator) and energy level (E) 

(Table 1) which are then consumed by predators thereby increasing their energy levels. Hence, 

behaviors can be converted into one single common currency named “energy”. Energy not only 

relates to the well – being of organisms, but also expresses the level of food and determines the 

expected lifetime of organisms (Karsai and Kampis 2011).  

The habitat environment consists of discrete n * n patches (Table 1). The habitat is 

modeled as a rectangular torus world having boundaries of reflecting walls. The mobile agents 

can be located randomly anywhere within the habitat but not at the boundaries. The reflecting 

walls also serve to implement fragmentation in the system and function similarly to roads, 

canals, fences, or hard boundaries (Karsai and Kampis 2011). Corridor connectivity is 

implemented in the model via small openings in the reflecting walls. The reflecting walls are 

generally impenetrable by mobile agents, but when connectivity is introduced through small 



29 

 

openings, agents can pass through. The corridors have been simplified into small openings only 

and lack any fundamental dimensional parameters like length or breadth. The model is focused 

on the quantitative effects of such connectivity levels on habitat systems. Time is measured in 

ticks (steps) until the end of simulation at (Tmax) (Table 1) and time proceeds in discrete steps. 

For experimental purposes, the linear size of the habitat n was assumed to be 200. The speed (V) 

of the individual agents was set to 0.9 Length Unit per time tick. Hence, if we consider one time 

tick to be consistent with 1 day, the entire habitat area (from right end to the left end) is 

explorable in roughly about 7.5 months. This helps us to establish that the area is large enough to 

capture large – scale spatiotemporal dynamics like real systems (Karsai and Kampis 2011). The 

selection of appropriate scales allowed us to grasp many generations of spatiotemporal 

dynamics.  All the relevant parameters are listed in Table 1.  

 

Table 1. State variables and processes 

State variables Notation Value Units 

Prey agents Type I Prey I NpreyI (T = 0) = 1000 Individuals 

Prey agents Type II Prey II NpreyII (T = 0) = 1000 Individuals 

Predator agents Predator Npredator (T = 0) = 100 Individuals 

Prey I  

population size 

NpreyI Stochastic – Updated each 

tick 

Individuals 

Prey II  

population size 

NpreyII Stochastic – Updated each 

tick 

Individuals 

Predator  

population size 

Npredator Stochastic – Updated each 

tick 

Individuals 
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State Variables Notation  Value Units 

Habitat dimension n * n 100 * 100 (Length Unit)2 

Initial time T0 0 Ticks 

Maximum time Tmax 10,000 or until extinction Ticks 

Prey I 

 survival time 

TimepreyI Stochastic – Updated each 

tick 

Ticks 

Prey II  

survival time 

TimepreyII Stochastic – Updated each 

tick 

Ticks 

Predator  

survival time 

Timepredator Stochastic – Updated each 

tick 

Ticks 

Prey I  

gain from food 

GainpreyI 4 Energy Units (EU) 

Prey II  

gain from food 

GainpreyII 4 Energy Units (EU) 

Predator  

gain from food 

Gainpredator Varied (10, 20, 30, 40, 50, 60) Energy Units (EU) 

Energy level E Stochastic – Updated each 

tick 

Energy Units (EU) 

Grass 

regeneration time 

Timeregeneration Varied (1, 10, 20, 30, 40, 50, 

60, 70 ,80 ,90, 100) 

Ticks 

Prey I  

reproduction rate 

RpreyI 15 Percentage 
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State Variables  Notation  Value Units 

Prey II 

 reproduction rate 

RpreyII 15 Percentage 

Predator  

reproduction rate 

Rpredator 15 Percentage 

Speed V 0.9 Length Unit/ Tick 

Turning angle U Random 50 Degrees 

Test interval t 50 – 10,000 Ticks 

 

Process Overview and Scheduling 

 

At each discrete time step, each agent performs a series of activities in sequential order. 

The agents (Prey I, Prey II and Predators) move randomly in space, consume available food, 

reproduce if they meet a certain energy thresholds and die if the energy is below the level 

required to carry out life processes including foraging and reproduction. The agents move in a 

randomly selected direction based on speed (V) and turning angle (U) (Table 1 and Table 2). The 

producers (green patches) are the food sources for prey individuals.  The basic life process of a 

producer is shown in Figure 1. As the countdown to regenerate equals to, or becomes less than 

zero, the green patches regenerate. Agents move randomly (random walk) and lose 1 Energy 

Unit (E. U). Prey individuals will consume the food and gain energy equivalent to prey gain from 

food (GainpreyI and GainpreyII) (Table 1) set in the model (Figure 2). Similarly, predators will hunt 

prey individuals and gain energy equivalent to predator gain from food (Gainpredator) (Table 1) set 

in the model (Figure 3). Reproduction is asexual and occurs with a fixed probability for prey 

(RpreyI, RpreyII) and predator (Rpredator) respectively (Table 1). The energy reserve of the parent is 
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shared equally with the new offspring and introduced to the environment. If the energy is greater 

than zero, the new individual survives. Death results when the energy level of prey or predator 

reaches zero (E < = 0) (Figure 2 and Figure 3). It also occurs for prey when they are consumed 

by predators. Thus, “energy” directly translates to lifespan of prey and predator individuals 

(Karsai and Kampis 2011). 

 

Figure 1. Schematic view of producer’s behavior 

 



33 

 

 

Figure 2. Schematic view of prey's behavior 

 

 

Figure 3. Schematic view of predator's behavior 
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Design Concepts 

 

The following are some basic principles of the model system.  

Emergence 

 

In this model, the population dynamics of prey – predators such as coexistence (prey – 

predator populations, prey-predator survival times) and population fluctuations are emergent 

outcomes of complex interactions between the individuals and their environments. It is based on 

simple individual properties such as consumption, predation and reproduction (Karsai and 

Kampis 2011).  

Adaptation  

 

 Adaptation is not explicitly modeled in the system, although extensions of the model that 

includes adaptation could be added (Polhill et al. 2008). The mobile agents (prey individuals and 

predators) could be made more aware of their surroundings by letting them sense if there is food 

or danger in front of them. If there are food patches, they could proceed with their movements 

but on sensing danger (predators), they could change their heading per same logic. Similarly, the 

width of the corridors can be increased to allow for more dispersal. Such adjustments could 

influence the rate of interactions between the agents which might affect the overall population 

dynamics.  

Fitness 

 

Fitness is not explicitly modeled in the system. Fitness is measured in terms of energy of 

the agents. The ability of an agent to successfully forage and reproduce is dependent upon its 
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corresponding energy level. The energy level is dependent on the food consumed by the agents. 

Hence, energy influences the overall fitness state of the system. 

Prediction 

 

 Agents cannot predict the interactions between other agents or the environment itself. 

Neither they can predict subsequent population dynamics. The agents do not have any memory 

or learning mechanisms. However, certain extensions that allow the capabilities for such could 

be added to the model.  

Sensing 

 

The agents know their internal states such as speed (V), turning angle (U), reproduction 

rates (RpreyI, RpreyII, Rpredator) and energy gain from food (GainpreyI and GainpreyII, Gainpredator) and 

interact accordingly. Collison between two mobile agents is vital for predation. Predator 

individuals on colliding with prey individuals consume them and increase their energy level by 

the amount equivalent to predator gain from food. Similarly, prey individuals encountering green 

patches consume them and increase their energy level by amount equivalent to prey gain from 

food.  

In this model, the agents cannot sense the presence of surrounding prey or predators, but 

it is determined stochastically. Also, the surrounding reflecting border walls and openings in 

such walls cannot be sensed by the agents but are found through random walk. The agents cannot 

cross the reflecting walls and borders unless there is an opening.  
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Interaction 

 

 The local interactions between two different agents, or an agent and their environment, 

lead to complex emergent outcomes. The interactions take place in the form of predation. It is 

applicable to both Prey I and Prey II and Predators. The energy transfer occurring at various 

trophic levels (from producers to prey to predators) is the primary factor regulating the energy 

levels of agents. The systems with varying regeneration time of producers will support varying 

size of prey population dependent on them for energy. This could significantly affect the 

population size and effect the intensity of prey - predator interactions. More than one individual 

could occupy the same spatial location, but a prey individual is only consumed by a single 

predator (Karsai and Kampis 2011). 

Stochasticity 

 

 We used the built – in random number generator “Mersenne Twister” (Abrahamson and 

Wilensky 2004) of the simulation platform to iterate the stochastic events within the model. Prey 

I population size (NpreyI), Prey II population size (NpreyII), Predator population size (Npredator) Prey 

I survival time (TimepreyI), Prey II survival time (TimepreyII), Predator survival time (Timepredator) 

(Table 1) are some of the stochastic events. Whereas, initial number of Prey I population size 

(NpreyI (T = 0)), initial number of Prey II population size (NpreyII (T = 0)), initial number of Predator 

population size (Npredator (T = 0)), initial Prey I energy level (EpreyI (T = 0)), initial Prey II energy level 

(EpreyII (T = 0)), initial Predator energy level (Epredator (T = 0)), initial speed and random orientation in 

habitat space are provided as an initial external input (Table 2) in the system. 
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Collectives 

 

 The major groups of individuals are prey and predator populations. Initial numbers of 

prey and predators are both provided as external input, while the subsequent populations at the 

end of simulations after each set of iteration are total function of stochastic nature of the model.  

Observation 

 

 The simulation platform offers a 2-D spatial plot of the habitat systems as well as options 

to optimize it into a 3-D interface to monitor the system behavior. The following are monitored 

and saved into a Microsoft Excel file for further analyses:  all model parameters, Prey I 

population size, Prey II population size, Predator population size, Prey I survival time, Prey II 

survival time, Predator survival time and phase volume. To test our hypothesis and conduct 

statistical analyses, general linear mixed models Anova (Type “III”) and Kruskal – Wallis Tests 

in RStudio (version 3.3.1 – “Bug in Your Hair”) was used extensively.  

Initialization 

 

 When the simulated experimental systems are initialized at Time (T0) = 0, green patches 

are brought into a saturated state as well as initial number of prey I individuals (NpreyI (T = 0)), 

initial number of prey II individuals (NpreyII (T = 0)) and initial number of predator individuals 

(Npredator (T = 0)) are placed randomly into the habitat systems with random directional headings 

and energy (between 0 and twice Gainprey and Gainpred respectively). The initial values of our 

simulation were selected based on experiments carried out by Karsai and Kampis (2011). The 

initial parameters settings of the model are listed in Table 2 below. 
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Table 2. Initial parameters of the model 

State variables Notation Initial values Units 

Initial Prey I population size NpreyI (T = 0) 1000 Individuals 

Initial Prey II population size NpreyII (T = 0) 1000 

 

Individuals 

Initial Predator population size Npredator (T = 0) 100 Individuals 

Initial Prey I energy level  EpreyI (T = 0) 4 Energy Units (EU) 

Initial Prey II energy level EpreyII (T = 0) 4 Energy Units (EU) 

Initial Predator energy level Epredator (T = 0) 10 Energy Units (EU) 

Speed V 0.9 Length Unit / Tick 

Turning angle U *Random 50 Degrees 

Prey I reproduction - rate RpreyI (T = 0) 15 Percentage 

Prey II reproduction - rate RpreyII (T = 0) 15 Percentage 

Predator reproduction - rate Rpredator (T = 0) 15 Percentage 

Note: *Random yields a numerical value between 0 and given value using the random number 

generator of the Netlogo 5.2.0 simulation platform. 

 

 



39 

 

Submodels 

 

The submodels that represent the processes listed in “process overview and scheduling” 

of the model description are explained in detail below  

The Overall Tasks of Agents 

 

 The primary agents involved in the model are stationary producers (green patches or 

grass), mobile prey populations (type I and type II) and mobile predators (with varying quality 

level). At each time step, every individual mobile agent performs the following sequential 

actions: they move randomly in given habitat types, consume available food, reproduce if they 

have sufficient energy (in case for prey and predator) or proper countdown level (in case of 

producers) and die if the energy is less than or equal to zero (in case of prey individuals and 

predator individuals) or on being eaten by prey (in case of producers). The submodels and initial 

model parameter values were chosen based on pre-experiments and studies performed by Karsai 

and Kampis (2011).  

Habitat Types 

 

We used habitats with different levels of fragmentation (W) with and without 

connectivity (C). The following habitat system arrangements were rigorously studied:  
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Figure 4. Habitat Type W0C0 (Fragmentation 

level = 0, Connectivity level = 0). 

 
Figure 5. Habitat Type W1C0 (Fragmentation 

level = 1, Connectivity level = 0). 

 
Figure 6. Habitat Type W2C0 (Fragmentation 

level = 2, Connectivity level = 0). 

 

 
Figure 7. Habitat Type W3C0 (Fragmentation 

level = 3, Connectivity level = 0). 

 
Figure 8. Habitat Type W1C1 (Fragmentation 

level = 1, Connectivity level = 1). 

 

 
Figure 9. Habitat Type W2C2 (Fragmentation 

level = 2, Connectivity level = 2). 
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Figure 10. Habitat Type W3C3 (Fragmentation level = 3, Connectivity level = 3). 

 

Predator Quality 

 

We used predators with varying level of quality to understand their impact upon prey 

population and hence, overall coexistence dynamics within the model system. The numerical 

equivalent to determine different types of predators in the system was given by the state variable 

predator gain from food i.e., “Gainpredator”.  It determines the numerical value of Energy Units 

(EU) that predator populations can obtain on consuming food (prey population). This value was 

externally controlled and manipulated. The predators with low predator gain values obtained 

lower energy per unit food (prey agents) consumed in comparison to the predators with higher 

predator gain values who obtained higher energy per unit same food (prey agents). For example, 

the predators having predator gain from food (Gainpredator) = 10 were low quality predators and 

obtained 10 Energy Units (EU) per unit food consumed whereas, the predators having predator 

gain from food (Gainpredator) = 60 were high quality predators and obtained 60 Energy Units (EU) 

per unit same food. A high-quality predator gained more energy from food which implied that it 

could move farther and forage more before it eventually died out due to starvation or lack of 

energy. This also meant increased energy reserves and increased predator lifetimes resembling 
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that of fast moving and efficient natural predators controlling large areas of natural habitats 

(Karsai and Kampis, 2011).  

Grass Regeneration Time 

 

We used producers with varying regeneration times to study their impacts on abundance 

of prey populations and hence, overall coexistence dynamics. It is the internal timer of the model 

system which is responsible to initiate the countdown for regrowth of the producers once they 

were consumed by the prey population. The timer was experimentally set to either lower values 

or higher values. The producers which took Timeregeneration = 1 were fast regenerating producers 

and took 1 time tick to regenerate whereas the producers which took Timeregeneration = 100 were 

slower regenerating producers and took 100 time ticks to regenerate.  

Random Walk 

 

  Initially, prey populations, either only (NpreyI (T = 0) = 1000), or (NpreyII (T = 0) = 1000), or 

both (NpreyI (T = 0) and NpreyII (T = 0) = 1000) and predator populations (Npredator (T = 0) = 100) are 

placed randomly within the model space at time (T) = 0 ticks (T0; Table 1). The agents have their 

own state variables like speed (V), Turning angle (U), initial energy (EpreyI (T = 0) or EpreyII (T = 0)) 

for prey population and initial energy (Epredator (T = 0)) for predator population. Their movement in 

random headings with speed (V) is stochastic. As they move through one Length Unit per time 

tick in the given space, they lose energy worth one Energy Unit (EU) which needs to be 

compensated for in succeeding procedures for their survival. They perform this movement each 

time-step till they survive within the system and is updated at each time tick. This energy loss 

needs to be compensated for in succeeding time intervals.   
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Foraging and Energy Compensation 

 

This process guides the mobile agents to obtain food resources. The agents need to 

compensate the lost energy during random walk by successful foraging. However, the agents do 

not have any predetermined knowledge of their surroundings. As time proceeds, successful 

foraging occurs by means of random collisions between two different types of mobile agents 

(prey and predator). At time of initialization i.e., (T) = 0 tick, the energy level for prey and 

predator agents is given as follows: 

Prey Energy level (Eprey) = EpreyI (T = 0) or (EpreyII (T = 0) )  (Eq. 1) 

Predator Energy level (Epredator) = Epredator (T = 0)   (Eq. 2) 

   As time proceeds, random walk leads to collision between prey and predator agents. If 

prey agents stumble across green patches (grass), they consume the grass and gain energy 

equivalent to GainpreyI or GainpreyII which is set externally in the model. The energy gained is then 

added to the preexisting energy level and the total energy level (E) is updated.  So, at time (T) = 

1 tick, the energy level of prey agents is updated as given below: 

Energy level (Eprey (1)) = EpreyI (T = 1) or EpreyII (T = 1) + GainpreyI or GainpreyII  (Eq. 4) 

Since, we ran this simulation for 10,000 time-ticks, the energy level at each further time step (T 

> 1) will be updated sequentially as given below: 

Energy level (Eprey (1 + n)) = EpreyI (T = 1 + n) (or EpreyII (T = 1 + n)) + GainpreyI (or GainpreyII) (Eq. 5) 

Where the value of n ranges from 1 to 9999th steps.   

Similarly, if a predator agent collides with a prey agent in its location, or if a prey agent 

collides with a predator agent in its location, the prey is consumed and predator gains energy 
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equivalent to Gainpred which is set externally in the model. The energy gained is then added to 

the preexisting energy level and the total energy level (E) is then updated. So, at time (T) = 1 

tick, the level of energy for predator energy is updated as given below: 

Energy level (Epredator (1)) = Epredator (T = 1) + Gainpredator   (Eq. 6) 

This simulation was run for 10,000 time-ticks and the energy level at each time steps (T > 1) was 

updated sequentially as given below: 

Energy level (Epredator (1 + n)) = Epredator (1 + n) + Gainpredator  (Eq. 7) 

Where the value of n ranges from 1 to 9999th steps.   

Hence, in any given time step, it is necessary for agents to maintain their energy level (E) 

greater than zero (E > 0) to reproduce and survive.  

Reproduction 

 

 Regeneration of producers (technically producer reproduction within the model means its 

regeneration based on specific regeneration time) in case of producers (grass) occurs when it is 

consumed by prey agents in the model. Upon being consumed, the green patches turn into brown 

patches. This process initiates the countdown which is built into the model based on its 

corresponding regeneration time (Timeregeneration). There is a timer which stores current 

countdown in the model. As the value of the timer reaches equal or less than zero i.e. countdown 

< = 0, the brown patches turn into green patches which means the plant has regenerated. In the 

model, the regeneration time could be varied from 1 to 100 with single unit increments. Also, 

this means that producers with lower regeneration time reproduces or regenerates faster than the 

producers with higher regeneration time which regenerates slower. A habitat system with 
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producers having regeneration time (Timeregeneration) = 1 regenerates 100 times faster than 

producers with regeneration time (Timeregeneration) = 100.  

 This reproduction behavior changes in case of prey and predator agents as reproduction 

occurs asexually with fixed probability of RpreyI, RpreyII and Rpredator respectively. The higher the 

probability of reproduction i.e. RpreyI, RpreyII and Rpredator value, the higher chances that it will 

reproduce. After reproduction, the energy is divided equally between parent and offspring. 

Hence, if before reproduction parents had energy (E) = “x” Energy Unit, after successful 

reproduction, the offspring and parents both will have energy (E) = “x / 2” Energy Unit. The 

offspring are then randomly placed in the model space with random headings and they start the 

same life processes.  

Death 

 

 Death of plant, or producers, occurs on being eaten by the prey agents. Similarly, the 

death occurs for prey on being consumed by predators. Death also occurs in both prey and 

predator agents if their energy level reaches zero or equal to zero i.e., EpreyI or EpreyII < = 0 or 

Epredator < = 0. During each nth time step, 1 Energy Unit (EU) is deducted from their energy 

deposits. This energy needs to be compensated by consuming food. If they can successfully 

forage, they will survive and carry on their life processes as mentioned earlier. On failing to do 

so, each successive time step will reduce their energy level potentially to a point when they have 

no energy reserve left to carry on any life functions which results in their death. Thus, energy 

directly translates to the available lifetime of prey and predator individuals (Karsai and Kampis 

2011).  
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Simulation Experiments 

 
We conducted the following experiments to study the coexistence dynamics using our agent 

based model.  

Experiment of Varying Regeneration Times, Habitat Types and Quality Levels of Predators 

 

The regeneration times of the producers were varied and its effects on prey – predator 

populations and their survival times was studied within different types of habitats with 

fragmentation (W) and connectivity or openings (C). Seven different habitat types (W0C0, 

W1C0, W2C0, W3C0, W1C1, W2C2 and W3C3; where W = level of fragmentation and C = 

level of connectivity ) were set up with the combination of eleven varied producer regeneration 

times (Timeregeneration = 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100; 1 being faster regenerating 

producers within the habitats or high production environment whereas 100 being the slower 

regenerating producers or low production environment within the habitats) and six levels of 

predator quality (Gainpredator = 10, 20, 30, 40, 50, 60; 10 being the least efficient predators 

whereas 60 being the most efficient predators). Each experiment was run for 10,000 time steps 

(Tmax) or until extinction of the population. Fifty parallel simulations were carried out for each 

unique experimental setting to measure the variability of the coexistence dynamics in such 

settings. 

Experiment of Identical Competition 

 

 For this experimental study, two prey populations with identical life history parameters 

were implemented in the model. The regeneration times of producers (Timeregeneration) were varied 

across a wide range i.e., (Timeregeneration = 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100; 1 being 

faster regenerating producers within the habitats whereas 100 being the slower regenerating 
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producers within the habitats) in each of the seven different habitat types (W0C0, W1C0, W2C0, 

W3C0, W1C1, W2C2 and W3C3; where W = level of fragmentation and C = level of 

connectivity) mentioned above.  Each experiment was run for 10,000 time steps (Tmax) or until 

extinction of the population. Fifty parallel simulations were carried out for each unique 

experimental setting to measure the variability of the coexistence dynamics in such settings. 

Experiment of Non – Identical Competition 

 

 For this experimental study, two prey populations with non – identical life history 

parameters were implemented in the model. The amount of energy gained from food for Prey I 

population was kept constant (GainpreyI = 4 EU) but the amount of energy gained from food for 

Prey II population was reduced by half i.e., (GainpreyII = 2 EU) resulting in two non-identical 

population where one was twice as efficient (Prey I) than other (Prey II). Other parameters for 

the experiment were set to standard initial values (Table 2). Seven habitat systems (W0C0, 

W1C0, W2C0, W3C0, W1C1, W2C2 and W3C3; W = level of fragmentation and C = level of 

connectivity) were studied. Similarly, regeneration times of producers was varied across a wide 

range i.e., (Timeregeneration = 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100; 1 being faster 

regenerating producers within the habitats whereas 100 being the slower regenerating producers 

within the habitats) in each of the habitat types mentioned above.  Each experiment was run for 

10,000 time steps (Tmax) or until extinction of the population. Fifty parallel simulations were 

carried out for each unique experimental setting to measure the variability of the coexistence 

dynamics in such settings. 
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Experiment of Predation and Competition 

 

For this experimental study, varying levels of quality of predators were introduced in one 

high production and low production environment respectively. A non – biased predator of the 

prey populations was implemented in to the model system. Predators with 6 different quality 

levels (Gainpredator = 10, 20, 30, 40, 50 and 60) were studied. The quality levels determined the 

numerical equivalent of Energy Units (EU) that predator populations obtained (Gainpredator) on 

consuming food (prey populations). Low quality predators gained between 10 – 30 EU per unit 

food consumed and were less efficient predators whereas high quality predators gained between 

40 – 60 EU per unit same food consumed and were highly efficient predators. This study was 

performed under two levels of producer regeneration times i.e., Timeregeneration = 10 and 50 to 

mimic habitats with higher and lower productivity respectively. Three contrasting habitat settings 

(W0C0, W3C0 and W3C3; W = level of fragmentation and C = level of connectivity) were used 

to study the overall dynamics. These three habitats were chosen because it represented the 

highest possible values of fragmentation (W) and connectivity (C) levels within unfragmented, 

fragmented and connected habitat types respectively. Each experiment was run for 10,000 time 

steps (Tmax) or until extinction of the population. Fifty parallel simulations were carried out for 

each unique experimental setting to measure the variability of the coexistence dynamics in such 

settings. 
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CHAPTER 3 

RESULTS 

 

The experimental parameters chosen for inclusion in the model was based on prior 

studies performed by Karsai and Kampis (2011) and sensitivity analyses performed during 

current study. Each prey – predator population size as well as their survival times in various 

habitat systems (each individual unique point in the figures and the boxplots) below represents 

the average value (mean) of end points from fifty parallel simulations. Each simulation was run 

for 10,000 time steps using behaviorspace in Netlogo 5.2.0. 

Combined Effects of Different Habitat Types, Varying Regeneration Times of Producers and 

Levels of Predator Quality in Coexistence Dynamics 

We hypothesized that different habitat types with the combination of varying producer 

regeneration times and levels of predator quality significantly affect prey – predator population 

size as well as their survival time. The obtained experimental data were analyzed and patterns of 

prey and predator populations and survival times in unconnected fragmented habitats and 

connected habitats were studied to test our prediction. To test this prediction, seven different 

habitat types (W0C0, W1C0, W2C0, W3C0, W1C1, W2C2 and W3C3; where W = level of 

fragmentation and C = level of connectivity ) were set up with the combination of eleven varied 

time  steps of producer regeneration times (Timeregeneration = 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 

100; 1 being faster regenerating producers within the habitats or high productive environment 

whereas 100 being the slower regenerating producers or low productive environment within the 

habitats) and six levels of predator quality (Gainpredator = 10, 20, 30, 40, 50, 60; 10 being the least 

efficient predators whereas 60 being the most efficient predators). 
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 A mixed Anova model in the general linear model framework was used to statistically 

confirm if there were significant effects of different habitat types, varying regeneration times of 

producers and quality levels of predators in coexistence dynamics of prey – predator population. 

Coexistence dynamics was expressed as mean values of state variables such as prey population 

size (NpreyI), predator population size (Npredator), prey survival time (TimepreyI) and predator 

survival time (Timepredator). The final models and their residual plots revealed that different 

habitat types, varying regeneration times of producers and quality levels of predators were 

significantly responsible for determining mean prey population size (p < 0.01) (Table 3; Figure 

11), mean predator population size (p < 0.01) (Table 4; Figure 12) as well as determining prey 

population survival time (p < 0.01) (Table 5; Figure 13) and predator population survival time (p 

< 0.01) (Table 6; Figure 14) when one or more population was extinct during experimental runs. 

The residual plots of these models showed no obvious patterns and were finally accepted.  

Table 3. An Anova table showing highly significant effects of different habitat types, varying 

regeneration times of producers and quality levels of predators on sqrt (sqrt (Mean Prey Population 

Size)). 

Sources of Variation Df F Value Parameter Estimates 

Std. 

Error T Value 

Intercept 1 886.17* 5.25 0.17 29.77* 

Habitat W1C0 1 8.70* 0.29 0.1 2.95* 

Habitat W2C0 1 8.06* 0.36 0.11 2.84* 

Habitat W3C0 1 4.45** 0.33 0.15 2.11** 

Habitat W1C1 1 30.69* 0.45 0.08 5.54* 

Habitat W2C2 1 67.40* 0.66 0.08 8.21* 

Habitat W3C3 1 73.10* 0.7 0.008 8.55* 

Producer Regeneration Time 1 4.2** -0.002 0.001 (-2.05) ** 

Predator Quality Levels 1 23.29* -0.009 0.002 (-4.29) * 

Mean Prey Population 1 697.12* 0.0003 0.00001 26.403* 

Mean Predator Population  1 0.034 0.000006 0.00001 0.6 

Residuals 247     
*p values < 0.01 

**p values < 0.05      
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Figure 11. Residual plot of the most fitted model for standardized residual of sqrt (sqrt (Mean 

Prey Population)) vs predicted residuals of sqrt (sqrt (Mean Prey Population)). This model was 

accepted because it did not show any obvious pattern (Adjusted R-squared = .91). 

Table 4. An Anova table showing highly significant effects of different habitat types, varying 

regeneration times of producers and quality levels of predators on sqrt (sqrt (Mean Predator 

Population Size)). 

Sources of Variation Df F Value Parameter Estimates Std. Error T Value 

Intercept 1 224.7* 3.7 0.24 14.9* 

Habitat W1C0 1 31.36* -0.78 0.13 (-5.60) * 

Habitat W2C0 1 25.8* -0.9 0.17 (-5.08) * 

Habitat W3C0 1 95.25* -2.15 0.22 (-9.76) * 

Habitat W1C1 1 29.7* -0.6 0.11 (-5.45) * 

Habitat W2C2 1 3.24 -0.2 0.11 (-1.80) 

Habitat W3C3 1 0.01 0.002 0.11 0.1 

Producer Regeneration Time 1 137.8* 0.01 0.001 (-11.74) * 

Predator Quality Levels 1 129.26* 0.003 0.002 11.37* 

Mean Prey Population 1 5.5** 0.00004 0.00002 2.34** 

Mean Predator Population  1 300.48* 0.0002 0.00001 17.33* 

Prey Survival Time 1 77.28* 0.0003 0.00004 (-8.80) * 

Predator Survival Time 1 286.82* 0.0006 0.00004 16.94* 

Residuals 245     
p values < 0.01 

**p values < 0.05      
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Figure 12. Residual plot of the most fitted model for standardized residual of sqrt (sqrt (Mean 

Predator Population)) vs predicted residuals of sqrt (sqrt (Mean Predator Population)). This 

model was accepted because it did not show any obvious pattern (Adjusted R – squared = 0.93). 

Table 5. An Anova table showing highly significant effects of different habitat types, varying 

regeneration times of producers and quality levels of predators on log (log (Mean Prey Survival 

Time)). 

Sources of Variation Df F Value 

Parameter 

Estimates Std. Error T Value 

Intercept 1 5130.3** 2.17 0.03 71.62 

Habitat W1C0 1 34.22** -0.07 0.01 (-5.85) ** 

Habitat W2C0 1 58.21** -0.09 0.01 (-7.63) ** 

Habitat W3C0 1 67.24** -0.01 0.01 (-8.20) ** 

Producer Regeneration Time 1 0.14** -0.003 0.0003 (-9.91) ** 

Predator Quality Levels 1 0.02** -0.001 0.0003 (-4.52) ** 

Predator Survival Time 1 0.08** 0.0002 0.00003 7.62** 

Residuals 103     
*p values < 0.01 

**p values < 0.05      
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Figure 13. Residual plots of the most fitted model for standardized residual of log (log (Mean 

Prey Survival Time)) vs predicted residuals of log (log (Mean Prey Survival Time)). This model 

was accepted because it did not show any obvious pattern (Adjusted R-squared = 0.81). 

Table 6. An Anova table showing highly significant effects of different habitat types, varying 

regeneration times of producers and quality levels of predators on log (log (Mean Predator 

Survival Time)). 

Sources of Variation Df F Value 

Parameter 

Estimates Std. Error T Value 

Intercept 1 612.78** 1.45 0.05 24.75** 

Habitat W1C0 1 44.08** 0.01 0.01 6.64** 

Habitat W2C0 1 48.44** 0.01 0.01 6.96** 

Habitat W3C0 1 40.44** 0.01 0.01 6.36** 

Producer Regeneration Time 1 12.659** -0.002 0.0005 (-3.55) ** 

Predator Quality Levels 1 240.01** 0.006 0.0003 15.49** 

Predator Survival Time 1 14.22** 0.00004 0.00001 3.77** 

Residuals 103     
*p values < 0.01 

**p values < 0.05      
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Figure 14. Residual plots of the most fitted model for standardized residual of log (log (Mean 

Prey Survival Time)) vs predicted residuals of log (log (Mean Prey Survival Time)). This model 

was accepted because it did not show any obvious pattern (Adjusted R-squared = 0.74). 

Prey and Predator Population Size Dynamics in Unconnected Habitats 

 

Besides the statistical analyses conducted for global effects as mentioned above (Table 3 

– 6, Figure 11 – 14), further analyses were carried out to study the individual effects of each of 

the studied parameters on prey – predator population dynamics in unfragmented and fragmented 

habitats. It was observed that distribution of population size was significantly different across 

regeneration times of producers for prey population size (Kruskal – Wallis H: 127, p < 0.01, N = 

264) (Figure 15a) as well as predator population size (Kruskal - Wallis H: 39.487, p < 0.01, N = 

264) (Figure 15b).   
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a 

 

b 

 

Figure 15. Prey - predator population size across unconnected habitat types as a function of 

producer regeneration times. a) Prey population size. b) Predator population size. 

 

The distribution of prey population size was not significantly different across 

unfragmented (W0C0) and fragmented habitats (W1C0, W2C0 and W3C0) but was significantly 

different across quality levels of predators (Gainpredator) (Kruskal - Wallis H: 35.78, p < 0.01, N = 

264; most significant differences occurring between levels of 10 – 50, 10 – 60, 20 – 50, 20 – 60, 

30 – 50, 30 – 60 and 40 – 60 (p < 0.01) based on pairwise comparisons using Dunn’s Test) 

(Figure 16a). In contrast to prey population, we observed that the distribution of predator 

population was significantly different across unfragmented and fragmented habitats (Kruskal – 

Wallis H: 32.912, p < 0.01, N = 264; non-significant difference occurring only between habitat 

types W2C0 – W3C0 (p > 0.05) based on pairwise comparison using Dunn’s Test) (Figure 16b) 

and their quality levels (Kruskal - Wallis H: 16.324, p <  0.01, N = 264; most significant 

differences occurring between levels of 20 – 50, 20 – 60 and 30 – 60 (p < 0.01) based on 

pairwise comparison using Dunn’s Test) (Figure 16b).  
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a b 

Figure 16. Prey - predator population size across predator quality levels as a function of 

unconnected habitat types. a) Prey population size. b) Predator population size. 

Prey and Predator Survival Time Dynamics in Unconnected Habitat 

 

 Besides the statistical analyses conducted for global effects (Table 3 – 6, Figure 11 – 14), 

further analyses were also carried out to study the individual effects of each studied parameters 

on prey – predator survival time within unfragmented and fragmented habitats. In unfragmented 

habitats (W0C0), 43% of the experimental runs resulted in prey survival time of less than 5,000 

time – steps (Tmax = 10,000 time steps). 90% of such cases occurred when producers regenerated 

slowly (Timeregeneration = 60 – 100). Similarly, in fragmented habitats (W1C0, W2C0 and W3C0), 

51% of the experimental runs resulted in prey survival time of less than 5,000 time – steps (Tmax 

= 10,000 time steps). 93% of such cases occurred when producers regenerated slowly 

(Timeregeneration = 60 – 100) (Figure 17 a). Predator population on the other hand, survived for less 

than half of its possible maximum survival time (Tmax = 10,000 time steps) i.e., 5,000 time – 

steps in 64% of the total experimental runs in unfragmented habitats (W0C0) and 82% in 

fragmented habitats (W1C0, W2C0, W3C0) (Figure. 17b).  
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b 

 

Figure 17. Prey-Predator survival time across unconnected habitat types as a function of 

producer regeneration time. a) Prey survival time b) predator survival time. 

 

In unfragmented habitats (W0C0), prey population survived an average of 5,978 time 

steps in the presence of low quality predators (Gainpredator = 10 - 30) and an average of 5,860 time 

steps in presence of high quality predators (Gainpredator  > 30) (Figure 18a). Whereas in 

fragmented habitats (W1C0, W2C0 and W3C0), survival time of prey population decreased to an 

average of 5,300 time steps in the presence of low quality predators and an average of 4,951 time 

steps in the presence of high quality predators (Figure 18a).  

 In unfragmented habitats (W0C0), low quality or less efficient predator population  

(Gainpredator = 10 – 30) survived an average of 2,887 time steps while high quality or highly 

efficient predators (Gainpredator > 30) surved an average of 4,990 time steps. Whereas in 

fragmented habitats (W1C0, W2C0 and W3C0), survival time of low quality or less efficient 

predator population decreased to an average of 2,163 time steps and an average of 2,449 time 

steps for high quality of highly efficient predators (Figure 18 b). 
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Figure 18. Prey - predator survival time across predator quality levels as a function of 

unconnected habitat types. a) Prey survival time. b) Predator survival time. 

Prey and Predator Population Size Dynamics in Connected Habitats 

 

Implementing connectivity (when C > 0; W1C1, W2C2 and W3C3), resulted in 

population size increase for both prey and predator populations across entire range of producer 

regeneration times (Timeregeneration = 1 – 100) (Figure 19a and 19b) compared to the habitats 

without connectivity (Figure 15a and 15b). Besides the statistical analyses conducted for global 

effects as mentioned above (Table 3 – 6 and Figure 11 - 14), further analyses were carried out to 

study the individual effects of each of the studied parameters on prey – predator population size 

in connected habitats. It was observed that distribution was significantly different across 

regeneration time of producers for prey population size (Kruskal - Wallis H: 45.06, p < 0.01, N = 

198) (Figure 19a) as well as predator population size (Kruskal - Wallis H: 108, p < 0.01, N = 

198) (Figure 19b).   
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Figure 19. Prey - predator population size across connected habitat types as a function of 

producer regeneration time. a) Prey population size. b) Predator population size 

 

 Similarly, implementing connectivity led to decline in prey population and increase in 

predator population with increase in quality levels of predators (Gainpredator) (Figure 20a and 20b) 

compared to habitats without connectivity (Figure 16a and 16b). The distribution of prey 

population size was significantly different across connected habitat types (W1C1, W2C2 and 

W3C3) (Kruskal - Wallis H: 22.50, p < 0.01, N = 198; non-significant difference occurring only 

between habitat type W2C2 – W3C3 (p > 0.05) based on pairwise comparisons using Dunn’s 

Test) (Figure 16a) as well as across quality levels of predators (Gainpredator)  (Kruskal - Wallis H: 

109.94, p < 0.01, N = 198; non-significant differences occurring between levels of 30 – 40, 30 – 

60, 40 – 50 and 50 – 60 (p > 0.01) based on pairwise comparisons using Dunn’s Test) (Figure 

20a).  

Similarly,  we observed that distribution of predator population was significantly 

different across connected habitats (Kruskal – Wallis H: 18.47, p < 0.01, N = 198; most 

significant differences occurring between habitat types W1C1 – W3C3 and W2C2 – W3C3 (p < 

0.01) based on pairwise comparison using Dunn’s Test) (Figure 20b) as well as their quality 
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levels (Kruskal - Wallis H: 16.324, p <  0.01, N = 264; most significant difference occurring 

between levels of 10 – 20, 10 – 30, 10 – 40 , 10 – 50, 10 – 60, 20 – 40 , 20 – 50 and 20 -60 (p < 

0.01) based on pairwise comparison using Dunn’s Test) (Figure 20b).  

a 

 

b 

 

Figure 20. Prey-predator population size across quality levels of predators as a function of 

connected habitat types. a) Prey population size. b) Predator population size. 

Prey and Predator Survival Time Dynamics in Connected Habitats 

 

 Besides the statistical analyses conducted for global effects (Table 3 – 6, Figure 11 -14), 

further analyses were also carried out to study the individual effects of each studied parameters 

on prey – predator survival time within connected habitats. Implementing connectivity (when C 

> 0, W1C1, W2C2 and W3C3) led to only 0.01% of the experimental runs resulting in prey 

survival time of less than 5,000 time steps (down from 51% in fragmented habitats) (Tmax = 10, 

000 time steps) across entire range of producer regeneration time (Figure 21a). Similarly, only 

0.03% of the experimental runs resulted in predator survival time of less than 5,000 time steps 

(down from 82% in fragmented habitats) (Tmax = 10,000 time steps) across entire range of 

producer regeneration time (Figure 21b). 
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a 

 

b 

 

Figure 21. Prey-predator population size across connected habitat types as a function of producer 

regeneration time. a) Prey survival time. b) Predator survival time 

 

Implementing connectivity also led to increase in  average prey population survival time 

to 9,993 time – steps ( up from 5,300 time  steps in fragmented habitats) (Tmax = 10, 000 time  

steps) in the presence of low quality predators (Gainpredator = 10 - 30) and to 9,159 time  steps ( up 

from 4,951 time  steps in fragmented habitats) (Tmax = 10, 000 time  steps) in presence of high 

quality predators (Gainpredator  > 30) (Figure 22a). Similarly, implementing connectivity led to 

increase in average low quality predator survival time to 9,730 time steps ( up from 2,163 time – 

steps in fragmented habitats) and high quality predator survival time to 9,028 time steps ( up 

from 2,449 time steps in fragmented habitats) (Figure 22b).  
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a 

 

b 

 
Figure 22. Prey - predator survival time across predator quality level as a function of connected 

habitat systems. a) Prey survival time. b) Predator survival time. 

Two Prey Populations with Identical Life Histories and Coexistence Dynamics 

 

 When two identical species compete for same resources they cannot coexist (Gause 

1934). We hypothesized that within different habitat types (W0C0, W1C0, W2C0, W3C0, 

W1C1, W2C2 and W3C3; W = level of fragmentation and C = level of connectivity), with two 

identical prey populations (Prey I and Prey II), survival time of prey populations is affected by 

the varying producer regeneration times. We also predicted that coexistence dynamics of two 

identical populations is better favored in connected habitat types. 

 In case of competition between two identical prey populations, it was observed 

that faster regenerating producers supported stable population dynamics over extended period 

without extinction of either prey population whereas extinction occurred when producers were 

regenerating slowly (Timeregeneration = 60 – 100). In fact, 100% of the observed population 

extinctions occurred when slow regenerating producers were present (Timeregeneration = 60 – 100). 

The distribution of population survival times across regeneration times of producers were 

significantly different for Prey I survival time (Kruskal – Wallis H: 39.01, p < 0.05, N = 77) and 

Prey II survival time (Kruskal – Wallis H: 37.38, p < 0.05, N = 77).  
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Survival time of identical prey populations was also influenced by arrangement of the 

habitat types the populations resided in. The distribution of survival time across habitats was 

significantly different for Prey I survival time (Kruskal - Wallis H: 19.25, p < 0.05, N = 77; most 

significant differences arising between habitat types W0C0 - W3C3 (p < 0.01), W1C0 - W3C3( p 

< 0.01), W2C0 – W3C3 (p < 0.01), W3C0 – W3C3 (p < 0.01) based on pairwise comparisons 

using Dunn’s - Test ) and Prey II survial time (Kruskal - Walis H: 18.21, p < 0.05, N = 77; most 

significant differences arsing between habitat types W0C0 - W3C3 (p < 0.01), W1C0 - W3C3( p 

< 0.01), W2C0 – W3C3 (p < 0.01), W3C0 – W3C3 (p < 0.01) based on pairwise comprisons 

using Dunn’s Test).  

Habitat types (W0C0, W3C0 and W3C3) were further analyzed to study any possible 

relations between a certain habitat types and coexistence dynamics. 

These three habitats were chosen because it represented the highest possible values of 

fragmentation (W) and connectivity (C) levels within our studied unfragmented, fragmented and 

connected habitats settings respectively. In unfragmented habitats (W0C0), both prey population 
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Figure 23. The number of extinctions of Prey I and Prey II populations as a function of 

the regeneration times of the producers in habitat system W0C0. 50 parallel simulations 

were run until maximum time (Tmax). All parameters were set as per Table 2. 
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coexisted when Timeregeneration was in the range of 1 – 20 whereas, equal number of extinctions 

were observed when Timeregeneration = 70 – 100 (Figure 23). Competition between the two-prey 

population (Gause Law, 1934) was observed when Timeregeneration = 30 – 60 (Figure 23).  

In fragmented habitats (W3C0), both prey population coexisted over a wider range of 

producer regeneration times (Timeregeneration = 10 – 40) while both prey population declined to 

extinction when the regeneration of producers was slow (Timeregeneration = 50 – 100) (Figure 24). 

Only one extinction was observed in case of Prey I population when Timeregeneration = 50 (Figure 

24).  

 

 

 

 

 

 

 

 

 

 In connected habitats (W3C3), however, both prey population coexisted across entire 

range of producer regeneration times (Timeregeneration = 10 – 100) (Figure 25). Only one extinction 

was observed in case of Prey II population when Timeregeneration = 70 (Figure 25). 
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Figure 24. The number of extinctions of Prey I and Prey II populations as a function of 

the regeneration times of the producers in habitat system W3C0. 50 parallel simulations 

were run until maximum time (Tmax). All parameters were set as per Table 2 



65 

 

 

 

Two Prey Populations with Non – Identical Life Histories and Coexistence Dynamics 

 

 We hypothesized that non – identical life history parameters could alter the competitive 

and coexistence dynamics of participating prey populations. To test this prediction, the amount 

of energy gained from food for Prey I populations was kept constant (GainpreyI = 4 EU) but the 

amount of energy gained from food for Prey II populations was reduced by half i.e., (GainpreyII = 

2 EU) resulting in two non-identical population where one was twice as efficient (Prey I) than 

other (Prey II). Other parameters for the experiment were set to standard initial values (Table 2). 

In case of non – identical prey populations, more efficient prey population (Prey I) survived an 

average of 7,676 time steps whereas less efficient prey population (Prey II) survived an average 

of only 72 time steps (Tmax = 10,000 time steps for both populations). The distribution of survival 

time across producer regeneration time was significantly different for Prey I survival time 

(Kruskal – Wallis H: 29.40, p < 0.05, N = 77) while it was not significantly different for Prey II 

survival time.  
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Figure 25. The number of extinctions of Prey I and Prey II populations as a function of the 

regeneration times of the producers in habitat system W3C3. 50 parallel simulations were run 

until maximum time (Tmax). All parameters were set as per Table 2. 
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However, it was observed that coexistence dynamics between non-identical prey 

populations was significantly shaped by arrangement of the habitat types the population resided 

in. The distribution of survival times across habitats was significantly different for Prey I 

survival time (Kruskal – Wallis H: 20.70, p < 0.05, N = 77; most significant difference occurring 

between habitat types W3C0 – W1C1, W3C0 – W2C2 and W3C0 – W3C3 based on pairwise 

comparisons using Dunn’s Test) and Prey II survival time (Kruskal – Wallis H: 61.462, p <  

0.05, N = 77; the most significant difference occurring between habitat types W1C0 – W3C3, 

W2C0 – W3C3 and W3C0 – W3C3 based on pairwise comparisons using Dunn’s Test) as shown 

in (Figure 26).  

To understand further how the non-identical life history parameters affected the 

coexistence dynamics between the two-prey population, a set of new experiments was carried out 

Figure 26. Population survival times of non - identical competitors as a function of habitat patterns. 

The survival dynamics of Prey I population whose GainpreyI was kept constant is shown in the left 

while the survival dynamics of the Prey II population whose GainpreyII was reduced to half is shown 

in right. Reducing ability to obtain energy from food drastically impacted survivability for Prey II 

population. 
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where all the parameters were set to standard initial values (Table 2) but amount of energy 

gained from food for Prey II population (GainpreyII ) was gradually increased through 1 – 8 

Energy Units with increment of 1 Energy Units in each experimental set up within three 

contrasting habitat types (W0C0, W3C0 and W3C3; W = level of fragmentation and C = level of 

connectivity). These three habitats were chosen because it represented the highest possible 

values of fragmentation (W) and connectivity (C) levels within our studied unfragmented, 

fragmented and connected habitat types respectively.  The regeneration time of producer 

(Timeregeneration) was kept constant at 10 for this experiment. Each experiment was run for 10,000 

time steps (Tmax) or until extinction of the population. 50 parallel simulations were carried out for 

each unique experimental setting to measure the variability of the coexistence dynamics in such 

settings. 

It was observed that when prey II population were the less efficient ones (GainpreyII < = 3 

EU), their average survival time decreased to less than 250 time steps (Tmax = 10,000 time steps) 

(Figure 27) whereas when they were the more efficient ones (GainpreyII > 5), their average 

survival time drastically increased to Tmax (Tmax = 10,000 time steps) (Figure 27). The two 

population could coexist only when they both had the same level of efficiency (GainpreyI = 

GainpreyII = 4EU) as shown in (Figure 27). This population shifted from lower to high 

survivability as the efficiency was increased gradually and it was noteworthy that this occurred 

simultaneously when survivability of other prey population (Prey I) shifted from higher to lower 

survivability as shown in (Figure 27). 
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The Effects of Interactions Between Predation and Competition on Coexistence Dynamics 

 

We hypothesized that implementing lower quality predator populations in the system 

with two identical prey populations will ensure greater survivability of both prey species and 

hence, enhance coexistence. We also predicted that higher quality predators in contrast, will 

reduce the prey populations and their survivability significantly contrary to hypothesis of Paine 

(1964) and Hall et al. (1970) that predation solely promotes coexistence by limiting one 

monopolizing species to out – perform another species.   

 

Figure 27. Population survival times of non-identical prey populations as a function of varying 

energy gain from good of Prey II (GainpreyII). The survival time started out low for Prey population 

II when GainpreyII < 3 but as GainpreyII > 5 it outlived Prey I. The population only coexisted at equal 

Gainprey value of 4 for both population; below or above the value of which the population showed a 

strong shift from negative to positive in survivability. 
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When Timeregeneration = 10 

 

When productivity of habitats was higher, implementing low quality or less efficient 

predators (Gainpredator = 10 – 30 EU) within in the habitats resulted in larger prey population size 

(Figure 28).  In contrary, implementing high quality or more efficient predators (Gainpredator = 40 

– 60 EU) within the habitats resulted in decline and hence, smaller prey population size due to 

over exploitation (Figure 28).  

 

The distribution of population size across quality levels of predators (Gainpredator) was 

significantly different for Prey I population (Kruskal – Wallis H: 14.42, p < 0.05, N = 18; most 

significant differences arising between Gainpredator 10 – 40 (p < 0.01), 10- 50 (p < 0.01), 10 – 60 

(p < 0.01) and 20 – 60 (p < 0.01) based on pairwise comparison using Dunn’s Test) and Prey II 

Population (Kruskal – Wallis H: 14.60, p < 0.05, N = 18; most significant differences arising 

Figure 28. Population size as a function of quality levels of predators. Both prey population 

occurred in higher number when lower quality predators were present. As predators’ efficiency 

was increased, the prey population faced massive decline due to overexploitation by predators 
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between Gainpredator 10 – 50 (p < 0.01), 10 – 60 (p < 0.01), 20 – 50 (p < 0.01) and 20 – 60 (p < 

0.01) based on pairwise comparison using Dunn’s Test). 

Similarly, implementing fragmentation (W3C0) led to higher survival times in both prey 

populations than implementing unfragmented (W0C0) or connected habitats (W3C3) (Figure29).  

In contrast, the predator survival time was higher in unfragmented and connected habitat 

types. The distribution of survival time across habitat types was significantly different in case of 

Prey I population (Kruskal – Wallis H: 11.84, p < 0.05, N = 18; most significant differences 

arising between habitat types W0C0 – W3C0 (p < 0.01) and W3C0 – W3C3 (p < 0.01) based on 

pairwise comparison using Dunn’s Test),  Prey II population (Kruskal – Wallis H: 12.06, p < 

0.05, N = 18; most significant differences arising between habitat types W0C0 – W3CO (p < 

Figure 29. Population survival time as a function of habitat types. Fragmented habitats were better 

suited for survivability of both prey population in comparison to unfragmented and connected 

habitats when predators were included in the systems. This happened as fragmented habitat provided 

temporary refuge which helped minimize impacts of overexploitation. The predator population 

however, flourished in unfragmented and connected habitats.  
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0.01) and W3C0 – W3C3 (p < 0.01) based on pairwise comparison using Dunn’s Test) and 

Predator population (Kruskal – Wallis H: 11.20, p < 0.05, N = 18; most significant difference 

arising between habitat types W0C0 – W3C0 (p < 0.01) based on pairwise comparison using 

Dunn’s Test).  

When Timeregeneration = 50 

 

 When the productivity of habitats decreased, it was observed that the overall predator – 

prey population size was smaller (Figure 30) than in comparison to the habitat systems where 

productivity was higher (Timeregeneration = 10; Figure 28).  

Similar population fluctuation dynamics occurred as when Timeregeneration = 10 but with 

much lower amplitude (Figure 30). Implementing low quality or less efficient predators 

Figure 30. Population size as a function of quality levels of predators. Overall population size 

was smaller compared to Timeregeneration = 10 (Fig. 28).  Both prey population size occurred in 

higher number when lower quality predators were present. Increasing efficiency of predators 

reduced the prey population but the amplitude of overall population size was smaller as 

compared to when Timeregeneration = 10 (Fig. 28). 
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(Gainpredator = 10 – 30 EU) still resulted in higher prey population size than implementing high 

quality predators (Gainpredator = 40 – 60 EU) but the population size did not fluctuate as heavily as 

in case of highly productive habitats (Figure 28 and Figure 30).  The distribution of survival time 

across levels of predator quality was not significantly different in case of Prey I population 

(Kruskal – Wallis H: 2.88, p > 0.05, N = 18) as well as Prey II population (Kruskal - Wallis H: 

1.55, p > 0.05, N = 18). 

Similarly, when the productivity of the habitats was lower, implementing fragmentation 

(W3C0) led to decline and eventual extinction of both prey - predator population. However, the 

predator – prey population survived in unfragmented (W0C0) and connected habitats (W3C3) 

(Figure 31).The distribution of population size across habitat types was significantly different in 

case of Prey I population (Kruskal – Wallis H: 11.41, p < 0.05, N = 18; most significant 

differences arising between habitat types W0C0 – W3C0 (p < 0.01) and W3C0 – W3C3 (p < 

0.01) based on pairwise comparison using Dunn’s Test), Prey II population (Kruskal – Wallis 

H:14.52, p < 0.05, N = 18; most significant differences between habitat types W0C0 – W3C0 (p 

< 0.01)and W3C0 – W3C3 (p < 0.01) based on pairwise comparison using Dunn’s Test) and 

Predator population (Kruskal – Wallis H: 12.80, p < 0.05, N = 18; most significant difference 

arising between habitat types W3C0 – W3C3 ( p < 0.01) based on pairwise comparison using 

Dunn’s Test). 
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In contrast to the habitats whose productivity was higher (Timeregeneration = 10; Figure 29), 

implementing fragmentation (W3C0) led to lower survival time of both prey population than in 

unfragmented habitats (W0C0) and connected habitats (W3C3) as shown in Figure 32. This 

pattern was similar for predator population. The distribution of survival time across habitat types 

was significantly different in case of Prey I population (Kruskal – Wallis H: 11.415, p < 0.05, N 

= 18; most significant difference arising between habitat types W0C0 – W3C0 (p < 0.01) and 

W3C0 – W3C3 (p < 0.01) based on pairwise comparison using Dunn’s Test), Prey II population 

(Kruskal – Wallis H: 9.58, p < 0.05, N = 18; most significant difference arising between habitat 

types W0C0 – W3C0 (p < 0.01) and W3C0 – W3C3 (p < 0.01) based on pairwise comparison 

using Dunn’s Test) and Predator population (Kruskal – Wallis H: 7.61, p < 0.05, N= 18; the 

Figure 31. Population size as a function of habitat types. Both predator – prey populations 

faced massive decline to extinction within unfragmented habitats (W3C0) but survived 

within unfragmented (W0C0) and connected habitat types (W3C3). 
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major difference arising between habitat types W3C0 – W3C3, p < 0.01 based on pairwise 

comparison using Dunn’s Test).  

  

Figure 32. Population survival time as a function of habitat types.  Unfragmented 

(W0C0) and connected habitats (W3C3) were better suited for survival of both predator 

- prey population than fragmented habitats (W3C0) as compared to when Timeregeneration 

= 10 (Figure 29). 
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CHAPTER 4 

DISCUSSIONS 

 

The agent based model we developed is an abstract and minimalistic model for studying 

prey – predator coexistence dynamics and unlike classical Lotka -Volterra models, carrying 

capacities and competition coefficients are not explicitly implemented into the model system 

(Karsai et al. 2016). Instead of using an explicit competition coefficient, we relied upon 

interactions amongst individuals and their corresponding environments (Process overview and 

Scheduling; Figure 1 – 3). Similarly, instead of implementing carrying capacity directly, we built 

a model system where energy flow occurs between trophic levels i.e., from producers to 

consumers (prey populations) to predators (Karsai et al. 2016). This simple setup facilitated the 

outcomes of complex emergent dynamics which incorporated density dependent re-colonization 

of sub-habitats and delayed colonization by predators after the prey populations have colonized a 

sub-habitat (Karsai and Kampis 2011). The agents in the model were devoid of any abilities to 

sense the presence of surrounding prey – predator populations, producers, or the reflecting 

border walls within the system. The movements of the agents have been simplified to random 

walk. Foraging and probability that an agent would travel through the connecting portals has 

been randomized as well (Karsai and Kampis 2011). On one hand, this type of simplification 

allowed us to concentrate on the individual agents and their interactions at the basic level which 

produced the emergent dynamics, and on the other, prevented the model from being 

unnecessarily complicated. Nevertheless, we obtained results which were the emergent outcomes 

of the model system mediated by experimental parameter settings per the necessities of various 

studies conducted and extensive parameter sweeps.  
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Effects of Habitat Types, Varying Regeneration Times of Producers and Quality Levels of 

Predators on Coexistence Dynamics of Prey – Predator Population 

 

 The simple agent-based model we built produced some interesting predictions on the prey 

– predator coexistence dynamics within the model system. Findings from this study show that 

coexistence dynamics (determined in terms of prey and predator population size) is influenced 

significantly by varying regeneration times of the producers, the combination of connectivity and 

fragmentation levels of different habitat types and quality levels of predators within the habitats. 

Statistical analyses of our results proved (Table 3 – 6; Figure 11 -14) that these three factors are 

indeed significantly responsible for prey and predator population size. We will evaluate the 

effects of each of these three factors in detail below.  

Effects of Varying Regeneration Times of Producers 

 

The findings from our study show that varying regeneration times of producers 

significantly influences the coexistence dynamics. The producers found in the model systems 

were as simple as the rest of the model parameters and were devoid of any morphological 

adaptations such as spines and thick cuticles or chemical defenses known as secondary 

compounds (Krohne 2001, 252 – 254 p). To control the negative sides as well as positive sides of 

herbivory such as overexploitation of photosynthetic parts of plant system or increase in 

production of seeds respectively (Krohne 2001, 256 p), the regeneration times of producers 

(Timeregeneration) was implemented or controlled externally (Figure 1) and the foraging by prey 

population was completely randomized (Figure 2) within the model system.  

Habitats with producers which took shorter time interval to regenerate (Timeregeneration = 1 

– 59) or high productive environment supported a robust prey-predator population in comparison 
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to the habitats with producers which took a longer time interval to regenerate (Timeregeneration = 60 

– 100) or low productive environment. High productive environment (Timeregeneration = 10 – 59) 

helped maintain a steady supply of food sources for prey population. This made optimal foraging 

per time – step more probable for prey populations which helped them meet their energy needs 

continuously enhancing their probability for reproduction (Figure 2) and maintained higher 

population size (Figure 15a and 19a) as well as higher survival times (Figure 17a and 19a).  This 

had a significant positive impact upon the predator populations also as prey populations were 

their only food source. Thus, readily available food sources made optimal foraging per time – 

step more probable even for predator populations enhancing their probability for reproduction 

(Figure 3) which improved their functional and numerical response (Krohne 2001, 261 p) 

resulting in larger predator population size (Figure 15b and 19b) and predator survival time 

(Figure 17b and 19b) also. 

 On the contrary, in low productive environment (Timeregeneration = 60 – 100), the 

probability for optimal foraging per time-step declined. Both prey and predator populations now 

spent more energy and time foraging which exhausted their limited energy reserves. Unless they 

find food sources to replenish declining energy levels vital to carry normal life processes, the 

chances that they could successfully forage and reproduce further declines. Hence, eventually the 

populations died out resulting in smaller prey population size (Figure 15a and 19a) and smaller 

prey survival time (Figure 17a and 19a) followed by smaller predator population size (Figure 15b 

and 19b) and smaller predator survival time (Figure 17b and 19b). 
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Effects of Fragmented and Connected Habitats 

 

 The findings from our study show that both habitat types i.e., fragmented habitats and 

connected habitats significantly influence the coexistence dynamics. Bender et al. (1998), 

Fischer and Lindenmayer (2007) and Blackburn et al. (2011) reported that habitat fragmentation 

leads to population decline akin to our study predictions which show that fragmented habitats 

(W1C0, W2C0, W3C0; Figure 5-7) leads to lower prey population size (Figure 15a) and prey 

survival times (Figure 17a) as well as lower predator population size (Figure 15b) and lower 

predator survival time (Figure 17b). Inducing fragmentation leads to mosaic landscapes of 

habitat patches. This may affect the population through reduction in total area of suitable habitats 

(Krohne 2001, 137 p).  Within such patchy habitats, the predator – prey population tend to 

fluctuate heavily often leading to extinction of one of the species followed by the other resulting 

in habitats where just prey food survives as in (Karsai and Kampis, 2011) (Figure 5 – 7). The 

degree to which habitable area was lost depended upon the intensity of fragmentation. Higher the 

level of fragmentation, greater the lost in habitat area which had more negative consequences 

resulting in smaller population size (Figure 15a and 15b) and population survival time (Figure 

17a and 17b).   

 Karsai and Kampis (2011) reported implementing connectivity between fragmented 

habitats to be advantageous as it ensured the coexistence of prey - predator populations similar to 

our study predictions which show that connected habitats (W1C1, W2C2, W3C3; Figure 8 - 10) 

lead to higher prey population size (Figure 19a) and prey survival time (Figure 21a) as well as 

higher predator population size (Figure 19b) and higher predator survival time (Figure 21b). 

Implementing connectivity between the habitat patches basically allows for movements between 

such patches and hence, establishes connectivity (Brudvig et al. 2012). This allows for dispersal 
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of predator – prey populations across the habitats (Holyoak and Lawler 1996; Ament et al. 

2014). This implied that the prey populations were now capable to find temporal refuges by 

escaping into neighboring sub habitats with the help of connecting portals which not only helped 

to reduce overexploitation by highly efficient predators but also allowed for reproduction (Karsai 

and Kampis, 2011). As prey populations escaped from point of extinction and stabilized, 

successful foraging per unit time step became more probable for predator populations also. It 

ensured higher predator population size as well as higher survival time. This process facilitated 

by corridors repeated in cycle hence, larger prey - predator population size (Figure 19a and 19b) 

was maintained along with higher survival times (Figure 21a and 21b).  

Effects of Quality Levels of Predators 

 

 The findings from our study show that quality levels of predators significantly influence 

the coexistence dynamics. High quality predators (Gainpredator > 30) overexploited the prey 

populations reducing their overall population size and survival time in fragmented habitats 

(W1C0, W2C0 and W3C0). This in return led to decline and extinction of predator populations 

in subsequent generations. Karsai and Kampis (2011) reported prey - predator population 

dynamics like our study predictions which show that within fragmented habitats, high quality 

predators overexploited the prey population and reduced their overall population size (Figure 

16a) and survival times (Figure 18a). This decrease in prey population and survival time 

eventually led to decrease in predator population size (Figure 16b) and survival time (Figure 

18b) (Karsai and Kampis 2011). Since, high quality predators obtained high amount of energy 

from food, they could possibly utilize it to travel farther distances for foraging. This increased 

the chances of them encountering a potential prey if available in the habitat. These dynamics 

occurred in each sub - habitats and its magnitude increased with increase in level of 



80 

 

fragmentation (W). This led to potential over-exploitation of prey population without a chance 

for relief.  

 High quality predators (Gainpredator > 30) on the other hand, reduced the prey population 

size but maintained its own population in larger numbers in connected habitats (W1C1, W2C2 

and W3C3). Karsai and Kampis (2011) reported increase in predator populations after 

implementation of connectivity between the habitats akin to our study predictions which shows 

that implementing connectivity leads to larger population size of high quality predators (Figure 

20b) and survival time (Figure 22b). Connectivity allowed for movement between the habitats 

and thus, prey populations often found temporal refuges in neighboring sub-habitats. This 

provided prey populations an opportunity to recuperate from ongoing over-exploitation by high 

quality predators in new habitats which might also provide for reproduction (Karsai and Kampis, 

2011; Karsai et al. 2016). Hence, it resulted in larger prey population size in subsequent 

generations as compared to fragmented habitats. This cycle continued over subsequent 

generations.  

It is noteworthy that low quality predators (Gainpredator = 10 – 30) were not able to gain as 

much energy from food as high quality predators which led to early deaths of such predators due 

to hunger. This resulted in smaller population size for low quality or less efficient predators. 

Hence, in presence of low quality predators, prey population was maintained in larger number 

(Figure 20a) with higher survival time (Figure 22a).  

Effects of Quality Levels of Predators in Coexistence of Identical Prey Population in High 

Production Environment 

  The findings from our study show that implementation of non-biased low quality or less 

efficient predators (Gainpredator = 10 – 30) in the model system with two identical prey 
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populations ensures higher survivability of both prey populations thus, enhancing coexistence 

dynamics whereas implementation of non – biased high quality or highly efficient predators 

(Gainpredator > 30) effectively reduces their population size to the point of extinction. The results 

reveal that prey population size flourished when the habitats were comprised of less efficient 

predators whereas the prey population size decreased as the predators became more efficient 

(Figure 28). Our observations differed from that of Paine (1964) and Hall et al. (1970) findings 

that predicted predation solely promotes coexistence by reducing probability for one 

monopolizing species to out-perform another species. One possible reason for such differences 

could be that their studies do not take the varying levels of quality or efficiency of predators 

within the habitats into considerations as we did while we conducted our studies. Also, the 

difference could result from the fact that we have implemented prey populations with identical 

life history parameters whereas in their studies there might have been differences between the 

prey populations.  

For this case, our result seems to be similar in some part to Karsai et al. (2016) findings 

on effects of implementation of non-biased predators on competition. It reported that highly 

efficient predator populations overexploited the prey populations like our study predictions 

(Figure 28) where it showed that high quality predators overexploited the prey population 

resulting in low prey population size. Meanwhile, low quality predators which were weak 

foragers and not as efficient struggled to forage (Figure 3). Their inability to forage better 

prevented them from consuming more prey population which in turn further declined their 

chances to obtain enough energy to reproduce as well (Karsai et al. 2016). This in turn resulted 

in both identical prey populations coexisting for subsequent generations in larger numbers owing 
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to less efficient predator population whereas the less efficient predator population sustained in 

smaller size.  

Effects of Habitat Patterns in Survival Time of Identical Prey Population in Both High and Low 

Production Environment 

Dynamics Within High Production Environment 

 

The findings from our study show that in high production environment, implementation 

of fragmented habitats (W3C0) results in higher survival time of both identical prey populations 

compared to implementation of unfragmented (W0C0) or connected habitats (W3C3). The 

results we obtained show higher survival times for both prey populations within fragmented 

habitats (Figure 29) in high production environment. However, those results also suggest that 

effects of fragmented habitats are influenced by high productivity levels of environment or fast 

regeneration of producers (Timeregeneration = 10) as well to regulate survival time dynamics.  

One of the prominent effects of fragmentation is that there is reduction in size of the 

habitat patches (Fahrig 2003). This leads to formation of regional metapopulations (Krohne 

1997) acting as independent network of small habitat patches (Harrison and Bruna 1999). Hence, 

the newly formed habitat patches or sub-habitats start to play independent dynamics. The prey 

and predator population fluctuates heavily within such sub-habitats (Karsai and Kampis 2011). 

When the prey population in such sub – habitats was exposed to overexploitation by means of 

predation, it went extinct first. This resulted in predator population going extinct as well. 

Similarly, there is probability that predator population becomes extinct first owing to the random 

nature of the model execution process combined with initialization state of the model (Table 2). 

This became true in case of high quality predators and when this happened, the chances were 
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highly likely that the surviving prey population would utilize the benefits of high production 

environment in absence of natural predators. With ample food resources and absence of 

predators, more prey populations could forage and reproduce successfully in subsequent 

generations as their probability of successful foraging per time step increases (Figure 2). This 

resulted in high prey survival time for both prey populations (Prey I and Prey II) in fragmented 

habitats as shown in (Figure 29). In addition to this, it is also possible that fragmentation 

compounded the effects of this survival time dynamics by discouraging migration of other prey 

populations from surrounding sub-habitats through lack of dispersal thus, creating stable 

dynamics where population survival time stayed higher throughout the experiment.  

Dynamics Within Low Production Environment 

 

 The findings from our study show that in low production environment, implementation of 

fragmented habitats (W3C0) results in lower survival time of both identical prey populations 

compared to implementation of unfragmented (W0C0) or connected habitats (W3C3). 

Fragmented habitats will result in lower survival time for not only prey populations, but for 

predator populations also. The results we obtained show lower survival times for both prey 

population and predator population within fragmented habitats (Figure 32; compared to higher 

production environment, Figure 28) in low production environment. However, those results also 

suggest that effects of fragmented habitats are influenced by low productivity level of 

environment or slow regeneration of producers (Timeregeneration = 50) as well to regulate survival 

time dynamics.  

 Similar sub-habitat dynamics occurred as explained for high production environment 

above. However, in this case the prey populations which survived the overexploitation were 

devoid of opportunities to utilize the benefits of high production environment as the regeneration 
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of producers would take five times as longer compared to high production environment. This 

reduced the probability for successful foraging per time step (Figure 2). However, during this 

time, the prey population still had to forage at a cost of their limited energy reserves. As it took 

longer for them to replenish the energy level, they eventually died out due to hunger (Figure 2) 

resulting in low survival time for both prey populations (Prey I and Prey II) as shown in (Figure 

32). In addition to this, it is also possible that fragmentation in the case of low productivity 

compounded the effects of this survival time dynamics by discouraging possible escape of prey 

populations to neighboring habitat patches with probability of more resources thus, creating 

stable dynamics where the prey survival time stayed lower throughout the experiment.  

Real World Implications 

 

One of the previous agent-based model study conducted on connected fragmented 

habitats facilitating coexistence dynamics between prey – predator populations by (Karsai and 

Kampis 2011) inspired the experimental study conducted by (Cooper et al. 2012) in simple but 

real ecosystems with real prey – predator system (Paramecium – Didinium). This protozoan prey 

– predator study even relates to the one performed by Gause (1934) but the interesting fact here 

is that not only its authors were inspired by the theoretical model work by Karsai and Kampis 

(2011), but also the experimental real ecosystem by Cooper et al. (2012) behaved as predicted by 

the model of Karsai and Kampis (2011). For example, some of the results of the real ecosystem 

study conducted by Cooper et al. (2012) showed that reduced habitat size through increased level 

of fragmentation or increased patchiness of the habitats increased extinction probability which 

meant that smaller fragments hosted smaller populations which became more prone to stochastic 

extinctions. It also showed that predator populations became more asynchronous as the level of 
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fragmentation of the habitats were increased like the study performed by Karsai and Kampis 

(2011).  

The findings of our research work express coexistence of prey – predator populations as 

combined function of regeneration time of producers, type of habitats and quality levels of 

predators. Our work points towards corridor connectivity as a possible method to mitigate the 

negative effects of fragmentation of wildlife populations caused by constructions of roads, 

highways, ditches and fences which could be beneficial for overall prey – predator populations; 

especially for highly efficient predator populations. Importance of wildlife crossing structures 

has been emphasized in the past studies such as usage of open crossing structures or overpass by 

Grizzly Bears (Sawaya et al. 2013) and wildlife crossing structures enhancing the viability of 

wildlife populations in Banff National Park (Clevenger and Sawaya 2010). Similarly, Damschen 

et al. (2014) showed habitat corridors affecting wind dynamics and seed dispersal; thus, 

positively impacting the species richness of wind-dispersed plants in such habitats. Our agent-

based model study not only relates to these experimental studies but also adds to the idea that 

connectivity could further lead to successful coexistence of prey – predator populations.  
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CHAPTER 5 

CONCLUSIONS 

 

  We have presented a novel approach to predict several emergent coexistence dynamics 

occurring between prey – predator populations within connected and fragmented habitats under 

various productivity levels of the environment by using simplistic and abstract agent-based 

model. By varying levels of studied parameters such as regeneration times of producers, different 

habitat types and quality levels of predators, our model revealed the significant impacts of such 

parameters in prey – predators’ population size and survivorship. Increasing level of connectivity 

stabilized prey – predator populations and led to increased survivorship. Establishing 

connectivity also helped to maintain high-quality predator population in larger numbers. In 

absence of predation, the coexistence of two types of prey populations with identical life history 

parameters was more probable in connected habitats. The interactions between competition and 

predation was such that low-quality predators helped maintain both competing prey populations 

in larger numbers whereas high-quality predators overexploited the competing prey populations 

unlike the popular notion that overall predation helps in coexistence dynamics by limiting the 

population of better competitors. Similarly, fragmented habitats supported larger competing prey 

population size in high-productive environment whereas unfragmented and connected habitats 

supported larger competing prey population size in low-productive environment. It was also 

observed that connected habitats were better than fragmented habitats in supporting robust 

predator population across entire levels of productivity of environment. 

Our goals here, besides informing about possible environmental significance of our work, 

is also to acknowledge the contribution that agent-based modeling could make as a unique and 
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strong platform to facilitate study of complex ecological phenomena by assisting the 

experimental and theoretical ecological studies while seeking possibilities of informatics in 

ecology owing to myriad of data that can be generated using such agent-based models. It must be 

borne in mind that this study comprises of very simple agents, environments and their 

interactions and we acknowledge the fact that the model has been ideally kept very simple to 

achieve our goal of studying the patterns of bottom – up emergent dynamics of coexistence in-

silico. Further research could incorporate the use of evolutionary algorithms to make agents 

capable of learning from previous experiences enhancing their sensing and predictions abilities 

of their surroundings which could reveal more about the coexistence dynamics.  
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APPENDICES 

APPENDIX A 

3D Surface plots of Prey populations as a function of varying regeneration times, habitat types 

and quality levels of predator populations 

 

Figure 34. A 3D surface plot showing the Prey populations at varying regeneration times and 

predator quality levels in a fragmented habitat without connectivity (W3C0); fragmentation level 

(W) = 3 and connectivity (C) = 0. 

Figure 33. A 3D surface plot showing the Prey populations at varying regeneration times and 

predator quality levels in an unfragmented habitat (W0C0); fragmentation level (W) = 0 and 

connectivity (C) = 0. 
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Figure 35. A 3D surface plot showing the Prey populations at varying regeneration times and 

predator quality levels in a fragmented and connected habitat (W3C3); fragmentation level (W) = 

3 and connectivity (C) = 3. 
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APPENDIX B 

3D Surface plots of Predator populations as a function of varying regeneration times, habitat 

types and their quality levels 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. A 3D surface plot showing the Predator populations at varying regeneration times and 

their quality levels in an unfragmented habitat (W0C0); fragmentation level (W) = 0 and 

connectivity (C) = 0.  

Figure 37. A 3D surface plot showing the Predator populations at varying regeneration times and 

their quality levels in a fragmented habitat without connectivity (W3C0); fragmentation level 

(W) = 3 and connectivity (C) = 0. 
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Figure 38. A 3D surface plot showing the Predator population at varying regeneration times 

and their quality levels in a fragmented and connected habitat (W3C3); fragmentation level 

(W) = 3 and connectivity (C) = 3.  
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