
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

5-2017

On t-Restricted Optimal Rubbling of Graphs
Kyle Murphy
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Discrete Mathematics and Combinatorics Commons

This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East
Tennessee State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Murphy, Kyle, "On t-Restricted Optimal Rubbling of Graphs" (2017). Electronic Theses and Dissertations. Paper 3251.
https://dc.etsu.edu/etd/3251

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by East Tennessee State University

https://core.ac.uk/display/214072216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F3251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F3251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F3251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=dc.etsu.edu%2Fetd%2F3251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


On t-Restricted Optimal Rubbling of Graphs

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Kyle Murphy

May 2017

Robert A. Beeler, Ph.D., Co-Chair

Teresa Haynes, Ph.D., Co-Chair

Robert Gardner, Ph.D.

Rodney Keaton, Ph.D.

Keywords: graph theory, pebbling, rubbling



ABSTRACT

On t-Restricted Optimal Rubbling of Graphs

by

Kyle Murphy

For a graph G = (V,E), a pebble distribution f is defined as f : V → N∪{0},

where each vertex v ∈ V begins with f(v) pebbles. A pebbling move takes

two pebbles from some vertex adjacent to v and places one pebble on v. A

rubbling move takes one pebble from each of two vertices that are adjacent

to v and places one pebble on v. A vertex x is reachable under a pebbling

distribution f if there exists some sequence of rubbling and pebbling moves

that places a pebble on x. A pebbling distribution where every vertex is

reachable is called a rubbling configuration. The t-restricted optimal rubbling

number of G is the minimum number of pebbles required for a rubbling

configuration where no vertex is initially assigned more than t pebbles. Here

we present results on the 1-restricted optimal rubbling number and the 2-

restricted optimal rubbling number.
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1 INTRODUCTION

We begin with some basic definitions in Section 1.1 and give definitions

specific to our problem in Section 1.2. Our problem statement is also given

in Section 1.2.

1.1 General Graph Theory Definitions

Our definitions are consistent with [3]. A graph G = (V,E) is a set

of vertices V (G) and a set of edges E(G) drawn between distinct pairs of

vertices. For the purposes of this paper, we will assume that each pair of

vertices is connected by at most one edge. Figure 1 gives an example of a

graph with u, v ∈ V (G) and uv ∈ E(G). For two sets A and B, the set

difference A − B is defined as A − B = {x : x ∈ A and x /∈ B}. Two

vertices u, v ∈ V (G) that are connected by an edge uv ∈ E(G) are said to

be adjacent. We also refer to u and v as neighbors. The set of all neighbors

of some vertex v is called the open neighborhood of v, and is denoted N(v).

The closed neighborhood of v, denoted N [v], is the set N(v) ∪ {v}. For

some set S ⊂ V (G), we define N(S) as the union of the open neighborhoods

of the vertices of S. We analogously define N [S] as the union of the closed

neighborhoods of the vertices of S. Let S ⊆ V and v ∈ S. Vertex u is called a

private neighbor, denoted S-pn, of v with respect to S if u ∈ N [v]−N [S−{v}].

An S-pn of v is external if it is a vertex in V − S. The external private
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neighborhood of v, denoted epn(v, S), is the set of all of the external private

neighbors of v. In Figure 1, vertex u is a private neighbor of v with respect

to V (G).

s
s

s
s

s s
�
�
�
�A
A
A
A

u

v

Figure 1: House graph with a chimney

The order n of a graph G is the cardinality of the vertex set V (G). If

|V (G)| = 1, then we say that G is the trivial graph. The size m of a graph

is the cardinality of the edge set E(G). The degree of a vertex v, denoted

deg(v), is the cardinality of N(v). If deg(v) = 1, then we say that v is a

leaf. If deg(v) ≥ 2, then v is an internal vertex. A vertex that is adjacent to

a leaf is called a support vertex. A vertex adjacent to two or more leaves is

called a strong support vertex. The largest degree among the vertices of G,

denoted ∆(G), is called the maximum degree of G. The minimum degree of

G, denoted δ(G), is the smallest degree among the vertices of G. If E(G) = ∅,

then we say that G is an empty graph. An r-regular graph is a graph whose

vertices all have degree equal to r. For two graphs H and G, if V (H) ⊆ V (G)

and E(H) ⊆ E(G), then we say that H is a subgraph of G. If H is a subgraph

9



of G such that V (G) = V (H), then H is a spanning subgraph of G. For a

nonempty subset S of V (G), the subgraph G[S] of G, induced by S has S

as its vertex set and two vertices u and v are adjacent in G[S] if and only

if they are adjacent in G. A subgraph H of a graph G is called an induced

subgraph if there is a nonempty subset S of V (G) such that H = G[S].

Now we will define specific classes of graphs that are of interest. A

graph G on n vertices is a complete graph Kn if every pair of vertices of G

are adjacent. In other words, all possible edges are present in G. For an

integer n ≥ 1, a path Pn is a graph of order n and size n− 1 whose vertices

can be labeled by p1, p2, ..., pn and whose edges are pipi+1 for i = 1, 2, ..., n−1.

Vertices p1 and pn are called the terminal vertices of Pn. Figure 2 is the path

P3. For an integer n ≥ 3, a cycle Cn is a graph of order n and size n whose

vertices can be labeled by v1, v2, ..., vn and whose edges are v1vn and vivi+1

for i = 1, 2, ..., n − 1. Figure 3 is the cycle C4. A wheel Wn is a cycle on n

vertices, with an extra vertex adjacent to each vertex on the cycle.

A graph G is bipartite if V (G) can be partitioned into two sets U and

W , such that every edge of E(G) joins a vertex of U and a vertex of W . We

call U and W partite sets. A graph G is a complete bipartite graph if V (G)

can be partitioned in to two sets U and W so that uw ∈ E(G) if and only if

u ∈ U and w ∈ W . A complete bipartite graph with |U | = r and |W | = s is

denoted Kr,s, where 1 ≤ r ≤ s. In particular, if r = 1 in a complete bipartite

10



graph, the graph is called a star. For an example, see Figure 4. The vertex

of maximum degree in a star is called the center.

s s s

Figure 2: The path P3

s

s

s

s

Figure 3: The cycle C4

For two vertices u and v in a graph G, we say that u and v are connected

if there exists a path subgraph of G where u and v are terminal vertices. We

refer to the path between u and v as a u-v path. If every pair of vertices in

V (G) are connected, then G is a connected graph. The distance d(u, v) from

a vertex u to a vertex v is the minimum length of all the paths between u

and v. For a vertex v in a connected graph G, the eccentricity of v is the

largest value of d(v, u) for all u ∈ V (G). The diameter of a graph G, denoted

diam(G), is the maximum eccentricity of all the vertices in V (G). A vertex
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Figure 4: The star K1,6

whose eccentricity equals the diameter of G is called a peripheral vertex of G.

The subgraph induced by the peripheral vertices of G is called the periphery

of G.

A tree is a connected graph with no cycle subgraphs. A double star Sr,s

is a tree with exactly two adjacent nonleaf vertices, one of which is adjacent

to r leaves and the other adjacent to s leaves. A tree is said to be rooted if a

single vertex r is singled out as the root, and the other vertices are classified

in terms of their distance from r. A parent of a vertex v is a vertex who

lies on the unique path from v to r. If v lies on the unique path from some

vertex u to the root r, then u is said to be a child of v. A branch is defined

as a unique path from the root to some vertex of T .

The complement of a graph G is defined as the graph G, such that

V (G) = V (G), and uv ∈ E(G) if and only if uv /∈ E(G). The Cartesian

product of two graphs G1 and G2 is denoted by G12G2 and defined as follows:

the graph G12G2 has vertex set V (G12G2) = V (G1) × V (G2), and two
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distinct vertices (u, v) and (x, y) are adjacent if either: (1) u = x and vy ∈

E(G2) or (2) v = y and ux ∈ E(G1). A prism is the Cartesian product of a

P2 and a Cn. The n-cube Qn, is defined as K2 if n = 1. If n ≥ 2, then Qn is

defined recursively as the Cartesian product Qn−12K2.

A set S ⊆ V (G) is a dominating set of G if each vertex in V (G) − S

is adjacent to at least one vertex in S. The minimum cardinality among all

dominating sets of G is called the domination number of G, and is denoted

γ(G). The k-domination number of a graph G is the smallest cardinality

among all subsets S of V (G) such that each vertex in V (G)− S is adjacent

to at least k vertices in S, and is denoted γk(G).

1.2 Pebbling and Rubbling Definitions

We will now define terms specifically associated with graph rubbling.

Let G be a graph. A pebble distribution on G is defined as a whole number of

pebbles placed on the vertices of G (see [1]). Figure 5 gives an example of a

pebble distribution where two pebbles are placed on u, one pebble is placed

on x, and zero pebbles are placed on each other vertex in V (G).

r

r
r r r r@

@
@

�
�
�

u v w x

`1

`2
2 0 0 10

0

Figure 5: A pebble distribution
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Using the pebbles placed on a graph by a pebble distribution, we define

a pebbling move and a rubbling move.

Definition 1.1 Let G = (V,E) be a graph with adjacent vertices u and v in

V (G). Let f be a pebble distribution such that f(u) ≥ 2. Then a pebbling

move, denoted p(u → v), removes two pebbles from u and places one on

v. This defines a new pebble distribution, f ′ such that: f ′(u) = f(u) − 2,

f ′(v) = f(v) + 1, and f ′(z) = f(z) for all other z ∈ V (G).

r

r
r r r r@

@
@

�
�
�

u v w x

`1

`2
0 1 0 10

0

Figure 6: A pebbling move

Observe that Figure 6 depicts the graph from Figure 5 after the peb-

bling move p(u→ v).

Definition 1.2 Let G = (V,E) be a graph with some vertex w ∈ V (G)

adjacent to distinct vertices v ∈ V (G) and x ∈ V (G). Let f be a pebble

distribution such that f(v) ≥ 1 and f(x) ≥ 1. Then a rubbling move, denoted

r(v, x → w), removes one pebble each from v and x and places one new

pebble on w. In the new pebble distribution f ′ we have: f ′(v) = f(v) − 1,

f ′(x) = f(x)−1, f ′(w) = f(w)+1, and f ′(z) = f(z) for all other z ∈ V (G).
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Figure 7: A rubbling move

Figure 7 depicts the graph in Figure 6 after the rubbling move r(v, x→

w). A vertex v is said to be reachable if there exists some sequence of rubbling

and pebbling moves that can place a pebble on v. A vertex that begins with

zero pebbles in an initial pebble distribution is said to be open.

Graph pebbling, which preceded graph rubbling, only allows the peb-

bling move. Hence, for the following definitions concerning pebbling, it is

assumed that only the pebbling move is allowed. As such, we will say that a

vertex v is reachable by pebbling if there is a way to place a pebble on v using

only pebbling moves. The pebbling number π(G) of a graph G is defined

as the smallest k such that for every pebble distribution of k pebbles, every

vertex in V (G) is reachable by pebbling.

The optimal pebbling number πopt of a graph G is the least k such

that there exists some distribution of k pebbles where every vertex in V (G)

is reachable by pebbling. The optimal-t pebbling number is defined as the

minimum number of pebbles needed to place at least t pebbles on each vertex

using only pebbling moves. Finally, the t-restricted optimal pebbling number

15



is defined as the least k such that there exists some pebble distribution f on

k pebbles where for each v ∈ V (G), f(v) = {0, 1, ..., t−1, t} and every vertex

is reachable by pebbling.

In graph rubbling both the pebbling and rubbling moves are allowed.

Hence, this is assumed in the following definitions concerning rubbling. If

every vertex of a graph G is reachable under some pebble distribution f , then

we say that f is a rubbling configuration. The rubbling number of a graph

G, denoted ρ(G), is the smallest k such that every pebble distribution of k

pebbles results in a rubbling configuration (see [1]). The optimal rubbling

number ρopt(G) is the smallest number of pebbles required for some rubbling

configuration on a graph G. Finally, the optimal-t rubbling number is defined

as the minimum number of pebbles needed to place at least t pebbles on each

vertex.

We now define the t-restricted optimal rubbling number, which is the

focus of this paper.

Definition 1.3 Let G = (V,E) be a graph. Then the t-restricted optimal

rubbling number ρ∗t (G) of G is the least k such that there exists some rubbling

configuration f on k pebbles where for each v ∈ V (G), f(v) = {0, 1, ..., t −

1, t}.

For convenience, we refer to an optimal rubbling configuration in which

each vertex begins with less than t pebbles as a ρ∗t -configuration. It is im-

16



portant to note that the restriction to t pebbles only applies to the initial

pebble distribution. In many cases, vertices are required to obtain more than

t pebbles after some sequence of moves. This is allowed, as long as no vertex

begins with t pebbles.

The t-restricted optimal pebbling number has been studied, but the

t-restricted optimal rubbling number has not. The goal of this thesis is to

introduce and investigate t-restricted optimal rubbling. Chapter 2 will give

a brief history of pebbling and rubbling. Our results are given in Chapters

3, 4, and 5. In particular, Chapter 3 gives a detailed problem statement.

In Chapter 4 we will present results on the 1-restricted optimal rubbling

number. This will include characterizations for specific families of graphs, as

well as upper and lower bounds. Chapter 5 contains results on the 2-restricted

optimal rubbling number, comparing some of these results to those obtained

in Chapter 4. Finally, we conclude with open problems.

17



2 LITERATURE REVIEW

2.1 Graph Pebbling

As graph rubbling originates from graph pebbling, we will first discuss

some notable results concerning graph pebbling. According to Hurlbert [16],

Lagarias and Saks first introduced pebbling as an approach to a theorem in

number theory. In 1989, Chung’s results on pebbling the n-cube were used

to give a proof to the theorem originally proposed by Lagarias and Saks [5].

Numerous results on graph pebbling followed this initial discovery. Some of

these results are found in [5, 15, 21, 24].

An interesting area of study in pebbling is Graham’s conjecture, which

deals with the Cartesian product of graphs. If A and B are graphs with

pebbling numbers π(A) and π(B), then Graham’s conjecture states that

π(A2B) ≤ π(A)× π(B). While this bound has yet to be proved in general,

it has been shown to hold for several classes of graphs. Some of the current

results on Graham’s conjecture are found in [6, 7, 13, 27].

A likely application of graph pebbling is observed in modeling the trans-

portation of materials. If a truck must transport fuel along a road, then some

of that fuel must be used in order for the truck to reach its destination [1].

This loss is reflected by the pebbling move. In order to transport two pebbles

to a new vertex, one pebble must be sacrificed along the way.

18



Optimal pebbling was first introduced by Pachter, Snevily and Voxman

[24]. Since then, there has been extensive work done on optimal pebbling

[2, 8, 10, 24, 26]. Similar to the general pebbling number, the optimal peb-

bling number for the hypercube has been studied [9, 22]. Milans and Clark

studied the computational complexity of pebbling and optimal pebbling [20].

Optimal pebbling has also been studied in [14, 23].

The optimal t-pebbling number has also been widely studied [11, 12, 19].

Bounds for paths and cycles have been found on the optimal-t pebbling num-

ber [25, 28]. The t-restricted optimal pebbling number was introduced by

Chellali, Haynes, Hedetniemi, and Lewis [4]. Their work included character-

izations of those graphs with small t-restricted optimal pebbling numbers, as

well as common graphs like cycles and paths. In addition, they found upper

bounds related to trees, some of which serve as inspiration for our results on

trees.

2.2 Graph Rubbling

The rubbling move was defined by Belford and Sieben [1]. In addition

to the rubbling move, they also defined the rubbling number and the optimal

rubbling number of a graph. Since our results focus mainly on t-restricted

optimal rubbling, we present some of their notable results concerning the

optimal rubbling number ρopt.
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Theorem 2.1 (Theorem 3.3 in [1]) Let Kn be the complete graph on n ver-

tices with n ≥ 2. Then ρopt(Kn) = 2.

Theorem 2.2 (Theorem 3.4 in [1]) Let Wn be the wheel graph on n vertices,

with n ≥ 5. Then ρopt(Wn) = 2.

Theorem 2.3 (Theorem 3.5 in [1]) Let Km1,m2,...,m`
be the complete ` par-

tite graph on m1+m2+...+m` vertices. If there exists j ∈ {1, 2, ...`} such that

mj = 1 or mj = 2, then ρopt(Km1,m2,...,m`
) = 2. Otherwise, ρopt(Km1,m2,...,m`

) =

3.

Theorem 2.4 (Theorem 3.13 in [1]) Let Pn be the path on n vertices. Then

ρopt(Pn) = bn
2

+ 1c.

Theorem 2.5 (Theorem 3.14 in [1]) Let Cn be the cycle on n vertices. Then

ρopt(Cn) = bn+1
2
c.

Following these initial results, Sieben and Katona discovered several

upper and lower bounds on the optimal rubbling number [18]. This includes

the following general upper bound and lower bound for connected graphs.

Theorem 2.6 (Corollary 6.2 and Proposition 6.3 in [18]) Let G be a con-

nected graph with diameter d and order n. Then dd+2
2
e ≤ ρopt(G) ≤ dn+1

2
e.

More bounds on the optimal rubbling number were studied by Katona and

Papp in [17]. We present one of the main results from their work:

20



Theorem 2.7 (Theorem 5.5 in [17]) The optimal rubbling numbers for the

n-prisms are:

ρopt(C3k−12P2) = 2k,

ρopt(C3k2P2) = 2k,

ρopt(C3k+12P2) = 2k + 1,

except ρopt(C32P2) = 3.

Recall the application mentioned for pebbling. Allowing the rubbling

move expands the model in order to consider the situation in which two

trucks may be traveling to the same location where they will combine their

remaining fuel upon intersection [1].

21



3 DETAILED PROBLEM STATEMENT

While the t-restricted optimal pebbling number has been studied, the

effects of a similar restriction applied to the optimal rubbling number have yet

to be investigated. The following lemma will allow many results previously

shown for ρopt(G) to be extended to ρ∗t (G).

Lemma 3.1 For any graph G, ρopt(G) ≤ ρ∗t (G).

Proof. Since any 1-restricted optimal rubbling configuration is also an op-

timal rubbling configuration, ρopt(G) ≤ ρ∗t (G).

For our research we will focus on the specific cases where t = 1 and

t = 2. By studying t-restricted optimal rubbling, we can provide insight

to the most fuel efficient configurations when trucks have a strict limit to

how much fuel they can hold, while still allowing each desired location to be

reached.
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4 1-RESTRICTED OPTIMAL RUBBLING

Our first result gives a lower bound on ρ∗1(G) in terms of the diameter

of G. While the reasoning behind the following theorem will become more

apparent as we explore various types of graphs, our previous results on ρopt

leave us well-equipped to prove the result.

Theorem 4.1 If T is a tree of diameter d, then ρ∗1(T ) ≥ dd+2
2
e.

Proof. This follows from Theorem 2.6 and Lemma 3.1.

Here we see the first of many results that rely on Lemma 3.1. The next

result provides another lower bound that deals with the effects of deleting a

vertex from a graph.

Lemma 4.2 For any graph G and any vertex v ∈ V (G), ρ∗1(G)−1 ≤ ρ∗1(G−

v).

Proof. Let fv be a ρ∗1-configuration of G − v for some v ∈ V (G). Then fv

can be extended to a 1-rubbling configuration of G by placing a pebble on

v. Hence, ρ∗1(G) ≤ ρ∗1(G− v) + 1, and the result follows.

It should be noted that Lemma 4.2 only provides a lower bound for

G − v. It is possible that the removal of a vertex could increase the 1-

restricted optimal rubbling number of a graph, especially if that vertex has

a high degree, or the removal results in a disconnected graph. Our next
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theorem will make use of the previous lemma, but first we need to make a

quick observation.

Observation 4.3 For any graph G, ρ∗1(G) = 1 if and only if G is the trivial

graph.

This idea is very straightforward, as an isolated pebble cannot move

from its current vertex. Thus, any graph with more than one vertex will

require more than one pebble. We are now ready to present our next theorem,

dealing with the 1-restricted optimal rubbling number of induced subgraphs.

Theorem 4.4 Let G be a connected graph with ρ∗1(G) = p. Then for each

value of q = 1, 2, ...p, there exists an induced subgraph H of G, such that

ρ∗1(H) = q.

Proof. Let G = Gn, Gn−1, ..., G1 = K1 be any sequence of induced subgraphs

created by removing one vertex at a time from some graph G. Note, the order

of Gk = k for all 1 ≤ k ≤ n. By assumption, ρ∗1(Gn) = p. By Observation 4.3,

ρ∗1(G1) = 1. Lemma 4.2 guarantees that ρ∗1 decreases by at most one each

time a vertex is removed. Thus, for each integer 1 < q < p, there must exist

a graph in the sequence whose 1-restricted optimal rubbling number equals

q. Otherwise, the removal of some vertex would cause ρ∗1 to decrease by more

than one, contradicting Lemma 4.2.
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Note that Theorem 4.4 requires that we allow for the possibility of

disconnected graphs. By allowing this however, Lemma 4.2 guarantees that

the order in which we remove each vertex does not matter.

4.1 Small Values

We have already seen that K1 is the only graph whose 1-restricted

optimal rubbling number equals one. In this subsection we proceed to de-

termine which non-trivial graphs have small values of ρ∗1. It is important to

note that in any initial 1-restricted optimal rubbling configuration, a rub-

bling move must be the first move made in any sequence. Furthermore, each

time a move is made, a pebble is lost. Keeping these ideas in mind, we now

characterize those graphs whose 1-restricted optimal rubbling number equals

two.

Theorem 4.5 For any graph G, ρ∗1(G) = 2 if and only if there exist two

vertices, u, v ∈ V (G) such that N(u) ∩N(v) = V (G)− {u, v}.

Proof. If ρ∗1(G) = 2, then there is at most one possible rubbling move, and

no possible pebbling moves. It follows that every vertex must be reached with

the single rubbling move. Thus, there must exist two vertices u, v ∈ V (G)

such that N(u)∩N(v) = V (G)−{u, v}. Conversely, if there are two vertices

u, v ∈ V (G) such that N(u) ∩N(v) = V (G)− {u, v}, then place one pebble

on each of u and v. Every other vertex in G is adjacent to both u and v,
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so a rubbling move can place a pebble on any vertex. Since G is not trivial,

ρ∗1(G) = 2.

Given the results of the previous theorem, we now proceed to charac-

terize the graphs that have a 1-restricted optimal rubbling number equal to

three.

Theorem 4.6 Let G be a graph. Then ρ∗1(G) = 3 if and only if the following

two conditions hold

(i) ρ∗1(G) > 2;

(ii) There exists a set S ∈ V (G) with |S| = 3, such that for every vertex

v ∈ V (G)−S either v has at least two neighbors in S, or v has exactly

one neighbor in S and a neighbor that is adjacent to every vertex of

S −N(v).

Proof. If condition (ii) is satisfied by a set S = {x, y, z}, then place a

pebble on each vertex in S. Let v ∈ V (G)− S. Clearly, if v has at least two

neighbors in S, then a rubbling move will place a pebble on v. Suppose that

N(v) ∩ S = {x}. Let u be a neighbor of v that is adjacent to both y and z.

Note that u could be x. If u = x, then the rubbling move r(y, z → x) results

in two pebbles on x. The pebbling move p(x → v) places a pebble on v. If

u 6= x, then r(y, z → u) places a pebble on u, and r(u, x→ v) places a pebble
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on v. In any case, v is pebbled, so ρ∗1(G) ≤ 3. Condition (i) guarantees that

ρ∗1(G) ≥ 3, and so, ρ∗1(G) = 3.

Now assume that ρ∗1(G) = 3. It follows that condition (i) must be true.

Let S = {x, y, z} be a set such that placing one pebble on each of x, y,

and z results in a rubbling configuration of G. Consider vertex v ∈ V − S.

Since ρ∗1(G) = 3, and a pebble is lost with each move, at most two moves

are allowed as the result of any ρ∗1-configuration. Furthermore, immediately

prior to v receiving a pebble, there must be at least two pebbles in N(v).

It follows that there are only three ways to place a pebble on v: a rubbling

move, two rubbling moves, or a rubbling move followed by a pebbling move.

If a single rubbling move will reach v, then clearly v must have two neighbors

in S. If v has no neighbors in S, then it would take at least two moves to

place two pebbles in N(v). Since only two moves are allowed, v cannot be

reached. Hence, we may assume, without loss of generality, that v is adjacent

to x and some vertex w ∈ N(v) is adjacent to y and z. This implies that (ii)

must be true.

4.2 Specific Families of Graphs

We will now turn our focus to common families of graphs, including

cycles, paths, stars, and bipartite graphs. Many results in this section will

make use of Lemma 3.1. Our first result characterizes the 1-restricted optimal
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rubbling number for complete graphs. While our result is the same as that of

Belford and Sieben [1], we provide a proof in order to account for the added

initial restriction.

Theorem 4.7 Let Kn be the complete graph of order n ≥ 2. Then ρ∗1(Kn) =

2.

Proof. By Observation 4.3, we have that ρ∗1(Kn) ≥ 2. From the definition of

Kn, every pair of vertices must satisfy the conditions of Theorem 4.5. Hence,

ρ∗1(Kn) = 2.

The following three theorems will deal with different families of bipar-

tite graphs. We begin by determining ρ∗1 for the stars K1,s when s ≥ 3. Stars

are of particular interest because they will reappear frequently throughout

this paper.

Theorem 4.8 Let K1,s be a star with s ≥ 3. It follows that ρ∗1(K1,s) = 3.

Proof. From Observation 4.3 and Theorem 4.5, we see that ρ∗1(K1,s) ≥ 3.

Using three pebbles, place one on the center c, and one on each of two

leaves `1 and `2. A rubbling move r(`1, `2 → c) places two pebbles on c.

A subsequent pebbling move will reach any vertex in V (K1,s) − {`1, `2, c}.

Thus, ρ∗1(K1,s) ≤ 3, and it follows that ρ∗1(K1,s) = 3.

Theorem 4.9 Let G = Sr,s be a double star with 1 ≤ r ≤ s. Then ρ∗1(G) = 3

if r = 1 and s ≤ 2, and ρ∗1(G) = 4 otherwise.
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Proof. Let c1 and c2 be the two nonleaf vertices of G. If r = 1 and s = 1,

then place one pebble on each of the two leaves and one pebble on any

internal vertex to form a rubbling configuration. If r = 1 and s = 2, then

place one pebble on each of leaves of G to form a rubbling configuration.

Both of these configurations are optimal from Theorem 4.5. Thus, we may

assume that 2 ≤ r ≤ s. From Observation 4.3 and Theorem 4.5, we see that

ρ∗1(G) ≥ 3. Since r ≥ 2, any set of three vertices that is also a dominating

set must contain c1, c2, and some leaf `. Without loss of generality, consider

a dominating set S where ` is adjacent to c1. Then each vertex in N(c2) has

only one neighbor in S, and c2 is not adjacent to V (G)− S = {c1, `}. Thus

from Theorem 4.6, we see that ρ∗1(G) ≥ 4. Now place a pebble on c1, c2,

and any two leaves `1 and `2 adjacent to c1. A rubbling move r(`1, `2 → c1)

places two pebbles on c1, allowing each of its leaves to be reached. Finally,

a pebbling move p(c1 → c2) places two pebbles on c2, allowing each of its

leaves to be reached. Thus, ρ∗1(G) ≤ 4. It follows that ρ∗1(G) = 4.

Our next result generalizes Theorem 4.8. Note that the ρ∗1-configurations

for these graphs are occasionally different, but use the same number of peb-

bles as those results in the proof of Theorem 2.3 (Theorem 3.5 in [1]). This

is due to our restriction of one pebble placed on each vertex.

Theorem 4.10 The complete bipartite graph Kr,s, where 2 ≤ r ≤ s, has

ρ∗1(Kr,s) = 2 if r = 2 and ρ∗1(Kr,s) = 3 otherwise.
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Proof. Let R and S be the partite sets of Kr,s such that |S| = s and

|R| = r. If r > 2, then place one pebble on each of two vertices s1, s2 ∈ S

and one pebble on some vertex r1 ∈ R. A rubbling move r(s1, s2 → ri)

places a pebble on any ri ∈ R. Another rubbling move r(ri, r1 → sj) places

a pebble on any sj ∈ S. Since every vertex is reachable, this is a rubbling

configuration, and ρ∗1(Kr,s) ≤ 3. It follows from Theorem 4.5 that ρ∗1(G) ≥ 3.

Hence, ρ∗1(Kr,s) = 3. Now assume that r = 2. Place a pebble on each vertex

in R. A rubbling move will place a pebble on any vertex in S, so ρ∗1(G) ≤ 2.

Clearly, Kr,s is not trivial, so ρ∗1(Kr,s) = 2.

We will now proceed to paths and cycles. They provide two interesting

classes of graphs whose 1-restricted optimal rubbling number and optimal

rubbling number are identical.

Theorem 4.11 For any path Pn on n vertices, ρ∗1(Pn) =
⌊
n
2

+ 1
⌋
.

Proof. Using the configuration described by Belford and Sieben in their

proof of Theorem 2.4 (Theorem 3.13 in [1]), place one pebble on each pi,

where i is odd. If n is odd, then we are done. If n is even, then place

one more pebble on pn to complete the rubbling configuration using
⌊
n
2

+ 1
⌋

pebbles. By Lemma 3.1 and Theorem 2.4, this is optimal.

We will see later on that the upper bound on Pn from the proof is, in

fact, a general upper bound for all connected graphs.
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Theorem 4.12 Let Cn be a cycle on n vertices. Then ρ∗1(Cn) =
⌊
n+1
2

⌋
.

Proof. Using the configuration described by Belford and Sieben in their

proof of Theorem 2.5 (Theorem 3.14 in [1]), place one pebble on each vi

where i is odd. Each vertex is either adjacent to two pebbles, or begins with

a pebble. Thus, this is a rubbling configuration using
⌊
n+1
2

⌋
pebbles. From

Lemma 3.1 and Theorem 2.5, this must be optimal.

The following theorem gives the 1-restricted optimal rubbling number

of prisms, Cn2P2. It should be noted that the ρ∗1-configurations we give

will be identical or very similar to those given in the proof of Theorem 2.7

(Theorem 5.5 in [17]) by Katona and Papp. In fact, we will again make use

of Lemma 3.1 in order to show that our configurations are optimal.

Theorem 4.13 The 1-restricted optimal rubbling number of prism is as fol-

lows:

(i) ρ∗1(C32P2) = 3.

(ii) ρ∗1(C42P2) = 4.

(iii) ρ∗1(Cn2P2) =
⌈
2n
3

⌉
.

Proof. (i) From Theorem 4.5, observe that ρ∗1(C32P2) ≥ 3. A rubbling

configuration is obtained from placing one pebble on each of two vertices

in one copy of C3 and one pebble on any vertex in the other copy. Thus,

ρ∗1(C32P2) ≤ 3, and it follows that ρ∗1(C32P2) = 3.
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(ii) Now, if n = 4, then Theorem 4.6 proves that ρ∗1(C42P2) ≥ 4. A

rubbling configuration is obtained by placing pebbles on each copy of C4

in the method of Theorem 4.12. Thus, ρ∗1(C42P2) ≤ 4, and it follows that

ρ∗1(C42P2) = 4.

(iii) Assume that n ≥ 5. Let v0, v1, ..., vn−1 be the vertices of one copy

of Cn and let u0, u1, ..., un−1 be the vertices of the other copy of Cn such

that uivi ∈ E(G) for 1 ≤ i ≤ n − 1. Partition the vertices into three sets

Xj for 0 ≤ j ≤ 2 where ui, vi ∈ Xj when i ≡ j (mod 3). For convenience,

we compute the indices using mod three arithmetic. Place pebbles on each

vi ∈ X0 and each ui ∈ X1. Consider a vertex ui that has no pebble. We

see that ui ∈ X0 ∪ X2. If ui ∈ X0, then a rubbling move r(ui+1, vi → ui)

will reach ui. It should be noted that in some cases ui+1 will not begin

with a pebble in the initial pebbling distribution. This can be remedied,

however, with a rubbling move r(vi+1, ui+2 → ui+1). Since this does not use

the pebble on vi, the result above still holds. If ui ∈ X2, then the rubbling

move r(ui+2, vi+1 → ui+1) places a pebble on ui+1. A subsequent rubbling

move r(ui−1, ui+1 → ui) will reach ui. Again, in some cases, ui+2 will not

begin with a pebble. A rubbling move r(vi+2, ui+3 → ui+2) will allow ui+2

to receive a pebble without disturbing any other vertex used in the sequence

above.

Next consider a vertex vi that has no pebble. Then vi ∈ X1 ∪ X2.
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If vi ∈ X1, then the rubbling move r(vi−1, ui → vi) places a pebble on vi.

If vi ∈ X2, then the rubbling move r(vi−2, ui−1 → vi−1), followed by the

rubbling move r(vi−1, vi+1 → vi) reaches vi.

Since at most dn
3
e pebbles were used on each copy of Cn, it follows

that ρ∗1(Cn2P2) ≤
⌈
2n
3

⌉
. Now, for some k ≥ 2, if n = 3k − 1, then

⌈
2n
3

⌉
=⌈

2(3k−1)
3

⌉
=
⌈
2k − 1

3

⌉
= 2k. If n = 3k, then

⌈
2n
3

⌉
=
⌈
2(3k)
3

⌉
= d2ke = 2k.

Finally, if n = 3k + 1, then
⌈
2n
3

⌉
=
⌈
2(3k+1)

3

⌉
=
⌈
2k + 1

3

⌉
= 2k + 1. Hence,

from Lemma 3.1 and Theorem 2.7, we have that ρ∗1(Cn2P2) ≥
⌈
2n
3

⌉
, and it

follows that ρ∗1(Cn2P2) =
⌈
2n
3

⌉
.

It is quite fascinating that along with paths and cycles, ρopt(Cn2P2) =

ρ∗1(Cn2P2). Our next two results will make use of the following lemma con-

cerning vertices of degree two.

Lemma 4.14 For any graph G, no vertex of degree two will be the first

vertex to receive two pebbles as the result of any 1-restricted optimal rubbling

configuration.

Proof. Let v ∈ V (G) such that deg(v) = 2. Assume to the contrary

that v is the first vertex to receive two pebbles under a ρ∗1-configuration

f . Since f(v) ≤ 1, at least one pebble must be moved to v through a

rubbling move r(u,w → v), where u and w are the neighbors of v. From our

initial assumptions, no pebbles can be placed on v through a pebbling move

prior to v receiving two pebbles. Hence, immediately prior to v receiving a
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second pebble, there must be one pebble on each of v, u, and w. Since this

must be the case regardless of the configuration, we can assume, without

loss of generality, that f(v) = f(u) = f(w) = 1. After the rubbling move

r(u,w → v), in the resulting pebbling distribution f ′ we have f ′(v) = 2,

f ′(u) = 0, f ′(w) = 0, and f ′(x) = f(x) for all other x ∈ V (G). Under f ′

there are only two possible pebbling moves from v, namely, p(v → u) and

p(v → w). But each of these moves just returns one pebble to either u or v.

Vertex v is still reachable if f(v) = 0 and f(u) = f(w) = 1. Thus, the same

three vertices can be reached using one less pebble, and it follows v will not

be the first vertex to receive two pebbles under any ρ∗1-configuration of G.

We now define two more graphs closely related to stars that are of

interest. Namely, we define brooms and dumbbells. The broom, denoted

B(n,m), can be obtained from the path on n vertices by appending m leaves

to one endpoint of the path. We will label the vertices of the path as p1,...,pn

and the leaves as `1,...,`m. Without loss of generality, we will assume that the

leaves are adjacent to pn and that m ≥ 2. The dumbbell (a.k.a., the double

broom), denoted D(n, r, q), is obtained from the path on the vertices p1,...,pn

by appending r leaves to p1 and q leaves to pn. The leaves adjacent to p1

will be denoted `1,...,`r. The leaves adjacent to pn will be denoted x1,...,xq.

Without loss of generality, we will assume that r ≥ q ≥ 2 and that n ≥ 3.

Theorem 4.15 Let k be a positive integer. The 1-rubbling number for brooms
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is as follows:

(i) ρ∗1(B(2k + 1, 2)) = k + 2.

(ii) ρ∗1(B(2k + 1,m)) = k + 3, for m ≥ 3.

(iii) ρ∗1(B(2k,m)) = k + 2.

Proof. (i) In order to construct a rubbling configuration of B(2k + 1, 2),

place one pebble on each of `1 and `2, and p2i+1, where i = 1, ..., k. A

rubbling move r(`1, `2 → p2k+1) places a pebble on p2k+1 and every other

vertex is reachable by the proof of Theorem 4.11. Hence, ρ∗1(B(2k+ 1, 2)) ≤

k + 2. Observe that diam(B(2k + 1, 2)) = 2k + 1. Thus, by Theorem 4.1,

ρ∗1(B(2k + 1, 2)) ≥
⌈
2k+3
2

⌉
= k + 2. It follows that ρ∗1(B(2k + 1, 2)) = k + 2.

(ii) Consider B(2k + 1,m), where m ≥ 3. Place one pebble on each of

`1, `2, p1, p2k+1, and p2i+2, where i = 1, ..., k − 1. From Theorem 4.11 and

Theorem 4.8 this is a rubbling configuration. Thus, ρ∗1(B(2k+1,m)) ≤ k+3.

To see that at least k+ 3 pebbles are necessary, first consider N [p2k+1].

By Theorem 4.8, the most efficient way to reach the leaves `1, `2, ..., `m is to

place two pebbles on p2k+1. However, by Lemma 4.14, p2k+1 must be the

first vertex on the path p1, p2, ..., p2k+1 to receive two pebbles. Thus, three

pebbles must be placed in N [p2k+1] in the form of Theorem 4.8. Now assume

to the contrary that the vertices p1, p2, ..., p2k−2 are reached in such a way

that uses less than k pebbles. Then at least two open vertices, say pi and
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pi−1 for 1 ≤ i ≤ 2k − 2, are each adjacent to at most one vertex with a

pebble. Clearly pi−1 cannot receive a pebble before pi. Thus, the only way

left to reach pi is through a pebbling move p(pi+1 → pi). But this requires

pi+1 to receive two pebbles. By placing one pebble on each of pi−1 and pi+1,

we have necessarily used less pebbles and reach both pi−1 and pi. Since pi

and pi−1 were arbitrary vertices, we have placed pebbles in the exact form

of the proof of Theorem 4.11. This contradicts our initial assumption that

less than k pebbles were used for the p1-p2k−2 subpath. We now have that

at least k + 3 pebbles are required, and so, ρ∗1(B(2k + 1,m)) = k + 3.

(iii) Consider B(2k,m). Place one pebble on each of `1, `2, p2k, and

p2i−1, where i = 1, ..., k − 1. Then this is a rubbling configuration by Theo-

rem 4.8 and Theorem 4.11.

To see that this configuration is optimal, first consider the vertices p1,

..., p2k−3. Using an argument analogous to that of part (ii) of this proof,

we observe that at least
⌊
2k−3
2

⌋
+ 1 = k − 1 pebbles are required to reach

these vertices. Thus, we wish to show that at least three more pebbles are

necessary. If at most two pebbles are used for the rest of the graph, then

we claim that they must be placed on the leaves `1, ..., `m. If we are only

allowed two pebbles, then there is no way for v2k to receive two pebbles. This

is true since Lemma 4.14 guarantees v2k must be the first vertex to receive

two pebbles, requiring at least three pebbles in N [v2k]. If m ≥ 3, then the
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claim holds. If m = 2, then v2k−1 is still unreachable, and so the claim holds.

Thus, at least three more pebbles are required, and it follows that k + 2

pebbles is optimal.

r r r r
r
r
@

@@
�
��

Figure 8: The broom, B(3, 3)

Theorem 4.16 Let k be a positive integer. The 1-rubbling number for dumb-

bells is as follows:

(i) ρ∗1(D(2k + 1, 2, 2)) = k + 3.

(ii) ρ∗1(D(2k + 1, p, q)) = k + 4, for p ≥ 3.

(iii) ρ∗1(D(2k, p, 2)) = k + 3.

(iv) ρ∗1(D(2k, p, q)) = k + 4, for q ≥ 3.

Proof. (i) Consider D(2k+1, 2, 2). To create a rubbling configuration, place

one pebble on each of `1, `2, x1, x2, and p2i+1 for i = 1, ..., k − 1. Note that

this uses k + 3 pebbles, and so, ρ∗1(D(2k + 1, 2, 2)) ≤ k + 3.

To see that this configuration is optimal, first consider the leaves `1, `2, x1,

and x2. In any configuration, they must begin with a pebble, or be reached
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through a rubbling move from p1 or p2k+1. Either way this requires at least

two pebbles in N [p1] and N [p2k+1]. Now consider the vertices p3, ..., p2k−1. If

less than k− 1 pebbles are used to reach these vertices, then some open pair

of vertices, say pi and pi+1 for 3 ≤ i ≤ 2k − 2, must be each adjacent to at

most one vertex with a pebble. It follows that at least one of these vertices,

say pi, must receive a pebble through the pebbling move p(pi−1 → pi). But

this requires at least two pebbles on pi−1. Observe that both pi and pi+1

are reachable simply by placing one pebble on each of pi−1 and pi+1, and

this necessarily uses less pebbles. But this just places pebbles in the form of

Theorem 4.11, which contradicts our assumption that less than k−1 pebbles

were used. Hence, at least k + 3 pebbles are required, and it follows that

k + 3 pebbles is optimal.

(ii) Consider D(3, r, q), where r ≥ 3. Place one pebble on each of `1, `2,

p1, p3, and x1 to form a rubbling configuration. To see that this is optimal,

first consider the two sets of leaves. Either `1, `2, ..., `r must each begin with

a pebble, or p1 must receive two pebbles at some point. Similarly, either

x1, ..., xq must each begin with a pebble, or p3 must receive two pebbles at

some point. Since there are at least five total leaves, we must consider a

scenario where either p1 or p3 receives two pebbles. Note that it takes three

pebbles placed initially in N [p1] to move two pebbles to p1, and since r ≥ 3,

this is optimal. Knowing this, we cannot place two pebbles on p3 using only
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one more pebble. Thus, at least two more are required. It follows that five

pebbles is optimal.

Consider D(2k + 1, r, q), where k ≥ 2 and r ≥ 3. Place one pebble on

each of `1, `2, x1, x2, p1, p2k+1 and p2i for i = 2, ..., k − 1 to form a rubbling

configuration using k + 4 pebbles. Thus, ρ∗1(D(2k + 1, r, q)) ≤ k + 4.

To see that this is optimal, first consider N [p1]. By Theorem 4.8 and

Lemma 4.14 we see that at least three pebbles are required in N [p1]. Next,

consider the vertices p4, ..., p2k−2. Using an argument completely analogous

to part (i) of this proof, we observe that at least k − 2 pebbles are required

for these vertices. Now if q ≥ 3, then it follows from Theorem 4.8 and

Lemma 4.14 that at least three pebbles are required for the remaining ver-

tices. Hence, assume q = 2. If only two pebbles are used, then they must

be placed on x1 and x2, leaving p2k−1 unreachable. Thus, three pebbles are

still required. It follows that at least k + 4 pebbles are needed, and so,

ρ∗1(D(2k + 1, r, q)) = k + 4.

(iii) Consider D(2k, r, 2). Place one pebble on each of `1, `2, x1, x2, p1,

and p2i+2 for i = 1, ..., k − 2 to obtain a rubbling configuration using k + 3

pebbles. Thus, ρ∗1(D(2k, r, 2)) ≤ k + 3.

To see that this is optimal, we first note that at least three pebbles

are needed for N [p1] by Theorem 4.8 and Lemma 4.14. Using an argument

analogous to parts (i) and (ii) of this proof, we observe that at least k − 2

39



pebbles are required for the vertices p4, ..., p2k−2. At this point we have used

k+ 1 pebbles. Since neither x1, nor x2 have been reached, it follows that we

need at least two more pebbles. Thus, at least k + 3 pebbles are required,

and so, ρ∗1(D(2k, r, 2)) = k + 3.

(iv) Consider D(2k, r, q), where q ≥ 3. Place one pebble on each of `1,

`2, x1, x2, p1, and p2i+2 for i = 1, ..., k − 2 to create a rubbling configuration

using k + 4 pebbles. Thus, ρ∗1(D(2k, r, q)) ≤ k + 4.

To see this is optimal, note that Theorem 4.8 and Lemma 4.14 guar-

antee that we must place three pebbles in each of N [p1] and N [p2k]. Now

consider the vertices p4, ..., p2k−2. Using an argument entirely analogous with

the previous parts of this proof, we observe that at least k − 2 pebbles are

required for these vertices. Hence, ρ∗1(D(2k, r, q)) ≥ k + 4. It follows that

ρ∗1(D(2k, r, q)) = k + 4.
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Figure 9: The dumbbell, D(3, 3, 3)

Recall that the diameter of a graph is the length of the longest subpath

path in V (G). From our previous results on paths, brooms, and dumbbells,

the 1-restricted optimal rubbling number was found for different families of
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trees of varying diameter. However, these families only encompass a small

portion of all trees. Our next result will determine ρ∗1 for all trees of diameter

four.

Any tree of diameter four can be obtained by appending leaves to the

existing vertices of K1,s, where s ≥ 2. Label the center of the star as x

and the vertices adjacent to x as y1, ..., ys. Suppose that we append c leaves

to x, namely x1, ..., xc and ai leaves to yi, where ai ≥ 1. These leaves are

denoted yi,1, ..., yi,ai for i = 1, ..., s. Note that for i 6= j and for any ` and

m, the vertices yi,`, yi, x, yj, and yj,m induce a path of length four. Thus,

this construction gives all trees of diameter four. The resulting graph will

be denoted K1,s(c; a1, ..., as). Without loss of generality, we will assume that

a1 ≥ · · · ≥ as ≥ 1.
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Figure 10: The graph K1,3(4; 3, 2, 2)

Theorem 4.17 For s ≥ 2, let K1,s(c; a1, ..., an) be a tree of diameter four.

The 1-rubbling number on trees of diameter of four is as follows:

(i) ρ∗1(K1,s(c; a1, ..., as)) = 3 if and only if s = 2, c = 0, and a1 = a2 = 1.
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(ii) ρ∗1(K1,s(c; a1, ..., as)) = 4 if and only if it is one of the following: K1,2(c; a1, a2)

(where a1 ≥ a2 ≥ 2 and c ≥ 1), K1,2(0; a1, 1) (where a1 ≥ 2), K1,2(0; 2, 2),

or K1,3(c; a1, a2, a3).

(iii) ρ∗1(K1,s(c; a1, ..., as)) = 5 if and only if s = 4, 5 or s = 2, c = 0, a1 ≥ 3,

and a2 ≥ 2.

(iv) ρ∗1(K1,s(c; a1, ..., as)) = 6 if and only if s = 6.

(v) ρ∗1(K1,s(c; a1, ..., as)) = 7 if and only if s ≥ 7.

Proof.

(i) Note that K1,2(0; 1, 1) ∼= P5. Hence ρ∗1(P5) = 3 by Theorem 4.11.

(ii) Consider K1,2(c; a1, a2), where a1 ≥ a2 ≥ 2 and c ≥ 1. A rubbling

configuration is obtained by placing one pebble on each of y1, y2, x, and x1.

This is minimum as we require at least two pebbles to reach y1,1,...,y1,a1 and

at least two pebbles to reach y2,1,...,y2,a2 .

Consider K1,2(0; a1, 1), where a1 ≥ 2. A rubbling configuration is ob-

tained by placing one pebble on each of y1,1, y1,2, y1, and y2,1. Note that

we require at least two pebbles to reach y1,1,...,y1,a1 . We require at least two

additional pebbles to reach x and y2,1.

Consider K1,2(0; 2, 2). A rubbling configuration is obtained by placing

one pebble on each of y1,1, y1,2, y2,1, and y2,2. This is minimum as we require
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at least two pebbles to reach y1,1 and y1,2 and at least two pebbles to reach

y2,1 and y2,2.

Let s = 3. A rubbling configuration is obtained by placing one pebble

on each of y1, y2, y3, and x. Note that it takes at least one pebble to reach

each of y1,1, y2,1, and y3,1. We require an additional pebble to reach either

y1,2 or x.

(iii) Let s = 2, c = 0, a1 ≥ 3, and a2 ≥ 2. A rubbling configuration

is obtained by placing one pebble on each of y1,1, y1,2, y1, y2, and x. Note

that we require at least three pebbles to reach y1,1,...,y1,a1 and at least two

pebbles to reach y2,1,...,y2,a2 . Hence this is minimum.

Let s = 4. A rubbling configuration is obtained by placing one pebble

on each of y1,...,y4, and x. To see that this is minimum, to have a pebble

on yi,1, we may either have a pebble there in the initial configuration (this

requires at least four pebbles), we may have four pebbles on x (this requires

at least six pebbles), or we may have two pebbles on yi. In this last case, we

may have two pebbles on yi initially (which would require eight pebbles) or

move two to yi. To move two on to yi, we need to have one on yi and two on

x. To place two on x, we may either have two there initially, or create two

by having one on each of x, yj, and yk, where i 6= j, i 6= k, and j 6= k (recall

that this requires one pebble to remain on yi). Again, this requires at least

four pebbles. However, we need at least one additional pebble for the final
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branch of the tree.

Let s = 5. A rubbling configuration is obtained by placing one pebble

on each of y1,...,y5. The rest of the argument is analogous to the case where

s = 4.

(iv) Let s = 6. A rubbling configuration is obtained by placing one

pebble on each of y1,...,y6. The rest of the argument is analogous to the case

where s = 4.

(v) Let s ≥ 7. A rubbling configuration is obtained by placing one

pebble on each of y1,...,y6 and x. To see that this is minimum, note that

we require at least seven pebbles to reach y1,1,...,y7,1. Thus, the minimum is

achieved by moving four pebbles to x and then moving to the leaves using

pebbling moves. This requires one pebble on x and at least six pebbles on

its neighbors.

Theorem 4.17 has some interesting implications. Note thatK1,2(0; a1, a2)

is a proper subgraph of K1,2(c; a1, a2), where c ≥ 1. However, if a1 ≥ 3 and

a2 ≥ 2, then ρ∗1(K1,2(0; a1, a2)) = 5 > 4 = ρ∗1(K1,2(c; a1, a2)).

4.3 Upper and Lower Bounds

Our final section on ρ∗1 will consist of upper and lower bounds. A bound

is considered sharp if there exists a graph for which equality holds. Thus, the

bound may not be constrained further without excluding the aforementioned
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graph. First we will compare the 1-restricted optimal rubbling number to

the 2-domination number.

Theorem 4.18 For every graph G, ρ∗1(G) ≤ γ2(G).

Proof. Let S be a γ2-set of G and place a pebble on each vertex in S. Then

each vertex in V (G) − S must be adjacent to two pebbles, resulting in a

rubbling configuration.

Like many bounds we will encounter, the bound in Theorem 4.18 can

be sharp. The 2-domination number of a P3 must be two since P3 contains

two leaves. By Theorem 4.11, ρ∗1(P3) = 2 as well. We will now observe that

the difference between ρ∗1(G) and γ2(G) can also be made arbitrarily large.

Observation 4.19 The difference ρ∗1(G) − γ2(G) can be made arbitrarily

large.

Proof. Let G be star. Note that each leaf must be in the γ2-set, so γ2(G) =

n − 1. By Theorem 4.8, ρ∗1(G) = 3, regardless of the order of G. So the

difference ρ∗1(G)− γ2(G) can be made arbitrarily large simply by appending

more leaves to the center.

While γ2 provides us with a very straightforward bound, the relation-

ship between the domination number γ and ρ∗1 is not as trivial. The following

two results will deal with the domination number.

Theorem 4.20 For every graph G, ρ∗1(G) ≤ 3γ(G).
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Proof. Let S be a γ-set of G. Place a pebble on each vertex in S. Let v ∈ S.

If |epn(v, S)| = 1, then place a pebble on the external private neighbor of v.

If |epn(v, S)| ≥ 2, then choose exactly two external private neighbors of v

and place a pebble on each. Clearly, this has at most three pebbles for each

v ∈ S, implying that at most 3γ(G) pebbles are used. Furthermore this is a

rubbling configuration. To see this, let x ∈ V (G) be an open vertex. If x has

at least two neighbors in S, then a rubbling move from these two neighbors

places a pebble on x. Thus, we can assume x ∈ epn(v, S) for some v ∈ S.

By the way our configuration is built, |epn(v, S)| ≥ 3 and two vertices, say

w and y in epn(v, S) − {x} have one pebble each. Then the rubbling move

r(w, y → v) results in two pebbles on v, and a pebbling move p(v → x)

places a pebble on x, and so, ρ∗1(G) ≤ 3γ(G).

Interestingly, while stars provide a case where ρ∗1(G) is smaller than

γ2(G), ρ∗1(G) = 3γ(G) for stars. While we do not provide a characterization

of all graphs for which the bound in Theorem 4.20 is sharp, the following

theorem presents a necessary condition for equality.

Theorem 4.21 Let G be a graph and S a γ-set of G. A necessary condition

for ρ∗1(G) = 3γ(G) is that for all x ∈ S, deg(x) ≥ 3 and for all u, v ∈ S,

N [u] ∩N [v] = ∅.

Proof. Assume that ρ∗1(G) = 3γ(G). The proof of Theorem 4.20 implies

that |epn(u, S)| ≥ 2 for all u ∈ S, and so, deg(u) ≥ 3 for all u ∈ S. Suppose,
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to the contrary, that S is a γ-set of G and that there exist u, v ∈ S such

that N [u]∩N [v] 6= ∅. For equality to hold in Theorem 4.20, we need to have

three distinct pebbles in N [u]−N [v] and N [v]−N [u].

First suppose that {u, v} ⊆ N [u] ∩ N [v]. In other words, uv ∈ E(G).

To see that fewer than 3γ(G) pebbles are needed in a rubbling configuration

of G, we form a ρ∗1-configuration as follows. Place a pebble on each vertex

in S (note that this places one pebble on each of u and v), and following the

method used in the proof of Theorem 4.20, place pebbles on the neighbors of

the vertices in S − {u, v}. To complete the configuration, place a pebble on

each of two neighbors of u, say u1 and u2. Clearly, each vertex in V (G)−N(u)

is reachable. Now, the rubbling move r(u1, u2 → u) places a second pebble on

u, and a subsequent pebbling move p(u→ v) places a second pebble in v. It

follows that each vertex in N(v) is reachable and that the initial configuration

must be a ρ∗1-configuration. Since a total of at most 3(|S|−2)+4 = 3γ(G)−2

pebbles were used, it follows that ρ∗1(G) < 3γ(G).

Next suppose that w ∈ N [u] ∩ N [v], that is, uw, vw ∈ E(G). If we

place a pebble on w, then this pebble is adjacent to both u and v. Thus,

we would need at most two additional pebbles, one on each of u and v, and

one on each of N(v)− {w} and N(u)− {w} to reach the neighbors of u and

v. Place pebbles on the rest of the graph in the configuration described in

Theorem 4.20 to obtain a rubbling configuration using at most 3γ(G) − 1
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pebbles. Hence, there is a contradiction.

Note that the condition given in Theorem 4.21 is not sufficient. As an

example, consider a tree T with center c. The tree T has n “branches” off of

the center c, where n ≥ 30. The ith branch is a path on the vertices c, xi,

yi, zi, with three leaves zi,1, zi,2, and zi,3 appended to zi (see Figure 11). The

γ-set of T is S = {c, zi : i = 1, ..., n}. Note that for all u, v ∈ S, deg(u) ≥ 3

and N [u] ∩ N [v] = ∅ and that γ(G) = n + 1 ≥ 31. Consider the following

set C = {c, xi : i = 1, ..., 30}. We claim that C is a 1-rubbling configuration

of T . To see this, use rubbling moves to move all pebbles from the xi onto

c. This results in sixteen pebbles on c. Suppose that our destination is zi,j.

Use pebbling moves to move all pebbles to xi. This results in eight pebbles

on xi. Now, use pebbling moves to move all pebbles to yi. This results in

four pebbles on yi. Again, we move all pebbles to zi. This results in two

pebbles on zi. Finally, use a pebbling move to move a pebble to zi,j. Hence,

ρ∗1(T ) ≤ 31 ≤ γ(T ).
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Figure 11: The ith branch of the tree T

The following theorem relates the maximum degree of G and ρ∗1(G).
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Theorem 4.22 Let G be any connected graph of order n ≥ 3. If ∆(G) =

n− k, where k is an integer 1 ≤ k ≤ n− 2, then ρ∗1(G) ≤ k + 2.

Proof. Let v ∈ V (G) such that deg(v) = n−k. Then |V (G)−N [v]| = k−1.

First place a pebble on each vertex in V (G) − N [v]. Now place one pebble

on v and one pebble on any two vertices in N(v). Then a rubbling move will

place two pebbles on v allowing a pebbling move to place a pebble on any

vertex in N(v). Since we have used k + 2 pebbles, ρ∗1(G) ≤ k + 2.

Similar to Theorem 4.20, we see that sharpness in Theorem 4.22 can

be found in stars.

We have stated that Graham’s pebbling conjecture has not yet been

proved in general. Interestingly, the same bound does hold in general for ρ∗1,

as is shown in the following theorem.

Recall that we denote the Cartesian product of two graphs G and H

as G2H. Let (g, h) be the vertex of G2H corresponding to g ∈ V (G) and

h ∈ V (H). Let Gh denote the copy of G in G2H induced by the set of

vertices {(g, h) : g ∈ V (G)}. We denote the graph of G induced by some

specific vertex h1 ∈ H as Gh1 Analogously, Hg denotes the copy of H in

G2H induced by the set of vertices {(g, h) : h ∈ V (H)}. Additionally, we

denote the graph of H induced by some specific vertex g1 ∈ G as Hg1 .

Theorem 4.23 For graphs G and H, ρ∗1(G2H) ≤ ρ∗1(G)ρ∗1(H).
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Proof. Let ρ∗1(G) = k and ρ∗1(H) = m. Suppose that placing one pebble on

each vertex in the subset A = {g1, ..., gk} of V (G) results in a 1-restricted

optimal rubbling configuration of G. Suppose that placing one pebble on

each vertex in the subset B = {h1, ..., hm} of V (H) is a 1-restricted optimal

rubbling configuration of H.

Consider the pebble distribution on G2H obtained by placing one peb-

ble on each vertex in the set,

{(gi, hj) : i = 1, ..., k, j = 1, ...,m}.

Clearly, Ghj
is reached for all j as {(gi, hj) : i = 1, ..., k} is a rubbling

configuration on Ghj
. Similarly, Hgi is reached for all i. Suppose that

(g, h) ∈ V (G2H) such that g /∈ {g1, ..., gk} and h /∈ {h1, ..., hm}. Since

B = {h1, ..., hm} is a rubbling configuration on H, we can perform rub-

bling moves on Hgi to place a pebble on (gi, h) for each i = 1, ..., k. Since

A = {g1, ..., gk} is a rubbling configuration on G, we can perform rubbling

moves on Gh to place a pebble on (g, h).

Hence, {(gi, hj) : i = 1, ..., k, j = 1, ...,m} is a rubbling configuration.

This requires km = ρ∗1(G)ρ∗1(H) pebbles, and so it follows that ρ∗1(G2H) ≤

ρ∗1(G)ρ∗1(H).

From Observation 4.13 this bound is observed to be sharp in the graph
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C42P2. It is also possible to make the difference, ρ∗1(G)ρ∗1(H) − ρ∗1(G2H)

arbitrarily large. Recall that in Theorem 4.13 we found that if n ≥ 5, then

ρ∗1(Cn2P2) =
⌈
2n
3

⌉
. For large values of n, the difference 2(n

2
) − 2n

3
gets

arbitrarily large. Our next result deals with a more specific case of Cartesian

products.

Theorem 4.24 Let G be a graph with 1-restricted optimal rubbling number

ρ∗1(G) and domination number γ(G). Then ρ∗1(G2P2) ≤ γ(G) + ρ∗1(G).

Proof. Label the two copies of G created by G2K2 as G1 and G2. Place

pebbles on G1 in the ρ∗1-configuration of G. Then each vertex in G1 is reach-

able. By definition, each vertex in G2 is adjacent to exactly one vertex

in G1. Hence, using only moves on the vertices on G1, we can place one

pebble in the neighborhood of any vertex in G2. Now place one pebble on

each vertex in some minimal dominating set of G2. It follows that it is pos-

sible to place two pebbles in the neighborhood of any open vertex in G2.

This gives us a rubbling configuration using γ(G) + ρ∗1(G) pebbles, and so,

ρ∗1(G2P2) ≤ γ(G) + ρ∗1(G).

The remaining theorems in this section will deal with upper bounds on

trees. The method used in this next proof bears resemblance to a concept

Belford and Sieben define as rolling [1]. Although we will present the formal

definition (as we do not use it in its exact form), rolling involves moving a

pebble along a path of vertices each with at least one pebble.
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Theorem 4.25 If T is a tree with order n and ` ≥ 3 leaves, then ρ∗1(T ) ≤

n− `+ 2. Further, this bound is sharp.

Proof. Let T be a tree of order n with ` ≥ 3 leaves. Begin by placing a

pebble on each internal vertex. If T is a star, then

ρ∗1(T ) = 3 = n− (n− 1) + 2 = n− `+ 2.

Thus, this bound is sharp. We may assume that T is not a star, that is, T

has at least two internal vertices. We consider two cases:

Case 1. T has a support vertex v adjacent to two internal vertices.

Let x and y be two internal vertex neighbors of v, and let w be a support

vertex of T different from v. Complete the initial configuration by placing

a pebble on a leaf neighbor, say u, of v. Since there is a unique path via

internal vertices from v to any other support vertex, there exists a v-w path

that does not include at least one of x and y, say x. Hence, a rubbling move

r(u, x→ v) places two pebbles on v. Then a sequence of pebbling moves on

the v-w path will result in two pebbles on w. Hence, the leaves adjacent to

w are reachable. Since w is an arbitrary support vertex, it follows that this

is a 1-rubbling configuration of T . Hence, ρ∗1(T ) ≤ n− `+ 1 < n− `+ 2.

Case 2. Every support vertex is adjacent to exactly one internal vertex.

First assume that T has a strong support vertex. In this case, complete the
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initial configuration by placing one pebble on each of two leaf neighbors of

v. Then a rubbling move between these two leaves results in two pebbles

on v. Repeating the argument in case one shows that this is a 1-rubbling

configuration. Hence, ρ∗1(T ) ≤ n− `+ 2.

Henceforth, we may assume that every support vertex of T is adjacent

to exactly one leaf and exactly one internal vertex, that is, every support

vertex of T has degree two. If T is the path Pn, then by Theorem 4.11,

ρ∗1(T ) ≤ n = n − 2 + 2, and the bound holds. Thus, we may assume that

at least one internal vertex, say x, has degree three or more. Note that

x is not a support vertex by assumption. Hence, every neighbor of x is an

internal vertex of T . Recall that there is a unique path from x to any support

vertex, say v. Since x has degree three or more, at least two neighbors of

x, say y and z, are not on the x-v path. Moreover, y and z are internal

vertices, so they each have one pebble. A rubbling move r(y, z → x) places

two pebbles on x, and a sequence of pebbling moves results in two pebbles

on v. Hence, the leaf neighbors of v can be pebbled. Since v is an arbitrary

support vertex, it follows that this is a 1-rubbling configuration of T . Hence,

ρ∗1(T ) ≤ n− ` < n− `+ 2.

The following two results directly follow Theorem 4.25.

Corollary 4.26 Let T be a tree with order n ≥ 4 and ` ≥ 3 leaves. If T has

at least one non-support vertex of degree three, then ρ∗1(T ) ≤ n− `.
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Proof. Place one pebble on each internal vertex of T , and let v be some

non-support vertex of degree three or more. Then a rubbling move will

place two pebbles on v. Since each leaf must be on a unique path from v

containing only one of the neighbors of v, this move can be done separate of

that particular neighbor. Thus, each vertex on the graph can be reached in

a manner identical to the one described in Theorem 4.25. So, ρ∗1(T ) ≤ n− `.

Observation 4.27 The bound from Theorem 4.25 is only sharp in stars,

double stars, in the broom B(3,m), in the dumbbell D(3, p, q) where p ≥ 3

and q ≥ 2, and in the dumbbell D(4, p, q) where p ≥ q ≥ 3.

Proof. As a result of Corollary 4.26, the bound presented in Theorem 4.25

can only be sharp in paths, stars, brooms and dumbbells. From Theorem

4.11, this bound is not sharp for paths. From Theorem 4.8, the bound is

sharp on stars. From Theorem 4.9, the bound is sharp for double stars.

Furthermore, from Theorems 4.15 and 4.16, observe that the bound is sharp

for the broom B(3,m), the dumbbell D(3, p, q) where p ≥ 3 and q ≥ 2, and

the dumbbell D(4, p, q) where p ≥ q ≥ 3.

We have already seen that the diameter is closely related to the 1-

restricted optimal rubbling number. The following two theorems will estab-

lish an upper bound for trees based on the diameter. We consider even and

odd diameter as seperate cases.
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Theorem 4.28 Suppose that T is a tree of diameter 2k whose center has

degree at least 2k+1 − 5. It follows that ρ∗1(T ) ≤ 2k+1 − 1.

Proof. Let T be a tree with diameter 2k. Then the center of T is a unique

vertex u. Let deg(u) = d and the neighbors of u be v1,...,vd.

Suppose that 2k+1 − 5 ≤ d ≤ 2k+1 − 2. For our initial configuration,

place one pebble on each of u, v1,...,vd. Without loss of generality, assume

that our destination is a leaf w on the periphery such that the shortest path

from u to w passes through vd. We use rubbling moves to move pebbles from

v1,...,vd−1 onto u. Vertex u now has d+1
2

pebbles. Using pebbling moves,

move all of these pebbles to vd. We now have d+1
4

+ 1 pebbles on vd. Since

d ≥ 2k+1 − 5, it follows that d+1
4

+ 1 ≥ 2k−1. Hence, we can reach any

leaf on the branch rooted at vd. Note that our initial configuration used

1 + d ≤ 1 + 2k+1 − 2 = 2k+1 − 1 pebbles. Therefore, ρ∗1(T ) ≤ 2k+1 − 1.

Suppose that d ≥ 2k+1−1. For our initial configuration, place a pebble

on each of u, v1,...,v2k+1−2. We use rubbling moves to move all pebbles to

u. Now u has 2k pebbles. Hence, it is possible to reach any vertex in the

graph using a series of pebbling moves. Again, we used 2k+1 − 2 pebbles in

our initial configuration, so the bound still holds.

Theorem 4.29 Suppose that T is a tree of diameter 2k + 1 with center

vertices u and v such that deg(u) ≥ 2k+1 − 5 and deg(v) ≥ 2k − 2. It follows

that ρ∗1(T ) ≤ 2k+1 + 2k − 4.
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Proof. Suppose that the non-center neighbors of u are u1,...,un. Suppose

that the non-center neighbors of v are v1,...,vm. If 2k+1 − 6 ≤ n ≤ 2k+1 − 2

and m ≥ 2k − 2, then begin by placing a pebble on each of u, v, u1,...,un,

v1,...,vm. If our destination is a leaf on the periphery rooted at un, then

move all pebbles from u1,...,un−1, and v to u using rubbling moves. We now

have n+2
2

pebbles on u. Move all pebbles from u to un using pebbling moves.

There are now n+6
4

pebbles on un. Since n ≥ 2k+1− 6, there are at least 2k−1

pebbles on un. Hence, we can reach any leaf rooted at ud using pebbling

moves. Similarly, if our destination is a leaf on the periphery rooted at vm,

we move all pebbles from u1,...,un to u using rubbling moves. We then move

all pebbles from u to v using pebbling moves. We also move all pebbles from

v1,...,vm−1 to v using rubbling moves. There are now n+2m+4
4

pebbles on v.

Move all pebbles from v to vm using pebbling moves. We now have n+2m+12
8

pebbles on vm. Since n ≥ 2k+1 − 6 and m ≥ 2k−1 − 3, there are at least 2k−1

pebbles on vm. Hence, we can reach any leaf rooted at vm. Note that we

used 2 + n + m pebbles in our initial configuration. Since n ≤ 2k+1 − 2 and

m ≤ 2k − 2, it follows that ρ∗1(T ) ≤ 2k+1 + 2k − 4.

For the remaining cases, use a similar argument to the above argument

as well as the proof of Theorem 4.28.

In their work on optimal rubbling, Katona and Sieben proved that for

any graph G, ρopt(G) ≤
⌈
n+1
2

⌉
(see [18]). We will do the same for the 1-
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restricted optimal rubbling number. Our proof will rely on induction in a

very similar manner to the proof of Katona and Sieben, however we must

account for the fact that each vertex can begin with at most one pebble.

Theorem 4.30 For any tree T of order n, ρ∗1(T ) ≤ dn+1
2
e.

Proof. Let T be a tree of order n. We proceed by induction on n. By

Theorem 4.11, the bound holds when n = 2 or n = 3. Furthermore, by

Theorem 4.8 and Theorem 4.9, the result holds for all for stars and double

stars. Hence, we may assume that diam(T ) ≥ 4 and n ≥ 5.

Assume for any tree T ′ with order n′ < n, that ρ∗1(T
′) ≤ dn′+1

2
e. Root T at

some leaf r, and let leaf w be of maximum distance from r. Let v be the

unique parent of w, and let u be the unique parent of v. We consider three

cases.

Case 1. Vertex v has exactly one child. Let T ′ = T−{v, w}. Then n′ = n−2.

From our inductive hypothesis, there is some rubbling configuration, f(T ′),

such that |f(T ′)| ≤ d (n−2)+1
2
e. In the rubbling configuration of T ′, u can

obtain a pebble. Hence, we construct a rubbling configuration of T using

f(T ′) and placing a pebble on w. A rubbling move r(u,w → v) places

a pebble on v. Then this is a rubbling configuration of T , and ρ∗1(T ) ≤⌈
(n−2)+1

2

⌉
+ 1 =

⌈
n+1
2

⌉
.

Case 2. Vertex v has exactly two children. Let x be the other child of v.

Then x is a leaf. Define T ′ = T−{w, x}. Then from our inductive hypothesis,
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there exists a rubbling configuration f(T ′) such that f(T ′) ≤
⌈
(n−2)+1

2

⌉
. We

are now presented with two subcases.

(a) In f(T ′), v begins with a pebble. Place pebbles on T in the form

of f(T ′). Remove the pebble from v and place one pebble on each of w and

x. A rubbling move r(w, x → v) places a pebble on v, giving the previous

configuration |f(T ′)|. Recall that T ′ = T − {w, x} and each of w and x

began with a pebble. Hence, this is a rubbling configuration, and ρ∗1(T ) ≤⌈
(n−2)+1

2
+ 1
⌉

=
⌈
n+1
2

⌉
.

(b) In f(T ′), v does not begin with a pebble. Thus, there must exist

some sequence of moves using only the vertices of T ′ that places a pebble

on v. Place pebbles on T in the form of f(T ′) and place one additional

pebble on v. Then v can receive a second pebble, and a pebbling from v

move reaches w and x. Clearly, this is a rubbling configuration of T , and so,

ρ∗1(T ) ≤
⌈
(n−2)+1

2
+ 1
⌉

=
⌈
n+1
2

⌉
.

Case 3: Vertex v has three or more children. Let `1, `2, ..., `k be the leaves

adjacent to v, where k ≥ 3. Define T ′ = T − {v, `1, `2, ..., `k}. By our

inductive hypothesis, there exists some rubbling configuration f(T ′), such

that |f(T ′)| ≤
⌈
(n−k−1)+1

2

⌉
. We consider two subcases

(a)Vertex u begins with a pebble in f(T ′). Note that n′ ≤ n−4. Place

pebbles on T in the form of f(T ′) and remove the pebble from u. Place

one pebble on each of v, `1, and `2. Then a rubbling move r(`1, `2 → v)
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places a second pebble on v. It follows that every other leaf neighbor of v

is reachable. Furthermore, the pebbling move p(v → u) places one pebble

on u, leaving us with f(T ′). Then we have a rubbling configuration, and

ρ∗1(T ) ≤
⌈
(n−k)+1

2
+ 2
⌉
≤ dn+1

2
e.

(b) Vertex u does not begin with a pebble in f(T ′). Place pebbles on

T in the form of f(T ′) and place one pebble on each of u and v. In a manner

identical to subcase 2(b), u can now obtain two pebbles. Then the pebbling

move p(u→ v) places a second pebble on v. Finally, a pebbling move from v

will reach each of the leaves of v. Once again, ρ∗1(T ) ≤
⌈
(n−`)+1

2
+ 2
⌉
≤
⌈
n+1
2

⌉
.

We have now shown inductively that ρ∗1(T ) ≤
⌈
n+1
2

⌉
for every tree T .

Since each connected graph must contain a spanning tree, the bound

of Theorem 4.30 can be generalized to all graphs. In fact, the bound can

be sharp for non-trees. Define graph G as the graph in Figure 12. Then by

Theorem 4.5, ρ∗1(G) < 2. But d4+1
2
e = 3, and so, the bound is sharp. The

following corollary uses the result of Theorem 4.30. Here we will consider

disconnected graphs.

Corollary 4.31 Let G be a graph of order n with complement G. Then

ρ∗1(G) + ρ∗1(G) ≤ n+ 2. Further, this bound is sharp.

Proof. If both G and G are connected, then from Theorem 4.30,

2

{⌈
n+ 1

2

⌉}
≤ n+ 2.
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Figure 12: Sharpness in Theorem 4.30

Assume, without loss of generality, that G is not connected. This presents

two cases.

Case 1: Each component of G has at most two vertices. In this case,

ρ∗1(G) = n. If each component of G is a single vertex, then G is a complete

graph and ρ∗1(G) = 2. If there exists at least one component inG that consists

of two adjacent vertices, say a and b, then in G, N(a) ∩N(b) contains every

vertex in G− {a, b}. Hence, by Theorem 4.5, ρ∗1(G) ≤ 2.

Case 2: Some component of G has at least three vertices. We will begin by

constructing a rubbling configuration on G. Let x and y be vertices of some

component X ∈ G such that X contains at least three vertices. Let z be a

vertex not in X. Then in G, x and y are adjacent to every vertex not in X,

and z is adjacent to each of x and y. Place a pebble on each of x, y, and z.

Then in G, the rubbling move r(x, y → v) will reach each v /∈ X. Thus, a

rubbling move r(x, y → z) will place two pebbles on z. A subsequent pebbling

move from z will reach each vertex in X. Hence, each vertex in G is reachable,
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and so ρ∗1(G) ≤ 3. Now, by Theorem 4.30, ρ∗1(G) ≤
⌈
n(X)+1

2

⌉
+ n − n(X).

Thus, ρ∗1(G) + ρ∗1(G) ≤ 3 +
⌈
n(X)+1

2

⌉
+ n− n(X) ≤ n+ 2.

We see from Theorem 4.7 that this bound can be sharp. If G = Kn,

then ρ∗1(G) = n since G must be an empty graph. Our final result will show

that for each integer value 2 ≤ k ≤
⌈
n+1
2

⌉
, there exists a graph of order n

whose 1-restricted optimal rubbling number equals k. To do so, we define

the double pencil P(k,x) on n vertices as a path on k = n− 2 vertices labelled

p1, p2, ..., pn−2, and two more vertices u and v each adjacent to p1, p2, ..., px for

1 ≤ x ≤ k. We will also say that uv /∈ E(G), so that deg(u) = deg(v) = x.
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Figure 13: The graph P5,3

Theorem 4.32 An ordered pair (n, b) is realizable as the order and the 1-

restricted optimal rubbling number of a connected graph G if and only if n ≥ 3

and 2 ≤ b ≤
⌈
n+1
2

⌉
Proof. Consider the double pencil Pk,x as defined above. If n = 3, then⌈
n+1
2

⌉
= 2. By Theorem 4.5, every connected graph on three vertices has a
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1-restricted optimal rubbling number equal to two. Since the result holds if

n = 3, we may assume that n ≥ 4.

For each value of x, we can create a rubbling configuration by placing

one pebble on each of u and v and placing pebbles on the vertices px+2, ..., pk

in the form of Theorem 4.11. A rubbling move will reach each vertex in

N(u) ∩N(v), and every vertex on the px+2 − pk path is reachable by Theo-

rem 4.11. Finally, px+1 is reachable by the rubbling move r(px, px+2 → px+1).

Thus,

ρ∗1(Pk,x) ≤ 2 +

⌊
k − (x+ 1)

2
+ 1

⌋
.

To see that this configuration is optimal, first note that diam(Pk,x) =

k − x + 2. Thus, by Theorem 4.1 we have that
⌈
(k−x+2)+2

2

⌉
≤ ρ∗1(Pk,x).

Observe that
⌈
(k−x+2)+2

2

⌉
=
⌈
k−x
2

⌉
+ 2 =

⌊
k−x+1

2

⌋
+ 2 =

⌊
k−x−1

2
+ 1
⌋

+ 2.

Hence,
⌊
k−x−1

2
+ 1
⌋

+2 ≤ ρ∗1(Pk,x). It follows that
⌊
k−x−1

2
+ 1
⌋

+2 = ρ∗1(Pk,x).

The value of
⌊
k−x−1

2
+ 1
⌋

+ 2 can be made to equal any integer value on the

interval [2,
⌈
n+1
2

⌉
] simply by increasing or decreasing the value of x. Thus,

the result holds.

Our focus will now shift to the 2-restricted optimal rubbling number

and its relationship with the 1-restricted optimal rubbling number.
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5 2-RESTRICTED OPTIMAL RUBBLING

Our remaining results study the effects of loosening the initial restric-

tion from one to two pebbles. Since every 2-restricted optimal rubbling con-

figuration must be a 1-restricted optimal rubbling configuration by definition,

we observe the somewhat trivial, yet useful upper bound.

Observation 5.1 Let G be a graph. Then ρ∗2(G) ≤ ρ∗1(G).

While it is expected that this bound can be strict, it is less obvious that

it can be sharp. Recall that Lemma 3.1 guarantees that ρopt(G) ≤ ρ∗2(G) for

all graphs G. Using this fact, and Observation 5.1, we now list results for

which ρ∗1(G) = ρ∗2(G).

Theorem 5.2 For any path Pn on n ≥ 2 vertices, ρ∗2(Pn) =
⌊
n
2

+ 1
⌋
.

Proof. From Lemma 3.1, ρ∗2(Pn) ≥
⌊
n
2

+ 1
⌋
. We see from Observation 5.1

and Theorem 4.11 that ρ∗2(Pn) ≤
⌊
n
2

+ 1
⌋
. Thus, ρ∗2(Pn) =

⌊
n
2

+ 1
⌋
.

Theorem 5.3 For any cycle Cn of order n ≥ 3, ρ∗2(Cn) = dn
2
e.

Proof. This result similarly follows from Lemma 3.1, Observation 5.1 and

Theorem 4.12.

Theorem 5.4 Let n ∈ Z such that n ≥ 5, and let G = Cn2K2. Then

ρ∗2(G) =
⌈
2n
3

⌉
.
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Proof. Again, this follows from Lemma 3.1, Observation 5.1, and Theo-

rem 4.13.

Surely these three results do not encompass every graph for which

ρ∗1(G) = ρ∗2(G). A common trait among these graphs is that no vertex has a

degree larger than three. Perhaps this does have some effect, as many graphs

we will see for which ρ∗2(G) < ρ∗1(G) have some vertex of a high degree.

5.1 Small Values

We will mirror those results on ρ∗1(G) by characterizing the graphs for

which ρ∗2(G) = 2 and ρ∗2(G) = 3. We will continue to allow ourselves to

exclude the trivial graph, as that is the only graph for which ρ∗2(G) = 1.

Theorem 5.5 For any non-trivial graph G, ρ∗2(G) = 2 if and only if ρ∗1(G) =

2 or γ(G) = 1.

Proof. We consider the case where ρ∗1(G) 6= 2 since the result follows trivially

if ρ∗1(G) = 2. Thus, let γ(G) = 1. Place two pebbles on a single vertex that

dominates G. Then a pebbling move reaches every vertex, and it follows that

ρ∗2(G).

Now, if ρ∗2(G) = 2 and ρ∗1(G) 6= 2, then from Theorem 4.5 there cannot

exist two vertices u, v ∈ V (G) such that N(u)∩N(v) = G−{u, v}. Thus, no

rubbling configuration of two pebbles can use a rubbling move. If a pebbling

move must be used, then both pebbles must be placed on a single vertex
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u. Since this is a rubbling configuration, u must be adjacent to every other

vertex in V (G). This is a equivalent to saying γ(G) = 1.

Regardless of our choice for t, Theorem 4.5 and Theorem 5.5 charac-

terize all graphs for which ρ∗t (G) = 2.

In Theorem 4.6, we characterized all graphs with an 1-restricted opti-

mal rubbling number equal to three. For all of these graphs, if γ 6= 1, then

ρ∗2(G) = 3 from Observation 5.1 and Theorem 5.5. The rubbling configu-

ration for all these graphs is necessarily achieved by placing one pebble on

each of three different vertices. However, allowing an extra pebble in the ini-

tial configuration gives a second possible rubbling configuration using three

pebbles: placing two on a single vertex, and a third on another vertex. For

convenience, we refer to this configuration as F . The following theorem char-

acterizes those graphs for which ρ∗2(G) = 3 in the form of F . Some of these

graphs will also have a rubbling configuration in the form of Theorem 4.6,

however, some will not.

Theorem 5.6 Let G be a graph. Then ρ∗2(G) = 3 in the form of F if and

only if 3 ≤ diam(G) ≤ 4 and there exists a minimal dominating set S =

{u, v}, such that

(i) uv ∈ E(G) or

(ii) v is a terminal vertex in every maximal subpath.
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Proof. Let G be a graph with a set S such that 3 ≤ diam(G) ≤ 4. By

Lemma 3.1 and Theorem 2.6, ρ∗2(G) ≥ 3. Place two pebbles on u and one

pebble on v. If (i) is true, then a pebbling move p(u → x) will reach each

vertex x ∈ N(u). Note that this includes v. Following the pebbling move

p(u → v), a second pebbling move from v will reach each vertex in N(v).

Since {u, v} dominates G, it follows that this is a rubbling configuration.

Hence, assume that uv /∈ E(G) and that v is a terminal vertex in every

maximal subpath. It follows that epn(v, V (G)) = 0. Furthermore, since

{u, v} is a dominating set, each vertex in N(v) must be adjacent to some

vertex in N [u]. Thus, a pebbling move from u will place a second pebble

in the neighborhood of any vertex in N(v). It follows that each vertex is

reachable, and that ρ∗2(G) ≤ 3. Hence, ρ∗2(G) = 3.

Now let ρ∗2(G) = 3. By Theorem 5.5, γ(G) ≥ 2. If γ(G) > 2, then in

any initial rubbling configuration, at least one vertex, say x, is not adjacent

to any pebbles. It will take at least two moves to place two pebbles in N(x).

But we only began with three pebbles. Thus, after two moves there can only

be one pebble remaining, which cannot reach x. It follows γ(G) ≤ 2, and so,

γ(G) = 2. Clearly, diam(G) ≥ 2. Assume to the contrary that diam(G) = 2.

If uv /∈ E(G), then for each minimal dominating set S = {u, v}, we have that

epn(u, v) = epn(v, u) = 0. But then placing one pebble on each of u and v re-

sults in a rubbling configuration, which is a contradiction. If uv ∈ E(G) then
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only one of u or v, say u, has any private neighbors. But then u dominates

G, and placing two pebbles on u results in a rubbling configuration, which

is a contradiction. Thus, diam(G) ≥ 3. By Theorem 2.6, diam(G) ≤ 4, and

we observe that 3 ≤ diam(G) ≤ 4.

Finally, assume to the contrary that (i) and (ii) are both false. Let F

be a rubbling configuration where F (u) = 2, F (v) = 1, and F (x) = 0 for

each other x ∈ V (G). Since uv /∈ E(G), each vertex in N(v) and not in

N(u) must be reached by a rubbling move. Then each vertex in N(v) must

be adjacent to some vertex in N [u] and epn(v, V (G)) = 0, contradicting the

assumption that claim (ii) is false. Thus, by contradiction, either (i) or (ii)

must be true.

While we have not considered the case where three pebbles are placed

on a single vertex, we can be sure that Theorems 4.6 and 5.6 encompass all

such graphs for which ρ∗t (G) = 3. Consider placing three pebbles on a single

vertex u. The first move is necessarily a pebbling move to some vertex v,

and the resulting configuration results in one pebble on each of u and v. The

only remaining move is a rubbling move from u and v to some third vertex in

N(u)∩N(v). But then this vertex was reachable in the initial configuration,

and placing two pebbles on u would yield a rubbling configuration.
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5.2 Specific Families of Graphs

We now present the 2-restricted optimal rubbling numbers for specific

types of graphs. For many of these graphs we will observe that ρ∗2(G) <

ρ∗1(G).

Theorem 5.7 Let K1,s be a star with s ≥ 3. It follows that ρ∗2(K1,s) = 2.

Proof. Note that the unique center of any star is a dominating set. Hence,

from Theorem 5.5, ρ∗2(K1,s) = 2.

A similar result on double stars follows.

Theorem 5.8 Let G = Sr,s be a double star with 2 ≤ r ≤ s. It follows that

ρ∗2(G) = 3.

Proof. Note that the set {r, s} is a dominating set where rs ∈ E(G) and

diam(G) = 3. Thus, the conditions from Theorem 5.6 are satisfied and

ρ∗2(G) = 3.

We now return to the trees of diameter four. Similar to our previous

results, we will characterize the 2-restricted optimal rubbling number for

these trees.

Theorem 5.9 For s ≥ 2, let K1,s(c; a1, ..., as) be a tree of diameter four.

The 2-restricted optimal rubbling number for K1,s(c; a1, ..., as) is as follows:

(i) ρ∗2(K1,s(c; a1, ..., as)) = 3 if and only if s = 2, c = 0, and a2 = 1.
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(ii) ρ∗2(K1,s(c; a1, ..., as)) = 4 if and only if it is either K1,2(c; a1, a2) (where

a2 ≥ 2) or K1,3(c; a1, a2, a3).

(iii) ρ∗2(K1,s(c; a1, ..., as)) = 5 if and only if s = 4 or s = 5.

(iv) ρ∗2(K1,s(c; a1, ..., as)) = 6 if and only if s ≥ 6

Proof. (i) We construct a rubbling configuration by placing two pebbles on

y1, one pebble on y2,1, and no pebbles on the remaining vertices. To see that

this is minimum, first note that this class of graph includes P5
∼= K1,2(0; 1, 1)

and ρ∗2(P5) = 3 by Theorem 5.2. Further, for a1 ≥ 2, at least two pebbles

are needed to reach the vertices y1,1,...,y1,a1 . Since none of these pebbles can

reach y2,1, at least one additional pebble is needed for this vertex.

(ii) Let s = 2. We construct a rubbling configuration by placing two

pebbles on each of y1 and y2 and no pebbles on the remaining vertices.

To show that this is minimum, note that two pebbles are needed for the

vertices y1,1,...,y1,a1 . If a2 ≥ 2, then two additional vertices are needed for

y2,1,...,y2,a2 . Likewise, if c ≥ 1 and a2 = 1, then two pebbles are needed to

reach y1,1,...,y1,a1 . However, these pebbles cannot reach y2,1, nor can they

reach x1,...,xc. Thus, we need an additional pebble on x. However, this will

still not let us reach y2,1. Thus, we will need a total of four pebbles to reach

the entire graph.

Let s = 3. We construct a rubbling configuration by placing one pebble
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on each of y1, y2, y3, and x. To see that this is minimum, note that at least

one pebble is needed for each of y1,1, y2,1, and y3,1. If a1 ≥ 2, then an

additional pebble is needed. Likewise, if c ≥ 1, then an additional pebble is

needed to reach x1,...,xc.

(iii) Let s = 4. We construct a rubbling configuration by placing one

pebble on each of y1,...,y4, and x. To see that this is minimum, to place a

pebble on yi,1, we may either have a pebble there in the initial configuration

(this requires at least four pebbles), we may have four pebbles on x (this

requires at least six pebbles), or we may have two pebbles on yi. In this

last case, we may have two pebbles on yi initially (which would require eight

pebbles) or move two pebbles to yi. To place two pebbles on yi, we need

to have one pebble on yi and two pebbles on x. To place two pebbles on x,

we may either place two there initially, or move them there by having one

pebble on each of x, yj, and yk, where i 6= j, i 6= k, and j 6= k (recall that

this requires one pebble to remain on yi). Again, this requires at least four

pebbles. However, we need at least one additional pebble for the final branch

of the tree.

Let s = 5. We construct a rubbling configuration by placing one pebble

on each of y1,...,y5. The rest of the argument is analogous to the case where

s = 4.

(iv) Let s ≥ 6. We construct a rubbling configuration by placing two
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pebbles on each of y1, y2, and x. To see that this is minimum, note that

we require at least six pebbles to reach y1,1,...,y6,1. Thus, the minimum is

achieved by placing four pebbles on x and moving them to the leaves using

pebbling moves. This requires two pebbles on x and at least four pebbles on

its neighbors.

5.3 Relationships

Our first few results in this section will focus on the relationship between

ρ∗1 and ρ∗2. Using the results from Theorem 5.9 and Theorem 4.17, we will

construct a tree for which ρ∗1(G)− ρ∗2(G) = k for any k ≥ 1.

Theorem 5.10 The difference ρ∗1(G)− ρ∗2(G) can be made arbitrarily large.

Proof. Consider the star K1,s for s ≥ 3. From Theorem 4.8, ρ∗1(K1,s) = 3

and from Theorem 5.7, ρ∗2(K1,s) = 2. We will now construct a graph G

for which ρ∗1(G) − ρ∗2(G) = k. Begin with the path P4k−3 with vertex set

p1, p2, ..., p4k−3. Associate the center of the star K1,s with the vertex p4i+1 on

the path for i = 0, 1, 2, ..., k − 1. Using the configurations of Theorem 4.8

and Theorem 5.7, it is possible to reach the vertices of each star with two

or three pebbles, depending on the initial restriction. Furthermore, since the

distance between center vertices equals four, the remaining vertices of the

path are reachable. Hence, ρ∗1(G) ≤ 3k and ρ∗2(G) ≤ 2k.
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Since each star has at least three leaves, it is not optimal to place

one pebble on each leaf of any one star. Thus, if some star K1,si does not

begin with either two or three pebbles, then it follows from Theorem 4.8

and Theorem 5.7 that vertex p4i+1 must receive two pebbles from some other

vertex on the graph. Due to the construction of the graph, this must be

through pebbling moves from p4i or p4i+2. Without loss of generality, assume

this will be from p4i. From Lemma 4.14, p4i (and p4i+1) can only receive two

pebbles if each vertex on the pi−3-pi−1 path receives two pebbles first. Clearly

it is most efficient to begin by placing one pebble on each of p4i−2, ..., p4i+1.

But this already requires at least four pebbles, which is not optimal. Hence,

ρ∗1(G) ≥ 3k and ρ∗2(G) ≥ 2k, and so, ρ∗1(G) = 3k and ρ∗2(G) = 2k. Thus, we

have constructed a graph for which ρ∗1(G)− ρ∗2(G) = k.
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Figure 14: A graph where ρ∗1 − ρ∗2 = 2

We will now establish a general bound between ρ∗1 and ρ∗2 for specific

graphs. Our proof will construct a 1-rubbling configuration from a 2-rubbling

configuration while counting the number of added pebbles. To do so we will
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use the following definition, which partitions the vertex set of a graph G in

to subsets based on the number of pebbles they are assigned by some ρ∗t -

configuration f . Define subsets Vk ⊂ V (G) for 1 ≤ k ≤ t, such that a vertex

v is a member of Vk if v is assigned k pebbles by f . So if f(v) = 1, then

v ∈ V1.

Theorem 5.11 If G has a ρ∗2-configuration f = (V0, V1, V2) such that every

vertex in V2 has at least two private neighbors in V0, then ρ∗1(G) ≤ 3
2
ρ∗2(G).

Proof. Let f = (V0, V1, V2) be a ρ∗2-configuration of a graph G such that

every vertex in V2 has at least two private neighbors in V0.

Now for each v ∈ V2, select two of those private neighbors, say u,w ∈ V0.

In order to construct a 1-rubbling configuration of G, begin with the config-

uration f . Place one pebble on each of u and w and remove one pebble from

v. Notice that each of v, u, and w each begin with one pebble. Furthermore,

a rubbling move r(u,w → v) will place a second pebble on v. Since v is an

arbitrary vertex in V2, and u and w are private neighbors of v, this can be

done for each vertex in V2. This gives us a rubbling configuration of G, as

each vertex begins with at most one pebble, and after a rubbling move with

each vertex in V2 we return to configuration f . We have added at most |V2|

pebbles, so

ρ∗1(G) ≤ ρ∗2(G)− |V2|+ 2|V2|
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= |V1|+ 3|V2|

= ρ∗2(G) + |V2|.

We use the most pebbles if V1 = ∅ and so we have ρ∗1(G) ≤ 3|V2| = 3
2
ρ∗2(G).

It is currently unknown if a similar type of bound exists in general for

all graphs. This bound could fail if some vertex in V2 did not have at least

two external private neighbors. We now proceed with two theorems relating

the diameter of a tree T , and ρ∗2(G). Similar to before, we will consider even

and odd diameters separately.

Theorem 5.12 Suppose that T is a tree of diameter 2k whose center has

degree at least 2k − 5. It follows that ρ∗2(T ) ≤ 2k+1 − 2.

Proof. Let T be a tree with diameter 2k. Then the center of T is a unique

vertex u. Let deg(u) = c and the neighbors of u be v1,...,vc.

Suppose that 2k − 5 ≤ c ≤ 2k − 2. For our initial configuration, place

two pebbles on each of u, v1,...,vc. Without loss of generality, assume that our

destination is a leaf w on the periphery such that the shortest path from u

to w passes through vc. Use pebbling moves to move pebbles from v1,...,vc−1

onto u. Vertex u now has c + 1 pebbles. Using pebbling moves, move all of

these pebbles to vc. We now have c+1
2

+ 2 pebbles on vc. Since c ≥ 2k − 5, it

follows that c+1
2

+2 ≥ 2k−1. Hence we can reach any leaf on the branch rooted
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at vc. Note that our initial configuration used 2+2c ≤ 2+2(2k−2) = 2k+1−2

pebbles. Therefore, ρ∗2(T ) ≤ 2k+1 − 2.

Suppose that c ≥ 2k−1. For our initial configuration, place two pebbles

on each of u, v1,...,v2k−2. Use pebbling moves to move all pebbles to u. Now,

u has 2k pebbles. Hence, it is possible to reach any vertex in the graph using

a series of pebbling moves. Again, we used 2k+1 − 2 pebbles in our initial

configuration, so the bound still holds.

Theorem 5.13 For k ≥ 2, suppose that T is a tree of diameter 2k + 1 with

center vertices u and v such that deg(u) ≥ 2k − 5 and deg(v) ≥ 2k−1 − 2. It

follows that ρ∗2(T ) ≤ 2k+1 + 2k − 4.

Proof. Suppose that the non-center neighbors of u are u1,...,un. Suppose

that the non-center neighbors of v are v1,...,vm. If 2k − 6 ≤ n ≤ 2k − 2 and

m = 2k−1 − 3, then begin by placing two pebbles on each of u, v, u1,...,un,

v1,...,vm. If our destination is a leaf on the periphery rooted at un, then

move all pebbles from u1,...,un−1, and v to u using pebbling moves. We now

have n + 2 pebbles on u. Move all pebbles from u to un using pebbling

moves. There are now n+6
2

pebbles on un. Since n ≥ 2k − 6, there are at

least 2k−1 pebbles on un. Hence, we can reach any leaf rooted at ud using

pebbling moves. Similarly, if our destination is a leaf on the periphery rooted

at vm, we move all pebbles from u1,...,un to u using pebbling moves. We then

move all pebbles from u, v1,...,vm−1 to v using pebbling moves. There are now
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n+2
2

+m+1 pebbles on v. Move all pebbles from v to vm using pebbling moves.

We now have n+2m+12
4

pebbles on vm. Since n ≥ 2k − 6 and m ≥ 2k−1 − 3,

there are at least 2k−1 pebbles on vm. Hence, we can reach any leaf rooted at

vm. Note that we use 4 + 2n+ 2m pebbles in our initial configuration. Since

n ≤ 2k − 2 and m ≤ 2k−1 − 2, it follows that ρ∗2(T ) ≤ 2k+1 + 2k − 4.

For the remaining cases, use a similar argument to the above argument

as well as the proof of Theorem 5.12.

Note that the bound given in Theorem 5.13 does not hold for trees of

diameter three (i.e., the double stars) as ρ∗2(T ) = 3, but 22 + 2 − 4 = 2.

Further, note that we can likely “improve” the bound on the degrees of our

centers by moving all of the pebbles (except those on our chosen branch) to

the centers. This allows the centers to “share” pebbles more effectively. In

this case, the above result holds if 2n+m ≥ 2k+1−12 and n+2m ≥ 2k+1−12.

Theorems 5.12 and 5.13 depend on specific values for the degree of the

center vertex or center vertices. While we will see later that these bounds do

not necessarily hold for all trees, in the next theorem we will show that the

bound in Theorem 5.12 holds for all trees of diameter eight.

Theorem 5.14 Let T be a tree of diameter eight. Then ρ∗2(T ) ≤ 30.

Proof. First we will define a few terms:

• u: The unique center of T .
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• X1: The set of vertices in N(u).

• X2: The set of all vertices distance two from u.

• X∗2 : The set of all vertices distance two from u that begin with 2

pebbles. Note that X∗2 ⊂ X2.

If |X1| ≥ 11, then ρ∗2(T ) ≤ 30 by Theorem 5.12. Hence, assume that 3 ≤

|X1| ≤ 10. First place two pebbles on u and two pebbles on each vertex in

X1. Place the remaining pebbles on vertices in X2. Those vertices in X2 that

receive pebbles will comprise the set X∗2 . Note that |X1 +X∗2 | ≤ 14. We will

consider two cases.

Case 1: |X1| + |X2| ≤ 14. Observe that X2 = X∗2 , since every vertex

in X∗2 is in X2. Furthermore, every open vertex in T is at most distance two

from some vertex in X2. Thus, if four pebbles can be placed on every vertex

y ∈ X2 adjacent to some x1 ∈ X1, it follows that every vertex in V (T ) is

reachable. Since y begins with two pebbles in the initial configuration, only

two more pebbles must be moved to y. Consider vertices x2, x3 ∈ V1 not

adjacent to y. The pebbling moves p(x2 → u) and p(x3 → u) will place four

pebbles on u. Executing the pebbling move p(u → x1) twice will place four

pebbles on x1. Finally, executing the pebbling move p(x1 → y) twice will

place four pebbles on y. Since y was an arbitrary vertex in X2, it follows that

every vertex in X2 can be pebbled in this way, giving a rubbling configuration
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of T . We used less than 2 + 28 = 30 pebbles, and so ρ∗2(T ) ≤ 30.

Case 2: |X1|+ |X2| > 14. In this case, there must be least one vertex

in X2 that is not in X∗2 . This implies that |X1|+ |X∗2 | = 14. Hence, we wish

to show that regardless of the number of vertices in X1, eight pebbles can be

placed on any single vertex in X1. This presents three subcases dependent

on the value of |X1|.

Subcase (a): |X1| ≥ 8. In this case, there is at least one vertex in X1,

say x1, such that |N(x1) ∩ X2| ≥ 1 and |N(x1) ∩ X∗2 | = 0. Note that for

every 4 vertices in X∗2 we can place one pebble on x1. Furthermore, for every

2 vertices in X1, we can place one pebble on x1. In our initial configuration,

x1 begins with two pebbles, and u can place one pebble on x1 through a

pebbling move. Thus, if

|X1| − 1

2
+
|X∗2 |

4
+ 3 ≥ 8

we have a rubbling configuration. We can simplify this inequality:

|X1| − 1

2
+
|X∗2 |

4
+ 3 ≥ 8

2|X1| − 2 + |X2|+ 12 ≥ 32

2|X1|+ |X∗2 | ≥ 22.
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Which, when given our initial values of |X1|, and the fact that |X1|+ |X∗2 | =

14, it is straightforward to check that the inequalty holds for each |X1| ≥ 8.

Subcase (b): 5 ≤ |X1| ≤ 7. Given the number of vertices in X1, it

follows that each vertex in X1 with a neighbor in X2 must have at least one

neighbor in X∗2 . Since there still must be some vertices in X2 not in X∗2 , we

wish to show that eight pebbles can be placed on any vertex in X1. Similar

to above, x1 begins with two pebbles, and u contributes one pebble. This

time, the vertex in X∗2 adjacent to x1 will also contribute a pebble. Hence,

consider the following equation:

|X1| − 1

2
+
|X∗2 | − 1

4
+ 4 ≥ 8.

If this inequality holds, then we have a rubbling configuration. It simplifies:

|X1| − 1

2
+
|X∗2 | − 1

4
+ 4 ≥ 8,

2|X1| − 2 + |X2| − 1 + 16 ≥ 32,

2|X1|+ |X∗2 | ≥ 19.

Which again, one can check that it holds for all values of |X1|.

Subcase (c): 3 ≤ |X1| ≤ 4. In this last case, each vertex in X1 with

more than 2 neighbors in X2 must have at least 2 neighbors in X∗2 . Using
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pebbling and rubbling moves similar to before, we can set up the inequality

|X1| − 1

2
+
|X∗2 | − 2

4
+ 5 ≥ 8.

If this inequality holds, then we will prove that the bound holds for this final

subcase. It simplifies:

|X1| − 1

2
+
|X∗2 | − 2

4
+ 5 ≥ 8,

2|X1| − 2 + |X2| − 2 + 20 ≥ 32,

2|X1|+ |X∗2 | ≥ 16.

Which holds when |V1| is equal to three or four. Finally, for some vertex in

x1 ∈ X1 with a single neighbor in y ∈ X2, observe that y must begin with

two pebbles. Hence, we wish to show that y can receive four pebbles. Vertex

u can receive two more pebbles independent of x1. Thus, using pebbling

moves, two more pebbles can be moved to y. Either way, we have a rubbling

configuration. Thus, we have shown that for every degree of u, the bound

holds.

Observation 5.15 The bound in Theorem 5.12 does not hold for trees of

diameter ten.

Proof. Let T be a tree of diameter ten and center c such that deg(c) =
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23. Now let every other non-leaf vertex have degree equal to 64. For k =

1, 2, ..., 5, let Xk be subsets of V (T ) such that v ∈ Xk if d(v, c) = k. Then

each v ∈ Xk has exactly one neighbor in Xk−1 and 63 neighbors in Xk+1. As

a result, in every possible configuration of 62 pebbles, each x ∈ X1 must be

adjacent to at least one y ∈ X2 such that y has no pebbles. Furthermore, for

at least one of these vertices, each vertex on every y − ` subpath for ` ∈ X5

of length three does not begin with a pebble. It follows that if ρ∗2(G) = 62,

then each vertex in X1 must be able to receive sixteen pebbles in order to

reach each vertex in X5. Furthermore, in any pebbling distribution, at least

one vertex in X1 will be adjacent to at most two extra pebbles, which must

be placed on c. Consider some vertex v1 ∈ X1 for which this is true. Each

rubbling or pebbling move requires the loss of one pebble, so it follows that

if the configuration that minimizes the sum of the distance of the remaining

pebbles to v1 will not place sixteen pebbles on v1, then no configuration will

do this. So, with the 62 pebbles, place two on v1, place two on c, 44 on the

remaining vertices in X1, and 14 on arbitrary vertices in X2 that are not

adjacent to vertex v1. Pebbling moves will allow us to use the pebbles in X1

to place 22 pebbles on c. However, the 14 pebbles in X2 will result in at

most one extra pebble on c. This leaves 25 pebbles on c, only allowing for 14

pebbles on v1. Thus, the tree T must have an 2-restricted optimal rubbling

number greater than 62.
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6 CONCLUSIONS AND OPEN PROBLEMS

In our work we introduced the t-restricted optimal rubbling number

as an added restriction to the optimal rubbling number of a graph. While

we explored both 1-restricted and 2-restricted optimal rubbling, our main

focus was on results in 1-restricted optimal rubbling. Many of the results

specifically shown for 1-rubbling could be extended to, or improved upon in

2-rubbling.

In their work on t-restricted optimal pebbling, Chellali, Haynes, Heden-

imi, and Lewis studied its relationship to the Roman domination number [4].

A Roman dominating function is a mapping of the vertex set f : V (G) →

{0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent

to a vertex v with f(v) = 2. On the surface, it appears that the 2-restricted

optimal rubbling number could have a very close relationship with the Roman

domination number. While we did not investigate any potential relationship,

this could be an avenue for further study.

Other results associated with pebbling and rubbling have yet to be

researched for t-restricted optimal rubbling. While the computational com-

plexity of pebbling was determined in [20], there is no related work for rub-

bling, or t-restricted optimal rubbling. Pebbling as a subject of study finds

its roots in studying the hypergraph. While we have shown some results on
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the Cartesian product of graphs, there has yet to be any work done on the

t-restricted optimal rubbling number of a hypergraph. Additional problems

for future study include:

1. Is it possbile to characterize those graphs for which ρ∗1(G) = γ(G)?

2. How does the value of t affect the difference of ρ∗t (G) and ρopt(G)?

3. Characterize those graphs for which ρ∗1(G) = ρ∗2(G). Is it possible to

characterize the graphs for which ρ∗t is the same regardless of our choice

for t?

4. For what graphs are the t-restricted optimal pebbling and t-restricted

optimal rubbling numbers the same? Does our choice for t affect this?

5. Characterize those graphs for which ρ∗1(G2H) = ρ∗1(G)ρ∗1(H).
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