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ABSTRACT

Inventory Optimization Using a SimPy Simulation Model

by

Lauren Holden

Existing multi-echelon inventory optimization models and formulas were studied to

get an understanding of how safety stock levels are determined. Because of the

restrictive distribution assumptions of the existing safety stock formula, which are not

necessarily realistic in practice, a method to analyze the performance of this formula

in a more realistic setting was desired. A SimPy simulation model was designed and

implemented for a simple two-stage supply chain as a way to test the performance

of the safety stock formula. This implementation produced results which led to the

conclusion that the safety stock formula tends to underestimate the level of safety

stock needed to provide a certain service level when predicted standard deviation of

demand is underestimated and the assumptions of normally distributed demand and

normally distributed lead times are not fulfilled.
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1 INTRODUCTION AND BACKGROUND

The problem at hand is improving upon the existing methods used by companies

to decide the level of safety stock they should hold. In order to do this, a foundation

for the problem must be built. Chapter 1 briefly reviews some necessary background

material and introduces the problem. Chapter 2 is a discussion of existing formulas

and models used in inventory optimization, as well as a brief introduction to SimPy.

Chapter 3 explains how SimPy simulations can be used to model supply chains and

analyze the validity of the existing formulas in inventory optimization. Chapter 4 is

a summary and discussion of the results obtained in Chapter 3.

1.1 Supply Chain Definition and Connection to Inventory Optimization

The definition of a supply chain differs depending on what source is referenced,

but they all have the same underlying idea. According to [3], a supply chain is defined

as “a network of connected and interdependent organizations mutually and cooper-

atively working together to control, manage, and improve the flow of materials and

information from suppliers to end users.” Supply chains can vary in size and complex-

ity, with some having only a few stages while others have several. For example, one

supply chain may consist of a supplier of raw materials, a manufacturing plant, and

a retailer who sells to consumers, as illustrated in Figure 1. However, another supply

chain may consist of several suppliers, several separate manufacturing processes for

individual components, a manufacturer that assembles these components into a fin-

ished product, several distribution centers, and retailers throughout the country who

sell to consumers, as illustrated in Figure 2.
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1 2 3

Supplier Manufacturer Retailer

Figure 1: Illustration of a simple supply chain consisting of a supplier of raw materials

(node 1), a manufacturer that turns those raw materials into a finished product (node

2), and a retailer who sells the finished product to consumers (node 3).

1
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13

14

15

Suppliers Component

Manufacturers
End-Product
Manufacturer

Distributors Retailers

Figure 2: Illustration of a more complex supply chain consisting of suppliers (nodes

1-4), several separate manufacturing processes for individual components (nodes 5-7),

a manufacturer that assembles these components into a finished product (node 8),

several distribution centers (nodes 9-11), and retailers who sell to consumers (nodes

12-15).

11



As illustrated in Figures 1 and 2, supply chain makeups differ greatly; however,

every product reaches customers through a supply chain of some kind [18]. This

means that supply chains are a huge component of inventory optimization, which is

the topic of Section 1.3. In fact, inventory, which is discussed in the next section,

can potentially be held at each stage along the supply chain. In order to determine

the optimal locations to hold inventory and the levels to hold, we will simulate the

supply chain using a Python simulation package called SimPy, as discussed in Section

1.4. This will allow us to get a better idea of how the formulas and models perform

under the actual conditions of the specific supply chain being analyzed.

1.2 Inventory Definition and Types

Inventory is often thought of as the food sitting on the shelves at a grocery store or

the clothes hanging on the racks at a retail store. These are examples of inventory, and

they successfully illustrate a common materials management definition of inventory,

which states that inventory is “a usable but idle resource having some economic value”

[16]. However, understanding what inventory is and why it is needed is much more

complicated than these examples imply. At the most basic level, inventory is present

because the levels of supply and demand in a supply chain are not equal [2]. However,

all inventory is not the same. Inventory can be broken down into several types based

on the role the inventory plays in the supply chain. In this paper, we will look at five

of these types of inventory: cycle, safety, work in progress, pre-build, and waste.

According to [2], cycle inventory in a supply chain is the average amount of inven-

tory used to satisfy customer demand during a cycle. When demand is constant, for a
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lot size of Q, the cycle inventory is Q
2

. As illustrated in Figure 3 below, when demand

is constant and no supply uncertainty is present, the inventory level at the beginning

of a cycle is Q, and the inventory level at the end of a cycle is 0. This implies that

the average amount of inventory in a cycle is equal to Q
2

. When demand is varying,

the cycle inventory is still proportional to the lot size, but it not necessarily half of it.

This type of inventory exists because companies purchase or produce products in lot

sizes that exceed customer demand in order to take advantage of economies of scale.

Within a certain range, fixed costs are not affected by the quantity of products pro-

duced or purchased, so companies order or produce quantities at the high end of this

range in order to drive down the per-unit cost of the product [2]. An inventory profile

illustrating cycle inventory can be seen in Figure 3, where the following notation is

used. For the purposes of Figure 3, we assume demand is constant.

• Q = Lot size: Quantity of product ordered

• Ak = Arrival time in cycle k: Time at which replenishment order arrives

As illustrated in Figure 3, cycle inventory is sufficient to satisfy all demand when

demand is constant because companies know exactly what to expect. However, this

assumption is not realistic, so we must consider another type of inventory. Safety

inventory in a supply chain exists to fulfill customer demand that exceeds what is

expected or predicted or to act as a buffer against supply uncertainty [2]. The level of

demand for the majority of products is far from constant [7], and although there are

tools to predict what the demand will be, there is always some uncertainty. When

customers demand more than what is predicted, demand cannot be met and, often-

13



Time

Cycle Inventory

Cycle 1 Cycle 2 Cycle 3

Q

Q
2

A1 A2 A3

Inventory

Figure 3: Inventory profile illustrating cycle inventory under the assumption of steady

demand: Cycle inventory, the average inventory in a cycle, is equal to Q
2

since demand

is steady. Under this assumption, demand will be equal to the predicted demand, so

the exact amount of cycle inventory needed to satisfy demand in Cycle 1, Cycle 2,

and Cycle 3 can be held.

times, the orders are cancelled all together, which is known as a stock out [7]. This

leads to unhappy customers and oftentimes a loss in profit and business in the long

term. Uncertainty in supply, whether it is caused by a machine breakdown, trans-

portation delay, problem with product quality, or another unforeseen problem, is also

a cause for the holding of safety inventory [2]. Regardless of the cause, if an upstream

stage fails to supply the desired level of product to the downstream stage(s), demand

cannot be met with cycle inventory alone. For these reasons, safety stock is carried

14



as a buffer to combat these uncertainties. An inventory profile illustrating safety

inventory as a buffer against supply uncertainty can be seen in Figure 4, where the

notation from Figure 3 is used, and the following notation is added.

• R = Reorder point: Level of inventory at which a replenishment order is placed

• S = Safety level: Minimum level of inventory that will exist in the supply chain

if demand is equal to predicted demand and supply is certain

• t∗ = Expected order arrival time for Cycle 2

Safety inventory is needed to satisfy demand when the supply chain faces uncertain-

ties, such as the one shown in Figure 4. Without this safety stock on hand, demand

cannot be satisfied, leading to major problems between a company and its customers.

Furthermore, work in progress (WIP) inventory, or pipeline inventory, consists

of a company’s products that are still traveling through the supply chain in a non-

productive form [16]. This type of inventory encompasses a wide range of products

and can be thought of as the inventory in the supply chain existing between the raw

materials and the finished goods.

Another type of inventory is pre-build. In most supply chains, it is impossible to

produce an unlimited quantity of goods at a time. However, the level of demand is

not subject to these same restrictions. Thus, in order to combat these restrictions

on production capacity, pre-build inventory is built up over time to satisfy future

demand [17]. Seasonal inventory, which is built up during the off-season to satisfy

heightened demand during the peak season, is pre-built inventory [16].

Finally, waste, also called obsolete stock, is the inventory that has exceeded its

15



Time

Safety Inventory

Cycle 1 Cycle 2 Cycle 3

Inventory

R Q

A1 t∗ A2 A3

Q+ S

S

Figure 4: Inventory profile illustrating safety inventory as a buffer against supply

uncertainty: In Cycle 1 and Cycle 3, inventory does not fall below the safety level,

S, so cycle inventory is sufficient to satisfy demand. In Cycle 2, the replenishment

order should have arrived at time t∗, but it does not arrive until time A2. This delay

in the order arrival, a type of supply uncertainty, causes the inventory to fall below

the safety level, so safety inventory must be used to fill demand from time t∗ to time

A2. If no safety stock had been held in this supply chain, a stock out would have

occurred at time t∗.

life cycle, been damaged, or failed to sell and can no longer be kept available for sale.

Obsolete inventory builds up due to uncertainty in supply and demand and lack of

flexibility in the supply chain [9]. This type of inventory is useless to companies and

counts as a loss on the balance sheet. In inventory optimization, waste should be

16



kept to a minimum.

1.3 Inventory Optimization

A very practical and potentially profitable goal is finding an optimal way to man-

age inventory, specifically safety stock, within a supply chain. Inventory management

revolves around finding the right balance between what companies want, what com-

panies do not want, and what companies need. Companies want to save money and

maximize profit. Inventory allows companies to save money by taking advantage

of economies of scale [2]. Holding inventory also helps to prevent shortage costs,

which are the costs of being unable to satisfy demand, including lost profits and lost

customers [7].

On the other hand, looking at inventory as an “idle resource” seems to imply that

inventory should not be held because it is simply tying up money [16]. According to

[7], the presence of inventory introduces the following costs.

• Setup costs are the costs necessary to get everything ready to begin production,

including paperwork, obtaining materials, and preparation of equipment.

• Ordering costs are the costs necessary to prepare the order itself, including

calculating order quantities and managing the tracking of orders.

• Holding costs are the costs of keeping inventory on hand, including handling

fees, insurance, and costs related to storage facilities.

Tying up capital on product that is sitting idle in a warehouse is not necessarily

appealing from a business perspective. These costs add up quickly and are the main

17



source of hesitancy when it comes to holding inventory. However, without inventory,

companies have no way to combat the uncertainties they face, which makes it diffi-

cult to provide the level of service that is expected by customers. These uncertainties

are numerous and include demand variability, lead-time variability, material short-

ages, and time-lags in order replenishment [16]. All of these wants, costs, and needs

must be considered. Holding too much inventory in an attempt to increase savings

through large lot sizes leads to higher holding costs and oftentimes inventory that

becomes obsolete. However, trying to avoid holding costs and waste and holding too

little inventory leads to stock outs, service levels that are unfulfilled, and unhappy

customers.

It is significant to note that these wants, costs, and needs are not mutually ex-

clusive, or disjoint. First and foremost, companies must focus on providing some

pre-determined level of service in order to maintain business. To do this, companies

hold inventory. By holding inventory, companies incur setup, ordering, and holding

costs. However, at the same time, holding inventory decreases shortage costs and

increases savings through economies of scale. The complexity of these relationships

is what makes inventory optimization such a challenge. An illustration of this con-

nectedness can be seen in Figure 5.

The goal of inventory optimization is to find the optimal balance among the service

level, savings, and costs. Levels of cycle and safety inventory are the major factors in

finding this balance. Companies can typically use past data and forecasting to get a

fairly good idea of how much cycle inventory they need since it is proportional to lot

18



SAV INGS COSTS

S.L.1

(a) Service Level 1

SAV INGS

S.L.2

COSTS

(b) Service Level 2

Figure 5: Relationship between service level, savings, and costs: Providing either

Service Level 1 or 2 incurs costs associated with inventory holding but also savings,

denoted by the overlaps in both Subfigure 5(a) and Subfigure 5(b). However, provid-

ing a higher level of service, as illustrated in Subfigure 5(b), results in higher costs

but also higher savings, as shown by the greater overlap areas.

size [2]. However, figuring out how much safety inventory should be kept is much

more difficult since it is affected by both supply and demand uncertainty as well as

the desired customer service level [17]. This relationship can be seen in equation

19



(1), which is given below in Section 2.1. Supply uncertainty includes uncertainty

in supply quantity or quality, uncertainty in supply timing (production lead time),

uncertainty in purchase price, transportation delays, and more [2, 13]. Demand un-

certainty stems from several factors, including seasonality, unsophisticated forecasting

methods, forecasting errors, and lack of communication within the supply chain [2].

1.4 Simulating the Supply Chain Using SimPy

According to [14], simulation is defined as “the art and science of constructing

models of systems for the purpose of experimentation,” and a system is defined as

“a collection of mutually dependent components whose actions on each other form

a dynamic process”. This perfectly describes a supply chain because downstream

stages are dependent on upstream stages, and when they are combined, they form

the dynamic process of the procurement and fulfillment of customer orders for some

product. Because of this dependence among stages, it is often hard to predict when

events within the supply chain will occur, so simulation is a tool that can be used

to get a better idea of exactly what is taking place within the specific supply chain

being analyzed. Our goal is to determine the optimal placement of safety stock using

this simulation model.

There are many options when it comes to running simulations. One such option

is SimPy, which is a Python package for “process-oriented discrete-event simulation”

[8]. In the case of inventory optimization, discrete-event simulation (DES) refers

to the fact that the variables of interest, namely safety stock levels, are discrete

variables. Process-oriented means that every activity in the simulation is modeled as
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a process, and there are multiple “application-specific threads” and a “general thread

to manage the event set” [8]. Process-oriented simulations run more quickly than

activity-oriented simulations, which step through time in small increments and check

for the occurrence of events at each increment of time [8] For example, a year-long

simulation of a supply chain would not necessarily run quickly using an activity-

oriented approach. Event-oriented simulations, on the other hand, focus on the events

themselves and take “shortcuts” from the scheduled time of one event to the next,

which allows the simulation to run in less time [8]. SimPy’s “threads” are Python

generator functions. This means yield statements can be used to exit and re-enter a

function at a designated point in time [8]. SimPy also has built-in shared resources,

which have capacities, levels, and useful built-in statements like “put” and “get”.

Another advantage of SimPy is the built-in environment. The environment works as

a scheduler for the events that are passed to it, and an internal clock is used to keep

track of the passing of time.

Our goal is to write a SimPy simulation model that can be used to provide insight

and improve upon the existing multi-echelon inventory optimization methods being

used. Customer orders and the order processors within the supply chain will be

modeled using generator functions. The variables of interest, safety stocks, will be

modeled using shared resources, and “put/get” statements will be used to adjust

inventory levels. The statistics of interest for these resources will also be monitored.

Timeouts will be yielded to simulate lead-times. Finally, the simulation and monitors

will be used to analyze the existing methods, and the results will be discussed.
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2 MATHEMATICAL FORMULAS, DISTRIBUTIONS, AND MODELS

2.1 Safety Stock Formula

An equation for the level of safety stock that should be held, given a desired cycle

service level, is given in [2]. It is assumed that both the replenishment lead time

from a supplier and the customer demand are normally distributed, and a continuous

review replenishment policy is used. We will use the following notation in equation

(1) below, which gives the level of safety stock, SS, a company should hold.

• CSL is the desired service level the company wants to provide to customers.

• Z is the Z-score based on the standard normal distribution. A standard normal

distribution is used because we are assuming demand and lead time are normally

distributed. Here, Z = F−1(CSL), where F−1 is the inverse of the standard

normal.

• D is the average demand per period.

• σD is the standard deviation of demand per period.

• L is the average replenishment lead time.

• σL is the standard deviation of replenishment lead time.

SS = Z ·
√
LσD2 +D2σL2 (1)

Equation (1) illustrates safety stock’s dependence on both the uncertainty in cus-

tomer demand, through σD, as well as the uncertainty in the production lead time of
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the product, through σL. This dependence on factors that are uncertain makes deter-

mining the optimal level of safety stock a very difficult task. Our goal is to analyze

the usefulness of this formula in multi-echelon inventory optimization and determine

why the formula provides more accurate safety stock requirement calculations in some

situations than others based on the SimPy simulations.

2.2 Related Probability Distributions

There are several probability distributions that will be used in the implementation

of the SimPy model. Equation (1) in Section 2.1 incorporates the standard normal

distribution. The normal (or Gaussian) distribution is a continuous probability dis-

tribution known for its “bell” shape that is centered at the distribution mean µ with

standard deviation σ, and the standard normal distribution is a special case in which

µ = 0 and σ = 1 [11]. Referencing [5], the probability density function for a random

variable X over the real line that is normally distributed with mean µ and standard

deviation σ is

f(x) =
1√
2πσ

e−
1
2
(x−µ
σ

)2 . (2)

As discussed previously, implementation of the safety stock formula given in equation

(1) assumes that both the replenishment lead time and customer demand are normally

distributed random variables. This assumption of normality is significant and must

be kept in mind when using equation (1).

The Poisson distribution is used in the model in more of an indirect way. The

Poisson distribution is a discrete distribution used to model the number of occurrences

of some event during an interval of time [11]. The event occurrences are assumed to be
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independent of one another, and the mean of the distribution is traditionally denoted

λ, which represents the average number of event occurrences in one time period [11].

Referencing [5], if X is a random variable over the non-negative integers, then it is

Poisson distributed with mean λ > 0 if its probability distribution is

p(x) =
λx

x!
e−λ. (3)

Customer arrivals are discrete event occurrences that are independent of one another,

so they can be modeled as a Poisson process with mean λ representing the average

number of customer arrivals per day.

An alternate option for modeling customer arrivals with the Poisson distribution

is to use the Exponential distribution. The Exponential distribution is a continuous

distribution that can be used to model the time intervals between event occurrences

in a Poisson process [11]. This means that the Exponential distribution can be used

to model the time between the customer arrivals instead of modeling the arrivals

themselves. Referencing [11], the probability density function for a random variable

X over the non-negative reals that is Exponentially distributed with scale parameter

θ > 0 is

f(x) =
1

θ
e−x/θ. (4)

According to [1], for a Poisson process with mean rate λ, the length of the time

period from some fixed time to the next occurrence of an event has the probability

density function

f(x) = λe−λx. (5)

Setting θ = 1/λ in equation (4) yields equation (5). This means that the length
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of the interval from some fixed time, say the time of an occurrence of the event,

to the next occurrence of the event (i.e. the interarrival time) has an Exponential

distribution with mean θ = 1/λ. Thus, since customer arrivals can be modeled as a

Poisson process with an average rate of λ arrivals per day, the interarrival times can

be modeled using an Exponential distribution with mean 1/λ.

2.3 Graves and Willems Model

Some of the most widely used and referenced models in inventory optimization

are the single-stage and multi-stage models presented by Graves and Willems in [4].

These models assume the following:

• The supply chain can be modeled as a network.

Stages in the supply chain are represented as nodes. A stage is anywhere in

the supply chain that some type of work on the product occurs. Arcs represent

the existence of a relationship between an upstream stage and a downstream

stage. In a supply chain with r total stages, suppose that u of those stages are

upstream stages. This implies there are r − u downstream stages. Upstream

stages are denoted with the letter i, where i = 1, ..., u, and downstream stages

are denoted with the letter j, where j = u + 1, ..., r. If an upstream stage is a

supplier to a downstream stage, an arc exists between the two stages. Each arc

has a corresponding scalar φij, which indicates downstream stage j needs φij

units of material from upstream stage i to produce one unit of product.

• The production lead-time, Tj, for each stage is known and deterministic.
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The production lead-time begins when all necessary inputs are available to

begin production at a stage and ends when the final product is ready to be used

to satisfy demand. This model further assumes that lot size has no effect on

the production lead-time.

• A periodic-review base-stock replenishment policy is used at every stage.

This policy involves reviewing inventory periodically, as opposed to contin-

uously, and ordering enough product at regular intervals to increase on-hand

inventory to some specified base-stock. This model also assumes that all stages

share a common review period.

• Both end-item demand and internal demand are bounded.

In this model, end-item/external demand is only seen at stages that have no

successors. These stages are called demand nodes. It is assumed that the end-

item demand at stage j, dj(t), comes from a process where we can determine the

average demand per period µj. These demand nodes place orders to upstream,

or internal, stages. The demand at an internal stage, di(t), is simply the sum

of orders received from the demand nodes. Thus, we have

di(t) =
∑

(i,j)∈A

φijdj(t) (6)

where A is the set of all arcs in the network. This model assumes that the de-

mand at every node in the network is bounded. End-item demand is bounded

by the function Dj(τ), for τ = 1, 2, ...,Mj, where Mj represents the maximum

replenishment time for stage j. Thus, for any period of time t and a replen-
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ishment time of τ , the demand at stage j is bounded above by Dj(τ), as given

by

dj(t− τ + 1) + dj(t− τ + 2) + ...+ dj(t) ≤ Dj(τ). (7)

Note that no assumptions are made about the distribution of demand for this

model. Inderfurth [6], on the other hand, assumes normally distributed de-

mands.

• Every stage ensures a guaranteed service time in which it will fill all customer

demand.

Under this model, demand nodes quote a guaranteed service time of Sj to

customers, and internal stages quote a guaranteed service time of Sij to down-

stream stages. It is assumed that an internal stage quotes the same guaranteed

service time to all downstream stages, so we set Sij = Si for each demand node

j. It is assumed that these guaranteed service times are not violated; each stage

provides 100% service. This assumption is the focus of Section 1.3.

2.3.1 Single-Stage Model

Single-stage models are very important in that they are the basis for multi-stage

models. A single-stage supply chain can simply be thought of as a demand node.

There are no upstream stages leading into the demand node, so upstream service

times do not come into play in single-stage models. This allows us to model a single

stage, which we can then use as a building block to model multi-stage supply chains.

Graves and Willems [4] define the single-stage model as follows. The inventory
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profile begins at time t = 0 with initial inventory Ij(0) = Bj, which is the base stock

at stage j. The level of finished inventory at the end of period t at stage j depends

on:

• the base stock, denoted Bj,

• the amount of inventory that must be used to fill orders during that period,

denoted dj(0, t− Sj), where Sj is the guaranteed service time at stage j, and

• the amount of product that has been replenished to be added to existing inven-

tory, denoted dj(0, t−SIj −Tj), where SIj is the inbound service time at stage

j and Tj is the production lead time at stage j.

The difference between the replenishment to inventory and the use of inventory

to fill orders is called the inventory shortfall, denoted dj(t − SIj − Tj, t − Sj). The

inventory at stage j at time t is the base stock minus the inventory shortfall as given

by

Ij(t) = Bj − dj(t− SIj − Tj, t− Sj). (8)

An explanation of equation (8) begins with the fact that the inventory at time t is

built upon the base stock, Bj. At time t, orders through time t− Sj have been filled

since a service time of Sj is guaranteed. Under this assumption, orders placed after

time t−Sj are not required to be filled by time t. Also at time t, demand through time

t−SIj−Tj has been replenished since it takes SIj +Tj to fully complete production.

Note that demand after time t − SIj − Tj will not be replenished until after time t.

Graves [4] calls this period from time t−SIj − Tj to time t−Sj where demand must

be covered from inventory, specifically base stock, a “time interval of exposure”. The
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amount of inventory used to satisfy demand during this time interval is the quantity

that is subtracted from the base stock, Bj, to obtain equation (8). The length of the

“time interval of exposure” is what is known as the net replenishment time.

In order to satisfy the guaranteed service time assumption, we must have Ij(t) ≥ 0

for each stage j. Following from equation (8), this requirement implies

Bj ≥ dj(t− SIj − Tj, t− Sj). (9)

Recall that the goal of inventory optimization is to satisfy demand while minimizing

the costs associated with inventory holding. Demand at stage j is bounded by Dj(τ)

as seen in equation (7). Base stock must be able to cover the demand during the

net replenishment time, so we set the base stock as the maximum possible demand

during the net replenishment time using

Bj = Dj(τ), (10)

where τ = SIj + Tj − Sj is the net replenishment time for stage j. This allows us to

satisfy equation (9) with the least amount of inventory possible.

Furthermore, the safety stock at stage j can be computed as the expected inven-

tory level, E[Ij], at that stage where

E[Ij] = E[Bj − dj(t− SIj − Tj, t− Sj)]

= Dj(τ)− ((t− Sj)− (t− SIj − Tj))µj

= Dj(SIj + Tj − Sj)− (SIj + Tj − Sj)µj.

(11)

Finally, it is assumed that the demand rate and production lead times are inputs,

so the WIP inventory is predetermined since it only depends on the production lead

time.
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2.3.2 Multi-Stage Model

According to Graves and Willems [4], the multi-stage inventory model uses the

single-stage model at each stage and requires the inbound service time at a stage to

be a function of the upstream service times. Requirements on the net replenishment

time and the inbound service time are added to the single-stage safety stock equation

to give the following model for stage j:

E[Ij] = Dj(SIj + Tj − Sj)− (SIj + Tj − Sj)µj, (12)

SIj + Tj − Sj ≥ 0, (13)

SIj − Si ≥ 0 for all (i, j) ∈ A. (14)

As in the single-stage model, equation (12) represents the safety stock at stage

j. Equation (13) guarantees a non-negative net replenishment time. Equation (14)

ensures that the inbound service time at stage j is at least as great as each of the

upstream service times. This model further assumes that the maximum service times

for the demand nodes, the production lead times, and the means and bounds of

demand are all known input parameters. This model makes a very strong assumption

in that a guaranteed service time is quoted to each customer. As a customer, this

is a welcomed promise. However, as a company using this model, this is a strong

guarantee to have to fill. When going from a single-stage to multi-stage supply chain,

the interaction between the upstream and downstream stages becomes the focus.

Each downstream stage in the supply chain relies almost completely on upstream

stages. For example, a breakdown upstream delays production, which delays delivery

to its successive stage(s), which delays production, and so on. In a simple two-stage
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supply chain, the lead time error at stage 2 is a function of the service level at stage

1. This becomes very complicated when more and more stages are involved because

the effects of one small problem upstream will trickle all the way down the supply

chain to the demand nodes where a certain service time is guaranteed to every single

customer. Because of this interdependence among stages, safety stock is a vital factor

in being able to provide this guaranteed service time.

2.4 Guaranteed Service Time

Under the assumption of guaranteed service time, all demand nodes promise to

satisfy 100% of customer demand in some set time, Sj, and all internal stages promise

to satisfy 100% of downstream demand in some set time, Si. Guarantees of total

reliability carry huge implications and responsibilities, and this one is no exception.

Although both safety stock and operating flexibility are used to guarantee this 100%

service level, it is a difficult task to coordinate the use of multiple methods at the

same time [6].

On the surface, a guaranteed service time is simply a set amount of time in which

customer demand must be satisfied. In other words, if demand node j guarantees

a service time of Sj, external demand at time t must be satisfied by time t + Sj

[4]. More specifically, service time is a function of general processing time, load,

and supply unreliability. General processing time is essentially the time it takes to

process the order and fill out the necessary paperwork. This amount of time is fixed

and usually pretty short. Once this process is complete, manufacturing begins. The

load can be thought of as the manufacturing lead time, which equates to the service
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time upstream. Finally, supply unreliability must be considered. Unforeseen problems

upstream, such as a machine breakdown, lead to an unexpected decrease in supply.

When setting inventory levels, we must account for the machine breakdown as well

as the production that is lost during the breakdown. To account for this unexpected

decrease in supply, companies need to have a buffer (safety stock) on hand. All of

these components must be taken into account when trying to guarantee a service

time, with the main focus being the unreliability in supply. Our goal is to use the

SimPy simulations to get an idea of how the safety stock equation performs because

having the proper amount of safety stock on hand is a key factor in being able to

assume a guaranteed service time.
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3 THE SIMPY SIMULATION MODEL

For the purposes of this model, we consider a multi-echelon supply chain consisting

of a supplier, a bulk container, a drum, and external customers. The code listing given

in Appendix A is specific to this supply chain; however, a SimPy simulation model

such as this one can be implemented for other supply chains as well. This section

describes how a model such as this one can be designed and implemented for a general

multi-echelon inventory optimization problem.

3.1 Introduction to Simulation Software and Model

To implement the simulation model given in Appendix A, the Anaconda Python

distribution is used. The first step in creating the simulation model is to import all

necessary Python packages and fuctions. For the simulation and monitoring, SimPy

and NumPy are imported. SimPy, as discussed in Section 1.4, is a simulation tool that

is accessed as a Python package. SimPy 3 is used to run the model in Appendix A.

SimPy 3 is an update to SimPy 2 that is written for Python 3 and is a general purpose

modeling tool; whereas SimPy 2 is limited in the types of simulations that can be

implemented. Fewer imports are needed in SimPy 2 than SimPy 3 [15]; however, some

NumPy functions are indeed used and must be imported. As discussed in Section 2.2,

the Exponential distribution is used to generate customer inter-arrival times because

the arrivals themselves are assumed to follow a Poisson process. The random number

generator is seeded with a positive integer to allow the simulation to be reproduced.

The Math package is used for monitoring and computing statistics of interest from

the simulation. The Repeat function is used to create lists where these monitored
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statistics can be stored.

The next step in designing a model such as the one in Appendix A is to define

the global parameters for the supply chain. By defining the parameters in a class,

their values can be changed easily for analysis purposes. Next, the elements of the

simulation used for monitoring are defined in another class. These elements will be

reset for each simulation run. Depending on what is being modeled, the appropriate

elements should be created in this class.

3.2 Components of the Model

There are four main components in this specific supply chain: inventory, orders/-

customers, the bulk container node, and the drum node. Each of the components is

modeled using a SimPy class, process, or container. Python documentation defines

classes as objects that “normally act as factories for new instances of themselves”

[12]. Certain properties are defined for each class, and when a new instance of the

class is created, these properties must be given. For example, the customer class in

this example includes the customer name, action, and environment as its properties.

Processes are used to model “the behavior of active components” of the simulation

[15]. For example, customer order placements are modeled as processes. Containers

are a type of SimPy resource used to model the sharing of some homogeneous ma-

terial between processes [15]. In this case, the homogeneous material is inventory,

which is measured in units. Containers have built-in put/get statements used to

increase/decrease their level, which level can always be checked.
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3.2.1 External Components

The model’s external components are the supplier (denoted SU) and the customers

(denoted C), which can be split into bulk container (BU) customers and drum con-

tainer (DR) customers. The supplier is the source of supply for the bulk container,

which means replenishment orders are placed from the bulk container to SU. Exter-

nal customers can place orders to BU as well as to DR. For this simulation, we are

assuming that customers arrive to both DR and BU according to (separate) Poisson

processes.

3.2.2 Internal Components

The model’s internal components are the bulk container (denoted BU) and the

drum (denoted DR). BU is supplied directly from the supplier, and DR is supplied

from BU. When an external customer places an order to DR and the inventory on-

hand is not sufficient ot fill the order, DR places an order to BU for the size of the

order, which is filled when the inventory level at BU becomes sufficient to do so.

By combining the internal and external components and the relationships between

them, we get the supply chain illustrated below in Figure 6.
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SU BU DR

C C

Figure 6: Illustration of the supply chain being used to construct the simulation

model given in Appendix A. The stages of the supply chain are shown in blue, and

external customers are shown in red. Solid lines are used to illustrate the flow of

products through the supply chain itself, and dashed lines illustrate the the flow of

products from the supply chain to external customers.

3.3 Implementation of BU Node

As Figure 6 illustrates, BU is connected to external customers, the supplier, and

the drum container. When the BU inventory level reaches the designated re-order

point, BU places a replenishment order to SU. BU must satisfy demand from both

external customers and DR. When an order at DR cannot be filled, BU receives an

order from DR that must be filled as soon as possible. Table 1 describes the entities

related to BU, grouped by class.
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Table 1: Description of model entities related to BU node by class, including name,
type, function, and all related parameters

Class Name
Entity Type Function Related Parameters

Inventory

BU inv Container Models inventory
on-hand at BU node

• P.ROP BU: initial level
of BU inv

mon procBU Process

Monitors inventory
level at BU node
daily and triggers
replenishment orders
to supplier when
designated inventory
level is reached

• P.ROP BU: level at
which replenishment order
is placed
• P.Q 1: lot size of
replenishment orders
• P.LT 1: replenishment
lead time between BU and
supplier

BUCustomer

ordertoBU Process

Models the action of
a BUCustomer,
which is the
placement of an
order to BU

• P.BUorderLotSize: size of
order placed by
BUCustomer

BUOrderProcessor

BUEntrance Process

Models the arrival of
external customers
to BU using
Exponentially
distributed
interarrival times

• P.externalToBUMean:
daily mean of Poisson
process that models arrival
of BU customers
• P.simulationTimeMax:
time at which customer
arrivals cease

3.4 Implementation of DR Node

Unlike BU, DR is only connected to external customers and the bulk container.

DR is supplied from BU, and DR is solely responsible for supplying product to ex-

ternal DR customers. Table 2 describes the entities related to DR, grouped by class.

The only significant differences between DR and BU, other than different parameter

values, are that DR places replenishment orders to BU instead of SU, and when DR

cannot fill a customer order, an order is automatically placed to BU for the size of
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the customer order.

Table 2: Description of DR model entities by class, including name, type, function,
and all related parameters

Class Name
Entity Type Function Related Parameters

Inventory

DR inv Container Models inventory
on-hand at DR node

• P.ROP DR: initial level
of DR inv

mon procDR Process

Monitors inventory
level at DR node
daily and triggers
replenishment orders
to BU when
designated inventory
level is reached

• P.ROP DR: level at
which replenishment order
is placed
• P.Q 2: lot size of
replenishment orders
• P.LT 2: replenishment
lead time between DR and
BU

DRCustomer

ordertoDR Process

Models the action of
a DRCustomer,
which is the
placement of an
order to DR

• P.DRorderLotSize: size of
order placed by
DRCustomer

DRorderToBU Process

If DR inventory is
not sufficient to fill a
customer order, this
process models the
order placed by DR
to BU to fill the
customer order

• P.DRorderLotSize: size of
order placed by DR to BU
• P.LT 2: lead time
between DR and BU

DROrderProcessor

DREntrance Process

Models the arrival of
external customers
to DR using
Exponentially
distributed
interarrival times

• P.externalToDRMean:
daily mean of Poisson
process that models arrival
of DR customers
• P.simulationTimeMax:
time at which customer
arrivals cease

3.5 Monitoring Within the Simulation

The ultimate goal of this simulation is to gather information that can be used to

analyze existing multi-echelon inventory optimization (MEIO) methods. In order to
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gather such information, the components of the simulation must be modeled. Mon-

itors will differ from problem to problem, depending on the nature of the problem

and the goal of the simulation. As with the discussion of model components, the

discussion of monitoring can be broken down into internal and external monitoring.

For the supply chain being modeled here, an inventory object and empty lists for both

BU and DR customer wait times are created. These lists will be used to store wait

times, which we ultimately want to minimize. Counts/tallies, such as the number of

customer or orders, can also be used for monitoring purposes.

3.5.1 External Monitoring

External monitoring involves collecting data and computing several different statis-

tics relating to the customers/orders. In relation to Figure 6, these monitors are

gathering information from the two nodes labeled C. First, lists of wait times per

order are recorded for BU and DR customers. When a customer places an order, the

current time is recorded and is used to manually monitor the customer wait times

once the order is fulfilled. Second, the number of customer/order arrivals is recorded

for both BU and DR. This is done through a count that starts at zero and is increased

by one each time a customer arrival is simulated.

3.5.2 Internal Monitoring

Internal monitoring involves keeping track of inventory levels and demand at BU

and DR. In relation to Figure 6, these monitors are gathering statistics at the BU and

DR nodes. The inventory level monitors are executed through the processes described
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in Tables 1 and 2. These monitoring processes keep track of the inventory levels and

trigger the placement of replenishment orders when the designated re-order point is

reached. The demand monitors gather daily demand counts, which are stored in

separate lists, by node, and can be used for analysis once the simulation is complete.

3.6 Running the Simulation

In order to run the simulation, we must initialize the components of the model

that have been previously defined. To do this, we define a model process that is

then called to run the simulation. A seed is used so that the simulation can be

reproduced, so a seed for the random number generator is first initialized. Then,

the lists of DR and BU waits are initialized as empty lists, which will be appended

as the simulation runs. The environment is then created using the built-in SimPy

environment feature. Next, the BU and DR order processors (nodes) are created and

placed into the environment, and the corresponding lambdas used for generating inter-

arrival times are defined for each. The inventory container is then created and placed

into the environment. The built-in run feature is then used to run the simulation until

the specified time. The while loops used in the creation of the customers refer to this

specified time. Finally, the monitored statistics of interest (DR and BU wait times,

DR and BU demand per day, number of DR and BU customers/orders) are returned

at the end of the simulation output. This model is then called, and the simulation

will run and produce the specified print statements and monitored statistics that can

be used for analysis purposes.
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3.7 Production of Simulation Results

As discussed previously, customer demand at both BU and DR is assumed to follow

(independent) Poisson distributions, which implies BU and DR customer interarrival

times are assumed to follow (independent) Exponential distributions. Using these

assumptions, customer (order) arrivals are simulated, and demand per day at BU

and DR is monitored. From this, average daily demand for BU and DR is calculated

along with the corresponding standard deviation of daily demand. Then, using the

safety stock equation given in equation (1), safety stock requirements are calculated

first based on the assumed demand and second based on the simulated demand. For

the simulated demand, the corresponding standard deviation of demand is used in

the safety stock calculation. In order to analyze the effect of the accuracy of the

predicted standard deviation of demand, a range of appropriate standard deviations

is used along with the assumed average demand. These safety stock calculations are

made for each simulation run and for a range of cycle service levels.
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4 RESULTS AND CONCLUSIONS

Up to this point, we have built a foundation and carried out the design and imple-

mentation of a SimPy simulation model to analyze safety stock levels within a simple

two-stage supply chain. A common method of predicting safety stock requirements

is the implementation of the safety stock equation, which is given in equation (1).

However, our hypothesis is that the equation’s strict distribution assumptions cause

the formula to behave better in some situations than others. Specifically, our goal

is to use the results provided by the SimPy simulation to analyze for what range of

parameter(s) equation (1) performs well and what happens beyond this range. It is

important to note that we are assuming (independent) Uniformly distributed replen-

ishment lead times for both BU and DR, so the source of variability in our analysis

comes from the standard deviations of the BU and DR daily demand. In terms of

equation (1), we set σL = 0 so that σD is the source of variability we are concerned

with. First, we use the results to show that the simulation model agrees with the

theoretical model under the necessary conditions. Second, we analyze the safety stock

equation for a range of demand standard deviations to conclude where the theoretical

model breaks down. Next, we discuss some of the potential reasons for this break

down and why these conclusions are meaningful. Finally, we briefly mention other

possibilities and variations of the model that could be considered. Throughout this

section, when a formal test is performed, a significance level of α = 0.01 is used.
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4.1 Model Validation

In order to confirm that the SimPy model is performing the way that it should

be, we must show that the simulation model agrees with theoretical model when the

necessary conditions are satisfied. Recall that the theoretical model carries the as-

sumption that demand is normally distributed. For the simulation model to be valid,

it should produce the same results as the theoretical model when the condition of

normally distributed demand is met. Customer arrivals, which correspond to orders,

are modeled using Poisson distributions. However, when the mean λ is large enough,

the highly-skewed Poisson distribution becomes symmetric [11]. Thus, in order to

validate the simulation model, we run the model with large λ values for the mean

daily demands. Specifically, we use a mean number of orders per day for BU of 50

(order size of 20) and a mean number of orders per day for DR of 50 (order size

of 10). Running five simulation runs for each node under these conditions produces

plots of daily demand (in units) for BU and DR as shown below in Figures 7 and 8,

respectively.

Based on Figures 7 and 8, we conclude that simulated demand with a large enough

mean does appear to be normally distributed. However, a formal test can be used to

verify this. The Shapiro-Wilk test is a formal test used to test if data comes from a

normally distributed population [10]. For each of the five simulation runs for BU, the

test returns a p-value greater than α = 0.01. For four of the five simulation runs for

DR, the test returns a p-value greater than α = 0.01, with the fifth test returning a

p-value very close to 0.01. Each of these p-values and the corresponding Shapiro-Wilk

test statistic can be seen in Appendix B. These p-values, along with the plots, lead
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Figure 7: Plots of simulated BU demand with daily mean of 50
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Figure 8: Plots of simulated DR demand with daily mean of 50
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to the conclusion that the sample of daily demand in each simulation run comes from

a normally distributed population. Thus, the simulation model produces normally

distributed demand regardless of the seed chosen if the mean daily demand is large

enough.

In order to confirm that the simulation model does in fact agree with the theoret-

ical model under the necessary conditions, these five runs are used to calculate the

levels of safety stock needed using equation (1). If the two models do in fact agree,

the safety stock calculations for the two sets of demand should be very similar. Plots

of safety stock calculations based on the assumed demand and simulated demand for

each of the five runs are shown below in Figures 9 and 10 for BU and DR, respectively.

The safety stock calculations based on the assumed and simulated demands are

very similar, as shown by the similarity in the red and blue lines in Figures 9 and

10. Thus, we conclude that the simulation model does in fact produce normally

distributed demand when a large enough mean is used, and the simulation model

does agree with the theoretical model when the necessary conditions are satisfied.
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Figure 9: Plots of required safety stock by cycle service level for BU based on assumed

and simulated demand
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Figure 10: Plots of required safety stock by cycle service level for DR based on

assumed and simulated demand

4.2 Analysis of Safety Stock Equation

Now that the simulation model has been shown to agree with the theoretical

model under the necessary conditions, we want to analyze the safety stock equation

when these assumptions are not met. We want to do this because the assumption

of normally distributed demand is not necessarily realistic in practice. As discussed
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previously, we are assuming Uniformly distributed replenishment lead times for the

sake of this problem, so the source of variability comes from the standard deviation of

the demand. In order to analyze the performance of the safety stock equation, we must

take this into account. To do this, we will use the simulation results to calculate the

safety stock requirements based on the simulated demand and corresponding standard

deviation and based on the assumed demand for a given range of standard deviations.

This will allow us to see how the calculations differ depending on how accurate the

forecast for standard deviation of demand is. For both BU and DR, we will use five

runs of simulated demand. It is important to note that the simulated demand no

longer comes from a normally distributed population, which means the safety stock

equation assumptions are no longer satisfied. Plots to confirm the non-normality of

demand are shown below in Figures 11 and 12.
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Figure 11: Plots of simulated BU demand with daily mean of 5
60
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Figure 12: Plots of simulated DR demand with daily mean of 1
2

The plots in Figures 11 and 12 show that the simulated demand is highly skewed

as expected, but a formal test can be used to confirm this. Shapiro-Wilk test p-values

less than α = 0.01 for each of the ten simulations runs confirm this observation and

are given in Appendix B. The plots of predicted safety stock requirement calculations

are shown below in Figures 13-17 for BU and Figures 18-22 for DR.

Figures 13 through 22 below show how the safety stock formula performs, given

the designated assumed standard deviation of demand. When the predicted standard

deviation is relatively close to the simulated standard deviation of demand, equation

(1) performs well for any cycle service level. However, as the predicted standard devi-

ation of demand becomes less accurate, the safety stock formula clearly breaks down,

especially as the desired cycle service level increases. It is important to note that if
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the predicted standard deviations are underestimated, the safety stock requirements

given by the formula are also underestimated. On the other hand, if the predicted

standard deviations are overestimated, the safety stock requirements given by the

formula are also overestimated.
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Figure 13: Plot of required safety stock by cycle service level for BU based on Run 1

simulated demand and assumed demand for a range of standard deviations
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Figure 14: Plot of required safety stock by cycle service level for BU based on Run 2

simulated demand and assumed demand for a range of standard deviations
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Figure 15: Plot of required safety stock by cycle service level for BU based on Run 3

simulated demand and assumed demand for a range of standard deviations
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Figure 16: Plot of required safety stock by cycle service level for BU based on Run 4

simulated demand and assumed demand for a range of standard deviations
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Figure 17: Plot of required safety stock by cycle service level for BU based on Run 5

simulated demand and assumed demand for a range of standard deviations
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Figure 18: Plot of required safety stock by cycle service level for DR based on Run 1

simulated demand and assumed demand for a range of standard deviations
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Figure 19: Plot of required safety stock by cycle service level for DR based on Run 2

simulated demand and assumed demand for a range of standard deviations
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Figure 20: Plot of required safety stock by cycle service level for DR based on Run 3

simulated demand and assumed demand for a range of standard deviations
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Figure 21: Plot of required safety stock by cycle service level for DR based on Run 4

simulated demand and assumed demand for a range of standard deviations
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Figure 22: Plot of required safety stock by cycle service level for DR based on Run 5

simulated demand and assumed demand for a range of standard deviations

Furthermore, summary statistics are calculated for the predicted safety stock levels

for simulated demand and standard deviation across all five runs for BU and DR. To

do this, cycle service levels of 90%, 95%, and 99% are used. These statistics are

summarized in Tables 3 and 4 below.
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Table 3: Mean and standard deviation of predicted BU safety stock requirements

across five simulation runs by cycle service level

BU Simulation Runs

90% CSL 95% CSL 99% CSL

Mean of SS Predicted 41.89886 53.7766 76.05727

SD of SS Predicted 2.064944 2.650327 3.748408

Table 4: Mean and standard deviation of predicted DR safety stock requirements

across five simulation runs by cycle service level

DR Simulation Runs

90% CSL 95% CSL 99% CSL

Mean of SS Predicted 12.42034 15.94133 22.54613

SD of SS Predicted 0.6306886 0.8094801 1.144863

The standard deviations of the safety stock predictions across the five runs, for

both BU and DR, are quite small. This means that for a specific cycle service level,

safety stock predictions based on simulated demand and corresponding standard de-

viation of demand are fairly constant from run to run, especially for DR. For this

problem, we only considered possible predicted standard deviations that are within

about two units of the simulated standard deviations of demand. Realistically, fore-

casts may be off by much more than this, which means the safety stock requirements

will be quite drastically under/over-estimated. This is especially significant when

working with large or expensive inventory items.
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4.3 Model Variations to Consider

The supply chain that we have used is a very simple two-stage supply chain with

Uniformly distributed lead times. This assumption is not realistic in practice due to

transportation delays and other unforseen issues. Because of this, the introduction

of replenishment lead times with a more realistic distribution could be considered in

future research and analysis. This would not be difficult to do, but it could provide

even more insight into the performance of equation (1) because the σL term would

be non-zero, meaning there would be two sources of variability to consider within the

model.

Furthermore, an analysis taking the type of inventory into account could be con-

sidered. Introducing a holding cost or space constraint on the safety stock levels would

add another level to the simulation model. Constraints like these are realistic, and it

would allow us to quantify the significance of the results produced by the model.

Another possibility to consider is modeling a supply chain with more than two

stages. This would allow us to analyze the safety stock equation by stage and see

if the standard deviation of predicted safety stock levels increases as you move up-

stream. Based on these results, a conclusion could potentially be made regarding who

(suppliers, distributors, retailers, etc.) takes on the most risk when using the safety

stock equation.

4.4 Concluding Remarks

Section 1 introduced the topic and outlined some necessary background informa-

tion about inventory, supply chains, and simulations. Section 2 was a discussion of
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existing literature, formulas, and related probability distributions for the problem of

multi-echelon inventory optimization. Section 3 then explained the formulation and

implementation of a SimPy simulation model for analyzing safety stock levels within a

supply chain. Finally, Section 4 has been a discussion of the results obtained from the

simulation model and model variations that could be considered in future research.

From these results, several conclusions can be drawn.

Based on Section 4.1, we can conclude that the simulation model and the theoret-

ical model will provide similar results when normally distributed demand is present.

This means if the demand you are working with is from a normal population, or the

demand is an entire population that is normally distributed, the simulation model will

not provide much insight beyond what the theoretical model gives. However, based on

Section 4.2, we can conclude that when normally distributed demand is not present,

the standard deviation of demand is a major factor in determining the performance

of equation (1). If the forecasted standard deviation of demand is relatively accurate,

even without normally distributed demand, the safety stock equation performs well.

However, as the predicted standard deviation of demand becomes less accurate, the

safety stock equation breaks down. Unless the inventory being analyzed consists of

very small or inexpensive items, this result is significant. When working with large or

expensive items, even a few units of safety stock can make a significant difference in

storage space requirements or holding costs. Thus, companies who base their safety

stock requirement levels solely on this safety stock equation run the risk of either

holding too much safety stock or holding too little safety stock and having a stock

out. Thus, it is difficult to quantify the significance of these conclusions because the

62



significance depends on the type of inventory being analyzed. However, we are able

to conclude that a simulation model such as this one is useful in many situations.

These situations include when demand is not assumed to be normally distributed,

when the standard deviation of demand is not guaranteed to be extremely accurate,

when replenishment lead times are not assumed to be normally distributed, and even

when demand standard deviations are known to be accurate but a high cycle service

level is desired.
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APPENDICES

A SimPy Model

1 class P:

2 # Externa l orders a r r i v e to DR accord ing to a Poisson proces s wi th

d a i l y mean o f (150/10) /30=1/2 orders /day

3 externalToDRMean = 1/2

4 # Externa l orders p laced to DR have a l o t s i z e o f 10 un i t s / order

5 DRorderLotSize = 10

6 # Externa l orders a r r i v e to BU accord ing to a Poisson process wi th

d a i l y mean o f (50/20) /30=5/60 orders /day

7 externalToBUMean = 5/60

8 # Externa l orders p laced to BU have a l o t s i z e o f 20 un i t s / order

9 BUorderLotSize = 20

10 # BU p la c e s rep len i shment orders in l o t s i z e s o f 100 to upstream

supp l i e r

11 Q 1 = 100

12 # DR p la c e s rep len i shment orders in l o t s i z e s o f 20 to BU

13 Q 2 = 20

14 # Re−order po in t f o r BU i s 20+(200/30)∗7 un i t s

15 ROP BU = 20+(200/30) ∗7

16 # Re−order po in t f o r DR i s 10+(150/30)∗2 un i t s

17 ROP DR = 10+(150/30) ∗2

18 # Replenishment l ead time from supp l i e r to BU i s 7 days
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19 LT 1 = 7

20 # Replenishment l ead time from BU to DR i s 2 days

21 LT 2 = 2

22 # Run the s imu la t i on f o r 12 months

23 simulationTimeMax = 12 ∗ 30

24

25 class S :

26 Inv = None

27 DRwaits = [ ]

28 BUwaits = [ ]

29 nBUCustomers = 0

30 nDRCustomers = 0

31 BU Dem day = l i s t ( repeat (0 ,P. simulationTimeMax ) )

32 DR Dem day = l i s t ( repeat (0 ,P. simulationTimeMax ) )

33

34 class Inventory :

35 def i n i t ( s e l f , env ) :

36 s e l f . env = env

37 s e l f . BU inv = simpy . Container ( env , i n i t = P.ROP BU)

38 s e l f . DR inv = simpy . Container ( env , i n i t = P.ROP DR)

39 s e l f . mon procBU = env . p roce s s ( s e l f . monitor BU inv ( env ) )

40 s e l f . mon procDR = env . p roce s s ( s e l f . monitor DR inv ( env ) )

41

42 def monitor BU inv ( s e l f , env ) :

43 while True :
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44 i f s e l f . BU inv . l e v e l <= P.ROP BU:

45 print ( ‘ ‘ Time {0} : BU inventory reached ROP: BU p la c e s

rep len i shment orde r ” . format ( s e l f . env . now) )

46 y i e l d s e l f . env . t imeout (P. LT 1 )

47 p r i n t ( ‘ ‘ Time {0} : BU rep len i shment inventory a r r i v e s ” .

format ( s e l f . env . now) )

48 y i e l d s e l f . BU inv . put (P. Q 1 )

49 print ( ‘ ‘ Time {0} : BU rep len i shment order i s added to

inventory ” . format ( s e l f . env . now) )

50 y i e l d s e l f . env . t imeout (1 )

51

52 de f monitor DR inv ( s e l f , env ) :

53 whi l e True :

54 i f s e l f . DR inv . l e v e l <= P.ROP DR:

55 pr i n t ( ‘ ‘ Time {0} : DR inventory reached ROP: DR p la c e s

rep len i shment order to BU” . format ( s e l f . env . now) )

56 y i e l d s e l f . BU inv . get (P. Q 2 )

57 print ( ‘ ‘ Time {0} : BU f i l l s DR rep len i shment r eque s t ” .

format ( s e l f . env . now) )

58 y i e l d s e l f . env . t imeout (P. LT 2 )

59 p r i n t ( ‘ ‘ Time {0} : DR rep len i shment inventory a r r i v e s

from BU” . format ( s e l f . env . now) )

60 y i e l d s e l f . DR inv . put (P. Q 2 )

61 print ( ‘ ‘ Time {0} : DR rep len i shment order i s added to

inventory ” . format ( s e l f . env . now) )
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62 y i e l d s e l f . env . t imeout (1 )

63

64 c l a s s DRCustomer ( ob j e c t ) :

65 de f i n i t ( s e l f , env , name = ‘ ’ ) :

66 s e l f . env = env

67 s e l f . a c t i on = s e l f . env . p roce s s ( s e l f . ordertoDR ( ) )

68 i f ( name == ‘ ’ ) :

69 s e l f . name = ‘RandomDRCustomer’+ s t r ( rand int (100) )

70 e l s e :

71 s e l f . name = name

72

73 de f DRorderToBU( s e l f ) :

74 p r i n t ( ‘ ‘ Time {1} : DR p l a c e s order to BU to f i l l o rder f o r {0}” .

format ( s e l f . name , s e l f . env . now ) )

75 y i e l d S . Inv . BU inv . get (P. DRorderLotSize )

76 y i e l d s e l f . env . t imeout (P. LT 2 )

77 y i e l d S . Inv . DR inv . put (P. DRorderLotSize )

78

79 def ordertoDR ( s e l f ) :

80 startTime DR = s e l f . env . now

81 j = math . f l o o r ( s e l f . env . now)

82 S . DR Dem day [ j ] += 1

83 print ( ‘ ‘ Time {1} : {0} p l a c e s order to DR” . format ( s e l f . name ,

s e l f . env . now ) )

84 i f S . Inv . DR inv . l e v e l < P. DRorderLotSize :
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85 s e l f . env . p roce s s ( s e l f . DRorderToBU( ) )

86 y i e l d S . Inv . DR inv . get (P. DRorderLotSize )

87 p r i n t ( ‘ ‘ Time {1} : {0} r e c e i v e s order from DR” . format ( s e l f .

name , s e l f . env . now ) )

88 waitTime DR = s e l f . env . now − startTime DR

89 print ( ‘ ‘{0} had to wait {1} days” . format ( s e l f . name ,

waitTime DR ) )

90 S . DRwaits . append ( waitTime DR )

91

92 c l a s s BUCustomer ( ob j e c t ) :

93 de f i n i t ( s e l f , env , name = ‘ ’ ) :

94 s e l f . env = env

95 s e l f . a c t i on = s e l f . env . p roce s s ( s e l f . ordertoBU ( ) )

96 i f ( name == ‘ ’ ) :

97 s e l f . name = ‘RandomBUCustomer’+ s t r ( rand int (100) )

98 e l s e :

99 s e l f . name = name

100

101 de f ordertoBU ( s e l f ) :

102 startTime BU = s e l f . env . now

103 i = math . f l o o r ( s e l f . env . now)

104 S . BU Dem day [ i ] += 1

105 p r i n t ( ‘ ‘ Time {1} : {0} p l a c e s order to BU” . format ( s e l f . name , s e l f

. env . now ) )

106 y i e l d S . Inv . BU inv . get (P. BUorderLotSize )
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107 print ( ‘ ‘ Time {1} : {0} r e c e i v e s orde r ” . format ( s e l f . name , s e l f . env

. now ) )

108 waitTime BU = s e l f . env . now − startTime BU

109 pr in t ( ‘ ‘{0} had to wait {1} days” . format ( s e l f . name ,

waitTime BU ) )

110 S . BUwaits . append ( waitTime BU )

111

112 class DROrderProcessor ( object ) :

113 def i n i t ( s e l f , env , DRlambda) :

114 s e l f . env = env

115 s e l f . a c t i on = env . p roce s s ( s e l f . DREntrance ( ) )

116 s e l f . lam = DRlambda

117

118 def DREntrance ( s e l f ) :

119 while True :

120 interarr iva lTime DR = Exponent ia l ( s c a l e = 1/P.

externalToDRMean )

121 y i e l d s e l f . env . t imeout ( interarr iva lTime DR )

122 c = DRCustomer ( s e l f . env , name = ‘ ‘DRCustomer {0}” . format (S .

nDRCustomers ) )

123 S . nDRCustomers += 1

124

125 c l a s s BUOrderProcessor ( ob j e c t ) :

126 de f i n i t ( s e l f , env , BUlambda) :

127 s e l f . env = env
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128 s e l f . a c t i on = env . p roce s s ( s e l f . BUEntrance ( ) )

129 s e l f . lam = BUlambda

130

131 de f BUEntrance ( s e l f ) :

132 whi l e True :

133 interarr iva lTime BU = Exponent ia l ( s c a l e = 1/P.

externalToBUMean )

134 y i e l d s e l f . env . t imeout ( interarr iva lTime BU )

135 c = BUCustomer ( s e l f . env , name = ‘ ‘BUCustomer {0}” . format (S .

nBUCustomers ) )

136 S . nBUCustomers += 1

137

138 def model ( randomSeed = 123) :

139 seed ( randomSeed )

140 S . DRwaits = [ ]

141 S . BUwaits = [ ]

142 envr = simpy . Environment ( )

143 BU = BUOrderProcessor ( envr , BUlambda = P. externalToBUMean )

144 DR = DROrderProcessor ( envr , DRlambda = P. externalToDRMean )

145 S . Inv = Inventory ( envr )

146 envr . run ( un t i l = P. simulationTimeMax )

147 return S . DRwaits , S . BUwaits , S . BU Dem day , S . DR Dem day , S .

nBUCustomers , S . nDRCustomers
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B Shapiro-Wilk Test Results for Simulated Demand

BU Simulation Runs, Mean Daily Demand = 50

Run Test Statistic P-value

1 0.9905 0.02045

2 0.9939 0.1577

3 0.9956 0.4127

4 0.9905 0.02051

5 0.9934 0.1195

DR Simulation Runs, Mean Daily Demand = 50

Run Test Statistic P-value

1 0.988 0.004575

2 0.9923 0.06026

3 0.9902 0.01685

4 0.9954 0.3637

5 0.9937 0.1401

BU Simulation Runs, Mean Daily Demand = 5/60

Run Test Statistic P-value

1 0.3136 < 2.2 · 10−16

2 0.2854 < 2.2 · 10−16

3 0.2383 < 2.2 · 10−16

4 0.2492 < 2.2 · 10−16

5 0.331 < 2.2 · 10−16
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DR Simulation Runs, Mean Daily Demand = 1/2

Run Test Statistic P-value

1 0.72 < 2.2 · 10−16

2 0.6944 < 2.2 · 10−16

3 0.6751 < 2.2 · 10−16

4 0.6961 < 2.2 · 10−16

5 0.7028 < 2.2 · 10−16
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