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ABSTRACT

ADAPTATION OF STRIPED BASS TO SEA WATER FOLLOWING 
DIRECT TRANSFER FROM FRESHWATER; MORPHOLOGICAL, BIOCHEMICAL, 

AND PHYSIOLOGICAL PARAMETERS

by

Judy Ann Curtis King

There has been heightened in terest in the biology of striped bass (Morone 
saxatilis) because of increased pollution in their native spawning grounds and 
because of their extensive use in landlocked sport fisheries. Their euryhalinity 
makes them an excellent species for osmoregulation studies. The objective of 
this research was to study the ra te  of adaptation of striped bass gills to sea 
w ater (3% salt) after direct transfer from freshwater using biochemical (ion 
transport enzyme levels), physiological (chloride efflux), and ultrastructural 
methods.

Striped bass have specialized osmoregulatory cells located on the 
interlamellar and afferent surfaces of their giU filaments as shown by light 
microscopy (LM), transmission electron microscopy (TEM), and scanning electron 
microscopy (SEM). SEM studies show that apical pit (opening of one or more 
chloride cells) morphology changes during sea water adaptation, and the number 
of apical pits increases by 32.5% a fte r  two weeks in sea water. Chloride cell 
size and number, extent of basolateral tubular system, and number of 
mitochondria per chloride cell appear to increase upon adaptation to sea water. 
Autoradiographic studies using tritia ted  thymidine indicate that the
nondifferentiated basal epithelial cells may be precursors for chloride cells.

Sodium-potassium adenosine triphosphatase (Na,K-ATPase) activity is 
maximal on day 3 after transfer to sea water. However, measurements of the 
binding of ouabain, an inhibitor tha t combines 1:1 with the Na.K-ATPase 
complex, could not demonstrate tha t the number of Na,K-ATPase complexes 
changed during the first 24 h a fte r transfer to sea water. Studies suggest that 
cortisol may act as a hormoW mediator for long term adaptation to  sea water. 
Salt extrusion measured by Cl efflux begins to increase 3-6 h a fte r transfer 
and increases gradually to become 26 times the freshwater level on day 7. 
Serum osmolality increases within 3-6 h a fte r transfer and remains elevated 
throughout the first week.

The general morphology of both freshwater and sea water adapted fish 
gills were studied using LM, SEM, and TEM. Sonication was used to  break away 
the epithelia of the gill arches and filaments in order to expose the taste buds
and basement membranes. Preliminary studies indicate that the
osmium-dimethylsulfoxide-osmium method can be used to  investigate intracellular 
structural changes in striped bass gills using SEM.

I l l
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Since the chloride cells are associated with the afferent surface of the 
filament, the blood supply to that area is also of great interest in 
osmoregulation studies. Studies of the gill vasculature using corrosion casting 
(i.e. filling blood vessels with plastic resins) and SEM indicate that the blood 
vessel distribution in the striped bass gill is similar to that of other euryhaline 
species with arterio-arterial, arterio-venous, and nutritive pathways. Blood 
flow may be controlled a t a  variety of places by sphincters, shunts and cellular 
contraction. Correlation of these biochemical, physiological and anatomical 
measurements will aid in the understanding of the process of adaptation to sea 
water.

I V
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GENERAL INTRODUCTION

There has been increasing interest in the biology of the striped bass, 

Morone saxatilis, in recent years because of the value and extent of the sports 

fishery of this species in both marine (St. Laurence Seaway to Florida; Gulf of 

Mexico; and California coast) and freshwater environments (Raney, 1952; 

Tagatz, 1961; Nichols, 1966; Pfuderer e t al., 1975; see Coûtant 1986), and 

because of the recent decline in the numbers of this species as a result of 

pollution of these environments (Chittenden, 1971; Hazel e t al., 1971; Pfuderer 

et al., 1975; Dawson, 1982; HaU et al., 1982, 1984; Mehrle, 1982; Wright et al., 

1985). Reproducing populations have been established in the Kerr Reservoir 

(North Carolina), Millerton Lake (California), Santee-Cooper Reservoir (South 

Carolina) and probably in the Kentucky Lake (Kentucky-Tennessee; Nichols, 

1966).

Because striped bass are an anadromous species and are known to tolerate 

abrupt changes in salinity (Tagatz, 1961; Otwell and Merriner, 1975; King, 

Hossler, and Harpole, unpublished observations) they provide a useful model 

system for the study of the ra te  of osmotic adaptation and the mechanism of 

osmoregulation.

Teleosts, or bony fish, can be divided into two groups -  those that can 

survive only a small change in external salinity (the stenohaline teleosts), and 

those that can tolerate drastic changes in salinity (the euryhaline teleosts). No 

matter whether teleosts live in freshwater or sea water, they have severe 

osmotic problems. Water enters the giUs of freshwater fish osmotically. To 

compensate, the kidneys increase salt absorption and excrete a dilute urine. 

The uptake of ions to replace those lost during excretion is thought to be the
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responsibility of the gills. In sea water, fish drink to  replace water lost 

osmotically by the gills. As a result salt intake is increased (see Smith, 1930; 

Black, 1957; Maetz, 1968, 1976; Berridge and Osehman, 1972; Prosser, 1973; 

Evans, 1384; Karnaky, 1986). Bivalent ions absorbed by the gut are excreted by 

the kidneys, while the monovalent ions (Na^, Cl ) are excreted primarily by the 

gills (Motais and Maetz, 1965; Prosser, 1973; Maetz, 1976; Girard and Payan, 

1980). This extrarenal osmoregulatory mechanism is necessary since teleost 

kidneys cannot produce a concentrated urine (Threadgold and Houston, 1964; 

Foskett and Scheffey, 1982).

In 1930, Homer Smith found that sodium chloride is excreted by an 

extrarenal site in sea water fish. Keys (1931a,b) used a heart-gill perfusion 

preparation and discovered that chloride ions are excreted in the region of the 

gills. In 1932, Keys and Willmer examined the gills of sea water teleosts and 

found a cell resembling the acid-secreting cells in the stomach which they 

named the "chloride-secreting" cell. Since that time the "chloride cell" and its 

proposed osmoregulatory mechanisms have been the focus of many investigations 

(see reviews by Conte, 1969; Maetz, 1969, 1971; Evans, 1979; Karnaky, 1980; 

Lahlou, 1980; Degnan and Zadunaisky, 1982; Evans e t al., 1982; Foskett et al., 

1983; Degnan, 1984; Karnaky, 1986).

The giU epithelium of teleosts consists of four major cell types: (1)

pavement ("respiratory"), (2) mucous, (3) non-differentiated, and (4) chloride 

(Karnaky and Kinter, 1977). Pavement cells (Copeland, 1948) are flat squamous 

cells which cover the entire surface of the gill except for openings for mucous 

and chloride cells. The nondifferentiated cells are basal epithelial cells which 

do not extend to the surface. A chloride cell can be easily identified as an 

eosinophilic columnar cell with a single nucleus, extensive basolateral plasma
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membrane tubular system, numerous mitochondria, and an opening to the surface 

called an apical crypt. An apical crypt of a freshwater teleost exhibits cellular 

extensions visible between the pavement cells (Hossler et al., 1979b, 1985; 

Hossler, 1980). Crypts from freshwater species are generally considered to be 

the openings of single chloride cells since multicellular groups do not exist 

(Sardet, 1980; Sardet e t al., 1980). Chloride cells have also been reported in 

opercular (Karnaky and Kinter, 1977; Karnaky et al., 1984) and buccal epithelia 

(Karnaky e t al., 1984). Cells referred to  as "accessory" or "adjacent" cells have 

been reported in the gill epithelium (Hootman and Philpott, 1979, 1980; Sardet 

et al., 1979; Dunel-Erb and Laurent, 1980; Laurent and Dunel, 1980). They 

resemble chloride cells, but differ in electron density and size (Hootman and 

Philpott, 1980; Laurent and Dunel, 1980), and in the lack of sodium-potassium 

adenosine triphosphatase (Na,K-ATPase) on their tubular system (Hootman and 

Philpott, 1980). Accessory cells are generally observed only in sea water 

adapted species (Hootman and Philpott, 1980; Laurent and Dunel 1980). Some 

authors feel that accessory cells are young chloride cells (Sardet et al., 1979; 

Hootman and Philpott, 1980), while others feel that they are a totally different 

cell type (Laurent and Dunel, 1980; Chretien and Pisam, 1986).

Extensive studies of chloride cell ultrastructure have been completed 

(Doyle and Gorecki, 1961; Kessel and Beams, 1962; Philpott and Copeland, 1963; 

Straus, 1963; Threadgold and Houston, 1964; Philpott, 1965; Oberg, 1967; Shirai 

and Utida, 1970; Olson and Fromm, 1973; Laurent and Dunel, 1980). Reported 

changes in chloride cell ultrastructure during adaptation to higher salinities 

include increased numbers of mitochondria (Maetz and Bornancin, 1975; Karnaky 

et al., 1976a; and see reviews on chloride cells listed above) and an elaboration 

of the basolateral plasma membrane tubular system (Shirai and Utida, 1970; 

Doyle and Epstein, 1972; Karnaky et al., 1976a,b; Philpott, 1980; Pisam, 1981).
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As adaptation occurs, the apical crypt takes on a deeper "pit" structure that 

has few if any visible cellular extensions and often is shared by several chloride 

cells (Bierther, 1970; Maetz and Bornancin, 1975; Hossler e t al., 1979b, 1985; 

Hossler, 1980). Increased numbers of chloride cells (Jozuka, 1966; Conte and 

Lin, 1967; Newstead, 1967; Olivereau, 1970; Shirai and Utida, 1970; Utida e t al., 

1971; Doyle and Epstein, 1972; Sargent e t al., 1975; Karnaky et al., 1976b; 

Thomson and Sargent, 1977; Hootman and Philpott, 1980), and chloride cell 

hypertrophy (Liu, 1942; Utida e t al., 1971; Karnaky e t al., 1976 a,b; Hootman 

and Philpott, 1979, 1980; Foskett et al., 1981) have also been reported during 

acclimation to  sea water. The increase in chloride cell numbers, the 

elaboration of the basolateral tubular system where transport could occur, the 

increased number of mitochondria which supply the energy for transport, and 

the localization of chloride in the chloride cell apical pit region (Copeland, 

1948; Philpott, 1965; Petrik, 1968; Bierther, 1970; Masoni and Garcia Romeu, 

1973) support the hypothesis that the chloride cell is responsible for sodium 

chloride excretion.

Ion transport models for chloride cells have been proposed by Maetz

(1971) and Silva et al. (1977). According to Maetz's model, chloride and sodium 

from the plasma are exchanged for bicarbonate and hydrogen ions, respectively, 

from the interior of the chloride cell. Chloride diffuses passively across the 

apex of the chloride cell. A sodium-potassium exchange system accounts for 

the efflux of sodium. According to the model proposed by Silva et al. (1977), 

the primary transport is accomplished by the Na,K-ATPase which creates a 

sodium gradient in the tubular system. It is known that there are higher 

concentrations of sodium in the tubular lumen than in the chloride cell 

cytoplasm (Frizzel et al., 1979). The secondary transport involves the 

movement of chloride into the cell via a sodium chloride cotransport driven by
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the sodium gradient. Chloride then travels to the apex of the cell where it 

enters the crypt lumen by electrical forces. Sodium enters the crypt lumen by 

way of the junctions between the chloride cells, driven by the gradient (Epstein 

et al., 1980). Sardet et al., (1979) suggest tha t when fish move from freshwater 

to sea water, the junctions between chloride cells change from tight to leaky to 

allow passive sodium extrusion. Ion flux studies under short circuit current 

conditions imply that chloride transport is active while sodium transport is not 

(Degnan et al., 1977; Karnaky e t al., 1977; Marshall and Bern, 1980; Foskett et 

al., 1981; Foskett and Scheffey, 1982). Using x-ray emission and analysis, Potts 

and Oates (1983) found that the intracellular concentrations of sodium, 

potassium, chloride, and phosphate ions in the chloride cells of Fundulus 

heteroclitus are consistent with Silva's model (Silva et al., 1977).

Chloride cell-pavement cell and accessory cell-pavement cell junctions 

are deep elaborate "tight" junctions composed of five or more strands. Chloride 

cell-chloride cell and chloride cell-accessory cell junctions are shallow and are 

composed of one to two strands (Philpott and Copeland, 1963; Bierther, 1970; 

Shirai and Utida, 1970; Morgan and Tovell, 1973; Karnaky and Kinter, 1977; 

Ernst e t al., 1978; 1980; Sardet et al., 1979; Dunel-Erb and Laurent, 1980; 

Hootman and Philpott, 1980; Laurent and Dunel, 1980; Sardet, 1980). The only 

junctions which appear to undergo modifications with salinity changes are the 

junctions between adjacent chloride cells or between chloride cells and 

accessory cells (see Karnaky, 1986).

Na,K-ATPase and its inhibition by ouabain, a cardiac glycoside, were 

discovered by Skou (1957, 1960) while studying crab nerves. Na,K-ATPase is 

thought to be present in most cells (see reviews by Schwartz e t al., 1975; Skou 

and Norby, 1979) and is responsible for maintaining the high potassium, low
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sodium content of cells by transporting three sodium ions out of the cell for 

every two potassium ions it transports in (Sen and Post, 1964). The proposed 

mechanism of ion transport is as follows (Bonting, 1970; see Schwartz e t al., 

1975):

Mg Na"̂
E + ATP ------------ \  E P + ADP

Mg~̂  ̂ k \
E -  P + H„0 E + Pi

2 T
ouabain

(inhibitor)

Ouabain inhibits from the serosal (blood) side of chloride cells (Epstein e t al., 

1980) by non-competitive inhibition with potassium (Bonting, 1970; Hansen, 

1984). In the presence of potassium and magnesium, Na,K-ATPase can also 

hydrolyze p-nitrophenylphosphate (PNPP) but a t about 1/6 to  1/10 the ra te  of 

ATP (Skou, 1975). Magnesium adenosine triphosphatase (Mg-ATPase) and other 

ATPases are not inhibited by ouabain (Bonting, 1970).

In order to  find out which cell type in the gill contained Na,K-ATPase, 

Kamiya (1972b) dissociated the cells of eel gill filaments with elastase and 

separated the cells with dextran density gradient centrifugation. The chloride 

cell fraction was the one rich in Na,K-ATPase. Mizuhira e t al. (1970), Sargent 

et al. (1975), Hootman and Philpott (1978), and Naon and Mayer-Gostan (1983) 

have verified that Na,K-ATPase activity is located in chloride cells. Karnaky 

et al. (1976a) used autoradiography ( H-ouabain) to show that the chloride cells
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of killifish are the primary site of Na,K-ATPase. Mizuhira e t al. (1970), Shirai

(1972), Karnaky e t al. (1976b), Silva e t al. (1977), and Hootman and Philpott

(1979) showed that the Na,K-ATPase sites were located on the basolateral cell

surface, including the tubular system. No Na,K-ATPase sites were found on the

apical crypt. Ouabain, an inhibitor of Na,K-ATPase, binds to the large subunit

of Na,K-ATPase on a 1:1 basis (Jorgensen, 1974), and thus is often used in

Na,K-ATPase quantitation studies (Hossler, 1980). By using ouabain binding,

Karnaky e t al. (1976b) determined that there are 1.5 x 10^ Na,K-ATPase sites

on each chloride cell. The ouabain binding capacity of sea water fish is 3.2 to 6

times higher than that of freshwater animals (Sargent and Thomson, 1974;

Hossler, 1980). Utida e t al. (1971) showed a correlation beween Na,K-ATPase

activity and the increased number of chloride cells upon adaptation of eels to

sea water. Na,K-ATPase activity in gill homogenate is calculated as the

difference between the amount of inorganic phosphate released from ATP in the 
+  4* 4*2presence of Na ,K , and Mg (experimental assays) and that released in the 
+2presence of Mg plus ouabain (control assays). Many studies have shown that 

gill Na,K-ATPase activity increases as much as two to six fold when fish are 

exposed to various concentrations of sea water (Utida e t al., 1966, 1971; 

Epstein et al., 1967; Jampol and Epstein, 1968, 1970; Kamiya and Utida, 1968, 

1969; Shirai and Utida, 1970; Zaugg and McLain, 1970; Pfeiler and Kirschner,

1972; Evans e t al., 1973; Forrest et al., 1973a; Greenwald et al., 1974;

Kirschner et al., 1974; McCormick and Naiman, 1984; Sargent and Thomson,

1974; Evans and Mallery, 1975; Sargent e t al., 1975; Karnaky et al..
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1976a,b; Thomson and Sargent, 1977; Hootman and Philpott, 1979; Hossler et al., 

1979b; Epstein e t al., 1980; Abo Hegab and Hanke, 1986; see reviews by 

Kirschner, 1969, 1980), but exceptions where the enzyme does not increase have 

been recorded (Lasserre, 1971; Gallis and Bourdichon, 1976; Gallis et al., 1979; 

Doneen, 1981).

Most studies of striped bass to date have dealt with culture conditions, 

growth rates, and distribution (see bibliography by Pfuderer et al., 1975; and 

reviews by Kerby et al., 1983, and Geiger and Parker, 1985), but very few 

reports have dealt with the physiology, biochemistry, and anatomy (Groman, 

1982) of this species. The purpose of this research was to study the rate of 

adaptation of striped bass gills to sea w ater following direct transfer from 

freshwater using biochemical, physiological, and ultrastructural methods. 

Although adaptation studies have been reported using various percentages of sea 

water compared to freshwater, very few studies of adaptation rates have been 

conducted (Bornancin and De Renzis, 1972; Forrest e t al., 1973a,b; Evans and 

Mallery, 1975; Boeuf e t al., 1978; Jacob and Taylor, 1983) and none of these 

have dealt with striped bass. The results of the sea water adaptation studies 

are presented in the following chapters which include descriptions of gill 

morphology, chloride cell ultrastructure, and gill vasculature; and measurements 

of changes in Na,K-ATPase content and activity, plasma osmolality, chloride 

efflux, plasma osmolality, plasma chloride, and plasma corticosteroids.
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CHAPTER 1

STRIPED BASS GILL ULTRASTRUCTURE: RATE OF RESPONSE 

TO SALINITY CHANGE

Introduction

Because striped bass are euryhaline teleosts, they must have a mechanism 

for osmoregulation to survive changes in salinity. It is thought tha t the sodium 

and chloride taken in by sea water teleosts are excreted by the gills (Prosser, 

1973), and that the chloride cell is responsible for the excretion of these ions 

(Keys and Willmer, 1932; Motais and Garcia Romeu, 1972; Maetz and Bornancin, 

1975).

Conte (1965) found that when cell division is inhibited by X-irradiation, 

fish are unable to osmoregulate in sea water. Increased salinity is known to 

cause an increase in DNA synthesis (Conte and Lin, 1967; Tondeur and Sargent, 

1979) and thus cell turnover and movements (Conte and Newstead, 1965). The 

number and size of chloride cells, the number of mitochondria, and the volume 

of the basolateral plasma membrane tubular system increase during acclimation 

of euryhaline teleosts to sea water (Maetz and Bornancin, 1975; see General 

Introduction for a review of literature). Chloride cell apical crypts also 

undergo alteration during acclimation to sea water (Bierther, 1970; Maetz and 

Bornancin, 1975; Hossler et al., 1979b,d, 1985; Hossler, 1980; and see General 

Introduction).
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As part of the overall study of the mechanism of osmoregulation by 

striped bass gills the following chapter includes (1) a description of the surface 

ultrastructure of the gill arches of the striped bass, and (2) details of the 

morphological changes of chloride cells and their apical crypts during 

acclimation to sea water. Gill arch morphology and chloride cell ultrastructure 

are examined with light microscopy (LM), scanning electron microscopy (SEM), 

and transmission electron microscopy (TEM). The results of preliminary work on 

striped bass giUs with a technique known as the osmium-DMSO-osmium method 

(Tanaka, 1981) are described. This relatively new procedure has been used 

successfully in other tissues (Tanaka, 1981; Tanaka and Naguro, 1981; Osatake 

et al., 1985; Fukudome and Tanaka, 1986) to  reveal intracellular structures in 

three-dimensional form with SEM instead of the traditional two-dimensional 

TEM sections. Preliminary studies of epithelial cell renewal in striped bass gill
3

filaments using H-thymidine are also reported.

Partial accounts of this study have been published (Hossler et al., 1986b; 

see Appendix).

Materials and Methods

Striped bass, Morone saxatilis, 3-25 cm in length were donated by the 

Eagle Bend Fish Hatchery (Clinton, Tennessee), Morristown State Fish Hatchery, 

(Morristown, Tennessee), and the Southeastern Fish Cultural Laboratory, 

(Marion, Alabama) and transported in styrofoam containers in oxygenated 0.1% 

salt water (1 g/L NaCl; Parker and Geiger, 1984). Striped bass were maintained 

in 100 L tanks with aerated, hatchery-aged tap water (0.011 Osm; "freshwater") 

or sea water (3% salt water, w/v; Instant Ocean Salts, Aquarium Systems,
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Mentor, Ohio; specific gravity 1.02; 1.01 Osm) a t room temperature (20-24°C) 

with a cycle of approximately 11 h subdued light and 13 h dark. The fish were 

fed trout chow (Silver Cup Feed, Murray Elevators, Murray, Utah) ad libitum for 

at least one week before experimentation. For acclimation studies, fish were 

transferred directly from freshwater (FW) to 3% salt water and sacrificed at 

designated times (45 min, 3 h, 6 h, 12 h, 24 h, 3 days, 7 days, or 14 days).

Scanning Electron Microscopy

Fish were killed by decapitation, the opercula were spread laterally, and 

each gill arch was carefully removed, rinsed free of blood with 0.9% NaCl and 

placed in freshly prepared fixative for 2 h a t 20-24°C or overnight a t 4°C. 

Fixative consisted of 2.5% glutaraldehyde and 1.8% paraformaldehyde in 0.1 M 

cacodylate-HCl buffer (pH 7.2). After fixation gill arches were rinsed for 1 h 

with 3 changes of excess buffer (0.1 M cacodylate-HCl, pH 7.2), then post-fixed 

for 2 h at 4°C in 2% OsO^ in 0.1 M cacodylate-HCl (pH 7.2). Gill arches were 

rinsed in buffer as before, then dehydrated in a graded ethanol series during a 

period of 1-2 h. Gill arches were placed in a critical point drying apparatus 

(Model E3000, Polaron Instruments, Inc., Hatfield, PA) in 100% ethanol, dried 

with liquid COg, affixed to specimen stubs with silver paste, coated with a thin 

layer of gold or gold-palladium in a sputter coating apparatus (Model Desk 1, 

Denton Vacuum Inc., Cherry Hill, NJ), and observed in a scanning electron 

microscope (Model S430, Hitachi Scientific Instruments, Mountview, CA; Model 

JSM-35C, JEOL (U.S.A.) Inc., Peabody, MA). Measurements were made from 

electron micrographs.
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Light Microscopy

For light microscopy, gills were fixed as described previously, dehydrated 

first in a graded ethanol series, followed by propylene oxide, and embedded in 

epon-araldite (Mollenhauer, 1964). Sections (2 pm) were cut with an 

ultramicrotome (Ultracut, American Optical Instruments, M.G.C. Inc., Valley 

Cottage, N.Y.), mounted on glass slides, stained with toluidine blue (1% in 1% 

Na-borate), and viewed and photographed with a Zeiss standard light 

microscope.

Transmission Electron Microscopy

For transmission electron microscopy, giUs were processed and embedded 

in epon-araldite as described for light microscopic specimens. Thin sections 

were cut with glass knives, stained with uranyl acetate and lead citrate , and 

viewed in a Hitachi H-500 transmission electron microscope (Hitachi Scientific 

Instruments, Mountain View, CA). Measurements were made from electron 

micrographs.

Osmium-DMSO-Osmium

This procedure has been reported previously by Tanaka and Naguro (1981). 

The gills were rinsed in excess 67 mM phosphate buffer (pH 7.4) and fixed at 

4°C for 1-2 h in 1% OsO^ buffered with phosphate (67 mM, pH 7.4). After 

rinsing with the buffer solution, the tissue was immersed in 15, 30, and 50% 

DMSG (dimethylsulfoxide) for 30 min each. The specimens were frozen on a 

SEM stub chilled with liquid nitrogen and cracked with a razor blade. The 

specimens were placed in 50% DMSG to allow thawing, and then rinsed again in 

buffer solution (3 changes). The tissue was placed in 0.1% OsO^ buffered with 

67 mM phosphate buffer (pH 7.4) a t 4°C for 24-72 h. After washing in the
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buffer solution, the specimens were fixed in the buffered OsO^ for 1 h, 

dehydrated in a graded ethanol series, dried with liquid COg, affixed to stubs 

with silver paste, coated with a thin layer of gold or gold-palladium in a sputter 

eoater and observed in a scanning electron microscope. Measurements were 

made from electron micrographs.

Autoradiography

This autoradiographic procedure was adapted from Rasch e t al. (1982). 

After sacrifice, the gills and gut were removed, rinsed in a wash solution 

containing 0.65% NaCl with antibiotic-antimycotic (Penicillin, 10,000 units/ml.; 

Fungizone, 25 mcg/ml; Streptomycin, 10,000 mcg/ml; Gibco Laboratories, Grand 

Island Biological Company, Grand Island, NY), and placed in the wash solution
O

enriched with 5 pCi/ml H-thymidine (New England Nuclear) for 5 h at room 

temperature. The specimens were rinsed again in the wash solution, fixed in 

ethanol-acetic acid (3:1) overnight, dehydrated, and embedded in paraffin. 

Sections were cut (5 pm thick) and mounted on glass slides. Following paraffin 

removal, the slides were coated with Ilford K-5 emulsion (diluted 1:4, w/v with 

water), held for 6 weeks at 4“C, and then developed at 15°C for 3i min in Kodak 

D-19 and cleared for 5 min in Kodak fixer. Using replicate slides of gill and 

gut sections as controls for non-specific isotope incorporation, deoxyribonucleic 

acid (DNA) was extracted in 5% trichloroacetic acid for 15 min a t 90°C prior to 

coating the slide with emulsion. The slides were stained with hematoxylin and 

eosin and photographed with a Zeiss standard light microscope.
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Counts of Chloride Cell Apical Pits

Apical pits of chloride cells were counted on filaments in the middle third 

of gill arch II on the right side of the fish. In each case an area on the 

afferent surface next to the respiratory lamellae (not including the interlamellar 

regions) was chosen. One 400 pm area was counted on each of 10 filaments, 

five from each hemibranch, and the 10 values were then averaged. The data 

was evaluated by analysis of variance (p < 0.05) for overall significance. 

Comparisons between experimental groups and control groups [freshwater (FW) 

or 0 h in sea water] were evaluated by Dunnett’s test (p < 0.025; Winer, 1971).

Chloride Cell Counts

Chloride cells were counted on 20 filament cross-sections, 10 from each 

hemibranch of both a freshwater (0 h) fish and a  7-day sea water fish. The 

numbers were then averaged. Each cross-section contained a t least three pairs 

of respiratory lamellae.

Results

Striped bass are especially subject to shock during transport and handling. 

The mortality rate  is usually reduced by covering tanks and adding up to 0.1% 

sea salts to the water during transport (Parker and Geiger, 1984), and by 

maintaining fish in tanks partially covered with translucent shields or cardboard 

and located in low-traffic, low-light areas of the laboratory (Hossler et al., 

1986b; King and Hossler, 1986).
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General Morphology

Gill arch structure is similar to th a t of other teleosts (see Hughes, 1984; 

Laurent, 1984). Two rows of filaments (anterior and posterior hemibranches) 

extend posterolaterally and two rows of rakers extend anteromedially from each 

of the four arches, designated I, II, III and IV, rostral to caudal (Figs. 1-1, 1-2, 

and 1-3). Both rows of filaments curve slightly posteriorly in vivo, and are free 

for most of their length (i.e., are perciform type teleost gills; Dornesco and 

Miscalenco, 1968a). Filament length varies with different gill arches and with 

different locations on a given arch. Filaments of the posterior hemibranch are 

longer than those of the anterior hemibranch on the dorsal aspects of arches 1 

and II. Filaments of the anterior hemibranch are longer than those of the 

posterior hemibranch on the ventral aspects of arches II, 111 and IV. Elsewhere 

the filaments of each hemibranch are similar in length.

Filaments in the two hemibranchs of the same arch are not paired but 

rather alternate and interdigitate somewhat basally. Distally, the tips of 

filaments of one hemibranch lie close to  those of the adjacent hemibranch on 

the next arch. Similarly, the pharyngeal surfaces of adjacent arches are closely 

aligned with each other such that the rakers of one arch could mesh with those 

of an adjacent arch to form a seal between the pharyngeal and gill cavities. 

Both the length and number of filaments and rakers per arch increase with the 

growth of the fish (see Hossler et al., 1986b).

Each filament supports two rows of triangular, leaflike, respiratory 

lamellae, one row on each side of the filament (Figs. 1-3 and I-4a,b). In the
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Fig. I- l Lateral view of the right gill arches of a 20 cm striped bass.
Arches are designated 1, II, III and IV, rostral to caudal. 
The gills were photographed with a Leicaflex SL 35 mm camera 
with a 100 mm macro lens. R: rakers, F: filaments.
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Fig. 1-2 Medial view of gill arch 1. SGR: short gill raker; LGR: long gill 
raker; GF: gill filament.

Fig. 1-3 Structure of a holobranch. AF: afferent filament surface; EF:
efferent filament surface; RL: respiratory lamellae.
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center of gill arch 1 on a typical 10 cm fish, there are about 40-50 lamellae per 

mm on each side of a filament. In cross-section, filaments are rounded on their 

afferent surfaces but more flattened on their efferent surfaces. The 

respiratory lamellae conform to the shape of the filament, are present from its 

base to its apex, and greatly increase its surface area. Each of the 

triangular-shaped lamellae has its leading, free edge aligned with the efferent 

surface of the filament. Cross-sections of the respiratory lamellae reveal pillar 

cells within the complex vascular network (Fig. I-5a,b).

With few exceptions all surfaces of each gill arch are covered by a 

mosaic of flattened, polygonal pavement cells (Copeland, 1948) which exhibit 

concentrically-arranged microplicae (Andrews, 1975) on their surfaces (Figs. 1-6 

and 1-7). Cell borders can usually be discerned by changes in the surface 

pattern or by prominent intercellular ridges. These cells measure 7.5 ± 2.7 pm 

in width and the surface microplicae measure 0.2 ± 0.3 pm in width. On the 

interlamellar surfaces, the surface microplicae are often discontinuous or 

replaced by short surface projections (Fig. 1-6). On the respiratory lamellae, 

however, the pavement cells lack microplicae and have distinct cellular borders 

outlined by rows of short surface projections (Figs. 1-4 a,b and 1-6).

On the afferent surfaces of filaments, on the interlamellar surfaces, and 

around the bases of respiratory lamellae the pavement cell epithelium is 

interrupted by the apical crypts of chloride cells (Figs. 1-6 and 1-7).

These apices open along the borders of adjacent pavement cells, measure 

3.16 ± 1.05 pm in diameter, and consist of tufts of short, cellular projections 

(Fig. 1-7). Chloride cell apices are not observed on the efferent filament 

surface, on the raker surfaces (Figs. 1-8 to 1-11), or on any other surface of the 

gill arch.
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Fig. I-4a Scanning electron micrograph of respiratory lamellae.

Fig. l-4b Polygonal, smooth-surfaced pavement cells on respiratory lamella.
Note the absence of microplicae, but the presence of short surface 
projections especially along intercellular borders (arrow).

Fig. l-5a Pillar cell and vascular network of respiratory lamella of 
specimen treated with osmium-DMSO-osmium. N: nucleus of
pillar cell; V: vascular network of respiratory lamellae; PC:
pavement cells have been pulled away at this site.

Fig. I-5b Transmission electron micrograph of pillar cell of respiratory 
lamella pillar cell. N: nucleus; PC: pavement cell; V: vascular
network of respiratory lamella.
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Fig 1-6 Afferent and interlamellar surfaces of filament from a freshwater 
fish. CC: apical crypts of chloride cells; RL: respiratory
lamella; PC: pavement cell.

Fig. 1-7 Apical crypt of chloride cell from a freshwater fish. PC: 
pavement cell microplicae; arrow: apical extensions of the
chloride cell.
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The anterior row of rakers on gill arch I consists of long, finger-like 

appendages which span the slit between gill arch 1 and the operculum, and thus 

separate the pharyngeal cavity from the opercular cavity (Figs. 1-2 and 1-8). 

The anterior surface of the rakers is convex, but the posterior (pharyngeal) 

surface (Fig. I-IO) is flattened and contains a single row of spines along each 

edge. The posterior row of rakers on gill arch I (Fig. 1-8) and both rows of 

rakers on the remaining gill arches (Fig. 1-9) are reduced to short, raised areas 

generously studded with spines (Fig. 1-12).

Taste buds are observed in a single row along the center of the 

pharyngeal surface of each gill arch (Figs. 1-8, 1-9 and 1-11), along the center of 

each of the long rakers (Fig. 1-10), and among the spines of each of the short 

rakers (Figs. 1-11 and 1-13). Taste buds are located on raised areas of the 

epithelium (Figs. 1-11 and 1-13) and consist of tufts of large and small microvilli 

which project above the epithelial surface along the lateral borders of adjacent 

pavement cells. Taste buds usually contain about 9 4 large microvilli and

163 56 small microvilli, and measure about 3.06 1.1 pm in diameter.

Response to Salinity Change

Apical crypts of chloride cells of striped bass are observed only on the 

afferent and interlamellar surfaces of the filaments (Figs. 1-14 to 1-20). In FW 

(0 h in sea water) adapted fish, the chloride cell apical crypts have numerous 

short cellular extensions of similar length in their interiors (Figs. 1-6, 1-7, 1-21, 

and 1-22). At 3 h a fte r direct transfer from freshwater to sea water, the 

cellular extensions become longer and more prominent (Figs. 1-16 and 1-17). The 

6 h, 12 h, and 24 h specimens show progressively more variation in the length of 

the cellular extensions within the pits (Figs. 1-18 and 1-19). For example, one 

pit might exhibit some very long cellular extensions with bulbous tips resembling
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Fig. 1-8 Pharyngeal surface of giU arch 1. Note the single row of taste 
buds along the center of the pharyngeal surface of the arch 
(arrows). SGR: short gill raker; LGR: long gill raker; GF: gill 
niament.

Fig. 1-9 Pharyngeal surface of gill arch II. SGR: short gill rakers.
Note the single row of ta ste  buds along the center of the 
pharyngeal surface of the arch.

Fig. 1-10 Pharyngeal surface of long raker of gill arch 1. S: spine;
arrows: raised areas of epithelium containing taste buds.
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Fig. I - l l  Short gill raker. Note raised areas of epithelium containing taste  
buds (TB) alternating with spined (S) epithelial projections.

Fig. 1-12 Spine of short gill raker (S) with pavement cells (PC).

Fig. 1-13 Light micrograph of a taste bud. A taste bud (TB) is 
characterized by dark and light cells on a raised area of the 
epithelium. PC: pavement cells; MC: mucous cells; CT:
connective tissue core of raker.
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Fig. 1-14 Cross-section of a giU filament from a freshwater-adapted fish.
Note presence of clear, columnar chloride cells (arrows) on 
afferent (A) and interlamellar, but not efferent (E) filament 
surfaces. RL: respiratory lamellae.

Fig. 1-15 Cross-section of the afferent surface of a  gill filament from a fish 
acclimated to sea water for 7 days. Note the abundant chloride 
cells (arrows); RL: respiratory lamellae; MC: mucous cells.
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Fig. 1-16 Afferent surfaces of filaments from one hemibranch of a fish 
acclimated to sea water for 3 h. Arrows: apical crypts of
chloride cells; RL: respiratory lamellae.

Fig. 1-17 Afferent and interlamellar filamental surfaces of a fish acclimated 
to sea water for 3 h. Note that the cellular extensions of the 
chloride cell apical crypts are more obvious than those from 
freshwater fish (compare with Fig. 1-6). RL: respiratory lamellae; 
CC: apical crypts of chloride cells.
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Fig. 1-18 Apical crypt of chloride cell of a fish acclimated to sea water for 
6 h. CC: apical crypts of chloride cell; PC: pavement cell.

Fig. 1-19 Apical crypt of chloride cell of a fish acclimated to sea water 
for 12 h. Note the different lengths of the chloride cell (CC) 
extensions. PC: pavement cell.

Fig. 1-20 Afferent and interlamellar filamental surfaces of a fish acclimated 
to sea water for 7 days. Note that some of the chloride cell 
apical crypts have visible extensions while others exhibit a "pit" 
structure with few or no visible extensions. PC: pavement cell;
CC: apical crypts of chloride cells.
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those of the 3 h specimens adjacent to short nub-like extensions resembling 

those of FW crypts (Fig. 1-20). After 7 days in sea water, the crypts show a 

full range of morphological characteristics including the two extremes; shallow 

crypts with cellular extensions covering all of their interior, and deep pits with 

few or no cellular extensions visable (Figs. 1-20, and 1-23). The 14-day 

specimens resemble those of the 7-day fish. No change in the number of apical 

crypts is seen until 7 days of sea water adaptation and a significant increase in 

crypt number (32.5%) was not recorded until 14 days of adaptation (Fig. 1-24). 

Chloride cells increase in number by 16.1% during the first 7 days in sea water. 

(The average number of chloride cells per cross-section of the freshwater fish 

was 14.6 as compared to 16.95 for the 7-day sea water fish).

Chloride cells of fish adapted to freshwater usually occur singly, do not 

share crypts, and have relatively few mitochondria (Figs. 1-21 and 1-22). 

Chloride cells of fish adapted to sea water for 7 days occur in groups, have 

more mitochondria, have a more elaborate basolateral plasma membrane tubular 

system, and often share apical crypts or pits (Fig. 1-23). Cells resembling 

chloride cells but with increased cellular density are observed next to chloride 

cells, both in freshwater and in sea water, and are probably those that other 

authors have termed "accessory cells", or "adjacent cells" (Hootman and 

Philpott, 1980; Laurent and Dunel, 1980). Tight junctions are present at apical 

regions of pavement cell-chloride cell and chloride cell-chloride cell junctions 

(Figs. 1-25 and 1-26). The extent of the tight junctions could not be determined. 

Chloride cells thought to be in a stage of degeneration, with enlarged tubular 

system lumens and decreased numbers of mitochondria, are observed in fish 

acclimated to sea water for 7 days (Fig. 1-27; Copeland, 1948). No changes in 

pavement or mucous cells were noted during acclimation to sea water.
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Fig. 1-21 Transmission electron micrograph of chloride cells (CC) from a 
freshwater-adapted fish. The chloride cells (CC) are clustered 
although each has its own crypt. Note the presence of cellular 
extensions in the apical crypt (arrow).

Fig 1-22 Details of a chloride cell from a freshwater-adapted fish. 
Note the relatively few mitochondria (M).

Fig. 1-23 Transmission electron micrograph of chloride cells from a fish 
acclimated to sea water for 7 days. Note the increased number of 
mitochondria as compared to FW specimens (Figs. 1-21 and 1-22). 
Arrows indicate apical pits shared by several chloride cells. 
Compare the "pit" structure shown in Fig. 1-23 with the crypt 
structure of a FW fish shown in Fig. 1-21.
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Fig. 1-24 Changes in the number of chloride cell apical crypts of striped 
bass following transfer of fresh water-acclimated fish to sea water. 
Values represent the mean (M) ± SE. The 0-hour sample was
taken prior to transfer.

The actual values are as follows:

FW (0 h) 4.86 ± 0.44 (7)
3 h 4.71 ± 0.28 (9)
6 h 4.53 ± 0.41 (6)

12 h 4.75 ± 1.35 (2)
24 h 4.70 + 0.27 (7)
7 days 5.62 ± 0.37 (8)
14 days 6.44 ± 0.15 (7)*

The numbers in parentheses are the number of fish sampled. The * 
represents a significant difference between the group indicated and the 
FW (0 h) group as determined by Dunnett’s test (p < 0.025; Winer, 1971).
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Fig. 1-25 Apical region of chloride cell from a fish acclimated to sea water 
for 45 min. M: mitochondria; TJ: tight junction; D: desmosome; 
CE: cellular extensions of chloride cell; PC: pavement cell; CC: 
chloride cell.

Fig. 1-26. Apical region of chloride cell from a freshwater fish. Note tight 
junction (TJ) between chloride cell (CC) and pavement cell (PC). 
Note tubular system (arrows) and mitochondria (M) and lack of the 
tubular system in the cellular extensions (CE).

Fig. 1-27. A degenerative chloride cell from a fish acclimated to sea water 
for 7 days. Note relatively few mitochondria (M) compared to 
normal chloride cells for that stage of acclimation (compare to 
Fig. 1-23), as well as enlarged tubular system (arrows).
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Osmium-DMSO-Osmium

Preliminary work with this procedure on striped bass gills indicates that 

it can be used for revealing intracellular structures for observation with SEM. 

Rodlet (Fig. I-5a) and pavement cells are easily cleaved to reveal intracellular 

structures. This procedure allows the arch to be cross-sectioned evenly while 

preserving the normal morphological details of bone, cartilage, nerve, and 

vasculature. Sectioned chloride cells were not observed, but few specimens 

were examined. Future work with gill tissues will require modifications in the 

osmolality and/or length of exposure to DMSO and osmium because the present 

procedure causes the removal of pavement cells in sheets (Fig. I-5a).

Autoradiography
3

Freshwater specimens incubated with H-thymidine incorporated very 

little  isotope (Fig. 1-28), and this incorporation is only observed in the 

interlamellar region a t the base of the filaments. After three days in sea water 

label is found in the interlamellar region along the length of the filaments. 

After 7 days in sea water, label is observed in the interlamellar region a t the 

base and near the tip of the filaments (Fig. 1-29). At no time did the lamellar 

pavement cells incorporate thymidine. Label in the interlamellar epithelium can 

be seen from the basal layers to the surface. A few eosinophilic cells with 

what appear to be apical pits are labeled, and it is thought that these represent 

chloride cells. Most of the label in the interlamellar epithelium appears in the 

hematoxylin-stained sub-surface cells that may be non-differentiated progenitor 

cells. Mucous cells appear as rounded cells with basal, unlabeled nuclei.
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3
Fig. 1-28. Light micrograph of H-thymidine incorporation in the gill 

filament of a freshwater fish. Note the lack of labelled nuclei.
RL: respiratory lamellae.

3
Fig. 1-29. Light micrograph of H-thymidine incorporation in the gill 

filament of a fish acclimated to sea water for 7 days. Note
labelled nuclei (arrowheads). RL; respiratory lamellae.
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Discussion

General Morphology

The gill arches of the striped bass, Morone saxatilis, are typical of 

teleosts of intermediate activity according to Gray (1954) and as discussed by 

Hughes (1984). All four gill arches are highly developed, exhibiting relatively 

long filaments the full length of each arch. The respiratory lamellae are 

numerous and of average size when compared with other fish of intermediate 

activity (e.g., mullet: Hossler et al., 1979a; and killifish: Hossler et al., 1985). 

However, the number of lamellae per millimeter (40-50) on each side of the 

filament is high compared to the average value (18-25) reported by Hughes 

(1984) for fishes of intermediate activity. This could indicate that striped bass 

should be classified near the upper range of activity of this group. However, 

these high values could be characteristic of the immature fish used in this 

study.

With the exception of its importance in feeding mechanisms (see 

discussion by Lauder, 1983), gill raker anatomy has received little attention in 

the literature. As is the case with some other teleosts (e.g., killifish, Hossler 

et al., 1985), only the anterior row of rakers on the first giU arch of striped 

bass is highly developed. These rakers bridge the gill slit between the 

operculum and the first gill arch, and likely prevent food or ingested debris 

from entering the opercular cavity and causing possible damage to the 

respiratory lamellae. This first gill slit would seem to  be potentially the largest 

opening in the gill and could function in expelling water during feeding — hence 

the importance of this first row of rakers and their well-developed pharyngeally 

directed spines. All of the remaining rows of rakers in the striped bass gill.
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although heavily laden with spines, are reduced to short, raised areas along the 

pharyngeal surface of each arch. Their positioning, however, allows juxtaposed 

rakers on adjacent arches to interdigitate when the arches are approximated, 

thus forming a tight seal between the pharyngeal and gill cavities. Lauder 

(1983) demonstrated very elegantly in bluegill sunfish that such a seal is 

essential for the formation of negative pressure in the pharyngeal cavity during 

suction feeding.

During respiration, however, the slits between gill arches are open, and 

the primary source of resistance to  waterflow is provided by the close 

approximation of filaments (especially a t their tips) and their attached 

respiratory lamellae (see discussion in Hughes, 1984). This arrangement insures 

that water entering the gills will flow across the lamellar surface. The 

respiratory function would also be enhanced by orienting the triangular lamellae 

such tha t one broad surface of the triangle would face the incoming water on 

the efferent surfaces of the filaments as observed here. The reduction in 

surface sculpturing on the pavement cells of the respiratory lamellae seen here 

has been observed in other species (trout, Hughes, 1979; mullet, Hossler et al., 

1979a; Tilapia, Fishelson, 1980; killifish, Hossler et al., 1985). Although it is 

possible that pavement cell surface ridges a t this site are masked by a covering 

of mucus, we feel the ridges are truly absent for two reasons. First, the cell- 

to-cell junctions with their microvilli remain distinct on the lamellae. And 

second, preliminary transmission electron micrographs of lamellae of striped bass 

(unpublished) have failed to reveal the surface ridges. Because surface 

sculpturing is believed to  act as an anchoring site for mucus (Hughes and 

Wright, 1970; Sperry and Wassersug, 1976; Hughes, 1979), its  absence in this 

area might serve to reduce the thickness of the blood-water barrier.
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Of special interest in this study was the location and anatomy of the 

apical crypts of chloride cells, because our intent is to use striped bass as a 

model-system for studies on the mechanism of osmoregulation. As with most 

other euryhaline teleosts (see discussion in Laurent, 1984), chloride cells in 

striped bass are limited to the epithelium of afferent and interlamellar surfaces 

of filaments. The diameter of the apical crypts (3.16 pm) is similar to that of 

other euryhaline teleosts adapted to freshwater (e.g., mullet, 4 pm, Hossler, 

1980; and killifish, 2.03 pm, Hossler et al., 1985). As observed in other fish, the 

crypts appear as slight depressions between adjacent pavement cells through 

which project numerous chloride cell surface extensions.

Response to Salinity Change

Although crypt structure changes during sea water adaptation, the 7-and 

14-day sea water-acclimated fish do not exhibit the uniform, deep apical pits as 

observed in mullet (Hossler, 1980). It has been proposed that deepening of the 

apical pit increases surface area for ion transport by increasing chloride cell 

access to the external environment (Hossler et al., 1979b). Since only some of 

the crypts in striped bass take on the deep pit ultrastructure, only that fraction 

of the chloride cells may be activated for ion transport. Apical crypt 

morphology begins to change within 3 to 12 h after transfer to sea water. 

Copeland (1948) found that in Fundulus cytological changes occur as early as 

3 h after transfer to sea water and are completed by 18-24 h.

The internal ultrastructure of a chloride cell is altered during the first 

week afte r transfer to sea water yielding a hypertrophied cell with an increased 

number of mitochondria and a more extensive basolateral tubular network 

similar to that observed in other species (see General Introduction). This is 

thought to occur because of the increased need for energy (mitochondria) and 

enzymes (basolateral plasma membrane tubular system) for ion transport.
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Accessory cells are present in freshwater- and sea water-adapted striped 

bass. Hootman and Philpott (1980) found that freshwater pinfish do not have 

accessory cells, while pinfish adapted to 33% (isosmotic) and 100% sea water 

(hyperosmotic) have this cell type. Laurent and Dunel (1980) also reported that 

accessory cells are present only in sea water fish and that only one accessory 

cell is associated with each chloride cell. It appears that striped bass may have 

one to two accessory cells associated with a chloride cell. If accessory cells 

represent an immature form of chloride cells as proposed by Sardet et al. (1979) 

and Hootman and Philpott (1980), striped bass may have a more extensive 

precursor population than do most species, which possibly allows for faster 

adaptation.

Autoradiography

The greater amount of label observed in 7-day sea water-adapted striped 

bass, as compared to freshwater bass, is in agreement with the results reported 

in other species (Conte and Lin, 1967; Chretien and Pisam, 1986). The site of 

incorporation in striped bass (interlamellar region) is also in good agreement 

with the results of Conte and Lin (1967) with Oncorhynchus. Although the 

labeled cells can not be positively identified because of poor tissue 

preservation, many of the labeled cells are located in the basal and 

intermediate regions of the epithelium. The cells stain with hematoxylin, 

suggesting that they are non-differentiated cells (Conte, 1965; Laurent and 

Dunel, 1980; Chretien and Pisam, 1986) which have numerous ribosomes and 

rough endoplasmic reticulum. The lack of label in pavement cells is probably 

because cellular movement did not have time to occur during the incubation. 

Pavement cells are thought to originate from stem cells in the filamental
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epithelium (Laurent and Dunel, 1980), and cellular movement takes days (Conte 

and Lin, 1967).

Some apparent differences in labeling did occur along the length of the 

striped bass filament at the different time periods, as reported in other species 

(MacKinnon and Enesco, 1980). Chretien and Pisam (1986), however, found no 

difference in labelling of the proximal and distal parts of the filaments in the 

guppy. Further studies with b e tte r specimen fixation are necessary to 

determine if differences really exist.

These studies of striped bass gill morphology and the changes observed in 

that morphology as a result of sea water adaptation form a basis for the 

investigations described in the next three chapters.
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CHAPTER 2

MICROVASCULATURE OF THE STRIPED BASS GILL ARCH STUDIED WITH VASCULAR 

CORROSION CASTING AND SCANNING ELECTRON MICROSCOPY

Introduction

Although striped bass gill morphology has been studied (Bauer, 1972; 

Grom an, 1982; Harpole and Hossler, 1984; Hossler et al., 1986b; see Chapter 1), 

no detailed examination of the branchial and filamental vasculature has been 

reported. Since osmoregulatory chloride cells (Keys and Willmer, 1932) in striped 

bass are abundant on the interlamellar and afferent surface of the filament 

(Chapter 1; Hossler et al., 1986b), a study of the blood flow to that area could 

be useful in understanding the osmoregulatory role of the chloride cell. 

Vascular corrosion casting has been used to  study the complex gill vasculature 

of various species including the bowfin (Olson, 1981), perch (Laurent and Dunel, 

1976), trout (Laurent and Dunel, 1976; Olson, 1983), ling cod (Farrell, 1980), eel 

(Laurent and Dunel, 1976; Donald and Ellis, 1983), spiny dogfish shark (Olson and 

Kent, 1980; De Vries and De Jager, 1984), and skate (Olson and Kent, 1980). In 

the present study, the microvasculature of the striped bass gill is described 

using vascular corrosion casting and scanning electron microscopy, a technique 

which allows the three-dimensional vasculature to be viewed without 

interference from surrounding tissues. An account of this study has been 

published (King and Hossler, 1986; see Appendix).

51
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Materials and Methods

Striped bass (Morone saxatilis) 13-27 cm long were obtained and 

maintained, and light microscopic sections were prepared as described in 

Chapter 1 and by King and Hossler (1986).

For vascular casting, striped bass were anesthetized with ethyl-p-amino- 

benzoate (benzocaine; see Ferreira e t al., 1979; Olson, 1985). After an intra- 

peritoneal injection of heparin (approximately 30 U/g) the fish were placed 

ventral side up in a V-shaped trough (Olson, 1985) and a medial, longitudinal slit 

was made near the pectoral fin to expose the heart. Additional heparin 

(approximately 15 U/g) was then injected into the heart. The ventral aorta was 

cannulated and the gills were cleared of blood by flushing with fish Ringers 

solution (Lockwood, 1961) a t physiological perfusion pressure (30 mm Hg; 

constant flow, pulsatile pressure; Olson, 1983; 1985). Pulsatile pressure was 

used instead of constant pressure in order to mimic gill blood flow (Farrell et 

al., 1979; Part and Svangberg, 1981; Davie and Daxboeck, 1982; Daxboeck and 

Davie, 1982). Resin was then infused through the same cannula until the onset 

of polymerization (approximately 5 min). Physiological perfusion pressure 

(30 mm Hg) was used for resin injection in most casts to avoid distention of the 

vessels (Olson, 1983), but occasionally higher pressures (50-60 mm Hg) were used 

in an effort to obtain filling of the smaller vessels. The resin used was either a 

combination of Mercox (80%; Ladd Research Industries, Burlington, VT) and 

Sevriton (20%; Dentsply Limited, Surrey, England), or L.R. White (100%; The 

London Resin Co. Ltd., Hampshire, England). The fish were immersed in warm 

water (50°C) for at least 20 min to cure the resin. Tissue was removed with 

alternating rinses of 20% NaOH and distilled HgO over a period of several days.
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Casts were rinsed thoroughly in distilled water, air dried, attached to stubs 

with silver paste, coated with gold or gold-palladium in a  Desk-1 Sputter Coater 

(Denton Vacuum Corp., Cherry Hill, NJ), and examined in a Hitachi S-430 

electron microscope. Approximately 100 arches from 15 fish were studied. 

Measurements were made from electron micrographs. Extravasation of resin 

from vessels was rarely observed.

Results

Different casting media were tested in an effort to obtain well filled 

striped bass gill vasculature. The Mercox/Sevriton mixture has a viscosity 

about half that of Mercox alone (usually 10-20 cps; Hossler et al., 1986a), and 

the viscosity of L.R. White is reported to be 8-10 cps (Sage and Gavin, 1984; 

F.E. Hossler, unpublished findings). The Mercox/Sevriton mixture usually 

provided complete gill casts. The L.R. White produced more extensive casts of 

the whole fish, but the vessels tended to collapse during tissue removal. Only 

Mercox/Sevriton perfused specimens are illustrated in the figures.

No differences in filamental casts from sea water and freshwater 

specimens have as yet been documented, but subtle differences might be

difficult to verify because of individual variations in perfusion and in gill 

microvasculature. Casts from fish adapted to either freshwater or sea water 

are shown.

A typical vascular corrosion cast of striped bass gills is shown in Figure

II-l. The four pairs of gill arches are designated I, II, III, and IV, rostral to

caudal. No major differences among the filaments from the different arches 

were observed. Striped bass have three major vascular systems: (1) a

respiratory system, (2) an arterio-venous system, and (3) a nutritive system
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Fig. II-l. Ventral view of a vascular cast of all four pairs of gill arches of a 
24 cm striped bass. Photographed with a Leicaflex SL 35mm 
camera with a 100mm macro lens.

The symbols for Figures II-l to II-l 5 are as follows:

Abbreviations
A

aACV
ABA
ACV

AFA
ALA
AM
B

BC 
BV 
C 

CVS 
EBA 
EFA 
EL A 
LGR 

MV 
N

NU
P

RL
SGR
TB

1,11,III,IV

anterior
"accessory" afferent companion vessel 
afferent branchial artery 
afferent companion vessel 
afferent filamental (primary) artery 
afferent lamellar arteriole 
ampulla of afferent filamental artery 
gill arch bone
basal channel of respiratory lamella
branchial vein
cartilage
central venous sinus 
efferent branchial artery 
efferent filamental (primary) artery 
efferent lamellar arteriole 
long gill raker

marginal vessel of respiratory lamella 
nerve
impression of endothelial cell nucleus 
posterior
respiratory (secondary) lamella 
short gill raker 
taste  bud
gill arches, rostral to caudal
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(Boland and Olson, 1979). The major components of the vasculature of the gill 

arch and gill filaments are represented schematically in Figure II-2.

Respiratory system

In the respiratory system, blood from the heart is pumped via the ventral 

aorta to the four pairs of afferent branchial arteries (ABA; Figs. II-2, II-3 and 

II-4). As in other teleosts (Muir, 1970; Boland and Olson, 1979), each ABA 

divides into posterior concurrent and anterior recurrent branches allowing all 

parts of the arch to  receive blood from the heart. Blood enters each filament 

via an afferent filamental (primary) artery  (AFA), is distributed to the highly 

vascularized respiratory (secondary) lamellae (RL, Fig. 11-4) via afferent 

lamellar arterioles (ALA), and then passes to the efferent filamental (primary) 

artery (EFA) via the efferent lamellar arterioles (ELA;; see Fig. II-5). Blood 

from the EFAs is collected in the efferent branchial artery (EBA) and is carried 

to the dorsal aorta. The EBA is a single vessel centrally, but splits a t either 

end of the holobranch, providing a vessel for each hemibranch (Muir, 1970; 

Farrell, 1980). It was not unusual to see adjacent AFAs with a common origin 

from the ABA or adjacent EFAs which fused before entering the EBA. 

Constrictions were observed in some EFA casts just proximal to the first RL 

(see Appendix).

In the striped bass the ABA appears to be symmetrically located in the 

middle of the arch (Fig. 11-3), not aligned next to the cartilage as in perch 

(Laurent and Dunel, 1976), pike (Dornesco and Miscalenco, 1968b), and other 

perciform species (Dornesco and Miscalenco, 1967). Only one or two small 

branches beside the AFA were observed stemming from the ABA.
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The AFAs of the two hetnibranches of each arch alternate with each 

other as do the filaments, and their number and size depend on the growth of 

the fish. The proximal aspect of the AFA has a dilation or ampulla with 

approximately 8-10 pairs of ALAs coming from it. Constrictions were observed 

in some AFA casts just distal to the ampullae (see Appendix). No 

communications were found between the ampullae of either the same or opposite 

hemibranches. The AFA narrows toward the distal end of the filament as the 

RLs become smaller. No branches other than the ALA were seen stemming 

from the AFA.

The respiratory lamellae of striped bass have prominent marginal vessels 

and basal channels (BC) as well as a complex respiratory vascular network (Figs. 

II-5 and 11-6) interwoven between pillar cells (see Chapter 1 and Groman, 1982). 

In most instances, each RL has one ALA and one ELA. The ALA is longer 

because it must pass around the filamental cartilage (Fig. II-2) to get to the 

RL. The ALAs of some of the specimens have enlargements at the junction of 

the MV and BC.

Variations in the general respiratory scheme include: (1) common origin

of two ALAs on the same or opposite sides of the central venous sinus (CVS); 

(2) several RLs drained by a single ELA; (3) extra, direct connections between 

the EFA and the RL vasculature or ELA; (4) an area in the middle of the 

filament with a double EFA and remnants of a RL vascular network on the 

aberrant EFA; (5) an accessory EFA which then empties into the main EFA; 

and (6) a filament with the vasculature divided near the distal tip.
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Fig. II-2 Schematic cross-section of striped bass gill arch II showing
vasculature. The lamellar vasculature has been removed from the 
upper filament.

Fig. 11-3 Light micrograph of a cross-section of gill arch I. Compare with 
the vascular schematic in Fig. 11-2.

Fig. 11-4 Scanning electron micrograph of a cross-section of a vascular cast 
of the second gill arch. Compare with the vascular schematic in 
Fig. 11-2.
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Arterio-venous system

Each gill filament contains a CVS located between the filamental 

cartilage and the EFA (Figs. 11-2, 11-6 and 11-7). Arterio-venous connections 

occur between the EFA and the CVS, but not between the AFA and the CVS. 

The CVS empties either directly into the branchial vein or indirectly via small, 

paired afferent companion vessels (ACV) which lie on either side just medial to 

the AFA (Figs. 11-6, 11-7, 11-8 and 11-9). The vessels connecting the CVS and the 

ACV alternate with the ALA and are regularly spaced, about one for every 

ALA (Figs. II-8 and 11-9). An "accessory" ACV (aACV) located on either side of 

the cartilage and paralleling the ACV, allows blood flow between the CVS-ACV 

connections (Fig. 11-10). The aACV is separated from the ACV by the ALA. 

The BV receives blood from the CVS-ACV complex, and apparently from the 

rest of the filament. Groman (1982) states that blood in the BV empties into 

the EBA in the striped bass, but in all the casts examined only two small 

connections were found.

The CVS of striped bass gill filaments is usually a single, sack-like 

structure which narrows distally (Figs. 11-7, 11-11 and 11-12). Casts of the CVS 

often exhibit indentations from their overlying RL (Fig. 11-11). The CVS and 

EFA have regularly spaced "anastomoses" (see Donald and Ellis, 1983; Laurent, 

1984), about one for every two RL. Because of their position and size, 

however, these anastomoses are difficult to view and count (Laurent and Dunel, 

1976). The proximal end of the CVS-ACV complex (Fig. 11-12) has various 

connections to the BV (Fig. 11-13), EBA, and adjacent CVSs. No connections 

between the CVS and the RL or between the ACV and the AFA were observed.
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Fig. II-5 Vascular network of the respiratory lamellae (RL). Note the
marginal vessel (MV). The openings in the capillary network mark 
the positions of the pillar cells.

Fig. II-6 Cross-section of the vasculature of the gill filament. Note the 
position of the central venous sinus (CVS) and the accessory 
afferent companion vessels (aACV). The afferent companion 
vessels are absent. The arrowhead marks the position where 
the cartilage would normally be. Note the basal channel (BC) and 
marginal vessel (MV) of the respiratory lamellae (RL).
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Fig. II-7 Cast of central venous sinus a t apex of filament. Note the 
remnants of connections to the ACV. The surrounding respiratory 
lamellae, afferent filamental artery, and the efferent filamental 
artery were removed. The afferent side of the central venous 
system (CVS) is a t the bottom.

Fig. 11-8 Stereo pair of the afferent filamental artery (AFA), respiratory 
lamellae (RL), and afferent companion vessel (ACV).
Arrows: enlargments in the afferent lamellar arterioles (ALA).
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Nutritional system

Nutritive branches to the arch proper are provided by the EBA and the 

proximal part of the EFA. The EBA gives off large nutritive vessels which 

parallel it and give off branches to each filament (Fig. 11-14). Coiled vessels 

from the EFA proximal to the first RL of the filament anastomose with the 

nutritional vessels from the EBA (Figs. 11-14 and 11-15). Occasionally a 

nutritional vessel in the proximal part of the EFA will anastomose with a RL 

rather than the EFA. Vessels providing nourishment to the area around the 

EFA arise from the vascular network around the base of the EFA or directly 

from the EFA.

The irregularly shaped BVs in each arch receive blood from the filament 

proper as well as from the CVS-ACV complex described above (Fig. 11-13). 

Smaller vessels combine to form larger vessels which parallel the filaments and 

eventually join the BV on the gill raker side (Fig. II-3). The two BVs in each 

arch communicate by small vascular connections all along the length of the 

arch. In all the casts studied, only two small connections were found between 

the BV and the EBA.

Discussion

As with most other euryhaline species (Laurent, 1984), striped bass gill 

vasculature consists of three major systems (Boland and Olson, 1979): (1) a

respiratory system including the afferent filamental artery (AFA), afferent 

lamellar arteriole (ALA), respiratory lamellae (RL), efferent lamellar arteriole 

(ELA), and the efferent filamental artery  (EFA); (2) an arterio-venous pathway
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Fig. II-9 Cast of blood supply of respiratory lamellae (RL) showing the 
marginal vessels (MV) and basal channels (BC). The afferent 
companion vessel (ACV) and its connections to the central venous 
sinus alternate with the afferent lamellar arterioles (ALA). Note 
the impressions of endothelial cell nuclei (NU).

Fig. 11-10 Cast of "accessory" afferent companion vessel (aACV) and afferent 
companion vessel (ACV). The asterisk indicates the area where an 
afferent lamellar arteriole (ALA) would exit to attach the 
respiratory lamellae (RL) to the afferent filamental artery (AFA).
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Fig. 11-11 Cast of the central venous sinus. Note the indentations 
produced by the respiratory lamellae (asterisks) and the 
impressions left by the nuclei of endothelial cells (NU).

Fig. 11-12 Vascular cast of the proximal end of the central venous sinus 
(CVS). Note the CVS-ACV complex a t upper le ft and the EFA at 
lower right.
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Fig. 11-13 Vascular cast of the branchial vein (BV) and its connections.
Note the vessels from each filament and the tributaries that are 
interwoven with the BV. Arrowheads indicate small vessels which 
drain the CVS-ACV complexes and the nutrient supply of the 
filaments.
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Fig. 11-14 Stereo pair of nutrient vessels from the efferent branchial artery 
(EBA) and the efferent filamental artery  (EFA). Note the coiled 
origins of the nutritional vessels from both the EFA and EBA, and 
the connections between those vessels.

Fig. 11-15 Details of the vascular network around the proximal aspect of 
the efferent filamental artery (EFA).
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including the EFA, the central venous sinus (CVS), and the branchial veins (BV); 

and (3) a nutritive system including vessels from the EFA and the efferent 

branchial artery (EBA). For a general discussion of gill vasculature, the reader 

is referred to the excellent descriptions by Laurent (1984) and Boland and Olson 

(1979). Several features of the striped bass gill vasculature, in particular, merit 

mention here.

Respiratory system

Enlargements (called ampullae or "blebs") of the AFA proximal to the 

"bifurcation of the two hemibranches" observed in striped bass have been 

reported in some species (Fromm, 1974; Laurent and Dunel, 1976; Olson, 1981). 

The ampulla may be a damper for the pulsatile blood flow in striped bass as 

proposed by Fromm (1974). The AFA constrictions observed in some casts just 

distal to the ampullae may represent sphincters which could control blood flow 

to the filaments. The ALA enlargements may represent sites adjacent to 

sphincters (Wright, 1973).

The many variations observed in the filamental vasculature are relatively 

uncommon, are probably due to disease and growth abnormalities (Hughes, 1984), 

and likely would not have been of great functional consequence to the fish.

Arterio-venous system

The arterio-venous system has become the focus of many recent studies. 

Most of the differences between species studied to date appear in the location 

of the arterio-venous anastomoses. Prelamellar arterio-venous anastomoses with 

the central venous sinus are thought to  be part of a lamellar bypass for blood 

when the 0^ demand decreases (Steen and Kruysse 1964; Richards and Fromm,
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1969), and at least some anatomical evidence for a lamellar bypass has been 

reported in channel catfish (Ictalurus punctatus; Olson e t al., 1978; Holbert et 

al., 1979; Boland and Olson, 1979), eel (Anguilla anguilla; Steen and Kruysse, 

1964; Laurent and Dunel, 1976), short-finned eel (Anguilla australis; Donald and 

Ellis, 1983), smooth toadfish (Torquigener glober; Cooke and Campbell, 1980), 

cichlid (Tilapia mossambica; Vogel et al., 1973, 1974), dogfish shark (Squalus 

acanthias; Olson and Kent, 1980), dogfish (Centrophorus scalpratus; Cooke, 

1980), bowfin (Amia calva; Olson, 1981), and trout (Salmo gairdneri; Richards 

and Fromm, 1969). However, lamellar bypasses have not been reported in trout 

(Salmo gairdneri; Gannon e t al., 1973; Vogel et al., 1976; Laurent and Dunel, 

1976), ling cod (Ophiodon elongatus; Farrell, 1980), perch (Perea fluviatus; 

Laurent and Dunel, 1976), and striped bass (present manuscript). We observed 

post-lamellar, but not prelamellar, arterio-venous anastomoses. Therefore, the 

CVS cannot be acting as a shunt mechanism in striped bass. The blood must 

first be oxygenated before entering the CVS.

Intralamellar distribution mechanisms (Farrell et al., 1980; Soivio and 

Tuurula, 1981) may be used by the striped bass to regulate Og and ion exchange 

in the gills. Both the MV and the BC are prominent in striped bass and are 

filled before the respiratory capiUaries during vascular casting. Hughes (1976) 

reported that in resting fish blood flows preferentially through the MV. Both 

the MV (Hughes and Grimstone, 1965; Newstead, 1967; Laurent and Dunel, 1976) 

and BC (Smith and Johnson, 1977; Part et al., 1984; Tuurala e t al., 1984) have 

been suggested as possible shunts (Smith and Johnson, 1977; Part et al., 1984; 

Tuurala et al., 1984). Contractile pillar cells (Bettex-Galland and Hughes, 1973) 

present in striped bass (Chapter 1; Groman, 1982) may also help to control 

intralamellar blood (Hughes and Grimstone, 1965; Newstead, 1967; Morgan and 

Tovell, 1973).
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"Lamellar recruitment" (Hughes, 1972; Hughes and Morgan, 1973; Cameron, 

1974; Booth, 1978, 1979; Farrell e t al., 1979; Holbert e t al., 1979; Jackson and 

Fromm, 1981) may occur in striped bass during increased oxygen demand. 

RandaU (1970), Hughes (1972), and Hughes and Morgan (1973) found that the 

number of RL receiving blood a t a given time changes with Og demand and 

recruitment may be controlled by ALA sphincters (Wright, 1973). Incomplete 

casting of some RL in the present study could be the result of such selective 

RL recruitment or of perfusion differences.

The CVS has been described in some species as a  sack-like structure 

(Laurent and Dunel, 1976), but recent studies (Olson, 1983) have shown that the 

CVS may be composed of several vessels which appear as a single structure 

when distended by excessive perfusion pressure. Although physiological 

perfusion pressures were used here, the normally distinct CVS-ACV connections 

were meshed together in some filaments. Since endothelial nuclear impressions 

were evident, the size and shape of the CVS could not have been affected by 

resin extravasation but could have been affected by distension. The EFA 

constrictions may represent the sites of sphincters (Dunel-Erb and Laurent, 

1980). Contraction of the EFA sphincter may force blood into the CVS via the 

arterio-venous anastomoses.

The CVS of the striped bass gill filament may provide support to the 

filament (Wright, 1973), act as a reserve for oxygenated blood (Laurent and 

Dunel, 1976), or supply nutrition to the tissues (Groman, 1982).

Chloride cells have been linked functionally to  the arterio-venous system 

in teleosts (Payan and Girard, 1984), as well as to the slower blood flow in the 

basal channel of the RL (Hughes, 1984). The chloride cells of striped bass are 

located on the interlamellar and afferent surface of the  filament (Chapter 1;
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Hosslep et al., 1986b). This location may allow them to be affected by both 

vessel systems. It is thought that blood flow in adjacent ACV and AFA are in 

opposite directions, possibly providing a  potential site for counter-current 

exchange in the area of the chloride cells. However, no single function 

satisfactorily explains the complex CVS-ACV network observed in the striped 

bass gill filament.

Nutritional system

Nutritional vascular networks around the proximal aspect of the EFA have 

been reported previously (Laurent and Dunel, 1976; Boland and Olson, 1979), and 

probably provide nourishment to the abductor muscle bundles of the filaments 

(Groman, 1982). Nutritional vessels from the EBA probably supply the rest of 

the arch including the gill rakers and taste buds.
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CHAPTER 3

MICRODISSECTION OF THE STRIPED BASS GILL ARCH BY ULTRASONICATION

Introduction

Selective dissociation of epithelia by aldehyde fixation, prolonged 

osmication, and/or boric acid treatm ents combined with ultrasonic vibration 

(sonication) has been used successfully with mammalian tissues to permit 

scanning electron microscopic viewing of subsurface details of lung, choroid 

plexus, uterus (Highison and Low, 1982), gastrointestinal tract (Low and 

McClugage, 1984; McClugage and Low, 1984), thebesian veins (Rosinia and Low, 

1986), cerebellum (Arnett and Low, 1985) and placenta (Highison and Tibbitts, 

1986).

Teleosts have specialized chloride cells located in their giU epithelium 

that are thought to be osmoregulatory (see Zadunaisky, 1984). The apical pits 

and internal ultrastructure of chloride cells change in response to altered 

salinity (see Chapter 1). To permit examination of possible changes in the 

basolateral plasma membrane of chloride cells during sea water adaptation, and 

to view the anatomy of the basement membrane of the filament by scanning 

electron microscopy, microdissection by sonication techniques were used to 

selectively remove some of the epithelial cells of the gill. This required 

modification of the methods used with mammalian tissues.

78
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Materials and Methods 

Striped bass (Morone saxatilis) 4-18 cm long were obtained and 

maintained, and light microscopic sections were prepared as described in 

Chapter 1 and by King and Hossler (1986). For dissection by sonication, striped 

bass were killed by decapitation. The gill arches were removed, rinsed in 0.9% 

NaCl to remove the blood, and then sonicated by one of the procedures 

described below (and as outlined in Table lll-l) to achieve removal of all or part 

of the gill epithelium.

Procedure 1

The gill arches were immersed in 2% OsO^ buffered with 0.1 M 

cacodylate-HCl (pH 7.2) for 48-72 h. The arches were then rinsed in 3 changes 

of 0.1 M cacodylate-HCl (pH 7.2), dehydrated in a graded acetone series, and 

sonicated in the ice-cooled water bath of a Bransonic 220 ultrasonic cleaner 

(Branson Sonic Power Co., Danbury, CT) at 50/60 Hz for 0-20 min. The 

specimens were placed in a model E3000 critical point dryer (Polaron 

Instruments, Inc., Hatfield, PA) in 100% acetone, dried with liquid COg, affixed 

to specimen stubs with silver paste, coated with gold or gold-palladium in a 

sputter coating apparatus (Model Desk 1, Denton Vacuum, Inc., Cherry Hill, NJ), 

and observed in a model 8430 scanning electron microscope (SEM, Hitachi 

Scientific Instruments, Mountain View, CA; Model JSM-35C, JEOL (U.S.A.) Inc., 

Peabody, MA). Measurements were made from electron micrographs.
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Procedure 2

The gills were immersed in aqueous 1% boric acid (HgBOg) for 5 h, rinsed 

in 3 changes of 0.1 M cacodylate-HCl (pH 7.2), osmicated (2% OsO^ buffered 

with 0.1 M cacodylate-HCl, pH 7.2) for 48 h, dehydrated in a graded acetone 

series, sonicated a t 50/60 Hz for 0-10 min, critical point dried, and prepared for 

SEM examination.

Procedure 3

The giUs were immersed in 1% HgBOg for 5 h, rinsed in 3 changes of 0.1 

M cacodylate-HCl (pH 7.2), dehydrated in a  graded acetone series, sonicated at 

50/60 Hz for 5-20 min, critical point dried, and prepared for SEM examination.

Procedure 4

The gills were immersed in freshly prepared aldehyde fixative for 2 h at 

20-24°C or overnight a t 4®C. Fixative consisted of 2.5% glutaraldehyde and 

1.8% paraformaldehyde in 0.1 M cacodylate-HCl buffer (pH 7.2). After fixation 

the specimens were rinsed in excess buffer (0.1 M cacodylate-HCl, pH 7.2), 

postfixed for 24-48 h a t 4°C in 2% OsO^ buffered with 0.1 M cacodylate-HCl 

(pH 7.2), rinsed in buffer as before, dehydrated in a graded ethanol or acetone 

series, sonicated at 50/60 Hz for 5-25 min, critical point dried, and prepared for 

SEM examination.

Procedure 5

The gills were immersed in 2% OsO^ buffered with 0.1 M cacodylate (pH 

7.2) with 0.1% Triton X-100 for 2-4 h a t 20-24°C, rinsed in 3 changes of 0.1 M 

cacodylate-HCl (pH 7.2), dehydrated in a graded ethanol or acetone series, 

sonicated for 0-10 min, critical point dried, and prepared for SEM observation.
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Results

Morphology Revealed by Sonication

Striped bass have four pairs of gill arches designated 1, n, HI, and IV, 

rostral to caudal. Each arch has two rows (hemibranches) of filaments as well 

as anterior and posterior rows of gill rakers (Fig. III-I). The anterior row of 

gill rakers of gill arch I, are long, finger-like appendages (long gill rakers). The 

posterior row of gill rakers of gill arch I and the rakers of the other 3 arches 

are short, raised areas referred to as short gill rakers. Each filament supports 

two rows of respiratory lamellae, one row on each side of the filament, (see 

Chapter 1).

Removal of epithelium from the short giU rakers (Figs. III-I, ni-2, and 

111-3) reveals pharyngeal spines (Figs. 111-2 and I1I-3) and the basal lamina 

underlying the randomly distributed taste  buds (Figs. III-3, 111-4, and II1-5). 

Removal of the epithelium covering the long gill rakers reveals that the basal 

lamina of taste buds is in the form of columns (Figs. 111-6 and II1-7).

The basal laminae of respiratory lamellae closely conform to the contours 

of the overlying pavement cells and to the vasculature beneath (Fig. III-8). 

Occasionally, sonication removed all of the respiratory lamellae, exposing the 

collagen layer that is continuous with the filamental basal lamina (Fig. I1I-9; see 

Hughes 1980, 1984; Laurent and Dunel, 1980).

Selective breakage of the filamental epithelium along the afferent and 

interlamellar surfaces and a t the base of the respiratory lamellae reveals 

chloride cells (Fig. 111-10) which are identified by the short apical projections. 

The details of the basolateral plasma membrane of chloride cells were not easily
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observed due to fragments remaining a fte r the removal of adjacent cells. The 

lateral borders of rounded mucous cells identified by the mucigen droplets on 

the surfaces are also observed in some specimens (Fig. 111-11).

Sonication Procedures

The five procedures used in this study (Table 111-1) provide a range of 

epithelial removal. The osmieated specimens of procedures 1 and 5 have areas 

on the proximal parts of the filament and the arch proper which are denuded of 

epithelium or where the epithelium is cracked revealing la teral cellular borders. 

With 48 h osmication and 20 min sonication, the respiratory lamellae of the 

distal filamental regions are removed revealing the basal lamina and collagen as 

observed in Fig. 111-9. Most of the epithelium of the rakers remains attached, 

but the basal lamina is exposed in certain regions. In other sites the pavement 

cells are removed to reveal the basal epithelial cells.

Both procedures 2 and 3 include boric acid treatment. With procedure 2 

there is a range in the extent of epithelial removal. Without sonication, very 

few cells are dissociated. After two min of sonication la teral cellular borders 

are exposed. At two min of sonication the basal lamina is exposed (Fig. III-2). 

Procedure 3 produces total epithelial removal, from both the gill arch proper 

(Figs. 111-1 and I1I-3) and the filaments (Fig. I1I-8).

With procedure 4 most of the normal morphology of the epithelium is well 

preserved, but occasionally the epithelium is broken and the la teral cell borders 

of chloride cells (Fig. 111-10) and mucous cells (Fig. 111-11) are visible. The 

epithelium of the short and long gill rakers seems more easily dissociated than 

that of the filaments. The basal lamina, of the rakers including that under the
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Fig. III-l Lateral view of gill arch II of a 5 cm striped bass.
The epithelium has been removed to  expose the basal lamina of the 
gill filaments (GF) and the arch proper. Note the location of the 
short gill rakers (SGR). Procedure 3.

Fig. I1I-2 Gill arch II showing the epithelium (arrows) removed from the gill 
arch proper and the short gill rakers (SGR). Note the 
spine(s) of the SGR. Gill filaments (GF); and respiratory lamellae 
(RL). Procedure 2; sonicated 2 min.
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Fig. HI-3 Short giU raker of giU arch II with epithelium removed. Note the 
spines (S) and the basal lamina of the taste buds (TB).
Procedure 3; sonicated 10 min.

Fig. I1I-4 Basal lamina underlying taste bud (TB). Procedure 3; sonicated 10 
min.

Fig. I1I-5 Light micrograph of a taste bud on short gill raker. Notice the 
shape of the basal lamina and the connective tissue underlying 
the taste bud as well as the light (LC) and dark (DC) cells of the 
taste  bud. The extent of the epithelium (E) is shown. Mucous 
cell (MG).
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Fig. HI-6 Long gill raker with some epithelium remaining on the spines (S) 
Notice the centrally located row of columns representing the basal 
laminae of taste  buds (TB). Procedure 4; graded acetone series; 
sonicated 5 min.

Fig. 111-7 Columnar basal lamina of taste  bud from the long gill raker of 
arch I. Procedure 4; graded acetone series; sonicated 5 min.
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Fig. HI-8 Basal lamina of respiratory lamellae (RL). Note the basal lamina 
overlying the marginal vessel (MV). Procedure 3; sonicated 5 min.

Fig. IH-9 Collagen of filament proper showing the basal channel exposed 
by removal of respiratory lamellae. Asterisks indicate where 
the respiratory lamellae would normally be. Arrows point to 
openings of the afferent lamellar arterioles. Procedure 4; graded 
acetone series; sonicated 5 min.

Fig. 111-10 Chloride cells (CC) from the afferent surface of the gill filament 
with the lateral cell walls exposed. Note the cellular 
microvillous projections (CP). Procedure 4; graded ethanol series, 
sonicated 5 min.

Fig. 111-11 Mucous cell (MC) adjacent pavement cells. Procedure 4; graded 
acetone series; sonicated 10 min.
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taste buds was often exposed (Fig. III-7), while the pharyngeal teeth remained 

covered (Fig. HI-6). No difference was observed between alcohol and acetone 

dehydrated specimens.

Discussion

Aldehyde fixation is known to inhibit cellular dissociation (Vial and 

Porter, 1975), and also microdissection of epithelia by sonication (Low and 

McClugage, 1984). Osmium tetroxide (OsO^) is used as a post-fixative in many 

tissues, including fish gills (Bossier et al., 1986b) to preserve the lipoprotein 

membranes. Postfixation with OsO^ of striped bass gills for scanning electron 

microscopy or transmission electron microscopy normally requires a 2 h exposure 

to 2% OsO^ in 0.1 M cacodylate-HCl, pH 7.2, a t 4°C (Chapter 1; Olson, 1985). 

Excessive exposure to OsO^ is known to produce brittleness (Low, 1954). 

Procedure 4 consists of the normal fixation of giU tissues with aldehydes (2.5% 

glutaraldehyde, 1.8% paraformaldehyde in 0.1% cacodylate-HCl, pH 7.2; Chapter 

1, Bossier e t al., 1986b), followed by prolonged osmication (24-48 h at 4®C). 

This combination of fixatives was used to make the tissue brittle enough to 

selectively remove the epithelium surrounding the chloride cells when sonicated, 

while preserving the morphology of the intact cells. Procedure 4 produces 

identifiable chloride cells and mucous cells which are revealed by removing the 

adjacent epithelium. Problems arise with the procedure, however. Due to the 

randomness of the procedure, much time and effort, as well as the preparation 

of a large number of specimens, are required to find epithelial breaks a t the 

desired location. This method is excellent for observing the basal lamina under
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the taste buds on the long gill raker. The epithelium of the long gill raker is 

easier to remove than that of the filaments and the arch proper, possibly due to 

the greater exposure of the projecting rakers during sonication.

The addition of detergent (Triton X-100) during OsO^ fixation is thought 

to increase Os.O^ penetration (see Highison and Tibbitts, 1986), but in the 

present study no noticeable differences between specimens fixed with OsO^ and 

detergent (Procedure 5), and OsO^ alone (Procedure 1) were noted, probably 

because the gill epithelium is readily penetrated by OsO^.

Boric acid treatm ent (5 h in a 1% aqueous solution) is known to dissociate 

tissue (Vial and Porter, 1975), and in the present study (Procedure 3) it removes 

all of the epithelia without sonication. Borate treatment is so effective that 

epithelial removal is probably achieved in part simply by the changing of 

solutions during normal preparation of specimens for SEM. The basal lamina of 

the short gill rakers and the spines and taste  buds are best revealed by this 

method. When boric acid is combined with osmication (Procedure 2), the degree 

of epithelial removal is directly proportional to the length of sonication. Borate 

dissociates tissue (Vial and Porter, 1975), but OsO^ tends to maintain some 

degree of cellular adhesion.

In future experiments on fish gills the required procedures may vary 

according to the species and the degree and location of cellular removal 

desired. Many factors such as specimen size, contact with the sonication 

solution, and freedom to  vibrate contribute to the degree of epithelial removal. 

The greater the contact between the specimen and the sonication solution, the 

more extensive the microdissection. Epithelial removal is more easily 

accomplished for areas that can be forced against each other during sonication
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such as the free distal tips of filaments. Such contact can even break away 

respiratory lamellae a t the distal portion of the filament while leaving the 

epithelium intact on the proximal, less flexible aspect of the filament. Because 

of the variety of contributing factors, trial and error are necessary to achieve 

the desired results (Highison and Low, 1982).

The lateral cellular borders of the chloride cells can be exposed by any 

of the procedures except Procedure 3 which removes all of the epithelium. 

Changes in the basolateral plasma membranes of chloride cells could not be 

observed due to the small number and size of the chloride cells present. This 

made it difficult to obtain breaks in the epithelia in the region of the chloride 

cells and to find cells free of debris when the surrounding epithelium was 

removed. Perhaps the opercular epithelium would be a b e tte r tissue than gills 

for the study of chloride cells using microdissection by sonication, since in some 

species a t least chloride cells make up 50-70% of all the cells in that tissue 

(Karnaky and Kinter, 1977).

In conclusion, microdissection by sonication can be used to examine the 

histological and ultrastructural features of gills; and as observed by others, this 

procedure is especially useful in revealing the form and extent of the basement 

membrane. However, sample size, contact of the sample with the sonication 

solution, the amount of microdissection desired, and the structures to be viewed 

must be taken into consideration in future experiments to determine the optimal 

conditions.
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CHAPTER 4

THE TIME COURSE OF SEA WATER ACCLIMATION OF STRIPED BASS: 

NA.K-ATPASE, CHLORIDE EFFLUX, PLASMA CORTICOSTEROIDS, AND

ELECTROLYTE DYNAMICS

Introduction

Sea water adaptation of euryhaline teleosts is accompanied often by 

increases in the amount and activity of gill sodium-potassium adenosine 

triphosphatase (Na,K-ATPase). Na,K-ATPase activity can be measured by the 

amount of inorganic phosphate released upon hydrolyzation of ATP in the 

presence of magnesium, sodium, and potassium, or upon hydrolyzation of 

p-nitrophenylphosphate (PNPP) in the presence of magnesium and potassium.
3

The amount of Na,K-ATPase present can be measured by H-ouabain binding 

(see Hossler et al., 1979c; Hossler, 1980). Ouabain binds to the catalytic 

peptide of Na,K-ATPase on a one-to-one basis (Jorgensen, 1974; Schwartz et 

al., 1975). Therefore, the number of binding sites is a measure of the number 

of enzyme molecules (see the General Introduction of this manuscript). Sea 

water teleosts have gill Na,K-ATPase activities that are two to six times higher 

than those of freshwater teleosts (Epstein et al., 1967; Kamiya and Utida, 1969; 

see Kirschner, 1980, and the General Introduction). These changes in enzyme 

activity and number are accompanied by changes in Na^ and Cl efflux (see 

Motais et al., 1966; Motais, 1967; Evans et al., 1973; Forrest e t al..

95
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1973a,b; Karnaky e t al., 1977; Hossler e t al., 1979c; Epstein e t al., 1985), 

plasma electrolyte and cortisol levels (see Threadgold and Houston, 1964; 

Kamiya, 1967; Ball e t al., 1971; Bornancin and De Renzis, 1972; Utida et al., 

1972; Johnson, 1973; Scheer and Langford, 1976; Epstein et al., 1980; Jacob and 

Taylor, 1983), and chloride cell numbers and morphology (see Chapter 1).

Cortisol is the major corticoid in most teleosts (Chester Jones et al., 

1969; Henderson et al., 1970). Mayer et al. (1967) found that eels with 

interrenal tissue removed could not tolerate sea water unless cortisol injections 

were administered. Epstein et al. (1967), Pickford et al. (1970), Langford 

(1971), Butler and Carmichael (1972), and Handler et al. (1972) found that 

hypophysectomy causes a decrease in the activity of gill Na,K-ATPase, which is 

corrected by cortisol injections. Cortisol administered to freshwater-adapted 

animals increases gill Na,K-ATPase activity (Epstein et al., 1971), chloride cell 

number (Doyle and Epstein, 1972; Foskett e t al., 1981), and chloride cell 

differentiation (Doyle and Epstein, 1972), and it causes pigmentation changes in 

eels resembling those that occur during migration to sea water (Epstein e t al.,
+ 4"1971). However, cortisol does not increase Na and Cl efflux until the animals 

are placed in sea water (Epstein et al., 1971; Foskett et al., 1981). Doyle and 

Epstein (1972) found that cortisol injections increase the number of fully 

differentiated chloride cells, but the apical membranes of these cells do not 

contact the external environment until the animal is placed in sea water. It 

appears that cortisol acts as a hormonal mediator for sea water adaptation 

(Epstein e t al., 1967, 1971; Mayer e t al., 1967; Cynamon et al., 1969; Hirano, 

1969; Pickford e t al., 1970; Butler and Carmichael, 1972; Doyle and Epstein, 

1972; Kamiya, 1972a; Evans et al., 1973; Forrest et al., 1973a,b; Porthe-Nibelle
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and Lahlou, 1974; Epstein et al., 1980; Strange and Schreek, 1980; Foskett et 

al., 1981; Redding e t al., 1984; Nichols e t al., 1985; Abo Hegab and Hanke, 

1986; Dange, 1986) by conditioning the fish for osmotic stress (Epstein e t al., 

1971; Doyle and Epstein, 1972; Forrest e t al., 1973b; Foskett e t al., 1981).

Time course studies have been reported for osmotic parameters and 

Na,K-ATPase in Anguilla anguilla (Bornancin and De Renzis, 1972), Dormitator 

maculatus (Evans and Mallery, 1975), and Oncorynchus kisutch (Boeuf e t al., 

1978). The only time course studies which monitored both cortisol and 

Na,K-ATPase changes were done on Anguilla rostra (Forrest e t al., 1973a,b) and 

Fundulus heteroclitus (Jacob and Taylor, 1983).

In the present study, the time course of sea water acclimation in striped 

bass (Morone saxatilis) is described. Changes in branchial Na,K-ATPase (amount 

and activity), chloride efflux, plasma osmolality, plasma chloride, and plasma 

corticosteroids are measured after transfer of fresh water-adapted fish to sea 

water.

Materials and Methods

Striped bass (Morone saxatilis) were obtained and maintained as reported 

in Chapter 1 and by King and Hossler (1986). The fish were held for at least 3 

days before experimentation. For acclimation studies, fish were transferred 

directly from freshwater (FW) to 3% salt water and then sampled after the time 

period designated in each experiment (either 1.5 h, 3 h, 6 h, 12 h, 24 h, 3 days, 

7 days, or 14 days). All sampling was done a t approximately 2:00 p.m. (except 

for the 12 h studies which were done a t 8:00 a.m. or 8:00 p.m.) to avoid any 

variation due to  circadian rhythm (see Simpson, 1978; Spieler, 1979; Bulger, 

1986).
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Na,K-ATPase Assay

This method for measuring Na,K-ATPase activity has been described 

previously (Zaugg, 1982). Striped bass, 18.5-22.0 cm long (54.0 -  124.5 g), were 

killed by decapitation, and the gill arches were dissected free. The filaments 

were cut from the arches and immersed in 1.5 ml of a solution (SEl) containing 

0.3 M reagent grade sucrose, 0.02 M disodium ethylenediamine te traaceta te  

(Na^EDTA), and 0.1 M imidazole, adjusted to a final pH 7.1 with HCl. The 

filaments were frozen at -50®C for up to 3 weeks until Na,K-ATPase activity 

was assayed. Zaugg (1982) reported no loss of enzyme activity in samples 

frozen for up to six weeks a t -23® or colder.

The samples were thawed, placed on ice, and homogenized manually in a 

ground glass homogenizer with a glass pestle until all the filaments were 

distintegrated. The homogenate was centrifuged (10 min a t 3100 rpm), and the 

supernatant solution was decanted and discarded. The tubes were inverted to 

drain. Pellets were suspended in 1 ml of SEID (SEl containing 0.1% sodium 

deoxycholate), homogenized manually in a ground glass homogenizer with a glass 

pestle, and centrifuged (8 min at 3100 rpm). The supernatant was withdrawn 

and assayed for Na,K-ATPase activity.

Two stock solutions were prepared. Stock solution A contained 28 mM 

MgClg, 155 mM NaCl, 75 mM KCl and 115 mM imidazole (pH 7.0). Stock 

solution B was identical to stock solution A but contained 0.58 mM ouabain.

A 10 pi aliquot of each enzyme preparation was placed into a test tube 

(in ice water) containing 0.65 ml of solution A, and another 10 pi aliquot of the 

enzyme preparation was placed in a test tube (in ice water) containing 0.65 ml 

of solution B. One hundred microliters of NUgATP (0.03 M, pH 7.0) was added 

to each tube. The tubes were removed from the ice bath, shaken, and then 

placed in a 37°C water bath for 10 min. The tubes were shaken gently during
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the first minute of the incubation period. After incubation, the tubes were 

placed in ice water and shaken for 1 min.

The inorganic phosphate released was measured by the method of Fiske 

and SubbaRow (1925). One milliliter of 5% TCA (trichloroacetic acid) was 

added to each tube, and the tubes were centrifuged to remove the protein. To 

one ml of the supernatant were added 0.38 ml H^O, 0.50 ml molybdate reagent 

(2.5% ammonium molybdate in 2.5 N HgSO^) and 0.12 ml reducing reagent (0.25% 

1,2,4-aminonaphtholsulfate acid containing 0.5% Na^SOg and 15% NaHSOg).

The tubes were incubated in a 37®C shaking water bath for 10 min, cooled in 

running water, and the phosphate content was determined by absorbance at 

660 nm.

The difference between the amount of phosphate liberated by enzyme 

preparations with solution A (ouabain sensitive plus ouabain insensitive ATPase 

activity) and solution B (ouabain insensitive ATPase activity) is the amount of 

Na,K-ATPase activity. Enzyme activity is expressed as micromoles of inorganic 

phosphate liberated per milligram of protein per hour.

Protein was determined colorimetrically by the method of Lowry e t al. 

(1951) with bovine serum albumin as a standard.

Paranitrophenyl Phosphatase (PNPPase) Assay

This method for measuring K^-dependent phosphatase activity is based on 

that described by Judah et al. (1962). Striped bass, 4-20 cm long, were killed 

by decapitation. The gill arches were dissected free and the filaments were 

cut from the arches and placed in 0.25 M sucrose, 0.1 M hydroxymethyl-amino-
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methane (Tris), pH 6.8. The filaments were blotted, weighed, placed in a glass 

homogenizer (on ice) with homogenizing solution (0.25 M sucrose, 5 mM 

NagEDTA, 30 mM Tris, 0.1% sodium deoxycholate, pH 6.8) a t a level of 50 mg 

wet weight/ml and homogenized with a glass pestle. The homogenate was 

filtered through a wire mesh and 0.05 ml (2.5 mg tissue wet weight) of 

homogenate was added to control and experimental tubes. The control tubes 

contained 60 mM Tris-HCl, 1 mM ouabain, and 3 mM MgClg (pH 7.3 at 37°C). 

The experimental tubes contained 10 mM KCl, 50 mM Tris-HCl, and 3 mM 

MgClg (pH 7.3 a t 37°C). The enzymatic reaction was started  by the addition of 

paranitrophenyl phosphate (PNPP) to  give a final concentration of 3 mM (final 

volume of 1 ml); the tubes were shaken in a 37°C water bath for 15 min, and 

the reaction was stopped by placing the tubes on ice and adding 3 ml of 0.1 N 

NaOH. After centrifugation, the absorbance of the supernatant was determined 

at 420 nm on a Model 100-40 spectrophotometer (Hitachi, Ltd., Tokyo, Japan). 

The amount of PNPP hydrolyzed was determined as follows: 0.62 O.D. units = 

0.2 pmoles. Protein determinations were made by the Lowry method (Lowry et 

al., 1951).

^H Ouabain Binding

This procedure is based on the method of Hossler (1980). The fish 

(15.5-22.0 cm long; 40.5 -  107.0 g) were killed by decapitation; the gill arches 

were carefully dissected out; and the filaments were cut from the arches and 

rinsed in 0.1 M Tris - HCl (pH 7.5) containing 0.25 M sucrose. The filaments 

were blotted, weighed, and homogenized in a ground glass tube with a glass 

pestle at 10 mg wet wt/ml. The incubation medium contained 0.25 ml of homo-
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genate, 3 mM ATP, 6 mM MgClg, 100 mM NaCl, 50 mM Tris-HCl (pH 7.5 at 

37®C), and 1 x lO"® M ^H-ouabain (7 Ci/mmol) in a to ta l volume of 0.5 ml. The 

control medium lacked ATP and MgClg and contained 5 mM EDTA, 10 mM KCl, 

and 145 mM Tris-HCl (pH 7.5 a t 37®C). Incubation was for 15 min at 37®C with 

agitation. The binding reaction was stopped by placing the incubation tubes on
3

ice. Unbound H-ouabain was removed by filtering and washing on glass-fiber 

filters (Gelman type A-E; Gelman Instrument Company, Ann Arbor, Michigan) 

with 5 aliquots (about 10 ml each) of an ice-cold wash solution containing 6 mM 

MgClg, 100 mM NaCl, and 50 mM Tris-HCl (pH 7.5). After washing, the filter 

disks were dried overnight in an oven (GCA Corporation) and placed in toluene- 

Triton X-100 scintiHation fluid. The bound isotope was counted in a Beckman
3

LS 9800 scintillation counter (which had a counting efficiency for H of 50%; 

Beckman Instruments, Irvine, CA). Counting efficiency was determined by using 

an internal standard.

^^Chloride Efflux

Gill Cl efflux was measured in intact unanesthesized specimens as 

described previously (Hossler et al., 1979c; Epstein et al., 1985). Striped bass 

weighing 10.5 -  91.5 g (9.5-21.0 cm long) were injected intraperitoneally with 

1-2 pi of Cl, immersed in 1000 ml of oxygenated freshwater or sea water, and 

allowed to equilibrate for 20 min before taking a 1 ml sample of the bath was 

taken (CPMq). Another bath sample was taken a fte r 1 h (CPM^), and the fish 

was bled with a heparinized syringe via a heart puncture. The blood was 

centrifuged and 20 pi plasma was placed into 1 ml distilled water. Both bath 

samples and the plasma sample were placed in 10 ml toluene-Triton X-100 

scintillation fluid and counted by liquid scintillation. The plasma clearances of
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Cl were calculated from the radioactivity excreted into the bath and the 

residual radioactivity in the plasma as follows:

plasma clearance (ml/g/h) =  ̂ (1000)

(CPMg) (50) (W)

CPM = C P M j -  CPMjj

CPMg = counts per min/20 pi plasma

W = weight of the fish in grams

All of the radioisotope excreted under these conditions is thought to be 

excreted by the gills (Epstein et al., 1985).

Plasma Osmolality, Chloride, and Corticosteroids

The fish were maintained for at least 3 days before use in a 12 h light/

12 h dark cycle a t room temperature before experimentation. This allowed for 

adaptation to the light cycle and temperature which are known to affect 

hormone levels (see Fivizzani et al., 1984) and permitted cortisol levels to 

re-equilibrate after the stress of handling, confinement, and transportation 

(Wedemeyer, 1972; Barton et al., 1980; Tomasso et al., 1980). Food was 

withheld for 24 h before the beginning of the experiments to prevent plasma 

cortisol changes (Speller and Noeske, 1981).

The 13-25 cm (22-159 g) striped bass were anesthetized with 0.02% 

MS-222 (tricaine methanesulfonate) and bled within 5 min to avoid
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corticosteroid hormone changes due to stress (Davis e t al., 1982). Blood taken 

with a sodium heparinized syringe via a heart puncture was centrifuged and the 

resulting plasma was stored frozen (-50®C) until analyzed. Plasma chloride 

concentrations were determined by amperometric-coulometric titration with an 

Aminco Analytical Chloride Titrator (American Instrument Company, Silver 

Spring, MD). Total plasma corticosteroids were measured with a cortisol 

radioimmunoassay kit (Serono Diagnostics, Inc., Braintree, MA) and a Prias 

Liquid Scintillation Counter (Packard Instrument Company, Inc., Downers Grove, 

IL). Plasma osmolality was measured with a Model 5500 Wescor vapor pressure 

osmometer (Logan, Utah).

Statistics

The data were evaluated by analysis of variance (p < 0.05) for overall 

significance. Comparisons between experimental groups and the freshwater 

group (0 h) were evaluated by Dunnett's test (p < 0.025; Winer, 1971).

Results

All of the data obtained is presented in Figs. IV-1 to IV-7. Due to the 

stress placed on the fish during transport from the hatchery and during 

confinement in the holding tanks, this data can be considered only preliminary. 

Many long term (over one week) studies were not feasible due to disease and 

stress. These factors may have affected the results obtained in the short term 

studies. Because of the high variability between fish and the availability
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of fish from the hatcheries, all time periods for each experiment could not be 

attempted. Time periods found to be significant in previous studies on other 

species were selected in order to gain an overall picture of adaptation to sea 

water during the first few hours and days a fte r transfer.

Figures IV-1 and IV-2 show the time course of changes in Na,K-ATPase 

and PNPPase activity when striped bass are transferred directly from 

freshwater to sea water. Both assays are used as a measure of Na,K-ATPase 

activity (Skou, 1975; Mayahara et al., 1983; see General Introduction) and were 

measured over a period of a t least one week to allow time for possible 

Na,K-ATPase activity changes (Forrest e t al., 1973a,b; Jacob and Taylor, 1983). 

Although there is a decrease in PNPPase activity after 24 h, Na,K-ATPase 

activity remains at or above freshwater levels. Thereafter both enzyme 

activities increase and reach maximum levels 3 days after transfer. At day 3, 

Na,K-ATPase and PNPPase activities are 1.6 and 1.4 times greater than the 

freshwater levels, respectively, but statistically the increases are not 

significant. After 3 days in sea water both enzyme activities fluctuate, 

possibly due to the development of disease in some fish.

The optimal pH for PNPPase activity in striped bass gills under the 

described assay conditions was found to be 7.3, which is similar to that found 

for Na,K-ATPase activity in other species (e.g., pH 7.5, Dendy et al., 1973; pH

7.5, Kamiya and Utida, 1968; and pH 7.2, De Renzis and Bornancin, 1984).

Ouabain binding (Fig. lV-3) is used as a measure of the amount of 

Na,K-ATPase present (Schwartz e t al., 1975; Hossler et al., 1979c; Hossler, 

1980). Ouabain binding studies were done only over the first 24 h after
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transfer to determine if the amount of Na,K-ATPase increased within the first 

few hours. No significant difference was found between the FW (0 h), 3 h, and 

24 h specimens.

Chloride efflux (Fig. lV-4) gradually increases during the first 24 h. The 

values from fish that have been in sea water for 24 h and 7 days are 5 and 26 

times, respectively, that of the freshwater values.

Plasma osmolality and chloride values (Figs. lV-5 and lV-6) increase within 

3 h after transfer. Plasma osmolality stays elevated even after a week in sea 

water. Plasma chloride returns to freshwater levels 3 days after transfer, 

coinciding with the peak in Na,K-ATPase and PNPPase activities.

Thirty-one percent of the plasma corticosteroid measurements obtained in 

the adaptation study were out of the range (1-60 pg/dl) of the RIA kit used. 

Only the data obtained within the range is illustrated in Fig. lV-7. All of the 

actual values are listed in the legend of Fig. lV-7.

Ion concentrations in the laboratory tap  water as reported by Culligan of 

the Tri-Cities, Inc. (Blountville, Tennessee) vary from day to day but on the 

average are as follows: calcium 70 mg/L; magnesium 27 mg/L; sodium 62 mg/L; 

potassium 3 mg/L; chloride 29 mg/L; sulphate 68 mg/L; bicarbonate alkalinity 68 

mg/L; silica 9.1 mg/L; iron 0.04 mg/L; manganese 0.01 mg/L; copper 0.03 mg/L; 

zinc 0.27 mg/L; to ta l dissolved solids 180 mg/L; conductivity 284 pmho/cm; pH 

7.3. The calcium level fluctuates somewhat due to the water source. Ion 

concentration in the hatchery water a t the Southeastern Fish Cultural 

Laboratory (Marion, Alabama) are as follows: carbon dioxide 6.4 ppm; total

alkalinity 106.5 ppm; total hardness 106.6 ppm; calcium hardness 81.1 ppm; 

ammonia 0.15 ppm; nitrite  0.012 ppm; n itra te  0.01 ppm; phosphate 0.029 ppm; 

chloride 1.40 ppm; sulfate 3 ppm; sodium 1.9 ppm; potassium 3.6 ppm; calcium
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Fig. IV -  1 Changes in Na.K-ATPase activity of striped bass gills
following transfer of freshwater-acclimated fish to sea 
water. Values represent the mean (M) ± SE. The 0-hour 
sample was taken prior to the transfer.

The actual values are as follows:

0 h 4.78 ± 0.57 (5)
3 h 6.25 ± 0.82 (5)
1 day 5.78 ± 0.99 (6)
3 days 8.91 ± 0.92 (2)
7 days 7.97 ± 2.43 (5)

The numbers in parentheses are the number of fish sampled. 
No significant difference was found between the groups.
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Fig. IV -  2 Changes in PNPPase activity of striped bass gills following
transfer of freshwater acclimated-fish to sea water. 
Values represent the mean (M) ± SE. The hour sample 
was taken prior to the transfer.

The actual values are as follows:

0 h 0.96 ±0.10 (9)
3 h 1.04 ±0.17 (6)
6 h 0.86 ±0.14 (5)
12 h 0.88 ±0.10 (6)
1 day 0.65 ±0.15 (6)
2 days 0.97 ±0.24 (3)
3 days 1.35 ±0.35 (4)
4 days 0.83 ±0.16 (7)
7 days 1.32 ±0.16 (7)
14 days 0.97 ±0.18 (5)

The number in parentheses represent the number of fish sampled. 
No significant difference was found between the groups.
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Fig. IV -  3 Changes in ouabain binding of striped bass gills following
transfer of freshwater-acclimated fish to sea water. Values 
represent the mean (M) ±^E. The 0-hour sample was taken 
prior to the transfer.

The actual values are as follows:

0 h 0.58 ± 0.17 (5)
3 h 0.78 ±0.17 (5)
1 day 0.63 ± 0.09 (4)

The numbers in parentheses represent the number of fish 
sampled. No significant difference was found between the 
groups.
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Fig. IV -  4 Changes in chloride efflux of striped bass following

transfer of freshwater-acclimated fish to sea water. Values 
represent the mean (M) ±SE. The 0-hour sample was taken 
prior to the transfer.

The actual values are as follows:

0 h 0.01± 0.01 (5)
1.5 h 0.02± 0.01 (4)
3 h 0.02 ± 0.01 (4)
6 h 0.03± 0.01 (5)
12 h 0.04± 0.02 (3)
1 day 0.05± 0.01 (3)
7 days 0.17± 0.02 (4)*

The numbers in parentheses represent the number of fish 
sampled. The * represents a significant difference between 
the group indicated and the 0 h group as determined 
by Dunnett's test (p , 0.025; Winer, 1971).
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Fig. IV -  5 Changes in plasma chloride concentrations of striped bass
following transfer of freshwater-acclimated fish to  sea 
water. Values represent mean (M)± SE. The 0-hour sample 
was taken prior to the transfer.

The actual values are as follows:

0 h 162.2 ± 4.6 (29)
3 h 204.4 ± 9.6 (12)
6 h 194.3 ± 5.8 (14)
1 day 197.7 ± 8.5 (21)
3 days 170.8 ± 4.2 (16)
5 days 206.2 ± 24.2 ( 2)

The numbers in parentheses represent the number of fish
sampled. No significant difference was found between the 
groups.
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Fig. IV -  6 Changes in plasma osmolality of striped bass following
transfer of freshwater-acclimated fish to sea water. Values 
represent the mean (M) ± SE. The 0-hour sample was taken 
prior to the transfer.

The actual values are as follows;

0 h 327.2 + 6.6 (14)
3 h 418.8+ 10.9 (13)*
6 h 414.2+ 9.3 (12)*
1 day 410.3+ 14.4 (13)*
3 days 409.2 + 11.0 (13)*
5 days 464.5+ 32.5 (2)*
7 days 405.7+ 11.4 (3)*

The numbers in parentheses represent the number of fish 
sampled. The * represents a significant difference between 
the group indicated and the 0 h group as determined 
by Dunnett's test (p , 0.025; Winer, 1971).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

P l a s m a  O s m o l a l i t y

500

450

mmol/kg
MM

400

350

300

4 52 3 6 70 1
3/,

H o u r s
Days

Time  i n  Se a  Water

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Fig. IV -  7 Changes in plasma corticosteroids of striped bass following
transfer of freshwater-acclimated fish to sea water. Values 
represent the mean (M) ±SE. The 0-hour sample was taken 
prior to the transfer.

The actual values are as follows:

0 h 28.2 ±4.7 (15)
3 h 30.3 ±6.4 (8)
6 h 26.4 ±7.8 (8)
1 day 20.6 ± 4.6 (10)
3 days 18.1 ±3.4 (14)
5 days 31.1 ±7.5 (2)
7 days 40.2 ±10.0 (2)

The numbers in parentheses are the number of fish sampled. 
No significant difference was found between the groups.

If the values obtained within the assay range as described 
above are combined with the values obtained in this study 
outside the 1-60 pg/dl range the results are as follows:

0 h 27.6 + 21.4 (18)
3 h 69.5 ± 45.8 (15)
6 h 43.4 ± 28.3 (13)
1 day 52.6 ± 48.1 (16)
3 days 35.7 ± 35.8 (18)
5 days 31.1 ± 7.5 (2)
7 days 48.0 ± 13.7 (3)

Statistical analysis was not applied to this data.
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41.3 ppm; magnesium 5.5 ppm; manganese 0.12 ppm; zinc 0.005 ppm; copper 0.01 

ppm; ferrous iron 0.08 ppm; to tal iron 0.90 ppm; conductivity 92 pmho/cm; pH

7.5.

Discussion

The results from the Na.K-ATPase and PNPPase studies are difficult to 

evaluate because seasonal variations (Zaugg and McLain, 1970; Boeuf et al., 

1978; Lassere e t al., 1978), water temperature, animal age/size (Courtois, 1976; 

De Renzis and Bornancin, 1984; McCormick and Naiman, 1984), disease, and 

stress may affect measurements. Also, the assay conditions may not have been 

optimal for striped bass gill Na,K-ATPase and PNPPase activity, since the 

concentrations used were derived from experiments on other species. Possible 

inhibition of Na,K-ATPase by zinc, copper, and aluminum in the hatchery and 

laboratory water were examined. The concentrations present were below those 

known to cause inhibition (Lorz and McPherson, 1976; Stagg and Shuttleworth, 

1982; Crespo and Karnaky, 1983; Staurnes et al., 1984a,b).

Both the Na,K-ATPase and PNPPase assays require sodium deoxycholate, 

a detergent, as part of the homogenizing solution. Detergents and freezing 

(Na,K-ATPase assay) are thought to increase Na,K-ATPase activity of 

homogenates because exposure of the enzyme active sites to the substrate is 

enhanced (Skou, 1961; Bonting, 1970; Jorgensen and Skou, 1971; Rostgaard and 

Moller, 1971; Zaugg, 1982). Zaugg's method (Zaugg, 1982) for measuring 

Na,K-ATPase activity includes a partial purification of the gill homogenate, and 

specific activities measured by this method are generally higher than those 

obtained from crude homogenate preparations such as in the PNPPase assay. 

The results from both assays show similar trends, although specific activities 

using the Na,K-ATPase assay are higher for each time period tested.
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Na.K-ATPase activity in eels (Forrest et al., 1973a,b) and killifish (Jacob 

and Taylor, 1983) appear to take several days a fte r exposure to sea water to 

reach maximal levels. In eels Na,K-ATPase activity starts increasing a fte r 3 

days in sea water and is maximal a fter 2 weeks. Killifish gill Na,K-ATPase 

activity decreases for 2 days after transfer and then reaches its maximum 3 

days after transfer and remains high. Striped bass also reach maximal recorded 

activity 3 days after transfer, but activity fluctuated considerably. 

Statistically, there is no significant difference between the freshwater (0 h) and 

the sea water activities. This may be due to the small sample sizes and the 

high variability between fish.

The decrease in gill PNPPase activity observed in striped bass during the 

first 24 h in sea water is similar to the reduction in Na,K-ATPase activity in 

eel gills reported by Utida et al. (1971) and Bornancin and De Renzis (1972). 

Bornancin and De Renzis (1972) proposed that the initial reduction may

represent the freshwater form of Na,K-ATPase being turned off before a sea 

water form is turned on (Motais, 1970a,b; Pfeiler and Kirschner, 1971; Gallis et 

al., 1979).

The increase in striped bass gill Na,K-ATPase activity during acclimation 

to sea water (3% salt water) is not as dramatic as in other species (see General 

Introduction). This may be due to suboptimal assay conditions. It is also 

possible that striped bass have the capability of osmoregulation at even higher 

salinities as do Cyprinodon variegatus (200% seawater, Karnaky et al., 1976a). 

If so, 3% salt water may only require the activation of the transport 

mechanisms of a fraction of the chloride cells. This may be represented

ultrastructurally by the alteration of only some of the apical crypts during 

acclimation to sea water (see Chapter 1). Also, the opercular epithelium of

striped bass may be responsible for much of the ion regulation, as proposed by
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Payan and Girard (1984) for other species. In Fundulus, chloride cells comprise 

only 6% of the cells in the gill epithelium but make up 50-70% of the opercular 

epithelial cells (Karnaky and Kinter, 1977).

Ouabain binding increases with increasing salinity in some species 

(Karnaky e t al., 1976b; Mossier et al., 1979b,c; Hossler, 1980) and may begin 

increasing within the first 24 h a fte r transfer to sea water (Hossler, 1980). No 

change occurs during the first 24 h after transfer of striped bass to sea water. 

The lack of change may be due to suboptimal assay conditions or it may 

represent a difference between the maximum cataly tic rates in mullet (Hossler, 

1980) and striped bass. Perhaps mullet Na,K-ATPase complexes are working 

near maximum efficiency in freshwater. Transfer to sea water may require an 

immediate increase in Na,K-ATPase molecules to handle the osmotic stress. 

Towle e t al. (1977) hypothesized that short-term salinity changes involve 

catalytic rate modifications rather than changes in the number of Na,K-ATPase 

molecules. This is may be true for striped bass.

Na^ and Cl efflux rates have been used in a variety of species as a 

measure of osmoregulation (Maetz e t al., 1969; Epstein et al., 1980, 1985; 

Evans e t al., 1973; Forrest et al., 1973a,b; Bath and Eddy, 1979; Hossler et al., 

1979c; Karnaky et al., 1977). Maetz et al. (1969) have shown that Na^ efflux in 

eels s tarts  increasing within the first 5 h after transfer to sea water, while it 

takes approximately 10 h in rainbow trout (Bath and Eddy, 1979). Chloride 

efflux in striped bass starts increasing within 3-6 h after transfer. If chloride 

efflux in striped bass is an active process as it is in other species (see General 

Introduction), an energy dependent enzyme complex must be required. Since 

Na,K-ATPase activity does not appear to increase significantly, another enzyme 

may be responsible for the efflux at this early time.
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Plasma osmolality levels for sea water fish are reported to  be 20% higher 

than those of freshwater fish (Johnson, 1973). In striped bass, the plasma 

osmolality for a fish acclimated to sea water for 7 days is 24% higher than for 

the freshwater adapted fish. Leray e t al. (1981) reported that plasma 

osmolality reached a maximum 2-4 h a fte r rainbow trout were transferred to sea 

water but returned to freshwater levels in 6-10 days. In striped bass, plasma 

osmolality is highest a fter 3 h in seawater and remains elevated for the first 

week. No long term osmolality studies were done.

Davis e t al. (1982) reported plasma chloride levels for freshwater striped 

bass to be 118.8 ± 5.2 meq/L (x ±SE). We found plasma chloride levels for 

freshwater striped bass to be 36% higher than those reported by Davis et al. 

Because of the small volume of plasma obtained from the fish used in this study, 

evaporation may have occurred resulting in more concentrated plasma chloride. 

Striped bass plasma chloride is maximal after only 3 h in sea water, as 

compared to 72 h and 2 days in other species (Threadgold and Houston, 1964; 

Epstein e t al., 1980).

Davis e t al. (1982) reported plasma corticosteroid concentrations of 

"undisturbed" striped bass to be 2.99-0.71 pg/100 ml (x ±SE). The freshwater 

values obtained in this study (28.2 ± 4.7 pg/100 ml; x ± SE) are 10 times higher. 

This could have resulted from stress due to disease. Because of the high 

corticosteroid values for the freshwater fish used in this study, the effects of 

sea water adaptation caused many of the values obtained to be above the range 

of the assay. This assay must be repeated with fish under considerably less 

stress to obtain results that reflect adaptation to sea water and not just 

general stress.
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Long-term studies of these parameters are needed to fully understand 

striped bass adaptation to sea water. Also, other transport or cotransport 

systems such as the Na'*'/K‘'’/2 C r  cotransport system (Epstein et al., 1983; 

Burnham e t al., 1985; Geek and Heinz, 1986; Jorgensen, 1986; Silva e t al., 1986) 

should be investigated for their possible role in striped bass osmoregulation.
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GENERAL DISCUSSION

The objective of this study has been to investigate the adaptation of 

striped bass to sea water with special emphasis on the chloride cell of the gills. 

Ultrastructural studies suggest tha t exposure to sea water (3% salt water) for 

one week induces an increase in chloride cell number, size, and mitochondrial 

content, as well as an amplification of the basolateral plasma membrane of 

these cells. The apical crypts s ta rt to undergo morphological changes within 

the first 3-6 h a fte r transfer and increase in number 32.5% above freshwater 

fish after a two-week period. In fish tha t have been exposed to sea water for 

7 days, the apical crypts exhibit morphological diversity; some contain obvious 

cellular extensions and others are pit-like in structure. Other species such as 

mullet (Hossler, 1980) exhibit exclusively the deep, pit-like crypts in sea water. 

Since chloride cells have been shown to be the site of gill Na,K-ATPase activity 

(Mizuhira e t al., 1970; Kamiya, 1972b; Sargent e t al., 1975; Hootman and 

Philpott, 1978; Naon and Mayer-Gostan, 1983) and chloride concentration 

(Copeland, 1948; Philpott, 1965; Petrik, 1968; Bierther, 1970; Masoni and Garcia 

Romeu, 1973), it is hypothesized tha t they are responsible for the active 

chloride secretion of the gills (see review by Karnaky, 1986). It has been 

proposed that the deepening of the apical pit increases surface area for ion 

transport and allows access to the external environment for all the chloride 

cells which share an apical crypt (Hossler et al., 1979b). The morphological 

changes in crypts that occur in striped bass during adaptation to sea water may 

reflect the recruitment of a fraction of the chloride cells for active chloride 

extrusion. Activation of all of the chloride cells may not be necesary during
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adaptation to sea water (3% salt water) since striped bass may be able to 

tolerate even higher salinities as can Cyprindon variegatus (200% seawater, 

Karnaky e t al., 1976a).

Na,K-ATPase has been localized to the basolateral plasma membrane 

tubular system of chloride cells (Mizuhira et al., 1970; Shirai, 1972; Silva et al., 

1977; Karnaky et al., 1976b; Hootman and Philpott, 1979). In many species 

Na,K-ATPase activity increases by 2-6 fold upon adaptation to sea water (see 

General Introduction). The Na,K-ATPase pump is thought to supply the gradient 

necessary for salt extrusion (see Karnaky, 1986). Na,K-ATPase activity of 

striped bass gill filaments does not seem to increase during the first 24 h after 

transfer to  sea water but is highest 3 days after transfer. The fact that 

chloride efflux increases within 3-6 h after transfer to sea water and that there 

is initially (during first 24 h) no increase in Na,K-ATPase activity suggests that 

other transport mechanisms are responsible for short term osmoregulation.

The increase in Na,K-ATPase activity during acclimation to sea water 

(1.4-1.6 times freshwater levels) is not as dramatic as in other species (2-6 

times freshwater levels; see General Introduction). This may be due to fish 

stress and disease or to suboptimal assay conditions. It is feasible that the 

opercular epithelium may be responsible for a great deal of the osmoregulatory

capabilities in striped bass. It is also possible that other transport mechanisms, 

such as the NaVK^/2Cl" coport are more active than Na,K-ATPase in 

osmoregulation of striped bass gills. Further studies should investigate whether 

inhibitors of Na^/K^/2Cr coport such as bumetanide, and inhibitors of 

Na,K-ATPase such as ouabain, decrease chloride efflux.
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Ouabain binding studies of striped bass gill filament homogenates indicate 

that no increase in Na,K-ATPase enzyme complexes occurs during the first 24 h 

a fte r transfer to sea water. Some species such as mullet (Hossler, 1980) have a 

significant increase in the number of Na,K-ATPase molecules (ouabain binding 

sites) during the first 24 h of acclimation to sea water. Towle et al. (1977) 

hypothesized tha t short term salinity changes involve catalytic rate 

modifications rather than changes in the number of Na,K-ATPase molecules, 

which may be true for striped bass. It is also possible that mullet Na.K-ATPase 

complexes are working near their maximum efficiency in freshwater. Transfer 

to sea water may require an immediate increase in Na,K-ATPase molecules to 

handle the osmotic stress. Striped bass Na.K-ATPase complexes may be working 

a t submaximal activity  in freshwater. Exposure to sea water only increases 

enzyme efficiency. Long term ouabain binding studies are needed to determine 

if Na,K-ATPase complex increase after 24 h in sea water.

Essential to osmoregulation mechanisms is the blood flow in the gills and 

that is described here using vascular corrosion casting (see Chapter 2). The 

control mechanism for possible blood flow changes in striped bass gill filaments 

during increased osmotic stress may occur at a variety of places and may 

include shunts, sphincters, and cellular contraction. The constrictions of the 

afferent filamental arteries (see Chapter 2 and the Appendix) may represent 

sites of control of blood flow to the whole filament. Interlamellar blood 

distribution mechanisms could be controlled by sphincters in the afferent 

lamellar arterioles. Intralamellar distribution mechanisms may include shunting 

through the marginal vessel or basal channel and be affected by pillar cell 

contraction. Sphincters in efferent filamental arteries (see Chapter 2 and the 

Appendix) may force blood into the central venous sinus via the arterio-venous
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anastomoses. Chloride cells have been associated with both the central venous 

sinus with its arterio-venous network, and with the basal channel of the 

respiratory lamellae. The elaborate central venous sinus-accessory companion 

vessel complex may provide a counter-current mechanism of blood flow in the 

chloride cell area, giving it a possible role in osmoregulation.

Although this study has established that many morphological, enzymatic, 

and hormonal changes occur during the adaptation of striped bass to sea water, 

many questions remain unanswered. Future studies must focus on (1) the roles 

of transport and coport mechanisms other than Na,K-ATPase in osmoregulation; 

(2) the initiation and control of long term versus short term adaptation 

mechanisms; (3) cell junctional complex changes during osmotic adaptation; (4) 

the function of the central venous sinus complex and its response, if any, to 

increased salinity; and (5) the possible differences in osmoregulatory capabilities 

between striped bass that are progeny of freshwater adapted fish and those that 

are progeny of sea water fish.
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The gill arch of the striped bass, Morone saxatilis. 
I. Surface ultrastructure

F.E. HOSSLER, J.H . HARPOLE Jr. and J.A. K ING

Department o f Anatomy, Quillen-Dishner College o f  M edicine, East Tennessee State University, Johnson City, 
Tennessee 37614, USA

SUMMARY - The surface ultrastructure o f  the four gill arches o f the striped bass, Morone saxatilis, are described anatomi­
cally and morpbometrically using routine scanning electron microscopic techniques. The gill arches are structurally similar to 
those o f  other euryhaline teleosts. Filaments are free for most o f  their length, have convex afferent surfaces and flat efferent 
surfaces, and support rows o f well developed respiratory lamellae. The latter are triangular and leaf-like, conform to the shape 
o f the filament, and have a w ide leading edge exposed on the efferent filament surface. Pavement cells, with obvious, 
concentrically arranged surface microplicae cover most surfaces of the gill arches. The microplicae are m uch less obvious or 
absent on the pavement cells o f  the respiratory lamellae. Apical crypts o f chloride cells are abundant on the afferent and 
interlamellar filament surfaces, but are absent elsewhere on the gill arch. Gill rakers on the anterior row o f the first gill arch 
are long, well developed processes, but rakers in the posterior row o f  the first gill arch and in both rows o f the other gill arches 
are reduced to short, spine-studded, raised areas o f  the epithelium. Taste buds are abundant on the pharyngeal surfaces o f the 
gill arches and on all giU rakers. The highly developed gill arch structure is typical o f a moderately active, euryhaline teleost.

K ey  W o rd s  striped bass - M orone saxatilis - g ill  - scanning electron microscopy ■ 

chloride cell

INTRO DUCTIO N

There has been increasing interest in the biology of the 
striped bass, Morone saxatilis, in recent years because of the 
value and extent of the sports fishery of this species in both 
marine (St. Laurence Seaway to Florida; Gulf of Mexico; 
and California coast) and freshwater environments (see 
Pfuderer et al., 1975), and because of the recent decline in 
the numbers of this species as a result o f pollution o f these 
environments (Hazel et al., 1971; Pfuderer et al., 1975; 
Dawson, 1982; Mehrle, 1982; Hall et a i ,  1982, 1984; W ri­
ght et a i,  1985). In addition because striped bass are an 
anadromous species and are known to tolerate abrupt chan­
ges in salinity (Tagatz, 1961; Otwell and Merriner, 1975; 
Hossler, unpublished observations) they provide a useful 
model system for studies of the raté of osmotic adaptation 
and the mechanism of osmoregulation. Most studies of 
striped bass to date have dealt with culture conditions, 
growth rates, and distribution (see bibliography compiled 
by Pfuderer et a!., 1975; and reviews by Kerby et a i,  1983,

and Geiger and Parker, 1985) but very few reports have 
dealt with the physiology, biochemistry, and anatomy (Gro­
man, 1982) of this species. In preparation for studies on the 
mechanism of osmoregulation we present here a descrip­
tion of the surface ultrastructure of the gill arches of the 
striped bass. A preliminary account of this study has 
appeared in abstract form (Harpole and Hossler, 1983).

MATERIALS A N D  M ETH O D S

Striped bass, M orone saxatilis, 3-20 cm in length were donated by the 
Eagle Bend Fish Hatchery and Morristown State Fish Hatchery, Tennes­
see Wildlife Resources Agency. Fish were maintained in aerated, 100 1 
tanks (20-24 °C) in tap water or 0.1% sea salts (w/v; Instant Ocean Salts, 
Aquarium Systems, Mentor, Ohio) at least one week before use. Fish were 
fed processed, trout fry pellets (Silver Cup Fish Feed, Murray Elevators, 
Murray, Utah) and kept on a cycle o f approximately 11 h o f subdued light 
and 13 h o f dark.
Fish were killed by decapitation, the opercula were spread laterally, and 

each gill arch was carefully removed, rinsed free o f blood w ith 0.9% NaCl, 
and placed in  freshly prepared fixative for 2 h at 20-24 °C or overnight at 
4 °C. Fixative consisted o f  2.5%  glutaraldehyde and 1.8% paraformalde­
hyde in O.IM cacodylate-HCl buffer (pH 7.2). After fixation gill arches

Surface ultrastructure of striped bass gill
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were rinsed for 1 h with 3 changes o f  excess buffer (0.2M  cacodylate-HCl, 
pH  7.2), then post-fixed for 2 h at 4 °C in 2%  OsO., in O.IM cacodylate- 
H C l (pH 7.2). Gill arches were rinsed in buffer as before, then dehydrated 
in a graded ethanol series during a period o f 1-2 h. G ill arches were placed 
in a critical point drying apparatus (model E3000, Polaron Instruments, 
Inc., Hatfield, PA) in 100% ethanol, dried with liquid CO2 , affixed to  
specimen stubs with silver paste, coated with a thin layer of gold or gold- 
palladium in a sputter coating apparatus (model Desk 1, Denton Vacuum, 
Inc., Cherry Hill, NJ), and observed in a m odel S430, scanning electron 
microscope (Hitachi Scientific Instruments, M ountain View, CA). M easu­
rements were made from electron micrographs.
For light microscopy gills were fixed as described above, dehydrated first 
in a graded ethanol series then in propylene oxide, and embedded in epon- 
araldite (Mollenhauer, 1964). Sections were cut (2 pm thick), mounted on  
glass slides, stained with toluidine blue (1% in 1% borate), and photogra­
phed with a Zeiss standard light microscope.

RESULTS

Striped bass are especially subject to shock during trans­
port and handling. The mortality rate is usually reduced by 
covering tanks and adding up to 0.1% sea salts to the water 
during transport, and by maintaining fish in tanks partially 
covered with translucent shields or cardboard and located 
in low-traffic, low-light areas of the laboratory.
GUI arch structure is simUar to that o f other teleosts (see 
Hughes, 1984; Laurent, 1984). Two rows of fUaments (an­
terior and posterior hemibranches) extend posterolateraUy 
and two rows of rakers extend anteromediaUy from each of 
the four arches, designated 1, 11, 111 and IV, rostral to 
caudal (Figs. 1 and 2). Both rows o f fUaments curve slightly 
posteriorly in vivo, and are free for most of their length (i.e., 
are perciform type teleost gUls; Dornescu and Miscalencu, 
1968). FUament length varies with different gUl arches and 
with different locations on a given arch. FUaments of the 
posterior hemibranch are longer than those of the anterior 
hemihranch on the dorsal aspects of arches 1 and 11. FUa­
ments of the anterior hemibranch are longer than those of 
the posterior hemibranch on the ventral aspects of arches 
11, 111 and IV. Elsewhere the fUaments of each hemibranch 
are simUar in length.

F ig u r e  1 Lateral view o f the right gill arches of a 2 0  cm striped bass. 
Arches are designated I, II, III, and IV, rostral to caudal. Photographed 
with a Leicaflex SL 35mm camera with a 100mm macro lens. R; rakers; F: 
filaments. X 2.5.

F ig u r e  2 Lateral view of gill arch I. R: rakers; AF: afferent filament surface; EF: efferent filament surface; RL: respiratory lamellae, x  78. 

F i g u r e  3 Structure of filaments and respiratory lamellae. AF: afferent filament surface; EF: efferent filament surface; RL: respiratory lamellae. X 214.
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T a b l e  1

Measurements* on gill arches o f  10cm striped bass

Gill arch Length (cm.)
Num ber o f filaments Number o f rakers

Ant. hemibranch Post, hemibranch Ant. hemibranch Post, hemibranch

I. 15.4 ±  .55 (10) 118.4 ±  8 .4 (1 1 ) 116.8 ±  9 .6 (1 2 ) 23.8 ±  2.4 (12)" 19.2 ±  .75 (11)
II. 15.4 ±  .55 (10) 107.4 ±  11.3 (11) 102.8 ±  11.2 (11) 15.1 ± .1 .4  (13) 14.6 ±  1.4 (12)
m . 12.4 ±  .55 (10) 93.4 ±  13.1 (10) 84.5 ±  8.7 (10) 12.7 ±  1.3 (10) 12.^ ±  1.2 (10)
IV. 12.2 ±  .75 (10) 83.8 ±  11.5 (6) 82.2 ±  7.9 (6) 8.8 ±  .75 (6) 8.8 ±  .75 (6)

* Values expressed as mean ±  standard deviation (N); ** long gill rakers.

Filaments in the two hemibranches of the same arch are not 
paired but rather alternate and interdigitate somewhat ba- 
saUy. DistaUy, the tips of filaments of one hemibranch lie 
close to those o f  the adjacent hemibranch on the next arch. 
Similarly, the pharyngeal surfaces of adjacent arches are 
closely aligned with each other such that the rakers of one 
arch could mesh with those o f an adjacent arch to form a 
seal between the pharyngeal and giU cavities.
Both the length and number o f filaments and rakers per 
arch increase with the growth o f the fish. But as an exam­
ple, we present counts obtained from typical fish, 10 cm in 
length, in Table I.
Each filament supports two rows o f triangular, leaflike, 
respiratory lamellae, one row on each side of the filament 
(Figs. 3 and 4a). In the center of gill arch I on a typical 10 
cm fish there are about 40-50 lamellae per mm on each side 
of a filament. In cross section, filaments are rounded on 
their afferent surfaces but more flattened on their efferent 
surfaces (Fig. 3). The respiratory lamellae conform to the

shape o f the filament, are present from its base to its apex, 
and greatly increase its surface area. Each o f  the triangular­
shaped lamellae, has its leading, free edge aligned with the 
efferent surface of the filament.
With few exceptions aU surfaces of each gill arch are cov­
ered by a mosaic of flattened, polygonal pavement cells 
(Copeland, 1948) which exhibit concentrically-arranged 
microplicae (Andrews, 1975) on their surfaces (Fig. 5a,6). 
Cell borders can usually be discerned by changes in the 
surface pattern or by prominent intercellular ridges. These 
cells measure 7.5 ±  2.7 gm in diameter, and the surface 
microplicae measure 0.2 ±  0.3 gm in width. On the interla- 
mellar surfaces, the surface microplicae are often discontin­
uous or replaced by short surface projections (Fig. 5a). On 
the respiratory lamellae, however, the microplicae disap­
pear, giving rise to smooth-surfaced pavement ceUs, whose 
borders are distinctly outlined by rows o f short surface 
projections (Fig. 4a,ê>).
On the afferent surfaces of filaments, on the interlamellar

F i g u r e  4a,6 (a) Respiratory lamellae. (6) Polygonal, smooth-surfaced pavement cells on respiratory lamellae. N ote the absence o f  micronlicae, but the 
presence o f short surface projections especially along intercellular borders (arrow), (a) X 1429, (6) X 3064.

F i g u r e  5a,6 (a) Afferent and interlamellar filament surfaces. (i>) Apical crypt o f chloride cell. RL: respiratory lamellae; CC: apical crypts of chloride 
cells; PM: pavement cell microplicae (compare with Fig. 46); arrow: apical extensions o f  chloride cells, (a) X 2086; (6) X 7440.

Surface ultrastructure o f  striped bass gill
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surfaces, and around the bases o f respiratory lamellae the 
pavement cell epithelium is interrupted by the apical crypts 
of chloride cells (Figs. 5a,b and 6). These apices open along 
the borders o f  adjacent pavement cells, measure 3.16 ±  
1.05 gm in diameter, and consist of tufts of short, cellular 
projections (Fig. 5b). Chloride cell apices are not observed 
on the efferent filament surface (Fig. 6), on the raker sur­
faces (Figs. 7 to 11) or on any other surface of the gill arch. 
The anterior row o f rakers on gill arch I consists of long, 
finger-like appendages which span the slit between gill arch 
I and the operculum and thus separate the pharyngeal 
cavity from the opercular cavity (Fig. 8). The anterior 
surface of the rakers is convex, but the posterior (pha­
ryngeal) surface (Fig. 10) is flattened and contains a single 
row of spines along each edge. The posterior row of rakers

on gill arch I (Fig. 8) and both rows of rakers on the 
remaining gill arches (Fig. 9) are reduced to short, raised 
areas generously studded with spines.
Taste buds are observed in a single row along the center of 
the pharyngeal surface of each gill arch (Figs. 8 and 9) and 
along the center of each of the long rakers (Figs. 7 and 10), 
and are also distributed randomly among the spines on 
each of the short rakers (Figs. 11 and 12). Taste buds are 
located on raised areas of the epithelium (Figs. 7 and 12) 
and consist o f tufts of large and small microvilli which 
project above the epithelial surface along the lateral borders 
of adjacent, pavement cells (Figs. 12 and 13). Taste buds 
usually contain about 9 ±  4 large microvilli and 163 ±  56 
small microvilli, and measure about 3.06 ±  1.1 |xm in 
diameter (Fig. 13).

F i g u r e  6 Light micrograph o f cross section o f filament. Note presence o f clear, columnar chloride cells (arrows) on afferent (A) and interlamellar, but 
not efferent (E) filament surfaces. RL: respiratory lamellae. X 76 J.

H o s s l e r  F .E . ,  H a r p o l e J . H .  J r . a n d  K i n g J .A .
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F i g u r e  7 Light micrograph o f pharyngeal surface o f  a long gill raker near its base. N ote taste bud (TB) with its characteristic dark and light cells on a 
raised area o f the epithelium. PC: pavement cells; MC: mucous cells; CT: connective tissue core o f  raker, x  1092.

DISCUSSION

The gill arches of the striped bass, Morone saxatilis, are 
typical of arches of teleosts o f intermediate activity accor­
ding to Gray (1954) and as discussed by Hughes (1984). All 
four gill arches are highly developed, exhibiting relatively 
long filaments the full length o f each arch. The respiratory 
lamellae are numerous and o f average size when compared 
with other fish of intermediate activity (e.g., mullet: Hossler 
et al., 1979; and killifish: Hossler et al., 1985). However, the 
number of lamellae per millimeter (40-50) on each side of 
the filament is high compared to the average value (18-25) 
reported by Hughes (1984) for fishes of intermediate acti­
vity. This could indicate that these fish should be classi­
fied near the upper range o f activity o f this group. How­
ever, these high values could result from our use of imma­
ture fish in this study.

With the exception of its importance in feeding mecha­
nisms (see discussion by Lander, 1983), gill raker anatomy 
has received little attention in the literature. As is the case 
with some other teleosts (e.g., killifish, Hossler et a l,  1985) 
only the anterior row of rakers, on the first gill arch of 
striped bass is highly developed. These rakers bridge the 
gül slit between the operculum and the first giU arch and 
likely prevent food or ingested debris from entering the 
opercular cavity and causing possible damage to the respir­
atory lamellae. This first gill slit would seem to be poten­
tially the largest opening in the gill and could function in 
expelling water during feeding —  hence the importance of 
this first row of rakers and their well-developed pha- 
ryngeaUy directed spines. All o f the remaining rows of rakers 
in the striped bass giU, although heavily laden with spines, 
are reduced to short, raised areas along the pharyngeal 
surface o f each arch. Their positioning, however, allows

Surface ultrastructure o f  striped bass gill
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juxtaposed rakers on adjacent arches to interdigitate when 
the arches are approximated thus forming a tight seal be­
tween the pharyngeal and gill cavities. Lander (1983) has 
demonstrated very elegantly in bluegill sunfish that such a 
seal is essential for the formation of negative pressure in the 
pharyngeal cavity during suction feeding.
During respiration, however, the slits between gill arches 
are open, and the primary source of resistance to waterflow 
is provided by the close approximation o f filaments (espe­
cially at their tips) and their attached respiratory lamellae 
(see discussion in Hughes, 1984). This arrangement insures 
that water entering the giQs will flow across the lamellar 
surface. The respiratory function would also be enhanced 
by orienting the triangular lamellae such that one broad 
surface o f the triangle would face the incoming water on the 
efferent surfaces of the filaments as observed here. The 
reduction in surface sculpturing on the pavement cells of 
the respiratory lamellae seen here has been observed in 
other species (trout, Hughes, 1979; mullet, Hossler et a i, 
1979; Tilapia, Fishelson, 1980; killifish, Hossler et al., 
1985). Although it is possible that pavement cell surface 
ridges at this site are masked by a covering of mucus, we 
feel the ridges are truly absent for several reasons. First, the 
cell to cell junctions with their microvilli remain distinct on

the lamellae. And. second, preliminary transmission elec­
tron micrographs o f  lamellae o f striped bass (unpublished) 
have failed to reveal the surface ridges. Because surface 
sculpturing is believed to act as an anchoring site for mucus 
(Hughes and Wright, 1970; Sperry and Wassersug, 1976; 
Hughes, 1979), its absence in this area might serve to 
reduce the thickness o f the blood-water barrier. ■
O f special interest in this study was the location and ana­
tomy of the apical crypts o f chloride cells because our 
intent is to use striped bass as a model system for studies on 
the mechanism o f osmoregulation. As with most other 
euryhaline teleosts (see discussion in Laurent, 1984) chlori­
de cells in striped bass are limited to the epithelium of 
efferent and interlamellar surfaces of filaments. The diame­
ter of the apical crypts (3.16 pm) is similar to that of other 
euryhaline teleosts adapted to freshwater (e.g., mullet, 
about 4 pm, Hossler, 1980; and killifish, 2.03 pm, Hossler 
et al., 1985). As with other fish the crypts appear as slight 
depressions between adjacent pavement cells through 
which project numerous chloride cell surface extensions. 
Preliminary observations of seawater adapted fish (not re­
ported here) indicate that the anatomy of crypts is altered 
by changes in salinity, but these results will be dealt with in 
a subsequent manuscript.

F ig u r e  8 Pharyngeal surface o f  gill arch I. R; rakers; arrows; raised areas o f epitheliun-. containing taste buds. X 60.

F ig u r e  9  P h a r y n g e a l  s u r f a c e  o f  g ill a rc h  I I I .  R: r a k e r s ;  S: s p in e s ;  a r ro w s :  r a i s e d  a re a s  o f  e p i t h e l i u m  c o n ta in in g  t a s t e  b u d s .  X 1 0 7 .

F ig u r e  10 Pharyngeal surface o f  long rakers o f gill arch 1. N ote  distinct borders o f pavement cells. S: spines; arrows: raised areas o f epithelium  
containing taste buds, x 557.

F ig u r e  11 S h o r t  g ill r a k e r .  N o t e  ra is e d  a re a s  o f  e p i th e l iu m  c o n ta i n in g  t a s te  b u d s  (T B )  a l t e r n a t in g  w i th  s p in e d  (S) e p ith e lia l  p r o je c t io n s .  X 1 7 9 .

F ig u r e  12 Details o f short gill raker. N ote spines (S), pavement cells (PC), and raised areas o f  epithelium containing taste buds (TB). X 1767.

F ig u r e  13 Details of taste bud. Note pavement cell microplicae (PM ) and large (double arrow) and small (single arrow) microvilli o f taste bud cells.
X  5365.
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A bstract

The g i l l  vascula ture o f  euryhaline s tr iped  
bass, Morone s a x a t i l i s  , was examined by scanning 
elec tron  microscopy of  corrosion  cas ts  prepared 
by in jec t ing  resin  ( e i t h e r  Mercox/Sevriton or 
L.R. White) in to  the ventra l a o r ta .  The vascu­
la tu re  of the s tr iped  bass g i l l  appears to be 
s im ila r  to tha t  of o the r  euryhaline species. The 
s tr iped  bass g i l l  has th ree  major vascular 
systems: (1) a re sp ira to ry  system, (2) an
arterio-venous system, and (3) a n u tr i t iv e  
system. In the re sp ir a to ry  system, blood from 
the a f fe re n t  branchial a r te ry  flows to each f i l a ­
ment via an a f fe re n t  f i lamental a r te ry ,  and from 
there  to  the highly vascu la rized  resp ira to ry  
lamellae. Lamellar blood i s  conducted back to 
the e f fe ren t  branchial a r t e r y  via the e f feren t  
filamental a r te ry .  In the  second system a r t e r i o ­
venous anastomoses t r a n sp o r t  blood from the 
e f fe re n t  filamental a r t e r y  to  the  central venous 
sinus. Blood then flows to  the  branchial vein 
e i th e r  d i r e c t ly  or via paired a f fe re n t  companion 
vessels .  No arte rio-venous anastomoses connect­
ing the prelamellar vesse ls  with the  central 
venous sinus have been found. F inally ,  n u t r i t iv e  
branches to  the arch are  provided by the e f fe ren t  
branchial a r te ry  and the e f f e re n t  filamental 
a r te ry .  The s tr iped  bass does not have a 
lamellar bypass system involving the central 
venous sinus as reported in  o ther  species. 
In tra lam ella r  d i s t r ib u t io n  mechanisms and lam ellar 
recruitment may account f o r  changes in re sp ira ­
to ry  lamellar perfusion during decreased and 
increased oxygen demand, respec tive ly .  The 
central venous s inus ' r o le  may be p a r t i a l ly  
nu tr i t io n a l  since i t s  blood i s  oxygenated.
However, i t s  complex vascu la r  connections may 
permit a var ie ty  of o th e r  functions.

KEY WORDS:, s tr iped  bass, Morone s a x a t i l i s . g i l l ,  
scanning electron microscopy, vascular cas ting ,  
in je c t io n  rep l ica ,  blood v es se ls ,  vasculature, 
m icrocircula tion ,  microcorrosion casts
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Introduction

Recently, s t r ip ed  bass (Morone s a x a t i l i s )  
have become the sub jec t  o f  increased study 
because po llu tion  of  t h e i r  native  spawning 
grounds has led to a d ec l ine  in th e i r  numbers 
(Dawson, 1982), and because th i s  species has 
become increasingly  important to  landlocked sport 
f i s h e r ie s  (Parker and Geiger, 1984). Their 
eu ryha lin ity  (Tagatz, 1961) a lso  makes them an 
e x c e l len t  species fo r  osmoregulation s tud ies .  
Although s tr iped  bass g i l l  morphology has been 
studied  (Bauer, 1972; Groman, 19B2; Harpole and 
Hossler,  1984; Hossler e t  a l . ,  1986b), no 
de ta i led  study of  the branchial and filamental 
vascula ture has been repor ted .  Since osmoregu­
la to ry  chloride c e l l s  (Keys and Wilmer, 1932) in 
s t r ip e d  bass are  abundant on the a f fe ren t  surface 
of the filament (Hossler e t  a l . ,  1986b), a study 
of the blood flow to th a t  area could be useful in 
understanding the osmoregulatory role of the 
ch lo ride  c e l l .  Vascular corrosion cas ting  has 
been used to study the  complex g i l l  vascula ture 
of  various species inc luding the bowfin (Olson,
1981), perch (Laurent and Dunel, 1976), t r o u t  
(Laurent and Dunel, 1976; Olson, 19831, l ing  cod 
( F a r r e l l ,  1980), eel (Laurent and Dunel, 1976; 
Donald and E l l i s ,  1983), spiny dogfish shark 
(Olson and Kent, 1980; DeVries and DeJager, 1984), 
and skate  (Olson and Kent, 1980). In the present 
study, the microvasculature of the s tr iped  bass 
g i l l  i s  described using vascu lar  corrosion c a s t ­
ing and scanning e lec tro n  microscopy, a technique 
which allows the three-dimensional vascula ture to 
be viewed without in te r fe re n c e  from surrounding 
t i s s u e s .

Materials and Methods

Striped bass (Morone s a x a t i l i s ) 13-27 cm 
long were obtained from Eagle Bend Fish Hatchery 
(C lin ton, Tennessee), Morristown State Fish 
Hatchery (Morristown, Tennessee), and the South­
ea s te rn  Fish Cultural Laboratory (Marion, Alabama) 
and transported in styrofoam containers in 
oxygenated 0.1% s a l t  water (I  g/L NaCl; Parker 
and Geiger, 1984). S tr iped  bass were maintained 
in IGOL tanks with a e ra te d ,  hatchery-aged tap 
water (0.011 Osm) or  3% sa l tw a te r  (w/v; spec if ic  
g rav i ty  1.02; 1.01 Osm; In s ta n t  Ocean S a l ts ,
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Aquarium Systems, Mentor, Ohio), a t  room tempera­
tu re  (20-24°C) with a cyc le  o f  approximately 11 h 
subdued l ig h t  and 13 h o f  dark ,  and fed t ro u t  
chow (SilverCup Feed, Murray E levators,  Murray, 
Utah) ad libitum fo r  a t  l e a s t  one week before 
experimentation.

For l i g h t  microscopic s tu d ie s ,  s tr iped  bass 
were k i l led  by d ec ap i ta t io n ,  and th e i r  g i l l  
arches were removed, r in sed  in 0.9% NaCl to 
remove blood, and immersed in f re sh ly  prepared 
2.5% glutaraldehyde-1.8% paraformaldehyde in 
O.IM cacodylate-HCl (pH 7 .2)  overnight a t  4°C or 
fo r  2 h a t  20-24 C. A fter  f ix a t io n ,  the g i l l  
arches were washed in  3 changes of O.IM 
cacodylate-HCl (pH 7 .2 ) ,  pos tf ixed  in 2% OsO, 
(buffered with O.IM cacodylate ,  pH 7.2) fo r  2 h, 
and then washed again in  several changes of  0.1 
M cacodylate-HCl (pH 7.2) overnight.  The spec i­
mens were dehydrated in a graded ethanol and 
propylene oxide s e r i e s ,  and embedded in epon- 
a r a ld i te  (Mollenhauer, 1964). Sections (1-2 pm) 
were cut with an ultramicrotome (U ltracut,
American Optical Instruments,  M.O.C. In c . ,  Valley 
Cottage, NY), mounted on g la s s  s l id e s ,  s ta ined  
with 1% to lu id ine  blue ( in  1% Na bora te ) ,  and 
viewed and photographed on a Zeiss standard l ig h t  
microscope.

For vascular c a s t in g ,  s t r ip e d  bass were 
anesthetized with ethyl-p-amino-benzoate 
(benzocaine; see F erre ira  e t  a l . ,  1979; Olson, 
1985). After an in t r a p e r i to n e a l  in jec t ion  of 
heparin (approximately 30 U/g), the f i s h  were 
placed ventral side up in a V-shaped trough 
(Olson, 1985) and a medial, longitudinal s l i t  was 
made near the pectoral f in  to  expose the hea r t .  
Additional heparin (approximately 15 U/g) was 
then in jected  in to  the h e a r t .  The ventral aorta  
was cannulated and the g i l l s  were cleared of  
blood by flushing with f i s h  Ringer 's so lu tion  
(Lockwood, 1961) a t  physio logical perfusion 
pressure (30 mm Hg; cons tan t  flow, p u ls a t i l e  
pressure; 01 n 1983; 1985). P u ls a t i le  was used 
instead of constant p ressure  in order to  mimic 
g i l l  blood flow (F a rre l l  e t  a l . ,  1979; P ar t  and 
Svangberg, 1981; Davie and Daxboeck, 1982; Dax- 
boeck and Davie, 1982). Resin was then infused 
through the same cannula u n t i l  the onset of poly­
merization (approximately 5 min). Physiological 
perfusion pressure (30mm Hg) was used fo r  res in  
in jec t ion  in most cases to  avoid d is ten t io n  of  
the vessels (Olson, 1983), but occasionally  
higher pressures (50-60 mm Hg) were used in  an 
e f f o r t  to  obtain f i l l i n g  o f  the smaller vessels .  
The resin used was e i t h e r  a combination of 
Mercox (80%; Ladd Research In d u s t r ie s ,  Burling­
ton. VT) and Sevriton (20%; Dentsply Limited, 
Surrey, England), or L.R. White (The London Resin 
Co., L td .,  Hampshire, England). The f ish  were 
immersed in warm water (50°C) fo r  a t  l e a s t  20 min 
to  cure the re s in ,  ‘' 'issue was removed with 
a l te rn a t in g  r inses  of 20% NaOH and d i s t i l l e d  HgO 
over a period of several days. Casts were rinsed 
thoroughly in d i s t i l l e d  w ate r ,  a i r  d r ied ,  a t tached 
to stubs with s i l v e r  p a s te ,  coated with gold or 
gold-palladium in a Desk-1 S putter  Coater (Denton 
Vacuum Corp., Cherry H i l l ,  NJ), and examined in a 
Hitachi S-430 e lec tron  microscope. Approximately 
100 arches from 15 f i s h  were stud ied .  Measure­
ments were made from the e lec tron  micrographs.

Extravasation of  res in  from vesse ls  was ra re ly  
observed.

Results

Striped bass a re  very s e n s i t iv e  to  handling 
and tran sp o r t .  Disease and m or ta l i ty  are  
decreased by t ranspo r ting  f i s h  in  0.1% NaCl 
(Parker and Geiger, 1984; Hossler e t  a l . ,  1986b).

D iffe ren t  cas ting  media were te s te d  in an 
e f f o r t  to  obtain well f i l l e d  s t r ip e d  bass g i l l  
vascula ture.  The Mercox/Sevriton mixture has a 
v is c o s i ty  about h a l f  t h a t  o f  Mercox alone 
(usually  10-20 cps; Hossler e t  a l . ,  1986a), and 
the v isc o s i ty  of  L.R. White i s  reported  to be 
8-10 cps (Sage and Gavin, 1984; F.E. Hossler, 
unpublished f in d in g s) .  The Mercox/Sevriton 
mixture usually  provided complete g i l l  c a s t s .
The L.R. White produced more extensive c a s ts  of 
the whole f i s h ,  but the v esse ls  tended to  
collapse  upon d iges tion .  Only Mercox/Sevriton 
specimens a re  i l l u s t r a t e d  in  the f ig u re s .

No d iffe rences  in f ilam enta l c a s ts  from 
seawater and freshwater specimens have as y e t  
been documented, but sub tle  d if fe rences  might be 
d i f f i c u l t  to v e r i fy  because of individual 
v ar ia t ions  in perfusion and f i s h .  Casts from 
f ish  adapted to e i th e r  s a l i n i t y  are  shown.

A typical vascular corrosion  c a s t  o f  s tr iped  
bass g i l l s  i s  shown (F ig .  1) .  The four pairs  
o f  g i l l  arches are  designated I ,  I I ,  I I I ,  and IV, 
ro s tra l  to  caudal. No d if fe rences  among the 
filaments from the d i f f e r e n t  arches were observed. 
Striped bass have th ree  major vascu la r  systems;
(1) a r e sp i r a to ry  system, (2) an ar te rio-venous 
system, and (3) a n u t r i t i v e  system (Boland and 
Olson, 1979). The major components o f  the 
vascula ture o f  the g i l l  arch and g i l l  f ilaments 
are  represented schematically in  Fig. 2.

Respiratory system
In the re sp ira to ry  system, blood from the 

hear t  i s  pumped via the ven tra l ao r ta  to  the four 
pa irs  o f  a f f e re n t  branchial a r t e r i e s  (ABA; Figs.
2, 3 and 4 ) .  As seen in o ther  te l e o s t s  (Muir, 
1970; Boland and Olson, 1979), each ABA divides 
in to  p o s te r io r  concurrent and a n te r io r  recu rren t  
branches allowing a l l  par ts  of the arch to  
receive blood from the h e a r t .  Blood en te rs  each 
f ilament via an a f fe re n t  f i lam ental (primary) 
a r te ry  (AFA), i s  d i s t r ib u te d  to  the highly 
vascularized re sp ira to ry  (secondary) lamellae 
(RL, Fig. 5) via a f f e re n t  lam ella r  a r t e r i o l e s  
(ALA), and then passes to  the e f f e r e n t  filamental 
(primary) a r te ry  (EFA) via the e f f e r e n t  lam ellar  
a r t e r i o le s  (ELA). Blood from the EFAs is  
co l lec ted  in the e f f e re n t  branchial a r t e r y  (EBA) 
and is  ca r r ie d  to the dorsal a o r ta .  The EBA is 
a s ing le  vessel c e n t r a l ly ,  but s p l i t s  a t  e i th e r  
end of the holobranch, providing a vessel for  
each hemibranch (Muir, 1970; F a r r e l l ,  1980). I t  
was not unusual to see ad jacen t AFAs with a 
common o r ig in  from the ABA, or adjacen t EFAs 
which fused before entering the EBA.

In the s t r ip e d  bass the ABA appears to  be 
symmetrically located in the  middle o f  the arch, 
not aligned next to  the c a r t i l a g e  as in perch 
(Laurent and Dunel, 1976), pike (Dornesco and 
Miscalenco, 1968), and o the r  perciform species
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SGR
ACV CVS 

a/kCV

EBA ABA
RL I ELA 

AFA ALA

Fig. 1 Ventral view o f  a vascular c a s t  o f  a l l  
four pa i rs  of g i l l  arches of a 24 cm s t r ip e d  bass. 
Photographed with a Leicaflex SL 35 mm camera 
with a 100mm macro lens.

The symbols fo r  Figures 1-15 are  as follows:

Fig. 2 Schematic c ro ss -se c t io n  of  s t r ip e d  bass
Ifr

A - a n te r io r
aACV "accessory" a f f e re n t  companion 

vessel
ABA - a f f e r e n t  branchial a r te ry
ACV - a f f e r e n t  companion vessel
AFA - a f f e r e n t  filamental (primary) 

a r te ry
ALA - a f f e r e n t  lam ella r  a r t e r i o l e

AM - ampulla of a f fe re n t  f ilamental 
a r te ry

B - g i l l  arch bone
BC - basal channel of r e sp ira to ry  

lamella
BV - branchial vein

C - c a r t i la g e
CVS - cen tra l  venous sinus
EBA - e f f e r e n t  branchial a r te ry
EFA e f f e r e n t  filamental (primary) 

a r te ry
ELA - e f f e r e n t  lam ellar  a r t e r i o l e
LGR - long g i l l  raker
MV marginal vessel of resp ira to ry  

lamella
N - nerve

NU - impression of endothelial 
c e l l  nucleus

P - p o s te r io r
RL - re sp i ra to ry  (secondary) lamella

SGR - sh o r t  g i l l  raker
TB - t a s t e  bud

I , I I , I I I , I V - g i l l  arches, ro s t r a l  to caudal

(Dornesco and Miscalenco, 1967). Only one o r  two 
small branches beside the AFA were observed stem­
ming from the ABA.

The AFAs of  the two hemibranches of each arch 
a l te r n a te  with each o ther  as do the f i lam ents .

g i l l  arch II showing vascu la tu re .  The lam ellar  
vascula ture has been removed from the  upper 
filament.

Fig. 3 Light micrograph of a c ro ss - se c t io n  of 
g i l l  arch I .  Compare with the vascu lar  schematic 
on Fig. 2.

and th e i r  number and size  depend on the growth 
o f  the f i s h .  The proximal aspec t o f  the AFA has 
a d i la t io n  or ampulla (AM) with approximately 
8-10 pairs  o f  ALAs coming from i t .  No communi­
ca t ions  were found between the AMs of e i th e r  the 
same or opposite hemibranches. The AFA narrows 
toward the d i s t a l  end o f  the filam ent as the RLs 
become sm aller.  No branches o ther  than the ALA 
were seen stemming from the AFA.

The RLs of  the  s t r iped  bass have prominent 
marginal vessels  (MV) and basal channels (BC), as 
well as a complex r e sp ira to ry  vascu la r  network
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Fig. 4 Scanning e lec tron  micrograph of a cross 
section  of  a vascular c a s t  of the second g i l l  
arch. Compare with the vascular  schematic on 
Fig. 2.

Fig. 5 Vascular network of the resp ira to ry  
lamellae (RL). Note the marginal vessel (MV). 
The openings in th e  c a p i l la ry  network mark the 
posit ions o f  the p i l l a r  c e l l s .

I

Fig. 6 Cross-section  of  the vascu la ture  of  the 
g i l l  f i lam ent.  Note the posit ion  of  the central 
venous sinus (CVS) and the  accessory a f fe re n t  
companion vesse ls  (aACV). The a f f e r e n t  companion 
vessels  are  absent.  The arrowhead marks the 
posit ion  where the c a r t i l a g e  would normally be. 
Note the basal charnel (BC) and marginal vessel 
(MV) o f  the re sp ira to ry  lamellae (RL).

(Fig . 5) interwoven between p i l l a r  c e l l s  (J.A.C. 
King, unpublished observation; and see Groman,
1982). In most ins tances ,  each RL has one ALA 
and one ELA. The ALA i s  longer because i t  must 
pass around the f ilamental c a r t i la g e  (C) to get 
to the RL. The ALAs o f  some of  the specimens have 
enlargements a t  the junc tions  of  the MV and BC.

Fig. 7 Cast o f  cen tra l venous sinus (CVS) a t  
apex of f i la m en t .  The surrounding re sp ira to ry  
lamellae, a f f e r e n t  f i lamental a r te ry ,  and the 
e f fe re n t  f i lam en ta l  a r te ry  were removed. The 
a f f e re n t  s id e  of  the CVS i s  a t  the  bottom.

V aria t ions  on the general resp ira to ry  
scheme inc lude: (1) common o r ig in  of two ALAs
on the same or opposite  sides o f  the central 
venous s inus  (CVS); (2) several RLs drained by 
a s ing le  ELA; (3) e x t ra ,  d i r e c t  connections 
between th e  EFA and the RL or ELA; (4) an area in 
the middle o f  the  f ilament with a double EFA with 
remnants o f  a RL vascular  network on the aberrant 
EFA; (5) an accessory EFA which then empties into 
the main EFA; and (6) a filam ent and i t s  vascula-
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Fig. 8 Stereo pair  o f  the 
a f fe ren t  filamental a r t e r y  
(AFA), re sp i ra to ry  lam ellae  
(RL), and the a f f e r e n t  
companion vessel (ACV). 
Arrows: enlargements in  
the a f fe ren t  lam ella r  
a r te r io le s  (ALA).
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Fig. 9 Cast o f  blood supply o f  resp ira to ry  
lamellae (RL) showing the marginal vessels (MV) 
and basal channels (BC). Note the  a f fe ren t  
companion vessel (ACV) and i t s  connections to the 
central venous s inus which a l te rn a te  with 
the a f fe ren t  lam ella r  a r t e r i o l e s  (ALA).

Fig. 10 Cast of "accessory" a f fe re n t  companion 
vessel (aACV) and a f f e r e n t  companion vessel (ACV). 
The a s te r i s k  ind ica tes  the area where an ALA 
would e x i t  to  a t tach  the RL to the AFA.

ture  divided near i t s  d i s t a l  t i p .

Arterio-venous system
Each g i l l  f i lam en t  contains a CVS located 

between the f ilam enta l c a r t i l a g e  (C) and the EFA 
(Figs. 2, 6 and 7).  Arterio-venous connections 
occur between the  EFA and the CVS, but not 
between the AFA and CVS. The CVS empties e i th e r  
d i r e c t ly  in to  the branchial vein (BV) or 
in d ire c t ly  via sm all,  paired a f f e re n t  companion 
vessels (ACV) which l i e  j u s t  medial to the AFA 
(Figs. 6, 7, 8 and 9 ) .  The vessels  connecting 
the CVS and the ACV a l t e r n a t e  with the ALA and 
are  regularly  spaced, about one fo r  every ALA 
(Figs. 8 and 9 ) .  An "accessory" ACV (aACV) 
located on e i th e r  s ide  of the  c a r t i la g e  and 
para l le l ing  the ACV, allows blood flow between

the CVS-ACV connections (F ig . 10). The aACV i s  
separated from the ACV by the ALA. The BV 
receives blood from the CVS-ACV complex, and 
apparently from the r e s t  o f  the filament.
Groman (1982) s ta te s  th a t  blood in  the BV empties 
in to  the  EBA in the s t r ip ed  bass, but in a l l  the 
cas ts  examined only two small connections were 
found.

The CVS of s t r ip e d  bass g i l l  filaments is  
usually  a s ing le ,  sack- l ike  s t ru c tu re  which 
narrows d i s t a l l y  (Figs. 7, 11 and 12). Casts of 
the CVS often e x h ib i t  indentations from th e i r  
overlying RL (Fig. 11). The CVS and EFA have 
regu la r ly  spaced "anastomoses" (see Donald and 
E ll is ,  1983; Laurent, 1984), about one for  every 
two RL. Because o f  th e i r  posit ion  and s iz e ,  
however, these anastomoses are  d i f f i c u l t  to view 
and count (Laurent and Dunel, 1976). The 
proximal end of  the CVS-ACV complex (Fig. 12) has
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Fig. 11 Cast o f  the cen tra l  venous s inus. Note 
the indentations produced bv the r e sp ira to ry  
lamellae and the impressions l e f t  by the  nuclei 
of endothelial c e l l s  (NU).

various connections to the EBA, ad jacen t  CVSs, and 
the BV (Fig. 13). No connections between the CVS 
and the RL o r  between the ACV and the  AFA were 
observed.

Nutritional system
N utritive  branches to the arch  proper a re  

provided by the EBA and the proximal p a r t  of the 
EFA. The EBA gives o f f  la rge  n u t r i t i v e  vessels 
which para lle l  i t  and give o f f  branches to each 
filament (Fig. 14). Coiled vessels  from the EFA 
proximal to  the f i r s t  RL o f  the f i lam en t anasto­
mose with the n u tr i t io n a l  vesse ls  from the EBA 
(Figs. 14 and 15). Occasionally a n u tr i t io n a l  
vessel in the proximal p a r t  o f  the EFA will 
anastomose with a RL ra th e r  than the  EFA. Vessels 
providing nourishment to  the area around the EFA 
a r is e  from the vascular network around the base 
of the EFA o r  d i r e c t ly  from the EFA.

The i r re g u la r ly  shaped BVs in  each arch 
receive blood from the filam ent proper as well as 
the CVS-ACV complex described above (Fig. 13). 
Smaller vessels  combine to form la rg e r  vessels 
which para lle l  the f ilam ents  and eventua lly  jo in  
the BV on the g i l l  raker  side (Fig. 3). The two 
BVs in each arch communicate by small vascular 
connections a l l  along the length of the arch.
In a l l  the c a s ts  studied only two small connections 
were found between the BV and the EBA.

Discussion

As with most o ther  euryhaline species 
(Laurent, 1984), s t r ip ed  bass g i l l  vascula ture 
cons is ts  o f  3 major systems (Boland and Olson, 
1979): (1) a re sp i ra to ry  system including the
a f fe ren t  filamental a r te ry  (AFA), a f f e re n t  
lamellar a r t e r i o l e  (ALA), re sp i r a to ry  lamellae 
(RL), e f fe ren t  lamellar a r t e r i o l e  (ELA), and the

Fig. 12 Vascular c a s t  o f  the proximal end o f  
the cen tra l  venous sinus (CVS). Note the CVS-ACV 
complex a t  upper l e f t .

Fig. 13 Vascular c a s t  o f  the branchial vein 
(BV) and i t s  connections. Note the vessels  from 
each f i lam ent and the t r i b u t a r i e s  th a t  are  i n t e r ­
woven with the BV. Arrowheads in d ic a te  small 
vessels which drain  the CVS-ACV complex and the 
n u tr ie n t  supply to the filam ent.

e f fe ren t  filamental a r te ry  (EFA); (2) an a r t e r i o ­
venous pathway including the EFA, the cen tra l  
venous s inus (CVS), and the branchial veins (BV); 
and (3) a n u t r i t i v e  system including vessels  
from the  EFA and the e f f e re n t  branchial a r te ry  
(EBA). For a general d iscussion of  g i l l  vascu­
la tu re ,  the  reader i s  re fe r red  to  the exce l len t  
desc r ip tions  by Laurent (1984) and Boland and 
Olson (1979). Several fea tu re s  o f  the s t r ip e d
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Fig. 14 Stereo pa i r  show­
ing n u tr ie n t  vessels  from the 
e f f e r e n t  branchial a r te ry  
(EBA) and the e f fe ren t  
f ilam ental a r te ry  (EFA).
Note the co i led  o r ig in s  of  
the n u tr i t io n a l  vessels  from 
both the EFA and EBA, and 
the connections between 
those v esse ls .

bass g i l l  vascula ture in p a r t i c u la r  merit mention 
here.

Respiratory system
E^nlargements (ca lled  ampulla o r  "blebs") of 

the AFA proximal to the "b i fu rca t ion  of  the two 
hemibranches" observed in s t r ip e d  bass have been 
reported in  o ther  species (Fromm, 1974; Laurent 
and Dunel, 1976; Olson, 1981). The ampulla may 
be a damper fo r  the p u ls a t i l e  blood flow in 
s t r ip e d  bass as proposed by Fromm (1974). The 
ALA enlargements may represen t s i t e s  adjacent to 
sph inc te rs  (Wright, 1973).

The many var ia t ions  observed in the 
f ilam ental vasculature are  r e l a t i v e ly  uncommon, 
probably a re  due to disease and growth 
abnorm alities (Hughes, 1984), and would not have 
been of  g rea t  functional consequence to  the f i s h .

Arterio-venous pathway
The arte rio -venous pathway has become the  

focus of  many recent s tud ies .  Most o f  the 
d if fe rences  between species studied to  date 
appear in the location  of th e i r  ar te rio -venous 
anastomoses. Prelamellar arte rio -venous anas to ­
moses with the central venous sinus are thought 
to  be p a r t  of a lamellar bypass fo r  blood when 
the O2 demand decreases (Steen and Kruysse, 1964; 
Richards and Fromm, 1969), and a t  l e a s t  some 
anatomical evidence fo r  la m ella r  bypass has been 
reported  in: channel c a t f i s h  ( Ic ta lu ru s  puncta-
t u s ; Olson e t  a l . ,  1978; Holbert e t  a l . ,  1979; 
Boland and Olson, 1979), eel (Anguilla a n g u i l la ; 
Laurent and Dunel, 1976), shor t- f inned  eel 
(Anguilla aus tra l  i s ; Donald and E l l i s ,  1983), 
smooth toad fish  (Torquigener g lo b e r ; Cooke and 
Campbell, 1980), c ich lid  (T ilap ia  mossambica;
Vogel e t  a l . ,  1973; 1974), dogfish shark (Squalus 
a c a n th ia s ; Olson and Kent, 1980), dogfish (Centro- 
phorus s c a lp ra tu s ; Cooke, 1980), bowfin (Amia  ̂
ca lv a ; Olson, 1981), t r o u t  (Salmo g a i rd n e r i ; 
Richards and From, 1969), and eel (Anguilla 
a n g u i l l a ; Steen and Kruysse, 1964). However, 
la m ella r  bypasses have not been found in: t r o u t
(Salmo g a i rd n e r i ; Gannon e t  a l . ,  1973; Vogel e t  
a l . ,  1976; Laurent and Dunel, 1976), l ing  cod 
(Ophiodon e longates; F a r re l l ,  1980), perch

Fig. 15 D eta i ls  o f  the vascular network around 
the  proximal aspec t of the e f f e re n t  f i lamental 
a r te ry  (EFA).

(Perea f l u v i a tu s ; Laurent and Dunel, 1976), and 
s t r ip e d  bass (present m anuscrip t) . We observed 
p o s t- la m e l la r ,  but not pre lam ellar ,  a r t e r i o ­
venous anastomoses. Therefore, the  CVS cannot 
be ac ting  as a shunt mechanism in s t r ip e d  bass. 
The blood must f i r s t  be oxygenated before e n te r ­
ing the CVS.

In tra la m e l la r  d is t r ib u t io n  mechanisms 
(F a rre l l  e t  a l . ,  1980; Soivio and Tuurala, 1981) 
may be used by the s tr iped  bass to regu la te  Og 
and ion exchange in the g i l l s .  Both the marginal 
vessel (MV) and the basal channel (BC) are  
prominent in  s tr iped  bass and are  f i l l e d  before 
the  r e s p i r a to ry  c a p i l l a r i e s  during vascular 
ca s t in g .  Hughes (1976) reported th a t  in  res t ing  
f i s h  blood flows p r e fe re n t ia l ly  through the MV, 
and both the  MV (Hughes and Grimstone, 1965; 
Newstead, 1967; Laurent and Dunel, 1976) and BC 
(Smith and Johnson, 1977; Par t  e t  a l . ,  1984; 
Tuurala e t  a l . ,  1984) have been suggested as
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possib le  shunts .  Contrac ti le  p i l l a r  c e l l s  
(Bettex-Galland and Hughes, 1972) present in 
s tr iped  bass (Groman, 1982; J.A.C.King, 
unpublished l i g h t  microscopic and TEM studies)  
may a lso  help to  control in t ra la m e l la r  blood 
flow (Hughes and Grimstone, 1965; Newstead, 1967; 
Morgan and T ovell ,  1973).

"Lamellar recruitment" (Hughes, 1972; Hughes 
and Morgan, 1973; Cameron, 1974; Booth, 1978,
1979; F ar re l l  e t  a l . ,  1979; Holbert e t  a l . ,  1979; 
Jackson and Fromm, 1981) may occur in s t r ip e d  bass 
during increased  oxygen demand. Randall (1970), 
Hughes (1972), and Hughes and Morgan (1973) found 
th a t  the number o f  RL receiving blood a t  a given 
time changes with On demand and th i s  may be 
con tro l led  by ALA sphinc ters  (Wright, 1973). 
Incomplete c a s t in g  of some RL in  the  present study 
could be the  r e s u l t  o f  such s e le c t iv e  RL r e c r u i t ­
ment or o f  perfusion d if fe rences .

The CVS has been described in some species 
as a sa ck - l ik e  s t ru c tu re  (Laurent and Dunel, 1976), 
but recen t s tu d ie s  (Olson, 1983) have shown th a t  
the CVS may be composed of several vesse ls  which 
appear as a s in g le  s t ru c tu re  when distended by 
excessive perfusion  pressure. Although physio­
logical perfusion pressures were used here, the 
normally d i s t i n c t  CVS-ACV connections were mesh­
ed together  in some filam ents .  Since endothelial 
nuclear impressions were ev ident,  the s ize  and 
shape of the  CVS could not have been the r e s u l t  
of re s in  ex t ravasa t ion ,  but could have been 
affec ted  by d is tens ion .

The CVS may provide support to  the  f ilament 
(Wright, 1973), ac t  as a rese rve  fo r  oxygenated 
blood (Laurent and Dunel, 1976), or supply 
n u t r i t io n  to  the t i s su es  (Groman, 1982). However, 
in our view no one function can s a t i s f a c to r i l y  
explain the complex CVS-ACV network observed in 
the s t r ip e d  bass g i l l  fi lam ent.

N utrit iona l system
N utr i t iona l  vascular networks around the 

proximal aspec t  o f  the EFA have been reported 
previously (Laurent and Dunel, 1976; Boland and 
Olson, 1979), and are probably providing nourish­
ment to the abductor muscle bundles of the 
f ilaments (Groman, 1982). N utr i t iona l  vessels  
from the EBA probably supply the r e s t  of the arch 
including the  g i l l  rakers and t a s t e  buds.
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Discussion with Reviewers

K.R. Olson: A var ie ty  of  res ins  were used in 
your methods. Are these a l l  methacrylate res in s?  
Why did you combine the Mercox and the Sevriton? 
Would you please give a b r ie f  d esc r ip t io n  of  
these res ins .
Authors: L.R. White (London Resin Co., L td . ,  
Hampshire, England) is  an ac ry l ic  res in  used for  
embedding. I t s  v iscos i ty  is  about 8-10 cps a t  
3Q0C (Sage and Gavin, 1984; F.E. Hossler,  
unpublished f ind ings) ,  i t s  polymerization i s  
exothermic, and i t  has a se t t in g  time o f  5-15 min 
Mercox (Ladd Research In d u s tr ies ,  Burlington, VT ) 
is  an ac ry lic  res in .  I t s  v iscos i ty  i s  reported  
as 20-30 cps by the manufacturer, i t s  polymeriza­
t ion  is  exothermic, and i t  has a s e t t in g  time of 
5-10 min.
Sevriton (De Trey Division, Dentsply L td . ,  Surrey, 
England) is  an ac ry lic  res in  used as a dental 
sealan t.  We did not measure the v i s c o s i ty  of 
Sevriton alone, but when mixed with Mercox (1:4) 
i t  reduces the v iscos i ty  of  Mercox by h a l f  without 
in te r fe r ing  with polymerization. Sevriton  has 
previously been combined with Batson's medium 
(Nopanitaya e t  a l . .  Scanning Electron Microsc. 
1979, I I ,  751-755). We observed th a t  the  
v iscosity  of Mercox varied from one shipment to 
the next, and th a t  we could lower i t s  v i s c o s i ty  
by adding Sevriton and thus obtain b e t te r  vessel 
f i l l i n g .

K.R. Olson: Did the L.R. White co l lapse  due to 
the digestion procedure or  the inheren t f r a g i l i t y  
of the resin?
Authors: The L.R. White ca s ts  collapsed during 
the d igestion procedure probably due to lack of  
r ig id i ty  of the p la s t ic .

K.R. Olson: Did you no tice  any specia l vascular
arrangements between the central sinus v esse ls

and the ch loride c e l l s ?
Authors: As with o the r  f i s h ,  ch loride  c e l l s  in 
s tr iped  bass are located  on the a f f e r e n t  f i l a ­
mental surface and between the re sp ira to ry  
lamellae (Hossler e t  a l . ,  1986b). Chloride ce lls  
have been func t iona l ly  linked to  the a r t e r i o ­
venous system in te l e o s t s  (Payan and Girard;
In: Fish Physiol.  XB, pp. 39-63, 1984) as well 
as to the slower blood flow in the basal 
channel (BC) of the  re sp ira to ry  lamellae (Hughes, 
1984). The loca tion  of chloride c e l l s  in 
s tr iped  bass may allow them to be a f fec ted  by 
both vessel systems. No other vascular arrange­
ments were observed.

D.E. Hinton: I t  seems as i f  the f i r s t  hepar in i-
zation was done before surgical removal of the 
heart.  I f  so , how was th i s  performed? Why? 
Authors: The i n i t i a l  heparin iza tion  was done 
with an i . p .  in je c t io n  so th a t  an t icoagula tion  
would be i n i t i a t e d  before and during the 
approximately 10 min surgery time. As ind icated ,  
the additional heparin was added to  the hear t  
before cannula tion.

D. Schraufnagel: The three-dimensional r e la t io n -  
ships you show in the  d i f f e r e n t  vascular systems 
would f a c i l i t a t e  coun ter-cu rren t  ion exchange. 
Could you e labora te  on th is?
Authors: The function  of the cen tra l  venous 
sinus-accessory companion vessel (CVS-ACV) n e t ­
work i s  not known. I t  i s  thought th a t  the blood 
flow in the ad jacen t ACV and a f f e re n t  f ilamental 
a r te ry  (AFA) are in opposite d i r e c t io n s ,  
possibly providing a potentia l s i t e  fo r  counter- 
curren t ion exchange. This exchange, i f  p resen t,  
would be in the a rea  of  chloride c e l l s ,  which are 
thought to  be responsible  fo r  osmoregulation.

K.R. Olson: There has been considerable specula­
t ion  about the a b i l i t y  of the basal channel to  ac t 
as a thoroughfare channel because in  many species 
th is  pathway i s  not enlarged a l l  the way across 
the lamellae. From your Fig. 6 i t  appears th a t  
th is  channel is  a lso  reduced toward the e f f e re n t  
end o f  the lam ella .  Do you think i t  can a c t  as 
a "shunt" o r  "p re fe re n t ia l"  channel?
Authors : During cas ting  we observed th a t  both 
the marginal vessel and the basal channel f i l l e d  
before the r e sp ir a to ry  network. Both are 
continuous channels,  but as you co rrec t ly  
observed, the basal channel occasionally  narrows 
on the e f fe re n t  s id e .  This could ind ica te  th a t  
the marginal channel which does not appear to 
contain such narrowings is  the "p re fe re n t ia l"  
channel.

D. Schraufnagel : How does the g i l l  vascula ture
of the s tr iped  bass compare to f i s h  which to le r a te  
more and le s s  s a l in i ty ?
Authors: To date we a re  not aware of any 
d ifferences between the vascula ture of freshwater 
and seawater adapted f i s h .  The d if fe rences  seem 
to be species sp e c i f ic  and not re la ted  to 
s a l in i t y .  We a re  however, continuing to look a t  
the g i l l  vascula ture  of s tr iped  bass adapted to 
d i f fe re n t  s a l i n i t i e s  (see d iscussion).
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Fig. 16 Cast o f  the e f fe re n t  filamental 
a r t e r y  (EFA) and the e f fe ren t  branchial a r te ry  
(EBA). Arrowheads, possible s i t e s  of sph inc te rs .

Fig. 17 Cast of the ampulla (AM) of  the 
a f f e re n t  f i lam ental a r t e r y  (AFA). Note the 
narrow junctions of  the AMs with the a f fe ren t  
branchial a r te ry  (ABA), and the  cons tr ic t ions  
(arrowheads) in the  AFAs.

K.R. Olson: The osmoregulatory "work" th a t
many f ish  must perform while in freshwater 
depends on the concentration of calcium in the 
water. Did you measure ambient calcium? Is i t  
possib le t h a t  th i s  could account fo r  the lack o f  
any d if fe rences  between the freshwater and s a l t ­
water adapted f ish?
Authors: Ion concentrations in the labora tory
tap water as reported by Culligan of  the T r i -  
C i t ie s ,  Inc. (B lountv ille ,  Tennessee) vary from 
day to  day but on the average a re  as follows: 
calcium 70 mg/L; magnesium 27 mg/L; sodium 62 mg/ 
L; sulphate 68 mg/L; bicarbonate a lk a l i n i t y  
68 mg/L; s i l i c a  9.1 mg/L; iron 0.04 mg/L; 
manganese 0.01 mg/L; copper 0.03 mg/L; zinc 0.27 
mg/L; pH 7 .3 .  The calcium level f lu c tu a te s  some­
what due to  the  water source. The 3% sa l tw ater  
was prepared by using Ins tan t  Ocean S a l ts  (w/v; 
Aquarium Systems, Mentor, Ohio). The calcium 
hardness o f  the hatchery water a t  the South­
eas te rn  Fish Cultural Laboratory (Marion,Alabama) 
was 81.1 p .p .m . . Yes, i t  i s  possib le th a t  the 
ambient calcium could account fo r  the  lack of 
any d if fe rences  between the freshwater and s a l t ­
water adapted f i s h ,  but th a t  has y e t  to  be 
determi ned.

K.R. Olson: Most of the n u tr ie n t  c i rc u la t io n  in 
the medial "a fferen t"  border o f  the f ilament 
goes to the adductor muscles. These are found 
near the EFA but the muscles a t tach  to  the 
c o n t ra la te ra l  hemibranch. The abductor muscles 
usua lly  are  q u i te  small. Could the vesse ls  shown 
in Fig. 13 be the capillary-venous vessels o f  the 
adductors?
Authors: Groman (1982) s ta te s  th a t  the abductor 
muscles a re  located  "along the outer la te r a l  
g i l l  arch between the base of  the g i l l  ray and 
the bone o f  the  g i l l  arch in bony f i s h  l ik e  
s t r ip e d  bass. The paired adductor muscles.

Fig. 18 Cast o f  the e f f e re n t  filamental a r te ry  
(EFA). Note n u tr i t io n a l  v esse ls  (as te r isk )  
a r is in g  from the EFA and anastomosing with each 
other.

however, are  located  between hemibranches and 
cross over each o th e r ."  Hughes (1984) seems to 
support th i s  view. The n u tr i t io n a l  vessels 
described in s t r ip e d  bass connecting the EFA and 
the EBA are  located only around the proximal pa r t  
of the filament on the l a t e r a l  (EFA) aspect and 
do not extend to  the area between the hemibranches.

P. Laurent: You do not give any in te rp re ta t io n
concerning the enlargements v i s ib le  on ALA (Fig.
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8).  Have you seen any p e c u l i a r i ty  on the EFA's 
close to  th e i r  junc tion  with the  EBA (e f fe ren t  
filamental a r te ry  sph inc te rs )?
Authors: The apparent ALA enlargements (Fig. 8)
a t  the b ifurcation  of  the marginal vessel and 
basal channel may r e s u l t  from sphinc ters  j u s t  
proximal to  them. S im ila r ly ,  c o n s t r ic t io n s  are 
present in the ca s ts  o f  the  e f f e r e n t  filamental 
a r t e r i e s  j u s t  proximal to the  f i r s t  re sp ira to ry  
lamellae (Fig. 16), and in the c a s t s  of the 
a f f e re n t  filamental a r t e r i e s  j u s t  d i s t a l  to 
th e i r  ampullae (Fig. 17). These c o n s tr ic t io n s  
could represent the s i t e s  o f  sph inc te rs ,  as 
you suggest,  which reg u la te  the  flow of blood 
to  and from the f ilam ents .

K.R. Olson : In some f i s h  the n u tr i t io n a l
vessels  th a t  a r i s e  from the e f f e r e n t  filamental 
a r t e r i e s  (Figs. 14, 15) anastomose and one or 
two branches re -en te r  the f i lam ent to  form the 
a r t e r i a l  supply fo r  the f ilam enta l n u tr ie n t  
vessels .  Did you observe t h i s  in any of your 
presentations ?
Authors: Y es ,nu tr i t iona l  v esse ls  from the
ef fe ren t  filamental a r t e ry  (EFA) anastomose 
with each other and with e f f e r e n t  lam ellar  
a r te r io le s  and supply ad jacen t regions of the 
filament (Fig. 18). In a d d i t io n ,  nu tr i t iona l  
vessels  from the proximal end o f  the EFA joined 
with nu tr i t iona l  vessels  from the e f fe re n t  
branchial a r te ry .  Most o f  the  n u t r ie n t  supply 
to the filament seems to  come from these anas­
tomoses (Fig. 14).
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