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ABSTRACT

EFFECTS OF OXIDIZED LOW DENSITY LIPOPROTEIN 

ON NITRIC OXIDE PRODUCTION IN MACROPHAGES

By

Annong Huang

The effects of oxidatively modified low density lipoprotein (oxLDL) on 
atherogenesis may be partly mediated by alterations in nitric oxide (NO) 
production by macrophages. A major goal of this study was to identify the lipid 
components in oxLDL modulating NO production. The effect of a water soluble 
antioxidants (N-acetylcysteine) and lipid soluble antioxidant (alpha-tocopherol) 
on NO production in macrophages was also determined. A second goal was to 
determine if the effects of oxLDL occurred at the transcriptional level.

Human LDL was oxidized using an azo-initiator 2,2-azobis (2-amidinopropane) 
HCI (ABAP). OxLDL markedly decreased the production of NO in LPS 
stimulated RAW264.7 macrophages. This inhibition depended on the levels of 
LOOH formed in oxLDL and was not due to oxLDL cytotoxicity. In contrast, 
acetylated LDL (AcLDL) and native LDL showed only minor inhibition. Lipid 
hydroperoxides (LOOH) and lysophosphatidylcholine (lysoPC) are the primary 
products formed during LDL oxidation. 13-Hydroperoxyl octadecadienoic acid 
(13-HPODE) markedly inhibited NO production, whereas lysoPC showed only 
slight inhibition. Furthermore, the effects of 13-HPODE and lysoPC did not 
require their uptake in an AcLDL carrier. Pre-treatment of macrophages with 
alpha-tocopherol attenuated the inhibition due to oxLDL. Similarly, pre-treatment 
with N-acetylcysteine attenuated the inhibition caused by oxLDL or 13-HPODE.

OxLDL was found to decrease iNOS protein and mRNA levels in RAW264.7 
macrophages induced by LPS. The activation of NF-kB was slightly suppressed 
after 45 minutes of treatment. 13-HPODE showed much stronger reduction of 
iNOS protein levels than lysoPC. These results suggest that oxLDL may inhibit 
NO production in macrophages at transcriptional level. 13-HPODE is likely to be 
the most important lipid component in oxLDL for the inhibitory effect.
Antioxidants were found to preserve NO production in macrophages treated with 
either oxLDL or 13-HPODE. The physiological consequences of decreased NO 
production in macrophages caused by oxLDL are discussed with respect to 
atherosclerosis.

iii
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CHAPTER 1 

INTRODUCTION

Oxidized LDL. Macrophages and Atherosclerosis

Oxidation of Low Density Lipoprotein

Oxidatively modified low density lipoprotein (oxLDL) is generally believed 

to play an important role in the initiation of atherosclerosis (Berliner and 

Heinecke 1996; Parthasarathy and others 1992; Steinbrecher and others 1990). 

Immunological evidence suggests that oxidatively modified forms of low density 

lipoprotein (LDL) exist in human and rabbit atherosclerotic plaques (Yla-Herttuala 

and others 1989). The alterations in LDL resulting from in vitro lipid peroxidation 

have been well characterized (Esterbauer and others 1992; Noguchi and others 

1993; Steinberg 1997). LDL oxidation involves lipid peroxidation, epitope 

alterations of apoprotein B-100 (apo B-100), hydrolysis of phospholipids and an 

increase in the negative charge of LDL particles.

LDL is a spherical molecule, consisting of triglycerides and cholesteryl 

esters in a hydrophobic core surrounded by a monolayer of phospholipids and 

cholesterol. One large polypeptide is present termed apo B-100. LDL contains 

large amounts of polyunsaturated fatty acids (PUFA) such as linoleic acid (or 

octadecadienoic acid), which are very susceptible to peroxidation forming lipid 

hydroperoxides (LOOH). As shown in Figure 1-1, lipid peroxidation is initiated 

when a radical abstracts a hydrogen atom from a PUFA fragment (LH) present in

1
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LIPID PEROXIDATION

PUFA SEGMENT %

RO* +  »0H H? ' °
•  0-0

FURTHER
INITIATION

[GSH-PX] RH

H -0

Figure 1-1 Mechanism of Lipid Peroxidation
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LDL. The resulting carbon-center lipid radical undergoes double bond 

rearrangement to form a conjugated diene. The conjugated diene reacts rapidly 

with oxygen to form a lipid peroxyl radical (LOO’). In the absence of 

antioxidants, the lipid peroxyl radical will abstract a hydrogen atom from an 

adjacent LH to yield a LOOH and another carbon-center lipid radical that can 

then continue the chain reactions.

Even though the in vivo mechanism for LDL oxidation is uncertain, LOOH 

is likely to be the most abundant primary lipid oxidation product formed (Noguchi 

and others 1993). In extensively oxidized LDL, nearly 50% of the phospholipids 

are hydrolyzed to lysophospholipids that are the second most abundant lipid 

products (Steinbrecher and others 1990) (reaction 1-1).

PLA2
phospholipid------------> lysophospholipid + free fatty acid (1-1)

Hydrolysis of phospholipids is catalyzed by a PLA2-like activity that is intrinsic to 

oxLDL but not native LDL (Parthasarathy and Barnett 1990; Reisfeld and others 

1993). LDL oxidation in vitro with either Cu~ or peroxyl radicals generated from 

azo-initiators yields high levels of octadecadienoic acid hydroperoxides (9- 

HPODE and 13-HPODE) and octadecadienoic acid hydroxides (9-HODE and 13- 

HODE) (Thomas and Jackson 1991). 13-HPODE has been found to be a 

predominant form of lipid oxidation product over 13-HODE in oxLDL modified by 

human monocytes (Folcik and Cathcart 1994). Increasing evidence suggests
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that lipoxygenase contributes to LDL oxidation during atherosclerosis (Folcik and 

others 1995; Kuhn and others 1994; Scheidegger and others 1997). 

Lipoxygenase catalyzes the peroxidation of octadecadienoic acid to form 

predominantly the S stereoisomer over the R stereoisomer of 13-HPODE, 

whereas oxidation of LDL by Cu~ forms equal amount of the S and R 

stereoisomers (Folcik and others 1995). This property of lipoxygenase activity 

can be distinguished from nonenzymatic lipid peroxidation. Analysis of lipid 

extracts from human atherosclerotic lesions indicates that 13-HPODE is 

produced from 15-lipoxygenase mediated lipid peroxidation (reaction 1-2) (Folcik 

and others 1995).

15-lipoxygenase
octadecadienoic acid------------------>13-hydroperoxyloctadecadienoic acid

0 2 (1-2)

As shown in Figure 1-1, LOOHs are unstable molecules and are rapidly 

reduced to the corresponding hydroxides (LOH) by the action of cellular 

peroxidases such as glutathione (GSH) peroxidases (reaction 1-3) (Thomas and 

others 1990). Therefore, 9-HODE and 13-HODE found in cell-mediated (Kaduce 

and others 1989) or lipoxygenase-mediated (Scheidegger and others 1997) 

oxLDL as well as in aortic atherosclerotic plaques (Wang and Powell 1991) 

probably originated from the corresponding less stable HPODE.
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GSH peroxidase 
13-HPODE + 2 G SH ----------------------- > 13-HODE + GSSG (1-3)

5

In the presence of metal ions, LOOHs break down to various aldehydes. 

Malondialdehyde (MDA) is one of the important products that covalently binds to 

positively charged lysine residues in apo B-100 and increases the negative 

charge of oxLDL (Haberland and Fogelman 1985). OxLDL is no longer 

recognized by the LDL receptor but is a ligand for the scavenger receptors in 

macrophages and smooth muscle cells (SMC) (Haberland and others 1988; 

Haberland and others 1992).

Macrophage Lipid Metabolism and Inflammatory Response

Macrophages incubated with oxLDL in vitro assume many characteristics 

typical of foam cells found in early atherosclerotic lesions, whereas native LDL 

incubated with macrophages does not cause foam cell formation (for reviews see 

Aviram 1996; Ross 1993). The LDL receptor mediated uptake of LDL by cells is 

under the regulation of intracellular cholesterol. Increased cellular free 

cholesterol down-regulates the biosynthesis of the LDL receptor thereby 

decreasing the further internalization of LDL. Macrophages, however, express 

scavenger receptors for modified LDL such as acetylated LDL (AcLDL) and 

oxLDL (Brown and Goldstein 1983). The uptake of modified LDL via scavenger 

receptors is not down regulated by intracellular cholesterol thereby leading to the 

accumulation of cholesteryl esters that form intracellular lipid droplets with a
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foam-like appearance. There are at least two different kinds of macrophage 

scavenger receptors: class A and class B (Steinberg 1997). Class A is the 

original AcLDL receptors which were described by Brown and others (Brown and 

Goldstein 1983) capable of recognizing both AcLDL and oxLDL. Class A 

scavenger receptors of type Al and type All have been cloned (Penman and 

others 1991). A collagen domain in both type Al and All receptors binds 

modified LDL. OxLDL may be the physiologically relevant form of modified LDL 

since it has been found in atherosclerotic plaques (Haberland and others 1988; 

Yla-Herttuala and others 1989).

Figure 1-2 shows the transformation of macrophages to foam cells and 

the effects of oxLDL in the early stages of atherosclerosis. Binding of circulating 

monocytes to the endothelial surface is the initial step for monocyte migration. 

Endothelial adhesion molecules such as endothelial leukocyte adhesion 

molecule 1 (ELAM-1), intercellular adhesion molecule 1 (ICAM-1) and vascular 

cell adhesion molecule 1 (VCAM-1) are found in atherosclerotic plaques (for a 

review see Holvoet and Collen 1994). OxLDL induces the expression of 

endothelial adhesion molecules and facilitates the interactions between 

macrophages and endothelial cells (Berliner and others 1990; Khan and others 

1995; Lehr and others 1993). Furthermore, monocytes undergo proliferation and 

differentiation driven by monocyte chemoattractant protein 1 (MCP-1) and growth 

factors such as granulocyte-monocyte colony stimulating factor (GM-CSF) and 

monocyte colony stimulating factor (M-CSF) that are secreted from endothelial 

and other cells. The expression of MCP-1, GM-CSF and M-CSF are also
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LDL

endothelium
3

ELAM-1
ICAM-1
VCAM-1

monocytes

oxLDL

j S ' macrophages

MCP-1
GM-CSF
M-CSF

foam cells

Figure 1-2 A schematic outline showing foam cell formation and the effects of 
oxLDL. Abbreviations: low density lipoprotein (LDL); oxidatively modified low 
density lipoprotein (oxLDL); endothelial leukocyte adhesion molecule 1 (ELAM- 
1); intercellular adhesion molecule 1 (ICAM-1); vascular cell adhesion molecule 
(VCAM-1). monocyte chemoattratant protein 1 (MCP-1); granulocyte-monocyte 
stimulating factor (GM-CSF); granulocyte-monocyte stimulating factor (GM-CSF)
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induced by oxLDL (Cushing and Fogelman 1992; Rajavashisth and others 

1990). Further study has showed that M-CSF enhances the uptake of oxLDL 

and the formation of foam cells by increasing the expression of scavenger 

receptors in macrophages (Ishibashi and others 1990).

Nitric Oxide and Atherosclerosis 

Palmer and others. (1987) first suggested that nitric oxide (NO) accounts 

for the biological activity of endothelial-derived relaxing factor (EDRF). NO is 

derived from L-arginine and oxygen by a family of enzymes termed nitric oxide 

synthase (NOS). NOS includes three isoforms. Macrophages and many other 

cell types express inducible nitric oxide synthase (iNOS) upon stimulation by 

various cytokines and bacterial derived substances such as lipopolysaccharide 

(LPS). The iNOS enzyme catalyzes the production of large amounts of NO in 

stimulated macrophages. Endothelial constitutive nitric oxide synthase (ecNOS) 

and neural constitutive nitric oxide synthase are expressed in endothelial cells 

and nervous tissues, respectively (Nathan and Xie 1994). NO plays a critical role 

in maintaining vascular homeostasis. Recent evidence also shows that NO 

appears to exert anti-atherogenic effects by inhibiting leukocyte adhesion, 

platelet aggregation and SMC proliferation (for a review see Lloyd-Jones and 

Bloch 1996). Increased systemic production of NO by supplementation with L- 

arginine inhibits the progression of atherosclerosis (Boger and others 1996;

Wang and others 1994) and promotes the regression of preexisting lesions 

(Candipan and others 1996) in hypercholesterolemic rabbits. In contrast, long
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term supplementation with the NOS inhibitor, N-nitro-L-arginine methylester, 

promotes atherosclerosis in rabbits (Naruse and others 1994). NO production is 

also significantly decreased during the early phases of atherosclerosis in 

humans (Lloyd-Jones and Bloch 1996).

NO shows dual effects on LDL oxidation (see Figure 1-3). Most evidence 

suggests that NO by itself is an antioxidant capable of inhibiting LDL oxidation in 

vitro (Hogg and others 1995; Jessup and Dean 1993; Rubbo and others 1994; 

Seccia and others 1996) by quenching LOO' (Hayashi and others 1995). In 

contrast, NO rapidly reacts with superoxide radicals (0 '2 ) to produce 

peroxynitrite (ONOO' ) that is a potent oxidant capable of oxidizing LDL (Hogg 

and others 1993; Rubbo and others 1994). 3-Nitrotyrosine is a specific 

biomarker of ONOO'-mediated protein oxidation. ONOO'-mediated LDL 

oxidation may occur in vivo as indicated by the presence of 3-nitrotyrosine in 

human atherosclerotic plaques (Buttery and others 1996) and in LDL isolated 

from human atherosclerotic lesions (Leeuwenburgh and others 1997).

Endothelial cells and macrophages are the major cell types that produce NO in 

atherosclerotic lesions as evidenced by the high levels of 3-nitrotyrosine present 

in these cell types (Beckmann and others 1994). Furthermore, iNOS protein was 

found in human atherosclerotic plaques and was co-localized with 3-nitrotyrosine 

in macrophages (Buttery and others 1996). Inducible NO production from 

macrophages may, therefore, play a key role in atherosclerosis.
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Figure 1-3 The possible roles of nitric oxide and peroxynitrite.
Abbreviations: lipid peroxyl radical (LOO*); lipid hydroperoxide (LOOH); 
peroxynitrite (ONOO* ); organic peroxynitrite (LOONO); nitric oxide (NO); native 
low density lipoprotein (nLDL); oxidatively modified low density lipoprotein 
(oxLDL).
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OxLDL and NO Production in Macrophages

Endothelial dysfunctions occur at the very early stages of atherosclerosis 

(for a review see Lloyd-Jones and Bloch 1996). OxLDL was found to decrease 

constitutive NO production in human vein endothelial cells by inhibiting the 

transcription of ecNOS mRNA (Liao and others 1995). Inducible NO production 

in stimulated murine macrophages was also shown to be inhibited by oxLDL 

(Bolton and others 1994; Thai and others 1995; Yang and others 1994). Recent 

studies further indicate that oxLDL decreases mRNA for iNOS, tumor necrosis 

factor a (TNF-a), interleukin 1a (IL-1a) and interleukin ip  (IL-1 p) in mouse

peritoneal macrophages (Hamilton and others 1995; Ohlsson and others 1996; 

Schackelford and others 1995). However, the mechanisms whereby oxLDL 

inhibits the expression of iNOS and other inflammatory related genes in 

macrophages are not well understood.

Xie and others ( Xie and others 1992; Xie 1997) have provided detailed 

information on the regulation of mouse iNOS gene in RAW264.7 macrophages. 

Mouse iNOS gene is under quite complicated regulation. There are at least 22 

transcription factor binding sites in its promotor sequence (Xie and others 1993). 

The activation of NF-kB is believed to be required for the induction of iNOS by 

LPS (Goldring and others 1995; Xie and others 1994). Other transcription factor 

binding sites include two of each for activating protein (AP-1) and interferon- 

gamma (IFN-y). OxLDL has been found to suppress the activation of NF-kB in
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LPS and /or IFN-y stimulated macrophages (Ohlsson and others 1996; 

Schackelford and others 1995). Schackelford and others (1995) have suggested 

that the ligation of scavenger receptors by oxLDL activates a pertussis toxin 

sensitive signaling pathway in macrophages. In this model, oxLDL scavenger 

receptors are coupled to a Gi protein, which initiates the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (IPI2) and increases intracellular fluxes of 

Ca*"". However, Schackelford and others (1995) are unable to explain why 

AcLDL has no effect since AcLDL also binds to oxLDL receptors. The role of 

oxidative stress on the activation of Gi proteins and the suppression of NF-kB 

are also not addressed by this model.

Yang and others (1994) have found that the lipid extract but not the 

aqueous extract causes the inhibitory effect of oxLDL. Lysophosphatidylcholine 

(lysoPC) is considered a bioactive lipid molecule and has been suspected to 

cause the inhibition. LysoPC, however, causes only slight inhibition of NO 

production in murine macrophages (Yang and others 1994). The active lipid 

components in oxLDL that contribute to the inhibition on NF-kB activation and 

iNOS expression have not been identified.

Oxidative Stress and Gene Regulation

NF-kB and AP-1 are well recognized redox regulated transcription factors 

(Flohe and others 1997; Schreck and others 1992a). NF-kB is a ubiquitous 

pleiotropic transcription factor that binds to a specific DNA sequence (Flohe and 

others 1997). A family of proteins that are referred to as c-Rel proteins form the
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NF-k B complex. The c-Rel proteins are classified according to their structural 

homology: the first class includes p50, p52 and their precursors (i.e., p100 and 

p105); the second class contains p65 (rel A), c-Rel and Rel B. NF-k B exists as 

a homodimer such as p50/p50 or heterodimer such as p50/p65. The function of 

NF-k B is inhibited by another family of proteins called the IkB family. As shown 

in a simplified model (see Figure 1-4), NF-kB*Ik B complex is activated by the 

phosphorylation and degradation of Ik B. NF-kB migrates to the nucleus, binds to 

a specific DNA sequence and regulates gene expression. The p50/p65 

heterodimer contributes to transactivation (Schmitz and Baeuerle 1991), 

whereas the p50/p50 homodimer may bind to the same kB site thereby inhibiting 

p50/p65 transactivation (Franzoso and others 1992; Plaksin and others 1993). 

Furthermore, p100 and p105 proteins containing the Ik B domain also inhibit the 

transactivation of NF-kB. The mechanisms whereby NF-kB regulates genes can 

be quite complex.

The role of oxidative stress in the activation of NF-kB is controversial.

Early studies indicated that H2Oz activates NF-kB in T lymphocytes and 

monocytes (Israel and others 1992; Schreck and others 1991; Suzuki and 

Packer 1993). This activation was blocked by various antioxidants such as N- 

acetylcysteine (NAC) and pyrrolidine dithiocarbamate. Minimally oxidized LDL 

(MM-LDL) has also been shown to activate NF-kB (Parhami and others 1993) 

and NF-kB regulated genes such as ELAM-1, ICAM-1, VCAM-1, MCP-1, G-CSF 

and M-CSF in cultured endothelial cells (Collins 1993). Recent evidence
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indicates that the activation of NF-kB by oxidants may, however, be limited to 

certain cell types (Brennan and O'Neill 1995; Hecker and others 1996).

Antioxidants and Atherosclerosis 

Epidemiologic studies suggest an inverse relation between coronary 

arterial disease and antioxidant intake, particularly vitamin E supplementation 

(Diaz and others 1997; Steinberg 1995). Animal studies have also showed that 

high dietary intake of antioxidants delays atherogenesis (Parker and others 

1995; Williams and others 1992). The benefits of antioxidants in preventing 

cardiovascular disease have been primarily related to protecting LDL against 

oxidation (Steinberg 1995). a-Tocopherol, the major lipid soluble antioxidant in 

plasma (Ingold and others 1987), effectively protects LDL lipids from 

peroxidation (Steinberg 1995; Ma and others 1994). a-Tocopherol has a 

chromanol ring with three methyl groups and a phytyl tail (Figure 1-5). In the 

presence of reactive free radicals, a-tocopherol donates a phenolic hydrogen 

atom more quickly than PUFA thereby protecting PUFA from peroxidation. In 

addition, a-tocopherol has been shown to have direct effects on vascular tissues 

and preserves normal vascular functions (Diaz and others 1997). Loading 

endothelial cells and macrophages with a-tocopherol enhances their resistance 

to oxLDL cytotoxicity (Kuzuya and others 1991). The incorporation of a- 

tocopherol into arterial cells preserves the vascular relaxation impaired by oxLDL 

(Kugiyama and others 1990). a-Tocopherol inhibits SMC proliferation by 

inhibiting protein kinase C (PKC) activity (Boscoboinik and others 1994).
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Furthermore, a-tocopherol inhibits monocyte adhesion to human endothelial 

cells (Devaraj and others 1996). a-Tocopherol may, therefore, reduce the 

clinical expression of established coronary arterial disease by reducing LDL 

oxidation as well as by its direct effect on vascular tissues (Stephens and others 

1996).

NAC is a non-toxic thiol-containing drug (Figure 1-5) used for the 

treatment of diseases related to hypersecretion of mucus, pulmonary oxygen 

toxicity, adult respiratory distress syndrome and potentially for HIV infections 

(Moldeus and Cotgreave 1994). NAC functions as an antioxidant by scavenging 

reactive oxygen species such as 0*2'. H20 2, HO' and hypochlorous acid. NAC is 

readily deacetylated in endothelial and other cells to liberate cysteine (Moldeus 

and Cotgreave 1994). NAC provides cysteine for GSH biosynthesis and is 

therefore considered to be a GSH precursor. GSH is the main intracellular water 

soluble antioxidant. Treatment of macrophages and endothelial cells with NAC 

causes a significant increase in cellular GSH levels (Faruqi and others 1997; van 

1995). Recently, NAC has been shown to effectively block the activation of NF- 

k3 in HIV infected lymphocytes (Roederer and others 1993; van 1995) and 

modulate NF-kB regulated gene expression in leukocytes (Faruqi and others 

1997; Schreck and others 1992b). NAC is, therefore, considered to be an 

excellent intracellular antioxidant for studying cellular redox sensitive 

mechanisms.
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Specific Aims

The purpose of this research was to study the effects of oxLDL on the 

regulation of murine iNOS gene expression in LPS stimulated RAW264.7 

macrophages and to identify the lipid components that contribute to this 

regulation. In addition, the effects of antioxidants in this model system were also 

investigated. Our specific aims are:

Specific aim I To characterize the effects of LOOH in oxLDL on inducible

NO production in stimulated RAW264.7 macrophages 

Specific aim II To compare to the effects of synthetic 13-HPODE or lysoPC

on NO production in stimulated RAW264.7 macrophages 

Specific aim III To determine whether antioxidants effect on NO production

in stimulated RAW264.7 macrophages 

Specific aim IV To study the effects of oxLDL, 13-HPODE and lysoPC on

the expression of iNOS gene in stimulated RAW264.7 

macrophages.
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CHAPTER 2 

MATERIALS AND METHODS

Part I — Effects of Oxidized Low Density Lipoprotein on Nitric Oxide Production in 

LPS Stimulated RAW264.7 Macrophages

Overall Experimental Design

Human LDL was isolated by sequential ultracentrifugation. Aliquots of the 

purified LDL were either oxidized by exposure to a water soluble azo-initiator 

azobis-2-amidinopropane HCI (ABAP) or acetylated by acetic anhydride.

OxLDL, AcLDL and LDL were extensively dialyzed and the levels of a-tocopherol 

as well as LOOH were determined. LDLs were diluted in RPMI-1640 medium 

supplemented with 0.1% bovine serum albumin (RPMI-0.1%BSA) to give final 

concentrations of 25-100 pg protein/ml before being added to macrophages. In 

control experiments, an aliquot of LDL dialysate replaced oxLDL. RAW264.7 

macrophage-like cells were co-incubated with LPS and various concentrations of 

OxLDL, AcLDL or LDL for 24 hours in RPMI-0.1%BSA. The production of NO 

was determined by measuring N 0 2' accumulation in the medium. At the end of 

the experiments, cell viability and mitochondrial dehydrogenase activity were 

determined.

19
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Materials

2,2’-Azobis (2-amidinopropane) HCI (ABAP) was obtained from 

Polysciences, Inc. (Warrington, PA) and stored at4°C. Ethylenediamine- 

tetraacetic acid (Na4EDTA), propyl gallate, sodium acetate, acetic anhydride, 

monobasic, dibasic sodium phosphate, HCI, phosphoric acid (H3P 04), 3-(4,5- 

dimethylthiazoiyl-2)-2,5-diphenyltetrazolium bromide (MTT), N-(1- 

naphthyl)ethylenediamine dihydrochloride, sufanilamide, Escherichia coli. 

lipopolysaccharide serotype 0111:B4 (LPS), and tissue culture grade bovine 

serum albumin (BSA) were obtained from Sigma Chemical Co. (St. Louis, MO) 

Sodium chlo (NaCI), potassium bromide (KBr), HPLC grade methanol, and 

hexane were purchased from Fisher Scientific (Fair Lawn, NJ). Absolute ethyl 

alcohol was obtained from Florida Distillers Company (Lake Alfred, FL). Tocol 

was a generous gift from Hoffman-La Roche Inc. (Nutley, NJ). RPMI-1640 

medium without phenol red, fetal bovine serum (low endotoxin), penicillin, 

streptomycin, and trypan blue were purchased from Life Technologies 

(Gaithersburg, MD). Sodium dodecyl sulphate (SDS) was purchased from 

Hoeffer Scientific Instruments (San Francisco, CA).

Cell Culture

RAW264.7 murine macrophage-like cell line (American Type Culture 

Collection, Rockville, MD) was cultured at 37 °C in a humidified incubator (95% 

air with 5% COz) in RPMI-1640 medium with 5% fetal bovine serum, 100 U/ml 

penicillin, and 100 |ig/ml streptomycin. Adherent cells with 106/well or 107/dish
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were subcultured over night in 12 well falcon tissue culture plates or 60 mm petri 

dishes in serum-free RPMI-0.1%BSA. The experiments were performed the next 

day after the medium was replaced by fresh RPMI-0.1% BSA.

Lipoprotein Isolation

Human LDL (density 1.019-1.063 g/ml) was isolated from plasma of 

healthy individuals by sequential ultracentrifugation using a Sorvall OTD-65B 

ultracentrifuge (Ma and others 1994). Briefly, plasma was centrifuged at 78,303 

x g (25,000 rpm) using a Type 30 Beckman rotor for no less than 18 hours at 4 

°C. After a layer of chylomicron and very low density lipoprotein (VLDL) was 

removed, the remaining plasma was adjusted to a density of 1.063 g/ml and 

centrifuged at 267,800 x g (60,000 rpm) for 24 hours at 4 °C using a Sorvall Ti 

865.1 rotor. The LDL layer was collected and dialyzed with bubbling nitrogen 

gas against 3 liters of 0.15 M NaCI with 3 changes at 4 °C. LDL was filtered 

(0.22 pm) and stored at 4 °C in sterile containers under N2 until used within two

weeks. This LDL preparation was further dialyzed to remove EDTA before being 

added to macrophage cultures.

SDS-PAGE electrophoresis

The purity of LDL was determined by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE). Electrophoresis was performed according to the 

method of Laemmli (1970) using a 7.5% acrylamide gel at 20 mA in a Mighty 

Small II slab gel electrophoresis unit (Hoeffer Scientific Instruments, San

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

Francisco, CA). Gels were stained with Coomassie Blue R-250, and then 

destained with a solution containing 10% methanol, and 7.5% acetic acid. A 

single apolipoprotein polypeptide was observed that had an electrophoretic 

mobility identical to that of apo B-100.

Oxidation of Low Density Lipoprotein

An aliquot of LDL (2-5 mg protein/ml) was oxidized by incubating with 15 

mM ABAP in 0.15 M NaCI solution at 30 °C. LDL oxidation was stopped by 

removal of ABAP by exhaustive dialysis against 3 liters of 0.15 M NaCI with 5 

changes for over 24 hours at 4°C. ABAP was undetectable in the dialysate by 

UV spectrometry. OxLDL was then filtered (0.22 pm) and stored as described 

for LDL. LOOH and tocopherol content of oxLDL was determined (as described 

below) immediately prior to macrophage experiments.

OxLDL is usually prepared by Cu** or Fe~ for long lengths of time 

(Hamilton and others 1995; Schackelford and others 1995). In many cases the 

transition metal ions are not removed from LDL by dialysis (Yang and others 

1994). LDL also has sites that bind Cu~ very strongly and dialysis may not be 

sufficient to completely remove all Cu**. Oxidized LDL with trace amount of 

metal ions may influence cellular functions (Coffey and others 1995).

Furthermore, Cu~ or Fe** catalyzes the degradation of LOOH formed during LDL 

oxidation (O'Brien 1969). In the present study, we oxidized LDL using ABAP 

rather than transition metal ions so as to prevent nonenzymatic decomposition of 

LOOH (O'Brien 1969). OxLDL prepared in this manner has been well
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characterized (Ma and others 1994) and is taken up by macrophages via 

scavenger receptors that also recognizes AcLDL (Kawabe and others 1994).

Acetvlation of Low Density Lipoprotein

LDL was acetylated using acetic anhydride as described by Basu and 

others (1976). Briefly, a 2.0 ml aliquot of LDL was saturated with solid sodium 

acetate. An 2 pi aliquot of acetic anhydride was added to LDL several times over 

a one hour period with continuous shaking, until the total amount of acetic 

anhydride was 1.5 times of LDL (by weight). AcLDL was then dialyzed, filtered, 

and stored as described for oxLDL.

Measurement of Lipid Hydroperoxides

LOOH levels in oxLDL were determined by a sensitive colorimetric assay 

as described by Tateishi and others (1987) using a commercial kit obtained from 

Kamiya Biomedical Co. (Thousand Oaks, CA). In the presence of hemoglobin, 

LOOH stoichiometrically reacts with the methylene blue derivative 10-N- 

methylcarbamoyl-3,7-dimethylamino-10-H-phenothiazine to generate methylene 

blue of which absorbance was determined at 600 nm using a microplate reader 

(Molecular Device UVmax) (Figure 2-1). Cumene hydroperoxide was used as a 

standard for determining the concentrations of LOOH in oxLDL.
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Figure 2-1 Mechanism of the colorimetric assay for the determination of lipid 
hydroperoxides.
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Tocopherol Measurement in Lipoprotein

Tocopherols were extracted into the hexane layer after mixing a 100 ml 

aliquot of LDL, AcLDL or oxLDL, an equal amount of ethanol (with tocol as 

internal standard) and 200 ml hexane containing 50 mg/ml BHT. A 150 ml 

aliquot of hexane was collected, dried under N2, and redissolved in 100 ml 

ethanol. A 65 ml aliquot of this ethanol was injected into the HPLC system 

(ISCO Inc., Lincoln, NE) equipped with a reverse phase C18 ODS (4.6 mm x 25 

cm) column (ISCO Inc., Lincoln, NE). Tocopherols were eluted by methanol:H20  

(99.5%:0.5%, v/v) at a flow rate of 1.5 ml/min, and its fluorescence was 

monitored at an excitation wavelength of 294 nm, and an emission wavelength of 

324 nm using a fluorescent detector (McPherson Model FL-750). The amounts 

of tocopherols were determined using tocol as an internal standard.

Determination of Protein in Lipoprotein

The concentration of LDL protein was determined by a modified Lowry 

method (Markwell and others 1978) using BSA as standard.

Tocopherol Measurement in Macrophages

Tocopherol extraction was performed using a method modified from Lang 

and others (1986). After pre-treatment of macrophages with liposomes 

containing a-tocopherol or control liposomes for 8 hours, cells were harvested 

and washed three times with phosphate buffer saline (PBS) containing 50 pg/ml 

BHT by centrifugation at 1500 rpm using ICE national centrifuge for 2 minutes.
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Cells were resuspended in PBS to give a cell density of 107 cells/ml. A 1.0 ml 

aliquot of cell suspension was mixed with an equal volume of 0.16 M SDS by 

vigorously vortexing. A 2.0 ml aliquot of ethanol (with tocol as internal standard) 

and 2.0 ml hexane containing 50 pg/ml BHT were added to the cell lysate for 

extraction. A 1.5 ml aliquot of hexane was collected after centrifugation, dried 

using Virtis spinvac and redissolved in 200 jal ethanol. Cellular tocopherol 

content was determined by HPLC as described above for the determination of 

tocopherols in plasma.

Determination of NO Production from Macrophages

The production of NO, reflecting cellular NOS activity, was estimated from 

the accumulation of nitrite (N02 ), a stable breakdown product of NO, in the 

medium. NOz' was measured spectrophotometrically using the Greiss reagent 

as described by Green and others (1982). Briefly, Greiss reagent was freshly 

prepared by mixing reagent 1 and reagent 2 prior to experiment. Reagent 1 

contains 1.0% sufanilamide and 5% phosphoric acid and reagent 2 contains 

0.1% naphthylenediamide hydrochloride. An aliquot of cell cultured medium was 

mixed with equal volume of Greiss reagent that reacts with N 02‘ to form the azo 

dye product immediately. The absorbance of the reaction product was recorded 

at 532 nm using a microplate reader. Sodium nitrite (NaN02) dissolved in the 

identical medium was used as a standard for determining the accumulation of 

N 02' in the culture medium.
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Determination of Cell Viability bv Trypan Blue Dve Exclusion

At the end of the experiment, adherent cells were dissociated by 0.25% 

trypsin and strained with 0.1% trypan blue solution. Macrophages, including live 

and stained dead cells, were counted and the percent of viable cells was 

determined.

MTT Assay for Determination of Cell Viability

This assay is based on the cellular reduction of 3-(4,5-dimethylthiazolyl-2)- 

2,5-diphenyltetrazolium bromide (MTT) by mitochondrial dehydrogenase activity 

in viable cells to produce a purple formazan product, which is measured 

spectrophotometrically (Pirillo and others 1997). The MTT assay is widely used 

to determine cytotoxicity, cell viability and cell proliferation (Clare and others 

1995; Pirillo and others 1997). Briefly, at the end of each experiment, cells were 

washed twice with PBS and incubated with MTT at 37 °C for 4 hours so that MTT 

was converted to purple formazan crystals. Formazan product was then 

solubilized by SDS in acidic solution for 16 hours at 37 °C. The mitochondrial 

dehydrogenase activity was expressed as the absorbance of formazan product 

at 570 nm.

Statistical Analysis

The comparison between treatments and control was performed by the 

Student f-test. Means among treatments were compared by one-way ANOVA 

followed by the least significant difference. A p < 0.05 was considered as 

statistically significant.
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Part II — Effects of 13-HPODE and LvsoPC on Nitric Oxide Production in LPS

Stimulated RAW264.7 Macrophages

Overall Experimental Design

The effects of 13-HPODE and lysoPC on NO production in LPS 

stimulated macrophages were determined. An aliquot of 13-HPODE in ethanol 

was dried under nitrogen gas and redissolved in RPMI-0.1% BSA or medium 

containing 50 pg/ml AcLDL carrier at 4 °C for 4-6 hours with shaking to give final

concentrations of 5-40 pM 13-HPODE. 13-HPODE were assayed as described 

for LOOH in oxLDL prior to cell culture experiments. LysoPC was dissolved in 

media as described for 13-HPODE to final concentrations of 50-100 pM. 

RAW264.7 macrophages were co-incubated with 100 ng/ml LPS and the 

indicated concentrations of 13-HPODE or lysoPC in RPMI-0.1% BSA medium 

and the production of NO was determined after 24 hour stimulation. In a parallel 

experiments, 13-HPODE or lysoPC in the AcLDL carrier was added to 

RAW264.7 macrophages alone with LPS and NO production was determined 

after 24 hours. At the end of the experiments, cell viability, mitochondrial 

dehydrogenase activity and DNA content of the cells were determined.

Materials

Soybean lipoxygenase, octadecadienoic acid, boric acid, copper sulphate 

(CuS04), acetaldehyde, and chloroform were obtained from Sigma Chemical 

Company (St. Louis, MO). Ethyl ether was obtained from Aldrich Chemical
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Company, Inc. (Milwaukee, WI). Egg lysolecithin (lysophosphatidylcholine) was 

obtained from Matreya Inc. (Pleasant Gap, PA). Diphenylamine was from J.T. 

Baker Chemical Co. (Phillipsberg, NJ). Perchloric acid and glacial acetic acid 

were purchased from Fisher Scientific (Fair Lawn, NJ).

Synthesis and Purification of 13-HPODE

13-HPODE was prepared by a method modified from Egmond and others 

(1976). Briefly, a 100 ml aliquot of 1 mM octadecadienoic acid in 0.1 M sodium 

borate buffer (pH 9.0) was incubated with 3.7 x 104 U of soybean lipoxygenase 

on ice with gentle air bubbling for over 12 hours.

The conversion of octadecadienoic acid to 13-HPODE (see reaction 1-2) 

was monitored by thin layer chromatography (TLC). A 2.0 ml aliquot of borate 

buffer reaction mixture was acidified to pH 3.0 and 13-HPODE was extracted into 

ethyl ether which was then evaporated. 13-HPODE was redissolved in 2.0 ml 

ethanol and a 100 (il aliquot was applied to a Silica G TLC plate, 

octadecadienoic acid in ethanol was used as a standard. Octadecadienoic acid 

and 13-HPODE were then resolved using a solvent system containing ethyl ether 

: chloroform : acetic acid (100 : 100 : 1 0) (v/v/v) in 1.5 hours. Spots for 

octadecadienoic acid and 13-HPODE were visualized by charring with 

10%CuSO4 and 8% H3P 04 at 170-180 °C for 20 minutes. The conversion was 

determined by comparing the density of spot for 13-HPODE with the total density 

of spots for both octadecadienoic acid and 13-HPODE.
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The reaction was stopped by lowering the pH to 3.0 when the conversion 

was completed. 13-HPODE was extracted in ethyl ether which was completely 

evaporated. The resulting 13-HPODE was redissolved in 15 ml absolute 

ethanol, filtered using an Acrodisc CR PTFE 0.2 pin filter (GelmanSciences, Ann 

Arbor, Ml) and stored at -20 °C. The final concentration reached 7.5 mM as 

determined from the absorbance at 234 nm using a molar absorptivity of 25,000 

M‘1cm'1. The LOOH value determined by this method was in agreement with the 

value obtained from the colorimetric assay described in Part I.

Measurement of Cellular DNA Content bv the DPA Assay

Cellular DNA content was quantified using diphenylamine (DPA) 

according to the method described by Natarajan and others (1994). Briefly, at 

the end of each experiment, cells were washed with PBS and incubated with 

DPA in glacial acetic acid at 37 °C for 24 hours in the presence of acetaldehyde 

and perchloric acid. The blue reaction product of DPA was quantified by 

measuring OD at 650 nm. A standard curve was generated by incubating 

varying numbers of cells with DPA and the ODs generated correlated fairly well 

with cell numbers.

Part III — Effects of a-Tocopherol and N-Acetvlcvsteine on the Decreased Nitric 

Oxide Production Caused bv OxLDL and 13-HPODE

Overall Experimental Design

The effects of antioxidants such as a-tocopherol and NAC on the
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inhibition of NO production caused by oxLDL or 13-HPODE were determined. 

RAW264.7 macrophages were pre-incubated with either liposomes containing a- 

tocopherol, control liposomes or NAC for 8 hours before treatment with LPS and 

oxLDL or 13-HPODE. The pre-incubation time for NAC was within the range 

used by Irani and others (1997). At the end of the experiments, cell viability and 

DNA content of the cells were determined.

Materials

N-acetyl-L-cysteine was obtained from Sigma Chemical Company (St. 

Louis, MO). a-Tocopherol liposomes and control liposomes were generous gifts 

from SEQUUS™ Pharmaceuticals Inc. (Menlo Park, CA).

Part IV -  Regulation of iNOS Gene Expression bv Oxidized Low Density 

Lipoprotein in LPS Stimulated RAW264.7 Macrophages

Overall Experimental Design

RAW264.7 macrophages were co-incubated with LPS and the indicated 

concentrations of oxLDL, AcLDL or LDL for 24 hours as described in part I. The 

accumulation of N 02' in the medium was measured and the adherent cells were 

washed with PBS followed by the extraction of cellular proteins. The iNOS 

protein was analyzed by the Western blotting technique. Similarly, the effects of 

13-HPODE and lysoPC on iNOS protein levels were also determined. The iNOS 

mRNA levels were analyzed by Northern blotting after macrophages were 

stimulated with LPS for 6 hours in the presence or absence of oxLDL. For the
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detection of NF-kB activation, RAW264.7 macrophages were stimulated for the 

lengths of time varying from 0 to 120 minutes. Nuclear proteins were extracted 

and the activation of NF-kB was detected by the electrophoretic mobility shift 

assay (EMSA). The effects of oxLDL on NF-kB activation was determined by 

EMSA after 45 minute incubation with LPS in the absence or presence of oxLDL. 

In control experiments, an aliquot of oxLDL dialysate was used to replace oxLDL.

Materials

NF-kB oligonucleotide, human recombinant NF-kB p50, mouse iNOS 

cDNA, mouse GADPH cDNA, 32P-dCTP, herring sperm DNA, and random primer 

labeling system were obtained from Promega (Madison, Wl). An electrophoretic 

gel shift assay (EMSA) kit, and positively charge nylon membrane were 

purchased from Boehringer Mannheim Corporation (Indianapolis, IN). Anti-p50 

and anti-p65 antibodies were obtained from Biotechnology, Inc. (Santa Cruz,

CA). Rabbit anti-mouse iNOS antibody was from Transduction Laboratory 

(Lexington, KY). An enhanced chemiluminescent detection kit, the Western 

nitrocellulose membrane, and nylon membrane for Northern blot were purchased 

from Amersham Life Science (Arlington Heights, IL). Horseradish peroxidase 

conjugated anti-rabbit polyclonal antibody, leupeptin, antipain, 

phenylmethylsulfonyl fluoride (PMSF), dithiothreitol (DTT), agarose, formamide, 

formaldehyde, poly dl-dC, isopropanol, MOPS buffer, Tween-20, HEPES, Tris- 

Glycine SDS buffer, magnesium chloride, TEMED, glycerol, nonidet-P40, and
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Kodak X-OMAT AR film were obtained from Sigma Chemical Company (St. 

Louis, MO). Acrylamide, and bis-acrylamide were purchased from Hoeffer 

Scientific Instruments (San Francisco, CA).

Cellular Protein Extraction

Cellular proteins were extracted following the instructions provided by 

Transduction Laboratory (Lexington, KY). Briefly, after stimulation for 24 hours,

1 x 106 adherent macrophages were rinsed once with cold PBS, and lysed by 0.1 

ml of boiling electrophoresis sample buffer containing 125 mM Tris-HCI, pH 6.8, 

2% SDS, 5% glycerol, 1% mercaptoethanol, and 0.003% bromophenol blue.

The cell lysate was collected into the Eppendorf centrifuge tubes, and boiled for 

an additional 5 minutes.

Western Blot Analysis

Gel electrophoresis of cellular proteins was performed according to the 

method of Laemmli (1970). Twenty pg of proteins was separated on a 8% SDS- 

PAGE with Tris-Glycine SDS running buffer (pH 8.3) at 25 V in a Mighty Small II 

slab gel electrophoresis unit (Hoeffer Scientific Instruments, San Francisco, CA) 

for 1.5 hours. Proteins were electrically transferred from the gel to a 

nitrocellulose membrane with Tris-Glycine transferring buffer (pH 8.3) with 20% 

methanol for 1.0 hour. The iNOS protein was detected using the enhanced 

chemiluminescence kit from Amersham Life Science (Arlington Heights, IL). 

Briefly, the blots were incubated with blocking buffer (PBS pH 7.0, 2% non-fat
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milk, 0.1% Tween-20) for 1.0 hour before incubation with the rabbit polyclonal 

antiserum against the C terminal (961 to 1144 amino acids) of mouse iNOS 

(Transduction Lab, Lexington, KY) at 1:20,000 dilution. After 60 minute 

incubation at room temperature, the blots were washed three times with PBS 

(0.1% Tween-20). Anti-rabbit horseradish peroxidase-conjugated antibody at 

60:000 dilution as a secondary antibody was incubated with the blots for 1.0 

hour. The blots were then washed twice with assay buffer, and a 2.0 ml aliquot 

of substrate plus enhancer mixture was evenly added onto the blots. The 

photograph of iNOS protein was obtained by exposure to Kodak film for 10-25 

minutes.

RNA Extraction

Total cellular RNA was isolated from RAW264.7 macrophages by acid- 

guanidinium phenol-chloroform method using RNAzol™ B RNA isolation kits 

(TEL-TEST, Inc., Friendswood, TX). Briefly, after removing the medium, 8 x 10s 

adherent cells were lysed in 1.0 ml RNAzol™ B solution by pipetting up and 

down several times. The lysate was collected and mixed with 100 pi of 

chloroform by inversion. The aqueous fraction of the mixture was collected after 

centrifugation at 12,000 g for 15 minutes at 4 °C, and mixed with another 100 pi 

aliquot of chloroform followed by vigorously vortexing. After three extractions, 

the aqueous fraction was collected to a fresh tube followed by an additional wash 

with 500 pi ethanol. RNA was then precipitated with 500 pi isopropanol at -20 °C 

for at least 30 minutes followed by centrifugation at 7500 g for 8 minutes. After

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

the supernatant was discarded, RNA pellet was dried, redissolved in 50 pi of 

DEPC-treated distilled H20  and stored at -70 °C. The concentration of RNA was 

quantified by measuring the absorbance at 260 nm (1 OD= 40 pg/ml), and the 

purity of RNA was determined by the OD ratio at 260 nm/280 nm that was at 

least I.6 in all samples.

Radio Labeling of DNA Probes

Mouse iNOS and glyceraldehyde-3-phosphodehydrogenase (GAPDH) 

cDNA probes were radiolabeled with a32P-dCTP using random primer labeling 

system following the manufactural’s instructions (Promega, Madison, Wl).

Briefly, 30 pg of DNA for iNOS or GAPDH was denatured by incubation at 100 °C

for 5 minutes and chilled on ice. Thirty pg of cDNA was mixed with 10 pi of 5 x 

labeling buffer, 2 pi of a mixture for dATP, dTTP and dGTP, 2.0 pi of nuclear-free 

BSA, 5 pi of a32P-dCTP (50 p Ci, 3000 Ci/mmole) and 5 units of DNA 

polymerase I. The mixture with a total volume of 50 pi was incubated at 37 °C 

for 1.0 hour until the polymerase reaction was close to complete. The labeled 

DNA was then denatured by heating to 100 °C for 5 minutes, and chilled on ice 

before hybridization.

Northern Blot Analysis

Northern blotting was performed as described by Gong and others (1994). 

Briefly, an aliquot of suspension containing 20 pg of RNA was dried by vacuum 

centrifugation and lyophilized into a 20 pi aliquot of denaturing and loading buffer
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(45% formamide, 6% formaldehyde, 5% glycerol, bromophenol blue in 20 mM 

MOPS buffer). RNA samples were denatured by incubation at 100 °C for 2 

minutes before loading into the gel. RNA was fractionated by electrophoresis on 

a 1% agarose gel containing 2% formaldehyde using 1 x MOPS running buffer at 

100 V  for approximately 2 hours until bromophenol blue dye migrated 3/4 of the 

gel. RNA on the gel was examined, and photographed on UV transilluminator. 

The eukaryotic RNA of two abundant species 28S rRNA (approximately 5 Kb), 

and 18S rRNA (approximately 2 Kb) was visualized. After formaldehyde was 

completely removed from the gel by three washes using 10 x SSC buffer (1.5 M 

NaCI, 0.15 mM sodium citrate, pH 7.0), RNA was then transferred over night 

from the gel to a nylon membrane using 10 x SSC buffer.

The blots were pre-hybridized in 0.5 M phosphate buffer (pH 7.2, 7%

SDS, 100 pg/ml herring sperm DNA) at 65 °C for 2-4 hours, and hybridized with

a 32P-dCTP labeled iNOS cDNA at 65 °C for 15 hours. Non-hybridized probes 

were removed by three washes with 0.1 M phosphate buffer at room temperature 

(10 minutes for each wash) followed by other three washes with 0.05 M 

phosphate buffer at 65 °C (15 minutes for each wash). The autoradiography of 

iNOS mRNA was obtained by exposure to Kodak X-OMAT AR film for 24-48 

hours at -70 °C. The a32P-dCTP labeled GAPDH cDNA was used in the second 

hybridization as an internal standard for normalizing the variation between 

samples.
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Nuclear Protein Extraction

Nuclear extracts were obtained essentially as described by Staal and 

others (1990). After stimulation, adherent cells (1 x 107) were harvested and 

washed twice in ice-cold PBS by centrifugation for 30 sec at 15,600 x g. The 

pelleted cells were then washed once in 0.4 ml of low salt buffer [10 mM HEPES, 

pH 7.8/ 10 mM KCI/2 mM MgClj/1 mM (DTT)/ 0.1 mM EDTA] containing 

protease inhibitors [0.5 mM of phenylmethylsulfonyl fluoride (PMSF), 5 pg/ml of 

antipain and 5 pg/ml of leupeptin]. After incubation of cells on ice for 15 min, a 

25 pi aliquot of 10% nonidet P-40 solution was added to lysis the cells. Nuclei 

were pelleted at 15,600 x g for 30 seconds, and resuspended in 50 pi of high salt 

buffer [50 mM HEPES, pH 7.8/ 50 mM KCI/  300 mM NaCI/ 0.1 mM EDTA/ 1 mM 

DTT/ 0.1 mM PMSF/10%  glycerol (v/v)]. The mixture was stand on ice for 20 

minutes followed by centrifugation at 15,600 x g for 5 minutes. The clear 

supernatant containing nuclear proteins was collected, and stored at -80 °C.

Protein Determination

Protein concentrations of cell extract (for Western blotting), and nuclear 

extract (for EMSA) were determined by the BCA protein assay using a 

commercial kit from Pierce Chemical Co. (Rockford, IL). Protein samples were 

diluted with PBS before protein determination in order to minimize the 

interference from the ingredients in lysate buffer (for Western blotting), and high 

salt buffer (for EMSA). BSA dissolved in the diluted sample buffer or the diluted 

high salt buffer was used as a protein standard.
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Electrophoretic Mobility Shift Assay (EMSA) for NF-kB Activity

The activation of NF-kB was detected by chemiluminescent EMSA using a 

commercial kit obtained from Boehringer Mannheim Co. (Indianapolis, IN). The 

steroid hapten digoxigenin (DIG) was bound to a 126 bp NF-kB oligonucleotide 

(oligo), and recognized by anti-DIG antibodies (anti-DIG) linked to alkaline 

phosphatase (AP). Labeled NF-kB oligo was visualized with AP-conjugated anti- 

DIG, and lumigen PPD chemiluminescent substrate according to the procedure 

detailed in the Genius System User's Protocol.

The double stranded oligo for NF-kB was labeled at the 3’ end by adding 

the following reagents (on ice): 4 pi of 5 x labeling buffer, 4 pi of CoCI2, (final 

concentration of 5 pM), NF-kB oligo (final concentration of 0.2 pmol/pl), 1 pi of 

DIG-11-ddUTP (final concentration of 0.2 pM), 1 pi of terminal transferase (final 

concentration of 2.5 units/pl) and H20  to a final volume of 20 pi. After incubation 

at 37 °C for 15 minutes, DIG labeled oligo was precipitated with 100% chilled 

ethanol followed by three washes in 70% chilled ethanol by centrifugation at 

15.600 x g for 5 minutes. The pelleted oligo was then vacuum dried and 

redissolved in 25 pi TEN buffer [10 mM Tris-HCI, pH 8.0/1 mM EDTA/0.1 M 

NaCI],

The reaction of DIG-labeled NF-kB oligo, and NF-kB protein was 

performed by adding the following reagents (on ice): 3 pi of 5 x binding buffer (20 

mM HEPES, pH 7.6, 20 mM NaCI, 30 mM NaCI, 1 mM EDTA, 1 mM 

dithiothreitol, 10 mM (NH4)2S 04, 50 ng/pl poly d(l-C), 0.05% Tween 20), 1 pg of
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salmon sperm DNA, 1 pg of BSA, 2 pi of DIG-labeled NF-kB oligo (140 fmol/pl),

15 pg protein of nuclear extract, and H20  to a final volume of 15 pi. The reaction 

was performed at room temperature for 15 minutes, and stopped by adding 4 pi 

of loading buffer.

The oligo-protein complex and free oligo were separated on a 5% non

denatured polyacrylamide gel (20:1 acrylamide: bisacrylamide) electrophoresis in 

22.5 mM Tris-borate (pH 8.3, 5 mM EDTA) running buffer at 90 V  for 1.5 hours 

using an electrophoresis unit SE200 (Hoeffer Scientific Instruments, San 

Francisco, CA). The oligo-protein complex and free oligo were transferred to a 

positively charged nylon membrane using the PolyBlot transfer system Model 

SBD-100 (American Bionetics, Hayward, CA), and cross linked to membrane by 

exposure to UV light. Labeled oligo-protein complex, and oligo were recognized 

by AP-conjugated anti-DIG. AP catalyzed the conversion of lumigen PPD 

substrate into a chemiluminescent molecule that was visualized by exposure to 

Kodak Xomat AR film for 1-2 hours.

EMSA Supershift Assay

This assay detects the specific antibody bound complex by following the 

procedure for EMSA. Antibodies against NF-kB p50 and p65 subunits bind to 

the NF-kB dimers resulting in a slower mobility during electrophoresis. Briefly, 

the experimental procedures were identical to that of EMSA except that 1 pi of 

antibodies were added to the binding reaction mixture as described above before 

incubation for 30 minutes instead of 15 minutes.
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Densitometry Analysis

The lumigrams of iNOS protein, iNOS mRNA and NF-kB bands from 

electrophoresis were analyzed using a Scan Maker II flat bed scanner connected 

to a computer. The TIFF images were quantified using the Sigma gel 

densitometry software (Jandel Scientific Co., San Rafael, CA)
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CHAPTER 3 

RESULTS

Part I -  Effects of Oxidized Low Density Lipoprotein on Nitric Oxide Production 

in LPS Stimulated RAW264.7 Macrophages

The Production of Nitric Oxide in LPS Stimulated RAW264.7 Macrophages

The production of NO by RAW264.7 macrophages, as estimated by the 

accumulation of N 02' in the medium, was dependent on the concentrations of 

LPS (Figure 3-1). A nearly linear accumulation of NO was observed at 

concentrations of LPS between 0 and 100 ng/ml. Furthermore, a 5-6 hour lag 

time was observed before significant amount of N 02' was produced, and the 

subsequent accumulation of NOz' continued for over 24 hours. No detectable 

amount of NO was produced in RAW264.7 macrophages without stimulation.

Oxidative Characteristics of OxLDL and the Inhibition Potential on NO Production 

in LPS Stimulated RAW264.7 Macrophages

OxLDL was prepared by oxidizing LDL using ABAP that can be removed 

from LDL preparations by extensive dialysis. Figure 3-2 shows that oxidation of 

LDL led to the consumption of a-tocopherol, and the formation of LOOH in

oxLDL. a-Tocopherol at an initial level of 21.4 nmol/mg LDL protein completely 

disappeared within 2 hours of oxidation whereas LOOH gradually accumulated 

as a function of time. OxLDL was extensively dialyzed to completely remove

41
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Figure 3-1. Time course of NO production induced by varying concentrations of 
LPS in RAW264.7 macrophages. Data points represent means + S.D. of 
triplicate samples for a single experiment. These results are representative of 
three separate experiments.
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Figure 3-2. Oxidative characteristics of oxLDL. Human LDL was oxidized for 
2.5, 5 and 8 hours and the LOOH content was measured by a colorimetric assay 
and a-tocopherol content was determined by HPLC.
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ABAP before being used in the cell culture experiments. The oxLDL dialysate 

contained no measurable levels of LOOH. Our first series of experiments was 

designed to examine the extent of LDL oxidation on NO production in LPS 

stimulated macrophages. Figure 3-3 shows that oxLDL containing higher levels 

of LOOH exerted stronger inhibition on NO production. The oxLDL dialysate, 

however, had no effect on NO production in LPS stimulated macrophages (data 

not shown). Furthermore, oxLDL alone did not induce NO production in 

unstimulated macrophages (data not shown). These results suggest that LOOH 

levels determine the inhibition potential of oxLDL on NO production in RAW264.7 

macrophages. The concentration dependent experiments, as shown in Figure 3- 

4, indicate that NO production in LPS stimulated macrophages was markedly 

inhibited by increasing concentrations of oxLDL in a nonlinear fashion. The rate 

of inhibition was greater at low concentrations than at high concentrations.

OxLDL on Cell Viability and Cellular Dehydrogenase Activity

To determine whether the inhibition is due to oxLDL cytotoxicity, cell 

viability was measured. At the end of experiments shown in Figure 3-3, 4, and 5, 

cell viability was maintained above 95% as accessed by trypan blue dye 

exclusion method (data not shown). Moreover, oxLDL did not show any 

cytotoxicity as determined by mitochondrial dehydrogenase activity using the 

MTT assay (see Table 3-1). Mitochondrial dehydrogenase activity, in fact, was 

slightly increased by the treatment of high levels of oxLDL, which may indicate a 

slight mitogenic effect of oxLDL.
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Figure 3-3. Influence of LDL oxidized to varying extent on NO production in LPS 
stimulated RAW264.7 macrophages. OxLDL preparations (100 pg protein/ml) 
containing 25, 120 and 230 pM LOOH were added to LPS stimulated RAW264.7 
macrophages. Nonoxidized LDL plus LPS was used as a control (no LOOH). 
Data points represent means + S.D. of triplicate samples for a single experiment. 
The means with * are significantly different from treatment with LPS plus 
nonoxidized LDL (Student’s t test). These results are representative of three 
separate experiments.
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Figure 3-4. Concentration effect of oxLDL on NO production in LPS stimulated 
RAW264.7 macrophages. OxLDL containing 2.29 pmol LOOH /mg protein was 
diluted in the medium to give final concentrations of 0, 25, 50, 75 or 100 pg 
protein/ml before being added to LPS stimulated RAW264.7 macrophages.
Data points represent means + S.D. of triplicate samples for a single experiment 
The means with * are significantly different from treatment with LPS (Student’s t 
test). These results are representative of three separate experiments.
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TABLE 3-1 EFFECT OF OXLDL ON DEHYDROGENASE ACTIVITY

Treatment Dehydrogenase Activity 
(OD at 532nm)

Dialysate + LPS 0.41 +0.01

OxLDL (50 jag/ml) + LPS 0.41 ±0 .10

OxLDL (75 ng/ml) + LPS 0.42 ±  0.00

OxLDL (100 ng/ml) + LPS 0.43 ±0 .01*

At the end of the experiments shown in Figure 3-4, macrophages were washed 
with PBS and mitochondrial dehydrogenase activity was measured as 532 nm 
absorbance with the MTT assay as described in Materials and Methods. Values 
are means ±  S.D. for triplicate samples. The mean with * is significantly different 
from treatment with LPS plus dialysate (p<0.05, Student’s t test). The data are 
representative of three separate experiments.
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Comparison of OxLDL. AcLDL and LDL on NO Production in LPS Stimulated

RAW264-7 Macrophages

OxLDL and AcLDL, but not native LDL, were taken up by scavenger 

receptors with the accumulation of cholesteryl esters in RAW264.7 macrophages 

(data not shown). To determine whether AcLDL mediated uptake of modified 

LDL is required for the inhibition of NO production, we compared the effects of 

oxLDL, AcLDL, and LDL on NO production in stimulated macrophages. As 

shown in Figure 3-5, oxLDL (with 750 nmol LOOH/mg protein) inhibited NO 

production by 61%, whereas AcLDL and LDL with the same protein 

concentrations showed inhibition of 12% and 18%, respectively. The slight 

inhibition observed for AcLDL, and LDL may be due to the mild oxidation 

occurring during the extensive dialysis procedures. In fact, AcLDL and LDL 

contained LOOH levels of 36 and 42 nmol/mg protein, respectively. These 

results suggest that oxidative modification of LDL is a key factor causing 

inhibition on NO production in RAW264.7 macrophages. Furthermore, AcLDL 

mediated uptake is not sufficient to cause strong inhibition.

Part II -  Effects of 13-HPODE and LvsoPC on Nitric Oxide Production in LPS

Stimulated RAW264.7 Macrophages

Comparison of 13-HPODE and LvsoPC on Inhibiting NO Production in LPS 

Stimulated RAW264.7 Macrophages

In order to identify the active lipid components of oxLDL that contribute to 

the inhibition on NO production, the effects of 13-HPODE and lysoPC were
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Figure 3-5. Comparison of oxLDL, AcLDL and LDL on NO production in LPS 
stimulated RAW264.7 macrophages. Data points are means + S.D. for triplicate 
samples. The means with different letter superscripts are significantly different 
(p<0.05, one way ANOVA).
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studied in LPS stimulated macrophages. 13-HPODE or lysoPC was 

incorporated into AcLDL carrier before being added to macrophages. Figure 3-6 

shows that, in the presence of AcLDL carrier, 35 pM of 13-HPODE markedly 

inhibited NO production whereas 50 pM of lysoPC was not effective.

Surprisingly, a similar inhibition of 13-HPODE was also observed in the absence 

of AcLDL carrier. LysoPC, at the concentration of 50 pM, was also not effective 

in the absence of AcLDL. Furthermore, neither 13-HPODE nor lysoPC induced 

NO production in unstimulated macrophages (data not shown). These results 

suggest that 13-HPODE is much more potent than lysoPC for inhibiting NO 

production in LPS stimulated macrophages. In addition, AcLDL carrier mediated 

uptake may not be required for 13-HPODE, and lysoPC to inhibit NO production 

in stimulated macrophages.

Concentration Dependence of 13-HPODE and LvsoPC on NO Production in LPS 

Stimulated RAW264.7 Macrophages

Figure 3-7 shows that increasing concentrations of 13-HPODE resulted in 

a progressive inhibition of NO production in LPS stimulated macrophages. As 

observed in oxLDL, 13-HPODE showed a nonlinear inhibition of NO production 

with the rate of inhibition being greater at low concentrations than at high 

concentrations. 13-HPODE did not induced the production of NO in 

unstimulated macrophages (data not shown). Compared to 13-HPODE, lysoPC 

moderately inhibited NO production induced by LPS, and significant inhibition 

was observed only above 80 pM lysoPC (Figure 3-8). Cell viability as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

150

I I no AcLDL
ESS3 AcLDL120 -

»♦—o
c0

1  60 -
E13Oo
<  30 -

Control LPS LPS LPS
+ h p o d e  + lysoPC

Figure 3-6. Comparison of 13-HPODE and lysoPC on NO production in LPS 
stimulated RAW264.7 macrophages in the absence or presence of AcLDL. 13- 
HPODE or lysoPC was incorporated into AcLDL carrier (50 pg protein/ml) before 
being added to macrophages. Results are expressed as percent accumulation 
of N 0 2‘ compared to LPS treatment. Data points represent means + S.D. of 
triplicate samples for a single experiment. Treatments with 13-HPODE plus LPS 
are significantly different from treatments with LPS alone in the absence (*) or 
presence (#) of AcLDL (Student’s t test). These results are representative of 
three separate experiments.
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Figure 3-7. Concentration effect of 13-HPODE on NO production in LPS 
stimulated macrophages. Data points represent means + S.D. of triplicate 
samples for a single experiment. The means with * are significantly different 
from treatment with LPS (Student’s t test). These results are representative of 
three separate experiments.
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Figure 3-8. Concentration effect of lysoPC on NO production in LPS stimulated 
macrophages. Data points represent means + S.D. of triplicate samples for a 
single experiment. The means with * are significantly different from treatment 
with LPS (Student’s t test). These results are representative of three separate 
experiments.
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determined by the MTT assay, and cell number as measured by the DPA assay, 

however, were not significantly decreased by 13-HPODE or lysoPC in the 

concentrations used in these experiments (see Table 3-2). These data suggest 

that the marked inhibition of NO production observed for 13-HPODE is not a 

general property of detergent like lipids.

Part III — Effects of Antioxidants on the Decreased Nitric Oxide Production 

Caused bv OxLDL and 13-HPODE in RAW264.7 Macrophages

Pre-treatment of RAW264.7 Macrophages with g-Tocopherol Attenuates the 

Inhibition of NO Production Caused bv OxLDL

To determine whether an increased cellular content of a-tocopherol 

influences NO production, RAW264.7 macrophages were enriched with a- 

tocopherol by pre-incubation with a-tocopherol containing liposomes before 

treatment. After 8 hours of pre-incubation, cellular levels of a-tocopherol 

increased to 16.56 + 2.1 nmol/107cells with treatment of a-tocopherol liposomes. 

a-Tocopherol was undetectable in cells treated with control liposomes. As 

shown in Figure 3-9, the increased cellular a-tocopherol attenuated the inhibition 

caused by oxLDL by about 30%. a-Tocopherol, however, neither induced NO 

production in unstimulated macrophages nor altered NO production in stimulated 

macrophages (data not shown). These data suggest that the inhibition caused 

by oxLDL can be partially reversed by increasing cellular levels of a-tocopherol.
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TABLE 3-2 EFFECTS OF 13-HPODE AND LYSOPC ON 
DEHYDROGENASE ACTIVITY AND CELL DENSITY

Treatment 106celIs/well 
(DPA DNA Assay)1

Dehydrogenase Activity 
(MTT assay OD at 

532nm)2

Control 1.49 ±0 .07 0.42 ±  0.01

LPS 1.33 + 0.03* 0.43 ±0.01

50 pM LysoPC + LPS 1.21 ±0.07* 0.43 ±0.01

100 pM LysoPC + LPS 1.30 ±0.02* 0.43 ±0.01

5 pM HPODE + LPS ND 0.42 ±  0.02

10 pM HPODE + LPS ND 0.42 ±  0.02

15 pM HPODE + LPS 1.34 ±0.03* ND

20 pM HPODE + LPS ND 0.42 ±0.01

30 pM HPODE + LPS 1.22 ±0.05* 0.43 ±0.01

45 pM HPODE + LPS 1.29 ±0.03* ND

The DPA and MTT assay were performed at the end of the experiments shown 
in Figure 3-6, 3-7, 3-8. 1 Macrophage DNA contents were determined by the 
DPA assay. Cell numbers were calculated from 532 nm absorbance using a 
standard curve generated from varying numbers of cells. 2Macrophages 
mitochondrial dehydrogenase activity was measured as 532 nm absorbance with 
the MTT assay. Values are means ±  S.D. for triplicate samples. The means 
with * are significantly different from control (p<0.05, Student’s t test). ND, not 
determined. The data are representative of three separate experiments.
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Figure 3-9. Effect of a-tocopherol pre-treatment on the inhibition caused by 
oxLDL in LPS stimulated RAW264.7 macrophages. Liposomes containing a- 
tocopherol or control liposomes were pre-incubated with RAW264.7 
macrophages for 8 hours before treatment with 100 |ag/ml oxLDL and 100 ng/ml 
LPS. Data points represent means + S.D. of triplicate samples for a single 
experiment. *The mean of pre-treatment with a-tocopherol containing liposomes 
is significantly different from pre-treatment with blank liposomes (Student’s t 
test). These results are representative of three separate experiments.
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Pre-treatment of RAW264.7 Macrophages with NAC Attenuates the Inhibition of

NO Production Caused bv OxLDL

To determine whether an increased intracellular water soluble antioxidant 

NAC influences NO production, RAW264.7 macrophages were pre-incubated

with NAC for 8 hours before treatment. Figure 3-10 shows that pre-incubation of 

macrophages with NAC significantly attenuated the inhibition of NO production 

caused by oxLDL. The effects of NAC were dose dependent. NAC became 

effective at 5.0 mM and completely reversed the inhibition at a concentration of 

10.0 mM. Cell viability was maintained above 95%. Cell number was not 

increased by NAC treatment as assessed by the DPA assay (Table 3-3). NAC, 

however, showed cytotoxicity when the concentration reached 20.0 mM. 

Furthermore, NAC at a concentration of 10.0 mM potentiated NO production in 

LPS stimulated macrophages by about 25%. NAC alone, however, did not 

induce NO production in RAW264.7 macrophages. These data suggest that the 

inhibition caused by oxLDL was completely reversed by pre-treatment with 10.0 

mM NAC.

Pre-treatment of RAW264.7 Macrophages with NAC Attenuates the Inhibition 

Caused bv 13-HPODE

To determine whether an increased intracellular water soluble antioxidant 

NAC influences NO production, RAW264.7 macrophages were pre-incubated 

with NAC for 8 hours before treatment. Figure 3-11 shows that pre-treatment of 

macrophages with NAC significantly attenuated the inhibition of NO production
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Figure 3-10. Effect of NAC pre-treatment on the inhibition caused by oxLDL in LPS stimulated RAW264.7 macrophages. 
RAW264.7 macrophages were pre-incubated with indicated concentration of NAC for 8 hours before treatment with 100 
pg/ml oxLDL and 100 ng/ml LPS. Data points represent means + S.D. of triplicate samples for a single experiment. 
Treatment with LPS (##) is significantly different from that pre-treated with NAC (#). Treatments with LPS and oxLDL (**) 
are significantly different from that pre-treated with NAC (*) (Student’s t test). These results are representative of three 
separate experiments.
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TABLE 3-3 CELL DENSITY AFTER TREATMENT WITH NAC AND OXLDL

Treatment 106cells/well 
(DPA DNA Assay)

Control 1.48 + 0.09a

10 mM NAC 1.46 + 0.02a

OxLDL + LPS 1.25 + 0.06b

LPS 1.22 + 0.11b

1 mM NAC + OxLDL + LPS 1.30 + 0.15b

5 mM NAC + OxLDL + LPS 1.24 + 0.05b

10 mM NAC + OxLDL + LPS 1.25 + 0.05b

20 mM NAC + OxLDL + LPS 0.29 + 0.14c

At the end of the experiments shown in Figure 3-10, macrophages were washed 
with PBS and cellular DNA content was determined by the DPA assay as 
described in Materials and Methods. Cell numbers were calculated from 532 nm 
absorbance using a standard curve generated from varying numbers of cells. 
Values are means + S.D. for triplicate samples. The means with different letter 
superscripts indicate significantly different (p<0.05, one way ANOVA). The data 
are representative of three separate experiments.
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Figure 3-11. Effect of NAC pre-treatment on the inhibition caused by 13-HPODE in LPS stimulated RAW264.7 
macrophages. RAW264.7 macrophages were pre-incubated with indicated concentration of NAC for 8 hours before 
treatment with 40 pM 13-HPODE and 100 ng/ml LPS. Data points represent means + S.D. of triplicate samples for a 
single experiment. Treatment with LPS (##) is significantly different from that pre-treated with NAC (#). Treatments with 
LPS and 13-HPODE (**) are significantly different from that pre-treated with NAC (*) (Student’s /  test). These results are 
representative of three separate experiments.
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TABLE 3-4 CELL DENSITY AFTER TREATMENT WITH NAC AND 13-HPODE

Treatment 106cells/well 
(DPA DNA Assay)

Control 1.97 + 0.20a

10 mM NAC 1.81 +0.113

LPS 1.55 + 0.04b

HPODE + LPS 1.35+ 0.13b

0.1 mM NAC + HPODE + LPS 1.46+ 0.14b

0.5 mM NAC + HPODE + LPS 1.46 + 0.18b

1.0 mM NAC + HPODE + LPS 1.53 + 0.12b

5.0 mM NAC + HPODE + LPS 1.52+ 0.02b

10 mM NAC + HPODE + LPS 1.33+ 0.03b

20 mM NAC + HPODE + LPS 1.18 + 0.03°

At the end of the experiments shown in Figure 3-11, macrophages were washed 
with PBS and cellular DNA content was determined by the DPA assay. Cell 
numbers were calculated from 532 nm absorbance using a standard curve 
generated from varying numbers of cells. Values are means + S.D. for triplicate 
samples. The means with different letter superscripts indicate significantly 
different (p<0.05, one way ANOVA). The data are representative of three 
separate experiments.
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caused by 13-HPODE. The effects of NAC were concentration dependent. NAC 

became effective at a concentration of 1.0 mM. Cell viability was maintained 

above 95%. Cell numbers were not increased by NAC as assessed by DPA 

DNA assay (Table 3-4). NAC, however, showed cytotoxicity when the 

concentration reached 20.0 mM. NAC alone, however, did not induce NO 

production in unstimulated macrophages. These data suggest that the inhibition 

caused by 13-HPODE was attenuated by pre-treatment with NAC.

Part IV -  The Regulation of Inducible Nitric Oxide Svnthase Gene Expression in

RAW264.7 Macrophages

OxLDL Decreases iNOS Protein Induced bv LPS in RAW264.7 Macrophages 

To determine whether oxLDL decreases cellular iNOS levels, iNOS 

protein was analyzed by Western blotting. After treatment of LPS stimulated 

RAW264.7 macrophages with oxLDL, AcLDL, or LDL for 24 hours, NO 

production by macrophages was determined in the medium (see Figure 3-5) and 

cellular proteins were extracted. Figure 3-12 shows Western blotting of iNOS 

protein in LPS stimulated RAW264.7 macrophages treated with oxLDL, AcLDL, 

or LDL. A 130 kDa band identical to the iNOS protein standard (shown in Figure 

3-13) was observed in LPS stimulated macrophages but not in unstimulated 

macrophages. OxLDL significantly decreased iNOS protein levels induced by 

LPS in RAW264.7 macrophages, whereas AcLDL and LDL only minimally 

decreased iNOS protein levels. These results are consistent with the results
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Figure 3-12. Western blot of iNOS from LPS stimulated RAW264.7 
macrophages treated with oxLDL. RAW264.7 macrophages were incubated with 
100 ng/ml LPS and oxLDL dialysate, 50 pg/ml oxLDL, AcLDL or LDL for 24 
hours. Cellular proteins were extracted and analyzed. Top panel shows the 
photograph of the iNOS protein. Arrow indicates the approximate molecular 
mass of 130 KDa from the standards run in parallel. The bottom panel is the 
densitometry of iNOS. A representative of Western blot from three separate 
experiments is shown.
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shown in Figure 3-5, which suggest that the decreased NO production caused by 

oxLDL is due to the decreased iNOS protein levels.

13-HPODE Decreases iNOS Protein Induced bv LPS in RAW264.7 

Macrophages

To determine whether 13-HPODE, and lysoPC have similar effects of 

oxLDL in decreasing cellular iNOS protein levels, iNOS protein was analyzed by 

Western blotting after treatment of LPS stimulated RAW264.7 macrophages with 

13-HPODE or lysoPC for 24 hours. As shown in Figure 3-13, increasing 

concentrations of 13-HPODE progressively decreased iNOS protein levels in 

stimulated macrophages. LysoPC, at a concentration of 50 pM, had no 

significant effect on iNOS protein levels compared to 13-HPODE (Figure 3-14). 

Neither 13-HPODE nor lysoPC induced iNOS protein expression in unstimulated 

RAW264.7 macrophages (data not shown).

OxLDL Decreases iNOS mRNA Induced by LPS in RAW264.7 Macrophages 

To determine whether the decreased iNOS protein caused by oxLDL is 

due to the decreased iNOS mRNA, Northern blots were performed on RNA 

extracted from RAW264.7 macrophages stimulated with LPS for 6 hours in the 

absence or presence of oxLDL. As shown in Figure 3-15, LPS induced iNOS 

mRNA transcription whereas iNOS mRNA was undetectable in unstimulated 

macrophages. OxLDL significantly decreased iNOS mRNA induced by LPS, 

without altering GAPDH mRNA levels in RAW264.7 macrophages.
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Figure 3-13. Western blot of iNOS from LPS stimulated RAW264.7 
macrophages treated with 13-HPODE. RAW264.7 macrophages were 
incubated with 100 ng/ml LPS alone or plus 0, 5, 10, 20 or 35 pM 13-HPODE for 
24 hours. Cellular proteins were extracted analyzed. Top panel shows the 
photograph of the iNOS protein. Arrow indicates the approximate molecular 
mass of 130 KDa from the standards run in parallel and the iNOS protein 
standard is also shown on the right. The bottom panel is the densitometry of 
iNOS. A representative of Western blot from four separate experiments is 
shown.
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Figure 3-14. Western blot of iNOS from LPS stimulated RAW264.7 
macrophages treated with 13-HPODE or lysoPC. RAW264.7 macrophages 
were incubated with 100 ng/ml LPS alone or plus 10, 20 pM 13-HPODE or 50 
pM lysoPC for 24 hours. Cellular proteins were extracted and analyzed. Top 
panel shows the photograph of iNOS. Arrow indicates the approximate 
molecular mass of 130 KDa from the standards run in parallel. The bottom panel 
is the densitometry of iNOS. A representative of Western blot from four separate 
experiments is shown.
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Figure 3-15. Northern blot of iNOS mRNA from LPS stimulated RAW264.7 
macrophages treated with oxLDL. RAW264.7 macrophages were stimulated 
with 100 ng/ml LPS in the absence or presence of 50 (ig/ml oxLDL for 6 hours. 
Total mRNA was isolated and analyzed. Top panel shows the autoradiograph of 
mRNA for iNOS and GAPDH, respectively. The bottom panel is the 
densitometry of mRNA. A representative of Northern blot from three separate 
experiments is shown.
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Activation of NF-kB Induced bv LPS in RAW264.7 Macrophages

To determine whether the induction of iNOS mRNA, and iNOS protein 

was accompanied by the activation of NF-kB in macrophages, EMSA was 

performed on nuclear proteins extracted from LPS stimulated RAW264.7 

macrophages. Figure 3-16 shows the time course of NF-kB activation induced 

by LPS. Nuclear extracts from unstimulated RAW264.7 macrophages showed 

basal levels of NF-kB activity. The components of NF-kB complex were 

identified by supershift assay using Rel antibodies against p50 (anti-p50) and 

p65 (anti-p65) NF-kB subunits. As shown in Figure 3-17, the band labeled as 

p50/p65 was shifted toward the origin by both anti-p50 and anti-p65 and 

therefore being identified as the p50/p65 heterodimer, whereas the band labeled 

as p50/p50 was shifted by anti-p50 but not anti-p65 and therefore being 

identified as the p50/p50 homodimer. The bottom band being shifted by neither 

anti-p50 nor anti-p65 was considered to be non-specific DNA binding. The top 

band appeared in mixture with anti-Rel antibodies and considered supershift 

band. Results shown in Figure 3-16 indicate that LPS markedly induced p65/p50 

DNA binding activity which appeared after 30 minutes and reached a maximum 

activation at 45 minutes. The activation of NF-kB lasted for at least 2 hours.

Effects of Oxidized Low Density Lipoprotein on the Activation of NF-kB in 

RAW264.7 Macrophages

To determine whether oxLDL influences the activation of NF-kB in
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Figure 3-16. Activation of NF-kB induced by LPS in RAW264.7 Macrophages. 
Macrophages were stimulated with 100 ng/ml LPS for varying legths of time. 
The nuclear proteins were extrated and analyzed by the EMSA. Top panel 
shows the NF-kB DNA binding activity. Arrows at the p50/p50 and p50/p65 
indicate NF-kB homodimer and heterodimer proteins, respectively. The bottom 
panel is the densitometry of the NF-kB bands. These results are representative 
of two experiments.
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Figure 3-17. Supershift assay for identifying NF-kB proteins. Antibodies specific 
to NF-kB p50 or p65 was added to the binding reaction mixture before the 
precedures of EMSA. Arrows at the p50/p50 and p50/p65 indicate NF-kB 
homodimer and heterodimer proteins. Respectively. These results are 
representative of two experiments.
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RAW264.7 macrophages, nuclear proteins were extracted from macrophages 

after co-incubation with LPS and oxLDL for 45 minutes. Figure 3-18 shows that 

oxLDL alone did not induce p50/p65 NF-kB DNA binding activity in unstimulated 

RAW264.7 macrophages. In contrast, the basal levels of p50/p65 activity were 

suppressed by oxLDL. The activation of p50/p65 NF-kB DNA binding activity 

induced by LPS was slightly suppressed by oxLDL in RAW264.7 macrophages.
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Figure 3-18. The influence of OxLDL on the activation of NF-kB induced by LPS 
in RAW264.7 Macrophages. Macrophages were incubated with 100 ng/ml LPS 
and 100 pg/ml oxLDL for 45 minutes. The nuclear proteins were extrated and 
analyzed by the EMSA. The top panel shows NF-kB DNA binding activity. 
Arrows at the p50/p50 and p50/p65 indicate NF-kB homodimer and heterodimer 
proteins, respectively. The bottom panel is the densitometry of NF-kB bands. 
These results are representative of three experiments.
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CHAPTER 4 

DISCUSSION

Atherosclerosis appears to be a chronic inflammation of the vasculature 

as indicated by the presence of macrophages, lymphocytes, immunoglubulins, 

adhesion molecules, cytokines, colony stimulating factors as well as 

inflammatory mediators such as NO and prostacyclin (PGI2) in atherosclerotic 

lesions (Ross 1993). The activation of NF-kB (Brand and others 1996) and the 

expression of iNOS in atherosclerotic plaques (Buttery and others 1996) further 

confirm the presence of an active inflammatory process. Macrophages may 

produce NO by iNOS in atherosclerotic lesions (Buttery and others 1996; 

Leeuwenburgh and others 1997). Alterations in NO production by macrophages 

may modulate atherogenesis (Lloyd-Jones and Bloch 1996).

The Inhibition Potential of Oxidized Low Density Lipoprotein

on NO Production

RAW264.7 macrophages produced large amounts of NO upon stimulation 

with LPS (see Figure 3-1). The production of NO depended on the 

concentrations of LPS, induction time and L-arginine supply. Under our 

experimental conditions, RAW264.7 macrophages produced NO in a nearly 

linear fashion. NO produced by cultured macrophages reacts with oxygen to 

form unstable intermediates which decompose to N 02' and nitrate (N 03 ) (see

73
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reaction 3-1) (Marietta and others 1988). N 02' and N 03' have been shown to be 

at a constant ratio of 2:3 in the medium of culture macrophages (Marietta and 

others 1988). The iNOS gene from RAW264.7 macrophages has been cloned 

and well characterized by Xie and others (1992). Goldring and others (1995) 

also observed the activation of NF-kB in RAW264.7 macrophages after 

stimulation with LPS. Furthermore, RAW264.7 cells had macrophage 

characteristics in phagocytosis of latex beads and accumulation of oxLDL lipids 

intracellularly as determined by O-red oil staining (data not shown). Via and 

others (1985) also showed that RAW264.7 macrophages have AcLDL scavenger 

receptors which take up AcLDL with the accumulation of cellular lipids. These 

information suggest that RAW264.7 macrophages provide a useful model for 

studying the effects of oxLDL on iNOS gene expression.

NO + 0 2 ------------ > N 02- + N 03- (3-1)

We have previously studied the oxidation kinetics of human LDL (Ma and 

others 1994). In the presence of tocopherols, the accumulation of LOOH in 

oxLDL is very slow until all tocopherols were consumed. LOOH then 

accumulates very rapidly in the absence of tocopherols. In the present study,

LDL was oxidized to the extent that all tocopherols were completely consumed 

(see Figure 3-2). Jessep and others (1990) demonstrated that LDL is not 

converted to a form that were recognized by scavenger receptors until all
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endogenous tocopherols are completely oxidized. LOOH accumulated in oxLDL 

to increasing levels as a function of time (see Figure 3-2). The oxLDL used in 

experiments described here would be taken up by macrophage scavenger 

receptors. LDL contains 2332 nmol PUFA/mg protein with an octadecadienoic 

acid content of about 2000 nmol/mg protein (for a review see Esterbauer and 

others 1992). Most investigators determine the extent of LDL oxidation by 

measuring MDA as a LOOH degradation product (Haberland and others 1982).

In most cases, it is not clear whether MDA is free or bound to oxLDL. We, 

however, measured LDL associated LOOH directly used a colorimetric method 

(Ma and others 1994; Tateishi and others 1987). We found that PUFAs are 

almost completely oxidized to form a maximum of about 2300 nmol LOOH/mg 

protein (see Figure 3-2). LOOH is the most abundant primary lipid peroxidation 

product in LDL oxidized in vitro and probably in atherosclerotic lesions (Folcik 

and Cathcart 1994, Folcik, 1995 #115; Noguchi and others 1993; Steinbrecher 

and Pritchard 1989). LOOH exists as cholesterol hydroperoxides, phospholipid 

hydroperoxides and free LOOH in oxLDL. The native LDL used in our 

experiments contained very low concentrations of LOOH and had tocopherol 

(mainly a-tocopherol) levels of about 21.4 nmol/mg protein. This LDL would be 

taken up by the LDL receptor but not the scavenger receptors.

In agreement with Yang and others (1994), our data show that oxLDL was 

a more effective inhibitor of NO production in LPS stimulated macrophages than 

AcLDL or LDL (see Figure 3-5). Nonetheless, macrophages take up both AcLDL
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and oxLDL with an almost equal accumulation of intracellular lipids (Yang and 

others 1994). Furthermore, the effects of AcLDL and LDL on NO production are 

very similar, even though AcLDL is taken up by AcLDL scavenger receptors 

whereas LDL is taken up by the LDL receptor. Therefore, neither the binding of 

modified LDL to AcLDL scavenger receptors nor lipid loading are likely to 

account for the observed inhibition of NO production. These results further 

support the notion that the inhibition potential of oxLDL may be determined by 

LOOH levels in oxLDL.

The slight inhibitory effect of AcLDL and LDL may be due to several 

factors. Both AcLDL and LDL contained trace amounts of LOOH that would also 

increase slightly during the 24 hours of incubation with macrophages (Aviram 

and Rosenblat 1994). The LOOH in AcLDL and LDL, even as low as 30-50 

nmol/mg protein may cause inhibition. Suzuki and others (1997b) suggested in a 

recent review that the ligand-receptor coupling such as TNF-a receptor binding 

would produce reactive oxygen species. We cannot exclude the possibility that 

ligation of AcLDL with AcLDL scavenger receptors or LDL with the LDL receptor 

would also produce reactive oxygen species, which give rise to a slight inhibition. 

Furthermore, whether class B scavenger receptors that only recognize oxLDL 

but not AcLDL (Sparrow and others 1989) are involved in the strong inhibitory 

effect of oxLDL has not been explored.

OxLDL at the concentrations used in this study did not decrease cell 

viability or mitochondrial dehydrogenase activity as determined by the MTT
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assay. Furthermore, oxLDL prepared by our method is free of Fe** and Cu~ 

ions, and may have lower cytotoxicity compared to oxLDL prepared with these 

transition metal ions. Coffey and others (1995) suggest that Fe** increases 

oxLDL cytotoxicity by causing the breakdown of LOOH to toxic LO’ and 'OH 

radicals and aldehydes.

13-HPODE and LvsoPC on NO Production in LPS Stimulated Macrophages 

13-HPODE and lysoPC have been shown by other investigators to be the 

major products formed during LDL oxidation (Folcik and others 1995; Noguchi 

and others 1993; Steinbrecher and others 1990). We are the first to find that 13- 

HPODE was markedly more effective than lysoPC for inhibiting NO production by 

stimulated RAW264.7 macrophages (see Figure 3-6). 13-HPODE is a product 

formed when octadecadienoic acid at 2-position of phosphatidylcholine (PC) is 

oxidized and hydrolyzed by the PLA2 activity of oxLDL (see reaction 1-1). 

Compared to 13-HPODE, LOOH in oxLDL was found to be less effective as an 

inhibitor of NO production (see Figure 3-4 and 3-7), which suggests that 

unesterified LOOH may be a better inhibitor than esterified LOOH.

As shown in Figure 3-6, lysoPC at 50 |iM had no significant effect on NO 

production (see Figure 3-6). LysoPC is the second major product formed during 

LDL oxidation. LDL contains about 1500 nmol phospholipids/mg protein with PC 

at a level of 818 nmol/mg protein (Esterbauer and others 1992). LysoPC 

reaches 400-600 nmol/mg protein in extensively oxidized LDL (Steinbrecher and 

others 1990). Extensively oxidized LDL at a concentration of 100 jj.g protein/ml
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has lysoPC about 40-60 pM, which is the concentration we used in our study.

Therefore, lysoPC is unlikely to be a major contributor for the inhibitory effect of 

oxLDL on NO production.

The data in Figure 3-6 also show that the inhibitory effects of 13-HPODE 

and lysoPC on NO production were very similar in AcLDL carrier or BSA carrier. 

In the concentration dependent experiments shown in Figure 3-7 and 3-8, both 

13-HPODE and lysoPC in BSA carrier showed inhibition of NO production, with 

13-HPODE being more potent than lysoPC. These results suggest that the 

effects of 13-HPODE and lysoPC did not require an AcLDL carrier. In the 

present study, we have not determine the mechanisms for the uptake of 13- 

HPODE by macrophages. However, we found that 13-HPODE levels decreased 

when 13-HPODE was incubated with macrophages and were undetectable after 

24 hours (data not shown). In the Fe~ free RPMI medium, 13-HPODE is 

unlikely to decompose to LO\ and 'OH radicals, and aldehydes. Cellular GSH 

peroxidases would be expected to reduce 13-HPODE to 13-HODE with a 

transient consumption of intracellular GSH (see reaction 1-3) (Coffey and others 

1995; Schmitt and others 1995).

Antioxidants on Nitric Oxide Production 

In the experiment shown in Figure 3-5, AcLDL and LDL only slightly 

inhibited NO production in macrophages compared to oxLDL. AcLDL and LDL 

contained not only low levels of LOOH but also high levels of a-tocopherol. 

Macrophages take up AcLDL with the accumulation of lipids as well as
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intracellular a-tocopherol. Whether the high in intracellular a-tocopherol also 

contributes to modulating NO production has not been previously investigated. 

We loaded macrophages with a-tocopherol by pre-incubation with a-tocopherol 

containing liposomes. Macrophages took up liposomes by phagocytosis and the 

cellular a-tocopherol in macrophages increased dramatically compared to 

macrophages loaded with control liposomes containing no tocopherol. As shown 

in Figure 3-9, increased cellular a-tocopherol attenuated the inhibition due to 

oxLDL by about 35% compared to cells treated with control liposomes, a- 

Tocopherol has been shown by Schmitt and others (1995) to inhibit the GSH and 

ATP depletion caused by oxLDL in cultured endothelial cells. Kuzuya and others 

(1991) also observed that loading of endothelial cells and macrophages with a- 

tocopherol or probucol reduced oxidative injury due to oxLDL. The intracellular 

content of a-tocopherol may, therefore, be important for reducing cellular 

oxidative stress. Recently, increased evidence also shows that intracellular a- 

tocopherol prevents the impairment of EDRF mediated relaxation due to oxLDL 

as well as inhibits SMC proliferation and monocyte adhesion on endothelium 

(Devaraj and others 1996; Keaney and others 1996; Ozer and others 1993).

The inhibition on cellular PKC activity has been suggested to contribute, in part, 

to the cellular effects of a-tocopherol (Devaraj and others 1996; Keaney and 

others 1996; Ozer and others 1993). These results suggest that a-tocopherol 

containing liposomes provide an effective way to increase tissue tocopherol
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levels and would therefore provide a unique approach for pharmacological 

intervention.

The data in figure 3-10 and 3-11 show that pre-treatment of macrophages 

with NAC also attenuated the inhibitory effects of oxLDL and 13-HPODE on NO 

production. NAC serves as an antioxidant by scavenging radicals and by 

increasing intracellular GSH levels (Moldeus and Cotgreave 1994; van 1995). 

Both oxLDL and LOOH has been shown to deplete intracellular GSH levels 

(Hennig and others 1996; Schmitt and others 1995; Thomas and others 1993). 

Phospholipid hydroperoxide glutathione peroxidase (PHGPX) is a 18kDa 

selenoprotein expressed in cells (Maiorino and others 1991). PHGPX reduces 

LOOH in oxLDL to LOH and 13-HPODE to 13-HODE using GSH as a substrate. 

OxLDL and 13-HPODE, therefore causing the consumption of intracellular GSH. 

Treatment of macrophages with NAC reversed the inhibition of NO production 

due to oxLDL and 13-HPODE. These results further suggest that the inhibition of 

oxLDL and 13-HPODE on NO production may be mediated by redox sensitive 

mechanisms. Increased intracellular a-tocopherol or NAC may preserve NO 

production in macrophages. The present study also suggest a possible 

pharmacological strategy for intervention in atherosclerotic process.

Regulation of iNOS Gene 

The data in Figure 3-12 and 3-15 show that LPS induced the expression 

of iNOS in RAW264.7 macrophages, whereas oxLDL significantly decreased 

iNOS expression by decreasing iNOS protein and iNOS mRNA. Yang and
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others (1994) found that oxLDL inhibits isolated cytosolic iNOS activity. 

Nevertheless, our study indicates that a decreased expression of iNOS caused 

by oxLDL may be the major contributor for the decreased NO production.

OxLDL decreased iNOS mRNA levels, presumably by inhibit ng the transcription 

of iNOS gene in macrophages as found in endothelial cells by Liao and others 

(1995).

The induction of mouse iNOS gene is regulated by NF-k B, AP-1 and other 

transcription factors (Xie and others 1994; Xie 1997). As shown in Figure 3-16, 

LPS was found to activate NF-kB in RAW264.7 macrophages. These results 

confirm that the activation of NF-k B is important for the expression of iNOS as 

suggested by others (Goldring and others 1995; Xie and others 1994). We also 

showed that oxLDL slightly suppressed the activation of NF-kB 45 minutes after 

incubation (see Figure 3-18). The suppression of NF-kB activation was in 

agreement with the decreased iNOS mRNA and iNOS protein shown in Figure 3- 

13 and 3-15, respectively. The slight suppression of NF-k B, however, is not 

sufficient enough to explain the dramatic decrease of iNOS mRNA levels in this 

experiment. An increased post-transcriptional degradation of iNOS mRNA can 

not be excluded. Others investigators (Ohlsson and others 1996; Schackelford 

and others 1995) have found that oxLDL almost completely suppresses NF-kB 

activation in mouse peritoneal macrophages. Furthermore, several studies 

(Hamilton and others 1995; Ohlsson and others 1996; Schackelford and others 

1995) also show that oxLDL inhibits the expression of other NF-k B regulated
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genes such as TNF-a, IL-1a and IL-1 p. These further support the notion that 

oxLDL inhibits iNOS expression at least in part at the transcriptional level.

If the suppression of iNOS gene expression was due to the suppression of 

N F-kB then we would expect to see a marked suppression of NF-k B with oxLDL, 

but this was not observed as shown in Figure 1-18. Compared to study of 

Ohlsson and others (1996) who treated macrophages with oxLDL for 24 hours 

before stimulation with LPS, we only treated cells with oxLDL plus LPS for 45 

minutes. It might be possible that macrophages were not exposure to oxLDL 

sufficient long to elicit a strong inhibition in our experiments. It is also possible 

that the activation of NF-kB is required but not sufficient for the expression of 

iNOS, as suggested by others (Flodstrom and others 1996; Kuo and others 

1997). Additional transcription factors such as AP-1 may also regulate iNOS 

transcription (Flodstrom and others 1996; Kuo and others 1997; Xie and others 

1994). NF-k B probably acts in concert with adjacent cis-elements that are 

activated by extracellular signals to form an effective initiation transcription 

complex (Collins 1993). In other words, the suppression of AP-1 or other 

transcription factors could also inhibit iNOS gene expression. Interestingly, AP-1 

is also a redox sensitive transcription factor (Flohe and others 1997). Unlikely 

N F-kB, AP-1 is inhibited by oxidants (Flohe and others 1997). Therefore, oxLDL 

may suppress AP-1 activation thereby inhibiting iNOS expression. At the present 

time, only very limited information is available on the role of AP-1 on the 

regulation of the iNOS gene in macrophages.
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The results shown in Figure 3-12, 3-15 and 3-18 clearly show that oxLDL 

neither induced iNOS nor activated NF-kB in macrophages. Our results, along 

with that of others (Hamilton and others 1995; Ohlsson and others 1996; 

Schackelford and others 1995; Thai and others 1995) do not fit the simple model 

shown in Figure 1-3 in which oxidants activate NF-kB and antioxidants block this 

effect. Regulation of gene expression by NF-kB is complex, the activation of 

p50/p65 activates gene expression, whereas the activation of p50/p50 may be 

inhibitory thereby suppressing gene expression (Franzoso and others 1992; 

Plaksin and others 1993). Schackelford and others (1995) have discussed the 

possibility that oxLDL induces an unidentified complex that competes with 

p50/p65 binding to the NF-kB DNA sequence thereby inhibits TNF-a expression. 

However, results from the present study did not show a dramatic activation of 

p50/p50 dimer that could inhibit p50/p65 binding.

Recent evidence suggests that the induction of NF-kB by oxidative stress 

may be cell type specific (Brennan and O'Neill 1995; Grigoriadis and others 

1996; Hecker and others 1996). In endothelial cells, oxLDL indeed induces NF- 

k B as well as NF-kB regulated genes such as adhesion molecules (i.e., VCAM-1, 

ELAM-1, ICAM-1), colony stimulating factors (i.e., GM-CSF, M-CSF), 

chemoattratant (i.e., MCP-1), and cytokines (i.e., IL-6, IL-8, IFN-p) (fora review 

see Collins 1993; Collins and others 1995). This is a typical example of the 

model shown in Figure 1-4. However, macrophages behave differently 

compared to endothelial cells in that intracellular GSH depletion due to oxLDL
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continues in endothelial cells but rebounds, and then exceeds the resting GSH 

levels in macrophages by increasing GSH biosynthesis (Darley-Usmar and 

others 1991; Faruqi and others 1997). Furthermore, NF-kB has been suggested 

to have dual effects on macrophages (Sato and others 1995). Macrophages 

may have superior abilities to deal with oxidative stress because they can 

generate oxidative bursts upon stimulation by pathogens. Endothelial cells may 

be more susceptible to oxidative stress than macrophages.

Oxidative stress also induces heat shock proteins (HSP) that protect 

against environmental stress. HSP70, for instance, was induced in cultured 

human endothelial, and SMC by treatment with oxLDL (Pirillo and others 1997; 

Zhu and others 1994; Zhu and others 1995). Significantly, several studies 

(Berberian and others 1990; Johnson and others 1993) have found an increased 

expression of HSP70 in human, and rabbit atherosclerotic arteries. Furthermore, 

HSP70 has been shown to inhibit the activation of NF-kB, and the expression of 

iNOS in arterial SMC, and astroglial cells (Feinstein and others 1996; Wong and 

others 1995). Suppression of NF-kB caused by oxLDL may be a secondary 

response of HSP induction. This may explain the slight inhibition of NF-kB 

caused by oxLDL as shown in Figure 3-18, because the secondary suppression 

of NF-kB due to the induction of HSP70 may not be obvious as early as 45 

minutes. HSP70 is, therefore, a possible link between oxLDL and decreased 

iNOS mRNA levels in macrophages.

We are the first to find that 13-HPODE mimicked the effect of oxLDL on
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decreasing iNOS protein in LPS stimulated macrophages (see Figure 3-13). 

LysoPC, however, at almost twice of the concentration for 13-HPODE, had no 

significant effect (see Figure 3-14). These results further suggest the 

involvement of oxidative stress in iNOS gene expression because both 13- 

HPODE and oxLDL would induce intracellular oxidative stress by the 

consumption of GSH but lysoPC would not have this effect (Darley-Usmar and 

others 1991; Faruqi and others 1997; Hennig and others 1996). Furthermore, 

intracellular a-tocopherol or pre-treatment with NAC attenuated the inhibition on 

NO production caused by oxLDL or 13-HPODE (see Figure 3-9, 3-10 and 3-11). 

Oxidative stress, therefore, is a plausible mechanism for inhibiting NO production 

in stimulated macrophages.

Physiological Significance

Inducible Nitric Oxide Production and Atherosclerosis

Inducible NO production from macrophages may be important for 

modulating in vivo LDL oxidation (Leeuwenburgh and others 1997; Rubbo and 

others 1994). Macrophages produce NO by iNOS using L-arginine and 0 2 as 

substrates and NADPH as a co-factor. 0*2' is thought to be produced by NADPH 

oxidase. The potential physiological significance of diminished NO production by 

macrophages in the arterial intima due to oxLDL may be partly dependent upon 

the localized 0*2‘ production (Rubbo and others 1994). NO may act as an 

antioxidant under conditions where local production of 0 '2' is low (Jessup and
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Dean 1993; Rubbo and others 1994). In this case, the diminished production of 

NO by oxLDL could promote atherosclerosis. In contrast, if the localized 0"2' 

level is high, then a diminished production of NO would decrease ONOO'' levels 

and prevent the pro-atherogenic effects caused by this oxidant (Hogg and others 

1993). A recent study indicates that in L-arginine depleted macrophages, iNOS 

produces both NO and 0 ’2' (Xia and Zweier 1997). Significantly, low L-arginine 

levels are associated with increased atherogenesis (Naruse and others 1994). 

The co-production of NO and 0 ‘2' by iNOS leads to the production of ONOO*' 

which may be important in atherosclerosis (Leeuwenburgh and others 1997; 

Rubbo and others 1994). The induction of iNOS in macrophages, therefore, may 

play an important role in initiating or modulating the process of atherosclerosis.

Antioxidants and Nitric oxide Production

Antioxidants have been implicated in decreasing the incidence of 

cardiovascular disease. Antioxidants, specially a-tocopherol, protects LDL 

against lipid peroxidation. The present study provides evidence that ex- 

tocopherol preserved NO production in macrophages treated with oxLDL. Our 

results support the hypothesis of Diaz (Diaz and others 1997) that a-tocopherol 

has direct effects on tissues in preventing atherosclerosis. We also found that 

NAC reversed the inhibition of NO production caused by oxLDL or 13-HPODE. 

Therefore, a-tocopherol and NAC may modulate the process of atherosclerosis 

by preserving NO production that otherwise would be impaired by oxLDL.
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Atherosclerosis and Infection

Accumulating evidence suggests that infectious microorganisms may play 

a role in atherosclerosis. The most prevalent pathogen related to atherosclerosis 

is chlamydia (Mlot 1996). Chlamydia was consistently found with high incidence 

in human atherosclerotic plaques using in PCR techniques (Jackson and others 

1997; Kuo and others 1993). Chlamydia is a special type of bacteria that lives as 

a parasite in macrophages, and contains LPS (Toman and others 1997).

Although we do not understand how chlamydia is related to atherosclerosis, 

chlamydia is unlikely to be an accidental deposit in pre-existing atherosclerotic 

lesions (Mlot 1996). Chlamydia infection could produce signals that modulate 

macrophage functions such as the induction of iNOS.

Similarly, infectious viruses such as cytomegalovirus (CMV) and herpes 

simplex virus (HSV) have been linked to atherosclerosis (for a review see Hajjar 

and Nicholson 1997). CMV and HSV have also been found in human 

atherosclerotic lesions and transplanted hearts. Infection of cultured endothelial 

cells, or animal models with HSV produces alterations similar to those observed 

in chronic atherosclerotic lesions (Jacob and others 1992). HSV infected 

macrophages have been shown to adhere to endothelium via scavenger 

receptor class B (Suzuki and others 1997a). Furthermore, both CMV and HSV 

are able to activate NF-kB, and may initiate an atherosclerotic-like process (Speir 

and others 1996).
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CONCLUSIONS

Our study indicates that the levels of LOOH in oxLDL determine the 

inhibition potential of oxLDL on NO production in LPS stimulated RAW264.7 

macrophages. This inhibition is not due to oxLDL cytotoxicity. 13-HPODE 

markedly inhibits NO production compared to lysoPC. These data suggest that 

LOOH in oxLDL may be more important than lysoPC for inhibiting NO 

production. Both a-tocopherol and NAC attenuate the inhibitory effects of oxLDL 

and 13-HPODE. OxLDL also decreases iNOS protein and mRNA levels. OxLDL 

suppresses the expression of iNOS gene, possibly at the transcriptional level.

The present study, therefore, suggests that the atherogenic properties of oxLDL 

may, in part, be mediated by modulating NO production in macrophages. 

Oxidative stress may be a possible mechanism for regulation of iNOS gene 

expression by oxLDL. Preservation of NO production may contribute to the anti- 

atherosclerotic effects of antioxidants. This study also suggests that the 

regulation of NO production may be a target for future intervention studies of 

atherosclerosis.
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