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ABSTRACT

Role of the CD40-CD40 ligand in CD4+ T cell activation of monocyte

Interleukin-1 synthesis 

by

David H. Wagner, Jr.

Most studies o f the induction of cytokine synthesis in monocytes have used an 
exogenous triggering agent such as Lipolpoysaccharide (LPS). However, during 
nonseptic chronic inflammatory responses (e.g., rheumatoid arthritis) monocyte 
activation occurs as a result of T cell generated signals. This report demonstrated that 
plasma membranes from anti-CD3 activated peripheral CD4+ T cells (TmA) but not 
from resting CD4+ cells (TmR) induced monocytes to synthesize IL-1 in the absence of 
costimulatory cytokines. The expression kinetics of the molecule(s) unique to activated 
T cells which interact with monocyte receptors to induce IL-1 demonstrated that 
optimal expression occurred at 6h post activation. This matched Lederman's, et al., 
(1992) previously reported kinetics of expression of CD40 ligand (CD40L) on activated 
peripheral T cells, implicating the CD40-CD40L interaction as a candidate for the 
initiator of IL-1 induction in monocytes. In this work, it was demonstrated that the 
signal could be reduced up to 85% by addition of 5c8, a monoclonal anti-CD40L 
antibody. In addition, a monoclonal anti-CD40 IgM (BL-C4) induced resting 
monocytes to synthesize IL-1. Experiments demonstrated that crosslinking the CD40 
molecules on monocytes was critical for IL-1 induction. TmA but not TmR also up- 
regulated cell surface expression of adhesion/costimulatory molecules on monocytes 
including CD40, ICAM-1, and LFA-3. Anti-CD40 signating up-regulated expression 
o f ICAM-1 and LFA-3. Experiments suggested that signaling through CD40 may 
utilize a protein tyrosine kinase (PTK) mediated pathway but not a protein kinase C 
mediated pathway and studies using THP-1, a premonocytic cell line, indicated that the 
transcription factor, NF-kB, was activated through anti-CD40 signaling. Since CD40 
ligand-transfected cells alone did not induce IL-1 but TmA did, it was considered that 
an additional costimulatory cell surface motecute was required. Preliminary 
experiments suggested that CD69 may be required. In summary, these results indicate 
that contact-dependent T cell-monocyte interactions, alone, can activate inflammatory 
cytokine production by resting monocytes and that a critical component of this 
interaction is the CD40-CD40L signaling event.
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Chapter 1 '

INTRODUCTION

Biology and Biochemistry of IL-1

Interleukin (IL.)-1 is a cytokine with numerous biological effects. When 

produced in limited concentrations during a normal immune response, IL-1 helps 

sustain the immune response by acting as a costimulus for T cell activation (Farrar et 

al., 1980). For instance, IL-1 induces the expression of IL-2, a T cell growth factor, 

in CD4+ T  helper type 1 (Thl) cells. Each T cell subtype is designated by its ability to 

produce specific cytokines. Furthermore, IL-1 induces expression of the IL-2 receptor 

in all T cell subtypes, thus promoting T cell expansion. IL-1 also augments the ability 

o f antigen presenting cells (APC) such as monocytes/macrophages, B cells, and 

dendritic cells, to activate T cell-dependent immune responses by up-regulating the 

expression of adhesion and costimulatory molecules on the APC cell surface (Dinarello, 

1991). IL-1 is produced primarily by activated macrophages, however it has been 

shown to be synthesized by a variety of cell types including fibroblasts, keratinocytes, 

endothelial cells, smooth muscle cells, and synovial cells (Matsushima et al., 1985; and 

Dinarello, 1984).

Overproduction of IL-1, as seen during chronic inflammatory diseases as well as 

bacterial infection and septic shock, results in injurious effects such as tissue 

destruction and exacerbation of host inflammatory responses. Tissue destruction results 

from the induction type IV collagenase and elastase gene expression (Lomedico et al.,
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198S; and Dinarello, 1991). IL-1 amplifies inflammatory responses through the 

induction of phospholipase A2 synthesis which leads to the production of lipid 

mediators of inflammation, leukotrienes, (Dinarello, 1991) and through induction of 

etcosanoid synthesis, prostaglandin Ej, in synovial cells (Dayer et al., 1986). IL-1 

increases the expression of adhesion molecules including intracellular adhesion 

molecule 1 (ICAM 1), vascular cell adhesion molecule (VCAM) and endothelial- 

leukocyte adhesion molecule (ELAM) on the surface of surrounding tissues including 

endothelial and vascular smooth muscle cells (Dinarello, 1991). These adhesion 

molecules bind circulating neutrophils, lymphocytes and monocytes resulting in 

expansion of the inflammatory response.

Other biological effects of IL-1 as reviewed by Dinarello (1991) include the 

induction of inflammatory cytokine genes such as Tumor necrosis factor-a (TNFo), IL- 

6 and IL-1 itself. IL-1 exhibits endocrine consequences including the induction of 

Hpolysis in adipocytes, and glucocorticoids in adrenal glands, as well as increasing 

production of prostaglandins, and promoting effects such as somnolence, anorexia, 

hypoalgesia and fever in brain tissue. IL-1 also has been shown to induce kappa 

immunoglobulin light chain synthesis, up-regulation of the T cell growth factor (TGF)- 

p receptor and down-regulation of IL-1 receptor, tumor necrosis factor (TNF) receptor 

and epidermal growth factor receptor.

The IL-1 designation refers to two separate proteins, IL-1 a and IL-lfl, which 

are products of different genes but perform essentially the same biological functions 

(Lomedico et al., 1985; and Auron et al., 1984). Although IL-1 a and IL-lp share
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only 26% amino acid identity each binds to the same receptors (type I and type II) and 

with equal affinity (Dinarello, 1991). IL-1 a and IL-lp are synthesized as 33kD 

precursors both of which are proteolytically processed to a 17kD mature form (Giri et 

al., 1985). Precursor IL-1 a has biological activity but IL-1 fl requires processing to the 

mature form in order to bind to the IL-1 receptors (Black et al., 1988). Precursor IL- 

la  reportedly is processed by calcium dependent proteases such as calpain (Kobayashi 

et al., 1990), A specific enzyme for processing precursor IL-lfl, IL-lfl-converting 

enzyme (ICE) that's localization apparently is restricted to monocytes/macrophages, 

has been identified (Thomberry et al., 1992; and Kostura et al., 1989). Intracellular 

IL-1 is found exclusively as the precursor form (Giri et al., 1985; Suttles et al., 1990) 

white both forms have been detected extracellularly (Suttles et at., 1990; and personal 

observations). Processing therefore must occur extracellularly or at the plasma 

membrane. Other enzymes, though not accepted as the primary processing enzymes, 

also cleave both IL-1 a and IL-lp to various biologically active sizes. It has been 

demonstrated that cathepsin-G, collagenase, and etastase are capable of processing IL- 

loc and IL-lp precursors (Hazuda et al., 1990), although these enzymes only may 

process IL-1 precursors after tissue damage.

Neither IL-1« nor IL-lfl have an N-terminal or internal signal peptide sequence 

(Hazuda et al., 1990) which is considered necessary for secreted proteins.

Furthermore, it has been reported that IL-1 is not associated with secretory vesicles or 

transported across the endoplasmic reticulum (Singer et al., 1988; and Suttles et al., 

1990). Therefore, IL-1 a and IL-1 it must utilize some novel secretory mechanism. It



has been proposed (hat the principal mechanism of secretion is cell injury (Hogquist et 

al., 1991). While this is an accepted mechanism ofIL-1 release, there is evidence that 

some type of secretory mechanism distinct from the typical signal-peptide mechanism 

of secretion does exist (Hazuda et al., 1988; Hazuda et al., 1990; Singer et al., 1988; 

Hogquist et al., 1991; and Koch et al., 1990), We have seen that 

ethylenediaminetetraacetic acid (EDTA) diminishes the ability of activated macrophages 

to secrete IL -lp , suggesting that extracellular divalent cations such as calcium and 

magnesium may play a role in the secretory mechanism of IL-1 (unpublished 

observations).

Monocyte/Macrophage Activation Leading to Induction of IL-1

Most studies o f induction of IL-1 synthesis and secretion in 

monocytes/macrophages have used the bacterial endotoxin, lipopolysaccharide ( LP5) a 

potent stimulator of cytokine synthesis in monocytes/macrophages. While such studies 

are certainly relevant to the induction of cytokines during septic conditions such as 

bacterial infection and septic shock, IL-1 production in rheumatoid arthritis and other 

chronic inflammatory autoimmune diseases is not mediated by LPS. It has been 

reported that there are activated CD4+ T cells in the synovial tissues of patients with 

rheumatoid arthritis (Jahn et al., 1987; Koch et al., 1990). T cells and 

monocytes/macrophages form conjugates during a normal immune response and this 

conjugate formation during abnormal chronic inflammatory responses may also result 

in the overproduction of IL-1.



During antigen presentation events, T cells interact with macrophages in an 

antigen dependent, major histocompatibility complex type II (MHC-II) restricted 

fashion with cell-contact mediated and cytokine mediated signals resulting in mutual 

activation of both T cells and macrophages. Studies of the interactions between T cells 

and macrophages have demonstrated that the cell contact-mediated contribution is 

critical for monocyte/macrophage activation (Stout, 1993; Stout and Suttles, 1992; and 

Suttles et al., 1994). It was demonstrated that the activation of macrophages to 

produce reactive nitrogen intermediates, nitric oxide, requires a combination of signals 

(Tao and Stout, 1993). These signals provided by LPS and interferon-y (IFNy), a 

cytokine produced by activated T helper type 1 (Thl) cells, lead to establishment of a 

TNFa autocrine loop (Stout, 1993; Stout and Suttles, 1992). It is welt established that 

LPS induces the synthesis and secretion of TNFa, as well as other inflammatory 

cytokines (Sherry and Cerami, 1988). IFNy induces upregulation of cell surface 

proteins including the TNFa receptor (Tsujimoto et al., 1986). Therefore, newly 

synthesized and secreted TNFa binds to its cell surface receptor and results in a 

signaling cascade that induces effector functions such as production of nitric oxide and 

interferon-p (IFNp) in the macrophage (Stout and Suttles, 1992). The necessity of the 

TNFa autocrine loop was confirmed since macrophages activated by LPS and IFNy in 

the presence of anti-TNFa antibodies did not produce nitric oxide [effector function] 

(Stout and Suttles, 1992; Oswald et al., 1992).

Later studies have demonstrated that activated T cells could replace the LPS 

signal resulting in macrophage effector function. Stout and Bottomly (1989) have
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shown that macrophages are activated to cytostatic activity by cell-contact mediated 

interactions with Thl cells alone and by Th2 coupled with recombinant interferon- 

gamma (IFNy). Activated Thl cells produce IFNy whereas activated Th2 cells do not. 

Stout and Suttles (1993) later showed that the signals necessary to induce cytostatic 

activity in IFNy primed macrophage could be delivered by cell-contact mediated 

interactions with murine Th2 cells. The activation signal could not be delivered by 

supernatants of activated T cells (cytokines) or if cell contact was prevented. However, 

paraformaldehyde fixed, activated T cells, either Thl or Th2, were able to deliver the 

signal (Stout and Suttles, 1993). These reports indicate that a critical part of the signal 

for macrophage activation is transduced through cell-contact mediated events.

These studies in murine systems have established that activated T cells through 

cell-contact mediated events, induce early gene activation events in macrophages 

(TNFa production) and in the presence of recombinant cytokines such as IFNy late 

gene events are induced (cytostatic activity). Several molecules have been identified on 

monocyte/macrophage cell surfaces which form receptor-ligand pairs with molecules on 

activated T  cells during conjugate formation (Figure 1). These molecules include: 

Intracellular adhesion molecule [ICAM-1 also known as CDS4] (Springer, 1990), 

Lymphocyte function-associated antigen [LFA-3 or CD58] (Webb et al., 1990), and 

Very late activation antigen [VLA-4 or CDw49d] (Springer, 1990). B7.1, B7.2/CD80 

[BB1] has been detected in very low concentrations on monocytes/macrophages, but 

reportedly it can be up-regulated by IFNy (Freedman et al,, 1991). It has also been 

demonstrated that CD40 is expressed on peripheral monocytes in extremely low
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Figure 1. Cell surface molecules on antigen presenting cells [APC] such as 

monocytes/macrophages and the ligand counterparts on T cells.

Several cell surface receptor - ligand molecules have been identified during T 

cclhmonocyte/macrophage conjugate formation. Molecules on monocyte/macrophage 

cell surfaces include LFA-3, ICAM-1/ICAM-2, B7.0, B7.1, and B7.2 (though B7 is 

expressed in low concentrations on monocytes (APC) but upregulatcd by cytokines such 

as IFNy), and recently CD40. The corresponding ligands on T cells include CD2, 

LFA-1, CD28/CTLA-4, and CD40 ligand. Potentially, any of these rcccptor-ligand 

pairs could participate in signaling events which lead to reciprocal activation of both 

cell types.
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concentrations (Alderson et al.t 1993) and recently CD40 has been reported on plastic 

adherent monocytes/macrophages (Wagner et a t ,  1994).

Monocytes do not constitutively synthesize IL-1, but as previously mentioned, 

synthesis of IL-1 can be induced by exogenous triggering agents such as LPS. It has 

been demonstrated that following LPS stimulation, IL-1 mRNA is rapidly transcribed 

without further protein synthesis (Fenton et al., 1987). This suggests the presence of 

preexisting transcription factors which become activated through a second messenger 

system. It has been determined that there are two responsive regions in the IL-1 p 

gene. The first identified region was the cap site-proximal region, just upstream of the 

start codon (Fenton et al., 1987) and the second region which is much further upstream 

is the LP5/PMA responsive region (Shirakawa et al., 1993). It was demonstrated that 

mutations or deletions within either of these regions will prevent IL-lp 

transcription/translation (Shirakawa et al., 1993). Fenton et al., (1987) reported the 

presence of elements including NF-pA, NF-kB, AP-1, and NF-IL6 in the cap site- 

proximal responsive region (-49 to -38). The presence of several enhancer elements 

located in the LPS/PMA responsive region (positions -3307 to -2666), including four 

cAMP responsive elements (CRE), three AP-1 sites, one NF-kB site and NFpA, an 

element reported to be specific for the 1L-1B gene, likewise have been reported 

(Shirakawa et al., 1993; Buras et al,, 1994). It was further suggested that the NF-pA 

element confers tissue specificity for IL-lp (Buras et al., 1994). Once the cell 

receives an appropriate signal, any of the preexisting cytoplasmic transcription factors 

may become activated, migrate to the nucleus and interact with the appropriate
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enhancer elements resulting in IL-lp induction. The activation of a particular factor(s) 

would depend upon the specific signaling pathway employed by the cell contact- 

mediated interactions between a ligand on activated T helper cells and its corresponding 

receptor on macrophages. Many of the previously mentioned receptor - ligand 

interactions could result in activation of various transcription factors.

CD40

A recently identified cell-contact dependent interaction that has proven to be 

critical for Th induced B cell activation was CD40L:CD40 (Parker, 1993). When B 

cell CD40 was blocked by antibody, Th dependent B cell activation was inhibited 

(Noelle et al., 1992). Potentially this interaction could occur between activated T cells 

and other APCs such as monocytes/macrophages, CD40 is a cell surface receptor 

which is a member of the TNFo receptor superfamily. Other members o f this 

superfamily include, NGFR (nerve growth factor receptor), CD27 (expressed on T 

cells and B cells), CD30 (a T cell activation molecule), 0X40 (an activated T cell- 

antigen found only in rats), and Fas/Apo 1 (a T cell antigen that induces apoptosis) 

(reviewed by Banchereau et al., 1994a]. The CD40 protein is a phosphoiylated 

glycoprotein which has been reported thus far to be expressed on B cells, thymic 

epithelial ceils, dendritic cells (Banchereau et al., 1994a) and very recently on human 

monocytes (Alderson et al., 1993; Wagner et al., 1994). In B cell studies, crosslinking 

of CD40 by anti-CD40 monoclonal antibodies induced proliferation of resting B cells, 

and antibodies in combination with costimulating agents induced full activation of B
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cells (Clark and Ledbetter, 1986). Also, it has been shown that latex beads which 

contain covalently attached anti-CD40 monoclonal antibody (Luxembourg and Cooper, 

1994), or L-cells (a fibroblast cell line), transfected with the human Fey receptor, type 

II, (FcyRII), then treated with monoclonal anti-CD40 antibodies (Larson and LcBien, 

1994), induced B cells to a substantial proliferation response, further demonstrating the 

effect of CD40 crosslinking on B cells. The importance of the CD40 signal in B cell 

activation was reiterated since it was demonstrated that CD40 signals are required for 

effective class switching. Cytokines including IL-4, IL-5 and IL-10, in combination 

with an anti~CD40 monoclonal antibody or CD40L-fusion protein induced B cell 

antibody production and class switching (Splawski et al., 1993; Grabstein et al., 1993; 

and Banchereau et al., 1994b). Anti-CD40 antibodies or cytokines atone were 

ineffective.

Sequence analysis of the cDNA encoding human CD40 determined that the 

primary structure is composed of 277 amino acids with a 193 amino acid extracellular 

domain, a 22 amino acid transmembrane segment and a 62 amino acid intracellular tail 

(Stamenkovic et al., 1989). The intracellular tail reportedly has no enzymatic activity 

(Ren et al., 1994), therefore CD40 must associate with another protein such as a 

protein kinase for signal transduction. It has been demonstrated that signal transduction 

following CD40L or CD40 monoclonal antibody engagement of the CD40 molecule 

induced phosphorylation of at least four distinct intracellular substrates in nonresting B 

cells (Uckun et al., 1991). These authors showed that protein tyrosine kinase (PTK) 

inhibitors, including herbimycin A and genistein, prevented phosphorylation of
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intracellular substrates in B cells following stimulation through CD40. PTK inhibitors 

have been shown to block B cell aggregation (Kansas and Tedder, 1991). The protein 

kinase-C (PKC) inhibitor, H-7, was shown to abrogate the stimulation of five 

serine/threonine specific protein kinases, although the role of PKC during CD40 signal 

transduction has not been defined (Uckun et al., 1991). Other recent studies have 

shown that blockade of interaction between activated T cell plasma membranes (TmA ) 

and B cells via a CD40L monoclonal antibody prevented the phosphorylation of various 

PTKs (Marshall et al., 1994). Contrary to earlier reports, it was demonstrated that 

PKC was not involved in CD40 signaling in B cells (Marshall et al., 1994). TmA 

interactions with B cells did not induce rises in intracellular Ca+I levels, cAMP 

production, or PKC activity, effects which are mediated through the PKC pathway.

The ligand for CD40, CD40L (Armitage et al,, 1992) also known as gp39 

(Noelle, et al., 1992), and T cell - B cell activation molecule [TBAM] (Lederman et 

al., 1992), has been reported to be expressed on the cell surface of activated CD4+, 

ThO, Thl and Th2, (Banchereau et al., 1994). CD40L has not been detected on CD8+ 

cells or on resting CD4+ cells but it has been reported that CD8+ cells activated by 

lectins such as phytohemagglutinin (PHA) will express some CD40L (Roy et at.,

1993). The expression of CD40L is transient on activated CD4+ cells with maximal 

expression reported to be at 6-8h post anti-CD3 activation and no detectable expression 

was seen at 24h post anti-CD3 activation (Roy et al., 1993; Lederman et al., 1992).

This project was designed to demonstrate that the signals which induce IL-1 

synthesis in monocytes/macrophages are communicated solely through cell-contact
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mediated interactions of activated Th cells with resting monocytes and that 

CD40:CD40L interactions are critical for the induction of IL-1. Furthermore, we 

examined the signaling mechanisms involved. Potential cell surface interactions 

between macrophages and T cells which were examined included LFA-3:CD2, ICAM- 

1:LFA-1, and B7/BBl:CD28/CTLA-4, and CD40:CD40L. Signal transduction 

mechanisms involved in IL-1 induction were explored by looking at activation of 

known transcription factors, specifically Nf-xB, which are specific for elements in the 

IL-1 gene, and by use of drugs which block protein tyrosine kinases and protein kinase- 

C. Determination of the T  cell-contact mediated interactions which are involved in the 

induction of IL-1 synthesis and the subsequent signal transduction mechanisms could 

lead to therapies which will better control inflammation.



Chapter 2 

MATERIALS AND METHODS

Cell Preparation

Blood was collected from normal human volunteers and peripheral blood 

leukocytes (PBL) were isolated over diatrizoate/Ficoll gradients (Ficoll-lite, Atlanta 

Biologicals, Atlanta, GA). PBL's were plated at a density o f 5 x 106 cells per well in 

24-well tissue culture plates (Falcon Primaria, Lincoln Park, NJ) in R PM I1640 

(Hyclone, Logan, UT), containing 2 x 10'5M 2-mercaptoclhanol, lOOmM HEPES, and 

gentamicin 50pg/ml, 5% FCS (henceforth designated as R-5), 100/rM EDTA. 

Monocytes adhered to the plastic culture plates within 45 minutes and were isolated by 

removal o f nonadherent cells. Adherent monocytes were rinsed twice with saline and 

maintained overnight in R-5, lOOpM EDTA. Since monocytes are so responsive to 

endotoxins, strict precautions were taken to ensure an endotoxin-free environment at all 

times. All reagents used during cell culture and monocyte labeling, including 

antibodies, were tested by chromogenic limulus assay (BioWhittaker, Walkersville, 

MD) to determine endotoxin levels. Endotoxin levels of greater than 1 ng/ml were 

considered unacceptable. When necessary, endotoxin was removed from reagents per 

manufacturer's instructions with Acticlean-Etox (Sterogene Bioseparations Inc., 

Arcadia, CA).

13
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Antibodies

Anti-CD3 antibody was purified from culture supernatants of the hybridoma, 

OKT-3, (Van Voorhis et al., 1983) from American Type Culture Collection, ATCC, 

(Rockville, MD). The murine monoclonal IgM anti-human CD40, clone BL-C4, 

produced by Monosan, (The Netherlands), was purchased from Caltag, (San Francisco, 

CA). The monoclonal IgGl anti-human CD40 , G28-5, was a gift of Dr. E.A. Clark 

(Dept, of Microbiology, University of Washington, Seattte WA). Blockade 

experiments utilized the monoclonal anti-CD40L, 5c8, a gift of Dr. Seth Lederman 

(Columbia University, New York, NY) (Lederman et al., 1992). Anti-CD69, IgGl, 

monoclonal antibody was purchased from Becton Dickinson (San Jose, CA). IgM 

isotype controls and goat anti-mouse IgG F(ab')2 were obtained from Southern 

Biotechnology Associates, Inc., (Birmingham, AL). Horse radish peroxidase (HRP) 

conjugated, goat F(ab')z anti-mouse IgM was purchased from Caltag Laboratories (San 

Francisco, CA) and HRP-conjugated rabbit F(ab')2 anti-mouse IgG was from Southern 

Biotechnology Associates, Inc. Anti-BB-1 (CD80), an IgGl monoclonal antibody, 

anti-LFA-3 IgG2a monoclonal antibody, and anti-ICAM-1 IgG2b monoclonal antibody 

were purchased from Camfolio division of Becton Dickinson (San Jose, CA). 

Purification of CD4+ cell populations and immunoprecipitation experiments employed 

monoclonal antibodies generated from hybridomas including anti-monocyte, 3C10 

(IgG2b) (Hoffman e ta l., 1980), anti-B cell, LYM-1 (IgG2a), anti-NK, hNK-1 (IgM) 

(Abo and Balch, 1981) and anti-CD8, OKT-8 (IgG2a) (Van Voorhis et al., 1983) and 

anti-IL-lp (clone H6-A) (Kenney et al., 1987) all purchased from ATCC.



T Cell Purification and Activation

T cells were purified from the plastic-nonadherent cells on prewanned (37°C) 

nylon-wool columns by incubating at 37 “C for 45 min. T lymphocytes were eluted off 

the column with 25ml Dulbecco's phosphate buffered saline (DPBS) containing 2% 

fetal bovine serum (FBS). The nylon wool purified T cells were either incubated in R- 

5 (resting) or activated by plating on anti-CD3 coated plates. T cells were activated 

for 3-18h at 37°C during kinetic studies and for 6h for other experiments. Following 

incubation, activated T cells were washed from the plates with DPBS, centrifuged and 

resuspended in an appropriate medium, for either membrane preparation or 

paraformaldehyde fixation. Cells were fixed by incubation in 1.0% paraformaldehyde 

for 15 min at 4° C, Fixed cells were then rinsed 3 times with PBS, resuspended in 

PBS and incubated at 37“ C for 18h prior to use.

The CD4+ population was purified by magnetic panning. Plastic nonadherent 

cells were incubated with monoclonal antibodies against cell surface molecules which 

had been generated from hybridomas (described above) including 3C10 (monocytes), 

LYM1 (B cells), anti-hNKl (natural killer cells), and anti-CD8 (CD8+ lymphocytes), 

for 30 min on ice. The monoclonal antibodies were used as culture supernatants. Cells 

were then treated with iron conjugated antibodies to murine IgG and IgM from 

PerSeptives Diagnostics (Cambridge, MA) for 30 min with shaking at 4° C. Cells were 

diluted to 1 x lOVml with sterile DPBS and the CD4‘ populations were removed via 27 

megagauss Oerstead magnets (PerSeptives Diagnostics). A sample of the purified
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population was stained with F1TC conjugated anti-CD4 and analyzed by flow 

cytometry. This population was typically found to be greater than 95% CD4+.

T Cell Membrane Preparation

Plasma membranes were prepared using a modification of the method of Noelte, 

et al., (1991). Briefly, resting and activated T cells, or transformed T cell lines 

including D1.1(CD40L expressing T cell fine), HUT-78, or Jurkat (T cell leukemia cell 

fine, CD40L') were resuspended in a hypotonic buffer containing 50mM Tris-HCL, 

pH 7.4, 25mM KCI, 5mM MgClj, and proteinase inhibitors, phenyl methane sulfonyl 

fluoride (PMSF) at 50pg/ml, leupeptin and pepstatin at lpg/ml for 30 min on ice. The 

cells were then Dounce-homogenized until cells were completely disrupted as 

determined microscopically. Disrupted cells were then centrifuged at 500xg for 5 min 

to remove nuclei, then centrifuged at 95,000xg for 30 min in a Beckman L5-65 

Ultracentrifuge. Cell debris was homogenized in 35% (wl/vol) sucrose/hypotonic 

buffer then layered on 73 % (wt/vol) sucrose/hypotonic buffer. Hypotonic buffer was 

layered on the 35% sucrose and the samples were centrifuged using a SW50.1 rotor at 

130,000xg, for 2h to separate plasma membranes. The plasma membrane layer (at the 

73%-35% interface) was collected and diluted 1:5 with hypotonic buffer, then 

centrifuged again for 2h at 180,000xg to pellet membranes. The membrane pellet was 

resuspended in PBS and total protein was determined by a microtiter plate protocol 

based on the method of Lowry, et al., (1953) or by a microtiter plate protocol o f the 

bicinchoninic acid (BCA) protein assay from Pierce (Rockford, IL). The BCA protein
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assay was read on a Biotek Instruments microtiter plate reader at 561nm. The micro- 

Lowry assay was read on a Molecular Devices VMAX plate reader at 693nm.

Metabolic Labeling of Monocyte Proteins, Inununoprecipitatlon, and SDS 

Electrophoresis of IL-1

The induction of IL-1 in monocytes by T cetts was measured by metabolically 

labeling plastic adherent monocytes with 50/zCi 35S-methionine in methionine deficient 

RPMI 1640 from Hyclone (Logan, UT) supplemented with 5/zg/ml insulin and 

transferrin. After labeling, the culture medium was removed, cells were rinsed with 

saline and lysed with an immunoprecipitation buffer containing 25mM Tris-HCl pH 

7.4, 1% Triton X-100, 1% Deoxycholate, 0.35M NaCl, lOmM EDTA, and 50/xg/ml 

PMSF. Lysed cells were immediately snap-frozen on dry ice and ethanol. Thawed 

samples were immunoprecipitated with rabbit anti-human interleukin-IB (hIL-lp) or 

anti-human IL-1 a from R&D Systems (Minneapolis, MN) as described previously 

(Suttles et at., 1990). Monoclonal antibody against IL-lp, generated from the 

hybridoma H-6A (Kenney et al., 1987), was used as culture supernatant fluid. The 

precipitates were electrophoresed through 15% polyacrylamide gels. All gels included 

14C-labeIed molecular weight markers including myosin at 205 killodaltons (kDa), p- 

galactosidase at 116kDa, bovine serum albumin at 66kDa, carbonic anhydrase at 29kDa 

and lysozyme at 14,3kDa, obtained from Amersham International (Amersham, UK). 

The gels were prepared for fluorography by soaking in autofluor from National 

Diagnostics (Atlanta, GA) for Ih. Gels were then dried, and exposed to Kodak X-omat



LS X-ray film from Eastman Kodak Co (Rochester, NY). Autoradiographs were 

quantified by image analysis using a Mitlipore Bioimage image analysis system. 

Relative levels of IL-1 synthesis were evaluated based on the integrated optical density 

(IOD), reported as OD/mm2 of labeled bands.

Flow Cytometric Analysis

For flow cytometric analysis of CD40 expression, adherent monocytes were 

removed from tissue culture plates by incubation in PBS, 0.02% EDTA followed by 

repeated pipetting. The cells were washed in PBS and resuspended in 100/xl of a 1:100 

dilution of the monoclonal anti-CD40, G28-5 (IgGl) and incubated 30 min at 4°C.

The cells were washed, resuspended in an FITC-conjugated rabbit anti-mouse IgG 

F(ab')2 and incubated for 30 min at 4°C, After a final wash in PBS the cells were 

analyzed on a FACS* 420 with a Spectra-Physics 164-05 argon laser lasing at 488nm, 

as described previously (Suttles, et al., 1986).

Cell-ELISA

Monocytes, selected by plastic adherence on 96 well plates, were fixed with 

0.05% glutaraldehyde for 30 min. The cells were washed twice with saline, then 

incubated in 10% horse serum, lOpg/ml human IgG in DPBS for 10 min for blockade 

of nonspecific binding. The celts were again washed in saline, then incubated with 

primary antibody suspended in the blocking solution. After washing, the cells were 

incubated 30 min in a secondary antibody, horse radish peroxidase conjugated goat 

anti-F(ab')2 from Southern Biotech (Birmingham, AL). Antibody binding was
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visualized by addition of peroxidase substrate tetramethyl benzidine dihydrochloride 

from Sigma Chemical Co. (St. Louis, MO) Plates were analyzed on a Vmax model 

microtiter plate reader from Molecular Devices (Menlo Park, CA) at 450nm.

Protein Kinase Inhibitors

Inhibitors of signal transduction included herbimycin A and genistein, potent 

PTK inhibitors, staurosporine, an inhibitor of phospholipid/calcium dependent protein 

kinase activity and H-7, a protein kinase-c inhibitor. Herbimycin A was obtained from 

Calbiochem (La Jolla, CA), resuspended in DMSO and used at concentrations ranging 

from 0.01/xg/ml to 1.0/ig/ml. Staurosporine, Sigma Chemical Co. (St. Louis, MO), 

was resuspended in DMSO at Img/ml, and used at concentrations ranging from lng/ml 

- lOOng/ml. H-7 and an H-7 analog, l-(5-isoquinolinylsulfonyl-3-methylpiperazine, 

(Sigma Chemical Co.), were rcsuspended in water and used at concentrations ranging 

from 1.0/jg/mI - 10/ig/ml. Genistein, (Sigma Chemical Co.), was resuspended in 

lOOmM DMSO and used over the range of O.lpg/ml - lOpg/ml.

Electrophoretic Mobility Shift Assays

THP-1, a human monocytic cell line, was cultured in RPMI, supplemented with 

5 % FBS and for experiments, celts were transferred to 6-well multiwell plates at a 

concentration of 5xl07/ml. THP-1 or peripheral monocytes at 2-5xl07 were left as 

unstimulated or stimulated with LPS at 1/ig/ml, or BC-L4, anti-CD40 IgM, at lpg/ml. 

Cells were collected and lysed to isolate nuclei based on the method of Buras et al., 

(1994). Briefly, celts were lysed in hypotonic buffer containing lOmM KCI, 0.3M
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sucrose, lOmM p-glycerol phosphate, 0.2mM EGTA, 0.4% nonidet P-40, lmM PMSF 

and 1/ig/ml each of leupeptin and pepstatin, on ice for 30 min with intermittent gentle 

agitation. Following lysis, nuclei were collected by centrifugation at 1 l,500g for 5 

min. Nuclear proteins were extracted by incubating nuclei in a buffer containing 25% 

glycerol, 1.5mM MgCI2, 0.2mM EDTA, 0.5mM dithiothreitol, lmM PMSF and 

1/tg/ml each of leupeptin and pepstatin, and 0.4M KCI for 30 min on ice. Extracts 

were centrifuged at ll,500g and supernatants were collected as nuclear extracts.

Extracts were concentrated and reconstituted to 0.1M KCI using Microcon 

microconcentrators from Amicon (Beverly, MA). Protein determinations were done by 

the BCA micro protein assay. Extracts were aliquoted and frozen at -80° C.

Binding assays were done using oligonucleotides, which included the binding 

elements for NF-kB from Promega Corp. (Madison, WI). Nf-xB elements were end- 

labelled with 31P-gamma ATP (ICN Biomedicals Inc., Irvine, CA). Nuclear extracts 

were incubated with gel shift binding buffer (4% glycerol, lmM MgCl2i O.SmmM 

EDTA, 0.5mM DTT, 50mM NaCI, lOmM Tris, pH 7.5, 0,05mg/ml salmon sperm 

DNA), and 31P-oligonucleotides at approximately 5x10s cpm. Binding reactions were 

done at room temperature for 30 min. Cold competition assays were done by first 

adding unlabelled oligonucleotides, 3.5pmoles, incubating for 20 min, then adding 32P- 

labelled oligonucleotides. Following binding reactions, samples were prepared for 

electrophoresis by addition of lOx gel loading buffer (250mM Tris, pH 7.5, 0.2% 

bromphenol blue, 0.2% xylene cyanol and 40% glycerol). Samples were loaded onto 

4% polyacrylamide gels which had been prerun for lh  at 100V constant voltage, and
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electrophoresed at 100V constant voltage until the bromphenol blue dye front reached 

the bottom of the gel. Following electrophoresis, gels were dried onto Whatman filter 

paper and exposed to x-ray film overnight at room temperature.



Chapter 3 

RESULTS

Membrane Determinants on Activated, But Not on Resting T Cells Induce Resting 

Monocytes to Synthesize IL-lp

It has previously been demonstrated that contact-dependent signals induce 

macrophage effector function (Stout and Suttles, 1992; Stout and Suttles, 1993; Tao 

and Stout, 1993). Following this line of investigation, experiments were designed to 

test whether plasma membranes from activated peripheral T  cells could induce IL-1 

protein synthesis by monocytes obtained from the same individual, through contact- 

dependent interactions alone. Peripheral T cells were activated on anti-CD3 coated 

plates for 5 hours and plasma membranes prepared from the activated T cells (TmA) 

were compared to plasma membranes from resting peripheral T cells (TmR) for their 

ability to induce IL-lp synthesis in resting, adherent monocytes. IL-1 synthesis was 

monitored by metabolic labeling using 3SS-labelled methionine and immunoprecipitation 

of monocyte cell lysates with anti-IL-1 antibodies. TmA successfully induced IL-lp 

synthesis (Figure 2), whereas TmR at the same concentration (25pg/ml) did not induce 

IL -lp  synthesis above background. The ability of TmA to activate monocytes was 

titrated across a range of 10-25/xg/ml, resulting in a dose-dependent response. These 

results suggest that activated T cells can provide all the necessary costimulatory 

molecules through cell surface interactions alone, to induce monocytes to synthesize IL- 

1P.

22
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Figure 2. Activated T cell plasma membranes (TmA) but not resting T  cell plasma 

membranes (TmR) induce human monocyte IL-lp synthesis.

Plastic adherent monocytes were incubated with either TmA or TmR for 5h in the 

presence of 50/iCi MS-methionine. Cell lysates were harvested, immunoprecipitated 

with anti-IL-lp monoclonal antibody, and etectropboresed on SDS-polyacrylamide 

gels. Proteins were visualized by autoradiography. The arrow indicates precursor IL- 

lp ,  33kDa. Lane 1, unstimulated controls; Lane 2, LPS at 10/ig/ml; Lane 3, TmA at 

25/xg/ml; and Lane 4, TmR at 25/jg/ml,

Ti
I



24

Kinetics of T cell expression of monocyte activating determinants

Having demonstrated that TmA are capable o f inducing monocytes to synthesize 

IL-lp through contact-dependent interactions alone, it was of interest to determine the 

expression kinetics of the T ceil surface molecules which induced IL-lp synthesis. The 

kinetic studies were performed using purified CD4+ cells which were 

paraformaldehyde fixed post-activation. Plastic adherent monocytes were incubated 

with the same number of either fixed resting CD4+ cells, (Oh), or CD4+ cells that had 

been activated on immobilized anti-CD3 for 3h, 6h, or 18h. As shown in Figure 3, 

CD4+ cells stimulated for 6h were most effective in the induction of monocyte IL-lp 

production. Image analysis of the 33 kDa IL-1 p precursor bands reported an integrated 

optical density, (IOD) (density/mm2) of 8.25 at 6h as compared to an IOD of 0.25 at 

Oh, an IOD of 3.46 at 3h, and an IOD of 2.41 at 18h. This suggested that maximal 

expression of the determinants on activated T cell surfaces which induce IL-1 synthesis 

in monocytes occurred at 6h post activation.

Expression and Upregulation of Monocyte CD40

Any of a number of activation-induced cell surface proteins could be considered 

as likely candidates for T cel 1-monocyte signaling. However, given the correlation of 

the expression kinetics of the IL-1 activating signal with those of expression of T  cell 

CD40L (optimal at 6h) (Lederman et al., 1992), the possibility that CD40L may be 

contributing to the monocyte response was explored. First, the level of expression of 

CD40 on resting adherent monocytes was analyzed by flow cytometry to assess the
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Figure 3. Kinetics of expression of T cell IL-l-inducing de term inant (s).

Monocytes, at 5x10s, were incubated with CD4+ cells which had been left as 

resting (Oh), or had been incubated on anti-CD3 coated plates for 3h, 6h, or 18h prior 

to immediate paraformaldehyde fixation. Fixed CD4+ cells were added to monocytes 

at 4 x 10s cells/ml and incubated for 4h in the presence of 3JS-methionine. Lysates 

were harvested, immunoprccipitated, and run on SDS polyacrylamide gels. The times 

designated above each lane indicate the length of time of anti-CD3 activation of the T 

cells. Data is representative of four experiments. The arrow indicates the 33kDa 

precursor, intracellular form of IL-lp.
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feasibility of a potential CD40-CD40L interaction in IL-1 induction. Adherent 

monocytes were removed from tissue culture plates and labeled with the monoclonal 

anti-CD40 antibody, G28-5, followed by FITC-conjugated rabbit anti-mouse IgG 

F (ab%  Flow cytometry revealed that resting plastic adherent monocytes exhibited 

significant expression of CD40 (mean fluorescence of 150) as compared to the IgGl 

isotype control (mean fluorescence 15) (Figure 4a). Expression of CD40 could be 

upregulated slightly with either IFNy or LPS, and to greater extent by treatment with 

the combination of both LPS and IFNy (mean fluorescence 300). Analysis of 

expression using cell-EUSA demonstrated that TmA, but not TmR could also upregulate 

CD40 expression over 50% above the expression levels of unstimulated cells (Figure 

4b). The cell-ELISA experiments confirmed that the combination of LPS and IFNy 

substantially upregulated CD40 expression on adherent monocytes (Figure 4b), as 

initially demonstrated by flow cytometry. The analysis of CD40 expression suggested 

that resting adherent monocytes are capable of receiving signals from activated T cells 

through a CD40L-CD40 interaction, and that the contact-dependent interaction results 

in the upregulation of CD40 expression. Once it had been determined that interaction 

between CD40L on activated T cells and CD40 on monocytes was feasible, 

experiments were designed to block the interaction using antibodies to CD40L, and 

determine the result on IL-lp production in monocytes/macrophages.

Blockade of T  cell membrane signaling with anti-CD40L antibodies

To directly address whether interaction between CD40L on activated T  cells
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Figure 4. Expression of CD40 on plastic adherent human monocytes.

(A). Analysis o f CD40 expression by flow cytometry. Monocytes at lx l0 6/ml 

were left unstimulatcd or stimulated with IFNy at lOOU/ml, LPS at lOjtg/ml, or IFNy 

(100U/ml) plus LPS (10/ig/ml) for 18h. Monocytes were incubated with G28-5, at 

1:100 followed by an FITC-conjugated goat F(ab')2 anti-murinc IgG and analyzed by 

flow cytometry. Isotype control labeling is seen as the dotted line. The profile of anti- 

CD40 labeled is represented by the solid line.

(B). Analysis o f CD40 expression by cell-ELISA.

Adherent monocytes at 5x10* were incubated in the presence or absence of LPS +IFNy, 

TmR or TmA labeled using cell-ELISA with anti-CD40 (G28.5) followed by horse 

radish peroxidase conjugated goat anti-F(ab')2.
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and CD40 on monocytes induces IL-1, the ability of the monoclonal anti-CD40L (T- 

BAM) antibody, 5c8 (Lederman et al., 1992), to interfere with the ability of TmA or 

activated, fixed CD4+ cells to induce monocyte IL-1 synthesis was tested. Activated 

peripheral CD4+ cells were fixed with paraformaldehyde and added to resting 

monocytes in the presence or absence of the 5c8 antibody. The antibody, 5c8, was 

titrated in these experiments over a concentration range of 1-25/ig/ml. Control groups 

included fixed activated CD4+ cells alone, and fixed activated CD4+ cells incubated 

with an IgG2a isotype control. Throughout experiments, addition of 5c8 blocked signal 

transduction by activated CD4+ cells in a dose-dependent fashion as depicted in Figure 

5. Data obtained through image analysis revealed an 85% reduction in IL-lp synthesis 

with the addition of 25/ig/ml 5c8. A 50% reduction in signal was observed at an 

antibody concentration of 10/zg/mt and a 30% reduction at lpg/ml. Addition of an 

IgG2a isotype control at the same concentrations had no inhibitory effect on the ability 

of activated, fixed CD4+ cells to stimulate monocyte IL-lp synthesis . In initial 

studies to block the ability of activated T cells to induce monocyte IL-1 synthesis, other 

monoclonal antibodies were tested. Anti-ICAM-1, anti-CD80 (BB-1), and anti-LFA-3 

were not effective at concentrations tested, in blocking the activated T cell signal for 

IL-1 synthesis. Also in separate experiments, none of these antibodies alone were 

agonistic towards IL-1 induction. The choice of these antibodies was based on previous 

demonstrations that the cell-surface molecules which these antibodies recognize are 

present on monocyte/macrophage cell surface, and that they may play some role in B 

cell signaling. These data suggest that ICAM-1, CD80 and LFA-3 interactions do not 

play a substantial role in the signaling of monocyte IL-1 synthesis.
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Figure 5. Anti-CD40L (5c8) blockade of contact-dependent CD4+ induction of 

monocyte IL -lp  synthesis.

Monocytes were incubated with 1 x lO^cells/ml anti-CD3 activated fixed CD4+ 

celts in the presence or absence of 5c8 at 1, 10 and 25/ig/ml. The cells were 

metabolically labeled for a 4h incubation. Lane 1, monocytes incubated with fixed 

resting CD4+ cells alone; Lane 2, monocytes incubated with fixed activated CD4+ 

cells; Lane 3, monocytes incubated with fixed activated CD4+ cells plus 5c8 at 

25pg/ntl; Lane 4, monocytes incubated with activated CD4+ cells plus 5c8 at 10pg/ml; 

Lane 5, monocytes incubated with activated CD4+ cells plus 5c8 at 1/ig/ml. Data is 

representative of three experiments. Arrow indicates 33kDa intracellular form of IL- 

1P.

1 2 3 4 5
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Anti-CD40 Stimulation of Monocyte IL-1 Synthesis

In addition to the blockade studies, anti-CD40 antibodies were used to examine 

signals mediated through CD40 which may lead to IL-1 induction. Studies of B celt 

signaling have employed the IgGl monoclonal anti-CD40 antibody, G28-5, to mimic 

the CD40L binding event. G28-5 has been found to stimulate B cell responses, 

selectively, when accompanied by costimulatory cytokines (Armitage et al., 1992, and 

Splawski, et al., 1993). G28-5 was not capable of stimulating monocyte IL-1 

production over a broad range of concentrations, i.e. from 1/ig/ml to 25/ig/ml. 

However, the IgM monoclonal anti-CD40, BL-C4 proved to be a potent stimulus of 

both IL-lp and IL -la production (Figure 6, a and b). BL-C4 was tested at 

concentrations ranging from 0 .1/ig/ml to 10/ig/ml and was found to induce IL-1 

synthesis in a dose dependent fashion . It was speculated that the ability of BL-C4, but 

not G28-5, to induce IL-1 may be due to the ability of pentameric IgM to crosslink 

CD40. The enhancement o f B cell CD40 signaling through crosslinking has been 

observed previously (Clark and Ledbetter, 1986; Luxembourg and Cooper, 1994; 

Larson and LeBien, 1994). Experiments therefore were designed to examine the 

efficacy of crosslinking CD40 on monocytes. Plastic adherent monocytes were 

incubated with G28-5 followed by goat F(ab')2 anti-murine IgG. Crosslinking G28-5 

with goat F(ab')2 anti-mouse IgG successfully induced IL-lp synthesis (Figure 7) 

whereas neither F(ab')2 anti-mouse IgG nor G28-5, alone, had any effect. The effects 

o f crosslinking on induction of IL -la synthesis were not examined. These results 

suggest that crosslinking of CD40 receptors may be a requirement for efficient



Figure 6. Stimulation of monocyte IL-1 synthesis with anti-CD40 antibodies.

Monocytes were incubated with BL-C4 during a 4h metabolic protein labeling 

period. Cell lysates were harvested and immunoprecipitated with anti-IL-lp (panel A) 

or anti-IL-la (panel B). The arrows identify the IL-lp and IL -la  33kDa precursor 

proteins. Panel A, induction of IL-lp synthesis: Lane 1, unstimulated monocytes;

Lane 2, LPS at 10/ig/ml; Lane 3, IgM isotype control at 1/ig/ml; and Lane 4, BL-C4 at 

1/ig/ml. Panel B, induction of IL -la: Lane 1, unstimulated monocytes; Lane 2, LPS 

at 10/ig/mI; Lane 3, IgM isotype control at 1/ig/ml; and Lane 4, BL-C4 at 1/ig/ml. 

Bands seen below the arrow are 25kDa processing intermediates of IL-lp which has 

been reported previously (Suttles et al., 1990).
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Figure 7. Requirement for crosslinking of monocyte CD40 for IL-lp induction.

Monocytes were incubated with G28-5 at 25/ig/ml for 20 min. An F(ab’)2 anti­

murine IgG was added at 15pg/ml during a 4h metabolic protein labeling incubation. 

Cell lysates were harvested and immunoprecipitated with anti-IL-lp. Lane 1, G28-5, 

alone, at 25pg/ml; Lane 2 F(ab')2, alone, at 15pg/mt; Lane 3, G28-5, 25/jg/ml 

followed by F(ab')2 15/ig/ml. Arrow indicates the 33kDa precursor form of IL-lp.
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signaling in monocytes, as has been demonstrated in studies o f B cell CD40 signaling. 

The specificity of effect of BL-C4 was evaluated by blockade experiments using G28-5. 

Since the G28-5 antibody bound to CD40 on monocytes, but did not initiate IL-lp 

synthesis, the ability of G28-5 to inhibit BL-C4 activation was examined. Plastic 

adherent monocytes were pre-incubated with G28-5 prior to BL-C4 stimulation. Pre­

incubation of the monocytes with lOpg/mi G28-5 inhibited BL-C4 stimulus o f IL-lp 

production by 77% as determined by image analysis of the autoradiograph (Figure 8).

Requirement of Costimulatory Signals In Addition to CD40

Experiments using TmA to activate resting, plastic adherent monocytes clearly 

demonstrated that all the signaling requirements for the induction of monocyte IL-1 

synthesis are found on the activated T cell surface as demonstrated in Figure 1. As 

another means of examining the contribution of CD40L towards the induction of IL-1 

in monocytes/macrophages, experiments were designed to test whether a human T cell 

leukemia line, D l . l ,  which constitutively expresses CD40L (Yellin et al.t 1991), or a 

cell line transfected with a CD40LcDNA, 293/CD40L+, could induce IL-1 synthesis 

through cognitive signals. Plasma membranes were generated from D l . l ,

293/CD40L+ and from a control parent line, Jurkat B2.7, which does not express 

CD40L (Yellin et al., 1991). D l.l  or 293/CD40L+, or Jurkatt plasma membranes 

were incubated with monocytes in metabolic labeling experiments at amounts 

equivalent to TmA that induced substantial IL-1 synthesis (25pg/ml), as demonstrated in 

Figure 1. However, de novo synthesis of IL-1 was not detected. This result was
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Figure 8. Blockade of BL-C4 induction of IL-lp with G28-5.

Monocytes were stimulated with BL-C4 either alone, or after a 20 min 

pretreatment with G28-5, for a 4h labeling incubation. Cell lysates were 

immunoprecipitated with anti-IL-lp. Lane 1, G28-5, alone, at 25pg/ml; Lane 2, BL- 

C4, alone at 1/ig/ml; Lane 3, G28-5 at 25/ig/m! (pre-incubated 20 min) plus BL-C4 at 

lpg/ml. Arrow indicates the 33kDa precursor form of IL-lp,
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surprising since experiments demonstrated that direct blockade of CD40L:CD40 

strongly diminished TmA's ability to induce IL-lp in monocytes, and experiments 

utilizing monoclonal IgM anti-CD40 antibodies were successful at inducing IL-1 

synthesis. Combinations of membranes including D l . l  with B2.7, and D l . l  with TmR 

also did not induce IL-1 synthesis. These findings suggest that a costimulatory 

molecule in addition to CD40 on monocytes is required for cell-contact mediated 

induction of IL-1 and that the required costimulatory molecule is unique to the 

activated T cell surface.

It has been demonstrated that a T cell line, HUT-78, once activated, can induce 

IL-1 synthesis in THP-1, a monocytic cell line, through cell-contact dependent signals 

(Dayer et al., 1993). These authors demonstrated that an anti-CD69 monoclonal 

antibody was able to partially block the signal. It is possible therefore, that CD69 may 

provide the costimulus required for induction of IL-1 synthesis in monocytes. 

Experiments were designed to test this hypothesis. It was determined by flow 

cytometry analysis that D l.l  cells do not express CD69 (Figure 9), and that 

unactivated HUT-78 express only low levels of CD40L (Figure 9). Therefore 

monocytes were metabolically labeled in the presence of D1.1(CD40L+, CD69') and 

HUT-78(CD69+, CD40L10) plasma membranes. As controls, monocytes were 

incubated with either D l . l  or HUT-78 membranes alone. The combination of plasma 

membranes was synergistic towards induction of IL -lp  synthesis in monocytes (Figure 

10). Image analysis revealed that the combination of membranes (I.O.D, -  6.52) was 

20 times more effective at inducing IL-lp synthesis than the HUT-78 (I.O.D. =  0.322)



Figure 9. Expression of CD69 on D l . l  cells and expression of CD40L on HUT-78 

cells.

D l.l  cells, lxlOVmf, were treated with an IgG anti-CD69 monoclonal 

antibody. Cells were then stained with a FITC-conjugated goat F(ab')2 anti-murine 

IgG. Flow cytometry was performed as described in Materials and Methods. A 

negative control, second antibody alone, was included (dotted lines). The profile of 

anti-CDG9 stained cells is indicated by solid lines.

IIUT-78 cells, lxlO6, were treated with the anti-CD40L monoclonal antibody, 

5c8, and stained with a FITC-conjugated goat F(ab')2 anti-murine IgG. Flow 

cytometry was performed as described in Materials and Methods. Negative controls 

(dotted lines) were second antibody alone. The profile of CD40L expression is seen as 

solid lines.

C D 4 0  ligand expressioni«T-----------------------:--------- C D 69 expression

D l . l D l . l

m

HUT-78 HUT-78O>
ca
o

c . ,  i . . . I .    ,  ■  i . . r r i ^ i . i i .  i , T S >

if  i  t f  10“ vf io*  itf* icT  1 0 “ i o 1i t f  vt io*  l t f

fluorescence
10*



37

Figure 10. HUT-78 plasma membranes in combination with D l. 1 plasma membranes 

induce IL-lp synthesis in monocytes.

Monocytes were plastic adhered and incubated with plasma membranes from 

HUT-78 (CD40L10 , CD69+), D l.l  (CD40L+, CD69' ) or a combination o f the two 

membranes. Following metabolic protein labeling with 35S-Methonine, cell lysates 

were immunoprecipitated as described in Materials and Methods. Lane 1, anti-CD40 at 

l^g/ml; lane 2, D l . l  plasma membranes at 15^g/ml; lane 3, D l . l  (15/ig/ml) +  HUT- 

78 (15/xg/ml) membranes; lane 4, HUT-78 plasma membranes at 15/ig/ml . Arrow 

indicates 33kDa precursor form of IL -lp .
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membranes alone and 100 times more effective than D l.l  (I.O.D. =  0.065) alone.

Low level induction by the HUT-78 may be due to the low levels of CD40L on the cell 

surface. This data suggests that CD69 may indeed play a contributory role in the T cell 

contact-mediated induction of monocyte IL-lp synthesis.

Effects of Protein Tyrosine Kinase Inhibitors and Protein Kinase-C Inhibitors on 

Monocyte IL-lp Production

To evaluate the signal transduction events induced in monocytes through CD40 

signaling, monocytes were pretreated with a variety of known signal transduction 

inhibitors prior to stimulation with the BL-C4, the IgM anti-CD40 antibody. Inhibitors 

of protein tyrosine kinase (PTK) regulated pathways and protein-kinase C (PKC) 

regulated pathways were tested at a variety of concentrations. Herbimycin-A has been 

described as a potent inhibitor of PTKs (Uckun et al,, 1991; Weinstein et al,t 1992; 

and Deans et al., 1993). While several PTKs have been identified from a variety of cell 

types, the specificity o f herbimycin-A beyond that of a general PTK inhibitor has not 

been elucidated. The effects of H-7 and staurosporine, PKC pathway inhibitors 

(Uckun et al., 1991), were also examined. In initial experiments, the effects o f various 

concentrations o f the inhibitors on total cellular protein concentration and the effects of 

the inhibitors on preventing de novo protein synthesis were tested. At all 

concentrations tested there was no difference between total cellular protein levels as 

determined by BCA protein analysis (Table 1). There were, however, substantial 

effects on de novo protein synthesis (Figure 11). For example herbimycin-A at 1/ig/ml
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TABLE 1

The Effects of Protein Kinase Inhibitors on Monocyte Total Cellular Protein

Treatm ent BCA Protein in /ig

untreated 7.86

LPS 7.58

anti-CD40 8.08

PKC Inhibitors:

Staurosporine lOOng/ml

Staurosporine lOng/ml 7.36

Staurosporine lng/ml 7.47

H-7 10/ig/ml 7.64

H-7 1/ig/ml 7.03

H-7 (3Me) 10/ig/ml 7.42

PTK Inhibitor: 7.64

Herbimycin-A 1/ig/ml

Herbimycin-A 0 .1/ig/ml 8.02

Herbimycin-A 0 ,01/ig/ml 7.74

8.13

Mean = 7.664 

s.d. =  0.324

Table 1. Cells were plated at 5x10s /ml and pretreated with herbimycin-A , 

staurosporine, H-7, or the H-7 analog, H-7(3Me) for 18h. Protein analysis was done 

on total cell lysates using a BCA-protein assay kit as described in Materials and 

Methods.
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Figure 11. Effects of protein kinase inhibitors on monocyte total de novo protein 

synthesis.

Monocytes were preincubated with herbimycin-A , staurosporine , H-7 or an 

H-7 analog, H-7[3-Me], for 18h. Cells were then stimulated with anti-CD40 IgM at 

1/ig/ml during 3iS-methionine metabolic labeling experiments for 4h. Samples of total 

cell protein were electrophoresed through SDS-polyacrylamide gels and visulaized by 

autoradiography. Lane 1, untreated; lane 2, LPS at 10/ig/ml; lane 3, anti-CD40 

(1/ig/ml) alone; lane 4, staurosporine at lOOng/mt; lane 5, staurosporine at lOng/ml; 

lane 6, staurosporine at Ing/ml; lane 7, H-7 at 10/ig/ml; lane 8, H-7 at 1/tg/ml; lane 9, 

H-7(3Me) at 10/ig/ml; lane 10, herbimycin-A at 1/ig/ml; lane 11, herbimycin-A at 

0.1/tg/ml; lane 12, herbimycin-A at 0 .01/ig/ml.

1 2 3 4  5 6 7 8 9  10 11 12
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Figure 12. Effects of protein kinase inhibitors on IL-lp induction.

Monocytes were preincubated with herbimycin-A, staurosporine, H-7 or an H-7 

analog, H-7[3-Me], for 18h. Cells were then stimulated with anti-CD40 IgM at 

1/ig/ml during 35S-methionine metabolic labeling experiments for 4h. Cell lysates were 

immunoprecipitated with the monoclonal anti-IL-lp antibody. Lane 1, untreated; lane 

2, anti-CD40 at 1/ig/ml; lane 3, herbimycin-A at 0 .1/ig/ml; lane 4, H-7 at 1/zg/ml; 

lane 5, staurosporine at lOng/ml. Arrow indicates 33kDa precursor form of IL-lp.
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prevented total de novo protein synthesis but at 0 .1/ig/ml, herbimycin-A had no 

appreciable effect on synthesis (Figure 11). But at 0.1/ig/ml, herbimycin-A 

substantially reduced IL-lp production (Figure 12). At concentrations which did not 

abolish total de novo protein synthesis, H-7 had very little effect on IL-lp synthesis 

(Figure 12). Staurosporine, likewise did not effect IL-1 synthesis at concentrations 

which did not abolish total protein synthesis. In fact, both H-7 and staurosporine 

apparently had activating effects on anti-CD40 IgM induced IL-lp production (Figure 

12). It has been reported that PKC inhibitors enhance PTK activity (Mufson et al., 

1992; and Shapira et al., 1993). These data suggest that signaling through CD40 may 

primarily utilize a protein tyrosine kinase regulated pathway and that PKC pathways 

apparently are not involved in signaling through CD40. It has been reported in B cell 

systems that plasma membranes from activated T cells induced PTK activities but did 

not increase cAMP, calcium, or PKC activity (Marshall et al., 1994). These authors 

also reported that an anti-CD40L monoclonal antibody, 5c8, could reduce PTK 

induction in B cells. The data presented here correlate with the finding that B cell 

signaling through CD40 induces PTKs but not PKC activity.

Transcription Factors Activated Through CD40 Signaling

In addition to the signal transduction information gained by using inhibitors to 

intracellular pathways, experiments were done to determine if the transcription factor, 

NF-xB would be activated through CD40 signaling. It has been demonstrated that NF- 

kB is activated in monocytes through LPS signaling (Drouet et al., 1991). For initial 

experiments, THP-1, a premonocytic cell line was used. It was determined by flow
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cytometry that THP-1 cells conslitutively express CD40, and can be induced to 

synthesize IL-lp by treatment with IgM anti-CD40 (BL-C4). Therefore, THP-1 were 

stimulated with BL-C4 for 4S min and nuclear extracts were prepared. Electrophoretic 

mobility shift assays (EMSA) demonstrated that CD40 signaling induced activation of 

NF-kB or an NF-kB like protein (Figure 13). Competition assays using unlabeled 

DNA oligonucleotides which bind NF-kB, were performed to verify that the bands 

indicated were NF-kB. Two band shifts were identified (Figure 13). NF-kB is 

composed of two protein subunits, p65 and p50, which form both heterodimers and 

homodimers (Moore et al., 1993). Moore et al (1993) reported that the heterodimer is 

the predominant form of NF-kB and the pbSsubunit constitutes the primary 

homodimeric form. The two band shifts observed in Figure 13 may correspond to the 

homodimer and hcterodimer forms but supershift assays using antibodies specific for 

p65 and p50 would be required to make such a determination. It was apparent that 

THP-1 constitutively activate 1 form of Nf-xB (Lane 1, Figure 13), which is consistent 

with reports in B cell studies (Lalmanach-Girard et al., 1994). It has been reported that 

NF-kB binding elements are present in the IL-lp gene enhancer region (Fenton et al., 

1987; Zhang and Rom, 1993; Hunninghake et al., 1992). These data suggest that 

signaling through CD40 activates NF-kB in the premonocytic cell line, THP-1, which 

appears to be a suitable model for studying activation of transcription factors 

through CD40 signaling.

Effects o f CD40 Signaling on The Expression of Monocyte Cell Surface Molecules 

Several costimulatory/adhesion molecules including ICAM-l/ICAM-2 (Springer,
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Figure 13. Activation of NF-xB in THP-1 cells through CD40 signaling.

THP-1, a premonocytic cell line, were plated at 2.5xl07 cells and treated with 

anti-CD40 IgM at lpg/ml. Nuclear extracts were prepared and incubated with 32P- 

labeled NF-xB binding oligonucleotides. Samples were electrophoresed through 4% 

polyacrylamide gels to generate electrophoretic mobility shift assays. Lane 1, untreated 

cells; lane 2, LPS at 10/ig/ml; lane 3, LPS +  unlabelled NF-xB in molar excess,

1.75pmoles (cold competition for LPS activation); lane 4, IgM anti-CD40; lane 5, IgM 

anti-CD40 +  unlabelled NF-xB molar excess (cold competition for anti-CD40 

activation). Arrows indicate band shifts.

1 2 3 4 5



1990), LFA-3 (Webb et al., 1990), B-7 (Freedman et al., 1991) and recently CD40 

(Alderson et al., 1993, and Wagner et al., 1994) have been demonstrated on the cell 

surface of monocytes/macrophages. Experiments were designed to determine how T 

cell contact-dependent signals can regulate the expression of these cell surface 

molecules. Peripheral monocytes were plated on 96-well plates and stimulated with 

paraformaldehyde fixed activated T cells or paraformaldehyde fixed resting T cells, 

LPS, IFNy, or with anti-CD40 IgM. Fixed, activated T cells and anti-CD40 IgM 

substantially upregulated the expression of ICAM-1, whereas resting T cells had a 

slight upregulatory effect as demonstrated by cell-ELJSA assays (Table 2). This 

suggests that anti-CD40 signals, and signals provided through contact-dependent 

interactions with activated T cells upregulates ICAM-1. LFA-3 expression was not 

affected by anti-CD40, compared to isotype controls, but was upregulated by fixed, 

activated T  cells (Table 2), while fixed resting T cells had no appreciable effect (Table 

2). It has recently been reported that stimulation through CD40 upregulates the 

expression of CD80 (BB-1) on B cells (Vellin, et al., 1994). The expression of CD80 

(BB-1) was not altered by anti-CD40 stimulation or by fixed resting T cells compared 

to isotype controls. CD80 was upregulated two-fold by fixed, activated T cells.

These data suggest that contact-dependent interactions between adherent 

monocytes and activated T cells lead to up regulation of monocytic cell surface 

molecules including ICAM-1, LFA-3 and CD80 (BB-1). Additionally, it appears that 

CD40 signaling substantially upregulated the expression of ICAM-1. Unlike reports in 

B cells (Yellin et al., 1994), CD40 signaling did not upregulate the expression of CD80 

(BB-1) in these experiments.



TABLE 2

Cell
Surface
Molecule

Regulation of Expression of Cell Surface Molecules on Adherent Monocytes 

unstimulated LPS IFN Y TR TA a-CD40 Isotype

CD80 7.2±1.5* 7.2±0.6  7.2±0.5 7 .8±0.7  16.0±1.9 9.7±0.9 9.1 ±1.0

ICAM-1 17.3 ±2.3 n.d. n.d. 23.0±0.2 57.3 ±2.2  44.1 ±4 .0  9 .8±1.0

LFA-3 9.5 ±1.6 11.1 ±0.3 12.4 ±1.3 10.1 ±0 .7  17.4±2.6 10.9±0.7 9 .1±1.0

•Values reported are arithmetic means ±standard errors xlO'2 of optical density units and representative o f three experiments

Table 2. Peripheral blood mononuclear cells were plated at 5x10s cells/well. Adherent cells were stained with the appropriate 
antibody at 1:100 (lOpg/ml). Cells were rinsed to remove unbound antibody, and incubated with an HRP-conjugated second 
antibody [HRP-(Fab')J. TA were activated for 6h. Cell-EUSAs were performed as described in Materials and Methods. Optical 
densities were determined using a Vmax plate reader, 
n.d. =  not done.



Chapter 4 

DISCUSSION

The induction of a successful immune response is dependent upon the formation 

of physical conjugates between T helper (Th) cells and antigen presenting cells (APCs). 

The intent of this study was to define interactions during physical conjugate formation 

between monocytes and T cells, which result in activation of monocyte/macrophage IL- 

1 production. The initial interaction between T cells and monocytes/macrophages is 

antigen-dependent, and MHC-II restricted. Signals, both cell-contact mediated and 

cytokine mediated lead to reciprocal activation. Previous studies have demonstrated 

that paraformaldehyde fixed, activated T cells in the presence of IFNy can induce nitric 

oxide and IFNp production in monocytes/macrophages (Tao and Stout, 1993). These 

effector functions of monocytes/macrophages require a TNFo autocrine loop, and it has 

been demonstrated that activated T cells will induce transcription of TNFa message as 

well as protein synthesis and secretion (Stout, 1993; Stout and Suttles, 1992; and 

Suttlcs et al., 1994). Since fixed, activated T cells transduced the appropriate signals, 

cell-contact mediated signals alone were sufficient to induce TNFa message/protein 

production in monocytes/macrophages. This study has extended these earlier studies by 

identifying molecules involved in the contact-dependent T helper 

cell:monocyte/macrophage signal. Purified plasma membranes from activated, but not 

resting CD4+ T cells, or fixed activated cells, were capable o f inducing monocyte IL-1 

synthesis. The activating determinant(s) on the T cells are expressed optimally at 6h

47
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post anti-CD3 activation, a kinetic profile which matches that of the expression of the 

CD40 ligand (Lederman et al,, 1992). These data, and the observed expression of 

CD40 on adherent resting monocytes provided circumstantial evidence implicating 

CD40 as a candidate for the T cell-mediated IL-1 signaling event. The demonstration 

that 5c8, a monoclonal anti-CD40L (T-BAM) can effectively block the ability of fixed 

activated CD4+ cells to induce monocyte IL-1 synthesis (Figure 5) provided definitive 

evidence of the role o f CD40-CD40L signaling in T  cell-monocyte interactions.

The CD40-CD40L interaction has been studied extensively in the context of T 

cell-B cell interactions (Noelle et at., 1992; Splawski et al., 1993; and Grabstein et al.,

1993). As mentioned previously, B cell stimulation has been achieved using anti- 

CD40 monoclonal antibodies, or a CD40 Hgand-Fc fusion protein, in the presence of 

costimulus (i.e., cytokines, anti-CD20 or anti-Ig) (Splawski et al., 1993; and Grabstein 

et al., 1993). B cell proliferation can be promoted by crosslinking of CD40 using the 

G28-5 monoclonal antibody (Clark and Ledbetter, 1986) or by crosslinking with anti- 

CD40 covalently attached to latex beads (Luxembourg and Cooper 1994). Crosslinking 

appears to be a requirement for CD40 signaling of monocyte IL-1 synthesis, as well, 

IgGl anti-CD40 (G28-5) was ineffective, whereas an IgM anti-CD40 (BL-C4), was 

proficient in the induction of IL-1. Crosslinking of G28-5 with the addition o f an 

F(ab’)2 allowed for the IL-1 signaling event to occur (Figure 5). The success of the 

BL-C4 IgM anti-CD40 in signaling may be due to the crosslinking ability of pentameric 

IgM or due to differences in the epitope to which BL-C4 binds. It has recently been 

suggested that two CD40 epitopes may exist in murine systems (Heath et al., 1994). It
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was shown that two different monoclonal antibodies generated against murine B cell 

CD40 differed in their ability to activate the B cells and that the two antibodies could 

not cross block one another. Human monocytes and B cells, may also have two CD40 

epitopes. It is possible that the differences between G28-5 and BC-L4 in their ability to 

activate monocyte IL-1 synthesis may be due to their epitope specificity. -The 

specificity of the BL-C4 generated signal was assured by the ability of the 

nonstimulatory G28-S to block activation initiated by BL-C4. The ability of G28-5 to 

block BL-C4 activity does not preclude the existence of two CD40 epitopes. If the 

epitopes are in close association, G28-5 may result in stearic hinderance, partially 

blocking BL-C4's ability to bind to its epitope.

In a previous report, CD40 ligand-transfected cells were found to induce 

monocyte IL-6 and TNFa production, but only in the presence of costimulatory 

cytokines (GM-CSF, IL-3, or IFNy) (Alderson et al., 1993). When membranes 

prepared from CD40L (T-BAM) transfectants, or from the Jurkat variant, D l . l ,  which 

express high levels of CD40L (T-BAM) (Lederman et al., 1992) were used in 

monocyte metabolic labeling experiments, they were not effective by themselves in 

inducing IL-1 (data not shown). Since TmA, alone, induced substantial amounts of IL- 

1, it is likely that T cell specific determinants in addition to CD40L are required for 

activation, and that these additional signals are mimicked by crosslinking CD40 

molecules on monocyte cell surfaces as demonstrated by crosslinking of the IgG anti- 

CD40 and suggested by the activity of BL-C4. Other studies using adherent antibodies 

have implicated costimulatory molecules such as LFA-3:CD2. In the current study,
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blockade of CD2:LFA-3, ICAM-1 :LFA-1, and CD80;CD28 interactions did not affect 

activated T  cells' ability to induce IL-1 synthesis in adherent monocytes. Although 

studies using antibody activation of monocyte receptors are enlightening, specific 

antibody blockade of signals generated by fixed T cells and T cell plasma membranes 

may best reveal the extent to which potential receptor-Iigand pairs are contributing to 

functional intercellular signaling.

Preliminary experiments presented here (Figure 10), as well as a report from 

another laboratory (Dayeret al., 1993), suggest that the additional costimulatory 

molecule on activated T  cells required for induction of monocyte IL-1 synthesis may be 

CD69. Experiments herein demonstrated that plasma membranes from D l.l  

(CD40L+, CD69) incubated with plasma membranes from HUT-78 (CD40L10, CD69+) 

induced IL-1 synthesis. The effects of the combined membranes were synergistic. The 

ligand for CD69 has not been identified so its presence on monocyte cell surfaces has 

yet to be determined.

Ultimately, the cell surface contact-mediated interactions result in activation of 

signaling pathways which induce IL-1 synthesis. It has been suggested that the CD40 

signaling pathway in B cells employs a PTK pathway including member kinases such as 

p56,yn (Ren et al., 1994). Results in the current study suggested that anti-CD40 

signaling in monocytes also utilizes a PTK mediated pathway. Experiments 

demonstrated that herbimycin A, a potent PTK inhibitor, blocked BL-C4's ability to 

induce IL-lp in monocytes. H-7 and staurosporine, inhibitors of PKC pathways, did 

not block anti-CD40 mediated IL-1 induction suggesting that PKC mediated pathways
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are not employed by anti-CD40 signaling. All inhibitors were used at concentrations 

that did not abrogate total protein synthesis as shown in Figure 11. These findings are 

similar to those reported in B cell studies which suggest that PTK but not PKC 

pathways are activated in T cell:B cell CD40 interactions (Marshall et al., 1994).

CD40 has been described as a member of the TNFa receptor superfamily 

(Banchereau et al., 1994a). Members of this superfamily are so designated by 

homologies within the extracellular domains. However, the cytoplasmic domains are 

quite varied. This suggests that a variety of signaling pathways may be employed by 

the various receptors. One such signaling pathway which has been implicated in signal 

transduction through the TNFa receptor is the sphingomyelin pathway (Kolesnick and 

Golde, 1994; and Yang et al., 1993). Sphingomyelin is cleaved by sphingomyelinase 

to generate ceramide and phosphocholine. Ceramide in turn activates a PTK cascade 

which results in activation of Raf leading to activation of NF-kB, a cytoplasmic nuclear 

transcription factor (Yang et al., 1993). While it has not been demonstrated directly, 

this pathway would be consistent with the results reported here showing that anti-CD40 

signaling in monocytes leads to NF-kB activation (Figure 12) and that anti-CD40 

signaling activates a PTK regulated pathway (Figure 13). It has been demonstrated that 

antibody blockade of the CD40:CD40L interaction between T cells and B cells prevents 

activation of NF-kB (Calmanach-Girard et al., 1994). As stated earlier, an NF-kB 

enhancer element is located in the human IL-lp gene, however the contribution of NF- 

kB binding within the IL-lp gene has not been determined.

It has been reported for LPS induction of monocyte IL-1 transcription/translation



that at least two transcription factors are required, NF-pA (Shirakawa et al., 1993;) 

and NF-IL6 (Buras et al., 1994). It is not known yet if both/either of these 

transcription factors are required for TmA induction of IL-1. Furthermore, the entire 

complement of transcription factors necessary and sufficient for IL-1 induction is not 

known. Since CD40L:CD40 interaction alone is not sufficient for IL-1 induction, as 

demonstrated by the failure o f D l.l  (CD40L+) plasma membranes to induce IL-1, it is 

likely that the combination of signals provided by both CD40 signaling and the other 

required cell contact-mediated signal (potentially provided by CD69) results in 

activation of the IL-1 transcription factors.

Two regulatory sequences have been identified in the IL -lp  gene which are 

reported to be required for IL-1 induction, and mutations or deletions within either of 

these regions prevented IL-1 transcription (Shirakawa et al., 1993; and Buras et al.,

1994). The cap site-proximal region, lies just upstream of the start codon and includes 

the TATA box as well as several transcription factor elements including binding sites 

for NF-kB, NF-IL6 and NF-pA. The LPS/PMA responsive region, is much further 

upstream and includes many of the same transcription factor elements (Figure 14). 

Future work includes determining the transcription factors required for IL-1 induction 

that are activated through anti-CD40 signaling. In addition, it will be necessary to 

determine which transcription factors are activated through the secondary cell contact- 

mediated costimulus (likely CD69L) signaling, Additional aspects of this study 

determined the effects of either TmA or anti-CD40 on the expression of 

monocyte/macrophage cell surface molecules such as LFA-3, ICAM-1, CD80 (BB-1)
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Figure 14. Responsive regions in the IL-lp gene.

Responsive regions have been identified in the IL-lp gene which have been 

demonstrated to be essential for IL-1 induction (Fenton et at., 1987; and Shirakawa et 

al., 1993). These regions include the cap site-proximal region which is just upstream 

of the start codon, and the LPS/PMA responsive region which is further upstream. 

Several enhancer binding elements, including NF-kB, NF-IL-6, and NF-pA, have been 

mapped in these regions. This cartoon is a representation of the map of the IL-1 p gene 

enhancer regions.

IL-lp Regulatory Sequences

AP-l NF-IL-6  NFpi NFp2 CRE/AP-1 NFkB AP-1

.3 7 5 7  -2474

LPS/PMA responsive Region

-4 9 --3 8
AP-1 NFkB OCT-A NF-IL-6  piFpA

w |s Mit(imfflBHtH||  ........ ....

SRE AP-1 NF-IL-6  TATA

C ap  Site Proximal Region - 4 0 - - 3 2



54

and C040. ICAM-1 is thought to participate primarily as an adhesion molecule with 

little if any costimulatory activity (Springer, 1990). The effects of anti-CD40 and TmA 

to increase cell surface expression of ICAM-1 may be relevant to maintenance of cell­

cell interactions. Upregulation of ICAM-1 would provide a cellular "glue" to allow 

receptor - ligand pairs that lead to signaling events to maintain contact for longer 

periods o f time. For instance, CD40L is transiently expressed on activated T cells 

(Lederman et al., 1992) and ICAM-1 binding to its ligand, LFA-1, could facilitate 

interactions of CD40L with CD40 on monocytes by maintaining conjugate formation 

between the two cell types. TmA uregulation of LFA-3 and CD40 expression on 

monocytes may be indicative of interactions which facilitate expression of signal 

transducing molecules. Increased cell surface expression of these signaling molecules 

would lead to an increased likelihood of receptor - ligand encounters and therefore 

increased likelihood of a successful signaling event. The interpretatoin of TmA 

upregulation of CD80 is unclear since a functional role of CD80 in monocyte (APC) 

signaling has not been determined. Interestingly, LFA-3 expression was not affected 

by anti-CD40, suggesting that cell surface molecules other than CD40L on activated T 

cells are required to upregulate LFA-3 expression. It was determined in this study 

however that LFA-3 - CD2 interactions had little effect on activated T cells ability to 

induce IL-1 synthesis in monocytes.

In summary we have demonstrated that CD40L on activated T cells interacting 

with CD40 on adherent monocytes is critical for the induction of IL-1 synthesis in 

monocytes. The finding by Durie et al.(1993) that point mutations in the CD40L result
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in X-l inked hyper IgM syndrome, a disease that diminishes humoral immunity since B 

cells cannot switch from the IgM antibody class, emphasizes the crucial contribution of 

CD40-CD40L signaling in T cell activation of B cell function. Since patients with this 

deficiency do not appear to have overt defects in cellular immunity, it has been 

suggested that a functional CD40L is essential only to antibody-mediated immunity. 

However, the ability of 5c8 to block the T cell contact-dependent signal suggests that 

the CD40-CD40L interactions may make a significant contribution to the induction of 

inflammatory cytokines. The kinetics of expression of CD40L with activation suggests 

that after an antigen-specific activation event, CD4+ T cells have a time-limited 

capacity to activate IL-1 production in resting monocytes through cell contact, hence 

perpetuating inflammatory responses in the absence of further antigenic stimulus.

The effects of blocking the CD40L:CD40 interaction after the induction of 

arthritis in mice has been demonstrated. Durie e ta /., (1993) showed if mice are 

treated with an anti-CD40L antibody during the induction of arthritis, the arthritic 

symptoms arc ablated. They reported that joints did not become inflamed, there was 

no demonstration of infiltration of inflammatory cells into subsynovial tissue, and no 

evidence of bone and cartilage destruction. These authors assert that the prevention of 

these typical arthritic effects arises from prevention of antibody production via T  cell:B 

cell interactions. However, all of these deleterious effects in the arthritis model are 

also mediated through IL-1 (Banchereau et al., 1994a). The current study has 

demonstrated that through CD40L:CD40 interactions between T cells and 

macrophages, IL-1 is induced in monocytes. The prevention of the tissue damage seen
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in anti-CD40L treated arthritic mice may result from blockade of activated T  cell's 

ability to induce IL-i in monocytes.
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