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Nitric Oxide Production: A Mechanism for Inhibition of 
Chlamydia trachomatis Replication

by
Bojun Chen

Chlamydia trachomatis (CT) replicates in macrophages, but is inhibited by 
IFN-y or LPS. IFN-y and/or LPS induced nitrite production in mouse peritoneal 
macrophages, macrophage cell lines (RAW264.7 and J774A.1) and McCoy cells. 
Kinetic studies indicated that peak production occurred 48 hours post-treatment. CT 
infection itself was insufficient to induce nitrite production, but resulted in 
enhancement of nitrite production in IFN-y-treated cells. Treatment with IFN-y or 
LPS resulted in significant inhibition of CT replication in these cells. Strong 
correlation between nitrite production and inhibition of CT replication was observed 
in RAW264.7 and J774A.1 cells (correlation coefficients: -0.93 and -0.94, p<0.001), 
N(-monomethyl-L-arginine (L-NMMA) specifically inhibited nitrite production and 
partially reversed inhibition of CT replication in macrophage cell lines. NOS mRNA 
was measured in RAW264.7 cells by Northern blot and Dot blot hybridization. Strong 
correlation between NOS mRNA expression and inhibition of CT replication 
(correlation coefficient: -0.97, p< 0 .05) was observed. Anti-TNF-a antibody 
completely neutralized the biological activity of TNF-a secreted by LPS-treated 
RAW264.7 cells, yet the antibody neither reduced nitrite production nor restored CT 
replication. Combination of the antibody and L-NMMA significantly enhanced 
restoration of CT replication. In peritoneal macrophages, inhibition of CT replication 
induced by IFN-y was partially restored by L-NMMA or anti-TNF-a antibody. In 
McCoy cells, inhibition of CT replication induced by IFN-y and LPS was not 
significantly restored by L-NMMA. Great restoration of CT replication by 1 mM L- 
NMMA was observed in LPS-treated J774A.1 cells (31%), but not in IFN-y-treated 
cells (5%). Our data indicate that (1) NO production is one of the mechanisms for 
inhibition of CT replication in IFN-y-activated peritoneal macrophages and 
RAW264.7 cells; (2) NO plays a significant role in CT inhibition in LPS-treated 
macrophage cell lines, but not peritoneal macrophages; (3) TNF-a may be associated 
with inhibition, but the mechanism(s) may not involve NO production; (4) NO 
production may not be the mechanism for CT inhibition in McCoy cells treated with 
IFN-y and LPS.
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CHAPTER 1 

Introduction

Epidemiology o f Chlamydial Genital Infection 

Chlamydia trachomatis (CT) is a major cause of sexually transmitted disease 

with more than 4,000,000 new cases diagnosed annually in the United States (CDC 

1985, Holmes 1981, Schachter 1978). Genital CT infection in men can cause 

urethritis which accounts for 50-60% of nongonococcal urethritis (Bowie 1984, Thelin 

et al. 1980). Genital CT infection in women can progress to serious diseases such as 

mucopurulent cervicitis, acute pelvic inflammatory disease, peritonitis, perihepatitis 

and salpingitis. Although 60-70% of the women were clinically asymptomatic at the 

time of diagnosis (Campbell and Dodson 1990, Lipkin et al. 1986, CDC 1985), 

genital CT infection can result in ectopic pregnancy and tubal infertility (Chow et al. 

1990, Henry-Suchet 1988, Walters et al. 1988). Infants delivered from infected 

mothers have a high incidence of inclusion conjunctivitis and pneumonia (Schaefer et 

al. 1985).

General Characteristics of Chlamvdia trachomatis 

CT is a species of the genus Chlamydia which includes two other species: 

Chlamydia psittaci and Chlamydia pneumoniae (Mardh 1989). Although the degree of 

genomic DNA relatedness among the three species is low (ranging from less than 

10% to almost 30%, Mamat et al 1992), they share many biological and biochemical
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properties such as obligate intracellular multiplication, an unique developmental cycle, 

LPS and inclusion formation in infected host cells. They also can be differentiated on 

the basis of inclusion type and sensitivity to sulfonamides. CT inclusions contain 

glycogen whereas C. psitfaci and C. pneumoniae do not. CT is more sensitive to 

sulfonamides than the others (Mardh 1989). Moreover, CT can be subdivided into 

three biovars: trachoma, lymphogranuloma venereum (LGV) and mouse pneumonitis 

(MoPn). The biovar trachoma consists of 14 serovars (A-K, Ba, Da and la). The 

serovars A, B, Ba and C are associated with endemic trachoma, a leading cause of 

preventable blindness in the world. The remainder are primarily associated with 

genital and neonatal infection (Freeman 1985, Wang and Grayston 1991). Four 

serovars (L I, L2, L2a and L3) in the biovar LGV cause lymphogranuloma venereum 

in tropical or subtropical areas as well as in the United States (Schachter 1978). MoPn 

generally causes pneumonia in mice, but has been used in animats as a model for 

genital CT infection (Rank et al. 1985).

CT is a small, gram-negative eubacterium (Weisburg et al. 1986), containing 

chromosomal and plasmid DNA as well as 21S, 16S and 4S rRNA (Newhall 1988). 

Because o f its small genome (600-850 kilobase pairs), CT can not encode all enzymes 

necessary to generate ATP, and is entirely dependent upon host cells for energy 

(Moulder 1988, Becker 1978). As other gram-negative bacteria, CT contains 

lipopolysaccharide (LPS) which consists of the typical components of enterobacterial 

LPS (Hearn and McNavv 1991). However, the endotoxin o f chlamydial LPS seems to 

be much less active than that of gram-negative enterobacteria (Leinonen 1992).
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Chlamydial LPS has been found in lysosomes and on the surface of the plasma 

membrane of infected cells (Hearn and McNabb 1991).

Developmental Cvcle of CT 

CT has a unique developmental cycle involving alternation between two forms: 

the elementary body (EB) and the reticulate body (RB). The EB, an infectious particle 

(400-600 nm in diameter) is adapted to extracellular survival, whereas the RB, a 

metabolically active particle (800*1200 nm in diameter) is a labile, noninfectious form 

that exists only intracellularly. Both EBs and RBs contain approximately equal 

amounts of a major outer membrane protein (MOMP) with a molecular mass of about 

40 kDa. However, EBs have lesser amounts o f the 13, 59 and 62 kDa outer 

membrane proteins, but have a cysteine-rich 60-kDa outer membrane protein which is 

not found in RBs (Moulder 1991, Newhall 1987, Hatch 1988, Hatch et al. 1984). EBs 

also have a greater extent of disulfide bond cross-linking than RBs (Hatch et al. 1984) 

and a dense nucleus at an eccentric region (Matsumoto 1988).

The chlamydial growth cycle is initiated by the adherence of the EB to host 

cells as shown in Figure 1. After attachment, the EB enters the host cell by receptor- 

mediated endocytosis (Hodinka et al. 1988, Wyrick et al, 1989). The endosome, 

which develops into a inclusion, exists in the cytoplasm, escaping from fusion with 

lysosome (Moulder 1991). In the endosome, the EB reorganizes into an RB which 

begins to divide by binary fission. Within 18 to 24 hours after attachment, RBs begin 

to undergo maturation culminating in the formation of EBs. Approximately 40-48



Figure 1

Sketch of the Developmental Cycle of Chlamydia.
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hours after attachment, EBs are released from the host cells by lysis o f the cells or by 

some form of exocytosis from the host cells (Ward 1988, Todd and Caldwell 1985). 

Nutritional depletion, pH modification, penicillin treatment or host defense 

mechanisms affect the growth cycle (Moulder 1991, Mardh 1989).

According to the growth cycle, recovery o f infectious CT (EBs) decreases up 

to 24 hr post-inoculation (pi), then increases after 48 hr pi. Therefore, CT replication 

can be determined by kinetics of CT recovery,

immune Responses to ChlamvdiaUnfeclion 

Chlamydial infection in humans elicits both humoral and cellular immune 

responses (Wang et al. 1982, Brunham et al. 1981). Since details o f the humoral and 

cellular immune responses in human infection are difficult to discern (Qvigstad et al. 

1985), the precise roles of the antibody, T cells, macrophages and cytokines remain 

poorly understood. However, evidence from studies using animal models of 

chlamydial infection and in vitro cell culture systems, together with epidemiological, 

serological and clinical observations of human chlamydial infections provide some 

insight into the human immune response to chlamydial infection.

In culture, CT (biovar trachoma or LGV) and C. psittaci have been shown to 

stimulate purified human or mouse B lymphocytes to proliferate and produce 

polyclonal antibodies (Bard ct al. 1984, Levitt et al. 1986). Stimulated human B cells 

require T-cell help for antibody production, while mouse cells do not. The B cell- 

stimulating factor may not be chlamydial LPS, since (a) polymyxin B failed to inhibit
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Chlamydia-induced polyclonal B cell activation and (b) C3H/HeJ mice (LPS- 

nonresponders) responded normally to Chlamydia with respect to polyclonal antibody 

production (Levitt et al. 1986, Moulder 1991). However, studies reporting stimulation 

o f T-cell proliferation by Chlamydia were controversial. Qvigstad and colleagues 

(1983, 1985) observed that T cells from human peripheral blood proliferated in 

response to UV-inactivated LGV. However, other investigators (Bard et al. 1984) did 

not observe T cell proliferation in response to CT.

Development of local antibody (secretory IgA) in humans is associated with 

protection against chlamydial endocervical reinfection (Johnson 1985). Anti-CT 

antibodies in sera from healthy people neutralized the infectivity of CT (Lin et al. 

1992). The neutralization was dependent upon antibody isotype and the cell types 

tested (Peterson et al. 1993). Neutralization was enhanced in the presence of 

complement (Lin et al 1992). The neutralization was thought to occur by inhibition of 

attachment o f EBs to host cells (Byrne et al. 1978, Moulder 1991), since monoclonal 

antibodies, which recognize epitopes on MOMP, inhibited attachment (Zhang et al, 

1987, Baehr et al. 1988, Stephens et al. 1988). However, antibodies (polyclonal or 

monoclonal) to MOMP also inhibited CT inclusion formation without affecting the 

attachment of EBs to host cells (Caldwell et al. 1982, Peeling et al. 1984). The latter 

indicated that the developmental cycle was halted at some point beyond attachment. 

Indeed, it was observed that antibody treatment resulted in fusion of EBs with 

lysosomes (Friis et al. 1972), thereby inhibiting transport of ATP into RBs (Peeling et 

al. 1984).
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The demonstration of chlamydial antigen on infected cell surfaces satisfies one 

of the requirements for cytotoxic T lymphocyte (CTL) activity. The presence of 

appropriate class I major histocompatibility (MHC) antigens is the other requirement 

for CTL activity. CTL activity was observed in spleen cells from mice immunized 

with C. psittaci, indicating that chlamydial antigen could be presented with MHC 

class I (Lammert 1982), However, CTL activity was not found in spleens, lymph 

nodes or peritoneal exudates from mice immunized with LGV (Pavia et al. 1983).

The role of CTL activity in CT infection remains to be defined.

In animal models, the cell-mediated immune (CMI) response seems to be 

essential for resolution of genital CT infections. In female guinea pigs infected by the 

agent of guinea pig inclusion conjunctivitis (GPIC), CMI and humoral responses 

cooperated to resolve the infection and provide resistance to reinfection (Rank and 

Barron. 1983, Rank ct al 1989). Female athymic nude (nu/nu) mice infected by 

mouse pneumonitis agent (MoPn) developed chronic genital infection (Rank et al. 

1985). In contrast, B cell-deficient mice were capable of resolving the infection and 

were immune to challenge infection (Ramsey et al. 1988). Furthermore, nu/nu mice 

that received MoPn antigen-specific T  lymphocyte lines were capable of resolving the 

infection (Ramsey and Rank 1991, Igietsutne ct al. 1991). Thus, in the MoPn mouse 

model, T cells eliciting CMI responses were essential for resolution of the infection 

and provision of immunity against reinfection. Additionally, either MoPn antigen- 

specific CD4+ or CD8+ T cells were sufficient to protect animals from infection 

(Ramsey and Rank 1990). IFN-y production might be a common mechanism of the
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protection by the two T-cell subpopulations since animals treated with monoclonal 

antibody against murine gamma interferon (IFN-7 ) sustained a significantly prolonged 

infection compared to untreated animals (Ramsey and Rank 1991).

Interaction betweenJMacrophages and CT 

Human and animal chlamydial infections are associated with 

polymorphonuclear and mononuclear (monocyte/macrophage) leukocyte infiltration of 

affected tissues (Lammont and Nichols. 1981). The roles of these leukocyte 

populations in protecting and resolving the infections in the host may be important 

(Branham et al. 1985, Rank ct al. 1985).

In vitro studies indicated that interaction between macrophages and Chlamydia 

is complicated. A survey of 10 human lymphoblastoid-myeloid cell lines, for 

example, showed that CT biovar LGV multiplied in some lines, entered others but did 

not multiply and attached to still other lines but did not enter (Bard et al. 1985). 

Human mononuclear phagocytes cultivated in vitro less than 7 days were almost 

totally resistant to CT inclusion formation and replication (< 1 0  IFU/ml recovered). 

However, LGV survived and replicated (1-9.5 x 105 IFU/ml) in phagocytes cultivated 

for more than 7 days. In contrast, CT biovar trachoma was completely inhibited in 

such phagocytes (Yong et al. 1987). Similar results were observed by Manor and 

Sarov (Manor and Sarov. 1986). Replication of LGV was completely inhibited in 

human peripheral monocytes, but not in monocyte-derived macrophages (MDM^). In 

contrast to LGV, C. psiftaci replicated in human monocytes and MDM</>.
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Transmission electron microscopy showed two main types of phagosomes in the 

cytoplasm of CT-infected monocytes at 1 hour pi, one in which the EB was tightly 

surrounded by the membrane of the phagosome and another in which the EB appeared 

in an enlarged phagosome. At 24 to 48 hours pi, each phagosome contained a single 

EB-like particle or an atypical (damaged) RB, indicating that CT was destroyed in 

phagosomes of human monocytes (Manor and Sarov 1986, Yong et al. 1987). When 

human monocytes and MDM$ were added to CT-infected HEp-2 cells, CT recovery 

and CT DNA production in HEp-2 cells were reduced ( Manor and Sarov 1988). 

Electron microscopy showed that infected HEp-2 cells exposed to MDM<£ contained 

small vacuoles with abnormal RBs and very few typical EBs. Compared to 

monocytes, MDM<£ exhibited more pronounced inhibition and were less resistant to 

chlamydial infection. Direct contact of MDM<£ with the CT-infected cells was 

required for effective inhibition. However, addition of anti-TNF-a antibody to the 

system reduced the inhibition of chlamydial DNA production (Manor and Sarov 

1988), although the mechanisms involved have not been defined clearly.

The human promyelocyte cell line HL-60 can be induced by phorbol myristate 

acetate (PMA) or dimethyl sulfoxide (DMSO) to differentiate along the macrophage 

or the granulocyte pathway, respectively. Compared to uninduced HL-60 cells, PMA- 

or DMSO-induced cells have a greater ability to bind, ingest and destroy CT (biovar 

LGV), indicating that the ability o f this cell line to interact with and destroy 

Chlamydiae correlates with distinct stages o f differentiation (Bard et al. 1987).

Although CT biovar trachoma cannot replicate in human monocytes or
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monocyte-derived macrophages in vitro (Yong et al. 1987), infection of macrophages 

by CT biovar trachoma may lake place in vivo. The evidence for this is that CT EBs 

and RBs were found in synovial macrophages of patients with Reiter’s syndrome or 

sexually acquired arthritis following urogenital infection by CT serovars D-K 

(Ishikawa et al. 1986, Keat ct al. 1987).

Alveolar macrophages isolated from healthy nonsmoking adults exhibited 

strong intracellular killing of CT biovar trachoma as well as LGV (Nakajo et al.

1990). But alveolar macrophages obtained from individuals with acquired immune 

deficiency syndrome (AIDS) exhibited susceptibility to CT infection (Nakajo et al. 

1988).

It has been demonstrated that C. psittad  and CT biovar LGV can infect and 

replicate in mouse peritoneal macrophages (Wyrick et al. 1978, Kuo 1978, Zhong and 

Maza 1988, Huebner and Byrne 1988). No apparent difference between thioglycollate- 

elicited and resident peritoneal macrophages was observed with regard to chlamydial 

infection (Wyrick et al. 1978). The intracellular fate of C. psittad  in peritoneal 

macrophages was somehow dependent upon the multiplicity of infection (MOI). 

Survival and multiplication of Chlamydiae were optimal at an MOI of 1 or less. At a 

high MOI (100), macrophage damage occurred immediately, which resulted in 

significant reduction of CT survival (Wyrick et al. 1978). EBs pretreated with heat 

(56°C for 10-30 minutes) or coated with homologous antibody were rapidly destroyed 

in phagolysosomes of macrophages (Wyrick et al. 1978).

It was observed that peritoneal macrophages from C. /w/V/nci-immunized mice
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were resistant to infection by G  psittad, while casein-, protease peptone- or 

thioglycollate-elicited macrophages from uninfected mice were equally susceptible to 

infection. Macrophages from Mycobacterium tuberculosis BCG- or Listeria 

monocytogenes-immumued mice exhibited intermediate susceptibility to infection 

(Huebner and Byrne 1988). Resistance of macrophages from the C, psittaci- 

immunized mice was not due to the ingestion of fewer organisms, nor were these cells 

persistently infected, since Chlamydia could not be recovered from the infected 

macrophages, even after an extended incubation period. Although increased 

respiratory and oxidative activities were observed in macrophages from the G 

/w/t/ocr-immunized mice, treatment o f the macrophages with superoxide dismutase to 

abrogate 0 2‘ activity did not affect resistance to chlamydial infection, indicating that 

resistance involved an oxygen-independent pathway (Huebner and Byrne 1988). 

However, the mechanism(s) responsible for the resistance have not been defined.

In contrast to G  psittad  or CT biovar LGV, growth o f CT biovar trachoma in 

mouse peritoneal macrophages is not welt documented. Low levels o f CT (104 

IFU/ml) were recovered at 48 hours pi from peritoneal macrophages inoculated with 

CT serovar B at an MOI of 5 (Kuo 1978). Since the kinetics of CT recovery were not 

determined, the observed infectivity recovered may have reflected residual inoculum. 

Therefore, actual replication of CT biovar trachoma in peritoneal macrophages has 

not been confirmed.

IFN-y-activated human monocytes and MDM</> have been shown to inhibit 

chlamydial infection. Human monocytes and MDM</> utilize both respiratory burst-
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dependent and -independent antimicrobial mechanisms. IFN-y can enhance the effect 

of both pathways (Nathan et al. 1983, Murray et al. 1983, Rothermcl et al. 1986). 

Therefore, oxygen-dependent and -independent pathways have been examined as 

antichlamydial processes in macrophages. Inhibition of C. psittad  growth by IFN-y- 

activated human MDM<£ was shown to be an oxygen-independent mechanism 

(Rothermel et al. 1986). Depletion of intracellular iron was not the mechanism of the 

inhibition, as iron-saturated transferrin did not reverse the intracellular inhibition 

(Murray et al 1991). Furthermore, deferoxamine (an iron chelator) did not impair 

chlamydia] replication within unstimulated human monocytes (Murray et al 1991). 

However, it was reported that IFN-y treatment of human MDM0 initially resulted in 

a microbiostatic inhibition of intracellular chlamydial development (C. psittad) which 

could be reversed by the addition of exogenous tryptophan (Byrne et al. 1989). 

Prolonged treatment with IFN - 7  before the addition o f tryptophan resulted in 

microbiocidal activity that was irreversible.

Thioglycollate-eliciled mouse peritoneal macrophages activated by IFN- 7  (with 

or without LPS) resulted in microbiostatic inhibition of C. psittad  (Huebner and 

Byrne 1988). The inhibitory effect was eliminated shortly after IFN-y was removed 

from the culture. Thioglycollate-clicited mouse peritoneal macrophages activated in 

vivo with recombinant murine IFN-y significantly restricted CT replication (LGV). 

Moreover, mice that received IFN-y-activated macrophages exhibited significant 

decreases in CT recovery from their spleens and peritoneal fluids (Zhong and de la 

Maza 1988). The mechanism(s) have not been defined. It was observed that the
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restriction of CT replication paralleled expression of Iad on the macrophages (Zhong 

and de la Maza 1988). Increase of la expression on macrophages induced by T cell- 

derived IFN-y also was observed in mice infected by other organisms such as 

Listeria monocytogenes (Koga et al. 1987). Furthermore, Ia-bearing-macrophage 

influx was associated with genetic resistance of mice to infection by Rickettsia 

tsutsugamushi (Jerrells 1983). However, the precise role of la expression in inhibition 

of CT remains unknown.

Effect o f Cvtokines upon Chlamydial Infection

Interferon-^

Interferon- 7  (IFN-7 ) is produced by Thj lymphocytes (helper T  lymphocyte 1) 

and has multiple biological functions. These include activation of macrophages, 

participation in T  cell differentiation, inhibition of proliferation of Th2 lymphocytes 

(helper T  lymphocyte 2) and antimicrobial activity (Adams and Hamilton 1992, Auger 

and Ross 1992, Fitch et al. 1993). The inhibitory effects o f IFN-y upon CT infection 

have been examined in vitro as well as in vivo. Stimulation of spleen cells from CT 

(serovar Ll)-infected mice by concanavalin A (con A) or heat-killed CT resulted in 

the release of high levels of IFN-y at 5-8 days postinfection (Zhong et al. 1989). IFN- 

7  levels paralleled the clearance of CT from the mice. Treatment of CT-infected mice 

with monoclonal antibody (MAb) to IFN-y significantly increased recovery of CT 

(Zhong et al. 1989). In vitro. IFN-y activated macrophages (human or mouse) which
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inhibited chlamydial growth as described above and restricted chlamydial infection in 

other cells (Rothermel et al. 1983, Maza et al. 1987, Shemer and Sarov 1985, Byrne 

et al. 1989). Mouse fibroblasts (L and McCoy cells) and human epithelioid or 

epidermoid cell lines (T24, HeLa and HEp-2) treated with IFN-y exhibited inhibition 

of inclusion formation. Inhibition of chlamydial recovery also was observed in these 

cells. IFN - 7  restricted replication of CT biovar trachoma in primary human 

conjunctival epithelial cells (Tahija et al. 1990).

Most investigators have focused upon tryptophan degradation as a mechanism 

of inhibition. IFN-y can induce a variety of cells to synthesize indoleamine-2, 3- 

deoxygenase (Shemer and Sarov 1987, Byrne et al. 1986, Tahija et al. 1990, Carlin et 

al. 1989). This enzyme causes depletion of tryptophan by degrading it to kynurenine 

and N-formylkynurenine. Exogenous tryptophan partially reversed IFN-y-induced 

inhibition of C. psittad  in T24 cells or human macrophages (Byrne et al. 1986 and 

1989, Carlin et al. 1989). Moreover, tryptophan partially reversed the inhibition of 

CT biovar LGV in HEp-2 cells (Shemer and Sarov 1987). However, exogenous 

tryptophan failed to block the action of IFN-y in McCoy cells infected with CT biovar 

LGV (de la Maza et al. 1985). This phenomenon also was observed in other murine- 

derived cell lines (Murray et al. 1989, Mayer et al. 1993). Therefore, it is possible 

that tryptophan degradation is involved in antichlamydial activity in human cells, but 

not in murine cells.
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Tumor Necrosis Factor a

Tumor necrosis factor a  (TNF-a) is produced primarily by macrophages and 

has been shown to exert an inhibitory activity in chlamydial infections. In vivo. TNF- 

a  was produced in the lungs of CT-infected mice, where it plays an undefined role in 

host defense against infection (Williams et al. 1990). In culture, the effect o f TNF-a 

upon chlamydial infection (CT biovar LGV) resembled that of IFN-y (Shemer-Avni et 

al. 1988, 1989). The TNF-a effect was abolished by cycloheximide, indicating that 

synthesis of host protein was required (Shemer-Avni et al 1988). Like IFN-y, TNF-a 

induced the degradation of tryptophan. This is remarkable, since exogenous 

tryptophan or anti-IFN-0 antibody partially reversed the inhibition of CT replication 

in HEp-2 cells (Shemer-Avni et al. 1989). Inhibition of CT (biovar LGV) by TNF-a 

was accompanied by increased production of prostaglandin E2 (PGE2) in HEp-2 cells 

(Holtmann et al. 1990). The role of increased PGE2 is unclear.

Interleukin-1

Interleukin-1 (IL-1) was induced in human monocytes by live, heat- or UV- 

inactivated EBs (CT biovar LGV) only at a high MOI (Manor et al. 1990, Rothermel 

et al. 1989). Recombinant IL -la  inhibited CT growth in HEp-2 cells in the absence of 

tryptophan degradation. However, PGE2 formation was increased in infected HEp-2 

cells treated with IL-1 or TN F-a, but not IFN-y. Tryptophan inhibited PGE2 

production and reversed the inhibition of CT replication induced by exogenous PGE2
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(Shemer-Avni et al. 1990). The precise mechanism involved in this inhibition is not 

clear.

NO Production and Inhibition of Microorganisms in Activated Macrophages 

Macrophage activation is known to occur through a  series o f stages ranging 

from a level equivalent to resident tissue macrophages and culminating at an activated 

state whereupon macrophages become competent to kill several pathogens and lyse 

tumor cells (Adams and Hamilton 1984, 1992). During this activation process, 

macrophages produce an array of biologically active molecules. Nitric oxide (NO) is 

one of these products which include superoxide, hydrogen peroxide, TN F-a, IL-1, 

IL-6 , M IPl-a and P G ^  (Stuehr and Marietta 1987, Adams and Halmilton 1992).

NO, a simple and relatively unstable radical, is a potent and pleiotropic 

mediator of diverse biological activities (Liew and Cox 1991a, Kolb and Kolb- 

Bachofen 1992, Moncada et al. 1991). This radical accounts for the activity of an 

endothelium-derived relaxing factor, acts as a neurotransmitter and serves as a major 

defense molecule against tumor cells, intracellular parasites, fungal and bacterial 

pathogens (Liew and Cox 1991, Kolb and Kolb-Bachofen 1992, Moncada et al. 1991, 

Stuehr and Nathan 1989).

The first evidence to suggest that macrophages produced nitrite (N 02‘) was 

that blood levels and urinary excretion of nitrate (NOy) increased after exposure to 

LPS in LPS-sensitive, but not in LPS-resistant mice (Stuehr and Marietta 1985).

These authors also demonstrated that mouse peritoneal macrophages activated by LPS



increased N O / and NO,’ production in vitro. Subsequent work demonstrated that 

mouse peritoneal macrophages and macrophage cell lines produced nitrite and nitrate 

following stimulation by cytokines or LPS (Ding et al. 1991, Stuehr and Marietta 

1985, 1987a, 1987b, Moncada et al. 1991). The production o f NO was dependent 

upon the presence o f L-arginine which is converted to cilrulline (Iyengar et al. 1987). 

Experiments with ,5N-labeled arginine demonstrated that both N O / and N O / were 

derived from the terminal guanidino nitrogen atom(s) of arginine (Iyengar et al.

1987). It is clear that NO is generated in macrophages from L-arginine catalysis 

directed by NO synthase (NOS), NO then is converted to nitrite or nitrate. As NO is 

unstable (half life of seconds), nitrite rather than NO production is measured. 

Analogues of L-arginine, such as N*-monomethyl-L-arginine (L-NMMA), specifically 

inhibited NO synthesis by competitive binding (Figure 2).

There are at least two distinct isoforms of NO synthase. One is calcium- and 

calmodulin-dependent and is constilutively expressed in some cell types of the body, 

notably the endothelium and some neurons. The other is not dependent upon calcium 

or calmodulin, and is not constilutively expressed. When induced, the latter can 

produce large amounts of NO in macrophages and many other cell types (Moncada et 

al. 1991). The inducible enzyme is not detectable in macrophage cell lines or freshly 

isolated macrophages that have not been activated by LPS or cytokines (Stuehr and 

Marietta 1985, 1987a, 1987b). Cellular protein synthesis is required for its expression 

(Marietta et al. 1988). There is a lag phase o f approximately 8  hours before synthesis 

of N O / and NO/ is detectable (Stuehr and Marietta 1987a). Recently, cDNA of the
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Figure 2
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NOS gene has been cloned from Ihe mouse macrophage cell line RAW264.7 (mac- 

NOS, Lowenstein et al. 1992, Lyons et al. 1992, Xie et al. 1992), from bovine aortic 

endothelial cells (ecNOS, Sessa et al. 1992) and from rat cerebellum (bNOS, Bredt ct 

al. 1991). Comparison of the deduced amino acid sequence of mac-NOS to that of 

bNOS and ecNOS revealed only 50-57% identity (Sessa et al 1992, Lowenstein ct al. 

1992).

The capacities of 12 cytokines to induce N O / production in resident or 

thioglycollate-elicited mouse peritoneal macrophages were evaluated (Ding ct al.

1988). Of these, only IFN-y induced substantial N O / production. The remainder 

(IFN-a, IFN-0, TNF-a, TNF-0, CSF-GM, CSF-M, IL-10, IL-2, IL-3, IL-4 and 

TGF-0) were incapable of inducing significant nitrite production. Although neither 

TN F-a nor TNF-0 induced nitrite production alone, combination of either with IFN-y 

increased nitrite production six-fold over that in macrophages treated with IFN-y 

alone. In combination with LPS, IFN-a or IFN-0 also induced nitrite production, 

despite the fact that neither alone was sufficient. IFN-y and LPS acted synergistically 

to induce nitrite production. IL-10, a product o f Thz lymphocytes, inhibited 

expression of NOS and nitrite production in IFN-y-activated macrophage cell line 

J774A.1 cells (Cunha et al. 1992). The response was dose-dependent. Inhibition 

occurred only when the cells were pretreated with IL-10. Addition o f IL-10 after IFN- 

7  activation was not effective (Cunha et al. 1992). IL-4 and TGF-0 also inhibited 

nitrite production by IFN-7 -activatcd macrophages (Liew ct al. 1991b, Ding et al.

1990).
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The effect o f NO production upon intracellular killing of microorganisms by 

mouse peritoneal macrophages has been studied quite extensively. Mouse 

macrophages activated by LPS and IFN- 7  exerted a powerful cytostatic effect in vitro 

against the fungal pathogen Cryptococcus neoformans (Granger et al. 1986a, 1986b). 

This fungistasis was dependent upon the presence of L-arginine, was inhibited by L- 

NMMA and correlated with the synthesis of L-citrulline, nitrite and nitrate (Granger 

et al. 1990). Similarly, the cytostatic action of mouse macrophages against 

Toxoplasma gondii was prevented by L-NMMA (Adams et al. 1990). Intraperitoneal 

administration of killed Corynebacterium parvum in mice led to increased resistance 

to infection by Toxoplasma, an effect which was prevented by L-NMMA (Adams et 

al. 1990). Intracellular destruction of Leishmania major amastigotes (L. major) was 

inhibited by L-NMMA (Green et al. 1990, Liew et al. 1990). Moreover, this parasite 

was killed directly by exposure to NO (Liew et al. 1990). Mice infected by L. major 

developed larger lesions following in vivo treatment with L-NMMA. The infected 

footpads of the L-NMMA-treated mice contained 10* times more parasites than those 

of untreated mice (Liew et al. 1990). NO produced by activated mouse macrophages 

also may be involved in the in vitro killing o f Schistosoma mansoni (James and 

Claven 1989) and Entamoeba histolytica trophozoites (Lin and Chadee 1992). It is 

notable that the effect o f NO in inhibition of CT by mouse macrophages, to our 

knowledge, has not yet been reported.

Most studies have indicated that human monocytes and MDM<£ stimulated with 

IFN - 7  in vitro or in vivo did not produce enhanced levels of nitrite (Murray and



Tertelbaum 1992, James et al. 1990, Cameron et al. 1990). Neither L-NMMA nor 

arginase inhibited intracellular antimicrobial activity (Murray and Tertelbaum 1992). 

James and his coworkers (James et al. 1990) reported that human MDM<£ activated in 

vitro by IFN - 7  killed Schistosoma mansoni, but did not produce nitrite. Cameron and 

his coworkers (Cameron et al 1990) showed that human alveolar and peritoneal 

macrophages inhibited replication of intracellular Cryptococcus neoformans without 

producing nitrite or nitrate. The authors observed that L-NMMA did not affect 

anticryptococcal activity. In addition, the killing of Mycobacterium avium,

Toxoplasma gondii, Chlamydia psittaci or Leishmania donovarti by human monocytes 

was not diminished by L-NMMA or arginase (Murray and Teitelbaum 1992). At the 

same time, it remains possible that the generation of NO may play some antimicrobial 

role in vivo, which for unclear reasons cannot be readily demonstrated in vitro using 

human cells. Recent studies in cancer patients treated with IL-2, for example, have 

indicated the presence of cytokine-inducible nitrite production in serum and urine 

(Billiar et al. 1991, Murray et al. 1989). Furthermore, 14-day old human monocyte- 

derived macrophages have been reported to generate nitrite after prolonged (7-day) 

intracellular infection by the slowly growing pathogen Mycobacterium avium (Denis

1991). Eight days of concurrent treatment with TNF-a or CSF-GM increased nitrite 

production and induced killing of M, avium, L-NMMA or arginase reversed the 

effect. It is possible that human macrophages may be stimulated to produce NO only 

in response to a particular cytokine or pathogen.
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Summary

Chlamydial genital infection is prevalent throughout the would. Interaction 

between macrophages and CT is important in host defense against the infection. C. 

psittaci and CT biovar LGV have been demonstrated to grow in inactivated 

macrophages, but replication o f CT biovar trachoma in macrophages is not well 

documented. Cytokines such as IFN - 7  and TNF-a have been shown to inhibit CT 

infection. However, the mechanisms involved have not been defined. Although NO 

has been identified as a major defense molecule against a variety of microorganisms, 

the effect of NO in inhibition of CT by activated mouse macrophages is unknown. 

Therefore, this study was initiated to demonstrate replication of CT biovar trachoma 

(scrovar D) in mouse peritoneal macrophages and macrophage cell lines.

Subsequently, correlation between NO production and CT inhibition in these cells was 

analyzed. We observed a strong correlation between nitrite production and inhibition 

of CT replication in macrophage cell lines (RAW264.7 and J774A.I). L-NMMA 

partially reversed the inhibition. Our data suggest that NO is one of the mechanisms 

involved in inhibition of CT replication in IFN-y-activated macrophages.



CHAPTER 2 

Materials and Methods

Materials

Buffers and Solutions 

Dulbecco’s phosphate buffered saline (DPBS) was purchased from Sigma 

Chemical Co. DPBS consisted of 0.9 mM calcium chloride, 2.68 mM potassium 

chloride, 1.47 mM potassium phosphate monobasic, 0.49 mM magnesium chloride, 

0.137 M sodium chloride and 8,06 mM sodium phosphate dibasic.

Trypsin-EDTA containing 0.25% trypsin and 1 mM EDTA was purchased 

from Gibco. Fetal bovine serum (FBS) was purchased from Sigma Chemical Co. FBS 

was inactivated at 56°C for 30 minutes before use.

IFA (Immunofluorescence Assay) buffer was phosphate buffered saline 

prepared according to the manufacturer’s instructions.

Glucose, Tris-HCl, EDTA (ethylenediaminetetraacetic acid), NaOH, SDS 

(lauryl sulfate sodium salt), potassium acetate, NaCl, sodium citrate, NaH2P 0 4, 

Na2H P04, crystal violet, RNase A, ethidium bromide, 37% formaldehyde, MOPS (3- 

N-morpholinopropanesulfonic acid), DEPC (diethylpyrocarbonate), bromphenol blue, 

xylene cyanol, sulfanilamide and naphthylethylenediamine dihydrochloride (NEDD) 

were purchased from Sigma Chemical Co. Phenol, chloroform, isoamylalcohol, 

isopropanol, ethanol, methanol, HC1, phosphoric acid and ion-exchange resin were

23



24

purchased from Fisher Scientific.

Distilled water used to prepare buffers and solutions for RNA isolation and 

hybridization was treated with DEPC, and then autoclaved for 30 minutes at 1210C.

Formamide was deionized by mixing 50 ml of formamidc with 5 g of ion- 

exchange resin (Bio-Rad AG501-X8), stirring 30 minutes at room temperature and 

filtering through Whatman filter paper. Deionized formamide was aliquoted and 

stored at -20°C.

GTE buffer was 50 mM glucose, 25 mM Tris-HCl (pH 8.0) and 10 mM 

EDTA. Alkaline lysis buffer was 0.2 N NaOH with I % SDS. Potassium acetate 

solution was 5 M, pH 4.8. TE buffer was 10 mM Tris-HCl (pH 8.0) and 1 mM 

EDTA. TBE was prepared as a lOx stock solution which contained 0.89 M Tris base 

and 0.89 M boric acid, 20 mM EDTA. 10X MOPS buffer was 0.2 M MOPS, 80 mM 

sodium acetate (pH 7.0), 10 mM EDTA (pH 8.0). lOx loading buffer (pH 8.0) was 1 

mM EDTA, 0.25% bromphenol blue, 0.25% xylene cyanol and 50% glycerol. 

Ethidium bromide (EB) solution was prepared as a 10,000x stock (5 mg/ml). 20 x 

SSC was 3 M NaCI and 0.3 M sodium citrate adjusted pH to 7.0 with 1 M HCI. 2 x 

SSPE was 0.36 M NaCI, 20 mM NaHjPO, (pH 7.4) and 20 mM EDTA.

RNase A was dissolved in TE buffer by boiling for 10 minutes to make a 

concentration of 10 mg/ml. Aliquots were stored at -2CfC.

Denaturing solution 1 for Dot Blot was 4 ml 20x SSC mixed with 1 ml 37% 

formaldehyde. Denaturing solution 2 for Northern Blot was 50 pi lOx MOPS mixed 

with 89.4 pi 37% formaldehyde, 250 pi formamide and 110.6 pi DEPC-treated
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distilled water. Formaldehyde denaturing agarose gel was 1 % agarose in 1 X 

MOPS buffer with 2.2 M formaldehyde and 0.5 ng/m\ EB.

Prehybridization solution was 0.5 M phosphate buffer (Na2H P04/NaH2P04), 

pH 7.5, with 7% SDS and 100 jtg/ml denatured herring sperm DNA. Washing buffer 

1 was 0.1 M phosphate buffer with 1% SDS. Washing buffer 2 was 0.01 M 

phosphate buffer with 0.1% SDS.

A commercially prepared lOx buffer coming with restriction endonuclease Not 

I (Promega) was 60 mM Tris-HCl, pH 7.9, 1.5 M NaCI, 60 mM MgClj and 10 mM 

DTT.

Griess reagent for nitrite assay was 1% sulfanilamide, 0.1% NEDD and 2.5% 

phosphoric acid.

Crystal violet solution (lOx) for TNF-a assay was 2% crystal violet in 21% 

ethanol.

Thioglycollate broth was purchased from Difco. 3% (w/v) of thioglycollate 

was prepared, autoclaved to sterilize and stored in the dark at room temperature.

Media

RPMI-1640 medium, Dulbecco’s Modified Eagle’s Medium (DMEM) powder, 

lOx MEM (Eagle’s minimum essential medium), glutamine, HEPES (N-2- 

hydroxyethylpiperazine-N-2-ethanesulfonic acid), sodium bicarbonate, sodium 

pyruvate, cycloheximide (CH), gentamicin sulfate and ampicillin were purchased from 

Sigma Chemical Co. Ham's Nutrient Mixture F12 (Ham’s F12) powder was
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purchased from Gibco. Tryptone, yeast extract, Bacto-agar were purchased from 

Difco. IFTG (Isopropyl-1-thio-fJ-D-galactoside) and Xgal (5-Bromo-4-chloro-3- 

indolyl-0-D-gaIactosidc) were purchased from Promega.

McCoy cell growth medium was IX MBM. For 500 ml growth medium, 50 

ml 10X MEM were diluted with 450 ml sterile distilled water, then supplemented 

with 10 ml 27% glucose, 10 ml 1 M HEPES (pH 7.3), 50 ml FBS (unless otherwise 

indicated in separate experiments), 5 ml 7.5% sodium bicarbonate, 0.2 ml 50 mg/ml 

gentamicin sulfate and 5 ml 200 mM glutamine. Fresh glutamine was added after four 

days o f storage, CH medium was McCoy cell growth medium complemented with CH 

(1 pg/ml). Macrophage growth medium was RPMI-1640 with 5% FBS (unless 

otherwise indicated in separate experiments), 10 mM HEPES (pH 7.3), 2 mM 

glutamine, 1 mM sodium pyruvate and 50 pg/ml gentamicin sulfate.

OVCAR3 growth medium was RPMI-1640 medium with 10% FBS, 20 pg/ml 

gentamicin sulfate, 20 mM HEPES, 2 mM glutamine and 10 pg/ml insulin.

KLE growth medium was a 1:1 mixture of lx DMEM and lx Ham’s F12 with 

10% FBS, 20 pg/ml gentamicin sulfate and 20 mM HEPES adjusted to pH 7.4 with 

sodium bicarbonate.

Medium for E. coli growth was LB medium containing 10 g tryptone, 5 g 

yeast extract, 5 g sodium chloride and 1 ml of 1 N NaOH in 1000 ml o f medium. 

Selective antibiotic plates were prepared by melting 1.5 g Bacto-agar (Difco) in 100 

ml LB medium supplemented with ampicillin (50 /xg/ml), IPTG (0,1 mM), Xgal (20 

pg/ml). The selective antibiotic plates were prepared one day before use.
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Reagents

Recombinant mouse tumor necrosis factor (iTNF-a, 10 pg/ml) was purchased 

from Genzyme, The specific activity o f iTNF-a was 4X107 units/mg. Polyclonal 

rabbit anti-mouse TNF-a antibody (anli-TNF-a Ab, primarily IgG and IgM) was 

purchased from Genzyme. One /d of anti-TNF-a Ab neutralized approximately 1000 

units o f mouse TNF-a bioactivity in the standard L929 cell cytotoxicity assay. 

Recombinant mouse interferon-y (IFN-y, 1 x 10J units/ml) was purchased from Gibco 

BRL Life Technologies. The specific activity of IFN-y was approximately 1 x 107 

units/mg. Lipopolysaccharide (LPS, Escherichia coli, 026:B6), N°-monomclhyl-L- 

arginine acetate (L-NMMA) and L-tryptophan were purchased from Sigma Chemical 

Co.

Ultraspec™ RNA (a total RNA isolation reagent) was purchased from Biotecx 

Laboratories. RNA markers, DNA markers (lambda DNA/Hind III), herring sperm 

DNA, restriction endonuclease Not I and Prime-a-Gene labeling system were 

purchased from Promega. Deoxycytidine 5’-[a-HP] triphosphate (3IP-dCTP) was 

purchased from Amersham.

Plasmid and cDNA

The plasmid CL-BS-mac-NOS was generously provided by C.J. Lowenstein, 

Johns Hopkins University, Baltimore, MD. The recombinant plasmid was made from 

the Bluescript vector sold by Stratagene, with the 4100 bp (base pairs) fragment from 

the macrophage nitric oxide synthase cDNA (mac-NOS) inserted into the unique Not I
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site. Chicken 0-actin cDNA was originally isolated by Cleveland et al. (1980) and 

generously provided by R. D. Stout, East Tennessee State University (ETSU),

Johnson City, TN.

Stains

An anti-MOMP (major outer membrane protein) monoclonal antibody 

conjugated with F1TC was purchased from Syva (Microtrak CT culture Confirmation 

System). Jones’ iodine was prepared by mixing 50 ml 95% ethanol, 5 g iodine, 5 g 

potassium iodide and 50 ml distilled water in order and filtering through two 

Whatman tt\ filters.

Ceils

McCoy cells were a generous gift from Dr. J. Schachter, San Francisco, CA. 

L929 cells were generously given by Dr. R.D. Stout, ETSU, Johnson City, TN.

Mouse macrophage cell lines: J774A.1 and RAW264.7 cells, human epithelial cell 

lines: OVCAR-3 and KLE, and JM109 (a strain of E. Coli) cells were purchased 

from American Type Culture Collection (ATCC).

ChlamvdiaJrachomalis 

The strain of CT used in this study was a serovar D. The organism was 

isolated in our clinical laboratory from a conjunctional swab obtained from the left 

eye of a two-
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week old girl suffering from a perinatal infection. Tlie organism has been passed an 

indeterminate number of times in McCoy cells since isolated.

Animals

Inbred female BALB/c mice were purchased from Charles River Laboratories. 

The mice were housed in isolation in the Division of Laboratory Animal Resources 

(DLAR), James H. Quillen College of Medicine.

Miscellaneous

XAR-5 X-ray Him was purchased from Sigma Chemical Co. SeaKem LE 

agarose was purchased from FMC Bioproducts. Nytran plus nylon membranes were 

purchased from Schleicher & Schuell. Whatman papers (3M) were purchased from 

Fisher Scientific. DEAE-cellulose membrane was purchased from Schleicher and 

Schuell, and treated as follows before use: soaking the membrane for 5 minutes in 10 

mM EDTA, pH 8.0, then soaking the membrane in 10 mM EDTA with 0.5 N NaOH 

for 5 minutes, finally washing the membrane six times in sterile water.
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Cell Cultures

McCoy, OVCAR-3 and KLE cells were grown and maintained in McCoy 

growth medium, OVCAR-3 growth medium and KLE growth medium, respectively. 

The cultures were incubated at 37°C in a humidified atmosphere with 5% C 0 2. 

Confluent monolayers were trypsinized, washed and counted. Viability of cells were 

determined by trypan blue exclusion (Mishcll and Shiigi 1980).

RAW264.7, J774A.1 and L929 cells were grown and maintained in 

macrophage growth medium at 37°C in a humidified atmosphere with 5% C 0 2. 

Confluent monolayers were scraped gently using a sterile rubber policeman. Number 

and viability of cells were determined as described as above.

Preparation of CT Seed Pool

Confluent monolayers of McCoy cell were trypsinized. 5 x 10’ cells in 1 ml of 

McCoy growth medium were added to each shell vial containing a 12 mm coverslip. 

Each vial was closed with a sterile #0 neoprene stopper and incubated at 37°C 

overnight. After aspiration of supernatant, the cells were inoculated with CT (0.1 ml 

inoculum/vial) at a multiplicity of infection (MOI) of 0.5-1 and centrifuged at 900 X 

g for 45 minutes at room temperature. 1 ml o f CH medium was added to each vial 

and the vials incubated at 37°C for 48 hours. After incubation, the supernatant was 

aspirated and 0.5 ml of fresh macrophage growth medium with sterile 4 mm glass
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beads were added to each vial. The vials were vortexed 10 seconds for three times. 

The crude lysates from 70 vials were pooled, dispensed into 0.5 or 1.0 ml aliquots 

and stored at -800C. The lysate served as CT seed pool. Titration of the CT Seed Pool 

was performed on McCoy cells (see CT recovery).

Preparation of Peritoneal Macrophages 

Thioglycollate-elicitcd peritoneal macrophages (thio-macrophages) were 

generated as described Mishell and Shiigi, 1980. Briefly, mice were injected 

intraperitoneally with 3% thioglycollate. At day five post-injection, mice were 

sacrificed by cervical dislocation. Peritoneal exudative cells were harvested by 

washing peritoneal cavity with DPBS containing 2% FBS, and resuspended to 5 X 10s 

cells/ml in macrophage growth medium. The cell suspension (1 ml) was added to each 

shell vial containing a 12 mm coverslip. The vials incubated at 37°C overnight and 

nonadherent cells were removed by washing with DPBS.

CT Recovery on McCov Cells 

The procedure used for CT recovery was described by Smith, 1979. Briefly, 5 

x 10* freshly trypsinized McCoy cells in 1 ml of McCoy growth medium were 

dispensed into each shell vial containing a 12 mm coverslip. The vials incubated at 

37°C overnight, at which time medium was aspirated from the monolayers and 100 /xl 

of CT inoculum were added to each vial. After centrifugation at 900 X g for 45 

minutes at room temperature, the inoculum was removed and 1 ml CH medium was
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added to each vial. After incubation at 37°C for 48 hours, the monolayers on 

covcrslips were fixed with methanol for 30 minutes and stained with Jones’ iodine for 

10 minutes. The coverslips were inverted and mounted on microscope slides with 

glycerohJones’ iodine (1:1). The number of inclusions on each coverslip was counted 

under a  light microscope. The number of IFU/ml (inclusion forming units per ml) 

was determined by a formula: No. IFU/ml =  No. Inclusions/coverslip x reciprocal 

dilution x 10. Quantitation of CT recovery reflected extension of CT replication,

FITC-coniugated Anti-MOMP Slain 

For determination of initial inclusions, infected monolayers were stained with 

FITC-conjugated anti-MOMP according to the manufacturer's instructions. Briefly, 

cells on coverslips were fixed and incubated with FITC-conjugated anti-MOMP at 

37°C for 30 minutes in a moist chamber, rinsed with IFA buffer and mounted on 

slides, Inclusions were counted under a Reichert fluorescent microscope.

To reslain coverslips previously stained with iodine, the covcrslips were placed 

in 2 ml IFA buffer for at least one hour to remove all traces of the iodine. Then the 

coverslips were stained with FITC-conjugated anti-MOMP as described above. Yield 

of CT was determined as follows: No. IFU m l1 /  total initial inclusions (i.e., the 

number o f IFU recovered per inclusion).

Initial Inclusions and Kinetics of CT Recovery 

In order to demonstrate CT infection and replication in cells, initial inclusions
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were measured and kinetics of CT recovery performed. Peritoneal macrophages, 

macrophage cell lines (J774A.1 and RAW264.7) or McCoy cells (control) were 

planted in shell vials (5 X 10' cells/ml/vial) and incubated at 37°C overnight. 

Following aspiration of the medium, 0.1 ml of CT Seed Pool (1:3 dilution) were 

added to each vial (MOI: 1-2). The vials incubated at 37°C for 90 minutes. After 

adsorption, the inoculum was aspirated and the monolayers were washed gently three 

times with DPBS. Macrophage growth medium (1 ml) was added to each vial. The 

vials incubated at 37"C for 3 or 6  days. Addition of inoculum to shell vials without 

cells served to define background. At different time points pi, recovery of CT from 

supernatant or lysate of infected cultures was measured on McCoy cells as described 

previously. Replicate monolayers were fixed and stained with iodine or FITC- 

conjugated anti-MOMP to quantitate inclusion formation.

Nitrite Assay

The method used to measure nitrite production was based upon that described 

by Stuehr and Marietta (1987). Briefly, 50 pi of supernatant from each culture was 

mixed with an equal volume of Griess reagent in a 96-well plate. The plate was 

incubated at room temperature for 10 minutes. The ODJ70 was determined by an 

automated plate reader (VMAX, Molecular Devices Corporation, Menlo Park, CA). 

Sodium nitrite served as a standard. Nitrite concentration was quantitated by using the 

standard curve generated in each assay.
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TNF-a Assay

The TNF-a assay was described by Ruff et al. (1981) and Hansen et al.

(1989). Briefly, 100 ft\ of supernatant from each culture were mixed with 100 nl of 

the L929 cell suspension containing 4 pg/ml of actinomycin D in a 96-well plate. The 

plate was incubated overnight at 37°C in a humidified atmosphere with 5% C 02. 

Medium was discarded and the monolayers were stained with a crystal violet solution 

(0.2%) for 10 minutes. After the plate was washed 6-7 times with tap water, 100 jtl 

of 1 % SDS was added to each well and the plate was shaken for 1 minute. The ODJ3* 

was measured as described above. Mouse iTNF-a served as a standard. Concentration 

of TNF-a was determined by using the standard curve generated at the same time.

Treatment of Uninfected Cells with LPS and/or IFN- 7  

RAW264.7, J774A.1 and McCoy cells were planted as described previously. 

After incubation at 37°C overnight, the medium was aspirated and 1 pg LPS, 100 U 

IFN - 7  or both was added to each vial in 1 ml of macrophage growth medium. The 

vials were incubated at 37°C for 6  days. During incubation, half of medium (0.5 ml) 

was replaced by fresh growth medium at day 3 post-trcatment (pt). In a second set of 

vials, medium was completely replaced by fresh growth medium every 24 hours, 

TNF-a and nitrite production were measured as described previously in supernatants 

at different time points.



LPS Dose Curve

RAW264.7, J774A.1 and McCoy cells were planted as described as 

previously. At the time of treatment, 1 ml o f macrophage growth medium containing 

different concentrations of LPS (from 0.001 to 10 pg/ml) was added to the cells. At 

48 hours pt, nitrite production in supernatant was measured as described previously. 

LPS at a concentration 100 ng/ml was optimal for stimulation of nitrite production. 

Therefore, 100 ng/ml o f LPS was used in subsequent experiments.

Treatment of CT-lnfected Cells with LPS and/or IFN-y 

RAW264.7, J774A.1, McCoy, KLE and OVCAR-3 cells were planted and 

inoculated with CT as described in Kinetics of CT Recovery. Al 24 hours pi, the 

infected cells were treated with LPS (100 ng) and/or IFN-y (100 U) as described. At 

different time points pt, nitrite and TNF-a production was measured in the 

supernatants. CT recovery from supernatants or lysates was quantitated on McCoy 

cell cultures as described previously.

Blocking of Nitrite Production bv L-NMMA 

Dose curve of L-NMMA. RAW264.7 cells were planted and treated with 

rIFN-y and LPS as described previously. At the time of treatment, L-NMMA (from 

0.001 mM to 10 mM) was added to each vial. At 24, 48 and 72 hours pt, nitrite 

production was measured as described.

Specific inhibition of nitrite production by L-NMMA. RAW264.7, J774A.1
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and McCoy cells were planted and treated with IFN-y, LPS or both as described. At 

the time of treatment, I mM of L-NMMA was added to each vial. At 24, 48, 72 

hours pi, nitrite and TNF-a production were measured in the supernatants as 

described.

Abrogation of CT inhibition by L-NMMA. RAW264.7, J774A.1 and McCoy 

cells were planted and inoculated with CT as described previously. At 24 hours pi, 

the CT-infccted cells were treated with LPS and/or IFN-y in presence of different 

concentrations of L-NMMA (from 0.1 to 5 or 10 mM) as described above. At 48 

hours pt, nitrite and TNF-a production were measured as described. Concomitantly, 

CT recovery from lysate was quantitated in McCoy cell cultures as described.

Treatment of CT-infected Cells with Sodium Nitrite 

RAW264.7 cells were planted and inoculated with CT as described previously. 

At 24 hours pi, medium was aspirated and fresh macrophage growth medium 

containing different concentrations of sodium nitrite (from 50 to 200 nmol/ml) was 

added to the infected cells. At 48 hours pt, TNF-a production and nitrite 

concentration in supernatant were measured. CT recovery from lysate of the infected 

cultures was quatitatcd as described previously.

Role o f Trvntophan Degradation in Inhibition o f CT Replication 

RAW264.7 cells were planted, inoculated with CT and treated with IFN-y and 

LPS as described previously. At the time of treatment, different amounts of
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tryptophan (from 40 to 1000 /ig/ml) were added to each vial. In a separate 

experiment, the amount of tryptophan and 1 mM of L-NMMA were added to each 

vial. At 48 hours pt, nitrite and TNF-a production were measured. Concomitantly,

CT recovery was quantitated in McCoy cell cultures as described.

Isolation of Total RNA 

Total RNA was isolated from cell cultures using a commercial total RNA 

isolation reagent according to the manufacturer's instructions. Briefly, monolayers 

were lysed directly in shell vials by adding Ultraspcc™RNA and pipeting the cell 

lysate several times. The cell lysate was transferred immediately to a microcentrifuge 

tube which was immersed in ice. Five minutes were allowed to permit the complete 

dissociation of nucleoprotein complexes. Chloroform (0.2 ml per 1 ml of 

UItraspec™RNA) was added and the tubes were shaken vigorously for 15 seconds.

The homogenate was centrifuged at 12,000 X g for 15 minutes at 4°C . The top 

aqueous phase was carefully transferred to a fresh tube. An equal volume of 

isopropanol was added and the samples were cooled at 4°C for 10 minites. Total RNA 

was pelleted by centrifugation at 12,000 X g for 10 minutes at 4°C, The pellet was 

washed twice with 75% ethanol by vortexing and subsequent centrifugation at 7,500 

X g for 5 minutes at 4°C. The pellet was briefly dried, then dissolved in 50 fil of 

DEPC-trealed distilled water. This method generally yielded 10 pg of total RNA 

from 1 x 10* cells. The OD2H/O D 280 ratio was approximately 1.5.
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Transformation of JM109 cells with Plasmid DNA

JM109 cells were transformed with CL-BS-mac-NOS plasmid DNA using a 

calcium chloride procedure (Ausubel et al, 1992). Briefly, JM109 cells were grown in 

50 ml of LB medium to 0 0 6 0 0 = 0 .4 3 7 . The bacterial cells were centrifuged at 800 X 

g for 10 minutes. The cell pellet was resuspended gently in 25 ml of an ice-cold, 

sterile solution of 50 mM CaCI2 and placed in an ice bath for 15 minutes. The cells 

were centrifuged again, rcsuspendcd in 2 ml of an ice-cold 50 mM CaClj and 

incubated at 4°C overnight. Two hundred pi of the cell suspension were mixed with 

50 ng of the plasmid DNA (in 5 pi TE buffer, pH 8.0) in a microcentrifuge tube. The 

cells were mixed with TE buffer alone as a control. The mixtures were incubated on 

ice for 30 minutes and then placed in a heated water bath (42°C) for 2 minutes. 

Following the heat shock, LB medium (0.5 ml) was added to each tube and the tubes 

were incubated at 37°C for 1 hour. Then selective antibiotic plates were inoculated 

with the transformed cell suspension (100 pi). After incubation o f the plates at 37°C 

for 16 hours, colorless colonies appeared only in the plates inoculated with the 

plasmid-transformed cells. No colonies were observed in the plates inoculated with 

the control cells.

Isolation of Plasmid DNA

One colony isolated as described above was picked to inoculate 30 ml LB
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medium containing 50 pg/ml ampicillin. After overnight shaking at 37°C , the plasmid 

DNA was isolated by a method for minipreps described by Davis et al. (1986).

Briefly, the cells were resuspended in 700 pi of GTE buffer containing lysozyme (2 

mg/ml), incubated at room temperature for 5 minutes and mixed with alkaline lysis 

buffer (1.7 ml) by inversion of the tube. After cooling on ice for 5 minutes, the cell 

lysate was mixed with 1,26 ml of ice cold potassium acetate solution (5 M, pH 4.8). 

After centrifugation at 6,000 X g at 4°C for 10 minutes, the supernatant was collected 

and treated with RNase A (50 pg/ml) at 37°C for 1 hour. The treated supernatant was 

subsequently extracted twice with an equal volume of a phenol:chloroform: 

isoamylalcohol (25:24:1) mixture. The plasmid DNA was precipitated in ice cold 

isopropanol and centrifuged at 7,500 X g for 15 minutes. The plasmid DNA pellet 

was washed with 75% ethanol, dehydrated with 100% ethanol, briefly dried and 

dissolved in 300 pi of TE buffer. The ODi^/OD^,, ratio o f the sample was 1.93.

Isolation of Insert fNOS cDNAI from the Plasmid DNA

Isolation o f the insert was performed by modification of a procedure described 

by Sambrook et al. (1989a). Briefly, 10 pg of the plasmid DNA was digested by Not 

I (1 U/pl) in 100 pi of the reaction solution at 37°C overnight. The digisted plasmid 

DNA was run on a 0.8% agarose gel containing 0.5 pg/ml ethidium bromide at 18 V 

(1.3 V/cm) overnight. Then a piece of the treated DEAE-celluIose membrane (see 

materials) was inserted in front of the leading edge of the band with 4100 bp. 

Electrophoresis was resumed at 80 V for 25 minutes to allow migration of all DNA of
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the band onto the membrane. The membrane was rinsed with a low salt washing 

buffer (50 mM TrisCl, pH 8.0, 0.15 M NaCl, 10 mM EDTA, pH 8.0). The 

fragment was eluted from the membrane by washing with a high salt elution buffer 

(50 mM Tris Cl, pH 8.0, 1 M NaCl, 10 mM EDTA pH 8.0) at 65°C for 60 minutes. 

The eluate was subsequently extracted once with a mixture of 

phenol:chloroform:isoamy!alcohol as described previously. Then, the fragment was 

precipitated with isopropanol and dissolved in TE buffer. Figure 3 shows the band of 

isolated NOS-cDNA and the recombinant plasmid DNA before and after the 

digestion.

Radiolabelling of NOS cDNA 

The NOS cDNA isolated as above was labeled with 3IP-dCTP by random 

primer labeling using a Prime-a-Gcne Labeling System Kit according to 

manufacturer's instructions. Briefly, 40 fd sterile water, 20 /d 5 X labeling buffer, 4 

/d mixture of the dATP, dTTP and dGTP, 20 /d denatured NOS cDNA (50-100 /ig),

4 /d nuclease-free BSA, 100 nC\ [a-HP] dCTP, 10 units of Klenow enzyme were 

mixed in a microcentrifuge tube on ice. The total reaction volume was 100 fd. The 

mixture was incubated at room temperature for 60 minutes. The reaction was 

terminated by heating at lOO't for 2  minutes and subsequently chilling in an ice bath. 

The labeled probe was stored at -20°C. Probes with specific activities of more than 

I0 9 cpm//xg were routinely generated by this method.
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Figure 3
NOS cDNA isolated from CL-BS-mac-NOS plasmid. Lane a, lambda DNA/Hind 

HI markers; Lane b, CL-BS-mac-NOS plasmid DNA; Lane c, Not I-digestcd CL-BS- 
mac-NOS plasmid DNA; Lane d, isolated NOS cDNA; Lanes e-j, lambda DNA 15.6, 
31.2, 62.5, 125, 250 and 500ng, respectively. Ethidium bromide-stained agarose gel.
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Dot Blot Hybridization 

The dot blot method was a modification of that described by Sambrook et al. 

(1989b). Briefly, RNA samples (1 pg of sample RNA in 100 p! o f denaturing solution

1) were denatured by heating at 65DC for IS minutes and subsequently chilling on ice. 

For titration of NOS mRNA, serial dilution of the RNA sample (4 pg - 8  ng) from 

LPS- and IFN-y-treated RAW264.7 cells was performed. To confirm the 

hybridization with RNA, 4 pg of the RNA sample from LPS- and IFN - 7  treated 

RAW264.7 cells were treated with RNase A (10 pg/pg RNA) before denaturation.

The denatured RNA samples were blotted onto Nytran plus nylon membranes using a 

"dot blot" apparatus (Gibco BRL Life Technologies). The membranes were UV- 

crosslinked and baked at 80nC for 1 hour. Then, the membranes were prehybridized 

in prehybridization solution at 6 8 °C for 3 hours and subsequently hybridized with 

denatured 32P-labeled NOS-cDNA probe in the same solution at 6 8 °C for 16 hours. 

After hybridization, the membranes were washed twice in washing buffer 1 for 15 

minutes at room temperature and twice in washing buffer 2 for 15 minutes at 65°C.

The membranes were then exposed to X-ray films in cassettes with intensifying 

screens (Fisher Scientific) at -80t'C for 1-2 days. The films were developed and fixed 

using Kodak GBX developer and fixer solutions. The density o f the dots was 

measured by Bio-Image Analysis System (Millipore Corporation Imaging Systems,

Ann Arbor, Ml). Hybridization with a j3-actin cDNA probe served as a control. Blots 

were stripped of probe by washing with 2 x SSPE containing 50% formamide at 6 8 °C 

for 2 hours, then with 0.7 x SSPE containing 50% formamide at 80nC for 2 hours.



Northern Blot Hybridization 

The Northern blot method was based upon that described by Sambrook et al. 

(1989b). Briefly, RNA samples (10 pg of RNA in 20 pi denaturing solution 2) were 

denatured by heating at 65°C for 15 minutes. The denatured RNA samples were 

chilled on ice. Two pi of lOx loading buffer were added to each of the denatured 

RNA samples. Five pg of a RNA markers were denatured as above. Also, two pg of 

the loading buffer were added to the denatured markers. Then, the RNA samples and 

the markers were run on a 1 % formaldehyde denatured agarose gel ( 2 0  x 2 0  cm2) in 1 

x MOPS buffer at 90 V for 4 hours. The gels were photographed over a UV- 

transilluminator (FisherBiotech™, Fisher Scientific). RNA was transferred from the 

agarose gel onto a Nytran plus nylon membrane using a capillary transfer method 

(Sambrook et al. 1989b). The membranes were UV-crosslinked and baked at 80°C for 

1 hour. The membranes were prehybridized and hybridized as described above.

Kinetics of NOS mRNA Expression 

RAW264.7 cells were planted, inoculated with CT and treated with LPS 

and/or IFN-y as described previously. At 6 , 24 and 48 hours pt, total RNA was 

isolated as described previously. NOS mRNA expression was determined by Northern 

blot hybridization as described.
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Effect of Anti-TNF-a Ab upon NO Production and 

Inhibition of CT Replication in RAW264.7 Cells 

RAW264.7 cells were planted and inoculated with CT as described previously. 

At 24 hours pi, the cells were divided into 16 groups as shown in Table 1.

Table 1

EXPERIMENTAL PROTOCOL FOR INVESTIGATING INHIBITION OF CT 
REPLICATION IN RAW264.7 CELLS

Treatments None Anti-TNF-a L-NMMA Anti-TNF-a

Ab Ab & L-NMMA

None 1 2 3 4

IFN - 7 5 6 7 8

LPS 9 10 11 12

IFN- 7  & LPS 13 14 15 16

Group 1 served as an untreated control. Group 2 was treated with anti-TNF-a 

Ab. Group 3 was treated with L-NMMA. Group 4 was treated with the Ab and L- 

NMMA. Group 5 was treated with IFN-7 . Group 6  was treated with IFN - 7  and the 

Ab. Group 7 was treated with IFN - 7  and L-NMMA. Group 8  was treated with IFN- 

7 , the Ab and L-NMMA. Group 9 was treated with LPS. Group 10 was treated with 

LPS and the Ab. Group 11 was treated with LPS and L-NMMA. Group 12 was 

treated with LPS, the Ab and L-NMMA. Group 13 was treated with IFN - 7  and LPS.
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Group 14 was treated with IFN-7 , LPS and the Ab. Group 15 was treated with IFN- 

7 , LPS and L-NMMA. Group 16 was treated with IFN-7 , LPS, the Ab and L- 

NMMA.

At 6  hours pt, total RNA was isolated and NOS-mRNA was measured by dot 

blot and Northern blot hybridization as described previously. At 48 hours pt, nitrite 

and TNF-a production in supernatant were measured as described previously. 

Concomitantly, recovery of CT from lysates of the infected cell cultures was 

performed as described. For these experiments, 100 ng/ml LPS, 100 units/ml IFN-7 ,

1 mM L-NMMA and 8  /d/ml anti-TNF-a Ab were used.

Effect of Nitrite Production Upon CT Replication in 

LPS- and/or IFN-7 -treated Peritoneal Macrophages 

Peritoneal macrophages were generated and inoculated with CT as described 

previously. At 24 hours pi, the infected macrophages were divided into 16 groups and 

each group was treated as described above. At 48 hours pt, nitrite and TNF-a 

production in supernatant were measured. At the same time, CT recovery from 

lysates of the infected cultures also was performed as described.

Treatment of Cells with rTNF-q 

Post-inoculation treatment. McCoy cells were plated and incubated as 

described. At the time of inoculation, the medium was aspirated, then 0.1 ml of CT 

inoculum (MOI =’0.006) was added to each vial. The vials were centrifuged at 900 X
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g at room temperature for 45 minutes. After centrifugation, the inoculum was 

aspirated and 250 ng of rTNF-a in 1 ml of McCoy growth medium (5% FBS) was 

added to each vial. The vials were incubated at 37°C for 2 days.

Pretreatment. McCoy cells was plated as described. After incubation at 37°C 

overnight, 250 ng of iTNF-a (1 x 104 units) in 1 ml of McCoy growth medium (5%) 

was added to each vial. The vials were incubated at 37°C for 24 hours. The medium 

containing rTNF-a was removed. Then, the pretreated cells were inoculated with CT 

as described above. After inoculation, McCoy growth medium without rTNF-a (5% 

FBS) was added to each vial. The vials were incubated at 37°C for 2 days.

After incubation at 37°C for two days, the cells were fixed and stained with 

Johns’ iodine, then destaincd and reslained with FITC-conjugated anti-MOMP. 

Meanwhile, CT recovery from lysates o f the infected cultures also was performed as 

described.

Statistical Analysis

Student’s t test was used for comparison of means in two groups. Analysis of 

Variance was used for comparison of means in more than two groups. The Least 

Significant Difference (LSD) was used to determine where the differences occurred if 

a significant F is found. Linear Regression was used for analysis of correlation 

between nitrite production or NOS mRNA expression and CT inhibition.
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Results

Initial Inclusion Formation in CT-Infected 

Macrophages and McCov Cells 

Initial inclusions were formed in peritoneal macrophages infected by CT In 

vitro, which was demonstrated by FITC-conjugated anti-MOMP antibody. However, 

the pattern of initial inclusion formation in peritoneal macrophages was quite different 

from that in McCoy cells. The number of inclusions in CT-infected peritoneal 

macrophages reached a peak at 24 hr pi (4313 ±  273 inclusions /coverslip), then 

continuously decreased during the period of observation (Figure 4). At day 6  pi, the 

number of initial inclusions decreased to 340 ±  46 per coverslip. In contrast, in 

McCoy cells 1917 ±  130 inclusions /coverslip were observed at 24 hr pi and 

increased after 48 hr pi. The number of inclusions reached a plateau (5481 ±  98 

inclusions/coverslip) at day 4 pi which was sustained through day 6  (Figure 4). The 

percentage of infected peritoneal macrophages was 0.9% at 24 hr pi and decreased to 

0.1% at day 6  pi (Table 2). However, the percentage o f infected McCoy cells was 

0,2% at 24 hr pi and increased to 0.9% at day 6  pi.

CT Replication in Peritoneal Macrophages 

In order to determine if CT replicated in peritoneal macrophages, recovery of 

infectious CT (EBs) from infected cells was analyzed. CT recovery from lysates of
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Figure 4
Different patterns o f  initial inclusion formation in CT-inoculated macrophages and McCoy cells. 

Peritoneal macrophages and McCoy cells were inoculated with CT (M O I=l). Initial inclusions were 
determined by FITC-conjugated anti-MOMP. Data presented are mean of triplicate +  S.D ..
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Table 2

PERCENTAGE OF CT-INFECTED CELLS 
DURING IN VITRO INFECTION

%  Cells Infected

Cell Type Days Post-infection

1 2 3 4 5 6

RAW264.7 0.1 < 0.1 0.3 0.4 0.5 0 .6

J774A.1 1.6 0 .6 9.8 12.1 27.4 48.2

M <f> 0.9 0.4 0.3 0.2 0 .2 0.1

McCoy 0 .2 0 .2 0.3 0 .6 1.0 0.9

Peritoneal macrophages, RAW264.7, J774A. 1 and McCoy cells were inoculated 
with CT (M O I=l). Infected cells were detected and enumerated by FITC-conjugated 
anti-MOMP, at 48 hours pi.
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CT-infected peritoneal macrophages decreased from I06 IFU at the time of inoculation 

to 103 IFU at 24 hours pi (Figure 5). At 48 hours pi, CT recovery dramatically 

increased to 2.8 x 104 IFU, which demonstrated replication. The shape of curve of 

CT recovery from infected macrophages was similar to that of infected McCoy cells. 

However, the level of CT recovery was two magnitudes lower than that from the 

infected McCoy cells (Figure 5). CT recovery from coverslips without cells 

(background control) decreased from 10* IFU at inoculation to 0 after 48 hours pi 

(Figure 5).

The yield of CT production (IFU/incIusion) in peritoneal macrophages reached 

a peak between 48 and 72 hr pi and decreased thereafter. The pattern in McCoy cells 

was similar to that in peritoneal macrophages (Figure 6 ), since the yield reached a 

peak at 48 hr pi and decreased thereafter. However, the highest levels of yield from 

peritoneal macrophages were 21.2 (day 2) and 22.8 (day 3) IFU/inclusion, which was 

significantly less than from McCoy cells (355 and 262 IFU/inclusion at days 2 and 3, 

respectively). Thus the number of EBs produced by each inclusion was significantly 

less in peritoneal macrophages than in McCoy cells.

Initial Inclusion Formation in Macrophage Cell Lines 

Initial inclusion formation was demonstrated by FITC-conjugated anti-MOMP 

stain in CT-infected macrophage cell lines (RAW264.7 and J774A.1). The number of 

initial inclusions in CT-infected RAW264.7 was 908 ±  142 per coverslip at day 1 pi 

and decreased at day 2 pi (419 ±  64 Inclusions/coverslip). At day 3 pi, the number



Figure 5
Kinetics of CT recovery from peritoneal macrophages. Peritoneal macrophages and McCoy cells 

were inoculated with CT (M O I=l). Addition o f inoculum to shell vials without cells served to define 
background. CT recovery was quantitated at 0, 1.5, 10. 24, 48 and 72 hours pi, respectively in 
susceptible McCoy cells. Data presented are mean o f triplicate ±  S.D..
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Figure 6
Comparative yield of CT production in macrophages and McCoy cells. Peritoneal macrophages 

and McCoy cells were inoculated with CT (MOI=2). Initial inclusions and CT recovery were 
quantitated. Yield o f CT was determined fay a formula: No. IFU/inclusion =  No. IFU ml* /  total initial 
inclusions per coverslip. Data presented are mean o f triplicate ±  S.D ..
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of inclusions in RAW264.7 cells was increased (3000 ±  410 Inclusions/coversilp) and 

maintained the same level thereafter (Figure 7). The number o f initial inclusions in 

CT-infected J774A.1 cells was 9,521 ±  629 per coverslip at 24 hr pi. As in 

RAW264.7 cells, the number o f initial inclusions in J774A.1 cells decreased at day 2 

pi (3,771 ±  130 Inclusions/coverslip) but increased at day 3 pi (29,250 ±  1442 

Inclusions/coverslip). However, the number of initial inclusions in J774A.1 cells 

gradually decreased after day 3 pi. The kinetics of initial inclusions in peritoneal 

macrophages was different from that in macrophage cell lines. The number of initial 

inclusions reached a peak at 24 hr pi and continuously decreased during the period of 

observation (Figure 7). The pattern of initial inclusion kinetics in McCoy cells was 

similar to that in RAW264.7 cells with the exception that a decrease in the number of 

initial inclusions was not observed at day 2 pi in the former (Figure 7).

The number of J774A.1 cells decreased by more than 80% after day 3 pi in 

the infected cultures, but not in the infected RAW264.7 or McCoy cells (Figure 8).

As a result, the percentage of infected cells at day 3 pi was 9.8% in J774A.1 cells 

(Table 2). At day 6  pi, the percentage of infected J774A. 1 cells was much higher 

(48.2%) than that of infected RAW264.7 (0.6%) or McCoy cells (0.9%). As in 

J774A.1 cells, the number of peritoneal macrophages decreased by about 30% at day 

6  pi. However, this decrease in cell number did not result in an increase in the 

proportion of infected cells. In fact, the percentage of infected cells decreased from 

0.9% at day 1 to 0.1% at day 6  pi (Table 2).



Figure 7
Comparison of initial inclusion formation in macrophage cell lines and peritoneal macrophages. 

Peritoneal macrophages, macrophage cell lines (RAW264.7 and J774A.1) and McCoy cells were 
inoculated with CT (M O I=1). Initial inclusions were determined by FITC-conjugated anti-MOMP. Data 
presented are mean o f triplicate ±  S .D ..
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Figure 8
Comparative cell numbers in CT-infected cell lines. RAW264.7, J774A.1 and McCoy cells were 

inoculated with CT (MOI=2). Number of cells were estimated by using a light microscope at 400 
magnification. Data presented are mean o f  triplicate ±  S.D ..
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Effect of Medium Change Upon CT Replication 

Since subsequent experiments would require addition of inhibitors or cytokines 

after infecton, it was important to determine the effect o f medium change upon CT 

replication. The recovery of CT from supernatants of CT-infected J774A.I cells was 

355,278 ±  29,832 IFU/ml at day 2 pi. The highest recovery was at day 6  pi 

(1,177,083 ±  81,570 IFU/ml). The level of CT replication in McCoy cells was as 

high as in J774A.1 cells (Fjgrue 9). CT recovery from McCoy cells was 322,361 ±  

38,424 IFU/ml at day 2 pi. The highest recovery was at day 4 pi (885,444 ±  128,467 

IFU/ml). In RAW264.7 cells, CT replication (214,028 ±  18,490 IFU/ml) was lower 

than in McCoy cells (885,444 ±  128,467 IFU/ml), but higher than in peritoneal 

macrophages (16,319 ±  8308 IFU/ml). Medium change significantly increased CT 

replication in RAW264.7 (Figure 9A) and McCoy cells (Figure 9D). Medium change 

did not affect CT replication in J774A.1 cells (Figure 9B), However, changing 

medium daily actually decreased CT recovery in peritoneal macrophages (Figure 9C).

Inhibition of CT Renlication bv LPS or IFN--V 

The levels o f CT recovery from supernatants of infected RAW264.7 cells were 

1.2 x 10* and 6 .6  x 10* IFU/ml on days two and three, respectively. Figure 10A 

shows that CT recovery from the supernatants was greatly reduced in IFN-y-treated 

RAW264.7 cells (0,6 and 1.2 logs inhibition, p< 0 .01  determined by LSD). Greater 

inhibition was observed in RAW264.7 cells treated with LPS (2.0 and 2.9 logs 

inhibition, p< 0 .002  determined by LSD) or LPS plus IFN-y (2.4 and 4.8 logs



Figure 9
Effect of medium change upon CT replication. Peritoneal macrophages, 

KAW264.7, J774A.1 and McCoy cells were inoculated with CT (M O I= l). In some 
vials, maintenance medium was changed every 24 hours after inoculation. In others, the 
medium was not changed. CT recovery from the supernatants o f infected cultures was 
quantitated. Data presented are mean of triplicate ±  S.D..
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inhibition, p < 0,002 determined by LSD). Significant inhibition by LPS or LPS plus 

IFN-y appeared one day earlier than that by IFN-y alone (Figure 10A). Similar 

decreases in intracellular CT recovery also were observed in lysates of RAW264.7 

cells treated with IFN-y and/or LPS {data not shown).

In J774A.1 cells, CT recovery was dramatically inhibited (p<0.002 

determined by LSD) by IFN-y- or LPS-treatment (Figure 10B). However, IFN-y 

treatmcnt induced greater inhibition of CT recovery (1.7 logs) than LPS (0.9 logs). 

IFN-y and LPS induced inhibition synergisticaliy (2.7 logs).

Inhibition of CT recovery was far less pronounced in IFN-y- and/or LPS- 

treated McCoy cells than in the macrophage cell lines (Figure 10C). At day 3, LPS 

slightly reduced CT recovery. IFN-y or IFN-y plus LPS exhibited significant 

inhibition (0.3 and 0.4 logs o f inhibition, p<0.01  determined by LSD),

Nitrite Production Induced bv LPS or IFN-y 

LPS or IFN-y induced significant nitrite production (p <  0.001 determined by 

Student's t test) in uninfected RAW264.7 cell cultures without medium change (Figure

11), but nitrite production induced by LPS was higher. Peak nitrite production 

occurred at 48 hr pt. Combination of LPS and IFN-y exhibited a synergistic effect 

upon nitrite production. No detectable nitrite production was observed in untreated 

cells (Figure 11A). Medium changes every 24 hr pt dramatically reduced nitrite 

production in the LPS- and/or IFN-y-trealed RAW264.7 cells (Figure I IB), indicating 

that persistent stimulation was necessary for continued production of nitrite.



Figure 10
Inhibition o f CT replication in cells treated with IFN-7  and LPS. CT-inoculated RAW264.7, 

J774A.1 and McCoy cells (M O I=l) were treated with IFN-y (100 U/ml), LPS (100 ng/ml) or IFN-y 
plus LPS at 24 hours pi. CT recovery was quantitated at days 1, 2 and 3 pt. Data are mean of triplicate 
+  S.D ..
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Figure 11
Effect of medium change upon nitrite production in RAW264.7 cells. Uninfected RAW264.7 

cells were treated with IFN-7  (100 U/ml), LPS (1 ^g/ml) or IFN-7  plus LPS. In some vials, the 
maintenance medium was changed every 24 hours after treatment. In others, the medium was not 
changed. Nitrite production was determined by the Griess reagent.
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Compared to RAW264.7 cells, J774A.1 (Figure 12) and McCoy cells (Figure 

13) produced low levels of nitrite in response to LPS and IFN-y. The pattern of 

nitrite production in J774A.1 cells treated with IFN-y and LPS was similar to that 

observed in McCoy cells. The levels of nitrite production in LPS-treatcd J774A. 1 

cells were much higher than in McCoy cells.

LPS Dose Curve

In order to determine an optimal concentration o f LPS for stimulation of nitrite 

production, increasing concentrations (from 0 .0 0 1  to 10 /tg/ml) were tested in 

uninfected RAW264.7, J774A.1 and McCoy cells (Figure 14). As the concentration 

o f LPS was increased from 0.001 /tg/ml to 0.1 /tg/ml, nitrite production 

proportionally increased in RAW264.7 and J774A. 1 cells. Nitrite production reached 

a plateau at 0,1 /tg/ml of LPS. Nitrite production was not remarkable in LPS-treatcd 

McCoy cells, even at a concentration o f 10 /tg/ml. Therefore, the optimal 

concentration of LPS for nitrite production in macrophage cell lines was 0.1 /tg/ml, 

which was used in subsequent experiments.

Nitrite Production in CT-infectcd and Uninfected Cells

CT infection alone was not sufficient to induce nitrite production in 

RAW264.7 (Figure 15B) or McCoy cells (Figure 16B). However, CT-infected 

RAW264.7 cells treated with IFN-y produced more nitrite (17.6 ±  0.5 nmols/ml) 

than uninfected RAW264.7 celts (6.9 ±  3.0 nmols/ml, Figure 15). CT-infected



Figure 12
Effect o f medium change upon nitrite production in J774A. 1 cells. Uninfected J774A. 1 cells 

were treated with IFN-7  (100 U/ml), LPS (1 /tg/ml) or EFN^y plus LPS. In some vials, the maintenance 
medium was changed every 24 hours after treatment. In others, the medium was not changed. Nitrite 
production was determined by the Griess reagent.
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Figure 13
Effect o f medium change upon nitrite production in McCoy cells. Uninfected McCoy cells were 

treated with IFN-7  (100 U/ml), LPS (1 /xg/ml) or IFN-7  plus LPS. In some vials, the m ain ten an c e  
medium was changed every 24 hours after treatment. In others, the medium was not changed. Nitrite 
production was determined by the Griess reagent.
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Figure 14
Uninfected RAW264.7, J774A. 1 and McCoy cells were treated with LPS (0.001,0.01, 0 .1 ,0 .5 , 

1 or 10 /ig/ml). At 48 hours pt, nitrite production was determined by the Griess reagent Data presented 
are mean of triplicate +  S.D ..
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Figure 15
Comparison o f  nitrite production in CT-infected and uninfected RAW264.7 cells. Uninfected or 

CT-infected (MOI= 1) RAW264.7 cells were treated with IFN-7  (100 U/tnl), LPS (100 ng/mi) or IFN-7  
plus LPS. Nitrite production was determined by the Griess reagent. Data presented are mean o f  
triplicate ±  S .D ..
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McCoy cells also produced more nitrite (4,1 nmol/ml) than uninfected cells (2.0 

nmol/ml) following treated with IFN-y (Figure 16). Nitrite levels were the same in 

CT-infected and uninfected cells treated with LPS or LPS plus IFN-y.

CorrelationQrNitrileProdtictionandCTInhihitiQn 

RAW264.7 cells. A high level of CT replication in the absence of nitrite 

production was observed in untreated RAW264.7 cells (Figure 17A). IFN-y treatment 

induced a  high level of nitrite production (17.64 ±  0 .511 nm/ml) and inhibition of 

CT replication (0.6 log reduction). LPS treatment induced a higher level of nitrite 

production (40.77 ±  1.598) and a 2 log (99%) inhibition of CT replication. The 

highest levels of nitrite production (99.96 ±  6.376) and inhibition of CT replication 

(2.4 logs) were observed in LPS- plus IFN-y-treated cells. Linear regression analysis 

demonstrated a strong correlation between nitrite production and CT inhibition 

(correlation coefficient: -0.93, PC 0.001, Figure 17A).

J774A.1 cells. A strong correlation (correlation coefficient; -0.94, P < 0.001) 

also was observed between nitrite production and CT inhibition in J774A.1 cells 

(Figure I7B). The slope of the regression curve was slightly greater in J774A.1 cells 

(2.453) than in RAW264.7 cells (2.061).



Figure 16
Comparison of nitrite production in CT-infected and uninfected McCoy cells. Uninfected or CT- 

infected (M O I=l) McCoy cells were treated with EFN-7  (100 U/ml), LPS (100 ng/mi) or IFN-7  plus 
LPS. Nitrite production was determined by the Griess reagent. Data presented are mean of triplicate 
±  S.D ..
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Figure 17
Correlation of nitrite production and CT replication. RAW264.7, J774A. 1 and McCoy cells were 

inoculated with CT (MOI=2). At 24 hours pi, infected cells were treated with EFN-y (100 U/ml), LPS 
(100 ng/ral) or IFN-7  plus LPS. Nitrite production and CT recovery were determined at 48 hours pt. 
Regression analysis o f  nitrite production and CT recovery was performed.
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McCoy cells. Figure 17C shows the correlation of nitrite production and CT 

inhibition in McCoy Cells (correlation coefficient: -0.67, PC 0.05). The slope of the 

regression curve was small (0.522).

Dose-dependent Effect of L-NMMA upon 

InhiMliQrLofNilritePrQduction 

Since a combination of LPS and IFN-y induced the highest level of nitrite 

production in RAW264.7 cells, this combination was chosen to titrate the effect of L- 

NMMA upon nitrite production. At a concentration as low as 0.01 mM, L-NMMA 

exhibited an inhibitory effect upon nitrite production (Figure 18). As the concentration 

was increased from 0.01 to 10 mM, inhibition was increased proportionally. For 

example, I mM L-NMMA inhibited 63-75% of nitrite production and 10 mM L- 

NMMA inhibited 93-97% of nitrite production. The L-NMMA dose curves at 24, 48 

and 72 hours paralleled one another.

InhibitiQn_QfNitrite Production_bvL_L^NMMA in Uninfected Cells 

Since 1 mM L-NMMA was shown to inhibit nitrite production in LPS- and 

IFN-y-treatcd RAW264.7 cells (Figure 18), this concentration was used to test 

inhibition of nitrite production in uninfected RAW264.7, J774A.1 and McCoy cells 

treated with LPS or IFN-y.

L-NMMA (1 mM) inhibited nitrite production by 74 or 85% at 24 hr pt in 

RAW264.7 cells treated with LPS or IFN-y (Figure 19). Inhibition of nitrite



Figure 18
Dose-dependent effect o f L-NMMA upon inhibition of nitrite production in RAW264.7 cells 

treated with IFN-y and LPS. Uninfected RAW264.7 ceils were treated with IFN-y (100 U/ml) and LPS 
(100 ng/ml). At the time o f treatment, L-NMMA (0.001-10 mM) was added. Nitrite production was 
measured at 24, 48 and 72 hours pt. Data presented are mean o f triplicate +  S.D..
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Figure 19
Inhibition of nitrite production by L-NMMA in uninfected RAW264.7 cells. Uninfected 

RAW264.7 cells were treated with IFN-y (100 U/mi), LPS (100 ng/ml) or IFN-y plus LPS. At the time 
of treatment, L-NMMA (1 mM) was added. Nitrite production was measured at days 1, 2 and 3. Data 
presented are mean o f triplicate ±  S.D ..
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production at 48 or 72 Itr pt (77 or 84%) was similar to that at 24 hr pt. Inhibition of 

nitrite production induced by L-NMMA in RAW264.7 cells treated with LPS and 

IFN- 7  was 81%, 75% and 76% at 24, 48 and 72 hr pt, respectively (Figure 19).

In J774A.1 cells, IFN - 7  induced a minimal level of nitrite production. L- 

NMMA did not significantly affect such low levels of nitrite production (Figure 20). 

LPS induced 8 and 13 nmol/inl of nitrite at 2 and 3 days pt, respectively. L-NMMA 

reduced this production to 3 and 4 nmol/ml (Figure 20). Inhibition of nitrite 

production induced by L-NMMA (1 mM) in LPS- and IFN-7 -treatcd J774A. 1 cells 

was 56 and 73% at days 2 and 3, respectively (Figure 20),

In McCoy cells, LPS or IFN- 7  induced negligible levels o f nitrite production 

at days 1 and 2 pt. L-NMMA (1 mM) did not significantly affect this production 

(Figure 21). At day 3 pt, LPS or IFN - 7  induced 6.3 or 4.4 nmol/ml o f nitrite, 

respectively. L-NMMA reduced this production to 2.3 nmol/ml. Inhibition o f nitrite 

production induced by L-NMMA in LPS- and IFN-7 -treatcd McCoy cells was 85 and 

8 6 % at 48 and 72 hours, respectively (Figure 21).

Inhibition of CT Infection bv rTNF-g in McCov Cells 

To investigate the direct effect of TNF-a upon CT infection, iTNF-a was used 

to treat McCoy cells before or after inoculation. TNF-a treatment after CT 

inoculation significantly inhibited initial inclusion formation and CT replication (Table 

3). TN F-a treatment caused development o f atypical inclusions which contained 

unusually low levels of glycogen. The latter were not detected when stained by



Figure 20
Inhibition o f nitrite production by L-NMMA in uninfected J774A.1 cells. Uninfected J774A.1 

cells were treated with IFN-y (100 U/mi), LPS (100 ng/ml) or IFN-y plus LPS. At the time of  
treatment, L-NMMA (1 mM) was added. Nitrite production was measured at days I, 2 and 3. Data 
presented are mean of triplicate ±  S .D ..
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Figure 21
Inhibition o f nitrite production by L-NMMA in uninfected McCoy cells. Uninfected McCoy cells 

were treated with IFN-7  (100 U/ml), LPS (100 ng/ml) or EFN-7  plus LPS. At the time of treatment, 
L-NMMA (1 mM) was added. Nitrite production was measured at days 1, 2 and 3. Data presented are 
mean o f triplicate ±  S .D ..
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Table 3

EFFECT OF TNFor UPON CT REPLICATION IN MCCOY CELLS

TNF-a Post-inoc. Initial Inclusions Recovery Yield*

Pretreat TNFa Cyclohx. Iodine MAb-MOMP (IFU/ml) EFU/Inclusion

_ 585 ±12 2,092±221 54,933±5,119*** 26.3

— — 100±9.9* 1,249±265** 13,500 ±3,984*** 10.8

— — — 659±120 2,310±88 139,000±23,388 60.2

-r 4,558±530 3,076±736 815,667± 178,240 265.2

CT-infected McCoy cells (M01=0.006) were treated with TNF-a (250 ng/ml) 24 hours before inoculation or immediately 
after inoculation. Initial inclusions were determined by iodine or anti-MOMP stain at 48 hours pi. Concomitantly, CT recovery was 
quantitated in susceptible McCoy cells. Untreated McCoy cells with or without cycloheximide (2 /rg/ml) served as controls. Data 
(duplicate) presented are mean ±  S.D.. * Yield computed from number of inclusions enumerated by FTTC-and-MOMP.
** p<0.05, *** p < 0 .0 l determined by Student's t test.



iodine, but were confirmed by staining with FITC-conjugated anti-MOMP antibody. 

The inclusions in cells treated with TNF-a produced abnormally low numbers of 

infectious EBs (10.8 IFU/inclusion) that is, the yield was lower than that in untreated 

cells (60.2 IFU/inclusion). Pretreatment of McCoy cells with TN F-a for 24 hr before 

inoculation inhibited CT replication, but did not inhibit initial inclusion formation 

(Table 3).

L-NMMA Did not Reduce TNF-a Production 

Since TNF-a inhibited CT replication (Table 3) and LPS also is a strong 

stimulator of TNF-a production (Jue et al. 1990), the effect of L-NMMA upon TNF- 

a  production was determined. No detectable TNF-a production was observed in 

untreated cells (data not shown). IFN-y induced a very low level o f TNF-a 

production in uninfected RAW264.7 cells (Figure 22A), but no detectable TN F-a in 

J774A.1 cells (Figure 23A). LPS or LPS plus IFN-y induced a high level o f TNF-a 

production in J774A. 1 cells (Figure 23B-C) and even higher levels in RAW264.7 

cells (Figure 22B-C). Peak production occurred at approximately 6  hours pt (data not 

shown) and remained in culture fluids for 72 hours. L-NMMA did not inhibit TNF-a 

production. Rather, it somehow slightly increased TNF-a production in macrophage 

cell lines treated with LPS or LPS plus IFN-y (Figure 22B-C, 23B-C). In McCoy 

cells, LPS or LPS plus IFN-y did not induce TNF-a production (data not shown). 

Therefore, it was not necessary to determine the inhibitory effect o f L-NMMA upon 

TNF-a production in McCoy cells.



Figure 22
Effect o f L-NMMA upon TNF-a production in uninfected RAW264.7 cells. Uninfected 

RAW264.7 ceils were treated with IFN-7  (100 U/ml), LPS (100 ng/ml) or IFN-y plus LPS. At the time 
o f treatment, L-NMMA (1 mM) was added. TNF-a production was measured at 6, 24, 48 and 72 hours 
pt. Data presented are mean of triplicate ±  S.D ..
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Figure 23
Effect o f L-NMMA upon TNF-a production in uninfected J774A.1 cells. Uninfected J774A.1 

cells were treated with IFN-7  (100 U/ml), LPS (100 ng/ml) or IFN-7  plus LPS. At the time of 
treatment, L-NMMA (1 mM) was added. TNF-a production was measured at 6 , 24, 48 and 72 hours 
pt. Data presented are mean of triplicate ±  S.D ..
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Correlation between Inhibition of Nitrite Production 

and .Abrogation of CT Inhibition 

The strong correlation between nitrite production and CT inhibition led us to 

invoke the hypothesis that nitrite production was a mechanism o f CT inhibition. In 

order to test this hypothesis, a series of concentrations of L-NMMA (from 0.1 to 10 

mM) was used to determine the correlation between inhibition o f nitrite production 

and abrogation of CT inhibition. As expected, in the absence of L-NMMA, IFN - 7  

and/or LPS induced high levels o f nitrite production (Figure 24) and inhibition of CT 

replication in RAW264.7 cells (Figure 25), L-NMMA dramatically inhibited nitrite 

production (Figure 24) and remarkably abrogated the inhibition of CT replication in a 

dose-dependent pattern (Figure 25). However, as the concentration of L-NMMA was 

increased from 5 mM to 10 mM, restoration of CT replication was not increased. 

Although 10 mM L-NMMA almost completely inhibited nitrite production, restoration 

of CT replication was only 71% in IFN-7 -treated RAW264.7 cells and 55% in LPS- 

treated cells (Figures 24, 25). Furthermore, restoration of CT replication induced by 

L-NMMA in LPS-trealed RAW264.7 cells was less than that in IFN-7 -lreated cells.

Similar results were observed with CT-infected J774A.1 cells. As expected, 

IFN - 7  or LPS induced nitrite production (Figure 26) and partial inhibition of CT 

replication by 0.7 and 1.9 logs, respectively (Figure 27). L-NMMA dramatically 

inhibited nitrite production (Figure 26) and significantly abrogated inhibition of CT 

replication (Figure 27) in a dose-dependent pattern. L-NMMA (5 mM) increased CT 

recovery by 0.9 logs and 1,4 logs in IFN- 7  or IFN- 7  plus LPS-treatcd J774A.1 cells,
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Figure 24

Inhibition of nitrite production by L-NMMA in CT-infected RAW264.7 cells. CT- 
inoculated RAW264.7 cells (M O I= l) were treated with IFN- 7  (100 U/ml), LPS (100 
ng/ml) or IFN - 7  plus LPS at 24 hours pi. At the time of treatment, L-NMMA (0.1, 1, 
5 or 10 mM) was added. Nitrite production was measured at 48 hours pt. Data presented 
are mean o f triplicate ±  S.D..
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Figure 25

Abrogation of CT inhibition by L-NMMA in RAW264.7 cells. CT-inoculated 
RAW264.7 cells (M O I= l) were treated as described in Figure 24. At 48 hours pt, CT 
recovery was quantitated. Data presented are mean of triplicate ±  S.D .,
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Figure 26
Inhibition of nitrite production by L-NMMA in CT-infected J774A.1 cells. CT- 

inoculated J774A.1 cells (M O I= l) were treated with IFN-y (100 ll/m l), LPS (100 
ng/ml) or IFN- 7  plus LPS at 24 hours pi. At the time o f treatment, L-NMMA (0.1, 1 
or 5 mM) was added. Nitrite production was measured at 48 hours pt. Data presented 
are mean o f triplicate ±  S.D..
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Figure 27
Abrogation of CT inhibition by L-NMMA in J774A.1 cells. CT-inoculated 

J774A.1 cells (M O I= l) were treated as described in Figure 26. At 48 hours pt, CT 
recovery was quantitated. Data presented are mean of triplicate ±  S .D ..
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respectively. However, this increased recovery approached the untreated control by 

only 9.5% and 6.3%. In contrast, restoration induced by L-NMMA in LPS-treated 

cells (5 mM) was 52% {Figures 26, 27).

In CT-infectcd McCoy cells, neither significant nitrite production nor CT 

inhibition was observed by treatment with LPS (Figures 28-29). IFN-y or IFN-y plus 

LPS induced low levels of nitrite production (Figure 28) and concomitant inhibition of 

CT replication by 1.3 and 1.4 logs IFU/ml, respectively (Figure 29). L-NMMA 

significantly increased CT replication by 1.5- or twofold (p< 0 .05  determined by 

Student’s t test) in IFN-y- or IFN-y plus LPS-treated cells. However, restoration of 

CT replication was only 7-9%. Furthermore, as the concentration of L-NMMA was 

increased from 0.1 to 5 mM, no further increase in CT replication was observed in 

these cells (Figure 29), although inhibition of nitrite production continued to increase. 

In a separate but similar experiment, IFN-y or IFN-y plus LPS induced lower nitrite 

production and less inhibition of CT replication in McCoy cells (data not shown). L- 

NMMA did not affect CT replication in the cells treated with IFN-y or IFN-y plus 

LPS (data not shown).

Nitrite Did Not Inhibit CT Replication in RAW264.7 Cells 

Since our previous results suggested that nitrite production may be a 

mechanism for inhibition of CT replication in RAW264.7 cells, it was necessary to 

determine if nitrite served as the effector molecule. CT-infecled RAW264.7 cells 

were treated with nitrite (concentrations from 50 to 200 nmol/ml). This treatment
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Figure 28

Inhibition of nitrite production by L-NMMA in CT-infectcd McCoy cells. CT- 
inoculated McCoy cells (M O I-1) were treated with IFN - 7  (100 U/ml), LPS (100 ng/ml) 
or IFN - 7  plus LPS at 24 hours pi. At the time of treatment, L-NMMA (0,1, 1 or 5 mM) 
was added. Nitrite production was measured at 48 hours pt. Data presented arc mean of 
triplicate ±  S.D..
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Figure 29

Abrogation of CT inhibition by L-NMMA in McCoy cells. CT-inoculated McCoy 
cells (M O I=1) were treated as described in Figure 28. At 48 hours pt, CT recovery was 
quantitated. Data presented arc mean of triplicate ±  S.D ..
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Figure 30
Effect of nitrite upon CT replication in RAW264.7 ceils. CT-inoculated RAW264.7 cells 

(M O I=l) were treated with sodium nitrite (50-200 nmol/ml) at 24 hours pi. CT recovery was 
quantitated at 48 hours pt. Data presented are mean o f  triplicate ±  S.D ..
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neither affected TNF-a production (data not shown) nor inhibited CT replication 

(Figure 30), indicating that nitrite probably is not an effector molecule involved in 

inhibition o f CT replication.

Kinetics of NOS mRNA Expression in RAW264.7 Cells 

NO is a mediator of nitrite production but is difficult to measure because of its 

short half life (several seconds). Therefore, NOS mRNA was measured by Northern 

blot hybridization with a NOS-cDNA probe. Total RNA was isolated from uninfected 

or CT-infected RAW264.7 cells which had been treated with LPS and/or IFN-7 . 

Figure 31 shows total RNA following electrophoresis on a formaldehyde-denaturing 

agarose gel (1%) stained with cthidium bromide. Similar bands of 18S and 28S rRNA 

were exhibited in all samples isolated front uninfected, infected and treated cells. 

Figure 32 shows the results o f a Northern blot hybridization. No detectable NOS 

mRNA expression was observed in uninfected or CT-infected cells which had not 

been treated (Lanes a, b). In CT-infected RAW264.7 cells, IFN - 7  (Lanes c, g & k), 

LPS (Lanes d, h & I) or IFN - 7  plus LPS (Lanes e, i & m) induced low, intermediate 

and high levels o f NOS ntRNA expression, respectively. Anti-TNF-a antibody did not 

reduce NOS mRNA expression induced by LPS at any of the time points tested 

(Lanes f, j & n). Peak expression occurred at 6-24 hr pt (Lanes c-j). Expression of 

mRNA was diminished at 48 hours pt (Lanes k-n) in IFN-7 - and/or LPS-treated cells. 

Therefore, 6  hr was chosen as the time point to determine NOS mRNA expression in 

subsequent experiments.
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Figure 31

Total RNA isolated from RAW264.7 cells. Lane a, uninfected; Lane b-n, CT- 
infected (M O I=l); Lane b, CT-infected alone (24 hours pi); Lanes c, g and k, IFN-7 - 
treated (100 U/ml); Lancs d, h and 1, LPS-treated (100 ng/ml); Lanes e, i and m, IFN-7 - 
and LPS-treated; Lanes f, j  and n, LPS- and anti-TNF-a Ab-treated; Lanes c, d, e  and 
f, 6  hours pt; Lanes g, h, i and j ,  24 hours pt; Lanes k, 1, m and n, 48 hours pt. 10 pg 
of total RNA loaded onto each lane. Elhidium bromide-stained formaldehyde denaturing 
196 agarose gel.

rRNA a b c d e f g h i j k l m n



90
Figure 32

Kinetics o f NOS mRNA expression in RAW264.7 cells. Lane a, uninfected; 
Lanes b-n, CT-infected (M O I= 1); Lane b, CT-infected alone (24 hours pi); Lanes c, g 
and k, IFN-7 -treated (100 U/ml); Lancs d, h and 1, LPS-treated (100 ng/ml); Lanes e, 
i and m, IFN-7 - and LPS-treated; Lanes f, j  and n, LPS- (100 ng/ml) and anti-TNF-a 
Ab-treated; Lanes c, d, e and f, 6  hours pt; Lanes g, h, i and j, 24 hours pt; Lanes k, 
I, m and n, 48 hours pt. Total RNA (10 jtg) was electrophoresed on formaldehyde 
denaturing 1% agarose gel, transferred onto Nytran plus nylon membrane, and 
hybridized with [” P]-labcled NOS cDNA. XAR-5 X-ray film was exposured to this 
membrane for 24 hours. Size markers (in kilobases) are given at left.
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Correlation between NOS mRNA Expression and 

CT Inhibition in RAW264.7 Cells 

Total RNA was isolated from CT-infected RAW264.7 cells treated for 6  hours 

with LPS and/or IFN-y. NOS mRNA expression was determined by Northern and dot 

blot hybridization. Both the Northern (Figure 33A) and the dot blot (Figure 34A) 

hybridizations showed that low, intermediate and high levels of NOS mRNA 

expression were induced by IFN-y, LPS or IFN-y plus LPS, respectively. CT 

infection alone (without IFN-y or LPS) did not induce delectable NOS mRNA 

expression, which was consistent with the observed lack of nitrite production in these 

cells. Control hybridization with a 0-aclin cDNA probe showed that similar amounts 

of RNA from each sample were used (Figures 33B, 34B). Concomitantly, CT 

recovery at 48 hours pt was analyzed. As expected, CT replication was dramatically 

inhibited by LPS and/or IFN-y treatment. Densities of NOS mRNA dots from the dot 

Blot hybridization was used for correlation analyses. Figure 35 shows a strong 

correlation between density of NOS mRNA dots and inhibition o f CT replication 

(correlation coefficient: -0.97, P < 0 .05  determined by Linear Regression).

Effect of Anti-TNF-pf Ab upon NOS mRNA Expression. Nitrite Production 

and CT Replication in RAW264.7 Cells 

In order to explore the effects of TNF-a upon nitrite production and CT 

inhibition, polyclonal anti-TNF-a Ab (neutralizing Ab) was employed. As expected, 

IFN-y, LPS or both induced nitrite levels in RAW264.7 cells of 47, 60 and 130
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Figure 33A
Effect of anti-TNF-a antibody upon NOS mRNA expression in CT-infected 

RAW264.7 cells (M 01= l). Lanes a-d, untreated; Lanes e-h, IFN-y-lreated (100 U/ml); 
Lanes i-1, LPS-treated (100 ng/ml); Lanes m-p, IFN-y- and LPS-treated; Lanes b, f, j 
& n, anti-TNF-a Ab-treated; Lanes c, g, k & o, L-NMMA-treated (ImM); Lanes d, h, 
1 & p, L-NMMA- and anti-TNF-a Ab-trealcd. Total RNA (10 /tg) was isolated at 6  

hours pt, electrophoresed on formaldehyde denaturing 1 % agarose gel, transferred onto 
Nytran plus nylon membrane, and hybridized with [” P]-labeled NOS cDNA probe. 
XAR-5 X-ray film was exposured to the membrane for 24 hours. Size markers (in 
kilobases) are given at left.
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Figure 33B
Control hybridization by j3-actin cDNA probe in CT-infected RAW264.7 cells 

(M O I=l). Lanes a-d, untreated; Lanes e-h, IFN-7 -lreated (100 U/ml); Lanes i-1, LPS- 
treated (100 ng/ml); Lanes m-p, IFN-7 - and LPS-treated; Lanes b, f, j  & n, anti-TNF-a 
Ab-treated; Lanes c, g, k & 0 , L-NMMA-treated (ImM); Lanes d, h, 1 & p, L-NMMA- 
and anti-TNF-a Ab-treated. The membrane used for hybridization with NOS cDNA 
probe in Figure 33A was washed and rehybridized with [^PJ-labeled 0-actin cDNA 
probe. XAR-5 X-ray film was exposured to this membrane for 48 hours. Arrows at left 
indicate NOS mRNA and 0-actin mRNA, respectively.
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Figure 34A

Effect of anti-TNF-a antibody upon NOS mRNA expression in CT-infected 
RAW264.7 cells (M O I« l). A1-I0, IFN-7 - (100 U/ml) and LPS-treated (100 ng/ml), 
total RNA 4, 2, 1, 0.5, 0.25,0.125, 0.062, 0.031, 0.016, 0.008 pg, respectively; A ll ,  
4 pg RNA (from IFN-7 - and LPS-treated cells) treated with RNase (40 pg); Bl-4, 
untreated; B5-8, IFN-7 -treatcd (100 U/ml); C l-4 , LPS-treated (100ng/ml); C5-8, IFN-y- 
and LPS-treated; B2, B6 , C2 & C6 , anti-TNF-a Ab-treated; B3, B7, C3 & C7, L- 
NMMA-treated (ImM); B4, B8 , C4 & C8 , L-NMMA-and anti-TNF-a Ab-treated. Total 
RNA (1 pg) was isolated at 6  hours pt, blotted onto Nytran plus nylon membrane and 
hybridized with [31P]-labeled NOS cDNA probe. XAR-5 X-ray film was exposured to this 
membrane for 48 hours.
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Figure 34B
Control Hybridization by /?-Actin cDNA Probe in CT-infected RAW264.7 cells 

(M O I= l). Al-10, IFN-y- (100 U/ml) and LPS-treated (100 ng/ml), total RNA 4, 2, 1, 
0.5, 0.25, 0.125, 0.062, 0.031, 0.016, 0.008 pg, respectively; A l l ,  4 pg RNA (from 
IFN-y- and LPS-treated cells) treated with RNase (40 pg); B l-4, untreated; B5-8, IFN-y- 
treated (100 U/ml); C l-4 , LPS-treated (100 ng/ml); C5-8, IFN-y- and LPS-treated; B2, 
B6 , C2 & C6 , anti-TNF-a Ab-treated; B3, B7, C3 & C7, L-NMMA-treated (ImM); B4, 
B8 , C4 & C8 , L-NMMA- and anti-TNF-a Ab-treated. Total RNA (1 pg) was isolated 
at 6  hours pt, blotted onto Nytran plus nylon membrane and hybridized with pP]-labeled 
0-actin cDNA probe. XAR-5 X-ray film was exposured to this membrane for 48 hours.
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Figure 35
Inverse correlation between NOS mRNA expression and CT replication in RAW264.7 cells. CT- 

inoculated RAW 264.7 cells (MOI= 1) were treated with IFN-7  (100 U/ml), LPS (100 ng/ml) or IFN-7  
plus LPS at 24 hours pi. Total RNA was isolated at 6 hours pt and hybridized with [^P]-labeled NOS 
cDNA probe as shown in Figure 34A. The density o f the dots was measured by Bio-Image Analysis 
System. CT recovery was quantitated at 48 hours pt. Regression analysis o f CT recovery and density 
o f dot blot hybridization was performed.
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nmol/ml, respectively (Figure 37). L-NMMA inhibited nitrite production by 85%,

8 6 % and 76%. TNF-a production in LPS- or LPS- plus IFN-y-treated cells was 3123 

and 1753 units/ml, respectively. Although anti-TNF-af antibody neutralized TNF-a 

biological activity in LPS- and/or IFN-y-treated cells (Figure 36), the antibody did 

not inhibit NOS mRNA expression (Figure 33A, 34A) or nitrite production (Figure 

37). The antibody slightly reduced nitrite production (from 130.3+4.3 to 117.4+4.5 

nmol/ml) in LPS- and IFN-y-treated cells (Figure 37). As expected, L-NMMA (1 

mM) did not affect NOS mRNA expression (Figure 33A, 34A), Combination of the 

antibody and L-NMMA did not greatly affect inhibition o f nitrite production by L- 

NMMA (Figure 37).

As expected, treatment with LPS, IFN-y or both inhibited CT replication by 

1.6 logs, 1.3 logs or 2.6 logs, respectively, L-NMMA (1 mM) partially restored CT 

replication (21% with LPS, 39% with IFN-y or 8 % with IFN-y plus LPS). The 

antibody alone did not abrogate this inhibition. However, combination of the antibody 

with L-NMMA increased the restoration (Figure 38), particularly in cells treated with 

LPS (42%) or LPS plus IFN-y (17%, p<0.01  determined by Student’s t test).

Relationship between Nitrite Production and CT Replication 

in Peritoneal Macrophages 

As in previous experiments with macrophage cell lines, peritoneal 

macrophages were induced by LPS to produce TNF-a (Figure 39). However, the 

levels of TNF-a were lower (39 units/ml) than in the macrophage cell lines. No



Figure 36
Specific antibody neutralizes TNF-a produced by CT-infected RAW264.7 cells. CT-inoculated 

RAW 264.7 cells (M O I= l) were treated with IFN-y (100 U/m l), LPS (100 ng/ml) or IFN-y plus LPS 
at 24 hours pi. At the time o f treatment, anti-TNF-a antibody was added. TNF-a biological activity was 
measured at 48 hours pt by biological assay in L929 cells (see Materials and Methods for detail). Data 
presented are mean o f triplicate +  S .D ..
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Figure 37
Effect o f anti-TNF-a antibody and L-NMMA upon nitrite production in CT-infected RAW264.7 

cells. CT-inoculated RAW264.7 cells (M O I=l) were treated with IFN-7  (100 U/ml), LPS (100 ng/ml) 
or IFN-7  plus LPS at 24 hours pi. At the time o f treatment, anti-TNF-a antibody, L-NMMA (1 mM) 
or the antibody plus L-NMMA was added. Nitrite production was determined at 48 hours pt by the 
Griess reagent. Data presented are mean o f triplicate +  S .D ..
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Figure 38
Effect o f anti-TNF-a antibody and L-NMMA upon CT recovery in RAW264.7 cells. CT- 

inoculated RAW264.7 cells (M O I=l) were treated as described in Figure 37. CT recovery was 
quantitated at 48 hours pt in susceptible McCoy cells. Data presented are mean of triplicate ±  S .D ..

3r-

>-
rv*

>o  
o  

cz

ES3 A nti-T N F -a Ab 
1 1 ' L-NMMA 

Both
No Treatm ent

10D -

UNTREATED I F N -y LPS LPS Sc IF N -y



101

detectable TNF-a production was observed at 48 hr in CT-infected peritoneal 

macrophages treated with IFN-y (Figure 39). Anti-TNF-a antibody completely 

neutralized the biological activity of TNF-a secreted by peritoneal macrophages 

treated with LPS or LPS plus IFN-y (Figure 39).

As shown in Figure 40, levels of nitrite production in peritoneal macrophages 

treated with IFN-y, LPS or both (33, 36 and 72 nmol/ml, respectively) were 

comparable to those in macrophage cell lines (Figure 37). No detectable nitrite 

production was observed in untreated peritoneal macrophages (Figure 40) or 

RAW264.7 cells (Figure 37). As expected, L-NMMA dramatically inhibited nitrite 

production (Figure 40). The inhibition of nitrite production induced by L-NMMA (1 

mM) was more pronounced in peritoneal macrophages treated with IFN- 7  or LPS 

(93% with IFN- 7  and 100% with LPS) than in RAW264.7 cells (8 6 % with IFN-y and 

87% with LPS). In contrast to RAW264.7 cells, nitrite production in peritoneal 

macrophages was inhibited by anti-TNF-a antibody (Figure 40). Levels of inhibition 

induced by the antibody in the macrophages treated with LPS, IFN- 7  or both were 

64%, 73% and 23% , respectively. Combination of antibody with L-NMMA slightly 

enhanced inhibition of nitrite production (Figure 40).

Treatment of peritoneal macrophages with IFN-7 , LPS or LPS plus IFN - 7  

inhibited CT replication by 1.1, 1.2 and 1,9 logs, respectively (Figure 41). Anti- 

TNF-a antibody significantly increased CT replication from 478 to 1822 IFU (34% 

restoration) in peritoneal macrophages treated with IFN-y. L-NMMA also restored 

CT replication to 2755 IFU (35%) in these cells. Combination of the antibody and L-



Figure 39
Specific antibody neutralizes TNF-a produced by CT-infected peritoneal macrophages. CT- 

inoculated peritoneal macrophages (M OI=2) were treated with IFN-y (100 U/ml), LPS (100 ng/ml) or 
IFN-y plus LPS at 24 hours pi. At the time o f treatment, anti-TNF-a antibody was added. TNF-a 
biological activity was measured at 48 hours pt by biological assay in L929 cells (see Materials and 
Methods for detail). Data presented are mean o f triplicate +  S .D ..
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Figure 40
Effect o f anti-TNF-a antibody and L-NMMA upon nitrite productionin in CT-infected peritoneal 

macrophages.CT-inoculated peritoneal macrophages (M OI=2) were treated with IFN-y (100 U/m l), 
LPS (100 ng/ml) or IFN-y plus LPS at 24 hours pi. At the time o f treatment, anti-TNF-a antibody, L- 
NMMA (1 mM) or the antibody and L-NMMA was added. Nitrite production was determined at 48 
hours pt by the Griess reagent. Data presented are mean o f triplicate ±  S.D ..
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Figure 41
Effect o f anti-TNF-a antibody and L-NMMA upon CT replication in CT-infected peritoneal 

macrophages. CT-inoculated peritoneal macrophages (M OI=2) were treated as described in Figure 40. 
At 48 hours pt, CT recovery was quantitated in susceptible McCoy cells. Data presented are mean of 
triplicate ±  S .D ..
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NMMA did not enhance the restoration of either. L-NMMA significantly (P<0.05 

determined by Student’s t test) increased CT replication from 8 8  to 700 IFU (8 .6 % 

restoration) in peritoneal macrophages treated with IFN-y and LPS, yet anti-TNF-a 

antibody did not restore replication (Figure 41). In LPS-treated peritoneal 

macrophages, neither L-NMMA nor the antibody significantly restored CT replication 

(Figure 41). In contrast to RAW264.7 cells, anti-TNF-a antibody significantly 

inhibited nitrite production (73%) and partially reversed inhibition of CT replication 

(34%) in IFN-y-treated peritoneal macrophages. Anti-TNF-a antibody alone had no 

effect upon nitrite production or CT replication in RAW264.7 cells. L-NMMA did 

not reverse inhibition of CT replication in LPS-treated peritoneal macrophages, but it 

did so in RAW264.7 cells. A final observation was that restoration of CT replication 

by L-NMMA was less pronounced in peritonea! macrophages treated with IFN-y than 

in RAW264.7 cells.

IFN-ar and LPS Did Not Inhibit CT Replication 

in QVCAR-3 or RLE Cells 

OVCAR-3 and KLE cells did not respond to IFN -7  and LPS by producing 

nitrite or TNF-a (data not shown). These cell lines were used to test the effect of LPS 

and IFN - 7  upon CT replication in susceptible genital epithelial cells. Treatment with 

LPS and IFN-y did not effect inhibition o f CT replication in these cells (Figure 42). 

Therefore, studies with L-NMMA or anti-TNF-a antibody were not conducted.



Figure 42
IFN-7  and LPS do not inhibit CT replication in KLE or OVCAR-3 cells. KLE or OVCAR-3 

cells were inoculated with CT (M OI= 1). At 24 hours pi, infected cells were treated with DFN-7  (100 
U/m l), LPS (100 ng/ml) or IFN-7  plus LPS. At 48 hours pt, CT recovery was quantitated in susceptible 
McCoy cells. Data presented are mean o f triplicate ±  S .D ..
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Tryptophan Did Not Abrogate Inhibition o f CT Replication 

To determine if the tryptophan degradation pathway was involved in the 

inhibition of CT replication in our system, increasing concentrations (40-1000 /ig/ml) 

were added to CT-infected RAW264.7 cells treated with LPS and IFN-y. Tryptophan 

slightly increased TN F-a production (data not shown). However, tryptophan did not 

affect inhibition of nitrite production by L-NMMA in LPS- and IFN-y-treated 

RAW264.7 cells except at a high concentration (1000 /xg/ml) where nitrite production 

was slightly diminished (Figure 43). As expected, CT replication was inhibited by 

LPS and IFN-y and was partially restored by the addition o f 1 mM L-NMMA (Figure 

44). Tryptophan (40-1000 /ig/ml) alone did not abrogate inhibition of CT replication 

nor did tryptophan, when combined with L-NMMA, enhance restoration of CT 

replication (Figure 44).



Figure 43
Effect o f tryptophan upon nitrite production in CT-infected RAW264.7 cells stimulated by IFN-7  

and LPS. CT-inoculated RAW264.7 cells (M OI= 1) were treated with IFN-7  (100 U/ml) and LPS (100 
ng/ml) at 24 hours pi. At the time o f treatment, tryptophan (40-1000 jig/ml) or tryptophan plus L- 
NMMA (1 mM) was added. At 48 hours pt, nitrite production was determined by the Griess reagent. 
Data presented are mean o f triplicate ±  S .D ..
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Figure 44
Effect o f tryptophan upon CT replication in RAW 264.7 cells stimulated by IFN-y and LPS. CT- 

inoculated RAW 264.7 cells (M O I=l) were treated as described in Figure 43. At 48 hours pt, CT 
recovery was quantitated in susceptible McCoy cells. Data presented are mean o f triplicate ±  S.D ..
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CHAPTER 4 

Discussion

CT Infection of Macrophages 

Infection of macrophages by CT biovar trachoma has not been confirmed (Kuo 

1978, Yong 1987, Ishikawa et al. 1986, Keat et al. 1987). In this study, we showed 

that CT serovar D infected mouse peritoneal macrophages to form initial inclusions. 

However, the number of initial inclusions decreased from 4313 at day 1 pi to 340 

inclusions per coverslip at day 6  pi (Figure 4). The percentage of infected cells 

decreased from 0.9% to 0.1 % as well (Table 2). In contrast, the number of initial 

inclusions and percentage of infected cells increased in McCoy cells (Figure 4, Table 

2), which presumably was due to secondary infection of new cells by the EBs released 

from the infected cells. These data indicated that primary infection occurred in 

macrophages while secondary infection was limited. TNF-a production by 

macrophages exposed to CT (our unpublished data) may be an explanation for 

inhibition of secondary infection, but the precise mechanism is unknown. On the other 

hand, the number of inclusions at 24 hours pi was much higher in macrophages than 

in McCoy cells (Figure 4), suggesting that chlamydial entry may be more efficient in 

macrophages than in McCoy cells. Professional phagocytosis by macrophages may 

mediate entry of the organisms. Since all steps involved in the CT developmental 

cycle, including attachment, ingestion, reorganization of EB to RB or RB maturation 

to EB, can affect inclusion development (Moulder 1991), other factors may have
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contributed to this phenomenon.

Recovery of CT from infected macrophages was low (Figure 5). A low level 

o f CT recovery also was observed by Kuo (1978). However, it was not clear whether 

Kuo's result reflected a low level o f CT replication or residual inoculum. Our data 

confirmed that CT replicated in macrophages since (a) CT recovery from 

macrophages was much higher than that o f background (residual inoculum) and (b) a 

kinetic study demonstrated increase o f CT recovery from 48 hr pi through 6  days 

(Figures 6 , 9C). However, the level of CT replication in macrophages was lower than 

in McCoy ceils, as evidenced by lower level of CT recovery and lower yield (Figure 

6 ). CT replicated in macrophages less efficiently than in McCoy cells, indicating that 

CT replication in peritoneal macrophages was limited at some step of the 

developmental cycle beyond entry since the number of initial inclusions at 24 hr pi 

was greater in macrophages than in McCoy cells.

CT Infection of Macrophage Cell Lines 

CT biovar trachoma (serovar D) infected mouse macrophage cell lines 

RAW264.7 and J774A.1 to form initial inclusions (Figure 7). The number of initial 

inclusions decreased at day 2  pi, then increased at day 3 pi, presumably due to 

secondary infection as observed in McCoy cells. However, the increase of initial 

inclusions in macrophage cell lines occurred one day earlier than in McCoy cells (day 

4 pi), which suggested that the CT developmental cycle in macrophage cell lines may 

be shorter than in McCoy cells. The number of cells significantly decreased (Figure 

8) and the percentage of infected cells dramatically increased (Table 2) in CT-infected
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J774A.1 cell cultures, suggesting that CT infection may result in lysis of J774A.1 

cells. As in fresh peritoneal macrophages, the number of initial inclusions at 24 hours 

pi was higher in J774A.1 than in McCoy cells (Figure 7), again suggesting that 

professional phagocytosis may mediate entry of the organisms.

Recovery of CT from macrophage cell lines was low at day 1, then increased 

after day 2 (Figure 9), which demonstrated that CT replicated in the lines. The levels 

o f CT replication in macrophage cell lines were higher than in peritoneal macrophages 

(Figure 9). The level o f the replication in J774A.1 cells was even higher than in 

McCoy cells (Figure 9), indicating that CT not only entered J774A.1 cells 

successfully but replicated efficiently. The reason J774A.1 cells were so susceptible to 

CT infection is not clear. This line was reported to secrete 1L-1 continuously (ATCC 

1988). IL-1 secretion is enhanced by LPS treatment (Martin and Dorf 1990).

Secretion o f IL-1 also may be increased in response to CT infection. In this regard, 

IL-1 production in human monocytes was induced by CT (Manor et al. 1990, 

Rothermel et al. 1989). A detectable level of TNF-a production in CT-infecled 

J774A.1 cells also was observed in our study. IL-1 and TNF-a should have provided 

J774A.1 cells some level of protection against CT infection, since these cytokines 

have been reported to inhibit CT infection (Shemcr-Avni et al. 1988, 1989, 1990, 

Holtmann et al. 1990). It is possible that the level of IL-1 or TNF-a did not reach 

"threshold" for inhibition of CT replication or that J774A.I cells did not respond to 

those cytokines by exhibiting antichlamydial activity. In fact, it has been observed that 

J774A.1 cells did not respond to IL-1 or TNF-a by producing 1L-6, implying that
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these cytokines may not he autoregulatory for (his macrophage cell line (Martin and 

Dorf 1990). This line also synthesizes large amounts of lysozyme (ATCC 1988). The 

significance of the latter during CT infection is unclear.

Medium change every 24 hours significantly increased CT recovery from 

RAW264.7 and McCoy cells, presumably by providing the infected cells with fresh 

medium, optimal pH and new nutrients. However, medium change in J774A.1 cells 

did not increase recovery (Figure 9), This may have contributed to destruction or lysis 

of the majority of cells after CT infection (Figure 8 ). The remaining cells were so 

few that the medium did not become acid and nutrients presumably were sufficient to 

support CT replication. CT recovery from peritoneal macrophages gradually 

decreased after day 4. Medium change did not increase CT recovery. Rather, a 

decrease of CT recovery was observed (Figure 9). This may be due to limited 

secondary infection of peritoneal macrophages and removal of released Ells by 

medium change.

Macrophage cell lines RAW264.7 and J774A.1 share several features with 

fresh macrophages such as phagocytic activity, antibody-dependent cytotoxicity and 

cytokine production in response to LPS or IFN-y stimulation (ATCC 1988, Jue et al. 

1990, Radotf et al. 1991, Kelly et al. 1991, Oh et al. 1991, Martin and Dorf 1990, 

Lewis et al. 1990). However, (he macrophage cell lines have long life spans in tissue 

culture and are more susceptible to CT infection than fresh macrophages. Therefore, 

they may be ideal cell lines for study of interaction between macrophages and CT in

yilm.
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Inhibition of CT Rcplicalion bv LPS orJFN-'y 

Inhibition of Chlamydia psittaci, CT LGV ami other microorganisms by IFN- 

7 -activalcd macrophages has been demonstrated (Rolhermel el al. 1983, dc la Maza ct 

al. 1987, Shemcr and Sarov 1985, Green et al. 1990, Granger et al. 1990, Adams et 

al. 1990). In this study, wc demonstrated that IFN-y- or LPS*activated macrophage 

cell lines RAW264.7 and J774A.1 restricted CT replication (Figure 10). Inhibition 

induced by LPS was greater than that by IFN- 7  in RAW264.7 cells. However, LPS 

was less effective in inducing inhibition of CT replication than IFN- 7  in J774A.1 

cells. This result may reflect different mechanisms involved in inhibition in different 

cell types. Activation of macrophages for microbicidal and lumoricidal activities is 

thought to be a two signal process (Celada cl al. 1984, Pace et al. 1983, Nacy ct al. 

1988). However, our data and that of others (Rothcrmel et al. 1983, dc la Maza et al. 

1987, Shemcr and Sarov 1985, Byrne et al. 1989) indicated that IFN- 7  or LPS was 

sufficient to induce antichlamydial activity in Cl'-infected peritoneal macrophages. 

Possibly, chlamydial LPS or the infection itself somehow primed the cells. In this 

case, IFN-y or LPS served as a second signal to trigger antichlamydial activity in 

these cells. Two signals such as IFN- 7  and LPS did enhance inhibition of CT 

replication in RAW264.7 and J774A.1 cells (Figure 10). Inhibition of CT replication 

also was observed in McCoy cells treated with IFN-y and LPS (Figure 10). However, 

the inhibition was less pronounced, compared to macrophage cell lines.
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Nilrilc Production in CT-in fee ted and Uninfected Cells 

The inechanism(s) fur inhibition of CT replication in activated macrophages 

have not been defined. In this study, we focused upon nitrite production as a possible 

mechanism. Our data showed that nitrite production was induced by IFN - 7  or LPS in 

macrophage cell lines RAW264.7 and J774A.1 (Figures 11-12). However, the levels 

of nitrite production induced by IFN-y were lower than that induced by LPS, 

particularly in J774A.1 cells. Lower nitrite production (<  10 nmol/HP cells) was 

observed by others (Stuehr and Marietta 1987b) in IFN-y-trealed J774A.1 cells than 

in peritoneal macrophages. This may be related to the report that macrophage cell 

lines expressed fewer receptors for IFN-y than primary macrophages (Cclada at cl. 

1984). Nitrite production induced by LPS or LPS plus IFN-y was greater in 

RAW264.7 cells than in J774A.I cells. This may be related to a high level o f TNF-a 

production in the treated RAW2G4.7 cells (Figure 22B-C). IFN-y and LPS exhibited a 

synergistic effect upon nilrilc production (Figures 11-12). Synergistic effects were 

exerted by LPS and IFN-y or by LPS and lymphokines (Stuehr and Marietta 1987b). 

They also observed (hat other stimuli such as lymphokines, BCG (bacillus of Calmettc 

and Guerin) or PPD (purified protein derivative of old tuberculin) induced nitrite 

production in RAW264.7 cells, but not in J774A.I celts (Stuehr and Marietta 1987b). 

The peak production of nitrite was 48 hours pt. No detectable nitrite production was 

observed in untreated cells.

Our data indicated (hat the presence of IFN-y and/or LPS was necessary for 

persistent production of nitrite, since medium change resulted in a significant
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reduction of nitrite production (Figure 11B, 12B). But, Stuehr and Marietta (1987a) 

reported that after peritoneal macrophages were treated with IFN- 7  and/or LPS, daily 

medium change (without IFN- 7  or LPS) significantly increased nitrite production, 

presumbly by providing new nutrients. This discrepancy may reflect differences 

between macrophage cell lines and fresh peritoneal macrophages. For example, 

macrophage cell lines can proliferate in vitro, while fresh peritoneal macrophages 

cannot.

We also observed that a fibroblastic cell line, McCoy cells (a human and 

mouse hybrid), was induced by IFN -7  and LPS to synthesize nitrite (Figure 13). The 

levels of nitrite production in McCoy cells were tower than those in the macrophage 

cell lines. Either IFN- 7  or LPS alone induced minimal nitrite production in McCoy 

cells. Other cell types such as endothelial cells or hcpatocytcs also were reported to 

synthesize nitrite (Moncada ct al. 1991). This indicated that not only macrophages but 

a variety of cell types synthesized nitrite in response to IFN - 7  and LPS.

CT infection alone was not sufficient to induce nitrite production in 

RAW264.7 or McCoy cells. However, CT infection enhanced nitrite production 

induced by IFN - 7  in these cells (Figures 15-16). This may be related to chlamydial 

LPS since LPS has been found in infected cell membranes (Hearn and McNabb 1991) 

and has been shown to function syncrgistically with IFN - 7  to induce nitrite synthesis. 

However, BCG or PPD, which did not contain LPS, induced nitrite production in 

RAW264.7 cells and peritoneal macrophages (Stuehr and Marietta 1987a-b).

Therefore, the possibility that CT infection itself primed the infected cells by an
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undefined mcchanism(s) cannot be ruled out.

Correlation of Nitrite Production and CT Inhibition 

A strong correlation between nitrite production and inhibition of CT replication 

in RAW264.7 (correlation coefficient: -0.93, p <  0.001) or J774A.1 cells (correlation 

coefficient: -0.94, p <  0.001) was observed (Figure 17A-B). This suggested that nitrite 

production may be a mechanism for inhibition of CT replication. The correlation 

(correlation coefficient: -0.67, p< 0 .05) was observed in McCoy cells (Figure 17C). 

However, the slope of the regression curve was smaller (0.522) than those of the 

macrophage cell lines (2.061-2.453). This indicated that CT replication in McCoy 

cells was less affected by nitrite production than in the macrophage cell lines.

Inhibition of Nitrite Production and 

Restoration of CT Replication bv L-NMMA 

In order to demonstrate that nitrite production is the mechanism of inhibition 

of CT replication, L-NMMA was employed to block nitrite production. L-NMMA 

inhibited nitrite production in mouse macrophages and McCoy cells (Figures 19-21), 

which is consistent with other reports (Mayer et al. 1993, Moncada ct al. 1991). 

Concentrations of L-NMMA varied (0.1-0.5 inM) from laboratory to laboratory 

(Moncada et al. 1991, Mayer et al. 1993, Hibbs et al. 1987, Murray and Teitelbaum 

1992, Lin and Chadee 1992). In our study, the inhibitory effect of L-NMMA was 

proportional to the concentration used (Figure 18). However, inhibition of nitrite
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production was dependent not only upon concentration of L-NMMA, but varied with 

cell type and stimuli. For example, 1 mM L-NMMA completely inhibited nitrite 

production in LPS-treated J774A.I (Figure 20A), but only 77% inhibition was 

observed in LPS-treated RAW264.7 celts (Figure I9A). 10 mM L-NMMA completely 

inhibited nitrite production in CT-infected RAW264.7 cells treated with either LPS or 

IFN-7 , but only 94% inhibition was observed in the cells treated with both IFN- 7  and 

LPS (Figure 24).

LPS is a strong stimulus of TNF-a production in mouse macrophage cell lines 

and peritoneal macrophages (Jue et al. 1990, Kelly et al. 1991, Martin and Dorf 

1990, Lewis 1990). Therefore, TNF-a production was investigated in macrophage 

cell lines. TNF-a production was higher in LPS-treated RAW264.7 cells (Figure 22) 

than in the treated J774A.1 ceils (Figure 23). L-NMMA did not reduce TNF-a 

production in these cells, which indicated that inhibition of nitrite production by L- 

NMMA was specific and that NO did not function as a regulatory molecule for TNF- 

a  production.

L-NMMA abrogated inhibition of CT replication in macrophage cell lines 

(Figures 25, 27). The abrogation was dose-dependent. Restoration of CT replication 

induced by L-NMMA (5-10 mM) was 55 or 71% in RAW264.7 cells treated with 

IFN- 7  or LPS, respectively. The restoration in LPS-treated J774A.1 cells (52%) was 

comparable to that of RAW264.7 cells (55%). However, the restoration induced by 

L-NMMA was low (<  10%) in J774A.1 cells treated with IFN - 7  or IFN - 7  plus LPS, 

although CT recovery was increased remarkably (0.9 or 1.4 log | 0 units, respectively).



The reason for the lower level of restoration in J774A.I cells is unknown. Continuous 

IL-1 secretion by J774A.1 cells was reported and secretion increased following 

treatment with LPS (ATCC 1988, Martin and Dorf 1990, Lewis ct al. 1990). IL-1 has 

been shown to inhibit CT replication in HEp-2 cells by PGE2 production (Shcmcr- 

Avni et al. 1990). However, as discussed previously, it is unknown if J774A. 1 cells 

responded to IL-1 by expressing antichlamydial activity. Furthermore, restoration of 

CT replication induced by L-NMMA in LPS-treated J774A.1 cells was comparable to 

that in RAW264.7 cells, indicating that IL-1 production may not be involved. These 

results indicated (hat (a) nitrite production is one mechanism of inhibition of CT 

replication in the macrophage cell lines, but that (b) other mechanisms also may be 

involved in RAW264.7 and J774A.1 cells. It is noteworthy that in the numerous 

reports that have suggested a role for NO in antimicrobial activities exhibited by 

activated mouse peritoneal macrophages or murine cell lines, the degree to which L- 

NMMA or arginase reversed such activity has varied. Restoration o f microorganism 

replication induced by L-NMMA or arginase has ranged from moderate to nearby 

complete depending upon the test pathogens, the target cells and the cytokines 

(Granger ct al. 1991, James and Glaven 1989, Liew et al. 1990a-c, Green et al. 

1990a-b, 1991, Adams et al. 1990, Mauel et al. 1991, Bogdan et al. 1991, Denis 

1991).

In McCoy cells, IFN-y inhibited CT replication but to a lesser extent than in 

other cells treated with IFN-y. In contrast to other cells, LPS did not induce NO 

production or inhibit CT replication in McCoy cells. L-NMMA (0,1 mM) remarkably
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inhibited nitrite production, but only slightly increased CT recovery by 0.16 or 0.28 

logs IFU/ml in McCoy cells treated with IFN- 7  or IFN- 7  plus LPS (Figure 29). A 

high concentration of L-NMMA (5 mM) did not increase CT recovery further. 

Therefore, nitrite production probably is not the mechanism of inhibition o f CT 

replication in McCoy cells treated with IFN-7 . However, Mayer et al. (1993) recently 

reported that IFN-7 -pretreated McCoy cells dramatically reduced CT (type H) 

replication by 4 log,o units. L-NMMA reversed the inhibition. This discrepancy may 

be due to differences in CT strains or McCoy cells (the McCoy cells used in our 

laboratory arc a human-mousc hybrid, while McCoy cells used by Mayer ct al. were 

a murine-derived cell line). Furthermore, alternate methods of IFN- 7  treatment were 

used in the two studies.

Since all evidence indicated that nitrite production is one o f the mechanisms of 

inhibition of CT replication, it was necessary to determine if nitrite played an 

essential role in this inhibition. Our data showed that exogenous nitrite (50-200 

nmol/ml) did not affect CT replication in RAW264.7 cells (Figure 30), which 

suggested that the mediator of nitrite production, rather than nitrite itself, functioned 

as the effector molecule.

Correlation of NOS mRNA Expression with 

CT Inhibition in RAW264.7 Cells 

It has been demonstrated that immunological activation induces NOS at the 

transcriptional level in RAW264.7 cells (Xie ct al. 1992). Few investigators



121

determined NOS mRNA expression to confirm NO production as a mechanism for 

antimicrobial or antitumoral activity. However, in this study, we determined NOS 

mRNA expression (approximately 4.1 kb) in RAW264.7 cells by using Northern Blot 

and Dot Blot hybridization. IFN- 7  or LPS induced significant NOS mRNA expression 

in CT-infccted RAW264.7 cells (Figure 32, 33A, 34A). Combination of IFN- 7  with 

LPS exhibited a synergistic effect upon NOS mRNA expression. The peak of NOS 

mRNA expression was 6-24 hours pt (Figure 32). No detectable NOS mRNA was 

observed in untreated RAW264.7 cells. Similar results were observed in uninfected 

RAW264.7 cells by Lowcnstcin et al. (1992). These results also were consistent with 

nitrite production in cells treated with LPS and/or IFN-7 . A strong correlation 

between NOS mRNA expression and inhibition of CT replication (correlation 

coefficient: -0.97, p< 0.05) was observed. This further supported the contention that 

NO is a mechanism of inhibition of CT replication.

Effect o f Anti-TNF-a Ab upon NOS mRNA Expression.

Nitrite Production and CT Replication 

In vitro, a combination of rIFN*y and iTNF-a synergistically induced nitrite 

production in mouse peritoneal macrophages and McCoy cells (Ding et al. 1988,

Mayer et al. 1993). However, the effect of endogenuous TN F-a upon nitrite 

production has not been defined. Anti-TNF-a antibody, which completely neutralized 

biological activity of secreted TNF-a (Figure 36), inhibited neither NOS mRNA 

expression (Figures 33A, 34A) nor nitrite production (Figure 37) in LPS- or IFN-7 -
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treated RAW264.7 cells. However, the antibody significantly inhibited nitrite 

production in peritoneal macrophages (Figure 40). One possible explanation for this is 

that the cell line did not respond to TNF-a by nitrite production, although it did 

respond to secreted TNF-a by exerting antichlamydial activity (Figure 38). Recently, 

two distinct TNF-a receptors (TNF-R1 and TNF-R2) have been demonstrated in 

human and mouse systems (Tarlaglia and Goeddel 1992). Binding of TNF-a to TNF- 

R1 results in cytotoxicity and antiviral activity. However, binding of TNF-a to TNF- 

R2 results in thymocyte and CTL proliferation. Therefore, there may be different 

receptors expressed on peritoneal macrophages and RAW264.7 cells. Different 

receptors may not explain (his phenomenon, since the antibody recognized epitopes on 

TN F-a rather than on receptors. Another possibility is that the membrane-associated 

TN F-a was not neutralized by the antibody in RAW264.7 cells. In fact, secreted 

TN F-a was derived from membrane-associated precursors in LPS-treated RAW264.7 

cells (Jue et al. 1990). A substantial amount of TNF-a was detected on the treated 

cell surface (Jue ct al. 1990). Since RAW264.7 cells were confluent in cultures, the 

antibody may not be sufficient to block the activity of membrane-associated TNF-a in 

these cells. However, peritoneal macrophages were not confluent in cultures. 

Therefore, the membrane associated TNF-a was sufficiently neutralized by the 

antibody.

L-NMMA inhibits nitrite production by competitive binding of NOS (Moncada 

et al. 1991). As expected, L-NMMA did not affect transcription o f NOS gene 

(Figures 33A, 34A), although remarkable inhibition of nitrite production by L-
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NMMA was observed (Figure 37).

Restoration o f CT replication induced by L-NMMA (5-10 mM) was not 

complete even in IFN-y-lreated RAW264.7 cells, although nitrite production was 

almost completely inhibited (Figures 26-27). Furthermore, L-NMMA induced 

comparable inhibition of nitrite production but restored less of CT replication in LPS- 

treated than in IFN-y-treated RAW264.7 cells. The former produced high levels of 

TNF-a which may be involved in the inhibition. rTNF-a has been shown to inhibit 

CT replication in HEp-2 cells (Shcmcr-Avni et al, 1988, 1989). Treatment of McCoy 

cells with iTNF-a post-inoculation significantly inhibited initial inclusion formation 

and CT replication (Table 3). This treatment also caused atypical inclusions with less 

glycogen than those in untreated cells (data not shown). The significance of this is 

unknown although it has been suggested that glycogen deposition in CT inclusions is 

not required for complete replication (Matsumolo 1988). The effect of secreted TNF- 

a  upon CT replication remains unclear. An anti-TNF-a neutralizing Ab was employed 

to investigate this effect in RAW264.7 cells. The Ab, which completely neutralized 

biological activity o f secreted TNF-a, neither inhibited nitrite production (Figure 37) 

nor reversed inhibition of CT replication (Figure 38) in RAW264.7 cells treated with 

LPS- and/or IFN-7 . Combination of the Ab with L-NMMA significantly enhanced the 

restoration of CT replication in the cells treated with LPS or IFN-y, particularly in 

cells treated with LPS (Figure 38). These results indicated that (a) secreted TNF-a 

may be involved in antichlamydial activity, but the mechanism may be distinct from 

NO production; (b) the antichlamydial effect o f secreted TNF-a may be overwhelmed
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Inhibition o f CT Replication in Peritoneal Macrophages 

Wc have demonstrated that NO and TNF-a production arc involved in 

inhibition of CT replication in LPS- or IFN-y-activalcd RAW264.7 cells. We now 

wished to determine if the same mechanisms were operative in peritoneal 

macrophages. TNF-a production was induced by LPS in peritoneal macrophages 

(Figure 36). The level of TNF-a was much lower than in macrophage cell lines. This 

may suggest that peritoneal macrophages and macrophage cell lines are at different 

stages of activation. As in macrophage cell lines, high levels of nitrite production 

were induced in peritoneal macrophages by LPS or IFN-y (Figure 40) and nitrite 

production was dramatically inhibited by L-NMMA (Figure 40). However, anti-TNF- 

a  antibody, which did not affect nitrite production in macrophage cell lines, 

significantly inhibited nitrite production in peritoneal macrophages treated with LPS 

and/or IFN-y (Figure 40). This indicated that secreted TN F-a may be an 

autoregulatory cytokine for nitrite production during activation of peritoneal 

macrophages.

CT replication was dramatically inhibited in peritoneal macrophages treated 

with IFN-y and/or LPS. However, the mechanism(s) of inhibition in peritoneal 

macrophages may be different from that in the macrophage cell lines. Although L- 

NMMA partially restored CT replication (34-35%) in the IFN-y-trcatcd peritoneal 

macrophages, it did not reverse the inhibition in LPS-treated cells (Figure 41). This
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suggested that NO production may be a mechanism of CT inhibition in IFN-y-lreated 

peritoneal macrophages, but may not be active in LPS-treated cells. Furthermore, 

anti-TNF-a Ab significantly inhibited nitrite production and partially restored CT 

replication (34-35%) in peritoneal macrophages treated with IFN-y. The latter 

suggested that secreted TNF-a may exert antichlamydial activity by up-regulation of 

the NO production pathway during activation of peritoneal macrophages by IFN-y. 

Neither Ab alone nor in combination with L-NMMA reversed CT inhibition in LPS- 

treated cells, indicating that NO or TNF-a may not be the mechanism for inhibition 

of CT replication in peritoneal macrophages activated by LPS.

Direct Effect of IFN-y and LPS upon CT Replication 

In order to examine the direct effect of IFN-y and LPS upon CT replication, 

two human epithelial cell lines OVCAR-3 and KLE were employed. These cell lines 

did not respond to murine IFN-y and LPS by nitrite or TNF-a production (data not 

shown). Treatment with IFN-y and LPS did not affect CT replication in these cells 

(Figure 42). A direct inhibitory effect of IFN-y and LPS upon CT replication in 

highly susceptible cells was thereby refuted. Since IFN-y used in this study was 

murine recombinant and response to IFN-y is species specific, human IFN-y may 

clicitc an effect upon CT replication in these cell lines.

Effect of Tryptophan upon CT Replication 

Tryptophan degradation has been reported to be a mechanism of inhibition of
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CT replication in IFN-7 -treatcd human cell lines (HEp-2 and T24) or human 

monocytes/ macrophages (Byrne et al. 1986, Murray et al. 1989), However, we 

demonstrated that exogenous tryptophan (40 to 1000 *xg/ml) failed to reverse 

inhibition of CT replication in IFN-7 - and LPS-treated RAW264.7 cells (Figure 44),

In order to exclude the possibility that the effect of tryptophan degradation might have 

been overwhelmed by NO production, we treated the cells with exogenous tryptophan 

and L-NMMA, The combination of exogenous tryptophan with L-NMMA did not 

affect the inhibition (Figure 44), These results indicated that tryptophan degradation 

may not be the mechanism o f inhibition in this macrophage cell line. Antichlamydial 

effect without involvement o f tryptophan degradation in other murine-derived cell 

lines also was reported by other investigators (Mayer et al, 1993, de la Maza et al. 

1985, Murray ct al. 1989). Our data supported the hypothesis that the tryptophan 

degradation mechanism is species-specific, i.e., involved in antichlamydial activity in 

human cells, but not in murine cells.

Summary and Conclusions 

In summary, IFN - 7  or LPS induced inhibition o f CT replication in peritoneal 

macrophages and macrophage cell lines. In McCoy cells, only IFN - 7  inhibited CT 

replication. L-NMMA (1 mM) inhibited nitrite production and restored CT replication 

in RAW264.7 cells treated with IFN- 7  or LPS, Inhibition of nitrite production and 

restoration of CT replication induced by L-NMMA was comparable in LPS-treated 

J774A.1 cells and lFN-7 -lreated peritoneal macrophages. However, L-NMMA (1
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mM) inhibited nitrite production but did not significantly restore CT replication in 

LPS-treated pertoneai macrophages, IFN-7 -treatcd McCoy or J774A.1 cells. Anti- 

TN F-a antibody inhibited nitrite production in LPS- or IFN-7 -trcatcd peritoneal 

macrophages but restored CT replication only in IFN-7 -trcated cells. In LPS- or IFN- 

7 -treated RAW264.7 cells, anti-TNF-a antibody alone neither reduced nitrite 

production nor restored CT replication. Combination of the antibody and L-NMMA 

significantly enhanced restoration of CT replication without increase in inhibition of 

nitrite production. Therefore, we have made the following conclusions: (1) NO 

production is one o f the mechanisms for inhibition of CT replication in IFN-7 - 

activaled peritoneal macrophages and RAW264.7 cells; (2) NO plays a significant role 

in CT inhibition in LPS-treated macrophage cell lines but not peritoneal macrophages; 

(3) TNF-a may be associated with inhibition, but the mcchanism(s) may not involve 

NO production; (4) NO production may not be the mechanism for CT inhibition in 

McCoy cells treated with IFN-7 .

Macrophage activation induced by IFN- 7  or LPS is a complicated process 

which involves many biological and biochemical events including receptor-ligand 

binding, signal transduction, gene expression, cytokine secretion and feedback 

regulation (Adams and Hamilton 1992). Although we demonstrated that NO and 

secreted TNF-a arc involved in inhibition of CT replication in peritoneal macrophages 

and macrophage cell lines activated by IFN - 7  or LPS, the whole picture o f inhibition 

in activated macrophages remains unclear. Complete understanding of the interaction 

between macrophages and CT would have a significant impact on elucidation of the



immune response against CT infection as well as prevention of infection.
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