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ABSTRACT 

Assessing the Physical Security of IDFs with PSATool: a Case Study 

by 

Sulabh Bista 

 

PSATool is a checklist-based, web-based application for assessing the physical security of 

Intermediate Distribution Frameworks. IDFs, or wiring closets, are an integral if often neglected 

component of information security. Earlier work by Timbs (2013) identified 52 IDF-related 

security requirements based on federal and international standards for physical security. 

PSATool refines Timbs’ prototype application for IDF assessment, extending it with support for 

mobile-device-based data entry. 

 

PSATool was used to assess 25 IDFs at a regional university, a college and a manufacturing 

corporation, with an average of 9 minutes per assessment. Network managers and assessors 

involved in the assessments characterized PSATool as suitable for creating assessments, usable 

by IT department personnel, and accurate, in terms of its characterizations of IDF status. 
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CHAPTER 1 

INTRODUCTION 

Physical security is an integral if often neglected component of information security. 

While various authorities provide broad guidelines for implementing and assessing physical 

security (Kwo-Shing Hong, 2003), a relative lack of software applications for helping with 

assessment makes these guidelines difficult to apply.  

This lack of applications for supporting assessment is particularly evident for 

intermediate distribution frames (IDFs) (Timbs, 2013), IDFs, also called switch boxes, act as a 

distribution point for user cable and host network switches. IDFs typically house other 

appliances such as power backup units and humidity and temperature control units that help to 

assure the operational and physical integrity of the devices they contain. Because IDFs provide a 

physical point of access to a network, it is important to keep them secured. 

The subject of this research, PSATool (Physical Security Assessment Tool), is a web and 

mobile-device-based application for assessing the physical security of IDFs. PSATool is the 

outgrowth of thesis research by Timbs (2013), who distilled physical security requirements from 

the NIST SP 800-53 (2009), NIST SP 800-53A (2010), and ISO/IEC 27002 (2005) standards 

into a 52-item checklist for assuring IDF security. Timbs' work included the creation of a 

prototype application for conducting checklist-based assessments. 

PSATool enhances and extends Timbs' prototype. That prototype consisted of a paper-

based checklist and an Access database. PSATool consists of a mobile application, 

PSAToolApp, that is configured to present assessors with Timbs’ 52-item checklist. Users can 

modify and add requirements to this checklist, using a back-end, web-based application that 

supports the collection, management and reporting on assessment-related data. Assessments were 
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administered using a single code base that supports the creation of different database instances. 

This architecture gives institutions exclusive and complete control over their data without the 

need to maintain separate code bases. 

PSATool’s effectiveness was gauged with three case studies involving a regional 

university, a college and a manufacturing corporation A total of 25 IDFs were assessed. 

PSATool reduced average time required to assess an IDF from 22 minutes in Timbs’ work to 9 

minutes. Surveys of the tool’s users and their network managers were used to assess the 

application’s effectiveness. Users’ responses established PSATool’s potential usefulness to 

network infrastructure managers as a tool for characterizing IDF security and its ease of use for 

assessors. 
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CHAPTER 2 

LITERATURE REVIEW 

PSATool is an extension of Timbs’ work on physical security assessment (Timbs, 2013). 

PSATool's default requirements were taken from Timbs’s work. Its user interface was based on 

principles and guidelines from sources like (Bhattacharya, 2011), (Nielsen, Ten good deeds in 

web design, 1999), and (Schniderman, 2005). Additional guidelines from sources like (Adipat & 

Zhang, 2005) were used to design the interface for PSATool's mobile device front end, 

PSAToolApp. PSATool and PSAToolApp were evaluated usint the case study methodology 

described in (Iacono, Brown, & Holtham, 2011)  

2.1 Physical Security Requirements and PSATool v0 

Information security has focused mostly on cyber security while neglecting the physical 

security of a network's infrastructure. In (2013), Timbs describes a prototype application, here 

referred to as PSATool v0,that was meant to fill a void in tools for assessing the physical security 

of wiring closets, or Intermediate Distribution Frameworks (IDFs). PSATool v0 presents 

assessors with a 52-item checklist of physical controls derived from rules, requirements and 

recommendations from various sources, including U.S. federal agencies and the NIST SP 800-

53, NIST SP 800-53A and ISO/IEC 27002 standards. Timbs extrapolated from these standards to 

obtain a model of an ideal IDF: an enclosed interior area that houses and protects network 

infrastructure. Timbs' ideal IDF would authorize, monitor and log all access to its interior. The 

IDF would be protected from environmental hazards and free from unrelated materials, including 

hardware and building supplies. Its communication wiring would be separate from power wiring 

to minimize interference. It would have multiple power lines that would provide power in case of 
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failure. It would support the use of remote disconnects to power down the closet: a concern of 

utmost importance for managing emergencies. The closet’s temperature and humidity would be 

maintained using an HVAC (Heating, Ventilation, Air Conditioning) system.  

In order to ensure that assessments could be completed in a reasonable amount of time, 

Timbs' checklist was limited to controls that sources indicated were essential for physical 

security. For simplicity, questions were limited to whether those controls were present. More 

detailed concerns about IDF security, including the controls' viability, robustness, and 

responsiveness, were excluded to reduce assessment time.  

PSATool v0 provides a qualitative rather than a quantitative measure of IDF security. It 

was, however, used to rank IDFs by number of requirements passed.  

PSATool v0 was implemented as a Microsoft Excel front end with a Microsoft Access 

back end. Excel was used to enter data that assessors recorded on paper checklists. Access was 

then used to pull this data into a relational database. PSATool v0 supported various reports, 

including reports of failed and passed and assessor information. 

PSATool v0’s effectiveness was established through a case study at the East Tennessee 

State University (ETSU). A paper version of the PSATool checklist was used to collect 52 

itemized data from 135 wiring closets at ETSU. Each assessment required 22 minutes on 

average. ETSU’s network administrator stated that the IDFs that passed more PSATool 

requirements were viewed as more secure. 

2.2 User Interface Guidelines for Web-Based Software 

In (2011), Bhattacharya describes a case study involving the application of usability 

guidelines to a flawed course website. Bhattacharya sought to redesign the website to improve 

information dissemination among students who were semi-skilled in computer and Internet use. 
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Bhattacharya used guidelines from Ivory and Megraw's Web Tango Methodology (2005) 

to gather usability related requirements. The methodology highlights eight quality features of a 

website: text elements, link elements, text formatting, link formatting, graphic formatting, page 

formatting, page performance and site architecture. It recommends putting a logo on each web 

page, providing a search feature, putting a heading or title on each page, and adhering to popular 

design practice. 

The laws of Gestalt Theory provided guidelines for presenting images and graphics. They 

include the laws of balance (place visual weight to achieve balance), continuation (the eyes 

follow the direction shown in a visual image), closure (use closed shapes whenever possible), 

figure-ground (different foreground colors can represent different items), focal point (graphics 

should have a center of interest), isomorphic correspondence (an image’s meaning varies with a 

user’s experiences), proximity (proximity determines grouping), simplicity (viewers attempt to 

simplify images), and unity/ harmony (user will try to relate similar object in a design). This last 

law is helpful in generating menu groups, forming item groups and placing images on pages. 

Colors were selected based on guidelines by Shneiderman and Plaisant (2005). These 

guidelines advocate the conservative use of color (do not overuse colors, use neutral colors), the 

use of limited number of colors (do not use a wide color palette), and adherence to common 

expectations about color code (red signals danger while green is safe). 

Bhattacharya's redesigned website was evaluated using heuristic evaluation, the thinking 

aloud technique, and a user survey. Heuristic evaluation is based on nine usability heuristics 

identified by Nielson and Molich (1990) : use simple and natural language; speak the user’s 

language; minimize user memory load; be consistent; provide a view of a system’s operation; 

provide clearly marked exits; provide shortcuts; generate relevant error messages; and prevent 
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user errors. The heuristics technique is inexpensive, can be done without prior planning and can 

be used in any phase of development. The authors note, however, that these simple-seeming 

heuristics are very difficult to implement in practice. Their use, moreover, can be affected by an 

evaluator’s mindset, such as an inability to comprehend content or an interface. 

The thinking aloud technique asks users to verbalize their thoughts while doing test-case-

specified actions in a laboratory setting. This technique is inexpensive, effective and especially 

useful when combined with a retrospective think aloud technique. Its primary drawback is that 

some users find it difficult and inconvenient to verbalize when doing engaging activities. 

Bhattacharya also used a survey to evaluate the redesigned system's usability. While 

heuristics are more effective in identifying major issues than surveys, surveys can identify more 

usability problems than the heuristics approach. Data from surveys can be useful and, when 

combined with heuristics, can produce satisfactory results. 

The specific principles that Bhattacharya applied to her redesign were as follows: 

• Web interface content influenced the choice of color, text-size, image content, and 

navigation menu group. 

• Visibile status information was provided in the form of breadcrumbs that showed the 

current page's relative location on the website as well as information that 

distinguishes downloadable files and external links. 

• User control and freedom were supported with “cancel” buttons for downloading 

content. 

• The need for recall was reduced through the use of a standard web layout format. 

• Help and documentation were provided by adding a technical FAQ. 
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• Consistency and standards were assured by using a standard Windows platform for 

downloading and opening files. Hyperlinks to site pages also adhered to this 

principle. 

• Flexibility and efficiency of use were achieved by distinguishing downloadable files 

from web page links. 

Bhattacharya asked 16 users of the original site to complete six actions while thinking 

aloud about them. These actions mostly involved finding or interacting with website content. The 

redesigned site obtained a far better usability score than the original site: improvements for the 

tested tasks ranged from 16% to 96%. In a survey that followed the thinking aloud test, the 

redesigned system rated higher in aspects like proper use of color, font and image, resemblance 

of the interface to online course materials, ease of use and overall reaction to the interface. On a 

final, heuristics evaluation, the redesign scored higher on visibility of system status, match 

between system and the real world, consistency and standards, error prevention, flexibility and 

efficiency of use and aesthetic and minimalist design. 

Although the redesign appeared to improve the site's usability, the result was statistically 

insignificant, due to the small sample population. The order of testing, moreover, may have 

affected the results. The results also attest to the known limitation of the thinking aloud 

technique: participants made more errors when thinking aloud (40% participants got confused). 

2.3 User Interface Guidelines for Mobile-Based Software 

Mobile applications have created new challenges for interface design. Mobile devices 

have smaller screen sizes, less memory and clumsier data entry interfaces than traditional 

guidelines for interface design assume. These limitations can cause information overload, due to 

the difficulty in locating information on a small screen; difficulties in providing visual hints to 
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users, due to limited memory; confusion about an action or path required to reach content; and 

difficulties in data entry due to small physical/soft keyboards. In addition, mobile device users 

are often distracted by other tasks like talking and walking (York & Pendharkar, 2004).  

Mobile interface design should address these problems and improve a mobile user’s 

experience. Research has identified best practices for mobile interface design like providing clear 

and concise menu labels, avoiding long lists of choices, and using navigational structures to 

support access to content. Other research has focused on improved data entry methods like 

speech and stylus input. 

In (2005), Adipat and Zhange present guidelines for mobile application development that 

include considerations related to user preferences, The guidelines are divided into four major 

areas: user, context, information presentation and data entry methods. 

User related guidelines emphasize interactions with users. An interface should allow 

users to customize presentation elements like font size, type, and color; media objects; and 

content depiction (e.g., showing images instead of just texts). The design should accommodate 

user disabilities and reduce cognitive load: e.g., manage split attention with additional feedback 

through vibration and audio.  

Information overload can be addressed by following these four guidelines:  

• Categorize information and present it in hierarchies that allow users to drill down for 

more information.  

• Put more information closer to the top of the hierarchy.  

• Design interfaces to guide users to focus on a specific part of a screen at a time.  

• Provide a search function for quick content discovery. 
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Disabled users require additional hints to navigate an interface and access relevant 

content. Guidelines for blind users include the following: 

• Provide audio and tactile modes for input and presenting information: e.g., audio-to-

text modes of input and screen readers for output. 

• Provide audible confirmation for user actions 

• Provide a function that reminds users of their current position and choices in 

navigational hierarchies: e.g., “You are at the contact list page”, “Say search anytime 

to search for contacts”. 

Guidelines for colorblind users include the following: 

• Don’t use color to convey information: e.g., avoid using red to signal dangerous 

choices and green for safe choices. 

• Use high contrast foreground and background colors 

• Provide preferences to set text and background color 

User interfaces for the hearing impaired should emphasize the visual display and substitute 

tactile feedback for audio feedback. 

Context related guidelines address the need to let users control programmed responses 

to an application's environment, including location, ambient light, and noise. Users should have 

options for turning services off and on like location reporting services or automatic brightness 

controls. Users should receive feedback about changing an interface setting. Privacy should be 

respected and care taken to avoid displaying undesirable information. Context-aware information 

should only be displayed when a user needs it. A user should be able to prioritize notifications 

and control the visibility of interfaces generated by context-aware services. 



 17 

Information presentation guidelines address techniques for presenting large volumes of 

information on a small screen. They include adaptive interfaces, the use of multiple modalities to 

present information, and visualization, which combines graphics with techniques like 

summarization, scrolling, zooming, and using focus and context to highlight relevant data and 

dim peripheral information.  

One-dimensional data like text can be organized for efficient navigation using hierarchies 

and menus, with important content positioned near the tops of menus. Menu items should be 

properly labeled and breadcrumbs provided for navigational support. Horizontal scrolling should 

be avoided and consistent layout and visual design throughout the application should be 

encouraged. Error messages should be clear and meaningful. Proper selection of input fields 

(date input field for dates, phone input field phone number) is also desirable.  

Two-dimensional structures can be used to present hierarchical data. Zooming techniques 

can be used to drill down for more detail. Similarly, techniques like focus and context technique 

improve data presentation for 2-D information. 

Three-dimensional data presentation has special use in virtual reality and gaming. Three-

D data presentation should allow a user to view an entire object and provide zoom. 

Information presentation can be improved with adaptive interfaces and multimodal 

displays. Adaptive interfaces adapt to a user’s use patterns. These interfaces should be 

controllable, predictable and non-obstructive. Multimodal displays provide multiple input and/or 

output methods for disseminating information. These displays' interfaces should allow users to 

choose a mode based on the operating environment: e.g., noise level, privacy concerns. 

Data entry method guidelines present best practices for data input. A soft keyboard 

should be used when a user can attend to a mobile screen and when the screen is large enough to 
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display one. Handwritten input can be used for devices that support it for users who can write 

legible text. Voice is the input method of choice for blind users. Voice can also be a good option 

when privacy is not a concern during data entry. 

Adipat and Zhang suggest security, privacy, and their effect on user interface design as 

subjects for future research. Other topics include exploring LED displays, pixel-based visual 

notification, and interface design for ultra-mobile devices (e.g. smart watches), since guidelines 

for mobile devices might not apply to these devices. 

2.4 Case Study Method 

In (2011), Iacono, Brown, and Holtham present guidelines for developing case studies in 

the context of a study of electronic marketplaces (e-marketplaces) in the steel industry. A case 

study is an empirical investigation of a contemporary phenomenon in its real-life context, 

especially when the boundaries between phenomenon and context are unclear. The main idea of 

case study research is to analyze evidence objectively, eliminate alternative interpretations and 

produce a compelling case. The method is flexible, produces diverse research outcomes and 

supports all types of philosophical paradigms. Case studies can be categorized as exploratory 

(study of a poorly defined problem), descriptive (study of a phenomenon's characteristics) or 

explanatory (detailed explanation of a topic including ‘why and how it happens’). A case study 

can also be intrinsic, instrumental or collective, based on the number of cases studied. 

The case study method is a qualitative method for developing and testing theory. It 

focuses on the meaning of real-life phenomena and not on their frequency. Case studies 

emphasize the characteristics of the entities under observation and the variables used to collect 

data. It can be a challenge to identify the variables that influence the phenomenon being studied. 

Equally challenging is to determine the range of data to collect, the selection and number of case 
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sites and type of analysis to do. Hence it is important to follow a proper procedure for designing 

case study research. 

The case study process starts with definition of a research question. The variables to 

study are identified using a literature review. Data is collected through fieldwork. The tentative 

results obtained from the fieldwork are then compared with the data and theory proposed in the 

literature. This comparison determines if the theory is consistent with the available data. This 

comparison is crucial, as it can identify anomalies in the data and gaps in the theory. The study 

should include critical, extreme, revelatory cases with transparently observable phenomena. The 

use of multiple cases adds additional support for a theory's validity. Experimental analysis 

alongside a case study also provides additional validity. 

Case studies collect data through various sources and in various formats. Triangulation 

techniques should be used to enhance the data's reliability and validity. Internal validity is 

concerned with whether the variables chosen directly affect the outcome. External validity is 

concerned with generalizing findings beyond the cases. Case studies need to be externally valid 

for theoretical propositions, as case studies do not deal with statistically significant sample sizes. 

Since the case study method is derived from natural science, issues arise when applying it 

to Management and Information Systems. The controlled observation of real-world settings is 

difficult, as is a replicable real world setting for case study validation. Findings are often difficult 

to generalize as case studies involve statistically insignificant datasets and every case is unique. 

Finally, controlled deductions are difficult to make. To address these problems, research 

communities, by consensus, treat qualitative analyses as scientific when they follow established 

methodologies for case studies. These methodologies, which are based on methods derived from 
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natural science, roughly prescribe that observations and deductions be controlled and that 

research be replicable and generalizable. 

Ionoco et al. justified the use of a case study in their work as follows: 

• E-marketplaces could not be studied outside of their natural setting; data needed to be 

derived from the real companies that attempted to implement an e-marketplace. 

• The study had to focus on events and decisions related to the time when the e-

marketplace was in use. 

• The study had to be done in the real environment with real subjects. 

• Finally, there were no historical studies on effect of e-marketplace on steel industry. 

The authors' study started with the formulation of a research question. Several authors 

suggested variables that might affect the viability of electronic marketplaces. Combining these 

authors’ observations produced a conceptual framework, the Model. A hypothesis was proposed 

along with a predicate to test the hypothesis. The Model was field-tested and the outcome used to 

refine the Model. The study included seven cases, some descriptive, with multiple levels of 

analysis. Data was collected using unobtrusive techniques (no interviews) to minimize 

disruption. Emerging issues were analyzed and explored by telephone when necessary. 

The authors argued their experimental design followed best practices for assuring their 

study's validity, reliability and reliability. The research featured a clear research question, an a 

priori specification of constructs, a clean theoretical slate, and a theory of interest, with 

predictions from this theory and rival theories. It used multiple cases, with clearly defined 

protocols for researching individual and multiple cases, including a multi-level strategy for 

analyzing results. The authors used best practices related to data collection and analysis, 

including maintaining logical chains of evidence, doing empirical testing and time series 
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analysis, and developing comparisons with this literature and across their cases. Finally, their 

research followed prescribed methods of designing case studies for Management and 

Information System. 

The authors conclude by observing that case studies can be used for rigorous qualitative 

research that meets the criteria of validity, reliability and reliability. 
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CHAPTER 3 

METHODOLOGY 

This research sought to develop an effective application for assessing physical security. 

The work involved three major tasks: developing two applications for administering data 

collection and collecting data, using these application to collect data, and gauging the 

applications' effectiveness through user feedback.  

3.1 Application Development 

This work began with the development of two related applications. The one, a front end 

web application with a back-end database, allows managers to plan and manage assessments, 

assign assessors to assessments, and generate reports from assessments. The other, a mobile 

application, allows assessors to gather data from IDFs and transmit it to the secured database. 

3.1.1 PSATool 

PSATool is a web-based application based on the Model View Controller (MVC) 

architecture1. MVC is a software architecture pattern that divides an application into a model, 

which stores data; a view, which displays data in the model; and a controller, which relates the 

model and the view, manipulating and processing data for storage and display.  

PSATool was implemented using the Python based Django2 MVC framework. Figure 1 

shows a requirement management screen from PSATool. 

                                                
1 https://en.wikipedia.org/wiki/Model–view–controller 
2 https://www.djangoproject.com 
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3.1.1.1 Model View Controller 

PSATool's data model defines entities for users, assessment groups, requirements, and 

collected data. Django's Object Relational Mapper (ORM) uses these definitions to generate 

controller-level application program interfaces for persisting content in PSATool's database. 

Data model definitions in PSATool consist of about 250 lines of code. Figure 2 shows a Django 

data model used to store IDF related data. The data model is defined as a Python class, IDFData. 

 

Figure 1: PSATool assessment requirement management screen 

PSATool's views are defined using Django-compliant HTML markup files, using 

JavaScript and Cascading Style Sheets (CSS) to control formatting. The views determine how 

model data is formatted and displayed. They define web browser based interactions: for example, 

the pop-ups that appear when a user hovers over an icon. Finally, they determine styling (color 

and size of text, layout and arrangement of HTML content) via CSS. 
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PSATool's controllers render views based on data models and forward them to a web 

browser. Controllers also validate data, manage database transactions and format data: i.e., 

convert between data model and textual representations of content. Finally, controllers use 

Django modules for authentication, authorization, HTML form generation and user messaging 

and feedback. 

 

Figure 2: Example of a Django data model 

3.1.1.2 Database Design 

PSATool uses the MariaDB database3, an open source version of MySQL4. Because 

PSATool uses Django's ORM layer to access and manage this database, any Django-compatible 

database could be used in place of MariaDB.  

The PSATool database supports a workflow for managing and reporting data from 

assessments. PSATool managers can create, define requirements for, and assign assessors to 

assessment groups. Assessors use checklists, optionally supported by texts and pictures, to 

                                                
3 https://mariadb.org 
4 https://www.mysql.com 
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collect data regarding the fulfillment of requirements. The PSATool database's tables (Table 1) 

store this data, along with supporting data for interfacing with PSAToolApp. 

Table 1: PSATool database tables 

Table Name Content 

Authentication and authorization related 

users_user User information, including name, password, email, 
along with access level (e.g., staff, superuser) 

authtoken_token Temporary authentication token for PSAToolApp 

Master list of requirement related 

dashboard_mastercontrolclasslist Master list of PSATool's built-in control classes 

dashboard_masterrequirementlist Master list of PSATool's built-in requirements list 

dashboard_masterguidancedocument Source document for master requirements. 

dashboard_traceabilitymatrix Maps master requirements to their guidance documents 
including page number 

dashboard_requirementoptions Yes, No, Not Applicable and Not Assessed 

Assessment management related 

dashboard_assessmentgroup Assessment group data, like name and description 

dashboard_assessmentcontrolclass An assessment group's control class 

dashboard_assessmentrequirement An assessment group's requirements 

dashboard_assessments Data on active assessments 

dashboard_assessments_assigned_to Assignment of an assessment to an assessor user 

Assessment data collection related 

dashboard_idfdata Data on IDF like names, THV assessment and control 

dashboard_idfdataperformedby Users involved in assessing an IDF 

dashboard_idfrequirement  
An IDF's specific requirements. Textual comments and 
file system locations of uploaded pictures are also 
stored here. 

dashboard_assessmentduration The duration required to assess each IDF requirements. 
 

 

 



 26 

Managing Image Uploads 

PSATool follows recommended practice for image management, storing images outside 

the database and limiting databases to image metadata (Wiles, 2012). This makes the database 

easier to backup and improve access speed; database reads are slower than file-system reads. 

3.1.1.3 Focus on Usability 

The design of PSATool's user interface (UI) used guidelines from (Bhattacharya, 2011) 

and (Nielsen, Ten good deeds in web design, 1999). Each page includes a logo that links to an 

application's home page. Multiple navigation bars, including top and left bars (Bhattacharya, 

2011) (Burrell & Sodan, 2006), have been used and their content determined by user access 

level. A fixed palate of colors was used (Bhattacharya, 2011) (Schniderman, 2005) with blue 

denoting positive action (creating an assessment, click to expand for more information) and grey 

denoting side-effect-free actions (go back buttons). Icons and tooltips provide visual clues about 

a UI element's actions. Breadcrumb trails provide navigation cues and indicate system status 

(Bhattacharya, 2011) (Nielsen & Mack, Heuristic Evaluations, 994). Accordion style UI 

elements allow users to expand and explore contents of possible interest.  
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Figure 3: PSATool UI features 

Figure 3 shows some of these features. From left to right, the figure shows PSATool's 

cross-web-page side menu-bar and one of its accordion based lists, along with the interface's 

consistent color in buttons and support for tooltips. 

3.1.2 PSAToolApp 

PSAToolApp (Figure 5) is a mobile/tablet-based application that allows an assessor to 

collect data from IDFs and transmit it to PSATool's back-end application. PSAToolApp was 

developed using AngularJS5, Ionic Framework6 and Cordova7. In theory, it can run on Android, 

                                                
5 https://angularjs.org 
6 http://ionicframework.com/ 
7 https://cordova.apache.org/ 
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iOS and Windows Phone. To date, PSAToolApp has only been tested in Android. It is available 

in the Google Play store8. 

Similar to PSATool, PSAToolApp is an MVC based application. Unlike PSATool, 

PSAToolApp lacks a persistence layer for storing model data. Rather, it uses a representational 

state transfer (REST) based API to communicate with the main PSATool application. This API 

forms the basis for storing and retrieving data in PSAToolApp. 

3.1.2.1 AngularJS, Ionic Framework and Cordova 

Instead of developing PSAToolApp as a native application for Android, iOS and 

Windows Phone separately, PSAToolApp was developed using web technologies. This approach 

allows the same code base to be used to generate application binaries for different platforms, 

including iOS, Android and Windows Phone. The application logic is written in AngularJS. The 

user interface is written in the Ionic Framework. Cordova provides various runtime and libraries 

for accessing mobile device features like a camera. Cordova also generates binaries suitable for 

specific device platforms: i.e., Java packages for Android, Objective C binary for iOS and 

Common Language Runtime for Windows phone. 

                                                
8 https://play.google.com/store/apps/details?id=com.psatool.psatoolapp 
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Figure 4: A screen from PSAToolApp 

3.1.2.2 REST API Design and Specification 

PSAToolApp communicates with PSATool using a REST9 API. REST APIs use HTTP 

operations to invoke data storage and retrieval operations at a server. For example, HTTP GET 

fetches server data; HTTP POST stores data; and HTTP OPTIONS retrieves all HTTP server-

supported actions. REST also makes it easy to use JavaScript Object Notation (JSON) as a data 

transfer format. JSON is native to the JavaScript programming language, used in PSAToolApp. 

PSAToolApp makes HTTP requests to a PSATool server using HTTP GET and POST. It 

uses JavaScript Object Notation (JSON) for data exchange, in order to leverage AngularJS's 

support for parsing JSON and generating content in a format similar to that used by PSATool's 

data dictionary (see Appendix G for REST API documentation). 

                                                
9 https://en.wikipedia.org/wiki/Representational_state_transfer 
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3.1.2.3 Focus on Usability 

PSAToolApp’s UI was designed for usability, based on guidelines from (Adipat & 

Zhang, 2005) and other best practices for mobile application design. The Ionic Framework used 

in PSAToolApp provides various UI templates that adhere to best practices. 

In keeping with recommendations from Adipat and Zhang (2005), PSAToolApp allows 

users to change PSATool's server URL and to customize how lists are sorted. This includes 

support for sorting IDFs based on time of last update or percentage of requirements assessed. 

Users receive feedback following connection failures, authentication failures, and other errors. 

Small pie charts provide quick visual feedback for the percentage of requirements assessed for 

each IDF. Modal dialogs prompt users for actions and screen transition effects provide for 

gradual changes in screen information. PSAToolApp supports a soft keyboard and the uploading 

of photos in support of assessment. (See Appendix F: "PSAToolApp manual" for PSAToolApp 

user documentation) 

Figure 5 shows some features of PSAToolApp's UI. From top to bottom, the figure shows 

support for selecting PSATool server URL, the use of a dynamic pie chart icon to show number 

of requirements assessed, and support for adding comment and uploading photo. 

3.1.2.4 Calculating Assessments' Durations 

PSAToolApp automatically records the time taken to assess requirements based on a 

user’s interaction with the app. When a user enters a screen that collects requirement data, 

PSAToolApp starts a timer. Saving requirement data stops the timer and sends the timing data to 

the PSATool server along with other requirement related data. PSATool uses the timing data 

thus collected to calculate the time cost of assessments.  
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Figure 5: PSATool UI features 

3.1.3 Traceability of Requirements 

PSATool's interface presents information about the 52 requirements that are prepackaged 

with PSATool. The ‘Dashboard’ section and the ‘Assessment Groups’ management page list 

each requirement and document its origin, including the documents and page numbers from 

which it was derived. 

Figure 6 shows part of PSATool's traceability matrix. It shows that requirement “1.1” 

under “Entry Control” was derived from multiple documents like section 9.1 of NIST SP 800-53 
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and sections PE-2.1 and PE-3.1 of ISO/IEC 27002. This matrix helps to establish the validity and 

usefulness of PSATool's default requirements. 

 

Figure 6: Traceability matrix accordion UI 

3.1.4 Accountability 

PSATool records the identities of users who modify assessment groups (addition and 

modification of requirements in a group) and participate in assessments using PSAToolApp.  

3.1.5 Assessment Group and Assessment Management in PSATool 

An assessment group is used for easier management and grouping of assessments. For 

example, a different assessment group can be created for each of an organization's buildings. 

Assessors can then be assigned to an active assessment for an assessment group. The assessors 
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can gather requirements for their assigned buildings. (See Appendix D, "PSATool manual: 

Managing assessments") 

3.1.6 User Management in PSATool 

PSATool supports two types of users, Managers and Assessors. Managers can create 

assessments, modify requirements, assign assessors to assessments, and gather requirements. 

Assessors can gather requirements for assessments that managers have assigned them to do. (See 

Appendix C: "PSATool manual: User Management") 

3.1.7 PSATool Assessment Reports 

PSATool can generate two different types of assessment reports. Summary reports 

present an overview of an assessment and rank IDFs based on passed and failed requirements. 

IDF-specific reports provide details about requirements that an IDF passed or failed. (see 

Appendix E: "PSATool manual: Generating reports") 

3.2 Case Study and Data Collection 

PSATool's effectiveness was assessed using case studies at a regional university (ETSU); 

a regional college; and a manufacturing corporation. Different types of assessment institutions 

were selected to have a variety in the collected data.  

A multi-tenant setup of PSATool web application was hosted at ETSU. Unique domain 

names were created for the three institutions with all domain names referencing the same server. 

PSATool used different databases for different domain names, thereby isolating data from 

different institutions. 
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A manager level account was created for each institution. The manager user created 

assessor users and assessment groups and assigned assessors to assessments. The assessors then 

used PSAToolApp to collect requirement data from IDFs. 

PSAToolApp provides an option to specify the web server to which PSAToolApp should 

connect. Assessors were provided with the web server name for their institution. 

Managers and assessors were provided with a feedback form (Appendix A, Appendix B) 

and asked to evaluate the usefulness and effectiveness of PSATool and PSAToolApp. Their 

feedback was used to assess the effectiveness of PSATool and generate ideas for future work. 
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CHAPTER 4 

RESULTS 

PSATool was used at three institutions to collect requirement data from IDFs. A total of 

25 IDFs were assessed during the case study. The assessors from these institutions each 

completed a questionnaire regarding the effectiveness and usefulness of PSATool software. 

 

Figure 7: Aggregate of all assessments 

Figure 7 shows the overall health of all IDFs assessed for this study. The x-axis is the 

‘number of requirements passed’ and the y-axis is ‘IDF Count’, or the count of IDFs that passed 

‘the number of requirements’. The ‘aggregate of passed IDFs’ curve is a plot of the data 

collected during the assessment. PSATool's reporting tool generates a similar graph on the fly 

while an overview report is requested. 
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In Figure 8, the ‘Curve for IDFs with bad health’ represents data from a fictional 

institution with bad IDF health. This curve is skewed towards the left, which denotes that most 

IDFs have failed most requirements. The ‘Curve for IDFs with good health’ represents data from 

a fictional institution with good ID health. This curve is skewed towards the right, which denotes 

that most IDFs have passed most requirements. 

Table 2: Overview of data collected at a regional university 

Regional university  

Number of IDFs assessed 6 

Maximum number of requirements passed by an IDF 23  

Least number of requirements passed by an IDF 11  

Maximum number of requirements failed by an IDF 32  

Least number of requirements failed by an IDF 21 

Average time required for all assessments 17.68 minutes 

 

Table 2 summarizes data from the six IDF assessments at ETSU. The best performing 

IDF passed 23 and failed 11 requirements while the poorest IDF passed 11 and failed 21 

requirements. Average time per assessment was 17.68 minutes. The ‘Passed top rank’ (Figure 8) 

shows the top 5 best performing IDFs while the ‘Failed top rank’ (Figure 9) shows the top 5 

worst performing IDFs. 

ETSU’s assessor noted that PSAToolApp was easy to use and follow through the 

requirements. The assessor mentioned that simplifying the wording on the requirements would 

improve the understandability. ETSU’s network manager noted that the reports were useful 

enough to support IDF upgrade proposals for higher management. The manager also suggested 

some UI changes related to providing serial numbers in reports. 

 



 37 

 
Figure 8: Regional university top 5 ranking 

 
Figure 9: Regional university bottom 5 ranking 
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Table 3 summarizes data from the ten IDF assessments at the regional college. The best 

performing IDF passed 19 and failed 33 requirements while the poorest IDF passed 6 and failed 

46 requirements. Average time per assessment was 4.01 minutes. The use of small, wire-rack 

enclosure IDFs at this college significantly reduced the assessment time. The ‘Passed top rank’ 

(Figure 10) shows the top 5 best performing IDFs while the ‘Failed top rank’ (Figure 11) shows 

the top 5 worst performing IDFs. 

Table 3: Overview of data collected at a college 

A college 

Number of IDFs assessed 10 

Maximum number of requirements passed by an IDF 19  

Least number of requirements passed by an IDF 6  

Maximum number of requirements failed by an IDF  46 

Least number of requirements failed by an IDF 33 

Average time required for assessment 4.01 minutes 
 

The college's assessor noted that PSAToolApp was easy to use and intuitive. The 

assessor added that extra hints about requirements would help in understanding them. The 

college's network manager noted that the traceability matrix was very useful in establishing the 

requirements' credibility. The manager thought the tool was well designed for its purpose and 

100% complete. 
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Figure 10: College top 5 ranking 

 
Figure 11: College bottom 5 ranking 

 

Table 4 summarizes data from the nine IDFs at the manufacturing corporation. The best 

performing IDF passed 18 and failed 32 requirements while the poorest IDF passed 11 and failed 
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38 requirements. Average time per assessment was 8.56 minutes. The ‘Passed top rank’ (Figure 

12) shows the top 5 best performing IDFs while the ‘Failed top rank’ (Figure 13) shows the top 5 

worst performing IDFs. 

Table 4: Overview of data collected at a manufacturing corporation 

A manufacturing corporation 

Number of IDFs assessed 9 

Maximum number of requirements passed by an IDF 18  

Least number of requirements passed by an IDF 11 

Maximum number of requirements failed by an IDF  38 

Least number of requirements failed by an IDF 32 

Average time required for assessment 8.56 minutes 
 

The manufacturing corporation’s assessor noted that PSAToolApp was easy to maneuver 

around and efficient for quick assessments. The assessor suggested that the requirements could 

be broken down more with further definition and explanation to improve understandability.  

The manufacturing corporation's network manager noted that PSATool's functionality 

was easy to remember and recognize after setting up a test assessment. The manager also noted 

that the reports were easy to understand and navigate. The manager was satisfied with the 

qualitative view of the IDFs presented by PSATool, noting that PSATool reports could be used 

to prioritize improvements to IDFs. 
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Figure 12: Manufacturing corporation top 5 ranking 

 

Figure 13: Manufacturing corporation bottom 5 ranking 
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CHAPTER 5 

CONCLUSIONS 

PSATool proved to be an effective tool for creating assessments, managing requirements 

and generating reports for assessment of IDFs. This was demonstrated by the case studies at the 

three institutions. 

PSATool provided an easy and intuitive workflow or creating and managing assessments. 

PSATool allowed managers to create assessor users and assign them assessments. PSATool-

generated reports provided relevant overviews of the health of assessed IDFs. The reports 

provided details about failed and passed requirements for all IDFs including images taken during 

the assessment. The quality of the IDFs as reflected by PSATool corresponded to the managers' 

qualitative views of the IDFs. Managers noted that printed reports from PSATool could be 

included in work orders or used to inform upper management about security issues and prioritize 

improvements to IDFs. 

PSAToolApp made it easy for assessors to record requirements-related data. Assessors 

noted that the ability to supplement observations with photos from mobile devices could be 

useful for later, detailed investigations of issues. The use of a mobile device allows data to be 

sent to a server immediately, in one step, without any extra data entry. 

5.1 Recommendations for Future Work 

5.1.1 Workflow Related Recommendations 

The following features should be considered for future versions of PSATool and 

PSAToolApp: 
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1. Support for custom control classes. PSATool groups requirements into control 

classes. PSATool should provide an interface for modifying existing control classes 

and adding new classes. This feature was suggested by an assessment manager. 

2. Support for managing requirements' provenances., PSATool should provide an 

interface for managing the associations between the 52 default requirements and their 

sources or associating custom requirements with their own sources.  

3. Support for cross-group reports. PSATool should support the generation of reports 

for multiple assessments within a single assessment group and comparisons of 

assessments done at different times. 

4. Support for demo mode. PSATool should support a step-by-step demo mode for new 

user. A UI pattern called ‘walkthrough’ can be used for this purpose and bootstrap-

tour10 can be used to implement such pattern in PSATool. 

5. Support for standard conformance. PSATool should support reports that relate 

assessment data to individual standards like ISO 27001 and NIST. 

6. Categorization of requirements. Requirements should be further categorized into 

requirements for IDF robustness and requirements for IDF data security. 

5.1.2 System Design Related Recommendations 

The following design changes should be considered for future versions of PSATool and 

PSAToolApp: 

                                                
10 https://github.com/sorich87/bootstrap-tour 
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1. Improvements to the REST API. PSATool's REST API should be rewritten using a 

standard guideline for REST interfaces. Possible sources for such a guideline could 

be (Jansen, 2012) or (Hirsch, 2015). 

2. Improvements to PSATool's accountability tracking. PSATool's support for logging 

should be expanded to log and track all manager-level actions including creating 

assessments and adding requirements. 

3. Support for concurrent assessments. PSAToolApp should support the concurrent use 

of multiple mobile devices to assess an IDF. PSATool and PSAToolApp could be 

redesigned to use a WebSocket11 based multicast architecture for passing requirement 

data between multiple mobile devices. Source code from (Bista, 2015) could be used 

as a reference system to implement a WebSocket based multicast architecture. 

(Agrawal, Starobinsku, & Trachtenberg, 2002) could be used for strategies for data 

synchronization. This feature was suggested by assessors who experimented with 

using 2 mobile devices to assess a single IDF. 

4. Improvements to database efficiency. PSATool's data model could be efficiently 

represented using tree like database tables as discussed in (Celko, 2007). The 

modified pre-order tree traversal (MPTT) discussed by Celko has been implemented 

as a Django library12. Future versions of PSATool could use this library for efficient 

database design. 

5.1.3 UI Related Recommendations 

The following UI enhancements should be considered for future versions of PSATool: 

                                                
11 https://en.wikipedia.org/wiki/WebSocket 
12 https://github.com/Django-mptt/Django-mptt/ 
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1. Serial numbers should be added to requirements listed in individual IDF reports. This 

would require adding serial numbers to the requirements on the database level. 

2. Archiving and pagination should be implemented for all list based pages like list of 

assessment groups and list of IDFs. 

3. A virtual walkthrough or a visual representation of an ideal IDF should be included in 

the reports. 

The following enhancements should be considered for future versions of PSAToolApp: 

1. Specific syndromes rather than generic error messages should be provided following 

loss of Internet connectivity, 

2. As per PSATool's assessors, the UI should provide  

a. a button to add an IDF directly from the requirement list screen. 

b. descriptive texts and examples should be added for all requirements. 

5.2 Summary 

PSATool and PSAToolApp successfully automated and extended the proposed strategy 

for IDF assessment as described in (Timbs, 2013). PSATool and PSAToolApp provide a 

software-based workflow for creating, managing, assessing and reporting assessments of IDFs. 

The application supports the 52 requirements as proposed in (Timbs, 2013). Processes like report 

and graph generation were automated. The application's effectiveness and usefulness were 

demonstrated with case studies at ETSU, a regional college and a manufacturing company. 

Average assessment time for IDFs was reduced significantly and users expressed their 

satisfaction with the tool's usability and data. 
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APPENDICES 

APPENDIX A: QUESTIONNAIRE FOR MANAGER 

Name (First, Last)  

Name of organization  

Position(eg: Supervisor, Sysadmin)  

Work Phone  

Email  

Date  

 
 
PSATool Quality:  Please… 
 
characterize PSATool’s usability 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
characterize PSATool’s understandability 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
rate, on a scale of 1 (poor) to 7 (excellent), PSATool's  
understandability:  _____________usability: ____________ 
 
state how the tool could be improved 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
PSATool Assessment Quality 
 
How many personnel hours did the assessment take? 
_______________________________________________________ 
 
What costs did the assessment incur? 
_______________________________________________________ 
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Please characterize ….. 
 
the tool’s completeness 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
the format and content of the tool's output 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
the assessment's usefulness 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
how, if at all, this assessment has affected your view of IDF Security 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
how, if at all, this assessment might affect your organization’s practice 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
how the assessment procedure could be improved 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
 
Please rate the following aspects of the assessment provided by PSATool on a scale of 1 (poor) 
to 7 (excellent) 
 
Usefulness:  ______     Completeness:  ______ 
 
Please rate the following aspects of the assessment provided by PSATool on a scale of 1 (poor) 
to 7 (excellent) 
 
Effect on your view of IDF security:  _____ 
Likely effect on organizational practice:  _____ 
Likelihood that a future assessment will include PSATool:  ____ 
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APPENDIX B: QUESTIONNAIRE FOR ASSESSOR 

 
Name (First, Last)  

Name of organization  

Work Phone  

Email  

Date  
 
 
PSAToolApp Quality:  Please… 
 
characterize PSAToolApp’s usability 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
characterize PSAToolApp’s understandability 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
rate, on a scale of 1 (poor) to 7 (excellent), PSAToolApp's  
understandability:  _________ usability: ____________ 
 
list any issues or annoyances you encountered while performing assessments 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
  
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
 
state how the tool could be improved 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
 
______________________________________________________________________________ 
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APPENDIX C: PSATOOL MANUAL: USER MANAGEMENT 

PSATool supports two types of users, Managers and Assessors. Managers can create 

assessments, modify requirements, assign assessors to assessments, and gather requirements. 

Assessors can gather requirements for assessments that managers have assigned them to do. 

Commands for managing users are accessible via http://<psatool domain>/admin. This 

URL is guarded by a login screen that accepts manager credentials only. 

 

Click on Users 
to list the 
system's users  
(Fig. 14). 

Figure 14: Link to user management 

Click on a user 
to view/change 
the user's 
attributes (Fig. 
15). 

Figure 15: List of users 
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Check ‘Staff 
status’ or 
'Superuser 
status’ to assign 
manager role to 
a user. Users 
without Staff 
status or 
Superuser status 
are assessor 
users. (Fig. 16) 

 
Figure 16: Assigning manager/assessor role to a user 

Add a new user 
by clicking on 
Add User in 
users list (Fig. 
17). 

 
Figure 17: Adding a new user 
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While adding a 
new user, click 
on ‘Save and 
continue’ to add 
additional 
details about a 
user (Fig. 18). 

. 

 
 

 
Figure 18: Additional information for a user 
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APPENDIX D: PSATOOL MANUAL: MANAGING ASSESSMENTS 

An assessment group is used for easier management and grouping of assessments. For 

example, a different assessment group can be created for each of an organization's buildings. 

Assessors can then be assigned to an active assessment for an assessment group. The assessors 

can gather requirements for their assigned buildings. 

Only managers can 
configure assessment 
groups. This is done 
via the Assessment 
Groups link in the 
side navigation (Fig. 
19).  

Figure 19: Listing assessment groups and creating a new group 

New assessment 
groups can be created 
by clicking ‘Add 
Assessment Group’ 
(Fig. 20). Provide a 
name and description 
for what this group 
denotes (e.g. building 
name and motivation 
for assessment) 

Figure 20: Creating an assessment group 
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After creating a 
group, assessment 
requirements should 
be associated with 
that group (Fig. 21). 
Click the ‘Manage 
Requirements’ icon to 
initialize and 
(possibly) modify a 
group's requirements. 
PSATool 
automatically adds 52 
requirements when 
initializing a group's 
requirements. Click 
on ‘Initialize 
Requirements’ to load 
these 52 requirements 
(Figure 22).  

Figure 21: Managing requirements 

Figure 22: Initializing assessments and add custom requirement 

PSATool also allows 
the addition of 
custom requirements. 
Click on ‘Add 
Requirement’ (Fig. 
23) to create a custom 
requirement. 

 
Figure 23: Adding a custom requirement 
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For the 52 
requirements that 
PSATool initializes, 
icons provide access 
to information that 
includes the date of 
last update (Fig. 24) 
and the requirement's 
author (Fig. 25) and 
provenance (name of 
authority for a 
requirement)  
(Fig. 26) . 

Figure 24: Updating a requirement's date/time 

Figure 25: PSATool user who created a requirement 

 
Figure 26: Source of a requirement 
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APPENDIX E: PSATOOL MANUAL: GENERATING REPORTS 

Reporting is an important component of PSATool. After gathering data from IDFs, a 

manager can generate a summary report or an IDF-specific report. A summary report presents an 

overview of an assessment and ranks an IDF based on passed and failed requirements. An IDF 

specific report provides details about requirements that an IDF passed or failed. 

 
Reporting can be 
accessed by 
clicking ‘Reports’ 
from the side 
menu. Selecting 
an assessment and 
clicking ‘View 
Report’ will 
display a 
summary report. 
(Fig. 27) 

 
Figure 27: Reports page 
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A report can be 
printed using 
“print this report” 
(1) button. 
The bar charts on 
a report display 
the rank of IDFs.  
Rank according 
to passed 
requirement 
(2) displays the 
top 5 ranked 
IDFs. 
(3) displays the 
bottom 5 ranked 
IDFs. This graph 
is only displayed 
for assessment 
with more than 5 
IDFs. 
Rank according 
to failed 
requirement 
(4) displays the 
top 5 ranked 
IDFs. 
(5) displays the 
bottom 5 ranked 
IDFs. This graph 
is only displayed 
for assessment 
with more than 5 
IDFs. (Fig. 28) 

 
Figure 28: Bar charts displaying IDF rank 
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The summary 
report lists IDFs 
assessed, time 
required to assess 
them and all 
requirements 
along with the 
IDFs that passed 
each 
requirement.(Fig. 
29) 

 
Figure 29: List of IDFs and requirements 

An IDF specific 
report can be 
accessed by 
clicking on an 
IDF name from 
the IDF list (see 
highlight in Fig. 
3). The IDF 
specific report 
displays details 
about all passed, 
failed, not-
applicable and 
unassessed 
requirements. 
This report can be 
printed using 
‘print this report’ 
button. (Fig. 30) 

 
Figure 30: IDF specific report 
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APPENDIX F: PSATOOLAPP MANUAL 

PSAToolApp is used by assessors for gathering requirement data from IDFs. 

PSAToolApp can be installed on a mobile or tablet device. PSAToolApp requires a constant 

Internet connection because it communicates with the PSATool web server for retrieving and 

storing data. 

PSATool is available from the Google Play Store 

(https://play.google.com/store/apps/details?id=com.psatool.psatoolapp). 

Assessors can log in using 
the PSAToolApp login 
screen (Figure 31). The 
login screen allows an 
assessor to enter an API 
end point. The assessor gets 
the API endpoint address 
from a PSATool manager. 
Once entered, API end 
point is saved and will be 
used for future logins. 

 
Figure 31: Login screen with API URL selection 



 61 

After assessors are logged 
in, they can access a list of 
assessments assigned to 
them. (Fig. 32). The 
assessment list contains a 
list of IDFs and the 
percentage of requirements 
assessed in the form of pie 
chart. 
 
New IDFs can be added by 
clicking on ‘Add IDF’. 
Existing IDFs can be edited 
by clicking on the pie chart 
icon. 

 
Figure 32: Assessment and IDF list 
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The order of IDFs can be 
changed using the Settings 
tab (Fig. 33) 

 
Figure 33: Changing the order of the IDF list 
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Adding or editing IDF data 
starts with selecting users 
involved in the gathering of 
requirements data (Fig. 34). 

 
Figure 34: Selecting users involved in data gathering 
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A list of requirements is 
presented next (Fig. 35). A 
[…] button can be clicked 
to add data about specific 
requirement. THV data can 
be added clicking ‘THV 
Data’ button. 

 
Figure 35: List of requirements 
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The screen to gather 
requirement data (Fig. 36) 
allows an assessor to select 
if the IDF being assessed 
meets a requirement, take a 
picture and add a comment. 
Clicking on “Save” 

 
Figure 36: Requirement gathering screen 
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An assessor can log out 
from the app by using the 
Logout tab (Fig. 37). 

 
Figure 37: Logout screen 

 

Various icons on the 
requirement list screen 
reflect a requirement's state 
(true, false, not applicable, 
not assessed) (Fig. 38) 

 

 
Figure 38: Icons for requirement state 
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APPENDIX G: REST API SPECIFICATION 

The following table documents PSATool's API for communicating with PSAToolApp. API 

functions return HTTP response code 200 on success, code 404 for requests that fail to generate 

data (non existent unique key) and 500 for requests that are incomplete or can't be fulfilled. 

API name Login 
Description Authorization of a user based on a username and a password 
HTTP URL <PSATool server url>/api/login/<username>/<password> 
HTTP Method GET 

HTTP Response 
in JSON format 

{ 
  "username": <username>, 
  "token": "<authorization token>", 
  "is_staff": <boolean> 
} 

Description of 
response 

This function, on success, returns an authorization token. This token is 
associated to a user. Subsequent API requests use this token as an 
authentication criteria. 

All other requests include an HTTP Authorization header with the value “Token <authorization 
token> from the above request. For example, if Login API returned the token zxybdkfj1234, the 
HTTP Authorization header contains the value Token	zxybdkfj1234 
API name My Assessments 
Description Fetches a list of assessments for the logged in user 

HTTP URL 
<PSATool server url>/api/assessments/sort/<sort criteria>/order/<sort order> 
sort criteria: updated_on, complete 
sort order: desc, asc 

HTTP Method GET 

HTTP Response 
in JSON format 

[ 
  { 
    "id": <assessment unique id>, 
    "assessment_group": { 
      "id": <assessment group unique id>, 
      "created_on": <datetime>, 
      "updated_on": <datetime>, 
      "name": <name of assessment>, 
      "description": <description of assessment> 
    }, 
    "assigned_to": [ 
      { 
        "id": <user unique id>, 
        "username": <username>, 
        "name": <user real name> 
      } 
    ], 
    "idfdata_set": [ 
      { 
        "id": <idf unique id>, 
        "idf_name": <name of IDF>, 
        "updated_on": <datetime>, 
        "percentage_complete": <percentage of IDFs assessed> 
      }, 
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      { 
        "id": <idf unique id>, 
        "idf_name": <name of IDF>, 
        "updated_on": <datetime>, 
        "percentage_complete": <percentage of IDFs assessed> 
      } 
     ] 
  } 
] 

Description of 
response 

The response lists all assessments assigned to a user, all users assigned to an 
assessment, and all IDFs under each assessment 

 

API name IDF Base Data 

Description Fetches a name for an IDF and a list of users who performed assessment on 
it 

HTTP URL <PSATool server url>/api/idf_base_data/<idf id> 
HTTP Method GET 

HTTP Response 
in JSON format 

{ 
  "idf_name": <name of idf>, 
  "users": [ 
    { 
      "id": <unique user id>, 
      "username": <username>, 
      "name": <user real name> 
    }, 
    { 
      "id": <unique user id>, 
      "username": <username>, 
      "name": <user real name> 
    } 
] 
} 

 

API name Save IDF Data 
Description Create/update IDF name and list of users performing an assessment 
HTTP URL <PSATool server url>/api/idfdata/<assessment id>/<idf id> 
HTTP Method POST 

POST Data 

{ 
    "idf_name":<name of IDF>, 
    "performed_by": 
    [ 
        <user id>, 
        <user id> 
    ] 
} 

HTTP Response 
in JSON format 

{ 
  "message": "IDF Data set.", 
  "idfdata_id": <idf id> 
} 

 

API name Requirements 

Description Fetches a list of requirements, their attributes and THV data for a specific 
IDF 

HTTP URL <PSATool server url>/api/requirements/<idf id> 
HTTP Method GET 
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HTTP Response 
in JSON format 

{ 
  "thv_assessment": <THV assessment text>, 
  "thv_control": <THV control text>, 
  "requirements": [ 
    { 
      "class_name":<requirement class name>, 
      "requirements": [ 
        { 
          "id": <unique requirement id>, 
          "text": <requirement text>, 
          "option": <option value selected>, 
          "comment": <comment text>, 
          "media": <url to any associated media>, 
          "duration": <time in milliseconds> 
        } 
        ] 
    } 
   ] 
} 

 

API name Save Requirement Data 
Description Update data for a specific requirement. 
HTTP URL <PSATool server url>/api/requirementdata 
HTTP Method POST 

POST Data 

{ 
"comment": <comment for a requirement>, 
"id": <unique id of a requirement>, 
"media": <base64 encoded image data>, 
"option": <selected option for a requirement>, 
"text": <requirement text>, 
"duration": <time in milliseconds> 
} 

HTTP Response 
in JSON format 

{ 
  "message": "Requirement data saved", 
  "requirement_data_id": <unique id of the updated requirement> 
} 

 

API name Requirement Options 
Description Fetches a list of available options and its related text 
HTTP URL <PSATool server url>/api/requirement-options 
HTTP Method GET 

HTTP Response 
in JSON format 

[ 
  { 
    "id": <unique id>, 
    "name": "True" 
  }, 
  { 
    "id": <unique id>, 
    "name": "False" 
  }, 
  { 
    "id": <unique id>, 
    "name": "N/A" 
  }, 
  { 
    "id": <unique id>, 
    "name": "" 
  } 
] 
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