
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

12-2015

Assessing the Physical Security of IDFs with
PSATool: a Case Study
Sulabh Bista
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Information Security Commons, and the Systems Architecture Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Bista, Sulabh, "Assessing the Physical Security of IDFs with PSATool: a Case Study" (2015). Electronic Theses and Dissertations. Paper
2605. https://dc.etsu.edu/etd/2605

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=dc.etsu.edu%2Fetd%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Assessing the Physical Security of IDFs with PSATool: a Case Study

A thesis

presented to

 the faculty of the Department of Computer Science

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer and Information Sciences

by

Sulabh Bista

December 2015

Dr. Michael Lehrfeld, Chair

Dr. Phillip E. Pfeiffer IV

David Tarnoff

Keywords: Physical Security Assessment, Case Study

 2

ABSTRACT

Assessing the Physical Security of IDFs with PSATool: a Case Study

by

Sulabh Bista

PSATool is a checklist-based, web-based application for assessing the physical security of

Intermediate Distribution Frameworks. IDFs, or wiring closets, are an integral if often neglected

component of information security. Earlier work by Timbs (2013) identified 52 IDF-related

security requirements based on federal and international standards for physical security.

PSATool refines Timbs’ prototype application for IDF assessment, extending it with support for

mobile-device-based data entry.

PSATool was used to assess 25 IDFs at a regional university, a college and a manufacturing

corporation, with an average of 9 minutes per assessment. Network managers and assessors

involved in the assessments characterized PSATool as suitable for creating assessments, usable

by IT department personnel, and accurate, in terms of its characterizations of IDF status.

 3

TABLE OF CONTENTS

Page

ABSTRACT .. 2

LIST OF TABLES .. 5

LIST OF FIGURES .. 6	

Chapter

1.	 INTRODUCTION .. 8	

2.	 LITERATURE REVIEW ... 10	

2.1	 Physical Security Requirements and PSATool v0 .. 10	

2.2	 User Interface Guidelines for Web-Based Software ... 11	

2.3	 User Interface Guidelines for Mobile-Based Software 14	

2.4	 Case Study Method ... 18	

3.	 METHODOLOGY ... 22	

3.1	 Application Development ... 22	

3.1.1	 PSATool .. 22	

3.1.1.1	Model	View	Controller	..	23	

3.1.1.2	Database	Design	...	24	

3.1.1.3	Focus	on	Usability	...	26	

3.1.2	 PSAToolApp ... 27	

3.1.2.1	AngularJS,	Ionic	Framework	and	Cordova	...	28	

3.1.2.2	REST	API	Design	and	Specification	..	29	

3.1.2.3	Focus	on	Usability	...	30	

3.1.2.4	Calculating	Assessments'	Durations	...	30	

3.1.3	 Traceability of Requirements .. 31	

3.1.4	 Accountability ... 32	

3.1.5	 Assessment Group and Assessment Management in PSATool 32	

3.1.6	 User Management in PSATool ... 33	

3.1.7	 PSATool Assessment Reports .. 33	

4

3.2	 Case Study and Data Collection ... 33	

4. RESULTS ... 35

5. CONCLUSIONS .. 42

5.1	 Recommendations for Future Work .. 42	

5.1.1	 Workflow Related Recommendations .. 42	

5.1.2	 System Design Related Recommendations .. 43	

5.1.3	 UI Related Recommendations .. 44	

5.2	 Summary ... 45	

WORKS CITED ... 46

APPENDICES .. 48	

Appendix A: Questionnaire for Manager ... 48	

Appendix B: Questionnaire for Assessor .. 50	

Appendix C: PSATool Manual: User Management ... 51	

Appendix D: PSATool Manual: Managing assessments .. 54	

Appendix E: PSATool Manual: Generating reports ... 57	

Appendix F: PSAToolApp Manual .. 60	

Appendix G: REST API Specification ... 67	

VITA ... 70	

 5

LIST OF TABLES

Table Page

1. PSATool database tables ... 25	

2. Overview of data collected at a regional university .. 36	

3. Overview of data collected at a college .. 38	

4. Overview of data collected at a manufacturing corporation ... 40	

 6

LIST OF FIGURES

Figure Page

1. PSATool assessment requirement management screen .. 23	

2. Example of a Django data model .. 24	

3. PSATool UI features ... 27	

4. A screen from PSAToolApp ... 29	

5. PSATool UI features ... 31	

6. Traceability matrix accordion UI .. 32	

7. Aggregate of all assessments .. 35	

8. Regional university top 5 ranking ... 37	

9. Regional university bottom 5 ranking ... 37	

10. College top 5 ranking .. 39	

11. College bottom 5 ranking .. 39	

12. Manufacturing corporation top 5 ranking ... 41	

13. Manufacturing corporation bottom 5 ranking ... 41	

14. Link to user management .. 51	

15. List of users ... 51	

16. Assigning manager/assessor role to a user .. 52	

17. Adding a new user .. 52	

18. Additional information for a user ... 53	

19. Listing assessment groups and creating a new group ... 54	

20. Creating an assessment group ... 54	

21. Managing requirements .. 55	

 7

22. Initializing assessments and add custom requirement .. 55	

23. Adding a custom requirement ... 55	

24. Updating a requirement's date/time .. 56	

25. PSATool user who created a requirement .. 56	

26. Source of a requirement .. 56	

27. Reports page .. 57	

28. Bar charts displaying IDF rank ... 58	

29. List of IDFs and requirements .. 59	

30. IDF specific report .. 59	

31. Login screen with API URL selection .. 60	

32. Assessment and IDF list.. 61	

33. Changing the order of the IDF list .. 62	

34. Selecting users involved in data gathering .. 63	

35. List of requirements .. 64	

36. Requirement gathering screen ... 65	

37. Logout screen .. 66	

38. Icons for requirement state .. 66	

 8

CHAPTER 1

INTRODUCTION

Physical security is an integral if often neglected component of information security.

While various authorities provide broad guidelines for implementing and assessing physical

security (Kwo-Shing Hong, 2003), a relative lack of software applications for helping with

assessment makes these guidelines difficult to apply.

This lack of applications for supporting assessment is particularly evident for

intermediate distribution frames (IDFs) (Timbs, 2013), IDFs, also called switch boxes, act as a

distribution point for user cable and host network switches. IDFs typically house other

appliances such as power backup units and humidity and temperature control units that help to

assure the operational and physical integrity of the devices they contain. Because IDFs provide a

physical point of access to a network, it is important to keep them secured.

The subject of this research, PSATool (Physical Security Assessment Tool), is a web and

mobile-device-based application for assessing the physical security of IDFs. PSATool is the

outgrowth of thesis research by Timbs (2013), who distilled physical security requirements from

the NIST SP 800-53 (2009), NIST SP 800-53A (2010), and ISO/IEC 27002 (2005) standards

into a 52-item checklist for assuring IDF security. Timbs' work included the creation of a

prototype application for conducting checklist-based assessments.

PSATool enhances and extends Timbs' prototype. That prototype consisted of a paper-

based checklist and an Access database. PSATool consists of a mobile application,

PSAToolApp, that is configured to present assessors with Timbs’ 52-item checklist. Users can

modify and add requirements to this checklist, using a back-end, web-based application that

supports the collection, management and reporting on assessment-related data. Assessments were

 9

administered using a single code base that supports the creation of different database instances.

This architecture gives institutions exclusive and complete control over their data without the

need to maintain separate code bases.

PSATool’s effectiveness was gauged with three case studies involving a regional

university, a college and a manufacturing corporation A total of 25 IDFs were assessed.

PSATool reduced average time required to assess an IDF from 22 minutes in Timbs’ work to 9

minutes. Surveys of the tool’s users and their network managers were used to assess the

application’s effectiveness. Users’ responses established PSATool’s potential usefulness to

network infrastructure managers as a tool for characterizing IDF security and its ease of use for

assessors.

 10

CHAPTER 2

LITERATURE REVIEW

PSATool is an extension of Timbs’ work on physical security assessment (Timbs, 2013).

PSATool's default requirements were taken from Timbs’s work. Its user interface was based on

principles and guidelines from sources like (Bhattacharya, 2011), (Nielsen, Ten good deeds in

web design, 1999), and (Schniderman, 2005). Additional guidelines from sources like (Adipat &

Zhang, 2005) were used to design the interface for PSATool's mobile device front end,

PSAToolApp. PSATool and PSAToolApp were evaluated usint the case study methodology

described in (Iacono, Brown, & Holtham, 2011)

2.1 Physical Security Requirements and PSATool v0

Information security has focused mostly on cyber security while neglecting the physical

security of a network's infrastructure. In (2013), Timbs describes a prototype application, here

referred to as PSATool v0,that was meant to fill a void in tools for assessing the physical security

of wiring closets, or Intermediate Distribution Frameworks (IDFs). PSATool v0 presents

assessors with a 52-item checklist of physical controls derived from rules, requirements and

recommendations from various sources, including U.S. federal agencies and the NIST SP 800-

53, NIST SP 800-53A and ISO/IEC 27002 standards. Timbs extrapolated from these standards to

obtain a model of an ideal IDF: an enclosed interior area that houses and protects network

infrastructure. Timbs' ideal IDF would authorize, monitor and log all access to its interior. The

IDF would be protected from environmental hazards and free from unrelated materials, including

hardware and building supplies. Its communication wiring would be separate from power wiring

to minimize interference. It would have multiple power lines that would provide power in case of

 11

failure. It would support the use of remote disconnects to power down the closet: a concern of

utmost importance for managing emergencies. The closet’s temperature and humidity would be

maintained using an HVAC (Heating, Ventilation, Air Conditioning) system.

In order to ensure that assessments could be completed in a reasonable amount of time,

Timbs' checklist was limited to controls that sources indicated were essential for physical

security. For simplicity, questions were limited to whether those controls were present. More

detailed concerns about IDF security, including the controls' viability, robustness, and

responsiveness, were excluded to reduce assessment time.

PSATool v0 provides a qualitative rather than a quantitative measure of IDF security. It

was, however, used to rank IDFs by number of requirements passed.

PSATool v0 was implemented as a Microsoft Excel front end with a Microsoft Access

back end. Excel was used to enter data that assessors recorded on paper checklists. Access was

then used to pull this data into a relational database. PSATool v0 supported various reports,

including reports of failed and passed and assessor information.

PSATool v0’s effectiveness was established through a case study at the East Tennessee

State University (ETSU). A paper version of the PSATool checklist was used to collect 52

itemized data from 135 wiring closets at ETSU. Each assessment required 22 minutes on

average. ETSU’s network administrator stated that the IDFs that passed more PSATool

requirements were viewed as more secure.

2.2 User Interface Guidelines for Web-Based Software

In (2011), Bhattacharya describes a case study involving the application of usability

guidelines to a flawed course website. Bhattacharya sought to redesign the website to improve

information dissemination among students who were semi-skilled in computer and Internet use.

 12

Bhattacharya used guidelines from Ivory and Megraw's Web Tango Methodology (2005)

to gather usability related requirements. The methodology highlights eight quality features of a

website: text elements, link elements, text formatting, link formatting, graphic formatting, page

formatting, page performance and site architecture. It recommends putting a logo on each web

page, providing a search feature, putting a heading or title on each page, and adhering to popular

design practice.

The laws of Gestalt Theory provided guidelines for presenting images and graphics. They

include the laws of balance (place visual weight to achieve balance), continuation (the eyes

follow the direction shown in a visual image), closure (use closed shapes whenever possible),

figure-ground (different foreground colors can represent different items), focal point (graphics

should have a center of interest), isomorphic correspondence (an image’s meaning varies with a

user’s experiences), proximity (proximity determines grouping), simplicity (viewers attempt to

simplify images), and unity/ harmony (user will try to relate similar object in a design). This last

law is helpful in generating menu groups, forming item groups and placing images on pages.

Colors were selected based on guidelines by Shneiderman and Plaisant (2005). These

guidelines advocate the conservative use of color (do not overuse colors, use neutral colors), the

use of limited number of colors (do not use a wide color palette), and adherence to common

expectations about color code (red signals danger while green is safe).

Bhattacharya's redesigned website was evaluated using heuristic evaluation, the thinking

aloud technique, and a user survey. Heuristic evaluation is based on nine usability heuristics

identified by Nielson and Molich (1990) : use simple and natural language; speak the user’s

language; minimize user memory load; be consistent; provide a view of a system’s operation;

provide clearly marked exits; provide shortcuts; generate relevant error messages; and prevent

 13

user errors. The heuristics technique is inexpensive, can be done without prior planning and can

be used in any phase of development. The authors note, however, that these simple-seeming

heuristics are very difficult to implement in practice. Their use, moreover, can be affected by an

evaluator’s mindset, such as an inability to comprehend content or an interface.

The thinking aloud technique asks users to verbalize their thoughts while doing test-case-

specified actions in a laboratory setting. This technique is inexpensive, effective and especially

useful when combined with a retrospective think aloud technique. Its primary drawback is that

some users find it difficult and inconvenient to verbalize when doing engaging activities.

Bhattacharya also used a survey to evaluate the redesigned system's usability. While

heuristics are more effective in identifying major issues than surveys, surveys can identify more

usability problems than the heuristics approach. Data from surveys can be useful and, when

combined with heuristics, can produce satisfactory results.

The specific principles that Bhattacharya applied to her redesign were as follows:

• Web interface content influenced the choice of color, text-size, image content, and

navigation menu group.

• Visibile status information was provided in the form of breadcrumbs that showed the

current page's relative location on the website as well as information that

distinguishes downloadable files and external links.

• User control and freedom were supported with “cancel” buttons for downloading

content.

• The need for recall was reduced through the use of a standard web layout format.

• Help and documentation were provided by adding a technical FAQ.

 14

• Consistency and standards were assured by using a standard Windows platform for

downloading and opening files. Hyperlinks to site pages also adhered to this

principle.

• Flexibility and efficiency of use were achieved by distinguishing downloadable files

from web page links.

Bhattacharya asked 16 users of the original site to complete six actions while thinking

aloud about them. These actions mostly involved finding or interacting with website content. The

redesigned site obtained a far better usability score than the original site: improvements for the

tested tasks ranged from 16% to 96%. In a survey that followed the thinking aloud test, the

redesigned system rated higher in aspects like proper use of color, font and image, resemblance

of the interface to online course materials, ease of use and overall reaction to the interface. On a

final, heuristics evaluation, the redesign scored higher on visibility of system status, match

between system and the real world, consistency and standards, error prevention, flexibility and

efficiency of use and aesthetic and minimalist design.

Although the redesign appeared to improve the site's usability, the result was statistically

insignificant, due to the small sample population. The order of testing, moreover, may have

affected the results. The results also attest to the known limitation of the thinking aloud

technique: participants made more errors when thinking aloud (40% participants got confused).

2.3 User Interface Guidelines for Mobile-Based Software

Mobile applications have created new challenges for interface design. Mobile devices

have smaller screen sizes, less memory and clumsier data entry interfaces than traditional

guidelines for interface design assume. These limitations can cause information overload, due to

the difficulty in locating information on a small screen; difficulties in providing visual hints to

 15

users, due to limited memory; confusion about an action or path required to reach content; and

difficulties in data entry due to small physical/soft keyboards. In addition, mobile device users

are often distracted by other tasks like talking and walking (York & Pendharkar, 2004).

Mobile interface design should address these problems and improve a mobile user’s

experience. Research has identified best practices for mobile interface design like providing clear

and concise menu labels, avoiding long lists of choices, and using navigational structures to

support access to content. Other research has focused on improved data entry methods like

speech and stylus input.

In (2005), Adipat and Zhange present guidelines for mobile application development that

include considerations related to user preferences, The guidelines are divided into four major

areas: user, context, information presentation and data entry methods.

User related guidelines emphasize interactions with users. An interface should allow

users to customize presentation elements like font size, type, and color; media objects; and

content depiction (e.g., showing images instead of just texts). The design should accommodate

user disabilities and reduce cognitive load: e.g., manage split attention with additional feedback

through vibration and audio.

Information overload can be addressed by following these four guidelines:

• Categorize information and present it in hierarchies that allow users to drill down for

more information.

• Put more information closer to the top of the hierarchy.

• Design interfaces to guide users to focus on a specific part of a screen at a time.

• Provide a search function for quick content discovery.

 16

Disabled users require additional hints to navigate an interface and access relevant

content. Guidelines for blind users include the following:

• Provide audio and tactile modes for input and presenting information: e.g., audio-to-

text modes of input and screen readers for output.

• Provide audible confirmation for user actions

• Provide a function that reminds users of their current position and choices in

navigational hierarchies: e.g., “You are at the contact list page”, “Say search anytime

to search for contacts”.

Guidelines for colorblind users include the following:

• Don’t use color to convey information: e.g., avoid using red to signal dangerous

choices and green for safe choices.

• Use high contrast foreground and background colors

• Provide preferences to set text and background color

User interfaces for the hearing impaired should emphasize the visual display and substitute

tactile feedback for audio feedback.

Context related guidelines address the need to let users control programmed responses

to an application's environment, including location, ambient light, and noise. Users should have

options for turning services off and on like location reporting services or automatic brightness

controls. Users should receive feedback about changing an interface setting. Privacy should be

respected and care taken to avoid displaying undesirable information. Context-aware information

should only be displayed when a user needs it. A user should be able to prioritize notifications

and control the visibility of interfaces generated by context-aware services.

 17

Information presentation guidelines address techniques for presenting large volumes of

information on a small screen. They include adaptive interfaces, the use of multiple modalities to

present information, and visualization, which combines graphics with techniques like

summarization, scrolling, zooming, and using focus and context to highlight relevant data and

dim peripheral information.

One-dimensional data like text can be organized for efficient navigation using hierarchies

and menus, with important content positioned near the tops of menus. Menu items should be

properly labeled and breadcrumbs provided for navigational support. Horizontal scrolling should

be avoided and consistent layout and visual design throughout the application should be

encouraged. Error messages should be clear and meaningful. Proper selection of input fields

(date input field for dates, phone input field phone number) is also desirable.

Two-dimensional structures can be used to present hierarchical data. Zooming techniques

can be used to drill down for more detail. Similarly, techniques like focus and context technique

improve data presentation for 2-D information.

Three-dimensional data presentation has special use in virtual reality and gaming. Three-

D data presentation should allow a user to view an entire object and provide zoom.

Information presentation can be improved with adaptive interfaces and multimodal

displays. Adaptive interfaces adapt to a user’s use patterns. These interfaces should be

controllable, predictable and non-obstructive. Multimodal displays provide multiple input and/or

output methods for disseminating information. These displays' interfaces should allow users to

choose a mode based on the operating environment: e.g., noise level, privacy concerns.

Data entry method guidelines present best practices for data input. A soft keyboard

should be used when a user can attend to a mobile screen and when the screen is large enough to

 18

display one. Handwritten input can be used for devices that support it for users who can write

legible text. Voice is the input method of choice for blind users. Voice can also be a good option

when privacy is not a concern during data entry.

Adipat and Zhang suggest security, privacy, and their effect on user interface design as

subjects for future research. Other topics include exploring LED displays, pixel-based visual

notification, and interface design for ultra-mobile devices (e.g. smart watches), since guidelines

for mobile devices might not apply to these devices.

2.4 Case Study Method

In (2011), Iacono, Brown, and Holtham present guidelines for developing case studies in

the context of a study of electronic marketplaces (e-marketplaces) in the steel industry. A case

study is an empirical investigation of a contemporary phenomenon in its real-life context,

especially when the boundaries between phenomenon and context are unclear. The main idea of

case study research is to analyze evidence objectively, eliminate alternative interpretations and

produce a compelling case. The method is flexible, produces diverse research outcomes and

supports all types of philosophical paradigms. Case studies can be categorized as exploratory

(study of a poorly defined problem), descriptive (study of a phenomenon's characteristics) or

explanatory (detailed explanation of a topic including ‘why and how it happens’). A case study

can also be intrinsic, instrumental or collective, based on the number of cases studied.

The case study method is a qualitative method for developing and testing theory. It

focuses on the meaning of real-life phenomena and not on their frequency. Case studies

emphasize the characteristics of the entities under observation and the variables used to collect

data. It can be a challenge to identify the variables that influence the phenomenon being studied.

Equally challenging is to determine the range of data to collect, the selection and number of case

 19

sites and type of analysis to do. Hence it is important to follow a proper procedure for designing

case study research.

The case study process starts with definition of a research question. The variables to

study are identified using a literature review. Data is collected through fieldwork. The tentative

results obtained from the fieldwork are then compared with the data and theory proposed in the

literature. This comparison determines if the theory is consistent with the available data. This

comparison is crucial, as it can identify anomalies in the data and gaps in the theory. The study

should include critical, extreme, revelatory cases with transparently observable phenomena. The

use of multiple cases adds additional support for a theory's validity. Experimental analysis

alongside a case study also provides additional validity.

Case studies collect data through various sources and in various formats. Triangulation

techniques should be used to enhance the data's reliability and validity. Internal validity is

concerned with whether the variables chosen directly affect the outcome. External validity is

concerned with generalizing findings beyond the cases. Case studies need to be externally valid

for theoretical propositions, as case studies do not deal with statistically significant sample sizes.

Since the case study method is derived from natural science, issues arise when applying it

to Management and Information Systems. The controlled observation of real-world settings is

difficult, as is a replicable real world setting for case study validation. Findings are often difficult

to generalize as case studies involve statistically insignificant datasets and every case is unique.

Finally, controlled deductions are difficult to make. To address these problems, research

communities, by consensus, treat qualitative analyses as scientific when they follow established

methodologies for case studies. These methodologies, which are based on methods derived from

 20

natural science, roughly prescribe that observations and deductions be controlled and that

research be replicable and generalizable.

Ionoco et al. justified the use of a case study in their work as follows:

• E-marketplaces could not be studied outside of their natural setting; data needed to be

derived from the real companies that attempted to implement an e-marketplace.

• The study had to focus on events and decisions related to the time when the e-

marketplace was in use.

• The study had to be done in the real environment with real subjects.

• Finally, there were no historical studies on effect of e-marketplace on steel industry.

The authors' study started with the formulation of a research question. Several authors

suggested variables that might affect the viability of electronic marketplaces. Combining these

authors’ observations produced a conceptual framework, the Model. A hypothesis was proposed

along with a predicate to test the hypothesis. The Model was field-tested and the outcome used to

refine the Model. The study included seven cases, some descriptive, with multiple levels of

analysis. Data was collected using unobtrusive techniques (no interviews) to minimize

disruption. Emerging issues were analyzed and explored by telephone when necessary.

The authors argued their experimental design followed best practices for assuring their

study's validity, reliability and reliability. The research featured a clear research question, an a

priori specification of constructs, a clean theoretical slate, and a theory of interest, with

predictions from this theory and rival theories. It used multiple cases, with clearly defined

protocols for researching individual and multiple cases, including a multi-level strategy for

analyzing results. The authors used best practices related to data collection and analysis,

including maintaining logical chains of evidence, doing empirical testing and time series

 21

analysis, and developing comparisons with this literature and across their cases. Finally, their

research followed prescribed methods of designing case studies for Management and

Information System.

The authors conclude by observing that case studies can be used for rigorous qualitative

research that meets the criteria of validity, reliability and reliability.

 22

CHAPTER 3

METHODOLOGY

This research sought to develop an effective application for assessing physical security.

The work involved three major tasks: developing two applications for administering data

collection and collecting data, using these application to collect data, and gauging the

applications' effectiveness through user feedback.

3.1 Application Development

This work began with the development of two related applications. The one, a front end

web application with a back-end database, allows managers to plan and manage assessments,

assign assessors to assessments, and generate reports from assessments. The other, a mobile

application, allows assessors to gather data from IDFs and transmit it to the secured database.

3.1.1 PSATool

PSATool is a web-based application based on the Model View Controller (MVC)

architecture1. MVC is a software architecture pattern that divides an application into a model,

which stores data; a view, which displays data in the model; and a controller, which relates the

model and the view, manipulating and processing data for storage and display.

PSATool was implemented using the Python based Django2 MVC framework. Figure 1

shows a requirement management screen from PSATool.

1 https://en.wikipedia.org/wiki/Model–view–controller
2 https://www.djangoproject.com

 23

3.1.1.1 Model View Controller

PSATool's data model defines entities for users, assessment groups, requirements, and

collected data. Django's Object Relational Mapper (ORM) uses these definitions to generate

controller-level application program interfaces for persisting content in PSATool's database.

Data model definitions in PSATool consist of about 250 lines of code. Figure 2 shows a Django

data model used to store IDF related data. The data model is defined as a Python class, IDFData.

Figure 1: PSATool assessment requirement management screen

PSATool's views are defined using Django-compliant HTML markup files, using

JavaScript and Cascading Style Sheets (CSS) to control formatting. The views determine how

model data is formatted and displayed. They define web browser based interactions: for example,

the pop-ups that appear when a user hovers over an icon. Finally, they determine styling (color

and size of text, layout and arrangement of HTML content) via CSS.

 24

PSATool's controllers render views based on data models and forward them to a web

browser. Controllers also validate data, manage database transactions and format data: i.e.,

convert between data model and textual representations of content. Finally, controllers use

Django modules for authentication, authorization, HTML form generation and user messaging

and feedback.

Figure 2: Example of a Django data model

3.1.1.2 Database Design

PSATool uses the MariaDB database3, an open source version of MySQL4. Because

PSATool uses Django's ORM layer to access and manage this database, any Django-compatible

database could be used in place of MariaDB.

The PSATool database supports a workflow for managing and reporting data from

assessments. PSATool managers can create, define requirements for, and assign assessors to

assessment groups. Assessors use checklists, optionally supported by texts and pictures, to

3 https://mariadb.org
4 https://www.mysql.com

 25

collect data regarding the fulfillment of requirements. The PSATool database's tables (Table 1)

store this data, along with supporting data for interfacing with PSAToolApp.

Table 1: PSATool database tables

Table Name Content

Authentication and authorization related

users_user User information, including name, password, email,
along with access level (e.g., staff, superuser)

authtoken_token Temporary authentication token for PSAToolApp

Master list of requirement related

dashboard_mastercontrolclasslist Master list of PSATool's built-in control classes

dashboard_masterrequirementlist Master list of PSATool's built-in requirements list

dashboard_masterguidancedocument Source document for master requirements.

dashboard_traceabilitymatrix Maps master requirements to their guidance documents
including page number

dashboard_requirementoptions Yes, No, Not Applicable and Not Assessed

Assessment management related

dashboard_assessmentgroup Assessment group data, like name and description

dashboard_assessmentcontrolclass An assessment group's control class

dashboard_assessmentrequirement An assessment group's requirements

dashboard_assessments Data on active assessments

dashboard_assessments_assigned_to Assignment of an assessment to an assessor user

Assessment data collection related

dashboard_idfdata Data on IDF like names, THV assessment and control

dashboard_idfdataperformedby Users involved in assessing an IDF

dashboard_idfrequirement
An IDF's specific requirements. Textual comments and
file system locations of uploaded pictures are also
stored here.

dashboard_assessmentduration The duration required to assess each IDF requirements.

 26

Managing Image Uploads

PSATool follows recommended practice for image management, storing images outside

the database and limiting databases to image metadata (Wiles, 2012). This makes the database

easier to backup and improve access speed; database reads are slower than file-system reads.

3.1.1.3 Focus on Usability

The design of PSATool's user interface (UI) used guidelines from (Bhattacharya, 2011)

and (Nielsen, Ten good deeds in web design, 1999). Each page includes a logo that links to an

application's home page. Multiple navigation bars, including top and left bars (Bhattacharya,

2011) (Burrell & Sodan, 2006), have been used and their content determined by user access

level. A fixed palate of colors was used (Bhattacharya, 2011) (Schniderman, 2005) with blue

denoting positive action (creating an assessment, click to expand for more information) and grey

denoting side-effect-free actions (go back buttons). Icons and tooltips provide visual clues about

a UI element's actions. Breadcrumb trails provide navigation cues and indicate system status

(Bhattacharya, 2011) (Nielsen & Mack, Heuristic Evaluations, 994). Accordion style UI

elements allow users to expand and explore contents of possible interest.

 27

Figure 3: PSATool UI features

Figure 3 shows some of these features. From left to right, the figure shows PSATool's

cross-web-page side menu-bar and one of its accordion based lists, along with the interface's

consistent color in buttons and support for tooltips.

3.1.2 PSAToolApp

PSAToolApp (Figure 5) is a mobile/tablet-based application that allows an assessor to

collect data from IDFs and transmit it to PSATool's back-end application. PSAToolApp was

developed using AngularJS5, Ionic Framework6 and Cordova7. In theory, it can run on Android,

5 https://angularjs.org
6 http://ionicframework.com/
7 https://cordova.apache.org/

 28

iOS and Windows Phone. To date, PSAToolApp has only been tested in Android. It is available

in the Google Play store8.

Similar to PSATool, PSAToolApp is an MVC based application. Unlike PSATool,

PSAToolApp lacks a persistence layer for storing model data. Rather, it uses a representational

state transfer (REST) based API to communicate with the main PSATool application. This API

forms the basis for storing and retrieving data in PSAToolApp.

3.1.2.1 AngularJS, Ionic Framework and Cordova

Instead of developing PSAToolApp as a native application for Android, iOS and

Windows Phone separately, PSAToolApp was developed using web technologies. This approach

allows the same code base to be used to generate application binaries for different platforms,

including iOS, Android and Windows Phone. The application logic is written in AngularJS. The

user interface is written in the Ionic Framework. Cordova provides various runtime and libraries

for accessing mobile device features like a camera. Cordova also generates binaries suitable for

specific device platforms: i.e., Java packages for Android, Objective C binary for iOS and

Common Language Runtime for Windows phone.

8 https://play.google.com/store/apps/details?id=com.psatool.psatoolapp

 29

Figure 4: A screen from PSAToolApp

3.1.2.2 REST API Design and Specification

PSAToolApp communicates with PSATool using a REST9 API. REST APIs use HTTP

operations to invoke data storage and retrieval operations at a server. For example, HTTP GET

fetches server data; HTTP POST stores data; and HTTP OPTIONS retrieves all HTTP server-

supported actions. REST also makes it easy to use JavaScript Object Notation (JSON) as a data

transfer format. JSON is native to the JavaScript programming language, used in PSAToolApp.

PSAToolApp makes HTTP requests to a PSATool server using HTTP GET and POST. It

uses JavaScript Object Notation (JSON) for data exchange, in order to leverage AngularJS's

support for parsing JSON and generating content in a format similar to that used by PSATool's

data dictionary (see Appendix G for REST API documentation).

9 https://en.wikipedia.org/wiki/Representational_state_transfer

 30

3.1.2.3 Focus on Usability

PSAToolApp’s UI was designed for usability, based on guidelines from (Adipat &

Zhang, 2005) and other best practices for mobile application design. The Ionic Framework used

in PSAToolApp provides various UI templates that adhere to best practices.

In keeping with recommendations from Adipat and Zhang (2005), PSAToolApp allows

users to change PSATool's server URL and to customize how lists are sorted. This includes

support for sorting IDFs based on time of last update or percentage of requirements assessed.

Users receive feedback following connection failures, authentication failures, and other errors.

Small pie charts provide quick visual feedback for the percentage of requirements assessed for

each IDF. Modal dialogs prompt users for actions and screen transition effects provide for

gradual changes in screen information. PSAToolApp supports a soft keyboard and the uploading

of photos in support of assessment. (See Appendix F: "PSAToolApp manual" for PSAToolApp

user documentation)

Figure 5 shows some features of PSAToolApp's UI. From top to bottom, the figure shows

support for selecting PSATool server URL, the use of a dynamic pie chart icon to show number

of requirements assessed, and support for adding comment and uploading photo.

3.1.2.4 Calculating Assessments' Durations

PSAToolApp automatically records the time taken to assess requirements based on a

user’s interaction with the app. When a user enters a screen that collects requirement data,

PSAToolApp starts a timer. Saving requirement data stops the timer and sends the timing data to

the PSATool server along with other requirement related data. PSATool uses the timing data

thus collected to calculate the time cost of assessments.

 31

Figure 5: PSATool UI features

3.1.3 Traceability of Requirements

PSATool's interface presents information about the 52 requirements that are prepackaged

with PSATool. The ‘Dashboard’ section and the ‘Assessment Groups’ management page list

each requirement and document its origin, including the documents and page numbers from

which it was derived.

Figure 6 shows part of PSATool's traceability matrix. It shows that requirement “1.1”

under “Entry Control” was derived from multiple documents like section 9.1 of NIST SP 800-53

 32

and sections PE-2.1 and PE-3.1 of ISO/IEC 27002. This matrix helps to establish the validity and

usefulness of PSATool's default requirements.

Figure 6: Traceability matrix accordion UI

3.1.4 Accountability

PSATool records the identities of users who modify assessment groups (addition and

modification of requirements in a group) and participate in assessments using PSAToolApp.

3.1.5 Assessment Group and Assessment Management in PSATool

An assessment group is used for easier management and grouping of assessments. For

example, a different assessment group can be created for each of an organization's buildings.

Assessors can then be assigned to an active assessment for an assessment group. The assessors

 33

can gather requirements for their assigned buildings. (See Appendix D, "PSATool manual:

Managing assessments")

3.1.6 User Management in PSATool

PSATool supports two types of users, Managers and Assessors. Managers can create

assessments, modify requirements, assign assessors to assessments, and gather requirements.

Assessors can gather requirements for assessments that managers have assigned them to do. (See

Appendix C: "PSATool manual: User Management")

3.1.7 PSATool Assessment Reports

PSATool can generate two different types of assessment reports. Summary reports

present an overview of an assessment and rank IDFs based on passed and failed requirements.

IDF-specific reports provide details about requirements that an IDF passed or failed. (see

Appendix E: "PSATool manual: Generating reports")

3.2 Case Study and Data Collection

PSATool's effectiveness was assessed using case studies at a regional university (ETSU);

a regional college; and a manufacturing corporation. Different types of assessment institutions

were selected to have a variety in the collected data.

A multi-tenant setup of PSATool web application was hosted at ETSU. Unique domain

names were created for the three institutions with all domain names referencing the same server.

PSATool used different databases for different domain names, thereby isolating data from

different institutions.

 34

A manager level account was created for each institution. The manager user created

assessor users and assessment groups and assigned assessors to assessments. The assessors then

used PSAToolApp to collect requirement data from IDFs.

PSAToolApp provides an option to specify the web server to which PSAToolApp should

connect. Assessors were provided with the web server name for their institution.

Managers and assessors were provided with a feedback form (Appendix A, Appendix B)

and asked to evaluate the usefulness and effectiveness of PSATool and PSAToolApp. Their

feedback was used to assess the effectiveness of PSATool and generate ideas for future work.

 35

CHAPTER 4

RESULTS

PSATool was used at three institutions to collect requirement data from IDFs. A total of

25 IDFs were assessed during the case study. The assessors from these institutions each

completed a questionnaire regarding the effectiveness and usefulness of PSATool software.

Figure 7: Aggregate of all assessments

Figure 7 shows the overall health of all IDFs assessed for this study. The x-axis is the

‘number of requirements passed’ and the y-axis is ‘IDF Count’, or the count of IDFs that passed

‘the number of requirements’. The ‘aggregate of passed IDFs’ curve is a plot of the data

collected during the assessment. PSATool's reporting tool generates a similar graph on the fly

while an overview report is requested.

 36

In Figure 8, the ‘Curve for IDFs with bad health’ represents data from a fictional

institution with bad IDF health. This curve is skewed towards the left, which denotes that most

IDFs have failed most requirements. The ‘Curve for IDFs with good health’ represents data from

a fictional institution with good ID health. This curve is skewed towards the right, which denotes

that most IDFs have passed most requirements.

Table 2: Overview of data collected at a regional university

Regional university

Number of IDFs assessed 6

Maximum number of requirements passed by an IDF 23

Least number of requirements passed by an IDF 11

Maximum number of requirements failed by an IDF 32

Least number of requirements failed by an IDF 21

Average time required for all assessments 17.68 minutes

Table 2 summarizes data from the six IDF assessments at ETSU. The best performing

IDF passed 23 and failed 11 requirements while the poorest IDF passed 11 and failed 21

requirements. Average time per assessment was 17.68 minutes. The ‘Passed top rank’ (Figure 8)

shows the top 5 best performing IDFs while the ‘Failed top rank’ (Figure 9) shows the top 5

worst performing IDFs.

ETSU’s assessor noted that PSAToolApp was easy to use and follow through the

requirements. The assessor mentioned that simplifying the wording on the requirements would

improve the understandability. ETSU’s network manager noted that the reports were useful

enough to support IDF upgrade proposals for higher management. The manager also suggested

some UI changes related to providing serial numbers in reports.

 37

Figure 8: Regional university top 5 ranking

Figure 9: Regional university bottom 5 ranking

 38

Table 3 summarizes data from the ten IDF assessments at the regional college. The best

performing IDF passed 19 and failed 33 requirements while the poorest IDF passed 6 and failed

46 requirements. Average time per assessment was 4.01 minutes. The use of small, wire-rack

enclosure IDFs at this college significantly reduced the assessment time. The ‘Passed top rank’

(Figure 10) shows the top 5 best performing IDFs while the ‘Failed top rank’ (Figure 11) shows

the top 5 worst performing IDFs.

Table 3: Overview of data collected at a college

A college

Number of IDFs assessed 10

Maximum number of requirements passed by an IDF 19

Least number of requirements passed by an IDF 6

Maximum number of requirements failed by an IDF 46

Least number of requirements failed by an IDF 33

Average time required for assessment 4.01 minutes

The college's assessor noted that PSAToolApp was easy to use and intuitive. The

assessor added that extra hints about requirements would help in understanding them. The

college's network manager noted that the traceability matrix was very useful in establishing the

requirements' credibility. The manager thought the tool was well designed for its purpose and

100% complete.

 39

Figure 10: College top 5 ranking

Figure 11: College bottom 5 ranking

Table 4 summarizes data from the nine IDFs at the manufacturing corporation. The best

performing IDF passed 18 and failed 32 requirements while the poorest IDF passed 11 and failed

 40

38 requirements. Average time per assessment was 8.56 minutes. The ‘Passed top rank’ (Figure

12) shows the top 5 best performing IDFs while the ‘Failed top rank’ (Figure 13) shows the top 5

worst performing IDFs.

Table 4: Overview of data collected at a manufacturing corporation

A manufacturing corporation

Number of IDFs assessed 9

Maximum number of requirements passed by an IDF 18

Least number of requirements passed by an IDF 11

Maximum number of requirements failed by an IDF 38

Least number of requirements failed by an IDF 32

Average time required for assessment 8.56 minutes

The manufacturing corporation’s assessor noted that PSAToolApp was easy to maneuver

around and efficient for quick assessments. The assessor suggested that the requirements could

be broken down more with further definition and explanation to improve understandability.

The manufacturing corporation's network manager noted that PSATool's functionality

was easy to remember and recognize after setting up a test assessment. The manager also noted

that the reports were easy to understand and navigate. The manager was satisfied with the

qualitative view of the IDFs presented by PSATool, noting that PSATool reports could be used

to prioritize improvements to IDFs.

 41

Figure 12: Manufacturing corporation top 5 ranking

Figure 13: Manufacturing corporation bottom 5 ranking

 42

CHAPTER 5

CONCLUSIONS

PSATool proved to be an effective tool for creating assessments, managing requirements

and generating reports for assessment of IDFs. This was demonstrated by the case studies at the

three institutions.

PSATool provided an easy and intuitive workflow or creating and managing assessments.

PSATool allowed managers to create assessor users and assign them assessments. PSATool-

generated reports provided relevant overviews of the health of assessed IDFs. The reports

provided details about failed and passed requirements for all IDFs including images taken during

the assessment. The quality of the IDFs as reflected by PSATool corresponded to the managers'

qualitative views of the IDFs. Managers noted that printed reports from PSATool could be

included in work orders or used to inform upper management about security issues and prioritize

improvements to IDFs.

PSAToolApp made it easy for assessors to record requirements-related data. Assessors

noted that the ability to supplement observations with photos from mobile devices could be

useful for later, detailed investigations of issues. The use of a mobile device allows data to be

sent to a server immediately, in one step, without any extra data entry.

5.1 Recommendations for Future Work

5.1.1 Workflow Related Recommendations

The following features should be considered for future versions of PSATool and

PSAToolApp:

 43

1. Support for custom control classes. PSATool groups requirements into control

classes. PSATool should provide an interface for modifying existing control classes

and adding new classes. This feature was suggested by an assessment manager.

2. Support for managing requirements' provenances., PSATool should provide an

interface for managing the associations between the 52 default requirements and their

sources or associating custom requirements with their own sources.

3. Support for cross-group reports. PSATool should support the generation of reports

for multiple assessments within a single assessment group and comparisons of

assessments done at different times.

4. Support for demo mode. PSATool should support a step-by-step demo mode for new

user. A UI pattern called ‘walkthrough’ can be used for this purpose and bootstrap-

tour10 can be used to implement such pattern in PSATool.

5. Support for standard conformance. PSATool should support reports that relate

assessment data to individual standards like ISO 27001 and NIST.

6. Categorization of requirements. Requirements should be further categorized into

requirements for IDF robustness and requirements for IDF data security.

5.1.2 System Design Related Recommendations

The following design changes should be considered for future versions of PSATool and

PSAToolApp:

10 https://github.com/sorich87/bootstrap-tour

 44

1. Improvements to the REST API. PSATool's REST API should be rewritten using a

standard guideline for REST interfaces. Possible sources for such a guideline could

be (Jansen, 2012) or (Hirsch, 2015).

2. Improvements to PSATool's accountability tracking. PSATool's support for logging

should be expanded to log and track all manager-level actions including creating

assessments and adding requirements.

3. Support for concurrent assessments. PSAToolApp should support the concurrent use

of multiple mobile devices to assess an IDF. PSATool and PSAToolApp could be

redesigned to use a WebSocket11 based multicast architecture for passing requirement

data between multiple mobile devices. Source code from (Bista, 2015) could be used

as a reference system to implement a WebSocket based multicast architecture.

(Agrawal, Starobinsku, & Trachtenberg, 2002) could be used for strategies for data

synchronization. This feature was suggested by assessors who experimented with

using 2 mobile devices to assess a single IDF.

4. Improvements to database efficiency. PSATool's data model could be efficiently

represented using tree like database tables as discussed in (Celko, 2007). The

modified pre-order tree traversal (MPTT) discussed by Celko has been implemented

as a Django library12. Future versions of PSATool could use this library for efficient

database design.

5.1.3 UI Related Recommendations

The following UI enhancements should be considered for future versions of PSATool:

11 https://en.wikipedia.org/wiki/WebSocket
12 https://github.com/Django-mptt/Django-mptt/

 45

1. Serial numbers should be added to requirements listed in individual IDF reports. This

would require adding serial numbers to the requirements on the database level.

2. Archiving and pagination should be implemented for all list based pages like list of

assessment groups and list of IDFs.

3. A virtual walkthrough or a visual representation of an ideal IDF should be included in

the reports.

The following enhancements should be considered for future versions of PSAToolApp:

1. Specific syndromes rather than generic error messages should be provided following

loss of Internet connectivity,

2. As per PSATool's assessors, the UI should provide

a. a button to add an IDF directly from the requirement list screen.

b. descriptive texts and examples should be added for all requirements.

5.2 Summary

PSATool and PSAToolApp successfully automated and extended the proposed strategy

for IDF assessment as described in (Timbs, 2013). PSATool and PSAToolApp provide a

software-based workflow for creating, managing, assessing and reporting assessments of IDFs.

The application supports the 52 requirements as proposed in (Timbs, 2013). Processes like report

and graph generation were automated. The application's effectiveness and usefulness were

demonstrated with case studies at ETSU, a regional college and a manufacturing company.

Average assessment time for IDFs was reduced significantly and users expressed their

satisfaction with the tool's usability and data.

 46

WORKS CITED

Adipat, B., & Zhang, D. (2005). Interface Design for Mobile Applications. AMCIS 2005

Proceedings , 494.

Agrawal, S., Starobinsku, D., & Trachtenberg, A. (2002). On the Scalability of Data

Synchronization Protocols for PDAs and Mobile Devices . Network, IEEE , 22-28.

Bhattacharya, P. (2011, 8). A Case Study of the Effects of a Web Interface Redesign Based on

Usability Guidelines. Retrieved 11 09, 2014, from ETSU Digital Commons:

http://dc.etsu.edu/etd/1320/

Bista, S. (2015, April 1). paintcollaborate. Retrieved September 27, 2015, from GitHub:

https://github.com/sul4bh/paintcollaborate

Celko, J. (2007). Trees in SQL. Retrieved July 23, 2015, from ibase.ru:

http://www.ibase.ru/devinfo/DBMSTrees/sqltrees.html

Hirsch, B. (2015, Februrary 1). White House Web API Standards. Retrieved September 27, 2015,

from GitHub: https://github.com/WhiteHouse/api-standards

Iacono, J. C., Brown, A., & Holtham, C. W. (2011). The use of the Case Study Method in

Theory Testing: The Example of Steel eMarketplaces. The Electronic Journal of Business

Research Methods , 57-65.

Ivory, M. Y. (2005). Evolution of web site design patterns. ACM Trans.Inf.Syst. , 463-497.

Jansen, G. (2012, November 15). Lessons learnt from designing the Red Hat Enterprise

Virtualization API. Retrieved September 27, 2015, from Thoughts on RESTful API

Design: http://restful-api-design.readthedocs.org/en/latest/intro.html

Kwo-Shing Hong, Y.-P. C.-H. (2003). An integrated system theory of information security

management . Information Management & Computer Security , 243-248.

 47

Nielsen, J. (1999, 10 3). Ten good deeds in web design. Retrieved 11 09, 2014, from

http://www.useit.com/alertbox/991003.html

NIST. (2011, September). NIST Special Publication 800-30 Revision 1. Retrieved January 20,

2014, from National Institute of Standards and Technology Information Technology

Laboratory: http://csrc.nist.gov/publications/nistpubs/800-30-rev1/sp800_30_r1.pdf

NIST. (2004, February). Federal Information Processing Standards Publication. Retrieved

January 20, 2014, from National Institute of Standards and Technology Information

Technology Laboratory: http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-

final.pdf

NIST. (2012, May 27). NIST Special Publication 800-53 Revision 3. Retrieved January 20, 2014,

from National Institute of Standards and Technology Information Technology

Laboratory: http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-

final_updated-errata_05-01-2010.pdf

NSIT. (2010, June). NIST Special Publication 800-53A Revision 1. Retrieved January 20, 2014,

from National Institute of Standards and Technology Information Technology

Laboratory: http://csrc.nist.gov/publications/nistpubs/800-53A-rev1/sp800-53A-rev1-

final.pdf

Schniderman, B. &. (2005). Designing the user interface: Strategies for effective human

computer interaction (Fourth Ed.). Boston: Pearson Addision Wesley.

Timbs, N. H. (2013, 12). Physical Security Assessment of a Regional University Computer

Network. Retrieved 11 09, 2014, from ETSU Digital Commons:

http://dc.etsu.edu/etd/2280

Wiles, F. (2012, 5 1). Three things you should never put in your database. Retrieved 7 20, 2015,

from REVSYS: http://www.revsys.com/blog/2012/may/01/three-things-you-should-

never-put-your-database/

 48

APPENDICES

APPENDIX A: QUESTIONNAIRE FOR MANAGER

Name (First, Last)

Name of organization

Position(eg: Supervisor, Sysadmin)

Work Phone

Email

Date

PSATool Quality: Please…

characterize PSATool’s usability
__

__

characterize PSATool’s understandability
__

__

rate, on a scale of 1 (poor) to 7 (excellent), PSATool's
understandability: _____________usability: ____________

state how the tool could be improved
__

__

PSATool Assessment Quality

How many personnel hours did the assessment take?

What costs did the assessment incur?

 49

Please characterize …..

the tool’s completeness
__

__

the format and content of the tool's output
__

__

the assessment's usefulness
__

__

how, if at all, this assessment has affected your view of IDF Security
__

__

how, if at all, this assessment might affect your organization’s practice
__

__

how the assessment procedure could be improved
__

__

Please rate the following aspects of the assessment provided by PSATool on a scale of 1 (poor)
to 7 (excellent)

Usefulness: ______ Completeness: ______

Please rate the following aspects of the assessment provided by PSATool on a scale of 1 (poor)
to 7 (excellent)

Effect on your view of IDF security: _____
Likely effect on organizational practice: _____
Likelihood that a future assessment will include PSATool: ____

 50

APPENDIX B: QUESTIONNAIRE FOR ASSESSOR

Name (First, Last)

Name of organization

Work Phone

Email

Date

PSAToolApp Quality: Please…

characterize PSAToolApp’s usability
__

__

characterize PSAToolApp’s understandability
__

__

rate, on a scale of 1 (poor) to 7 (excellent), PSAToolApp's
understandability: _________ usability: ____________

list any issues or annoyances you encountered while performing assessments
__

__

__

__

state how the tool could be improved
__

__

__

 51

APPENDIX C: PSATOOL MANUAL: USER MANAGEMENT

PSATool supports two types of users, Managers and Assessors. Managers can create

assessments, modify requirements, assign assessors to assessments, and gather requirements.

Assessors can gather requirements for assessments that managers have assigned them to do.

Commands for managing users are accessible via http://<psatool domain>/admin. This

URL is guarded by a login screen that accepts manager credentials only.

Click on Users
to list the
system's users
(Fig. 14).

Figure 14: Link to user management

Click on a user
to view/change
the user's
attributes (Fig.
15).

Figure 15: List of users

 52

Check ‘Staff
status’ or
'Superuser
status’ to assign
manager role to
a user. Users
without Staff
status or
Superuser status
are assessor
users. (Fig. 16)

Figure 16: Assigning manager/assessor role to a user

Add a new user
by clicking on
Add User in
users list (Fig.
17).

Figure 17: Adding a new user

 53

While adding a
new user, click
on ‘Save and
continue’ to add
additional
details about a
user (Fig. 18).

.

Figure 18: Additional information for a user

 54

APPENDIX D: PSATOOL MANUAL: MANAGING ASSESSMENTS

An assessment group is used for easier management and grouping of assessments. For

example, a different assessment group can be created for each of an organization's buildings.

Assessors can then be assigned to an active assessment for an assessment group. The assessors

can gather requirements for their assigned buildings.

Only managers can
configure assessment
groups. This is done
via the Assessment
Groups link in the
side navigation (Fig.
19).

Figure 19: Listing assessment groups and creating a new group

New assessment
groups can be created
by clicking ‘Add
Assessment Group’
(Fig. 20). Provide a
name and description
for what this group
denotes (e.g. building
name and motivation
for assessment)

Figure 20: Creating an assessment group

 55

After creating a
group, assessment
requirements should
be associated with
that group (Fig. 21).
Click the ‘Manage
Requirements’ icon to
initialize and
(possibly) modify a
group's requirements.
PSATool
automatically adds 52
requirements when
initializing a group's
requirements. Click
on ‘Initialize
Requirements’ to load
these 52 requirements
(Figure 22).

Figure 21: Managing requirements

Figure 22: Initializing assessments and add custom requirement

PSATool also allows
the addition of
custom requirements.
Click on ‘Add
Requirement’ (Fig.
23) to create a custom
requirement.

Figure 23: Adding a custom requirement

 56

For the 52
requirements that
PSATool initializes,
icons provide access
to information that
includes the date of
last update (Fig. 24)
and the requirement's
author (Fig. 25) and
provenance (name of
authority for a
requirement)
(Fig. 26) .

Figure 24: Updating a requirement's date/time

Figure 25: PSATool user who created a requirement

Figure 26: Source of a requirement

 57

APPENDIX E: PSATOOL MANUAL: GENERATING REPORTS

Reporting is an important component of PSATool. After gathering data from IDFs, a

manager can generate a summary report or an IDF-specific report. A summary report presents an

overview of an assessment and ranks an IDF based on passed and failed requirements. An IDF

specific report provides details about requirements that an IDF passed or failed.

Reporting can be
accessed by
clicking ‘Reports’
from the side
menu. Selecting
an assessment and
clicking ‘View
Report’ will
display a
summary report.
(Fig. 27)

Figure 27: Reports page

 58

A report can be
printed using
“print this report”
(1) button.
The bar charts on
a report display
the rank of IDFs.
Rank according
to passed
requirement
(2) displays the
top 5 ranked
IDFs.
(3) displays the
bottom 5 ranked
IDFs. This graph
is only displayed
for assessment
with more than 5
IDFs.
Rank according
to failed
requirement
(4) displays the
top 5 ranked
IDFs.
(5) displays the
bottom 5 ranked
IDFs. This graph
is only displayed
for assessment
with more than 5
IDFs. (Fig. 28)

Figure 28: Bar charts displaying IDF rank

 59

The summary
report lists IDFs
assessed, time
required to assess
them and all
requirements
along with the
IDFs that passed
each
requirement.(Fig.
29)

Figure 29: List of IDFs and requirements

An IDF specific
report can be
accessed by
clicking on an
IDF name from
the IDF list (see
highlight in Fig.
3). The IDF
specific report
displays details
about all passed,
failed, not-
applicable and
unassessed
requirements.
This report can be
printed using
‘print this report’
button. (Fig. 30)

Figure 30: IDF specific report

 60

APPENDIX F: PSATOOLAPP MANUAL

PSAToolApp is used by assessors for gathering requirement data from IDFs.

PSAToolApp can be installed on a mobile or tablet device. PSAToolApp requires a constant

Internet connection because it communicates with the PSATool web server for retrieving and

storing data.

PSATool is available from the Google Play Store

(https://play.google.com/store/apps/details?id=com.psatool.psatoolapp).

Assessors can log in using
the PSAToolApp login
screen (Figure 31). The
login screen allows an
assessor to enter an API
end point. The assessor gets
the API endpoint address
from a PSATool manager.
Once entered, API end
point is saved and will be
used for future logins.

Figure 31: Login screen with API URL selection

 61

After assessors are logged
in, they can access a list of
assessments assigned to
them. (Fig. 32). The
assessment list contains a
list of IDFs and the
percentage of requirements
assessed in the form of pie
chart.

New IDFs can be added by
clicking on ‘Add IDF’.
Existing IDFs can be edited
by clicking on the pie chart
icon.

Figure 32: Assessment and IDF list

 62

The order of IDFs can be
changed using the Settings
tab (Fig. 33)

Figure 33: Changing the order of the IDF list

 63

Adding or editing IDF data
starts with selecting users
involved in the gathering of
requirements data (Fig. 34).

Figure 34: Selecting users involved in data gathering

 64

A list of requirements is
presented next (Fig. 35). A
[…] button can be clicked
to add data about specific
requirement. THV data can
be added clicking ‘THV
Data’ button.

Figure 35: List of requirements

 65

The screen to gather
requirement data (Fig. 36)
allows an assessor to select
if the IDF being assessed
meets a requirement, take a
picture and add a comment.
Clicking on “Save”

Figure 36: Requirement gathering screen

 66

An assessor can log out
from the app by using the
Logout tab (Fig. 37).

Figure 37: Logout screen

Various icons on the
requirement list screen
reflect a requirement's state
(true, false, not applicable,
not assessed) (Fig. 38)

Figure 38: Icons for requirement state

 67

APPENDIX G: REST API SPECIFICATION

The following table documents PSATool's API for communicating with PSAToolApp. API

functions return HTTP response code 200 on success, code 404 for requests that fail to generate

data (non existent unique key) and 500 for requests that are incomplete or can't be fulfilled.

API name Login
Description Authorization of a user based on a username and a password
HTTP URL <PSATool server url>/api/login/<username>/<password>
HTTP Method GET

HTTP Response
in JSON format

{
 "username": <username>,
 "token": "<authorization token>",
 "is_staff": <boolean>
}

Description of
response

This function, on success, returns an authorization token. This token is
associated to a user. Subsequent API requests use this token as an
authentication criteria.

All other requests include an HTTP Authorization header with the value “Token <authorization
token> from the above request. For example, if Login API returned the token zxybdkfj1234, the
HTTP Authorization header contains the value Token	zxybdkfj1234
API name My Assessments
Description Fetches a list of assessments for the logged in user

HTTP URL
<PSATool server url>/api/assessments/sort/<sort criteria>/order/<sort order>
sort criteria: updated_on, complete
sort order: desc, asc

HTTP Method GET

HTTP Response
in JSON format

[
 {
 "id": <assessment unique id>,
 "assessment_group": {
 "id": <assessment group unique id>,
 "created_on": <datetime>,
 "updated_on": <datetime>,
 "name": <name of assessment>,
 "description": <description of assessment>
 },
 "assigned_to": [
 {
 "id": <user unique id>,
 "username": <username>,
 "name": <user real name>
 }
],
 "idfdata_set": [
 {
 "id": <idf unique id>,
 "idf_name": <name of IDF>,
 "updated_on": <datetime>,
 "percentage_complete": <percentage of IDFs assessed>
 },

 68

 {
 "id": <idf unique id>,
 "idf_name": <name of IDF>,
 "updated_on": <datetime>,
 "percentage_complete": <percentage of IDFs assessed>
 }
]
 }
]

Description of
response

The response lists all assessments assigned to a user, all users assigned to an
assessment, and all IDFs under each assessment

API name IDF Base Data

Description Fetches a name for an IDF and a list of users who performed assessment on
it

HTTP URL <PSATool server url>/api/idf_base_data/<idf id>
HTTP Method GET

HTTP Response
in JSON format

{
 "idf_name": <name of idf>,
 "users": [
 {
 "id": <unique user id>,
 "username": <username>,
 "name": <user real name>
 },
 {
 "id": <unique user id>,
 "username": <username>,
 "name": <user real name>
 }
]
}

API name Save IDF Data
Description Create/update IDF name and list of users performing an assessment
HTTP URL <PSATool server url>/api/idfdata/<assessment id>/<idf id>
HTTP Method POST

POST Data

{
 "idf_name":<name of IDF>,
 "performed_by":
 [
 <user id>,
 <user id>
]
}

HTTP Response
in JSON format

{
 "message": "IDF Data set.",
 "idfdata_id": <idf id>
}

API name Requirements

Description Fetches a list of requirements, their attributes and THV data for a specific
IDF

HTTP URL <PSATool server url>/api/requirements/<idf id>
HTTP Method GET

 69

HTTP Response
in JSON format

{
 "thv_assessment": <THV assessment text>,
 "thv_control": <THV control text>,
 "requirements": [
 {
 "class_name":<requirement class name>,
 "requirements": [
 {
 "id": <unique requirement id>,
 "text": <requirement text>,
 "option": <option value selected>,
 "comment": <comment text>,
 "media": <url to any associated media>,
 "duration": <time in milliseconds>
 }
]
 }
]
}

API name Save Requirement Data
Description Update data for a specific requirement.
HTTP URL <PSATool server url>/api/requirementdata
HTTP Method POST

POST Data

{
"comment": <comment for a requirement>,
"id": <unique id of a requirement>,
"media": <base64 encoded image data>,
"option": <selected option for a requirement>,
"text": <requirement text>,
"duration": <time in milliseconds>
}

HTTP Response
in JSON format

{
 "message": "Requirement data saved",
 "requirement_data_id": <unique id of the updated requirement>
}

API name Requirement Options
Description Fetches a list of available options and its related text
HTTP URL <PSATool server url>/api/requirement-options
HTTP Method GET

HTTP Response
in JSON format

[
 {
 "id": <unique id>,
 "name": "True"
 },
 {
 "id": <unique id>,
 "name": "False"
 },
 {
 "id": <unique id>,
 "name": "N/A"
 },
 {
 "id": <unique id>,
 "name": ""
 }
]

 70

VITA

SULABH BISTA

Personal Data: Date of Birth: July 10, 1989

 Place of Birth: Dhangadhi, Nepal

 Marital Status: Unmarried

Education: BE in Computer Engineering, 2011

 Kathmandu University, Dhulikhel, Nepal

 MS Computer and Information Sciences, 2015

 Johnson City, Tennessee

Professional Experience: Software Developer, ETC; Johnson City, TN, 2014-2015

 Software Engineer (Remote), Scorewize; Los Angeles, CA

 2011-2013

 Freelance Software Developer; 2011-2013

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	12-2015

	Assessing the Physical Security of IDFs with PSATool: a Case Study
	Sulabh Bista
	Recommended Citation

	Microsoft Word - FinalManuscript.docx

