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ABSTRACT

Predicting Intraday Financial Market Dynamics using Takens’ Vectors:

Incorporating Causality Testing and Machine Learning Techniques

by

Abubakar-Sadiq Bouda Abdulai

Traditional approaches to predicting financial market dynamics tend to be linear

and stationary, whereas financial time series data is increasingly nonlinear and non-

stationary. Lately, advances in dynamical systems theory have enabled the extraction

of complex dynamics from time series data. These developments include theory of

time delay embedding and phase space reconstruction of dynamical systems from

a scalar time series. In this thesis, a time delay embedding approach for predict-

ing intraday stock or stock index movement is developed. The approach combines

methods of nonlinear time series analysis with those of causality testing, theory of

dynamical systems and machine learning (artificial neural networks). The approach

is then applied to the Standard and Poors Index, and the results from our method

are compared to traditional methods applied to the same data set.
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1 GRANGER CAUSALITY

1.1 Introduction

“When the Lord created the world and people to live in it – an enterprise which,

according to modern science, took a very long time – I could well imagine that He

reasoned with Himself as follows : ‘If I make everything predictable, these human be-

ings, whom I have endowed with pretty good brains, will undoubtedly learn to predict

everything, and they will thereupon have no motive to do anything at all, because

they will recognize that the future is totally determined and cannot be influenced by

any human action . On the other hand, if I make everything unpredictable, they will

gradually discover that there is no rational basis for any decision whatsoever and, as

in the first case, they will thereupon have no motive to do anything at all. Neither

scheme would make sense. I must therefore create a mixture of the two. Let some

things be predictable and let others be unpredictable. They will then, amongst many

other things, have the very important task of finding out which is which.’ ”

From the book “Small is Beautiful: Economics as if people mattered”

by E. F. Schumacher

10



According to the efficient market hypothesis (EMH), there is no possibility of

predicting future prices by analyzing past price information (Weak EMH). It further

asserts that, not even by relying on new publicly available information would that

provide that prediction advantage (semi-strong EMH), and that combined public

and private information would not either (strong EMH) [8]. The reason for this

is that EMH presumes that existing share prices incorporate and reflect all relevant

information. However, rich evidence in the academic literature [55], and the corporate

world casts doubt upon the unpredictability of the financial market. The evidence

indicates that there may be complex and largely unexplored dynamics through which

information is aggregated in markets which affects price processes [8, 9]. This suggests

that extracting and aggregating that relevant information has the tendency to enhance

predictions. One approach to achieving this, is to examine the causal relationships

between factors and targets through causality testing.

To examine whether information in a lagged time series could enhance the predic-

tion of another time series, Granger [2] came up with a test to assess if such lagged

time series significantly explains another time series in a vector autoregressive re-

gression model. Granger causality or what could be called statistical causality as

developed by C. Granger is a statistical concept used to assess the influence of one

variable on another so they can be incorporated into model building.

Causality as a property first appeared in a paper by Wiener [29] in which he

stated that “For two simultaneously measured signals, if we can predict the first

signal better by using the past information from the second one than by using the

information without it, then we call the second signal causal to the first one.”
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The basic idea is that in order for a variable X to cause Y , the prediction of future

values based on just the past values of Y has to be improved when information about

the past of X is also included. In particular, if the variance of the prediction error

of Y is reduced by including past measurements of X, then the second variable, X is

said to, have a causal influence on the first variable Y in a statistical sense [7, 6].

In general, we say that a first signal causes a second signal if the second signal can

be better predicted when the first signal is considered. It is then Granger causality if

the notion of time is introduced and the first signal precedes the second one [3, 10].

The context in which Granger defined causality was that of linear autoregressive

models of stochastic processes [5]. Evidence of complex dynamics in financial mar-

kets, however, makes the use of this traditional method yield poor results in financial

applications. In the case of financial data, the lack of stationarity, nonlinear depen-

dence between time series, most likely, the presence of noise, makes it inappropriate to

apply an autoregressive model to the time series without first transforming it. Major

relaxations in the assumptions underlying the application of an autoregressive model

is noted to produce spurious results.

The goal of this thesis is to assess Granger causality in nonlinear financial time

series and make predictions thereof. What follows next is a description of case studies

illustrating the use of the traditional method in a variety of applications. We also

provide definitions and background information on the subject of Granger causality.

In chapter two, we describe what constitutes linear and nonlinear systems. We give

reasons why linear models are sometimes not suitable for analyzing financial data. We

conclude the chapter by introducing Takens theorem. In chapter three, we provide
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details of the methodology to be applied. Chapter four is where we apply the method

to the Standard and Poor’s Index. In five, we give our remarks and conclusion.

1.2 Autoregressive Models

Autoregressive models are based on the idea that the current value of the series,

xt, can be explained as a function of p past values,

xt−1, xt−2, ..., xt−p,

where p determines the number of steps into the past needed to forecast the current

value.

Definition 1.1 An autoregressive model of order p, abbreviated AR(p) is of the form

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + ωt, (1)

where xt is stationary, and φ1, φ2, ..., φp are constants (φp 6= 0) and ωt is a sequence

of independent (or uncorrelated) random variables with mean 0 and variance σ2.

The AR model is one of a group of linear prediction formulas that attempt to

predict an output of a system based on the previous outputs [6, 11]. In an AR model,

the variance of the prediction error is used to test for improvement in model prediction

[7].

1.3 White Noise Residuals

A major building block for time series models is the white noise process, which

we denote ωt. A stationary time series ωt is said to be white noise if Corr(ωt, ωs) =

13



0 for all t 6= s. In the least general case,

ωt ∼ i.i.d N(0, σ2) (2)

A major assumption about ωt is that

E(ωt) = E(ωt|ωt−1, ωt−2, ...) = 0. (3)

This property indicates the absence of any serial correlation or predictability.

1.4 Granger Causality Method

The primary method for inferring causality between two time series as developed

by Granger uses the given time series to determine whether one predicts, or causes,

the other.

If we consider the processes x(t) and y(t), then we observe first that each process

admits an autoregressive representation:

xt = α1 +

p∑
j=1

φ1xt−j + ωt, V ar(ωt) = Σ1 (4)

yt = β1 +

p∑
j=1

λ1yt−j + ηt, V ar(ηt) = Γ1 (5)

Jointly, they are represented as

xt = µ1 +

p∑
j=1

φ1xt−j +

p∑
j=1

λ1yt−j + ω′t (6)

yt = µ2 +

p∑
j=1

λ1yt−j +

p∑
j=1

φ1xt−j + η′t (7)

14



where the noise terms are uncorrelated over time with covariance matrix

Σ =

[
Σ2 Υ2

Υ2 Γ2

]
(8)

The entries are defined as Σ2 = var(ω′t), Γ2 = var(η′t), Υ2 = cov(ω′t, η
′
t).

1.5 The F -Test

Consider (4) and (6) from Section 1.4. The value of Σ1 measures the accuracy of

the autoregressive prediction of xt based on its lagged values, whereas the value of Σ2

represents the accuracy of predicting the present value of xt based on lagged values

of both xt and yt. According to Wiener [29] and Granger [2], if Σ2 is less than Σ1 in

some suitable statistical sense, then yt is said to have a causal influence on xt.

Inferring from (6) and (7) this test is generally carried out by testing the following

null hypotheses separately:

H01 : β1 = β2 = ... = βp = 0

H02 : λ1 = λ2 = ... = λp = 0

From testing these hypotheses, we have four possible results:

1. If both Hypotheses H01 and H02 are accepted, there is no causal relationship

between xt and yt.

2. Hypothesis H01 is accepted but Hypothesis H02 is rejected, then there exists a

linear causality running unidirectionally from xt to yt.

3. If Hypothesis H01 is rejected but Hypothesis H02 is accepted, then there exists

a linear causality running unidirectionally from yt and xt.
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4. If both Hypotheses H01 and H02 are rejected, then there exist feedback linear

causal relationships between xt and yt).

There are a number of statistics that could be used to test the above hypotheses,

with the most common being the standard reduced-versus-full-model F -test.

To test the hypothesis H01 : β1 = ... = βp = 0 in (6), the sum of squares of the

residuals from both the full regression, SSRF , and the restricted regression, SSRR,

are computed in 6, as well as the F statistic given by

F =
(SSRR − SSRF )/p

SSRF/(n− 2p− 1)
(9)

where p is the optimal number of lag terms of yt in the regression equation on xt and

n is the number of observations. For a given significance level α, we reject the null

hypothesis H10 if F exceeds the critical value Fα(p,n−2p−1) [13].

1.6 Case Studies

Traditional Granger causality has been applied in a variety of settings. Its appli-

cation using VAR models has yielded quite satisfying results. For instance, Walter

and Mark [47] used the method to investigate the causal relationship between chicken

and eggs. The examined annual time series of US egg production and chicken popu-

lation from 1930 to 1983. The study included chickens that are capable of “causing

eggs” i.e chickens that lay or fertilize eggs. The eggs also included those that can be

fertilized. They concluded that eggs Granger-cause chicken.

Daniel and Hunter [31], also explored the association between trade and innova-

tion. There has been little explicit study of the direction of causality between these
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two variables. Their study used all patents granted in the U.S. between 1987 and

1999, assigned them to probable industries of origin and sectors of use, then tested

Granger-causality with trade flows in those same economic sectors. They concluded

that causality at the industry level between these variables is more complicated. They

found the relationship running in both directions from imports (or exports) to and

from innovation.

Not only that, Pasquale Foresti [33], also focused his study on the relationship

between stock prices and economic growth. He sought to assess whether there is any

potential predictability power of one indicator for the other. He used quarterly time

series data on the S&P 500 and GDP that run up to year 2005. The conclusion drawn

is that stock market prices can be used to predict growth, but the reverse is not true.

Using data on inflation that spans the time period from the first quarter of 1960 to

the third quarter of 1999, Hess and Schweitzer [42] investigated the causal relationship

between wage inflation and price inflation. They found little support for the view that

higher wages cause higher prices. Rather, the authors found more evidence that higher

prices lead to wage growth.

Erdila and Yetkinerb [32] also investigate the Granger-causality relationship be-

tween real per capita GDP and real per capita health care expenditure. They do so

by employing large macro panel data set with a VAR representation. Their results in-

dicate that the dominant type of Granger-causality is bidirectional. In instances that

they found one-way causality, the pattern is not homogenous: The analyses show that

one-way causality generally runs from income to health in low- and middle-income

countries whereas the reverse holds for high-income countries.
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2 GRANGER CAUSALITY AND TAKENS THEOREM

2.1 Why (Linear) Granger Causality Fails

As earlier noted, Granger’s original formulation of causality was developed to as-

sess causality in a linear framework, and it is very robust and efficient at doing so.

Granger’s approach is most likely the best method for assessing Granger causality for

data with linear dependence. The measure also works well in nonlinear cases in which

the data has a strong linear component. The method has been particularly successful

in fields such as neuroscience, climatology and physiology [5, 40]. Linear approxi-

mations have been found to work well in many of the applications in neuroscience,

especially those involving large scale interactions [4, 5].

The method has been particularly successful in the above mentioned fields because

the data from these fields are often characterized by linear dependence and gaussianity

[3],

Scheinkman and LeBaron [56] and others [57, 58] find evidence of nonlinear de-

pendence in stock market returns [13]. There are also a number of evidences about

nonlinear causal relationships between variables in finance and economics. For exam-

ple, Hsieh [59] notices that the nonlinear nature of stock price movements is motivated

by asset behaviour that follows nonlinear models [13]. Hiemstra and Jones [60] also

found evidence of some nonlinear interaction between trading volume and stock re-

turns.

Thus financial data have different characteristics than data most commonly ana-

lyzed in fields such as the physical sciences. The key assumptions of linear dependence

18



or Gaussian distributions, which are often found reasonable to make in other scientific

disciplines, are commonly thought to be inappropriate if directly applied to financial

time series.

Researchers further point out that stationarity usually does not apply to this

kind of data. So, as financial data does not always exhibit stationarity, linearity or

Gaussianity, care should be taken in the choice of models used to analyze such data.

2.2 Linear versus Nonlinear Systems

The difference between linear and nonlinear systems, is that, the sum of any two

different solutions of a linear system is also a solution to the given linear system;

this is referred to as the superposition principle. In contrast to that, solutions to a

nonlinear system cannot be added to form another solution. There is therefore no

general analytic approach for solving typical nonlinear equations.

2.3 Linear versus Nonlinear Time Series

A time series is a collection of quantitative observations that are evenly spaced in

time and measured successively [13]. Examples of time series include measure of a

persons heart rate at regular time intervals, periodic recording of body temperature,

weekly closing price of a stock, annual rainfall data, and annual death figures.

Definition 2.1 A given time series is said to be linear if it can be expressed as

xt = µ+
∞∑

j=−∞

φjωt−j (10)

where µ is is the mean of xt and {ωt} are iid random variables with finite variance.
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Linear time series models are designed to model the covariance structure in a given

time series. There are two major groups of linear time series models - the autoregres-

sive (defined in section 1.2) and the moving average models (MA).

A times series {yt} is said to have an MA(q) representation if it satisfies

yt =

q∑
j=0

φjωt−j (11)

Any stochastic process that does not satisfy (3) is said to be nonlinear. Mathemat-

ically, a purely stochastic time series model for xt is a function of an iid sequence

consisting of the current and past shocks - that is,

xt = f(ωt, ωt−1, ...). (12)

The linear model in 3 says that f(·) is a linear function of its arguments. Any

nonlinearity in f(·) results in a nonlinear model [61]. The general nonlinear model in

(12) is usually not directly applicable because it contains so many parameters.

2.4 Stationary and Non-Stationary Time Series

A stationary process is one whose statistical properties do not change over time

[75]. In its most strict sense, a stationary process is one where given t1, ...tn the joint

distribution of xt1 , ..., xtn is the same as the joint distribution of xt1+τ , ..., xtn+τ for

all n and τ . This means that all moments of the process remain the same across time.

That, the joint distribution of (xt, xs) is the same as for (xt+r, xs+r) and hence does

depend only on the distance between s and t. But this definition is usually relaxed

since it does not fit any model of nature. Therefore, there is what is referred to as

weak stationarity, where the mean and variance of a stochastic process are constant
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and do not depend on t. The autocovariance between xt and xt+τ also depends only

on the lag τ . Basically, where the mean and variance of a time series do not remain

constant over time, we say it is non-stationary.

2.5 Takens Theorem and Phase Space Reconstruction

The state of a deterministic dynamical system at a given time t0 is described by

a point x lying in Rd and the time evolution of such system is given by the map

xt0 → xt, which gives the state of the system at time t given that it was initially

in state xt0 at time t0. This map is often obtained as a solution of some differential

equation.

In many instances, however, we are not able to access the state x, likewise the

mapping xt0 → xt. All we have is some function ψ(x) of the state, where ψ : Rd → R

is some measurement function. It corresponds to measuring some observable property

of the system such as position or temperature. Let the evolution of this quantity be

given by the time series ψ(xt) which we observe in discrete time intervals in practice.

Assume these intervals are equal so we observe the discrete time series ψn = ψ(xnτ )

for n ∈ Z+ where τ is some sampling interval.

As an example, we consider the Henon map. The henon map is a simple two

dimensional mapping exhibiting chaotic behaviour. It has the ability to capture the

stretching and folding dynamics of chaotic systems. It further provides a way to

conduct more detailed exploration of the chaotic dynamics of a system [73].

It is given by 
xn+1 = 1− a(xn)2 + yn

yn+1 = bxn

(13)
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where a and b are parameters with a standard choice being a = 1.4 and b = 0.3.

The parameter a controls the amount of stretching and the parameter b controls the

thickness of folding.

Notice from above that the time evolution of xn depends on both x and y. Thus

to generate figure 1(a) we have to compute xn and yn for n = 1, ..., 1000. Generally,

as described above, the state of x will lie in Rd and we will need d coordinates to

determine the future behaviour of the system. On the other hand, the observed time

series ψn is only one dimensional.

It may seem that ψn contains relatively little information about the behaviour of

xt and that the fact that ψn was generated by a deterministic system is of little value

when the state x and the dynamics xt0 → xt are unknown to us.

Remarkably, this intuition turns out to be false due to a powerful result known as

the Takens embedding theorem [1, 25]. In this theorem, Takens proved that for typical

measurement function ψ, and typical dynamics xt0 → xt, it is possible to reconstruct

the state x and the map x(n−1)τ ) → xnτ just from knowledge of the observed time

series ψn as shown in figure 1(b) below.

Theorem 2.2 (Takens’ Theorem) There exists dE > 2d+ 1 and τ such that

[x(t), x(t− τ), x(t− 2τ), ..., x2dτ ]

is an embedding of M into dE-dimensional Euclidean space.
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(a) Henon Map using x and y (b) Henon Map using Takens Vectors

Figure 1: The Henon Map

Figure 1(a) above shows 3000 points of the attractor of the Henon map, plotted in

the state space given by (xn, yn). Figure 1(b) by contrast, shows the reconstructed

attractor in (xn, xn−1) space, using the Takens procedure, detailed in the next chapter.

We emphasize that figure 1(b) was plotted using only the time series xn with no

knowledge of yn. The figures are the same.

Takens’ theorem thus gives the conditions under which a chaotic dynamical system

can be reconstructed from a sequence of observations of the state of a dynamical

system [16, 17]. Whitney showed that a d-dimensional manifold M can be mapped

into a dE > 2d+1 dimensional Euclidean space such that M is parametrized (locally)

by an dE dimensional vector-valued function [1]. This is known as an embedding.

Takens used Whitney’s theorem to show that a manifold topologically equivalent to
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an embedding of M can be constructed from a single time series xt measured from

M .

According to Floris Takens, the attractor of a system under investigation can be

reconstructed from a time series for one of the coordinates of the original phase space

of the system. Let us denote this time series by xt. Starting from xt we can construct

a new dynamical system of arbitrary dimension d taking as the vector describing the

position of the representative point on the attractor in the state space of the system

constructed, a d-dimensional vector

yt = (xt, xt−τ , ..., xn−(d−1)τ )

where τ is the embedding delay [27].

Takens’ theorem tells us that if we take n consecutive amplitude values of a given

time series xt, and construct dE-vectors from it (where dE is greater than twice the

dimension of M), then if ψ and Y are generic, these vectors which lie on a subset of

RdE is an embedding of M [23].

For almost any time series xt (which must be generic) and almost any time delay

τ , the attractor of the d-dimensional dynamical system constructed will be equivalent

topologically to the original system’s attractor if dE ≥ 2d+1, where d is the dimension

of the original attractor [27]. That is to say that the reconstruction preserves the

properties of the dynamical system that do not change under smooth coordinate

changes, but the geometric shape of structures in phase space may not be preserved

[17].

A number of linear and nonlinear models are then applied to predict the dynamics

of the system via the embedding vectors of one of the processes [34, 41, 49].
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3 METHODOLOGY

In this thesis, we use Granger’s method to assess causality in a sufficiently long

time series to find a section(s) of it that has (have) more predictive power for fore-

casting an index’s intraday movement (up = 1 or down = 0). We then apply Takens’

theorem to build Takens vectors which we input together into a neural network, to-

gether with the next day’s stock index movement. These serve as features for training

and prediction. We compare the results from this procedure to the usual predictive

modeling approach where features are normalized and fed into the machine learning

algorithm for training and prediction.

3.1 Data Pre-Processing and Selection

Data pre-processing is the process of analyzing and transforming the input and

output variables to highlight the important relationships among factors [18]. It flat-

tens the distribution of variables and assists neural networks in learning relevant

patterns.

Data normalization is known to be one of the major pre-processing applications. It

allows for a rescaling of a raw data set into a format that is easily “understood” by the

algorithm to be applied. It is known to eliminate the effects of certain influences [71].

If the data is noisy and unreliable, then knowledge discovery during the training phase

will be very difficult [19]. It is also known to speed up training time by starting the

training process for each feature within the same scale [20]. Some of the more common

data normalization techniques are Min-Max, Sigmoidal and Z-score normalizations.

Min-Max Normalization: Min-Max Normalization rescales a variable from one
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range of values to a new range of values. Usually, these are features, and they are

rescaled to lie within the range [-1,1]. This method of normalization transforms a

value A to another value B, to fit in the range [C,D]. It is given by the formula

B =

(
A−min(A)

max(A)−min(A)

)
· (D − C)) + C

This method has the advantage of preserving all relationships in the data.

Sigmoidal Normalization: The sigmoid normalization function is used to non-

linearly scale the samples in the range [-1,1]. The original data is first centered about

the mean, and then mapped to the almost linear region of the sigmoid. This method

is especially appropriate for a noisy data set with outlying values present [70].

Z-score Normalization: This technique uses the mean and standard deviation

of each variable in a given training data set to normalize such variable. The trans-

formation is given in the equation

x′i =
xi − µi(x)

σi(x)
.

The major advantage of using this statistical norm technique is that it minimizes the

effects of outliers in the data.

Normalization ensures that we achieve stationarity and linearity in a data set,

which paves the way for the application of Granger causality to select the best set

from the long time series for processing. After selecting a section(s) of the long

time series that will yield good predictions, we construct the Takens vectors using

the section(s) of the original time series that correspond to the selected normalized

selection(s).
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3.2 Time Delay Embedding and Takens’ Vectors

Time delay embedding of a univariate time series involves the reconstruction of a

series of vectors Vn, n = 1, ..., N from a time series xt, t = 1, ..., T . The technique,

described by Floris Takens, called the method of delays, is quite simple and can

be applied to essentially any time series whatsoever [23]. This is done by selecting

a few consecutive amplitude values of xt as the coordinates of the vector. Given

a sufficiently long time series, all of the state space will be well sampled, and the

information in our reconstructed space will be correspondingly complete and we can

learn from it things about the system itself.

Let xt, t = 1, ..., T , be a univariate time series generated by a dynamical system.

We assume that xt is a projection of dynamics operating in high-dimensional state

space. If the dynamics is deterministic, we can try to predict the time series by

reconstructing the state space. The values of τ and dE are used to transform the

univariate time series into Takens’ vectors (also called phase space or delay vectors)

Vn stacked as

Vn = [V1, V2, ..., VN ] =


x1 x1+τ . . . x1+(dE−1)τ
x2 x2+τ . . . x2+(dE−1)τ
...

...
...

...
xN xN+τ . . . xN+(dE−1)τ

 (14)

The embedding dimension, dE, represents the dimension of the state space in which

to view the dynamics of the underlying system whiles the time delay, τ represents

the time interval between the successively sampled observations used in constructing

the dE-dimensional embedding vectors. If the embedding dimension is “big enough”,

such that Vt unambiguously describes the state of the system at time t then there
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generically exists an equation for points on the attractor, which is of the form

xt+n = f(Vt) (15)

where f : Rd → R, is a function that allows us to predict future values of the time

series xt, given past values, where n is the prediction step. Takens showed that given

that dE ≥ 2d+ 1, then such continuous function f can be found within the bound.

3.3 Embedding Parameters

In reconstructing the phase space, the main problem is how to select the τ and

dE in a way that guarantees the validity of the above function. Thus, a proper phase

space reconstruction from a time series that will yield good predictions requires a

careful selection of these two key parameters.

Based on Takens’ theorem, when dE ≥ 2d + 1, an attractor embedding can be

obtained. But this is only a condition which serves as a guide for selecting the value of

the embedding dimension and time lag. There are a number of criteria for estimating

these parameters.

3.4 Determining Time Delay and Embedding Dimension

In real applications, the proper choice of the time delay τ and the calculation of

an embedding dimension, dE, are fundamental for starting to analyze data [36, 39].

It is very important to select a suitable pair of embedding dimension dE and time

delay τ when constructing the Takens vectors since the choice of τ and dE is directly

related to the accuracy of the invariables of the described characteristics of the strange
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attractors in state space reconstruction [38]. A “brute force” method would simply be

to search over a number of combinations until an attractor comes into focus. However,

the typical problems of this method are that, it is time-consuming, unsuited for a

short time series, and sensitive to noise. Fortunately, the literature suggests various

diagnostic procedures for determining the time delay and the minimum embedding

dimension, all of which are heuristic; they yield optimal results for selected systems

only, and perform just as average for others.

3.4.1 Time delay

The first step in state space reconstruction is to choose an optimum delay param-

eter. Determining a good embedding dimension, dE depends on a judicious choice of

time delay, τ . There are many methods for choosing the time delay τ from a scalar

time series, the major ones being the autocorrelation function and mutual information

methods.

A basic prescribed criteria for estimating a proper time lag is based on the fol-

lowing reasoning: if the time lag used to build the Takens’ vectors is too small, the

coordinates will be too highly temporally correlated and the embedding will tend to

cluster around the bisectrix (diagonal) of the embedding space [68]. In such case,

there is almost no difference between the elements of the delay vectors; this is called

redundancy in [30] and [48]. A very large value, on the other hand, may cause the

different co-ordinates to be almost uncorrelated [68]. In this case, the reconstructed

attractor may become very complicated even if the underlying “true” attractor is

simple [39]: this is referred to as irrelevance. Thus our goal is to find a lag which falls
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in-between these scenarios. And there are a wide variety of methods for estimating

an appropriate time lag. The autocorrelation function can be used to estimate an

appropriate time lag of a given time series [68]. And there are a wide variety of

methods for estimating an appropriate time lag using the autocorrelation procedure:

First Zero Method: One way of doing this, is to choose the first zero of the

autocorrelation function. The autocorrelation function of the time series plots the

correlation of a time series with itself as a function of time shift. Under this method,

we select the time lag where the autocorrelation function decays to zero. Mees et al

[62] suggest the use the value of τ for which the autocorrelation function

C(τ) =
∑
n

[xn − x̄][xn+τ − x̄] (16)

first passes through zero. This is equivalent to requiring linear independence.

First.e.decay Method: Rosenstein et al [63] proposed choosing a time lag

needed for the value of the autocorrelation function to drop to 1
e

times of the ini-

tial value as the time delay. By choosing the lag equal to the time after which the

autocorrelation function has dropped to 1
e

of its initial value, consecutive amplitude

values are neither too much nor too little correlated [52].

However, a reasonable objection to the above autocorrelation based procedure is

that they are based on linear statistics, not taking into account nonlinear dynamical

correlations within a time series [22]; this may not seem a logical choice for determin-

ing nonlinear parameters. Therefore, it is usually advocated that one looks for the

first minimum of the time delayed mutual information [64].
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First Minimum of the average mutual information: This is an estima-

tion method based on the time-delayed mutual information (TDMI), which can be

thought of as a nonlinear generalization of the autocorrelation function. This method,

proposed by Fraser and Swinney [64], involves plotting the time-delayed average mu-

tual information versus the delay and identifying the first minimum in the resulting

curve [35]. The rationale behind the approach is to introduce the needed statistical

independence between successive lagged values.

For a given time series, xt, the TDMI, I(τ), is a measure of the information about

xt+τ contained in xt. I(τ) is therefore a probabilistic measure of the extent to which

xt+τ is related to xt at a given τ . The first minimum of I(τ) marks the time lag

where xt+τ adds maximal information to the knowledge we have from xt, or where

the redundancy is least [22, 21, 36]. The τ is returned as an estimate of the proper

time lag for a delay embedding of the given time series.

For a discrete time series I(τ) is estimated as

I(τ) =
∑
t,t+T

P (xt, xt+τ ) log2

[
P (xt, xt+τ )

P (xt)P (xt+τ )

]
(17)

where P (xt) is the individual probability and P (xt, xt+τ ) is the joint probability den-

sity.

3.4.2 Embedding Dimension

Just like the time delay for embedding, an optimal embedding dimension is an

important parameter for the phase space reconstruction. Generally, there are three

basic methods used in the literature, which include computing some invariant on the
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attractor, using singular value decomposition, or the method of false nearest neigh-

bors. The embedding dimension is mostly chosen using the false nearest neighbors

method [36]. This method measures the proportion of close neighboring points in a

given dimension whose position does not change in the next highest dimension [36].

The minimum embedding dimension capable of containing the reconstructed attrac-

tor is that for which the percentage of false nearest neighbors drops to zero for a given

tolerance level [36, 28]. However, the false nearest neighbors method, and the two

other methods mentioned above contain some subjective parameters or a subjective

judgement is required to choose the embedding dimension.

To deal with the problem making an arbitrary selection of the level of tolerance

for estimating the embedding dimension, Cao [26] modified the method of false neigh-

bors into a method known as the averaged false neighbors, which does not contain

any subjective parameter. All that is required is a properly estimated time-delay.

The method takes the estimated time-delay as given, and estimates the embedding

dimension that minimizes the prediction error [66].

For a given dimension d, we can get a series of delay vectors Vt defined in equation

(14). For each Vt we can find its nearest neighbor Vt′ , i. e.,

Vt′ = argmin{||Vt −Vj|| : j = (d− 1)τ + 1, ..., N, j 6= t} (18)

where the norm

||Vt −Vj|| =

(
d−1∑
i=0

(xt−iτ − xj−iτ )2
) 1

2

. (19)

Then we define

E(d) =
1

N − J0

N−1∑
t=J0

|(xt+1 − xt′+1)|, J0 = (d− 1)τ + 1, (20)
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where E(d) is the average absolute prediction error of a zero-order approximation

predictor for a given d [66]. Note that a zero-order predictor f is xt+n = f(Vt)

and xt+n = xt′+n, where t′ is an integer such that Vt′ is the nearest neighbor of Vt.

Furthermore, note that the N in (20) represents only the number of available data

points for fitting, which does not include the data points for out-of-sample forecasting.

To choose the embedding dimension, dE, we simply minimize the E, That is

dE = argmin{E(d) : 1 ≤ d ≤ Dmax} (21)

where Dmax is the maximum dimension with which we would like to search the min-

imum value of E(d). More details of the Cao method can be found in [26].

3.5 Artificial Neural Networks (ANNs)

Having obtained statistically relevant variables that could improve the predic-

tion of the target variable, we feed this data into a neural network for training and

prediction.

An artificial neural network is a relatively crude network of “neurons” based on

the neural structure of the brain [43, 45]. They process records one at a time, figuring

out patterns or relationships in a given data set. They compare their classification of

the record (which at the outset is arbitrary) with the known actual classification of

the record [43]. The errors from this comparison are re-fed into the neural network

for modification in subsequent iterations.

The neuron generally has a set of input values Xi with proportional weights Wij

and a transfer function Σ that processes the weights and maps the results to an

activation function [43].
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Figure 2: An Artificial Neuron Layout

The neurons in an artificial neural network are basically organized into three

layers: input, hidden and output layers. Observed patterns in the training set are

presented to the hidden layer through the input layer. The hidden layer, made up of a

number of interconnected ’nodes’ contains an ’activation function’ for processing the

weighted records. The hidden layer is in turn connected to the output layer, which

outputs the result as predicted by the algorithm.

Figure 3: A Multiple Hidden Layer Network
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3.5.1 Training an Artificial Neural Network

A neural network must be trained on some input data. During the training phase

in, say, a typical classification problem, where the correct class for each record is

known, and the output nodes can are assigned “correct” values, it is possible to

compare the network’s calculated values to the “correct” values, and calculate an

error term for each node. The network then uses the error terms to adjust the weights

in the hidden layers so that during the next iteration the output values will be closer

to the “correct” values.

3.5.2 ANNs for Stock Market Prediction

The ability of neural networks to discover nonlinear relationships in input data

makes them ideal for modeling nonlinear dynamic systems such as the stock market

[76]. They still remain the most prominent technique for predicting the stock market.

Some of the major advantages of neural networks are their ability to tolerate noisy

data, as well as their capacity to correctly classify patterns in a data set on which

they have not been trained [77].

The most common form of ANN that is used for stock market prediction is the

feed forward network which utilizes the backward propagation of errors algorithm to

update the network weights. These networks are commonly referred to as backprop-

agation networks. Currently, the backpropagation architecture is the most popular

for complex networks [67].

35



3.5.3 Model Evaluation

An integral part of modeling is the improvement in predictive accuracy. When a

model is built, steps have to be taken to ensure that its application yields very accurate

results. One key method that allows for a careful and comprehensive analysis of all

possible error severities is the Receiver Operating Characteristic (ROC) curve.

Figure 4: ROC Curve Illustration

The ROC curve plots the true positive rate (called sensitivity) of a model on

the vertical axis against false positive rate (1–specificity) on the horizontal axis. An

ROC curve always starts at (0,0) and ends at (1,1), and it is always bounded above

by 1. A 45 degree diagonal ROC corresponds to a random (aka, “coin toss”) classifier,

whereas the ROC for a perfect classifier ideally is equal to 1 for all non-zero “false

alarm” rates. If the training set is relatively balanced (about same number of positives

and negatives), then the area under the curve is the probability that an observation

chosen at random will be correctly classified [10].
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4 AN APPLICATION

In this section of the thesis we apply the Takens algorithm to predict the move-

ment of the US stock market. Specifically, we will predict the S&P index’s intraday

movement (up or down) using data from Yahoo! finance. We first apply the Takens

procedure to some data set. Next, we apply a normalization procedure, and make a

comparison thereof.

The Takens procedure incorporates three key applications:

1. Assessing causality to obtain a more predictive section of the stock data that

influences the stock’s movement the next day,

2. Extracting this section and constructing Takens’ vectors, and

3. Feeding the vectors (which serve as factors) into a neural network for training

and prediction.

4.1 R Packages Utilized

We make use of a number of packages built for the R programming language. The

major packages used for data processing and analysis are the lmtest, fNonlinear, and

nonlinearTseries packages.

The lmtest package is used for Granger causality testing whiles the fNonlinear

package is used for estimating the time lag for constructing the Takens vectors. The

estimation of the embedding dimension and the construction of the Takens’ vectors

is achieved using the nonlinearTseries package.
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The lmtest package contains the generic function grangertest which performs tests

for Granger causality in bivariate series. The test is a Wald test comparing the

unrestricted model and the restricted model.

The fNonlinear package is a collection of functions that allow us to investigate the

chaotic behavior of time series processes. For instance the mutualplot function graphs

the the mutual information index of a given time series for a specified number of lags.

The estimateEmbeddingDim function is used to estimate the minimum embed-

ding dimension using the algorithm proposed by L. Cao [26], whiles the buildTakens

function builds the Takens vectors from the given time series.

4.2 Data Collection and Pre-Processing

The S&P 500 is one of the most commonly used benchmarks for the overall U.S.

stock market. The index is computed using data from 500 leading companies. The

total market capitalization held by these 500 companies is approximately 80%. These

stocks are selected based on factors that include market size, liquidity and industry

grouping, among other factors [44]. There is currently over US$ 7.8 trillion bench-

marked to the index, with index assets comprising approximately US$ 2.2 trillion of

this total [44].

We make use of data from the Yahoo! Finance website. Other sources where same

data could be obtained are Google Finance and Morning Star websites. The data set

comprises of the daily open, low, high, close, volume, and adjusted close prices for

the S&P 500 index. The daily S&P 500 index consecutive values for the last 5 years

(January 1, 2010 - December 31, 2014) is used in this study.
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4.3 Results and Comparison

We first normalize the data to put all factors on an equal footing. As earlier

mentioned, this:

• enables data mining algorithms to be applied easily

• presents the data in an easily understandable format for both humans and

machines

• enhances neural network training and prediction

The table and figures below show the summary statistics for the data in its unpro-

cessed form.

Table 1: Summary statistics from unprocessed data

Statistic N Mean St. Dev. Min Max

Open 1,258 1,471.89 292.18 1,027.65 2,088.49
High 1,258 1,479.77 291.82 1,032.95 2,093.55
Low 1,258 1,463.70 292.85 1,010.91 2,085.75
Close 1,258 1,472.58 292.38 1,022.58 2,090.57
Volume 1,258 3,805,030,525 925,364,614 1,025,000,000 10,617,809,600
Adj.Close 1,258 1,472.58 292.38 1,022.58 2,090.57
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(a) Daily Open (b) Daily Low

(c) Daily High (d) Daily Volume

Figure 6 continued on next page.
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(a) Daily Close (b) Difference in Close and Open

Figure 6: Histograms of unprocessed data

Clearly, we see that the data requires normalization before Granger testing can be

applied. The table and figures below show the summary statistics for the normalized

data.

Table 2: Summary statistics from normalized data

Statistic N Mean St. Dev. Min Max

Open 1,258 0.00 0.47 −0.72 1.00
Low 1,258 0.00 0.47 −0.73 1.00
High 1,258 0.00 0.48 −0.73 1.00
Volume 1,258 0.00 0.14 −0.41 1.00
Close 1,258 0.00 0.47 −0.73 1.00
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(a) Normalized Daily Open (b) Normalized Daily Low

(c) Normalized Daily High (d) Normalized Daily Volume

Figure 8 continued on next page.
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(a) Normalized Daily Close (b) Normalized difference in Close and Open

Figure 8: Histograms of normalized data

Now, we run a grangertest to select the most predictive sections of the data set.

Using the difference between the index close and open, hereafter referred to as “dif-

ference”, we run a test of causality of the differenced time series with the index close.

Thus we seek to find sections of the difference that influence how the dynamics of the

index’s close on a given day. The results indicate that the underlisted sections have

more predictive power based on the p-value.

Table 3: Sections of data with more predictive power

Time in Days From To Granger test p-value
1 - 91 1/4/2010 5/13/2010 0.046

94 - 184 5/18/2010 9/24/2010 0.044
258 - 348 1/6/2011 5/19/2011 0.036
377 - 467 6/30/2011 11/7/11 0.047
629 - 718 6/28/2012 11/7/2012 0.015

1118 - 1208 6/12/2014 10/20/2014 0.048
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From the table above, it can be seen that the period (6/28/2012 - 11/7/2012)

has the most predictive power. Below are graphs for the closing index and Index

difference for the selected period.

(a) Index Close for selected period (b) Index difference for the period

Figure 9: Plots of Selected Section of data

We first fetch the section of the unprocessed “difference” that corresponds to the

selected period. With this data in hand, it is time to estimate the time delay and

embedding dimension, τ and dE. We used the whole sampled data to determine

the time lag and embedding dimension with which to construct the Takens vectors.

The values of τ and E(d) for the “difference” time series is shown in the figures 10

and 11 respectively. The time lag is estimated using the method of averaged mutual

information whiles the embedding dimension is computed by the method of averaged

false neighbors. They are 1 and 9 respectively.
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Figure 10: Estimating time lag for difference using Mutual Information
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Figure 11: Embedding dimension for difference

With the estimated time delay τ and embedding dimension dE, we can reconstruct

the Takens vectors of for the diffference for the given period as

Vt = [xt, xt−τ , ..., xt−(dE−1)τ ] ∈ R, i = 1, ..., n

where n = T − (dE − 1)τ = 91 - (9 - 1)x1 = 83

This implies that the matrix containing the reconstructed vectors has a dimension

of 83×9. Each of the 9 vectors become the factors which we feed into the ANN model

for training and prediction.

The next step involves feeding the reconstructed vectors into the neural network

for training and prediction. The predictive algorithm divides the selected time series
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into three parts. The first part, made up of 75% of the total observations, is used to

fit the predictive model; the second part, made up of 15% of total observations, is

referred to as the internal validation part, is used to search for the optimal values of

model parameters, and the third part, with 15% of total observations, is used to test

the fitted model.

The figure below shows an AUC of 0.86, an indication of good predictive capability

using the Takens vectors as factors.

Figure 12: ROC curve from Taken’s vectors approach

To make a comparison, we apply the normalization technique to same section of

the data spanning 6/28/2012 - 11/7/2012. Using the normalized data of the index

open, low, high, close, and volume, for the said period, we train our model on all five
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factors.

The model for the 90 days yields an AUC of 0.57 whiles that for all five years

worth of data yields an AUC of 0.56. The AUC of 0.57 and 0.56 shows that the

model in this case does a little above random classification. The use of all five years

worth of data is to show the impact of using granger test to select a more predictive

portion of the 5-year long time series for our analysis. Modeling with only 91 days

yields an AUC of 0.57 whiles using all 5 years yields an AUC of 0.56.

Figure 13: ROC for Model 1(a): 91 days
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Figure 14: ROC curve for Model 1(b): 5 years
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5 CONCLUSION AND REMARKS

Stock market prediction has recently gained much attention. One of the ma-

jor reasons being the financial gains that accrue from undertaking profitable stock

investments.

Over the years, many new methods for the modeling and predicting the stock

market, most of which rely on linear statistics. However, increased complexity in fi-

nancial market dynamics has made it inherently difficult to apply only linear statistics

to make predictions. Thus the need to resort to new methods capable of unearthing

the dynamics in the market to allow for accurate predictions. We therefore incorpo-

rated both linear and nonlinear methods to make predictions in this thesis.

We applied the famous Takens theorem to predict the market’ daily movement.

We started out applying the usual method of data transformation which only yielded

a little above average results. We next, applied our outlined method, which is, given

daily stock data for today, we predict whether the market will “go up” or “go down”

the following day. The upward or downward movement of the S&P Index is usually

seen as a measure of the overall performance of the US stock market, and thus informs

many of the decisions taken in the business world.

The results from using the Takens algorithm proved better, with an AUC of 0.86

compared to 0.57 from just using normalization.

We put together an R script for the Takens approach. The script accepts stock

data and performs the outlined methodology. All that is needed is the raw data in a

proper format. This can be very beneficial for individuals, corporate investors, and

financial analysts. With such a model, one can predict before hand, the day-head-
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behaviour of a stock market or even for individual stocks. Knowing in advance, the

stock’s movement leads to making more informed decisions that will rake in monetary

gains.
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APPENDIX

0.1 R Code for Replicating the Methods

in s ta l l . packages ( ” n o n l i n e a r T s e r i e s ” )

l ibrary ( n o n l i n e a r T s e r i e s )

in s ta l l . packages ( ” fNon l inea r ” )

l ibrary ( fNon l inea r )

l ibrary ( lmtes t )

l ibrary ( r a t t l e )

in s ta l l . packages ( ” c lu s t e rS im ” )

l ibrary ( c lu s t e rS im )

l ibrary (ROCR)

stock<−read . csv ( ” stock10 . csv ” , header = TRUE)

names( s tock )

plot . ts ( s tock$Close )

plot . ts ( s tock$Open)

close<−s tock$Close [ 2 : nrow( s tock ) ]

n<−length ( close )

open<−s tock$Open [ 1 : n ]

ch<−( s tock$Close−s tock$Open)
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norm<−data . Normal izat ion ( ch , type=”n5” ,

norma l i za t i on=”column” )

norm close<−data . Normal izat ion ( close , type=”n5” ,

norma l i za t i on=”column” )

plot . ts (norm , col=”Blue” )

plot . ts (norm close , col=” red ” )

for ( t in 91 : length ( close ) ) {

data = data . frame ( p r i o r = norm [ ( t−90): t ] ,

post = norm close [ ( t−90): t ] )

t s t = g r a n g e r t e s t ( post ˜ pr io r , order=3, data=data )

p = t s t $”Pr(>F) ” [ 2 ]

i f ( p < 0 .05 ) {

print ( table (p , t ) )

}

}

f<−718
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s<−f−90

s e c t i o n<−ch [ s : f ]

mutualPlot ( s e c t i on , p a r t i t i o n s = 16 , l ag .max = 20 ,

doplot = TRUE)

d E = estimateEmbeddingDim ( sec t i on ,

number . points = length ( s e c t i o n ) ,

time . l ag = 1 ,

max. embedding .dim = 25 ,

th r e sho ld = 0 .95 ,

max. r e l a t i v e . change = 0 . 1 ,

do . plot = TRUE)

Takens d i f = buildTakens ( s e c t i on , embedding .dim = d E,

time . l ag = 1)

class<−s tock$Class [ ( s +1):( f−d E+2)]

f e edne t<−data . frame ( Takens d i f , class )

write . csv ( feednet , f i l e = ” feed net . csv ” )

datase t<−read . csv ( ” f e ed net . csv ” , header = TRUE)

bu i l d ing <− TRUE
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s c o r i n g <− ! bu i l d ing

l ibrary ( c o l o r s p a c e )

crv$ seed <− 42

c r s $datase t <− datase t

set . seed ( crv$ seed )

c r s $nobs <− nrow( c r s $datase t )

c r s $sample <− c r s $ t r a i n <− sample (nrow( c r s $datase t ) ,

0 . 7∗ c r s $nobs )

c r s $ v a l i d a t e <− sample ( setd i f f ( seq l en (nrow( c r s $datase t ) ) ,

c r s $ t r a i n ) , 0 .14∗ c r s $nobs )

c r s $ t e s t <− setd i f f ( setd i f f ( seq l en (nrow( c r s $datase t ) ) ,

c r s $ t r a i n ) , c r s $ v a l i d a t e )

c r s $ input <− c ( ”X” , ”X1” , ”X2” , ”X3” , ”X4” , ”X5” ,

”X6” , ”X7” , ”X8” , ”X9” )

c r s $numeric <− c ( ”X” , ”X1” , ”X2” , ”X3” , ”X4” , ”X5” ,

”X6” , ”X7” , ”X8” , ”X9” )

c r s $ c a t e g o r i c <− NULL

c r s $ t a r g e t <− ” c l a s s ”
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c r s $ r i s k <− NULL

c r s $ i d ent <− NULL

c r s $ i gno r e <− NULL

c r s $weights <− NULL

require ( nnet , q u i e t l y=TRUE)

set . seed (199)

c r s $nnet <− nnet ( as . factor ( class ) ˜ . ,

data=c r s $datase t [ c r s $sample , c ( c r s $ input ,

c r s $ t a r g e t ) ] , s i z e =10, sk ip=TRUE, MaxNWts=10000 ,

trace=FALSE, maxit=100)

cat ( s p r i n t f ( ”A %s network with %d weights .\n” ,

paste ( c r s $nnet$n , c o l l a p s e=”−” ) ,

length ( c r s $nnet$wts ) ) )

cat ( s p r i n t f ( ” Inputs : %s .\n” ,

paste ( c r s $nnet$coefnames , c o l l a p s e=” , ” ) ) )

cat ( s p r i n t f ( ”Output : %s .\n” ,

names( attr ( c r s $nnet$terms , ” dataClas se s ” ) ) [ 1 ] ) )

cat ( s p r i n t f ( ”Sum of Squares Res idua l s : %.4 f .\n” ,

sum( residuals ( c r s $nnet ) ˆ 2 ) ) )
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require ( ggplot2 , q u i e t l y=TRUE)

c r s $pr <− predict ( c r s $nnet , newdata=c r s $datase t [ c r s $ t e s t ,

c ( c r s $ input , c r s $ t a r g e t ) ] )

no . miss <− na . omit ( c r s $datase t [ c r s $ t e s t , c ( c r s $ input ,

c r s $ t a r g e t ) ] $class )

miss . l i s t <− attr ( no . miss , ”na . a c t i on ” )

attributes ( no . miss ) <− NULL

i f ( length ( miss . l i s t ) )

{

pred <− p r e d i c t i o n ( c r s $pr [−miss . l i s t ] , no . miss )

} else

{

pred <− p r e d i c t i o n ( c r s $pr , no . miss )

}

pe <− performance ( pred , ” tpr ” , ” fp r ” )

au <− performance ( pred , ”auc” )@y. va lue s [ [ 1 ] ]

pd <− data . frame ( f p r=unlist (pe@x . va lue s ) , tpr=unlist (pe@y . va lue s ) )
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p <− ggp lot (pd , aes ( x=fpr , y=tpr ) )

p <− p + geom l i n e ( co l ou r=” red ” )

p <− p + xlab ( ” Fa l se P o s i t i v e Rate” ) + ylab ( ”True P o s i t i v e Rate” )

p <− p + g g t i t l e ( ”ROC Curve Neural Net datase t [ t e s t ] c l a s s ” )

p <− p + theme ( plot . t i t l e=element text ( s i z e =10))

p <− p + geom l i n e (data=data . frame ( ) , aes ( x=c ( 0 , 1 ) , y=c ( 0 , 1 ) ) ,

c o l ou r=” grey ” )

p <− p + annotate ( ” tex t ” , x=0.50 , y=0.00 , h ju s t =0, v ju s t =0, s i z e =5,

l a b e l=paste ( ”AUC =” , round( au , 2 ) ) )

print (p)

##NORMALIZATION PROCEDURE

s e l e c t<−s tock [ s : f , c ( ’Open ’ , ’Low ’ , ’ High ’ ,

’ Close ’ , ’ Volume ’ ) ]

norm open<−data . Normal izat ion ( s e l e c t [ , 1 ] , type=”n5” ,

norma l i za t i on=”column” )

norm low<−data . Normal izat ion ( s e l e c t [ , 2 ] , type=”n5” ,

norma l i za t i on=”column” )
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norm high<−data . Normal izat ion ( s e l e c t [ , 3 ] , type=”n5” ,

norma l i za t i on=”column” )

norm close<−data . Normal izat ion ( s e l e c t [ , 4 ] , type=”n5” ,

norma l i za t i on=”column” )

norm vo l<−data . Normal izat ion ( s e l e c t [ , 5 ] , type=”n5” ,

norma l i za t i on=”column” )

frame<−data . frame (norm open , norm low , norm high ,

norm close , norm vo l )

c l a s s 2<−s tock$Class [ ( s +1):( f +1)]

combined<−data . frame ( frame , c l a s s 2 )

write . csv ( combined , f i l e = ”combined . csv ” )

combined2<−read . csv ( ”combined . csv ” , header = TRUE)

c r s $datase t <− combined2

set . seed ( crv$ seed )

c r s $nobs <− nrow( c r s $datase t )

c r s $sample <− c r s $ t r a i n <− sample (nrow( c r s $datase t ) ,

0 .69∗ c r s $nobs )
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c r s $ v a l i d a t e <− sample ( setd i f f ( seq l en (nrow( c r s $datase t ) ) ,

c r s $ t r a i n ) , 0 .14∗ c r s $nobs )

c r s $ t e s t <− setd i f f ( setd i f f ( seq l en (nrow( c r s $datase t ) ) ,

c r s $ t r a i n ) , c r s $ v a l i d a t e )

c r s $ input <− c ( ”X” , ”norm open” , ”norm low” , ”norm high ” ,

”norm c l o s e ” , ”norm vo l ” )

c r s $numeric <− c ( ”X” , ”norm open” , ”norm low” , ”norm high ” ,

”norm c l o s e ” , ”norm vo l ” )

c r s $ c a t e g o r i c <− NULL

c r s $ t a r g e t <− ” c l a s s 2 ”

c r s $ r i s k <− NULL

c r s $ i d ent <− NULL

c r s $ i gno r e <− NULL

c r s $weights <− NULL

require ( nnet , q u i e t l y=TRUE)

set . seed (199)

c r s $nnet <− nnet ( as . factor ( c l a s s 2 ) ˜ . ,
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data=c r s $datase t [ c r s $sample ,

c ( c r s $ input , c r s $ t a r g e t ) ] , s i z e =10,

sk ip=TRUE, MaxNWts=10000 ,

trace=FALSE, maxit=100)

cat ( s p r i n t f ( ”A %s network with %d weights .\n” ,

paste ( c r s $nnet$n , c o l l a p s e=”−” ) ,

length ( c r s $nnet$wts ) ) )

cat ( s p r i n t f ( ” Inputs : %s .\n” ,

paste ( c r s $nnet$coefnames , c o l l a p s e=” , ” ) ) )

cat ( s p r i n t f ( ”Output : %s .\n” ,

names( attr ( c r s $nnet$terms , ” dataClas se s ” ) ) [ 1 ] ) )

cat ( s p r i n t f ( ”Sum of Squares Res idua l s : %.4 f .\n” ,

sum( residuals ( c r s $nnet ) ˆ 2 ) ) )

require ( ggplot2 , q u i e t l y=TRUE)

c r s $pr <− predict ( c r s $nnet , newdata=c r s $datase t [ c r s $ t e s t ,

c ( c r s $ input , c r s $ t a r g e t ) ] )

no . miss <− na . omit ( c r s $datase t [ c r s $ t e s t , c ( c r s $ input ,
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c r s $ t a r g e t ) ] $ c l a s s 2 )

miss . l i s t <− attr ( no . miss , ”na . a c t i on ” )

attributes ( no . miss ) <− NULL

i f ( length ( miss . l i s t ) )

{

pred <− p r e d i c t i o n ( c r s $pr [−miss . l i s t ] , no . miss )

} else

{

pred <− p r e d i c t i o n ( c r s $pr , no . miss )

}

pe <− performance ( pred , ” tpr ” , ” fp r ” )

au <− performance ( pred , ”auc” )@y. va lue s [ [ 1 ] ]

pd <− data . frame ( f p r=unlist (pe@x . va lue s ) ,

tpr=unlist (pe@y . va lues ) )

p <− ggp lot (pd , aes ( x=fpr , y=tpr ) )

p <− p + geom l i n e ( co l ou r=” red ” )

p <− p + xlab ( ” Fa l se P o s i t i v e Rate” ) +

ylab ( ”True P o s i t i v e Rate” )
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p <− p + g g t i t l e ( ”ROC Curve Neural Net combined2 [ t e s t ] c l a s s 2 ” )

p <− p + theme ( plot . t i t l e=element text ( s i z e =10))

p <− p + geom l i n e (data=data . frame ( ) , aes ( x=c ( 0 , 1 ) , y=c ( 0 , 1 ) ) ,

c o l ou r=” grey ” )

p <− p + annotate ( ” tex t ” , x=0.50 , y=0.00 , h ju s t =0, v ju s t =0,

s i z e =5, l a b e l=paste ( ”AUC =” , round( au , 2 ) ) )

print (p)
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