
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

8-2015

Comparison of Two Parameter Estimation
Techniques for Stochastic Models
Thomas C. Robacker
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Numerical Analysis and Computation Commons, Ordinary Differential Equations
and Applied Dynamics Commons, Other Applied Mathematics Commons, and the Statistical
Models Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Robacker, Thomas C., "Comparison of Two Parameter Estimation Techniques for Stochastic Models" (2015). Electronic Theses and
Dissertations. Paper 2567. https://dc.etsu.edu/etd/2567

CORE Metadata, citation and similar papers at core.ac.uk

Provided by East Tennessee State University

https://core.ac.uk/display/214070214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=dc.etsu.edu%2Fetd%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Comparison of Two Parameter Estimation Techniques for Stochastic Models

A thesis

presented to

the faculty of the Department of Mathematics and Statistics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Thomas Robacker

August 2015

Michele Joyner, Ph.D.

Jeff Knisley, Ph.D.

Ariel Cintron-Arias, Ph.D.

Keywords: Parameter estimation, stochastic models, continuous-time Markov

chains, MCR method, ordinary least squares (OLS)



ABSTRACT

Comparison of Two Parameter Estimation Techniques for Stochastic Models

by

Thomas Robacker

Parameter estimation techniques have been successfully and extensively applied to

deterministic models based on ordinary differential equations but are in early devel-

opment for stochastic models. In this thesis, we first investigate using parameter

estimation techniques for a deterministic model to approximate parameters in a cor-

responding stochastic model. The basis behind this approach lies in the Kurtz limit

theorem which implies that for large populations, the realizations of the stochas-

tic model converge to the deterministic model. We show for two example models

that this approach often fails to estimate parameters well when the population size

is small. We then develop a new method, the MCR method, which is unique to

stochastic models and provides significantly better estimates and smaller confidence

intervals for parameter values. Initial analysis of the new MCR method indicates that

this method might be a viable method for parameter estimation for continuous-time

Markov chain models.
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1 INTRODUCTION

Many natural phenomena are genuinely stochastic. For example, the spread of a

disease or epidemic and the competition process between two species are stochastic in

nature. In modeling these phenomena, often times a deterministic approach is taken.

This is a good approximation when the system modeled involves a large population of

individuals or objects. However, for situations in which there may be small population

sizes, the deterministic model may be insufficient and possibly misleading. In such

instances, the corresponding stochastic model may be a better approach.

Parameter estimation refers to the process of using data sampled from a process

to estimate the parameters of a mathematical model of that process. This process is

also known as the inverse problem. An inverse problem is a framework used to convert

observed measurements into information about some system or model. An inverse

problem is a transformation from data to model parameters via the interaction of the

system we are studying. That is, it relates the model of the phenomena to actual

observed data. This is contrary to the forward problem which is the transformation

of the model and its parameters to data we observe. It is the inverse problem in

the form of parameter estimation for stochastic models that hold our interest in this

thesis.

The implementation of parameter estimation to stochastic models is in early

development [6]. We investigate parameter estimation for such models using well-

established methods for deterministic systems. In addition, to find a better method

for handling small populations, we present a new method of parameter estimation

unique to stochastic models called the MCR method.
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2 EXAMPLE MODELS

In this chapter we introduce stochastic models formally and present the two ex-

ample models we investigate for parameter estimation. We develop the deterministic

along with the stochastic models and discuss the difference between the two types of

models.

2.1 Stochastic Models

There are several types of stochastic models. The stochastic models we consider

in this thesis are continuous-time Markov chain (CTMC) models. We first define

what a stochastic process is and then what it means for a stochastic process to be a

CTMC. Definition 2.1 is from L. Allen, 2011.

Definition 2.1 A stochastic process is a collection of random variables {Xt(s) : t ∈

T, s ∈ S}, where T is some index set and S is the common sample space of the random

variables. For each fixed t, Xt(s) denotes a single random variable defined on S. For

each fixed s ∈ S, Xt(s) corresponds to a function defined on T that is called a sample

path or a stochastic realization of the process.

Definition 2.2 The stochastic process {X(t) : t ∈ [0,∞]}, is called a continuous-

time Markov chain (CTMC) if it satisfies the following condition:

Prob{Xt+s = j|Xs = i,Xu = xu, 0 ≤ u < s} = Prob{Xt+s = j|Xs = i}

for all s, t ≥ 0, i, j, xu ∈ S and 0 ≤ u < s.
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The latter condition is known as the Markov property. The transition at time t+s

to state j depends only on the value of the state at time t and does not depend on

any other history of the process. This is also referred to as the memoryless property.

2.2 The SIS Model

When modeling the spread of a disease with a very long infectious period or a

disease in a very large population, dynamic changes in the population itself cannot

be ignored. In a large community the susceptible population might be augmented

fast enough for the epidemic to be maintained for a long time without introducing

new infectious individuals into the community. Such a disease is called endemic [3].

An alternative way of achieving endemicity is to retain the assumption of a closed

population (N constant), but to suppose that the infected individuals lose their im-

munity after some time. This model, called the SIS epidemic model, will be the topic

of this section. The SIS model has been applied to diseases such as influenza or the

common cold as well as some sexually transmitted diseases [3].

2.2.1 The Deterministic SIS Model

This model is referred to as an SIS epidemic model because susceptible individuals

(S) become infected (I) but do not develop immunity after they recover. They can

immediately become infected again, S → I → S. Individuals that become infected

are also infectious. That is, they can transmit the infection to others. We assume

we have a closed homogeneously mixing population consisting of N individuals. The

population remains constant for all time since the number of births equals the number

12



Figure 1: Compartmental diagram of the SIS epidemic model.

of deaths, S + I = N . The model has a compartmental diagram shown in Figure 1

which illustrates the transitions between the two states, S and I.

The differential equations, i.e. the deterministic model, for the SIS epidemic model

are clearly

dS

dt
= γI − β

N
SI (1)

dI

dt
=

β

N
SI − γI (2)

with S(0) + I(0) = N . The parameter β is the transmission rate, the number of

contacts per time that result in an infection of a susceptible individual. The parameter

1/γ is the average length of the infectious period.

Since individuals are either susceptible or infectious, it is sufficient to keep track

of the number of individuals in the infectious state. This is clear since S = N − I.

The explicit solution to this system is

I(t) =

(
1− γ

β

)
I0e

(β−γ)t

1− γ
β

+ I0 (e(β−γ)t − 1)
.

A quantity of particular interest is the basic reproduction number R0. It determines

the dynamics of the system. If the whole population is susceptible and one infected

and infectious individual is introduced into the population, then R0 represents the

13



average number of successful contacts (β) during the period of infectivity (1/γ) that

will result in a new infectious individual [1]. The basic reproduction number is given

by R0 = β
γ
. If R0 ≤ 1 then I(t) → 0 as t → ∞. On the other hand, if R0 > 1 then

I(t)→ 1− γ
β
> 0 as t→∞.

2.2.2 The Stochastic SIS Model

In the stochastic SIS epidemic model, transitions no longer occur with certainty.

Instead, the model deals with the probability of a transition during a small interval of

time ∆t. Let I(t) denote the random variable for the number of infected individuals

at time t. The state space for I(t) is {0, 1, 2, . . . , N}. The transition probabilities are

Prob {∆I(t) = j|I(t) = i} =


β
N
i(N − i)∆t+ o(∆t), j = 1

γi∆t+ o(∆t), j = −1
1− [γi+ βi(N − i)] ∆t+ o(∆t), j = 0
o(∆t), j 6= 0, 1,−1

(3)

where ∆I(t) = I(t + ∆t) − I(t) and i ∈ {0, 1, . . . , N}. Here, o(∆t) means that

lim∆t→0 o(∆t)/∆t = 0 or o(∆t) approches zero faster than ∆t. This is also what is

meant by a probability being neglible. For instance, in the SIS model the probability

that there is a transition other than j = 0, 1,−1 is negligble in time ∆t.

In Figure 2 we plot ten stochastic realizations of the SIS model with N = 1250 and

I0 = 0.04N with parameters β = 0.125 and γ = 0.1. These are the parameters we will

use throughout the thesis. The dashed curves show the corresponding deterministic

solution. Notice that R0 = β
γ

= 1.25 so that limn→∞ In = N(1− 1/R0) = 250 for the

deterministic solution as depicted in Figure 2.

14



Figure 2: Ten stochastic realizations of the SIS model with N = 1250 and I = 0.04N

with parameters β = 0.125, γ = 0.1. The upper curves are the susceptible population

and the red curves are the infected individuals. The black curves are the deterministic

solutions.

2.3 The Lotka-Volterra Predator-Prey Model

The second model we will consider in this thesis is the Lotka-Volterra Predator-

Prey model. The simplest model of predator and prey interaction includes only

natural growth or decay and the predator-prey interaction. The deterministic model

can be developed from first principles as in [5] and many other elementary texts on

differential equations. We will summarize the deterministic model as in [5] and [1].

2.3.1 The Deterministic Lotka-Volterra Predator-Prey Model

Let x(t) and y(t) denote the population sizes for the prey and predator at time t,

respectively. The deterministic Lotka-Volterra predator-prey model is the system of

15



ODEs

dx

dt
= x

(
a10 −

a12

N
y
)

dy

dt
= y

(a21

N
x− a20

)
(4)

where the parameters aij > 0, x(0) > 0, y(0) > 0. The parameter a10 represents

the combination of the natural birth and death rate of the prey. The parameter

a12 represents a death rate in the prey due to interaction with predators, and a21

represents a birth rate for the predator due to the same interaction with the prey.

Finally, the parameter a20 represents the combination of the natural birth and death

rate of the predator.

2.3.2 The Stochastic Predator-Prey Model

Now we develop the stochastic model for the predator-prey process as in [1]. Let

X(t) and Y (t) denote random variables for the population sizes of the prey and

predator at time t, respectively. The transition probabilities are

Prob {∆X(t) = i,∆Y (t) = j|X(t) = x, Y (t) = y}

=



a10x∆t+ o(∆t), (i, j) = (1, 0)
a12
N
xy∆t+ o(∆t), (i, j) = (0, 1)

a21
N
xy∆t+ o(∆t), (i, j) = (−1, 0)

a20y∆t+ o(∆t), (i, j) = (0,−1)
1− x[a10 + a21y]∆t
−y[a20 + a21x]∆t+ o(∆t), (i, j) = (0, 0)
o(∆t), otherwise.

(5)

where ∆X(t) = X(t+ ∆t)−X(t) and ∆Y (t) = Y (t+ ∆t)− Y (t).

In Figure 3 we plot ten stochastic realizations of the Predator-Prey model and the

deterministic system with N = 60, X(0) = 0.75N with parameters a10 = 0.50, a12 =

16



0.05, a12 = 0.01, a20 = 0.20. These are the parameters we will use throughout the

thesis.

Figure 3: Ten realizations of the Predator-Prey model and its deterministic solution

where N = 60, X(0) = 0.75N with parameters a10 = 0.50, a12 = 0.05, a12 =

0.01, a20 = 0.20. The blue curves represent the prey population and the red curves

represent the predator population.

2.4 The Gillespie Algorithm

The solutions to the deterministic systems above occur with absolute certainty.

The stochastic models, however, always have unique outcomes for any given realiza-

tion. There are several methods one can use to generate a realization of a stochastic

model. In this thesis we implement the standard Gillespie algorithm which is also

known as the stochastic simulation algorithm (SSA) [2]. This is the standard algo-

rithm used to simulate CTMC models [4].

The Gillespie algorithm can be summarized as follows:

17



Step 1: Set the initial condition(s) for each state at t = 0.

Step 2: For the given state x of the system, calculate the sum of all transition

rates, λx =
∑m

i=1 λi(x) where i = 1, 2, . . . ,m and m represents the total number

of transitions in the given model.

Step 3: Draw ∆t from an exponential distribution with parameter λx.

Step 4: Generate a random number r from a uniform distribution on (0, 1) and

choose the transition as follows: If 0 < r ≤ λ1(x)/λx, choose transition 1; if

λ1(x)/λx

< r ≤ (λ1(x) + λ2(x))/λx choose transition 2, and so on.

Step 5: Let transition η be the transition chosen in Step 4. Update the time by

setting t = t+ ∆t and update the system state based on the transition η.

Step 6: Iterate Step 2 through Step 5 until t ≥ tstop.

In the next section, we use the Gillespie algorithm to generate several realizations

of the example models.

2.5 Data Sets for Parameter Estimation

Here we present several stochastic realizations, or data sets, we will initially use to

compare our parameter estimation techniques. Throughout the thesis, as explained

earlier, we will use the parameters β = 0.125 and γ = 0.1 for the SIS model. We

consider populations of size 125, 1250, and 12500. For N = 125 and N = 1250, we

will look at three different synthetic data sets and one data set for N = 12500 for

18



illustrative purposes. The proportion of initial infective to susceptible individuals will

remain the same for each population size at I0 = 0.04N . Figure 4 plots the three

data sets for the SIS model with size N = 125. Figure 5 plots the three data sets for

the SIS model with size N = 1250. Figure 6 plots the data set for the SIS model with

size N = 12500.

Throughout the thesis, we will use the parameters a10 = 0.50, a12 = 0.05, a21 =

0.01, a20 = 0.20 for the Predator-Prey model. We consider populations of size 60 and

600. For N = 60 we will examine three different synthetic data sets and two data

sets for N = 600. The proportion of initial predators will remain constant for each

population size at Y0 = 0.25N . Figure 7 plots the three data sets for the Predator-

Prey model with size N = 60. Figure 8 plots the two data sets for the Predator-Prey

model with size N = 600.

In order to ensure we are able to replicate our results in Matlab and keep track of

our data, we set the seed for the pseudo-random number generator. The seed number

simply allows one to repeat arrays of random numbers. This gives a convenient

labeling for the synthetic data sets with seed numbers.

19



Figure 4: Three data sets for the SIS model labeled Seed 1, Seed 5, and Seed 9 for

population size N = 125.
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Figure 5: Three data sets for the SIS model labeled Seed 1, Seed 5, and Seed 9 for

population size N = 1250.
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Figure 6: A data set for the SIS model labeled Seed 1 for population size N = 12500.
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Figure 7: Three data sets for the Predator-Prey model labeled Seed 2, Seed 6, and

Seed 10 for population size N = 60.
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Figure 8: Two data sets for the Predator-Prey model labeled Seed 5 and Seed 10 for

population size N = 600.

There are several observations to make regarding the characteristics of the data

sets in Figures 4 through Figure 8. First, all the data sets are generated from the

exact same set of parameters for their respective model equations, either Eq. (3)

for the SIS model or Eq. (5) for the Predator-Prey model. The large variability

in each population size is evident. Consider the small SIS model with N = 125.

Each realization is significantly different from the other. Additionally, in a stochastic

realization the population has a non-zero probability of going to zero or vanishing.

In the case of the small SIS model with N = 125 this happens for both data sets

Seed 1 and Seed 9. This is not observed in the deterministic solution which persists

24



indefinitely. This is an advantage of the stochastic model over the deterministic

model in modeling realistic scenarios. In the next section we proceed to the goal of

estimating parameters.

25



3 ESTIMATING PARAMETERS IN STOCHASTIC MODELS USING

ORDINARY DIFFERENTIAL EQUATIONS

In this chapter we present the parameter estimation problem for using techniques

common to deterministic systems. In particular, we develop the ordinary least squares

(OLS) method. We present confidence intervals for the parameters of interest and

the average computational time required for the method. We will see that there is

a significant drawback of using deterministic methods when the population size is

small. First, we present a powerful result from [4] which justifies using ODEs for

parameter estimation of stochastic models in a special case.

Theorem 3.1 (Kurtz Limit Theorem) Let X(t) be a continuous-time Markov chain.

Suppose that limM→∞X
M(0) = x0 and for any compact set Ω ∈ Rn there exists a

positive constant ηΩ such that

|g(x)− g(x̂)| ≤ ηΩ|x− x̂|,

for x, x̂ ∈ Ω. Then we have

lim
M→∞

sup
t≤tf
|XM(t)− x(t)| = 0 (6)

almost surely for all tf > 0, where x denotes the unique solution to the ODE

ẋ(t) = g(x), x(0) = x0.

The parameter M can be interpreted as the total number of individuals in the pop-

ulation, even if it is dynamic [4] and the function g represents the right hand side of
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the ODE model; for instance, g may represent the right hand side of the SIS model

in equation (2). The Kurtz Limit Theorem justifies the use of ODEs for modeling

stochastic effects when the population size is sufficiently large. Specifically, equation

(6) implies that as the population M tends to infinity the difference between the

CTMC model and the corresponding deterministic solution approaches zero. This

gives justification for approximating stochastic models as deterministic systems when

M is large.

3.1 ODE Estimation Techniques

Our interest is in estimating the parameters for any particular stochastic realiza-

tion, or data set, from our two example models, the SIS epidemic and Lotka-Volterra

Predator-Prey models. We consider the parameter estimation problem, and proceed

as in [4], in the context of a parameterized dynamical system

dx(t)

dt
= g(t,x(t),θ), (7)

x(t0) = x0, (8)

where g is a function giving us the right hand side of the deterministic ODEs, x is

the state vector, and θ the vector of parameters. For example, in the SIS model, the

state vector is [S I]T and the parameter vector is [β γ]T .

One statistical model for the observation process is of the form

Xj = f(tj;θ0) + Ej, j = 1, . . . , n, (9)

where Ej is assumed to be normally distributed with unknown variance. This is the

familiar ordinary least squares formulation. In words, the observation process is the
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assumption that our observed data, the stochastic realization in our case, is the model

output, f(tj;θ0), plus some measurement error, Ej. For the statistical model given

by Eq. (9), we define the vector of optimal parameter values as

θOLS = arg min
θ
J(θ) (10)

where

J(θ) =
N∑
j=1

[Xj − f(tj;θ)]2 (11)

denotes the cost function. Then θOLS can be viewed as minimizing the distance

between the data and model. We note that θOLS is a random vector since Ej is a

random variable. Hence if {xj}Nj=1 are realizations of the random variables {Xj}Nj=1,

then solving

θ̂OLS = arg min
θ

N∑
j=1

[xj − f(tj;θ)]2 (12)

provides a realization for θOLS. Throughout the thesis we will often drop the subscript

OLS for the estimates when the context is clear and simply use θ̂. Ordinary least

squares is a commonly used method for parameter estimation in deterministic sys-

tems. The method is but one statistical observation model which can be generalized

as in [4].

Now we summarize the algorithm for parameter estimation using ordinary differ-

ential equations. We estimate parameters for the stochastic models given by Eq. (3)

and Eq. (5) by assuming the stochastic model can be estimated using the deterministic

models given by Eq. (2) and Eq. (4) for the SIS and Predator-Prey models respec-

tively. This is justified by Kurtz Limit Theorem. That is, in Eq. (12), we assume
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f is the output from a deterministic model even though the data, xj, is stochastic

in nature. We use the synthetic data described in Section 2.5. For each data set,

with a given seed and population size, we generate an initial guess for the parame-

ter estimation, θ0, normally distributed about the true parameter value θt. For test

purposes, we consider a variance of 0.01 about θt. We then use the built-in Matlab

function fminsearch to minimize the cost function given by Eq. (11) to estimate

the optimal parameter values θ̂. The function fminsearch uses the Nelder-Mead

simplex algorithm. We note that there are other minimization algorithms which can

be employed, but we do not explore those algorithms in this thesis. In the next section

we show the results for each of the example models.

3.2 Parameter Estimation for Several Data Sets

This section implements the algorithm for parameter estimation using ordinary

differential equations for the data sets in Figures 4 through Figure 8. Tables 1 through

Table 3 give the results of the parameter estimation for the very large, large, and small

SIS models with N = 12500, N = 1250, and N = 125, respectively.

Table 1: Estimated parameter values for the very large N = 12500 SIS model.
β γ

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 2 0.125 0.125 .01 % 0.1 0.0991 0.86 %
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Table 2: Estimated parameter values for the large N = 1250 SIS model.
β γ

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 1 0.125 0.1150 8.02 % 0.1 0.0894 10.59 %
Seed 5 0.125 0.1376 10.07 % 0.1 0.1074 7.42 %
Seed 9 0.125 0.1523 21.82 % 0.1 0.1269 26.91 %

Table 3: Estimated parameter values for the small N = 125 SIS model.
β γ

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 1 0.125 2.2483 1698.64 % 0.1 1.9894 1889.70 %
Seed 5 0.125 0.1422 13.76 % 0.1 0.1127 12.70 %
Seed 9 0.125 2.8421e-16 100.00 % 0.1 0.0038 96.20 %

From these results we can see that the OLS method worked very well for the very

large population with N = 12500, mediocore for the large model with N = 1250,

and unacceptably poor for two cases regarding the small model with N = 125. The

results can be understood intuitively by re-examining Figures 4 through 6. The worst

estimates result from the realizations whose infected populations vanish early. That

is, the small data sets Seed 1 and Seed 9 whereas the realizations that persist through

365 days have better estimates. As we would expect from Kurtz Limit Theorem, the

very large population with N = 12500 provides an accurate estimate.

Table 4 and Table 5 give the results of the parameter estimation for the small and

large Predator-Prey models with N = 600 and N = 60, respectively.
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Table 4: Estimated parameter values for the large N = 600 Predator-Prey model.
a10 a12

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 5 0.50 0.4252 14.96% 0.05 0.0414 17.18 %
Seed 10 0.50 0.6167 23.34% 0.05 0.0629 25.81 %

a21 a20

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 5 0.01 0.0112 11.53% 0.20 0.1954 2.31 %
Seed 10 0.01 0.0164 63.76% 0.20 .1789 10.66 %

Table 5: Estimated parameter values for the small N = 60 Predator-Prey model.
a10 a12

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 2 0.50 0.6190 23.8% 0.05 0.0584 16.80 %
Seed 6 0.50 2.0583 311.66% 0.05 0.1687 237.40 %
Seed 10 0.50 .6819 36.38% 0.05 0.0494 1.20 %

a21 a20

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 2 0.01 0.0081 19.00% 0.20 0.1676 16.20 %
Seed 6 0.01 0.027 170.00% 0.20 0.1229 38.55 %
Seed 10 0.01 .0144 44.00% 0.20 0.1510 24.50 %

The results for the Predator-Prey model are similar to the SIS model. The larger

population estimates tend to be more accurate estimates of the original parameters.

However, in some cases the small population has nearly as small an error as the large

population. Again, this can be intuitively understood by re-examining Figure 5 and

Figure 4. In the next section we test the parameter estimation more rigorously and

construct confidence intervals for parameter values.
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3.3 Confidence Intervals for Deterministic Estimation

This section tests the algorithm for parameter estimation using ordinary differ-

ential equations rigorously by constructing 95% confidence intervals for parameter

estimates for 1000 sample data sets. The following algorithm summarizes the con-

struction of the confidence intervals:

Step 1: Initialize the seed value to k = 1.

Step 2: Generate sample data for the stochastic model using seed value k and

exact parameter values.

Step 3: Generate a normally distributed initial guess, θ0, roughly approximating

the true parameter value, θt.

Step 4: Solve for the best estimate θ̂k using the cost function in Eq. (11) where

xj is the data generated in Step 2.

Step 5: Update the seed value k = k+ 1 and repeat Steps 2-4 until k = M (We

use M=1000 in this thesis).

Step 6: Construct the confidence intervals using the mean and standard devia-

tion of the values θk, k = 1, . . . ,M as defined below.

In constructing the confidence intervals the Central Limit Theorem implies that they

may be calculated by

θ̂ ± z∗ s√
N

(13)
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where θ̂ is the mean of the θ̂k, z
∗ is the critical value, s is the vector sample standard

deviation, and N is the size of the data. This holds for large samples; in particular,

for N = 365 in the case of the SIS model we can employ this formulation. For

the Predator-Prey model we have at most N = 100 data points and must use the

Student’s t-distribution to construct confidence intervals as

θ̂ ± t s√
N

(14)

where t is the critical value from the t-distribution with degrees of freedom N − 1.

We now present the confidence intervals for each example model. Table 6 through

Table 8 shows the confidence intervals for the SIS model with populations N = 12500,

N = 1250 and N = 125, respectively. For each interval we calculate the maximum

relative error, which is the interval endpoint which yields the maximum relative error

for the parameter. The average time taken to estimate the parameters for a single

realization are 22.29 seconds, 13.36 seconds, and 7.70 seconds for N = 12500, N =

1250 and N = 125, respectively.

Table 6: Confidence intervals for the N = 12500 SIS model.
Parameter True Value Confidence Interval Max Rel. Error

β 0.125 (0.1241, 0.1272) 1.90 %
γ 0.1 (0.0993, 0.1019) 1.76 %

Table 7: Confidence intervals for the N = 1250 SIS model.
Parameter True Value Confidence Interval Max Rel. Error

β 0.125 (0.1255, 0.1368) 9.44 %
γ 0.1 (0.1008, 0.1101) 10.10 %

33



Table 8: Confidence intervals for the N = 125 SIS model.
Parameter True Value Confidence Interval Max Rel. Error

β 0.125 (0.3875, 1.0049) 703.92 %
γ 0.1 (0.3782, 0.9834) 883.40 %

As with the specific data sets we examined we see that the estimation in general

is robust for a very large population N = 12500. We are 95% confident that the

estimated parameters β and γ will be at most 1.90% and 1.76%, respectively, away

from the true parameters in relative error. The large population also faired well. The

small population in general, however, produces unacceptable estimates 95% of the

time. Clearly, the deterministic method for parameter estimation failed for the small

population and succeeded for the large populations which we expect by Kurtz Limit

Theorem.

We present the confidence intervals for the Predator-Prey model with N = 600

and N = 60 in Table 9 and Table 10. The average time for parameter estimation for

populations N = 600 and N = 60 are 99.17 seconds and 91.75 seconds, respectively.

Table 9: Confidence intervals for the N = 600 Predator-Prey model.
Parameter True Value Confidence Interval Max Rel. Error

a10 0.50 (0.5010, 0.5359) 7.18 %
a12 0.05 (0.0506, 0.0546) 9.20 %
a21 0.01 (0.0106, 0.0106) 6.00 %
a20 0.20 (0.2003, 0.2163) 8.15 %

Table 10: Confidence intervals for the N = 60 Predator-Prey model.
Parameter True Value Confidence Interval Max Rel. Error

a10 0.50 (0.4642, 0.5817) 16.34 %
a12 0.05 (0.0348, 0.0438) 30.40 %
a21 0.01 (1988.7811, 12155.4461) 12.15e7 %
a20 0.20 (1491.9326, 9116.9226) 45.585e5 %
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Clearly, there is a major difference in the estimation for the two Predator-Prey

models. As with the SIS model, the Predator-Prey model also has unacceptable

estimates for the small population but strong estimates for the larger population.

We would like to be able to estimate parameters for small populations. We now

know that this is virtually impossible given our confidence intervals: we are 95%

confident that the parameter estimates will be unacceptable. In the next chapter

we introduce a new method unique to stochastic models that allows us to estimate

parameters for both the large and, of more interest, the small populations that we

have in this chapter.
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4 PARAMETER ESTIMATION USING THE MCR METHOD

This chapter develops a new method of estimating parameters unique to stochas-

tic models. It provides significantly better estimates and smaller confidence intervals

for parameter values. Although Kurtz Limit Theorem allows us to approximate a

stochastic model with a corresponding deterministic model when the population is

sufficiently large, there is a practical motivation for desiring a method for small pop-

ulations. For instance, the SIS model may be a suitable model for the spread of a

disease in an intensive care unit within a hospital setting. In such a scenario the pop-

ulation of individuals involved is likely small, and we would be interested in modeling

the epidemic.

4.1 The MCR Method

The MCR method is an acronym for Minimum-Cost-Realization. The name comes

from the algorithm it utilizes. One of the main differences between the MCR method

and the deterministic method can be seen in the cost function J(θ). For the deter-

ministic methods above we used

J(θ) =
N∑
j=1

[xj − f(tj;θ)]2 .

where f(tj;θ) represents the deterministic model output with parameters θ. The

cost function for the MCR method is defined as

JMCR(θ) = min
n∈1,2,...,ns

Jn(θ). (15)
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where

Jn(θ) =
n∑
j=1

[xj − h(tj;θ)]2 (16)

with n = 1, 2, . . . , ns where h(tj;θ) represents the stochastic model output in lieu of

the deterministic model and ns denotes the number of realizations chosen for compar-

ison. This is analagous to the cost function J(θ) we used for parameter estimation

with ODEs. The motivation behind this method lies in the fact that realizations of

a stochastic model can be significantly different. Therefore, for a given parameter

estimate, θ, we try to determine the realization that “best fits” the data in a least

squares sense. Using this “best fit” for a given parameter estimate, we seek the op-

timal parameter values. Eq. (15) can be thought of as choosing which one of the ns

realizations is a best fit to the data set in terms of Jn(θ). We henceforth drop the

superscript MCR when the context is clear. We now summarize the algorithm for

implementing the MCR method:

Step 1: Generate a normally distributed guess, θ0 about θt.

Step 2: Use fminsearch to estimate

θ̂ = arg min
θ
J(θ0).

where J(θ) is given by Eq. (15). In order to calculate J(θ0), the following steps

are implemented:

Step 2.1: Generate ns data sets from the parameters θ0. Bin the ns data sets

to match the size of x.
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Step 2.2: Calculate Jn(θ0) for n = 1, 2, . . . , ns:

Jn(θ0) =
N∑
j=1

[xj − h(tj;θ0)]2

Step 2.3: Set cost function as

J(θ0) = min
n∈1,2,...,ns

Jn(θ0).

To illustrate the MCR method we implement the above algorithm with ns = 10 for

data set Seed 1 in Figure 3. The algorithm generates ns = 10 stochastic realizations

using parameters θ0; these are the black and red curves in Figure 9 where we omitted

a few curves for clarity. The red curve represents the realization that is the best fit

to the data. Examining the figure gives some intuition to the algorithm: the best

fit realization here appears to be very similar to the data. The estimated parameter

values are β = 0.1212 and γ = 0.1064 with relative error 3.2% and 6.4%, respectively.

The algorithm took 7.97 seconds. This is a disparity over the deterministic method

in the previous section from a small sample which gave an estimate of β = 2.2483

and γ = 1.9894 with relative error 1698.64% and 1889.70%, respectively.
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Figure 9: Illustration of the MCR Method. The blue curve represents data set Seed

1. The red curve is the realization that best fits Seed 1. The black curves are several

other realizations that were not the best fit.

Table 11 and Table 12 give the results of the parameter estimation for the large

and small SIS models with N = 1250 and N = 125 with ns = 10, respectively. The

large Seeds 1, 5, and 9 took 266.32 seconds, 335.88 seconds, and 245.02 seconds,

respectively. The small Seeds 1, 5, and 9 took 7.96 seconds, 20.47 seconds, and 5.41

seconds, respectively.

Table 11: MCR Estimated parameter values for the small N = 125 SIS model.
β γ

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 1 0.125 0.1212 3.04% 0.1 0.1064 6.40 %
Seed 5 0.125 0.1362 8.96 % 0.1 0.1061 6.10 %
Seed 9 0.125 0.1034 17.28 % 0.1 0.1033 3.3 %
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Table 12: MCR Estimated parameter values for the large N = 1250 SIS model.
β γ

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 1 0.125 0.1153 7.76% 0.1 0.0893 10.70 %
Seed 5 0.125 0.1315 5.20 % 0.1 0.1028 2.80 %
Seed 9 0.125 0.1023 18.16 % 0.1 0.0815 18.50 %

Notice that for the small SIS population data set, Seed 1 in Table 11, the estimate

for β has a relative error of only about 3% compared to over 1600% using the deter-

ministic method as seen in Table 3. There is a similar improvement in the estimate

of γ with the slightly more than 6% relative error using the MCR method compared

with more than 1800% relative error using the deterministic method. Similar results

were found for the other small population data sets.

It was still difficult to accurately estimate β for Seed 9 data, but the MCR method

still shows a remarkable improvement in accuracy when compared to the deterministic

method. Interestingly, the MCR method only showed a slight improvement over

the deterministic method for the large population, N = 1250, with a total average

increase in accuracy of 4% across the 5 estimates in which there was an improvement

(the estimate for γ was not improved for Seed 1).

Tables 13 and Table 14 give the results of the parameter estimation for the large

and small Predator-Prey models for N = 600 and N = 60 with ns = 10, respectively.

The large Seeds 2 and 10 took 245.02 seconds and 808.69 seconds, respectively. The

small Seeds 2, 6, and 10 took 15.98 seconds, 21.69 seconds, and 17.88 seconds, re-

spectively.
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Table 13: MCR Estimated parameter values for the N = 600 Predator-Prey model.
a10 a12

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 5 0.50 0.4862 2.64% 0.05 0.0533 6.60 %
Seed 10 0.50 0.4863 2.76 % 0.05 0.0533 6.60 %

a21 a20

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 5 0.01 0.0106 6.00% 0.20 0.1614 19.3 %
Seed 10 0.01 0.0107 7.00 % 0.20 0.1586 20.70 %

Table 14: MCR Estimated parameter values for the N = 60 Predator-Prey model.
a10 a12

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 2 0.50 0.4640 7.2 % 0.05 0.0520 4.00 %
Seed 6 0.50 0.4780 4.4 % 0.05 0.0536 7.20 %
Seed 10 0.50 0.4669 6.62 % 0.05 0.0492 1.60 %

a21 a20

Data Set Actual Estimate Rel. Error Actual Estimate Rel. Error
Seed 2 0.01 0.0101 1.00 % 0.20 0.1787 10.65 %
Seed 6 0.01 0.0100 0.20 % 0.20 0.1837 8.15 %
Seed 10 0.01 0.0106 6.00 % 0.20 0.1416 29.2 %

Notice that for the small Predator-Prey population data set, Seed 6 in Table 14,

the estimate for a12 is only about 4% compared to over 300% for the deterministic

method as seen in Table 5. Simliar results hold for every parameter in each data

set besides a20 for Seed 10. Similar claims hold for the large N = 600 Predator-

Prey population upon inspection of Tables 4 and Table 13. There is, however, a

small discrepancy in the parameter a20 but the improved estimates with the MCR

method for the other parameters is outstanding. As with the SIS model the MCR

method still shows a remarkable improvement in accuracy when compared to the

deterministic method. In order to ensure the MCR method works more generally we
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construct confidence intervals for parameter estimates in the next section.

4.2 Confidence Intervals for The MCR Method

In this section we construct confidence intervals for the small SIS and Predator-

Prey models as was done for the deterministic method in Chapter 3. This will allow

us to compare the two methods’ effectiveness in parameter estimation for these two

example models. In constructing confidence intervals we use 1000 implementations

of the MCR method using ns = 10. We implement the same algorithm as in Section

3.3 where J(θ) is given by Eq. (15) instead of Eq. (11).

Table 15 shows the confidence intervals for a population of N = 125. The average

time to compute a single estimate was 15.60 seconds. We notice that for the small SIS

model, there is a 95% confidence of the exact parameters having less than 11% relative

error. This is compared to the results in Table 8 using the deterministic approach

in which the maximum relative error in the parameter values is more than 700%.

Confidence intervals for the large population SIS and the Predator-Prey example

model will be presented in a future publication.

The MCR method relies on a cost function which compares ns realizations of the

stochastic model to the given data set. Therefore, we also address the effect of ns

on the estimated values. If one were to estimate the parameters one time, the result

may be different than another time since the 10 realizations are randomly chosen

and therefore will be different from one estimation to the next. Thus one question we

address is how much variation is expected across runs. In Table 11, we see that for the

data set labeled Seed 1, there is approximately a 3% and 6% relative error in β and
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γ, respectively, when we estimate parameters once. Table 16 repeats this estimation

1000 times and determines a confidence interval for the parameter values for Seed 1

as well as Seeds 5 and 9. The maximum relative error (with 95% confidence) is still

less than 10% for β and approximately 6% for γ with Seed 1. Seed 9 is the hardest

to estimate producing a potential error as large as 13% (which is still significantly

smaller than the deterministic approach). This is probably due to the fact that Seed

9 data has the shortest duration of all three data sets (the one in which the infected

population vanishes before 150 days in Figure 4). The average time taken to estimate

the parameters for a set of ns = 10 are 31.31 seconds for Seed 1, 47.75 seconds for

Seed 5, and 18.77 seconds for Seed 9.

Table 15: MCR Confidence intervals for the N = 125 SIS model with ns = 10.
Parameter True Value Confidence Interval Max Rel. Error

β 0.125 (0.1124, 0.1166) 10.08 %
γ 0.1 (0.1010, 0.1073) 7.30%

Table 16: MCR Confidence intervals for the N = 125 SIS data sets with ns = 10.
Data Set Parameter True Value Confidence Interval Max Rel. Error
Seed 1 β 0.125 (0.1128, 0.1170) 9.76 %

γ 0.1 (0.0941, 0.0975) 5.90 %

Seed 5 β 0.125 (0.1224, 0.1248) 2.08 %
γ 0.1 (0.0945, 0.0963) 5.5 %

Seed 9 β 0.125 (0.1084, 0.1122) 13.28 %
γ 0.1 (0.0997, 0.1035) 3.5 %

Table 17 gives the confidence intervals for the Predator-Prey model with N = 600.

Comparing this with Table 10 we see an astonishing improvement in estimating the

parameters a21 and a20 with the MCR method. The MCR method estimated each
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parameter with maximum relative error no greater than 4%; an improvement across

the board compared to the deterministic method.

Table 17: MCR Confidence intervals for the N = 60 Predator-Prey model.
Parameter True Value Confidence Interval Max Rel. Error

a10 0.50 (0.4899, 0.5014) 2.02 %
a12 0.05 (0.0507, 0.0519) 3.80 %
a21 0.01 (0.0098, 0.0100) 2.00 %
a20 0.20 (0.2046, 0.1981) 2.30 %

The other question that arises is the choice of ns. In the calculations already

presented using ns = 10 gave significantly improved accuracy while also increasing

computational time compared to the deterministic approach. We used Seed 1 to test

ns = 100 which had an average time for estimation of 317.47 seconds. Interestingly,

there does not appear to be a significant advantage in using ns = 100 for this data

set, Seed 1. However, the maximum relative error with ns = 100 appears to be halfed

compared to the confidence intervals with ns = 10. Since there is already a small error

in the estimates using ns = 10, the reduction in error when using ns = 100 may not

be worth the increase in computational time required when using ns = 100. For data

sets which have a shorter time span, such as Seed 9, this increase in computational

time may be worth an increase in accuracy if the accuracy results in a maximum

relative error less than 10%. This is a topic worth investigating in the future.

Table 18: MCR Confidence intervals for the N = 125 SIS model with ns = 100.
Data Set Parameter True Value Confidence Interval Max Rel. Error
Seed 1 β 0.125 (0.1178, 0.1203) 5.76 %

γ 0.1 (0.0976, 0.0997) 2.4 %

It is clear that the MCR method proves useful in estimating parameters for the
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small and large SIS model as well as the small Predator-Prey model. Note that

although several of the intervals do not contain the actual parameter value, their

proximity to the actual parameter is superb and each interval is small. The confidence

intervals presented for the MCR method give us assurance that the method is robust

for these two example models and it clearly shows that it is preferable over the

deterministic method for parameter estimation.
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5 CONCLUSIONS

We implemented a well-established method for estimating parameters of a deter-

ministic system to purely stochastic data. We determined that the method failed to

estimate parameters when the population size of our two example models, the SIS

epidemic and Lotka-Volterra Predator-Prey models, was sufficiently small. In order

to achieve successful estimates for small populations we developed a new method

unique to stochastic models: the MCR method. We showed that the MCR method is

significantly more effective in estimating parameters for both small and large popula-

tions in our example models. This initial analysis of the MCR method shows that it

may be a viable method for parameter estimation for continuous-time Markov chain

models.

In the future, it will be necessary to further test the capabilities of the MCR

method. This includes investigating criteria such as different initial parameter esti-

mates, the number of realizations to implement in finding a best fit to the data, and

if there is a significant difference in increasing these realizations at the expense of

computation time. Additionally, the MCR method may prove viable for many other

models and applications.
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