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ABSTRACT  

Relationship Between Concentric Velocity at Varying Intensity in the Back Squat Using 

Wireless Inertia Sensor  

by  

Kevin Michael Carroll 

The purpose of this study was to determine the relationship between the Minimal Velocity 

Threshold (MVT) of 1RM and repetitions until failure testing conditions using the back squat 

exercise. Fourteen injury-free males with experience in the back squat volunteered to perform a 

1RM and a submaximal (70% 1RM) repetitions until failure test, each during different testing 

sessions. Mean Concentric Velocity (MCV) was collected using a wireless inertia-measuring 

device. The last successful repetition in either condition was considered the MVT. A very small 

relationship between 1RM and repetitions until failure MVT was found (r=-0.135). There were 

no significant differences between testing sessions and the effect size was small (Cohen’s 

d=0.468) between each testing session. The small relationship and the non-significant p-value 

might suggest there is individual variance with MVT. In conclusion, the results of this study do 

not support a general MVT for the back squat comparing 1RM and submaximal repetitions until 

failure. 
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CHAPTER 1 

INTRODUCTION 

Neurological and skeletal muscle adaptations can occur when undergoing a resistance 

training program (Crewther, Cronin, & Keogh, 2006; Gabriel, Kamen, & Frost, 2006; McCall, 

Byrnes, Dickinson, Pattany, & Fleck, 1996). These adaptations may include- but are not limited 

to- increases in muscular size, strength, and power (Crewther et al., 2006; Gabriel et al., 2006; 

McCall et al., 1996). A variety of factors contribute to the training stimulus and potentially the 

adaptations that occur; some of which are intensity, volume, exercise order, and rest intervals 

(Kraemer & Ratamess, 2004). Traditionally, resistive exercise intensity has been shown to be the 

most vital factor in producing adaptations of muscular strength (Crewther et al., 2006; Kraemer 

& Ratamess, 2004). Another, less utilized, factor to consider is movement velocity. Concentric 

movement velocity is the velocity in which a lifter moves a resistance during the concentric 

phase of an exercise. Mean concentric velocity (MCV) when compared to peak concentric 

velocity seems to give a more comprehensive depiction of the concentric phase of an exercise 

(Judovtseff, Harris, Crielaard, & Cronin, 2011). Monitoring MCV during resistance training 

could be a valuable tool for a coach or participant (Gonzalez-Badillo & Sanchez-Medina, 2010; 

Izquierdo et al., 2006; Judovtseff et al., 2011; Sakamoto & Sinclair, 2006). Previous research 

suggests that there may also be velocity-specific adaptations in response to training (Jones, 

Bishop, Hunter, & Fleisig, 2001). 

A specific exercise test, in the form of a one-repetition maximum (1RM) or a predictive 

method to 1RM, is usually administered before beginning resistance training to give an 

indication of baseline strength levels (Gonzalez-Badillo & Sanchez-Medina, 2010; Izquierdo et 

al., 2006; Jones et al., 2001; Judovtseff et al., 2011; Sakamoto & Sinclair, 2006). Exercise 
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intensities/loads may then prescribed based on percentage of 1RM or predicted 1RM. Testing 

1RM or reps until failure can require an impractical amount of time with larger groups (Braith, 

Graves, Leggett, & Pollock, 1993; Gonzalez-Badillo & Sanchez-Medina, 2010). Several studies 

have shown a relationship between exercise intensity (load) and velocity with r=0.98 (Gonzalez-

Badillo & Sanchez-Medina, 2010), r=~0.95 (Judovtseff et al., 2011). Several other studies have 

found relationships between intensity and movement velocity also (Izquierdo et al., 2006; 

Sakamoto & Sinclair, 2006). Thus, collecting concentric velocity data of various exercises in 

relation to submaximal loads have been shown to be supportive in the prediction of 1RM 

(Judovtseff et al., 2011). This offers the strength and conditioning professional the opportunity to 

administer a regular strength monitoring program at submaximal loads routinely achieved in 

regular training. 

Research conducted measuring concentric velocity in the bench press and back squat 

have suggested there is an exercise-specific minimal velocity threshold (MVT) regardless of load 

or individual differences (Izquierdo et al., 2006). The MVT in resistance training is the MCV 

achieved on the last successful repetition during a 1RM or repetitions until failure (Jovanovic & 

Flanagan, 2014). Izquierdo and colleagues (2006) found the MVT to be 0.15 ± 0.03 m·s–1 and 

0.27 ± 0.02 m·s–1 for the bench press and back squat, respectively. At 1RM and 60%, 65%, 70%, 

and 75% there seems to be no statistical difference in MCV achieved during the last successful 

repetition, suggesting the presence of a minimal velocity threshold (Izquierdo et al., 2006). 

Another study confirmed the MVT found by Izquierdo and colleagues (2006) resulting in bench 

press MVT at 1RM to be 0.16 ± 0.04 m·s–1 (Gonzalez-Badillo & Sanchez-Medina, 2010). The 

MVT remained consistent after 6-weeks of training, despite gaining strength in the bench press. 

During the second 1RM trial, the MVT was found to be 0.18 ± 0.04 m·s–1. 
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 Based on previous studies, there seems to be a MVT ranging from 0.12 m·s–1 to 0.22 

m·s–1 for the bench press (Gonzalez-Badillo & Sanchez-Medina, 2010; Izquierdo et al., 2006). 

To the author’s knowledge, there is only one study looking at the back squat which yielded a 

MVT ranging from 0.25 m·s–1 to 0.29 m·s–1 (Izquierdo et al., 2006). It is unclear if the standard 

deviation of these measurements were due to chance, measurement error, individual differences, 

or otherwise. More research is needed to determine what kind of variance can be expected in the 

MVT for strength and conditioning practitioners. 

Definitions 

1. 1-Repetition Maximum (1RM): In resistance training, the maximum load an individual 

can successfully complete 1 repetition for a given exercise 

2. Exercise Intensity: The load of an exercise, or the load on the barbell. Typically notated 

as a percentage of 1RM 

3. Exercise Volume: In resistance training, the total number of repetitions performed (or the 

number of sets multiplied by the number of repetitions per set) 

4. Mean Concentric Velocity (MCV): The average velocity of a movement during the 

concentric phase of movement 

5. Minimal Velocity Threshold (MVT): The MCV on the last successful repetition of a 

1RM or repetitions until failure condition where maximal lifting effort occurs (Jovanovic 

& Flanagan, 2014) 

6. Repetitions until Failure: In resistance training, the completion of continuous repetitions 

for a given exercise until muscular failure is reached 
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Purpose 

The primary purpose of the current study is to examine the relationship between 

velocities during 1RM and repetitions until failure conditions in the back squat. The secondary 

purpose of this study will be to explore the use of PUSH (PUSH, Toronto, Canada) units for 

continuous monitoring of movement velocities in the practical setting of the weight room. 

Assumptions 

1. All subjects attempted to accelerate the bar as fast and with as much force as possible. 

2. The linear position transducers used for data collection were accurate and reliable. 

3. The subjects used in this research were representative of others who are familiar with the 

back squat exercise. 

Delimitations 

1. All subjects for this study were within the age of 25 + 5 years old. 

2. All subjects for this study were previously familiar with the back squat exercise. 

3. All subjects squatted to a depth where the hip crease was parallel with the knee joint. 

Limitations 

1. There was no way to determine if subjects were accelerating the bar as fast and with as 

much force as possible. 

2. Squat depth was standardized for all subjects. 

3. The fatigued-state of subjects from outside training was not considered or controlled for 

in the current study. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Resistance training for the enhancement of strength and sport performance has been 

developing for over half a century. Creating the correct training stimulus for the enhancement of 

those variables via monitoring of training variables has been the subject of a large portion of 

research in the past and the present. Thus, modern technology attempts to quantify training 

variables in order to further the understanding of resistance training. 

Technology in Sport: Measuring Velocity 

There are several variables that have been traditionally monitored in periodized strength 

training: a) exercise type and order, b) intensity, c) volume (sets and repetitions), and d) rest 

between sets (Gonzalez-Badillo & Sanchez-Medina, 2010). Intensity is generally considered to 

be the most important variable pertaining to strength levels and the further programming of loads 

(Kraemer & Ratamess, 2004). Recently, several studies have examined movement velocities as 

they relate to exercise intensity (Gonzalez-Badillo & Sanchez-Medina, 2010; Izquierdo et al., 

2006; Sakamoto & Sinclair, 2006). A variety of different devices have been used to measure 

movement velocity during resistance training (Cronin, Hing, & McNair, 2004; Hori & Warren, 

2009; Jovanovic & Flanagan, 2014; Stock, Beck, DeFreitas, & Dillon, 2011). 

Linear Position Transducers 

Linear Position Transducers (LPT) are devices which can measure displacement in a 

linear plane. An LPT consists of a measuring cable, spool, spring, and a sensor such as a 

potentiometer or rotary encoder (Harris, Cronin, Taylor, Boris, & Sheppard, 2010). The 

potentiometer or rotary encoder is what transduces, or converts, the change in distance of the 
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cable to another variable such as voltage. It is from this voltage that displacement and eventually 

velocity and acceleration can be derived. Harris and colleagues (2010) go on to explain how the 

process of differentiation can be used to obtain values of velocity, acceleration, and eventually 

force. Basically, the change in displacement (transduced by the potentiometer or encoder to 

produce voltage) over the change in time can be used to derive velocity. The change in velocity 

over the change in time can be used to derive acceleration. 

The ability to obtain accurate data via differentiation of data collected from an LPT is 

contingent on the sampling rate (Harris et al., 2010). The sampling rate, usually expressed in 

hertz (Hz), is the number of data points collected per second. Research suggests that the 

minimum sampling rate strength and conditioning professionals should consider using is 200 Hz 

but the ideal range should be above 500 Hz (Hori et al., 2009). This depends greatly on the type 

of test and the speed of the test. For example, any high speed movement such as sprinting, 

jumping, or throwing should be considered with a higher sampling rate as compared to relatively 

slow movements such as the back squat. It is important to note that some research done on 

sampling rate has been done using force plates and not LPTs (Hori et al., 2009). 

There has been research on the reliability and validity of the LPT (Cronin et al., 2004). In 

this study, Cronin and colleagues (2004) used a force platform in an attempt to validate the LPT 

technology. They performed 3 jumping conditions (squat, countermovement, and drop) and 

compared values of average force, peak force, and time-to-peak force from the force plate to the 

values collect from the LPT. Using Pearson correlations and intraclass correlations for the 

average force (r = 0.952–0.962), peak force (r = 0.861–0.934), and time-to-peak force (r = 

0.924–0.995) the researchers concluded that the use of LPTs could be considered both valid and 
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reliable (Cronin et al., 2004). Using LPTs for measuring movement velocity may be considered a 

useful and accurate tool. 

Hansen and colleagues (2011) examined the reliability of peak force and several force-

time measurements (such as ground-reaction force) using a force plate and LPT. They also 

examined the reliability of measurement between the force plate and LPT technology. Each 

subject completed 2 testing sessions separated by 1 week and included 3 rebound jump squats 

with 40 kg external load. The force plate and LPT were both found to be reliable in the 

measurement of peak force (ICC = 0.88 – 0.96, CV = 2.3 – 4.8%). Values obtained from the 

force plate and the LPT had a strong relationship. However, the force-time variables obtained 

from the force plate were more reliable (ICC = 0.70–0.96, CV = 5.1–51.8%) when compared the 

LPT values (ICC = 0.18–0.95, CV = 7.7–93.6%). The LPT also had higher variation when 

compared to the force plate (Hansen, Cronin, & Newton, 2011). This is logical as the method of 

double differentiation from LPT technology to obtain acceleration values and subsequently force 

values has been shown to increase the likelihood of variation and error (Harris et al., 2010). The 

process of double differentiation takes displacement data and uses time data to derive velocity. 

The velocity data is again looked at with the time data to obtain acceleration data, hence the term 

“double differentiation.” Overall, the LPT has been shown to be a valid and reliable way to 

measure velocity, acceleration, and force variables (Cronin et al., 2004; Hansen et al., 2011; 

Harris et al., 2010) which can be a useful tool for sport scientists and strength & conditioning 

practitioners. 

TENDO FitroDyne and TENDO Weightlifting Analyzer 

The TENDO FitroDyne and TENDO Weightlifting Analyzer (TENDO Sports Machines; 

Trencin, Slovak Republic) are devices which are used to measure certain variables such as 
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average power and velocity of resistance training exercises. The TENDO units are comprised of 

a velocity sensor unit, which is attached to the resistance training equipment, mainly on a barbell, 

and a microcomputer to collect and analyze the data (Willardson, 2010). Willardson (2010) 

explains that the unit uses a linear position transducer to measure average vertical velocity of the 

movement. The unit also calculates average force using the summed mass of the barbell and the 

mass of the lifter and multiplying by acceleration due to gravity (g=9.81 m·s–2). The average 

power may be calculated for each movement using the average force and average velocity. 

Jennings et al. (2005) examined the reliability of the FitroDyne for muscular power 

during the squat jump and the bicep curl. To measure movement variables, the FitroDyne must 

be placed onto the resistance training equipment (i.e. barbell) using a cable and connected to a 

microcomputer. Average velocity and force values were obtained from the microcomputer’s 

analysis of the linear position transducer data. Muscle power was then calculated. More 

specifically, peak power was obtained by calculating power from specific time points on the 

force-velocity curve. The ICC for the squat jump and bicep curl examining power were R = 0.97 

and R = 0.97, respectively. These R-values demonstrate a very high reliability. However, the 

limits of agreement were approximately -17 + 96 W and 0.11 + 13.60 W for the squat jump and 

biceps curl, respectively. These fairly large limits of agreement may indicate that some of the 

values obtained may have been a result of variation due to unknown factors. The authors still 

concluded that the FitroDyne is a reliable measure of muscular power (Jennings, Viljoen, 

Durandt, & Lambert, 2005). 

Mangine et al. (2014) used a TENDO unit to measure average and peak vertical jump 

power output as part of a study relating values from a variety of performance tests on a 

nomotorized treadmill and vertical jump testing. The TENDO unit was attached to each subject’s 
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waist during the vertical jump testing. Average and peak power were calculated from the 

velocity measurements obtained from the TENDO unit. According to this study, the TENDO 

units have consistently produced test-retest reliability of R > 0.90 when examining average and 

peak power (Mangine et al., 2014). The results of Jennings et al. (2005) and Mangine et al. 

(2014) show the TENDO unit’s validity in measuring kinetic and kinematic variables. This can 

be a useful tool when examining movement velocities during resistance training. 

Stock and colleagues (2011) examined the test-retest reliability of velocity measurements 

using a TENDO unit. Subjects performed 1 repetition of the flat bench press at 10% increments 

ranging from 10-90% of their 1RM during 2 separate testing sessions. Each repetition was 

performed with the intent to maximally accelerate the barbell. There were no significant 

differences in average movement velocity between trials 1 and 2. There was moderate reliability 

between trials 1 and 2 for velocity (test-retest ICC ranging from 0.564 to 0.811), but less 

reliability was observed when compared to Jennings et al. (2005) who looked at the reliability of 

power and reported test-retest ICC values of 0.97 for the TENDO units (Stock et al., 2011). 

Although the primary concern of the investigators was not to show reliability of the TENDO 

units, it was still observed there was acceptable reliability concerning velocity. The repeatability 

of measurement is essential especially when considering technology that may be used as a 

monitoring tool. Although statistically it may be acceptable to measure movement velocity with 

the TENDO units, it should be noted that there might be a certain level of variance in 

measurement values. One of the limitations in the Stock et al. (2011) study was the lack of 

multiple repetitions at each intensity. There was only one repetition performed during each trial 

at each intensity, so there is a possibility for other factors besides device error to have influenced 

the lesser ICC in this study. 
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It appears that there is some controversy regarding the method of calculating power using 

TENDO units and how values are being reported (Willardson, 2010). Research has shown the 

test-retest reliability to be very good regarding power measurements (Jennings et al., 2005; 

Mangine et al., 2014) as well as velocity measurements (Stock et al., 2011). Being one of the 

only studies regarding test-retest reliability of TENDO velocity measurements, it can be assumed 

that the TENDO units provide a large level of reliability of measurement (ICC > 0.7). It should 

also be noted that Stock et al. (2011) only looked at the flat bench press with subject instructions 

to move the bar as fast as possible. This research cannot be assumed to provide all of the answers 

regarding reliability of velocity measurements of the TENDO units.  

In order to truly test the reliability of the TENDO units, movements should be measured 

with more than one TENDO unit simultaneously to discover the Intra- and inter-class 

Correlations between units and between sessions. This would provide practitioners with an 

answer on true repeatability of measurement. Without literature comparing TENDO variables to 

already established and valid methods it can’t be said with certainty whether the TENDO units 

are capable of accurate measurements, but they may be used for reliable measurements. With the 

current research, using a TENDO unit for the monitoring of velocity and power can be 

considered a useful tool when the TENDO units are used exclusively for measurement.  

The price of TENDO units might not be considered expensive when compared to 

equipment such as force plates and linear position transducers, but considering the budgets of 

many laboratories and strength & conditioning practitioners within the field there are definite 

concerns about the price of the unit. For practitioners who typically train athletes in groups, this 

might not be the best tool for day-to-day monitoring for an entire group or team.  
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Motion Analysis Technology 

Motion Capture (MoCap) Analysis has been used by a variety of different studies to 

examine kinematic (i.e. velocity) properties of movement (Chung, Yeung, Chan, & Lee, 2011; 

Leard et al., 2007; Windolf, Gotzen, & Morlock, 2008).  

Chung et al. (2011) used an inertial tracking Xsens system (XSENS, Xsens Technologies 

2007) to measure validity of the VICON motion analysis system (VICON, Oxford Metrics 

Group; Oxford, United Kingdom). Subjects who performed upper body movements as fast as 

they could had measurements drawn from both the Xsens and the Vicon systems simultaneously. 

The author concluded that Vicon performed with high level of validity (Chung et al., 2011). 

Windolf et al. (2008) were interested in how several system parameters could influence 

the accuracy of motion analysis systems. The study used the VICON motion analysis system. 

The parameters examined included camera placement, calibration methods, reflective marker 

size, and the effects of smoothing and filtering. Each scenario consisted of 5 repeated periods of 

data collection. The study goes on to explain how there are any number of variables that can 

influence the accuracy of measurement. Marker roundness, reflection capacity, lighting 

conditions, calibration velocity, duration and technique can all affect the accuracy of motion 

analysis systems (Windolf et al., 2008). There is also an optimal set up regarding the three 

dimensional (3D) camera systems, but not all laboratories have the necessary dimensions to 

achieve such a set up. This also may have an effect on the accuracy of measurement. The author 

states the results indicate that motion analysis system can be used for a variety of situations but 

each individual laboratory should test for accuracy based on their specific set up (Windolf et al., 

2008) rather than just assuming accurate and precise results. 
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Athlete Monitoring 

 Athlete monitoring is a term used to describe assessing an athlete’s progress periodically 

(S. Halson, 2014). Halson (2014) also describes athlete monitoring as an assessment that occurs 

more than once and with enough frequency to provide meaningful information back to the sport 

scientist or coach. There are a wide array of training variables that a sport scientist or coach 

might monitor. Some of these variables include external factors such as force or power output; 

and external factors such as heart rate or blood lactate (S. L. Halson, 2014). Other, more specific, 

training factors may also be looked at such as training volume, intensity, frequency, and barbell 

velocity. 

Influence of Fatigue 

Fatigue in athletes has been the subject of many research projects and books (Duffey & 

Challis, 2007; Edwards, 1981; S. L. Halson, 2014; Twist & Highton, 2013). Although there are 

many definitions of fatigue, a common definition states that fatigue is the “failure to maintain the 

required or expected force” (Edwards, 1981). Monitoring training loads has been described as a 

way to assess an athlete’s progress within a training program and to lower the risk for unplanned 

fatigue (S. L. Halson, 2014).  

Halson (2014) provides a review of several methods of monitoring training load as it 

pertains to fatigue. When considering fatigue from an external and internal load perspective, it is 

essential to use external variables (Twist & Highton, 2013) and internal variables (Achten & 

Jeukendrup, 2003) to garner an understanding on the actual response to training (S. L. Halson, 

2014). External vs. internal load variables are collected exclusively from one another in the sense 

that there are external variables (such as power output, speed, velocity, and acceleration), and 
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there are internal variables (such as heart rate, blood lactate, and ratings of perceived exertion). 

Examining external variables (such as bar velocity) is an important step to understanding 

responses to training and fatigue. Fatigue has been described from the practical perspective as 

“an inability to complete a task that was once achievable within a recent time frame” (Pyne & 

Martin, 2012). In this sense, discovering an athlete’s or an exercise’s optimal range of velocity 

will allow sport scientist’s to monitor changes in that velocity over time to aid in understanding 

the training responses to a given program. 

Fatigue has also been examined in regards to resistance training exercise in an acute 

sense (Duffey & Challis, 2007; Sakamoto & Sinclair, 2006). Duffey & Challis (2007) performed 

sets at 75% of 1RM until failure with 18 subjects. It was found that the mean concentric velocity 

(MCV) decreased as each subject neared failure. These findings indicate that acute fatigue 

contributes to the barbell velocity, or MCV, during resistance training but does not imply any 

chronic effects resulting from fatigue. To the author’s knowledge there is no currently published 

research regarding chronic fatigue and its effect on MCV. 

Performance and Strength Characteristics 

 Several papers have examined the use of performance testing (i.e. jump testing) to 

monitor athletes in terms of physiological fatigue, preparedness, and even strength levels (Kraska 

et al., 2009; Twist & Highton, 2013). Testing sport-specific skills as a monitoring tool can be a 

useful way to identify training adaptations and fatigue (Twist & Highton, 2013). Twist & 

Highton (2013) outlined using subjective measures as monitoring tools such as questionnaires 

and ratings of perceived exertion might raise questions as to validity or reliability. Also, some 

objective measures such as blood lactate or other blood biochemical markers can be expensive 

and require a high level of expertise. Jump, sprint, or other performance testing might be an 



23 
 

option for measuring performance and monitoring fatigue levels over time (Twist & Highton, 

2013).  

 Kraska et al. (2009) related strength characteristics to variables obtained via weighted 

and unweighted jump protocols. Subjects in this study performed static and counter-movement 

jumps using 0kg and 20kg loads on force plates. Subjects also performed isometric mid-thigh 

clean pulls also on force plates. The results of this study indicated that strength characteristics 

were related to the force and rate of force variables obtained during the static and counter-

movement jump testing (Kraska et al., 2009). The results of Kraska et al. (2009) research 

indicates that using jump testing on force platforms may be useful to assess strength 

characteristics in athletes. The use of force platforms are not always available in practical 

settings such as collegiate weight rooms and training facilities. Fatigue has been shown to affect 

barbell velocity acutely (Duffey & Challis, 2007). The use of velocity-measuring devices (such 

as linear position transducers) might allow practitioners to assess athletes more frequently to 

determine detriments to performance over the short and long-term. 

Velocity-Based Resistance Training 

 Velocity-based resistance training, testing, and programming has been the subject of 

research (Jovanovic & Flanagan, 2014). The main idea behind the theory is that by tracking 

velocity with loads, there is a possibility to estimate strength levels and other monitoring 

variables without the need for constant maximal tests. It has even been proposed that a 

practitioner may be able to get instant feedback on daily preparedness by collecting resistance 

training velocities and comparing them with previous values (Jovanovic & Flanagan, 2014). 

Another proposed application by Jovanovic & Flanagan (2014) is using resistance training 

velocities real-time in order to select loads. 
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Concentric Velocity and Relationship to Maximal Strength 

 Examining and monitoring concentric velocity has been the subject of several recent 

research projects (Gonzalez-Badillo & Sanchez-Medina, 2010; Izquierdo et al., 2006; Jovanovic 

& Flanagan, 2014; Judovtseff et al., 2011; Sakamoto & Sinclair, 2006). It has been suggested 

that monitoring mean concentric velocity provides a more accurate depiction of the resultant 

velocity of a resistance training exercise (Judovtseff et al., 2011). Gonzalez-Badillo & Sanchez-

Medina (2010) found there was a very strong relationship between MCV and load (R2=0.98) 

when testing subjects in a 1RM bench press. The subjects in the aforementioned study also 

completed a second trial of 1RM after 6 weeks of training, and although there was a 9.3% 

increase in 1RM bench press the MCV remained stable at the maximal load (0.16 ± 0.04 m·s–1) 

(Gonzalez-Badillo & Sanchez-Medina, 2010).  

 Velocities obtained from submaximal load-velocity profiles have been shown to correlate 

with 1RM very well (r=~0.95) (Judovtseff et al., 2011). In their study, Judovsteff et al. (2011) 

analyzed data from 3 bench press studies to determine the relationship between the submaximal 

load-velocity profile and the actual 1RM load. Their result show that MCV at submaximal loads 

have a linear relationship with the MCV at 1RM loads. Thus, there is a reasonable ability to 

predict 1RM bench press loads when only examining submaximal load-velocity profiles. It has 

been suggested that to get an accurate depiction of the load-velocity profile that MCV should be 

measured using at least 4-6 increasing intensities ranging from 30-85% of 1RM (Jovanovic & 

Flanagan, 2014).  
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Minimal Velocity Threshold 

 The idea of a minimal velocity threshold (MVT) has been suggested in several research 

studies as a way to test and monitor athletes (Gonzalez-Badillo & Sanchez-Medina, 2010; 

Izquierdo et al., 2006; Jovanovic & Flanagan, 2014). This term refers to the MCV on the last 

successful repetition of a 1RM or repetitions until failure condition where maximal lifting effort 

occurs (Jovanovic & Flanagan, 2014). These studies also suggest that there is an exercise-

specific MVT. Izquierdo et al. (2006) performed a 1RM in the bench press and half squat with 

36 physically active men as subjects. Every 10 days after the 1RM, subjects performed one set 

until muscular failure with different percentages of their 1RM (60%, 65%, 70%, and 75%). The 

MCV was recorded on both the 1RM and repetitions until failure conditions. In the bench press, 

the MVT was comparable between both the 1RM and repetitions until failure (0.15 ± 0.03 m·s–

1). In the half squat, the MVT was also comparable between both the 1RM and repetitions until 

failure (0.27 ± 0.02 m·s–1) (Izquierdo et al., 2006). The results of the bench press portion of this 

study coincide with other research which has suggested that the MVT is the same in the 1RM 

bench press even after increases in strength (Gonzalez-Badillo & Sanchez-Medina, 2010). There 

is no other research to the author’s knowledge related to the MVT in the back squat exercise. 

More research is needed in order to determine if there is a MVT for the back squat exercise and 

to determine what factors might contribute to it. 
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Abstract 

The purpose of this study was to determine the relationship between the Minimal Velocity 

Threshold (MVT) of 1RM and repetitions until failure testing conditions using the back squat 

exercise. Fourteen injury-free males with experience in the back squat volunteered to perform a 

1RM and a submaximal (70% 1RM) repetitions until failure test, each during different testing 

sessions. Mean Concentric Velocity (MCV) was collected using a wireless inertia-measuring 

device. The last successful repetition in either condition was considered the MVT. A very small 

relationship between 1RM and repetitions until failure MVT was found (r=-0.135). There were 

no significant differences between testing sessions and the effect size was small (Cohen’s 

d=0.468) between each testing session. The small relationship and the non-significant p-value 

might suggest there is individual variance with MVT. In conclusion, the results of this study do 

not support a general MVT for the back squat comparing 1RM and submaximal repetitions until 

failure. 
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Introduction 

 The ability to quantify and monitor resistance training variables has been the subject of a 

large number of investigations [5, 13, 19, 21] and has been a topic for athlete monitoring and 

coaching in the practical setting [2, 4, 16]. Resistance training variables commonly quantified 

include exercise intensity, volume, exercise selection and frequency of training [11]. Several of 

these variables are straight-forward and simple to collect data on for monitoring purposes. For 

example, exercise intensity can be interpreted as the amount of resistance or load being used for 

a given exercise [5]. Volume can be interpreted as the total number of repetitions being 

performed within a given exercise, day, training phase, etc. [20]. Volume-load is often used as an 

approximation of work during resistance training and is the combination of volume and intensity 

(sets x repetitions) [14]. 

 Resistance training variables that might not be as apparent as volume or intensity include 

acceleration, force, and velocity. Recently, more research has emerged that has measured the 

velocity of resistance training exercises [4, 6, 8, 10]. Velocity-based resistance training has also 

been reviewed in the literature [9]. Using a velocity-based training approach, a coach or 

practitioner could use the velocities of resistance training exercises to test and monitor factors 

such as strength, effort, and fatigue [9]. One-repetition maximum (1RM) testing has traditionally 

been used to measure strength and to determine training loads [8, 17]. Further research has 

shown that movement velocity of a submaximal load is highly related to maximal strength 

(1RM) [10]. The ability to predict 1RM based on submaximal velocities could be a useful 

method for coaches who want to monitor how their athletes are adapting to training without the 

need to perform maximal testing on a frequent basis. It is important to note that mean concentric 
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velocity (MCV) has been shown to be a more reliable depiction of the propulsive velocity in a 

resistance training movement when compared to peak velocity measurements [10]. 

Research conducted measuring concentric velocity in the bench press and back squat have 

suggested there is an exercise-specific minimal velocity threshold (MVT) regardless of load or 

individual differences [8]. The MVT in resistance training is the MCV achieved on the last 

successful repetition during a 1RM or repetitions until failure test [9]. The relationship between 

MCV and intensity suggests that there is an inevitable “finite velocity” on the maximal end of 

intensity. If there is a relationship between the MVT during a 1RM and a repetitions until failure 

test, this could provide coaches with the opportunity to choose from a wider variety of tests for 

athlete monitoring purposes. Thus, the purpose of the current study is to examine the relationship 

of velocities in the back squat between 1RM and repetitions until failure conditions. 

Methods 

Subjects 

 Fourteen male subjects volunteered to participate in the current study (age= 25.0 + 2.6, 

height= 178.9 + 8.1, body mass= 88.2 + 15.8, body fat %= 15.8 + 5.8). Prior to beginning testing 

procedures, all subjects were required to have: no current or past injuries that affect their ability 

to back squat, at least one year of consistent experience with the back squat, the ability to 

perform a back squat to at least parallel, which was defined as the point at which the hip joint is 

level with the knee [3], and were at least 18 years of age. Subjects were also instructed not to 

perform any strenuous activity for 48 hours prior to each testing session. All subjects read and 

signed written informed consent documents as approved by the University’s Institutional Review 

Board. 
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Design 

 To investigate the presence of a MVT in the back squat, a repeated measures design was 

employed where each subject completed a 1RM during the first testing session and a set of 

repetitions until failure with a submaximal load during the second testing session. The MCV 

during the final successful repetition from each testing session were used to determine the 

minimal velocity in each loaded condition.  

Methodology 

 A wireless inertia-measuring device (PUSH, Inc., Canada) was used to collect kinematic 

data. This device was attached to each subject’s right or left forearm. Previous research has 

shown PUSH™ device-to-device reliability to be acceptable (r= 0.9), therefore the subjects 

attached the device on preferred side [18]. Kinematic data was displayed using a smartphone 

application connected via Bluetooth to the device. 

 All subjects performed 2 testing procedures at the laboratory with each testing session 

separated by 7 days. The first testing session involved a 1RM. The second testing session, 

involved performing a set of repetitions until failure using 70% of the 1RM load achieved in the 

first testing session. The back squat depth was defined as when the hip joint was in line 

horizontally with the knee [3].  

Anthropometric Measurement and Warm-Up Procedure 

 Upon arriving to the laboratory for the first testing session, anthropometric measurements 

were obtained prior to testing. Subject height was collected to the nearest 0.5 cm using an 

electronic stadiometer (Cardinal Scale Manufacturing Co., Webb City, Missouri). Body mass 

was collected to the nearest 0.1 kg using a Tanita Body Composition Analyzer BF-350 (Tanita 
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Corporation of America, Inc., Arlington Heights, Illinois). ACSM 7-site skinfold procedures 

were used to estimate body fat % and were collected using a Lange Skinfold Caliper (Creative 

Health Products, Inc., Ann Arbor, Michigan). 

 Prior to performance testing, all subjects performed a standardized warm-up procedure. 

This procedure included 25 jumping jacks, 5 repetitions of dynamic mid-thigh pulls using a 20kg 

barbell, and 3 sets of 5 repetitions of dynamic mid-thigh pulls using 60kg [1]. 

1-Repetition Maximum Testing 

 Prior to beginning testing procedures, subjects reported an estimated 1RM for the back 

squat exercise to determine warm-up loads. During the first testing session, subjects performed a 

1RM test of the back squat. The back squat depth was defined as when the hip joint is in line 

horizontally with the knee [3]. Subjects were instructed to move every repetition with maximal 

lifting effort during each testing session, including warm-up attempts, 1RM attempts, and all 

submaximal repetitions until failure. The eccentric portion of the squat was performed until the 

subject was verbally instructed to begin the concentric portion upon reaching the required depth. 

A resistance band was placed at the required depth for each subject as a visual aid for the tester 

to instruct the subject to begin the concentric portion of the lift. Subjects were also instructed to 

pause for 1-2 seconds between repetitions but were permitted to begin each repetition 

voluntarily. A modified 1RM protocol was used where subjects performed 65%, 75%, 85%, and 

95% of their estimated 1RM for 5, 3, 2, and 1 repetitions, respectively, before attempting their 

1RM [12]. Three minutes of rest were given between each warm-up and between each 1RM 

attempt [15]. Each subject achieved their 1RM within 4 attempts. After the initial 1RM attempt, 

subjects continued to increase the load on the barbell by a minimum of 2.0 kg and performed 

additional 1RM attempts until they failed to complete an attempt. The last successful repetition 
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was considered the subject’s 1RM.  The MCV during the last successful repetition was 

considered the MVT. 

Repetitions until Failure Testing 

 Subjects returned in 7 days for the second testing session during which they lifted 70% of 

their 1RM until they failed to complete an additional repetition. Subjects used the same depth as 

in the first testing session, and were reminded to move each repetition with maximal lifting effort 

and to pause in between repetitions. Two warm-up sets were performed prior to the repetitions 

until failure. These warm-up sets included 55% and 65% of 1RM for 5 repetitions each. Three 

minutes of rest were given between each warm-up and between the repetitions until failure set. 

Subjects then performed repetitions until failure with 70% of 1RM [8]. The MCV of the last 

successful repetition during this testing session was considered the MVT. 

Statistical Analysis 

 Each subject’s MVT was compared between the 1RM and repetitions until failure 

condition. The MCV was derived from the PUSH™ device’s kinematic data. A Pearson product-

moment zero-order correlation was used to identify the relationship between the two MVT. A 

paired t-test, typical error, and effect size using Cohen’s d were used to explore differences 

between each testing session. The coefficient of variance (CV) was calculated between subjects 

at each warm-up load, during the first and last successful 1RM attempt, each successful 

repetition during the repetitions until failure session, and the last successful repetition during the 

repetitions until failure session. The criteria for statistical significance was set at p<0.05. ICCs 

were interpreted according to the scale developed by Hopkins: 0.0-0.1, 0.1-0.3, 0.3-0.5, 0.5-0.7, 

0.7-0.9, and 0.9-1.0 were interpreted as trivial, small, moderate, large, very large, and nearly 
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perfect, respectively [7]. Effect size using Cohen’s d were interpreted according to a scale 

developed by Hopkins: 0.0-0.2, 0.2-0.6, 0.6-1.2, 1.2-2.0, and 2.0-4.0 were interpreted as trivial, 

small, moderate, large, very large, and nearly perfect [7]. 

Results 

 The MVT in the 1RM and the Repetitions until Failure conditions are outlined in Table 1. 

There was a small relationship (r= -0.135) between each condition. The MVT found during the 

1RM testing session (0.32 + 0.06 m•s-1) and the Repetitions until Failure testing session (0.35 + 

0.05 m•s-1) were not statistically different (p>0.05).  

 The mean, standard deviation (SD), and CV results of MCV for the 1RM and Repetitions 

until Failure are displayed in Tables 2 and 3, respectively. The mean set MCV decreased as the 

intensity (load) increased. The CV, in general, increased as the intensity increased with the 

exception of the last successful repetition in both testing sessions. 

 Each subject’s 1RM was found within 4 attempts. There was an average increase of 

2.68% + 1.04% in load from the last successful attempt to the failed attempt. Each subject’s 

1RM was an average of 125 + ~31 kg. An average of 22 + 7 repetitions were completed amongst 

the subjects with 70% 1RM in the repetitions until failure condition. Both the 1RM and 

repetitions until failure results yielded variances above 20%. 
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Table 1. MVT in 1RM vs repetitions until failure 

Pearson’s r -0.135 

Paired t-test p-value 0.266 

Typical Error 0.062 

Effect Size 0.468 

 

Table 2. 1RM session: mean, SD, CV over several conditions 

 Mean SD CV 

First Warm-Up Set (65% 1RM 5 repetitions) 0.65 0.08 12.84 

Second Warm-Up Set  (75% 1RM 3 repetitions) 0.62 0.07 11.96 

Third Warm-Up Set  (85% 1RM 2 repetitions) 0.54 0.07 13.67 

Fourth Warm-Up Set  (95% 1RM 1 repetition) 0.47 0.08 17.57 

First Successful 1RM Attempt 0.39 0.09 22.35 

Last Successful 1RM Attempt 0.32 0.06 17.35 

 

Table 3. Repetitions until failure session: mean, SD, CV over several conditions 

 Mean SD CV 

First Warm-Up Set  (55% 1RM 5 repetitions) 0.73 0.11 14.77 

Second Warm-Up Set  (65% 1RM 5 repetitions) 0.66 0.10 14.62 

All Successful Reps Until Failure 0.53 0.11 20.58 

Last Successful Rep Until Failure 0.35 0.05 15.59 
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Discussion 

 The purpose of this study was to investigate the relationship between the MVT of 1RM 

and repetitions until failure in the back squat. The main finding of this study was a small 

relationship between the MVT during the 1RM and the repetitions until failure conditions (r= -

0.135). This result indicates little evidence for the presence of an exercise-specific MVT in the 

back squat when measuring to associate two intensities. Based on the volunteer subjects in this 

study, there were some variances in physiological status such as strength and strength-endurance. 

This could be a potential reason for the disassociation between the two MVT data. This result 

suggests that there are individual or intensity differences that should be considered when 

examining MCV or MVT during exercise tests such as 1RM or repetitions until failure. 

Although there was only a small relationship between sessions the two MVT data were not 

statistically different (p>0.05) and had a small effect size (Cohen’s d= 0.468). There was also a 

small error (TE= 0.062) between each testing session. This indicates there are similarities 

between MVT in different conditions, meaning that although the two lifting conditions were a 

different stimulus physiologically, data output was not different. The differences in MVT 

obtained during the 1RM (MVT= 0.32 + 0.06 m•s-1 ) and the repetitions until failure (MVT= 

0.35 + 0.05 m•s-1 ) seem to be small when considering the p-value and TE.  

 Previous research has suggested the presence of a MVT [6, 8, 9]. In this research, the 

MVT is considered exercise-specific (i.e. bench press and back squat have different MVTs) 

regardless of the individual’s training status, training history, and levels of fatigue. The 

correlation results (r=-0.135) of this study do not support this theory. Although there seems to be 

a similarity between the MVT in maximal and submaximal training sessions until failure based 

on the paired t-test, (p>0.05; TE= 0.06), the concept of a MVT might not be as simple as 
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previously suggested. It is possible that differences in MVT between 1RM and repetitions until 

failure might be resultant of individual physiological or intensity-related differences. 

 The depth of the back squat was standardized in the current study, which might not be 

indicative of each subject’s natural squatting depth. It is unclear whether or not this standardized 

depth contributed or inhibited any subject’s ability to move the barbell with maximal lifting 

effort. It was assumed that squatting until the hip crease was horizontally in-line with the knee 

would be sufficiently below each subject’s sticking region. The 1RM warm-up protocol was 

modified from previous research [12] which may have affected the accuracy of the 1RM 

measurement. As previously mentioned the average percentage of increase from the last 

successful attempt until the failure attempt was 2.68 + 1.04% which may be interpreted as a 

reasonable increase in load.  

Practical Applications 

The results of this study have indicated a very small relationship between MVT at different 

intensities and an increased variance among tested subjects in MCV as intensity increases. These 

findings have several important benefits for practitioners interested in using MCV or MVT as a 

testing or monitoring tool: 

1. Individual and intensity-related variance exists when considering MVT of the back squat. 

Not everyone fails if MCV falls below a certain point. This is important to keep in mind 

for coaches who may consider using MCV in training or especially when used during 

testing situations. 

2. If a coach chooses to test his athletes in the weight room, via 1RM or repetitions until 

failure, it would be most beneficial to pick one of the tests (either 1RM or repetitions 
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until failure) to use exclusively as the tests yield different kinematic results and lifter 

responses. 

3. When considering using submaximal repetitions until failure as a testing or monitoring 

tool in the practical setting, coaches should consider using a wireless inertia sensor such 

as PUSH to collect MCV during the test. Comparing MCV decrements throughout the 

test and at the point of failure has the potential to be a useful monitoring tool for coaches.  

The subjects’ strength or fatigue were not considered. It is unclear whether differences such 

as this, or others, may contribute to MCV and ultimately the MVT. Future research should 

consider how strength, fatigue, or other factors affect these 2 MCV measurements. Also, future 

research should consider how individuals change over time (i.e. after strength training) regarding 

MCV and MVT. 

Conclusions 

 This study aimed to determine the relationship of MCV and MVT between 1RM and 

submaximal repetitions until failure. Overall, MCV decreased over time as intensity increased. 

Variance between subjects’ MCV increased as intensity increased as well. This indicated that 

there was a relationship between MCV and intensity, but as intensity increased there was more 

variance between subjects. There was a small relationship between MVT at 1RM and 

submaximal repetitions until failure. Thus, the generalization that MVT is exercise-specific has 

been contraindicated by these results. The p-value and TE suggest that although there is a lack of 

a relationship between the 2 testing conditions there are similarities. Possibly, individual 

differences, intensity, volume, and possible fatigue should also be considered when testing MCV 

or MVT during the back squat. In conclusion, using MCV or MVT when testing 1RM or 

repetitions until failure could be a useful tool for practitioners, although considering the results 
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of the current study it would be wise to use either of the tests exclusively of the other without 

comparing the two. 
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 This study aimed to determine the relationship of MCV and MVT between 1RM and 

submaximal repetitions until failure. The results of this study indicated a very small relationship 

between the MVT during the 1RM and the repetitions until failure conditions (r= -0.135). The 

generalization that MVT is exercise-specific has been contraindicated by these results. Overall, 

MCV decreased over time as intensity increased. Variance between subjects’ MCV increased as 

intensity increased as well. This indicated that there was a relationship between MCV and 

intensity, but as intensity increased there was more variance between subjects. There seems to be 

a similarity between the MVT in maximal and submaximal training sessions until failure based 

on the paired t-test, (p>0.05; TE= 0.06) despite the poor r-value. The differences in MVT 

obtained during the 1RM (MVT= 0.32 + 0.06 m·s-1 ) and the repetitions until failure (MVT= 

0.35 + 0.05 m·s-1 ) seem to be small when considering the p-value and TE. Based on the 

volunteer subjects in this study, there were some variances in physiological status such as 

strength and strength-endurance. This could be a potential reason for the disassociation between 

the two MVT data. This result suggests that there are individual or intensity differences that 

should be considered when examining MCV or MVT during exercise tests such as 1RM or 

repetitions until failure. 

 The dissociation between MVT at 1RM and repetitions until failure suggest that coaches 

who wish to use MCV in addition to a testing procedure would be best served to use one test 

exclusively. The MCV from 1RM should not be compared with MCV from repetitions until 

failure. Individual variance exists when considering MVT of the back squat. Not everyone fails if 

MCV falls below a certain point during 1RM or repetitions until failure. This is important to 
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keep in mind for coaches who use MCV in training or especially when used during testing 

situations. 

In the current study, the subjects’ strength or fatigue were not considered. It is unclear 

whether differences such as this, or others, may contribute to MCV and ultimately the MVT. 

Going forward, future research should consider how strength, fatigue, or other factors affect 

MCV measurements. Also, future research should consider how individuals change over time 

(i.e. after strength training) regarding MCV and MVT. 
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