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ABSTRACT

Exploring Ways of Identifying Outliers in Spatial Point Patterns

by

Jie Liu

This work discusses alternative methods to detect outliers in spatial point patterns.

Outliers are defined based on location only and also with respect to associated vari-

ables. Throughout the thesis we discuss five case studies, three of them come from

experiments with spiders and bees, and the other two are data from earthquakes in

a certain region. One of the main conclusions is that when detecting outliers from

the point of view of location we need to take into consideration both the degree of

clustering of the events and the context of the study. When detecting outliers from

the point of view of an associated variable, outliers can be identified from a global or

local perspective. For global outliers, one of the main questions addressed is whether

the outliers tend to be clustered or randomly distributed in the region. All the work

was done using the R programming language.
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1 INTRODUCTION

Spatial point pattern is a set of points distributed irregularly within a specific space

[1]. In Section 2 of the thesis we review the literature on the analysis of spatial point

patterns. There are three types of distributions for spatial point patterns, random,

regular and clustered [2]. There are three estimated functions which can be used to

determine which distribution a given spatial point pattern exhibits, the G function, K

function and F function. We use as motivation 5 case studies of spatial point patterns

that have not been studied in the literature. Three come from data produced at ETSU

by the NSF funded CRAWL (Collaborative Research in the Arthopod Way of Life)

project. Two of those three cases refer to spiders’ location in a web at a certain time

and the other one is the location of waggle dances in an experimental bee hive during

one day. The other two cases have been created retrieving data from a large data base

on earthquakes. We do basic analysis of the five cases based on the methods from the

literature review and then we propose some methods for outliers’ identification and

apply them to those case studies. For the first three cases, we apply the G function,

K function and F function using Euclidean distance. The earthquake data are given

in latitude and longitude. The R package sp [7] is used to handle these coordinates.

Regarding the outliers in a spatial point pattern, I focus on two topics. The first

one is when only the location of the events is considered and the second one is when

there is one or more variables associated to the event besides the coordinates. In

Section 3, we discuss alternative methods to detect outliers in spatial point patterns

when we only consider the location of the events. Most of the methods explored are

based on the distances to the nearest neighbor (dnn). To determine whether a point is
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an outlier or not, we need to discuss the distribution of dnn because a single method

might not be appropriate for all shapes of distributions. The method to detect outliers

might depend on the shape of the distribution. The methods considered are (1) the

usual application of the boxplot, (2) the first gap method, (3) applying Method 1 to

the transformed data, (4) three standard deviations from the mean of the transformed

data, (5) using the adjusted boxplot based on a linear model and (6) using the adjusted

boxplot based on an exponential model [9].

Section 4 addresses the problem of detecting outliers with respect to one or more

associated variables. In some cases, like the earthquakes examples, there might be

other variables such as magnitude and depth of epicenter associated to each event.

We discuss methods to identify outliers with respect to these variables, i.e., when

the value of the variable is unusually high or low considering the values associated to

all of the surrounding events. We consider the concepts of global and local outliers.

We study the spatial distribution of the global outliers. To identify local outliers, we

define a circle around the event, with a defined value of radius, and check whether the

value for the event would be an outlier compared to the values for the points inside

the circle. We first work with each associated variable separately and then with both

variables together to detect outliers in the spatial point pattern. To work with two

associated variables at the same time, we standardize the values of each variable and

plot their absolute standardized values in one plot.

It is necessary to write computer code to perform the proposed analysis. All the

work is done using the R programming language.
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2 ANALYSIS OF SPATIAL POINT PATTERNS

2.1 Spatial Point Patterns

A set of points distributed irregularly within a specific space, is called spatial point

pattern [1]. Classical examples from the literature include the location of trees in a

forest, nests of birds, cell nuclei in tissue, people with a certain illness in a region.

The trees, nest, nuclei, sick people in the examples are called ‘events’, and we care

for the location of the events. We will work with the coordinates of where events

happen. Here we will work mainly with five case studies. The first two come from

observations of the location of spiders in a web; the third case is about the location

of waggle dances done by bees in an experimental hive. These three data sets were

produced in the undergraduate research project CRAWL (Collaborative Research in

the Arthropod Way of Life) at ETSU. The last two case studies are the location of

earthquakes within certain values of longitude and latitude; these two cases are ex-

amples where the information about the value of an associated variable of interest in

each location is available, such as the intensity or the depth at which the earthquake

happened. Next we will describe these examples that will be analyzed in this work.

2.1.1 Case Studies

Cases 1 and 2 refer to experiments done with spiders of the species Anelosimus

studiosus. Brooding spiders were located each one in an enclosure of 28cm x 28cm.

When the offspring was visible, the location of each juvenile spider was recorded in

14



four different stages of development (observation day 0, 23, 35 and 48) 6 times a day.

Colony 35 in Case 1 is formed by a mother and her offspring; mother is no longer

alive or visible in Colony 32 for Case 2.

Case 1. Spiders in Colony 35, first day of observation at midnight, the

mother is absent

The location of the spiders in Case 1 is displayed in Figure 1A.

Case 2. Spiders in Colony 32, first day of observation at 8am in the morn-

ing, mother is present

The location of the spiders in Case 2 is displayed in Figure 1B. The mother is the

point distant from the others in Figure 1B.
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Figure 1: Locations of spiders in two different colonies
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Case 3. The Location of waggle dances in a hive

As part of the data collection in the CRAWL project, the location of the waggle

dances that happened during the day in a square (2 connected panels, each 50x25cm),

experimental hive were recorded. Figure 2 displays the location of the waggle dances

during observation day 3 in a given hive.
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Figure 2: The location of waggle dances of bees in a hive

Case 4 and 5 refer to earthquakes that happened within certain longitude (-68◦,

-83◦) and latitude (0◦, -18◦). That region includes the country Peru. The location of

the earthquakes (since 1973) can be found at the website of Earthquake Hazards Pro-

gram [3]. As for the earthquakes, I prepared two data sets, one for all the earthquakes

with magnitude 5 or more and the other is for all the earthquakes with magnitude 6

or more.

16



Case 4. Earthquakes of magnitude 5 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

The location of the earthquakes of magnitude 5 or more within certain longitude

(-68◦, -83◦) and latitude (0◦, -18◦) are in Figure 3A.

Case 5. Earthquakes of magnitude 6 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

The location of the earthquakes with magnitude 6 or more within certain longi-

tude (-68◦, -83◦) and latitude (0◦, -18◦) are displayed in Figure 3B.

Case studies 1-5 are examples of spatial point patterns. In the next section, the

tools used to describe the distribution of spatial point patterns will be summarized.

2.2 Types of Distributions

Basically, there are three types of distributions for the spatial point patterns,

which are ‘random’, ‘regular’ and ‘aggregated’ distributions [2].

Random distribution indicates a completely random pattern, which shows no ob-

vious structure, i.e., there is equal chance for any point to occur at any location

within the space and the events will not influence each other at all. Regular distri-

bution means the events are distributed regularly to some degree, like every event

within the space is at nearly the same distance from all of its neighbors. Aggregated

distribution means clustered points on the space, where many points are distributed

close together.
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Figure 3: Locations of earthquakes within certain longitude (-68◦, -83◦) and latitude

(0◦, -18◦)

2.2.1 Testing for Complete Spatial Randomness

Before doing further analysis of the spatial point patterns, we should test for com-

plete spatial randomness (CSR). CSR assumes the points within the region follow

a homogeneous Poisson point process. There are several methods to check for CSR,

the most important ones are the distance methods [6]. They are nearest neighbour

distance method, inter-event distance method and point to nearest event distance

method. The following statistical tests can be conducted to test for significant pat-

terns in our data.
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Ho: events exhibit complete spatial randomness (CSR)

Ha: events are spatially clustered or dispersed

If the hypothesis of the complete spatial randomness for a spatial point patten is not

rejected, then it is assumed that the number of events in the region follows a Poisson

distribution and the events in the region are distributed randomly and independently.

In other words, all the events have equal chance to occur anywhere over the space

and will not influence each other [4].
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Figure 4: Different types of distances

There are three distance methods for testing CSR. The decision about CSR is

made based on the cumulative distribution function of a variable that is a distance;

the difference between different methods is the type of distance they consider. Figure

4 depicts these different types of distributions. Consider a spatial point pattern with

only 4 events, Figure 4A shows the distance to the nearest neighbor for the particular

event in the center of the region. Figure 4B shows all the inter-event distances for

the events in the space. Figure 4C shows a random point in the upper corner of the
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region and the distance from that random point to the closest event.

2.2.2 Distance Methods Testing the Complete Spatial Randomness

Nearest Neighbor Distance Method

Illian [1] indicates that in a specific space with n events, rmin denotes the distance

from the ith event to its nearest neighbour (Figure 4A). The G function is the CDF

of the variables ‘distance to the nearest neighbor’. The Ĝ function is the cumulative

frequency distribution of the nearest neighbor distances calculated from the data.

Ĝ(r) =
N [rmin(si) ≤ r]

n
=

Number of point pairs where rmin ≤ r

Number of points in study area
(1)

In the analysis of case studies, the simulated confidence envelope is constructed.

The confidence envelope includes the central 95% of the values obtained by simulation

assuming complete spatial randomness. If the Ĝ for a given spatial point pattern is

within the envelope, it indicates the spatial point pattern is randomly distributed; if

the Ĝ is above the envelope, it indicates the spatial point pattern is clustered. An

example of Ĝ can be seen in Figure 5b.

Inter-event Distance Analysis

The second type of distance is the inter-event distance. Compared to the near-

est neighbour distance, which only considers the shortest distance, the inter-event

distance method is based on all the distances between events in the study area [1].

Figure 4B shows all the inter-event distances for an sample with just four events.

Note that if there are n events, there should be 0.5n(n− 1) inter-event distances

[5]. In the inter-event analysis, we calculate the empirical distribution function of the

inter-event distance called the K̂ function.
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K̂(h) =
R

n2

∑∑
i 6=j

Ih(dij)

wij

(2)

where R is the area of the region, n is the number of points, Ih is a dummy variables

that takes value 1 if dij ≤ h and 0 otherwise, where dij is the inter-event distance

between the i event and the j event. The symbol wij in the equation is the edge cor-

rection, i.e., the proportion of circumference of a circle centered on point i, containing

point j that is in the study area (proportion is 1 if the whole circle is in the study

area).

The simulated confidence envelope helps to check the distribution of a given spa-

tial point pattern. If the K̂ function we estimated from the spatial point pattern is

within the envelope, it indicates that it is random distributed; if the K̂ function is

above the envelope, it indicates a clustered spatial point pattern. An example of K̂

can be seen in Figure 5d.

Point to the Nearest Event Distance Analysis

In this process, we randomly select m points on the space, then we calculate the

distance from each of the m points to the closest event located on the space. Figure

4C shows the distance from a random point to its nearest event. The F function is

the CDF of those ‘points to the nearest event distance’. The F̂ is defined as

F̂ (r) =
N [dmin(pi) ≤ r]

m
=

Number of points pairs where rmin ≤ r

Number of sample points
(3)

The simulated confidence envelope is constructed in the analysis of case studies. If

the F̂ function is within the envelope, it means the spatial point pattern is completely

randomly distributed; if the F̂ function is below the envelope, it indicates a clustered
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spatial point pattern. An example of F̂ can be seen in Figure 5c.

2.3 Analysis of Case Studies

Now we will use the methods described in Section 2.2 to analyze the case studies

mentioned in Section 2.1.

For Case 1 (Spiders in Colony 35), Case 2 (Spiders in Colony 32) as well as Case

3 ( Location of waggle dances in a hive), we are dealing with Euclidean distance, the

Ĝ function, the K̂ function as well as the F̂ function can be calculated as mentioned

in Section 2.2. However, with regard to the earthquake locations in Case 4 and Case

5, Euclidean distance can not be applied since the earth is round and we are dealing

with longitude and latitude. Therefore, in Case 4 ( Earthquakes of magnitude 5 or

more within certain longitude (-68◦, -83◦) and latitude (0◦, -18◦)) and Case 5 (Earth-

quakes of magnitude 6 or more within certain longitude (-68◦, -83◦) and latitude (0◦,

-18◦)), the R package sp [7] is used to calculate the distances between points where

coordinates are given in longitude and latitude. To calculate such distances, the great

circle method is used.

Case 1. Spiders in Colony 35, first day of observation at midnight, the

mother is absent

Based on Figure 5, we can see that the Ĝ and the K̂ are above the envelope, while

the F̂ is below the envelope, indicating that the spatial point pattern in Case 1 is

clustered.
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Figure 5: Analysis of Case Study 1

Case 2. Spiders in Colony 32, first day of observation at midnight, the

mother is present

Figure 6 clearly indicates that the Ĝ and the K̂ are at least partially above the

envelope, while the F̂ is below the envelope. Thus, the spatial point pattern in Case

2 is considered to be clustered.
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Figure 6: Analysis of Case Study 2

Case 3. The location of waggle dances in a hive

Based on Figure 7, the Ĝ and the K̂ are above the envelope, while the F̂ is below

the envelope. Thus, the spatial point pattern in Case 3 is clustered.

Case 4. Earthquakes of magnitude 5 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

Based on Figure 8, by comparing the Ĝ estimated from Case 4 with the Ĝ under

CSR calculated with a simulated large data set, we conclude the spatial pattern of the

location of the earthquakes with magnitude 5 is clustered. Because the Ĝ estimated
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from the given spatial point pattern is above the Ĝ estimated from the simulated

data set assuming spatial randomness.
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Figure 7: Analysis of Case Study 3

Earthquakes do not randomly happen anywhere, they are determined by geology.

That explains why Case 4 shows a clustered pattern as well. Earths outer shell is

formed of approximately ten large and about twenty small rigid tectonic plates that

move slowly but continuously. According to the plate tectonics theory, earthquakes

happen when tectonic plates touch each other or separate. The region under study
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is located between longitudes -68◦ and -83◦ and from the equatorial line to latitude

-18◦. Part of that region is situated on the encounter of two tectonic plates: the

Nazca Plate and the South American plate. Peru is located along the boundary of

two tectonic plates. These two plates are located closely putting huge strain on the

Earth’s crust. The pressures are periodically released through earthquakes. Earth-

quakes do not randomly happen anywhere, they are determined by geology. That

explains why Case 4 shows a clustered pattern as well.
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Figure 8: Analysis of Case Study 4
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Case 5. Earthquakes of magnitude 6 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

Based on Figure 9, a conclusion can be reached that the spatial pattern concerning

the location of earthquakes with magnitude 6 or greater is clustered.
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Figure 9: Analysis of Case Study 5

Cases 1-5 show a clustered or aggregated spatial distribution. However, looking

at the distributions of dnn in Figures 5-9, we can see that the degree of aggregation

is not the same. The locations of spiders in Case 2 are more clustered except for an
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outlier than the spiders in Case 1. The spatial point pattern in which the clustering

or aggregation is stronger than the other cases is Case 3, the location of the waggle

dances in an experimental hive during one day. The location of earthquakes in Case

4 are much more clustered than that in Case 5. The boxplot in Figure 8d indicates

a more skewed distribution than the boxplot in Figure 9d.
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3 OUTLIERS IN SPATIAL POINT PATTERNS WITH RESPECT TO

LOCATION ONLY

3.1 Outliers Regarding Location Only

We will consider the term ‘outlier’ with two different meanings in the context of

spatial point patterns depending on whether we are considering only the location of

the events or we are considering the values of a variable associated with the events.

For example, in the earthquake example we can consider only the location of the

epicenter or the location and the magnitude or the depth of the earthquake. The

outliers with respect to an associated variable will be considered in Section 4. Within

the study area, the points which are not expected to occur on the space according to

the general structure of the pattern, but they appear on the space are considered as

outliers [1].

3.2 Outlier Detection Methods

In Illian et al. [1] the following comment is found ‘the basic statistical idea for

outlier detection is quite simple: assign numerical or functional marks to all points in

the pattern, analyze these marks statistically and regard points with extreme marks

as outliers’. We will work with the distances to the nearest neighbor, which is the

value assigned to each point but several criteria to determine above which distances

are to be considered outliers are to be explored and compared. For our case studies,

we consider outliers as the ones far away from their neighbors. Thus, we will only

care for the large dnn values, but not the small ones.
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As indicated in Section 2, the distances to the nearest neighbor can be calculated

using packages in R. For points in a plane, the function nndist in the package spatstat

[7] calculates the distances to the nearest neighbor using Euclidean distance. For

points expressed in longitudes and latitudes, we will use the package sp [7] to handle

with latitude and longitude coordinates [8]. The function spDists in the package sp is

able to calculate distances using the great circle method. We will discuss alternative

ways of identifying outliers based on the distribution of the distances to the nearest

neighbor. The different ways to identify outliers that we will use are:

Method 1. The usual application of the boxplot

One simple method of identifying outliers would be to prepare a boxplot with those

distances. Any value greater than Q3 + 1.5IQR would be considered as an outlier.

Method 2. First gap method

We define this by looking at the histogram or the stem and leaf display and consider

outliers the values beyond the first large gap that is highly visible at the right side of

the distribution.

Method 3. Applying Method 1 to the transformed data

The usual boxplot is applied to the transformed data after applying the logarithm

transformation or any other Box− Cox transformation.

Method 4. Three standard deviations from the mean of the transformed

data

Values beyond ȳ + 3sd where y is the transformed data are considered to be outliers.

Method 5. Using the adjusted boxplot based on a linear model

In the original boxplot, we use the cutoff value Q3 + 1.5IQR. However, when the
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distribution is highly skewed, we use a different value instead of 1.5. For the linear

model approach, we use 1.5 + aMC, where MC is the medcouple value [9].

Method 6. Using the adjusted boxplot based on an exponential model

There is another model for the adjusted boxplot, the R package Robustbase is used

to make the adjusted boxplot based on the exponential model [9].

In the next section, those methods will be presented, applied and discussed in the

context of analyzing these case studies.

3.3 Case Studies

Case 1. Spiders in Colony 35, first day of observation at midnight, the

mother is absent
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Figure 10: Outliers detection based on boxplot for Case 1
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Based on Figure 10, it can be seen that an obvious outlier is identified which is

shown in the purple circle by the general method that events with values greater than

Q3 + 1.5IQR can be considered as outliers. The distribution of dnn is not highly

skewed except for the outlier and Method 1 works satisfactory.

Case 2. Spiders in Colony 32, first day of observation at 8am in the morn-

ing, mother is present
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Figure 11: Outliers detection based on boxplot for Case 2

Based on Figure 11, it is clear that an obvious outlier is identified shown in the

purple circle by the general method that events can be considered as outliers if they

have values greater than Q3+1.5IQR. In this case, the outlier is the mother; a guess

is that she went on a hunting trip to catch a prey. The boxplot without the distant

outlier indicates a fairly symmetric distribution and Method 1 works well.
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Case 3. Location of waggle dances in a hive

Method 1. The usual application of the boxplot
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Figure 12: Outliers detection based on boxplot for Case 3

Based on Figure 12, it can be seen that a large number of outliers are detected

which is shown in red by the usual method that events can be considered as outliers

with values greater than Q3 + 1.5IQR. Figure 12 is an application of Method 1.

There is a considerable number of events that are located at a moderate distance

from the nearest neighbor are identified as outliers with this method. When most of

the points are highly clustered, the ones that are even at a moderate distance from

the nearest neighbor are identified as outliers. In this example, most distances (in

cm) were very small and any point with distance to the nearest neighbor larger than

0.7844 is considered an outlier by applying the usual rule of the boxplot. Below are
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the basic statistics for the dnn of Case 3.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02054 0.17450 0.28390 0.38540 0.41850 4.62400

In cases like this we might want to rethink the way outliers are identified. Due to the

overcrowding of the events on the space, some otherwise acceptable nearest neighbor

distances for the events turned out to be outliers based on the Method 1.

Method 2. First gap method

In order to get a better view of how our data are clustered, a histogram and a

stemplot of the dnn for Case 3 are displayed.
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Figure 13: Histogram of the dnn for Case 3

Based on Figure 13, the histogram of dnn for Case 3, it is clear that a gap exists.

The gap can indicate what the cutoff value to detect the outliers should be. However
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the stemplot give us a better idea of where the gaps in the dnn exist.
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Note: *indicates that the line has been truncated for formatting purposes.

All the points after the first gap in the sorted distances could be considered as

outliers. For Case 3, the dances with distance to the nearest neighbor equal or greater

than 3.48 would be the natural candidates. After applying the first gap method, four

outliers are detected which are shown in the darkgreen circles in Figure 14.
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Figure 14: Outliers detection based on first gap for Case 3
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Method 3. Applying Method 1 to the transformed data
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Figure 15: Histogram of dnn and lndnn for Case 3

Based on the histogram in Figure 15A, the distribution of dnn is highly skewed,

and it looks like the distribution of dnn for the waggle dances is log normal. We

calculated lndnn = log(dnn); the distribution of the lndnn shown in Figure 15B is

fairly symmetric.

Figure 16 is based on the method that identifies outliers with values greater than

Q3+1.5IQR using the transformed distances lndnn. There is a considerable number

of events that are located at moderate distances from the nearest neighbor but are

identified as outliers.
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Figure 16: Outliers detection based on boxplot for lndnn for Case 3

Method 4. Three standard deviations from the mean of the transformed

data

Another idea for detecting outliers is based on the 68-95-99.7% rule for the normal

distribution. Strictly speaking, we should check first for the normality of the dnn or

their non-linear transformation. Figure 15B indicates a fairly symmetric distribution

apparently with higher skewness than the normal distribution. The Shapiro-Wilk test

rejected the assumption of normality in this case. We need to be aware that with such

a large number of observations (876), the test is very sensitive to any small departure

from normality. We went ahead and applied this method that has the normal model

in mind.
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Figure 17: Outliers detection based on three standard deviations from mean of lndnn

for Case 3

In Figure 17, the darkgreen horizontal line on the boxplot is the cutoff value of

ȳ + 3sd. By applying this cutoff value, four outliers are identified shown in the dark-

green circle. Notice that these are the same four outliers identified in Figure 17 with

applying the the first gap method shown in Figure 14.

Method 5. Using the adjusted Boxplot based on a linear model

Figure 18 is an application of adjusted boxplot using a linear model [9], In this

case, events with dnn values greater than 3.5259 or lower than 0.0306 are identified

as outliers. We only care about the large values, so only the ones with values of dnn

greater than 3.5259 will be considered as outliers. They are shown in the darkgreen

cicles in Figure 18.
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Figure 18: Outliers detection based on linear adjusted boxplot for Case 3

Method 6. Using the adjusted boxplot based on an exponential model

There is an exponential model for the adjusted boxplot applied to skewed distri-

bution. Values greater than Q3 + 1.5exp(3MC)IQR can be considered as outliers,

in which MC is the medcouple value [9]. In R, the function adjust in the package

Robustbase [7] can be used to make adjusted boxplot based on the exponential model.

The adjusted boxplot is applied in Figure 19. We loaded the robustbase package and

use the function adjust, a new method to identify outliers for a skewed distribution

proposed in the reference [9]. However, a considerable number of outliers of which

nearest neighbor distances are not too high can be detected. Adjusted boxplot works

well for the moderate skewness, but the distribution of dnn in this case is highly

skewed.
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Figure 19: Outliers detection based on exponential adjusted boxplot for Case 3

In summary, for Case 3 where the events are highly clustered, some methods

(Method 1, Method 3, Method 6) identify a high number of outliers. Some of those

outliers are actually pretty close to other events. However, the application of the first

gap method (Figure 14), three standard deviations from the mean of the transformed

data (Figure 17) and using the adjusted boxplot based on a linear model (Figure 18)

identify the same four outliers that stand out in the spatial point pattern.

Case 4. Earthquakes of magnitude 5 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

Method 1. The usual application of the boxplot

Figure 20 shows that a large number of outliers (in red) are detected by applying

Method 1. There is a considerable number of events located at moderate distances

from their nearest neighbors are identified as outliers. When most of the points are

41



highly clustered, the ones that are even at a moderate distance from the nearest

neighbor are identified as outliers. In this example, most distances (in km) were very

small and any point with dnn larger than 0.2892 is considered as an outlier by apply-

ing the usual rule that values greater than Q3+1.5IQR can be considered as outliers.
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Figure 20: Outliers Detection based on boxplot for Case 4

Method 2. First gap method

It is clear that Method 1 does not work well for Case 4. To apply the first gap

method, we would look at the histogram and stemplot of dnn for Case 4.
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Figure 21: Histogram of the dnn for Case 4
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Case 4 regarding the earthquakes of magnitude 5 experience the same situation

as Case 3 regarding the waggle dances. Based on the histogram and the stemplot,

the large gap exists between 92 and 105. We consider the dnn values greater than

100 can be identified as outliers. Applying the first gap method, four outliers are

identified and shown in red in Figure 22.
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Figure 22: Outliers detection based on first gap for Case 4

Method 3. Applying Method 1 to the transformed data
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Figure 23: Histogram of dnn and lndnn for Case 4

In Figure 23A, we can see that the distribution of dnn is highly skewed. The
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distribution of the transformed distances lndnn = log(dnn) is fairly symmetric except

for a few extreme small outlier shown in Figure 23B. We are only concerned with large

outliers but not small ones, so these small values should not matter.
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Figure 24: Outliers detection based on boxplot for lndnn for Case 4

Figure 24 is prepared by applying Method 1 to the transformed data lndnn. Three

outliers were identified in this method shown in the darkgreen circles.

Method 4. Three standard deviations from the mean of the transformed

data

The boxplot in Figure 25 is the boxplot of lndnn with a horizontal line y = ȳ+3sd

where ȳ is the mean of lndnn and sd is the standard deviation of lndnn. For a normal

distribution, 99.7% of the population should fall into the interval (ȳ − 3sd, ȳ + 3sd).

Based on this idea, we want to detect the outliers greater than ȳ + 3sd since we

only care about the large outliers. No event had values of lndnn greater than
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ȳ + 3sd = 5.072. Thus, no outlier is identified using this method.
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Figure 25: Outliers detection based on three standard deviations from mean of lndnn

for Case 4

Method 5. Using the adjusted boxplot based on a linear model

As we indicated in Case 3, there is a way of identifying outliers with the adjusted

boxplot using a linear model [9]. Figure 25 is an application of this method. Events

with dnn value greater than 94.4810 are identified as outliers. Five outliers shown in

red are identified by this method in Figure 26.

Method 6. Using the adjusted boxplot based on an exponential model

There is an adjusted boxplot using the exponential model. Values greater than

Q3+1.5exp(3MC)IQR can be considered as outliers, in which MC is the medcouple
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Figure 26: Outliers detection based on linear adjusted boxplot for Case 4

value [9]. The function adjust in the package Robustbase is used to make the adjusted

boxplot based on an exponential model [7].

In Figure 26, the adjusted boundary value is 63.1390, which indicates that any

value greater than 63.1390 can be considered as outlier. However, a considerable

number of outliers shown in red are identified; some of them have moderate dnn val-

ues.

In summary, the events in Case 4 are highly clustered. Some methods identify a

large number of outliers, but some of these outliers are pretty close to other events.

However, the first gap method (Figure 22), applying Method 1 to the transformed

data (Figure 23) and using the adjusted boxplot based on a linear model (Figure 26)

identify the outliers that stand out in the spatial point pattern.
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Figure 27: Outliers detection based on exponential adjusted boxplot for Case 4

Case 5. Earthquakes of magnitude 6 or more within certain longitude (-

68◦, 83◦) and latitude (0◦, -18◦)

Figure 28 shows that there are four events that can be considered as outliers,

because that have dnn values greater than Q3 + 1.5IQR. The distribution of dnn is

not extremely skewed, Method 1 is good enough to identify outliers.

As to detecting outliers with respect to the location of the event, most of the

current methods are based on the distances to the nearest neighbor. However, to

determine whether a point is an outlier we need to discuss the distribution of dnn

and the method to define outliers might depend on the shape of that distribution.

The usual definition of outlier associated to the boxplot might not be enough. When

most of the events are moderately clustered we need to consider the adjusted boxplot

proposed by Huber [9] for skewed distributions. When the data are highly skewed
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Figure 28: Outliers detection based on boxplot for Case 5

in Case 3 and Case 4, we might consider alternatives. The first gap method is an

easy and intuitive method to deal with highly skewed distributions. Working with

transformed data is also a good way to detect outliers for a highly skewed distribution.
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4 OUTLIERS IN SPATIAL POINT PATTERNS WITH RESPECT TO AN

ASSOCIATED VARIABLE

In this section we will address the problem of identifying outliers with respect

to the values of one or more associated variables. In some cases, like the earthquake

examples, there might be other variables such as magnitude and depth of the epicenter

associated to each event. We will discuss methods to identify outliers with respect

to these variables. We will consider two types of outliers, global and local. Global

outliers are the events with unusually high or low values of their associated variables.

Local outliers are the outliers with respect to the values associated to the surrounding

events.

There is very little in the statistical literature about outliers with regard to an

associated variable in spatial point patterns. However, recently a book written from

the point of view of computer science has been published [11]. The following rule

of spatial data is found in Outlier Analysis [11]: ‘Everything is related to everything

else, but nearby objects are more related than distant objects’. It indicates that we

need to detect the events with behavioral attribute values varying much from the

neighboring spatial data. The same reference [11] also indicates that when dealing

with multiple behavioral attributes, we need to work with each variable separately,

then make a combination of these two to get the final outlier score to do a further

analysis of spatial outliers.
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4.1 Working with One Associated Variable

When it comes to the earthquake data, there are two associated variables, which

are depth and magnitude. In this section, we will discuss methods to identify outliers

when we consider each associated variable separately.

Global Outliers

Case 4. Earthquakes of magnitude 5 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

We can determine outliers for each variable based on the usual concept that values

greater than Q3 + 1.5IQR can be identified as outliers. An event with an extremely

high value for the associated variable can be identified as an outlier [11]. We first

prepare histograms and boxplots for each associated variable.
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Figure 29: Boxplot and histogram of depth for Case 4
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Figure 30: Boxplot and histogram of magnitude for Case 4

We notice that there seems to be a lot of outliers with respect to both associated

variables according to the boxplots in Figure 29 and Figure 30. However, since these

data have a spatial location, we want to see how those outliers are located. Two 3D

plots are created, one for depth and one for magnitude. The points in red are those

considered to be outliers according to the boxplots.

After examining the 3D scatter plots in Figure 31 and Figure 32, something that

calls our attention is that the outliers from the depth point of view seem to be clus-

tered in a certain region and the outliers with respect to magnitude are more scattered

all over the region [10]. It would be nice to have a tool to visualize if the outliers with

respect to an associated variable in a spatial point pattern tend to be more clustered

than the events in general. We propose to compare the Ĝ for all the data with the Ĝ

for just the outliers.
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Figure 31: 3D-plot with outliers identified based on depth for Case 4

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Boxplot of magnitude for earthquake5+ 3D plot for Earthquake5+

−20 −15 −10  −5   05.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

−85
−80

−75
−70

−65

latitude

lo
ng

itu
de

m
ag

Figure 32: 3D-plot with outliers identified based on magnitude for Case 4

There are three Ĝ in Figure 33 and in Figure 34; the black one is for the whole
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data set, the green one is for the outliers only and the purple one is for the simulated

data under the condition of complete spatial randomness.
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Figure 33: Ĝ with depth outliers for Case 4
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Figure 34: Ĝ with magnitude outliers for Case 4
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Based on Figure 33, it is clear that the outliers with regard to depth are super

aggregated, which is much more clustered than all the events in Case 4, even though

the whole data set is very aggregated as we discussed in Section 2. The Ĝ for the

outliers with regard to magnitude in Figure 34 indicates that they are less clustered

than all the events of earthquakes of magnitude 5 or more.

Figure 35 and Figure 36 display the 2D plots for the location with the outliers

shown in red for depth and magnitude respectively. We make 2D plots of the location

to have a better perception of where they are located.
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Figure 35: 2D-plot with outliers identified based on depth for Case 4

Figure 35 shows that the outliers with regard to depth in Case 4 are clustered and

practically all in one region. However, the outliers with respect to magnitude (Figure

36) are scattered all over the whole pattern.
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Figure 36: 2D-plot with outliers identified based on magnitude for Case 4
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Figure 37: 3D-plot for earthquakes of magnitude 5 or more
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In Figure 37, we make a 3D-plot with varying color to represent the fourth vari-

able which is magnitude in our case to get a better perception of how the outliers are

located in terms of two different associated variables.

Case 5. Earthquakes of magnitude 6 or more within certain longitude (-

68◦, -83◦) and latitude(0◦, -18◦)

We can determine outliers with respect to an associated variable as those values

greater than Q3 + 1.5IQR, Figure 38 and Figure 39 show the outliers identified with

boxplot in terms of depth and magnitude respectively.
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Figure 38: Boxplot and histogram of depth for Case 5
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Figure 39: Boxplot and histogram of magnitude for Case 5

Notice that both variables seem to have outliers according to the usual rule ap-

plied by the boxplots. However, since these data have a spatial location, we want to

see where those outliers are located.

Figure 40 and Figure 41 are 3D plots, one for depth and one for magnitude mark-

ing the points in red if they were considered to be outliers by the boxplots. In this

case, both with respect to depth and magnitude, it seems that the outliers identified

by the usual boxplot are clustered in one region.

Figure 42 and Figure 43 display the Ĝ for outliers with respect to depth and

magnitude respectively for Case 5. Each one has three Ĝ, the black one is for all the

events, the green one is for the outliers only and the purple one is for complete spatial

randomness obtained by simulation.
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Figure 40: 3D-plot with outliers identified based on depth for Case 5
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Figure 41: 3D-plot with outliers identified based on magnitude for Case 5
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Figure 42: Ĝ with depth outliers for Case 5
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Figure 43: Ĝ with magnitude outliers for Case 5

Also, we want to make 2D plots, one for depth and one for magnitude, with

location of the points and marking the points in red if they are considered as outliers
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to get a better view of how the outliers are located. They are shown in Figure 44 and

Figure 45.
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Figure 44: 2D-plot with outliers identified based on depth for Case 5

6.0
6.5

7.0
7.5

8.0

Boxplot of magnitude for earthquake6+

−82 −78 −74 −70

−1
5

−1
0

−5
0

2D plot for Earthquake6+

longitude

lat
itu

de

Figure 45: 2D-plot with outliers identified based on magnitude for Case 5
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In Figure 46, we make a 3D plot with varying color to represent the fourth variable

which is magnitude in our case to get a better perception of how the outliers are

located in terms of two different associated variables.
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Figure 46: 3D-plot for earthquakes of magnitude 6 or more

Local Outliers

In the previous section, global outliers for one variable were identified using the

usual method of the boxplot considering the values of the associated variable for all

the events. Now we will address the question: Would they be outliers if we consider

the values of the variable only for the events around them? In reference [11], we find

the phrase ‘spatial outliers are objects which have behavioral attribute values that

are distinct from those of their surrounding spatial neighbors’. We will call this ‘local
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outliers’. We explore the idea of defining a circle around the point (event) and see if

it would be an outlier compared to the other points or events inside the circle. The

definition depends on the value of the radius, and we arbitrarily choose radius (r)

equals 50km for the case of the earthquakes.

For each event in the spatial point pattern, we define a circle with the event as

the center and r equalling to 50km, for each event we form a subset of points that

are of distance r or less from it. Because the location for earthquakes is given in

longitude and latitude, distances are calculated accordingly using the sp [7] package

that implements the great circle method in R. We calculate the average depth (without

the event in the center) and compare it with the depth for all the events inside the

circle, those differences are stored in an object. Also, we compare the maximum

depth with the depth for all the events inside the circle and store those differences in

an object so that we can later examine them. The usual criterion to identify outliers

in a boxplot is applied to those differences.

Case 4. Earthquakes of magnitude 5 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

We apply two criteria, the difference between the value for the event and the mean

of the surrounding events and the difference between the value for the event and the

maximum value of the surrounding events. In Figure 47 and Figure 48, we make

boxplots and histograms in terms of those two differences for depth and magnitude

respectively.
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Figure 47: Boxplots and histograms of differences from mean and max for depth for

Case 4

Based on Figure 47, we can see there is a number of outliers identified with the

associated variable depth for Case 4 with regard to both criteria.
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Figure 48: Boxplots and histograms of differences from mean and max for magnitude

for Case 4

Based on Figure 48, we can see there is a number of outliers identified with the

associated variable magnitude for Case 4 with regard to both criteria.
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3D plot for Earthquake5+(diffmax)
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Figure 49: 3D-plot with outliers identified based on differences from mean and max

for depth for Case 4
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3D plot for Earthquake5+(diffmax−mag)
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Figure 50: 3D-plot with outliers identified based on differences from mean and max

for magnitude for Case 4
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Figure 51: Boxplots and histograms of differences from mean and max for depth for

Case 5

In Figure 49, 3D plots for both criteria in terms of the associated variable depth

show where the local outliers are located. The local outliers are identified by both

criteria are exactly the same events.
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Figure 52: Boxplots and histograms of differences from mean and max for magnitude

for Case 5

In Figure 50, 3D plots for both criteria in terms of the associated variable mag-

nitude show where the local outliers are located. The local outliers are identified by

both criteria are exactly the same events.
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3D plot for Earthquake6+(diffmean)
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3D plot for Earthquake6+(diffmax)

−20 −15 −10  −5   0

  0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

−82
−80

−78
−76

−74
−72

−70
−68

latitude

lo
ng

itu
de

de
pt

h

Figure 53: 3D-plot with outliers identified based on differences from mean and max

for depth for Case 5
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3D plot for Earthquake6+(thedmax)
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Figure 54: 3D-plot with outliers identified based on differences from mean and max

for magnitude for Case 5
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Case 5. Earthquakes of magnitude 6 or more within certain longitude (-

68◦, -83◦) and latitude (0◦, -18◦)

Similarly to Case 4, two criteria are applied, the first one is the difference com-

pared to the mean, and the second one is the difference compared to the maximum.

Figure 51 and Figure 52 display the boxplots and histograms for the two different

criteria for depth and magnitude for Case 5. A number of outliers are identified based

on both criteria with regard to the associated variable depth in Figure 51. Also, there

is a number of outliers identified based on both criteria with regard to the associated

variable magnitude. They are displayed in Figure 52.

In Figure 53 and Figure 54, 3D plots based on both criteria with regard to the

associated variable depth and magnitude are displayed. 3D plots give us a better view

of where the outliers are located. The two criteria identify exactly the same outliers.

4.2 Working with Two Associated Variables

According to the reference [11], there are several attributes for each point, they

should be first analyzed separately and then combined on a single deviation value.

Following that suggestion we combined magnitude and depth in the following way.

First the values of each variable were standardized because they are in different units

and they have a different range of values, then we plot their absolute standardized

values in one plot. We decided to use the criterion ‘more than 3 standard deviations

far from the mean’ to identify outliers. That criterion could be applied in different

ways. Here are three of them:
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• One of the standardized values is greater than three.

• Both of standardized values are greater than three.

• The sum of the standardized values is greater than three or another arbitrary

quantity.
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Figure 55: Plot of the standardized value of one variable >3 for Case 4

Figure 55 is an application of the first criterion for Case 4, the outliers identified

would include all the points shown in red beyond either the green or the blue line.
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Figure 56: Plot of the standardized value of one variable >3 for Case 5

In Case 5, there is no absolute value of the standardized values of depth (zx)

greater than three. Thus, only two outliers shown in red are identified in Figure 56.
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Figure 57: Plot of the standardized values of both variables >3 for Case 4

Figure 57 shows the outliers identified in red when both of the standardized values

are greater than 3. In Case 4, we see there are 5 outliers shown in red on the upper

right that are outliers based on this criterion.

Since there is no abs(zx) for Case 5 greater than three, then there is no need to

apply this criterion to Case 5.

We could define a criterion on the sum of the standardized values. One event could

be considered an outlier if the sum of the absolute standardized values is greater than
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a quantity c. In Figures 58 and 59 c = 3 and c = 6 are used for Case 4 respectively.
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Figure 58: Plot of the sum of the standardized values >3 for Case 4

All the outliers shown in red for Case 4 identified by the criterion that the sum of

the standardized values is greater than three are beyond the purple line in Figure 58.
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Figure 59: Plot of the sum of the standardized values >6 for Case 4

All the outliers shown in red for Case 4 identified by the criterion that the sum of

the standardized values is greater than six are beyond the purple line in Figure 59.

In Figure 60, the criterion ‘the sum of the standardized values greater than three’ is

applied. All the outliers for Case 5 which are the events with the sum of the stan-

dardized values greater than three are beyond the purple line and shown in red.
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Figure 60: Plot of the sum of the standardized values >3 for Case 5
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5 CONCLUSIONS

The thesis focuses on the exploration of alternative ways to detect outliers in spa-

tial point patterns both when outliers are determined based on location alone and

when they are determined based on the values of an associated variable. Several

methods to identify outliers were proposed and explored for different types of spatial

point patterns by using five case studies. The first two case studies are the locations

of spiders in a web. The third case study is the location of waggle dances in an

experimental bee hive during one day. The last two are the location of earthquakes

within certain longitude (-68, -93◦) and latitude (0◦, -18◦).

For outliers with respect to the location only, the identification of outliers was

done using the distances to the nearest neighbor. We developed the idea that differ-

ent methods could be applied based on the shape of the distribution of the dnn. If the

dnn is fairly symmetric, the usual way of identifying outliers based on the boxplot

does work well. If the dnn is moderately skewed, the adjusted boxplot defined in

the reference [9] works well because it identify the outliers that are clearly outliers.

However, when the distribution of the dnn is highly skewed, which means the events

are highly clustered, several methods are proposed and some of them give the same

results identifying the most relevant outliers. For the case of the dances of the bees

in which the events are highly clustered the same four outliers are identified by the

first gap method, three standard deviations from the mean of the transformed dis-

tances and the adjusted boxplot based on an exponential model. For the example of

the earthquakes in which the events are clustered but not as extremely as in the bee

dances case, the first gap method, the boxplot of the transformed distances and the

82



modified boxplot based on a linear model identified the most revelent outliers.

When an associated variable is available, such as depth or magnitude of earth-

quakes in Case 4 and Case 5, we explored ways of identifying spatial outliers with

respect to one or two associated variables. Two types of outliers were defined: global

and local. The comparison of the Ĝ functions for the global outliers and all the events

was used to explore whether global outliers tended to be more clustered than all the

events or not, meaning whether it was more likely for outliers with respect to asso-

ciated variables to happen in some regions and not in others. For the earthquakes

of magnitude 5 or more, we found that the outliers identified in terms of depth are

clustered, but the outliers identified in terms of magnitude are much more randomly

distributed. The local outliers were determined by comparing the value of the variable

at each point with the values of the variable at the surrounding points and a method

based on circles of radius r was applied to identify the points with which each event

was to be compared.

When working with two associated variables at the same time, we standardized

the values of both associated variables since they are expressed in different units and

used the criterion of three standard deviations from the mean to identify outliers for

each variable. Several ways of looking at both standardized variables simultaneously

were explored and compared.

Searching for outliers in spatial point patterns with respect to location only is a

complex issue and it is not convenient to give one single rule to be applied to all cases.

The shape of the distribution of the distances to the nearest neighbor, either fairly

symmetric, moderately skewed or highly skewed needs to be taken into account when
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deciding the method to identify outliers.

Searching for outliers in spatial point patterns with respect to an associated vari-

able is relatively more straight forward but it should include the discussion of the

spatial distribution of the outliers for which we find the G function to be useful.
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