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ABSTRACT 

Molecular evidence suggests multiple evolutionary origins of sociality in the polyphenic spider 
Anelosimus studiosus (Araneae: Theridiidae) 

by 

Nathaniel O Weber 

 

Anelosimus studiosus exhibits two behavioral phenotypes: subsocial and social.  This is the only 

documented spider inhabiting a temperate climate exhibiting social behavior.  While the subsocial 

phenotype is most common throughout the range, the social behavior occurs in isolated pockets in 

northern latitudes.  This study examines the origins of the social phenotype within a segment of the 

spider’s range.  Two hypotheses are tested: 1) pockets of social behavior represent a single origin or 2) 

pockets of social behavior represent local evolutions, thus leading to multiple origins of evolution.  

Microsatellite loci were used to determine genetic structure of the population and to estimate the origins 

of social behavior.  All loci showed lower observed than expected heterozygosities and all populations 

show indications of high levels of inbreeding.  A phylogeny indicates four of the six populations fall out 

by location, not phenotype.  We propose these results reflect multiple local evolutions of the social 

strategy. 
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CHAPTER 1 

INTRODUCTION 

Sociality 

Sociality in spiders is rare, as aggressive and solitary behaviors describe the majority of the nearly 

42,000 spider species (Platnick 2010).  However, spider species exhibit a wide range of behaviors that 

vary from solitary nests to aggregations of individual webs to communal colonies.  Solitary nests consist 

of an adult female and the current offspring generation.  Multiple solitary nests can be found in a common 

location, but each web is maintained individually without cooperation between spiders.  Communal 

colonies are those in which multiple adult females and offspring cooperate in nest tasks.  Varying stages 

of sociality have been extensively described in the literature but in only 23 species (for review see Avilés 

1997; Uetz & Hieber 1997).  Species that have evolved sociality; Anelosimus eximius (Theridiidae), 

Agelena consociata (Agelenidae), Stegodyhpus mimosarum (Eresidae), benefit from cooperation but also 

must deal with potential costs.  Selection for sociality may increase the fitness of the individual as a 

function of group cooperation (Whitehouse & Lubin 2005), but the evolution of sociality requires the 

benefits of those behaviors to outweigh the costs.  An individual can increase its fitness by either 

reproducing (direct fitness) or providing for an increase in reproduction of siblings/relatives (indirect 

fitness) (Hamilton 1964).  Increased fitness can be achieved by group living or cooperative behaviors as 

cooperative brood care can increase the indirect fitness of the population.  These behaviors include caring 

for the egg case of or fostering the offspring of a related adult female.   

In subsocial species (Wilson 1971; Krafft 1979), also described as non-territorial periodic-social 

(Avilés 1997), nests consist of a single adult female and her offspring from the most recent generation.  

Non-territorial periodic-social refers to the time of delayed juvenile dispersal and extended maternal care.  

These two behaviors typify subsocial species (Wilson 1971) and have been described in the spider 

families Theridiidae, Eresidae, and Desidae (see Avilés 1997).  The juveniles remain in the natal web 

until they reach maturity when they disperse.  Adult females are aggressive towards other conspecific 

adult females. 
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Social species, also described as “quasi-social” (Wilson 1971), non-territorial permanent social (Avilés 

1997), and cooperative (Riechert 1985), are typified by multiple adult females and various aged offspring 

maintaining a common nest and cooperatively participating in web maintenance, prey capture, and brood 

care.  Cooperative brood care, where egg sacs and young can be cared for by multiple females, increases 

the likelihood of survival in the event of the death of a mother (Jones et al. 2007).  As offspring mature, 

they increasingly participate in tasks within the colony which is presumed to increase the overall fitness 

of the group (Jones & Parker 2002).  Cooperative behavior can potentially allow for an increase in prey 

capture as a larger, more robust nest and multiple adult females improve the chance of the capture of 

larger or more prey (Nentwig & Christenson 1986).  This ability to increase prey capture can lead to 

increased survivorship of a social colony.  Most social species of spider are tropical, as optimal year 

round weather conditions allow for the development and maintenance of social behavior (see Avilés 

1997).   

Sociality in spiders has repeated origins across phylogenetically distant groups with 18 or 19 

independent evolutions among only 23 species (Agnarsson et al. 2007).  This indicates the transition to 

sociality, though rare, has occurred multiple times and at different locations.  Most social species are 

phylogenetically adjacent to species that exhibit subsocial behavior, suggesting that subsociality is 

antecedent to permanent sociality (Agnarsson et al. 2007).  Congruent to the evolution of sociality is a 

transition from outbred to inbred mating systems.   

Routes to Sociality 

Sociality in spiders can be reached by two routes: parasocial and subsocial.  The parasocial route to 

sociality can be characterized by aggregations of individual spiders in a common area.  These 

aggregations of typically aggressive solitary spiders can form colonies.  In some species, these 

aggregations can be temporary, lasting for only part of or for one generation or, in other species, can be 

permanent, lasting successive generations.  The individuals share supporting web structure; however, they 

forage on individual orbs (Uetz & Hieber 1997) and exhibit no maternal care beyond egg laying (see 
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Whitehouse & Lubin 2005).  The subsocial pathway leads to sociality through extended maternal care and 

delayed offspring dispersal.  This leads to varying degrees of family interactions on a single web.   

Species can be pre-adapted for sociality (Krafft 1979) due to delayed juvenile dispersal, extended 

maternal care and the ability to use a common web.  This predisposition may have arisen from prolonged 

interaction with conspecifics and reduced pre-mating dispersal (Kullmann 1972; Avilés 1997).   

One critical question is the mechanism by which the alternative social behavior is evolving.  Because 

sociality in spiders in so rare and phylogenetically scattered, the commonly accepted hypothesis is that the 

solitary phenotype is the ancestral state (Avilés 1997; Agnarsson et al. 2006).  Species that exhibit both 

subsocial and social phenotypes in the same area can provide insight into the evolution of sociality.  

Microsatellites 

Microsatellites are simple sequence tandem repeats of usually 1-6 nucleotides occurring in the nuclear 

genomes of most taxa.  Microsatellites are in non-coding regions, either intergenic regions or introns, and 

presumably mutate neutrally (Ellegren 2004), but at high rates, in a stepwise fashion (for review see 

Selkoe & Toonen 2006).  Their location and mutation patterns create high allelic diversity in individuals 

through successive generations, making them appropriate for population-level studies.  These 

characteristics have positioned microsatellites as powerful genetic markers.  The analysis of microsatellite 

variation has allowed estimations of relatedness in many species including ants (Goropashnaya et al. 

2001), mites (Carbonnelle et al. 2007), bees (Paxton et al. 1996),  crab spiders (Evans & Goodisman 

2002) and sheep (Mukesh et al. 2006) and have been used in phylogenetic estimates in animals: 

Drosophila (Orsini et al. 2004) and bettongs (Pope et al. 2000) as well as plants: Cicer reticulatum (Sethy 

et al. 2006) and Sinojackia (Yao et al. 2008).   Microsatellites allow for the estimation of evolutionary 

history of a given population over time, which can be combined with the geography of the organism to 

develop a phylogeography of the species as it evolves.  The validity of using microsatellites markers in 

Anelosimus studiosus was established by Duncan et al. (2010).   
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Anelosimus studiosus 

The comb-footed spider, Anelosimus studiosus (Hentz) (Theridiidae), has a range from Argentina in 

South America to New England in North America.  It has been described as a subsocial species (Brach 

1977) as throughout most of its range are webs containing single adult females that exhibit extended 

maternal care and delayed juvenile dispersal.  A subsocial nest consists of a single adult females and the 

most recent offspring generation.  After dispersal of the current generation a second brood, though 

uncommon, can be produced (Jones & Parker 2002).  Juveniles are fed regurgitated food until odd enough 

to take prey without assistance.  Interspersed within the larger and most common subsocial nest 

populations in northern latitudes are isolated pockets of social colonies.  Though A. studiosus was 

previously documented in eastern Tennessee, Furey (1998) was first to describe the social colony 

structure of the species as far north as 36°N, a temperate climate.  Furey also described evidence for 

social behavior (e.g. cooperative feeding, brood care, and web maintenance) and noted that subsocial 

nests are generally annual while social colonies are perennial.  The presence of social colonies in northern 

temperate climates is contrary to the notion that year- round activity in the tropics allows for social 

behavior, whereas shorter optimum seasons at higher latitudes better suit solitary colonies (Lin & 

Michener 1972).  All other described social spider species are only found in tropical climates, which 

highlights the uniqueness of this system.  Social colonies of A. studiosus are most commonly found along 

waterways, apparently having some level of dependency on water bodies.  Social colonies in the 

southeastern Unites States are found in correlation with increasing latitude; from 1% at 26°N to 33% at 

36°N (Riechert & Jones 2008).  A model suggest that the transition to sociality in A. studiosus is a “bet-

hedging” strategy (Jones et al. 2007), predicting mothers will forgo their potential maximum relative 

fitness for a more stable, but less-than-maximal relative fitness, giving the best average chance of success.  

Hypotheses 

Locations with both subsocial and social phenotypes may provide insight into the evolutionary question 

of how the social strategy is evolving.  Presuming that the social behavior has evolved from the ancestral 

subsocial phenotype, this study examines two possible hypotheses for evolution of the social strategy.  
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First, the number of origins of evolution of social behavior can be few, potentially only one, with the split 

in behaviors occurring further back in evolutionary history.  Each phenotype would belong to a separate 

lineage and the social strategy would spread simply by range expansion of the strategy or of the species as 

a whole.  In this case, individuals of the same phenotype would form a monophyletic group regardless of 

location.  The limited evolution hypothesis, hypothesis 1 (Figure 1A), predicts the number of origins of 

sociality are few, grouping individuals by phenotype not location.  Evidence for limited evolution can be 

seen in Halictus rubicundus (Soucy & Danforth 2002).  They found a limited number of origins of 

alternate behavior with individuals expressing different phenotypes belonging to phylogenetically 

separate lineages.  Alternatively, the social strategy could be evolving multiple times from the ancestral 

phenotype locally across the population.  For this, individuals would group together according to location 

not phenotype.  The local evolution hypothesis, hypothesis 2 (Figure 1B), predicts many local origins of 

social behavior.  Evidence of local evolution can be seen in a Tetramorium ant (Schlick-Steiner et al. 

2007).  The ancestral phenotype in Tetramorium moravicum is a strategy of a single large queen while the 

alternate strategy is multiple small queens in the same nest.  This species shows two distinct geographical 

lineages with the alternate strategy evolving separately in both.  In our study, two mutually exclusive 

hypotheses (Figure 1) are tested to gauge the evolutionary relationship of subsocial and social populations 

of A. studiosus.   

We examined populations in a 600 km range in east Tennessee along the Tennessee River watershed.  

Six microsatellite loci were used to test for genetic differentiation and estimate the number of origins of 

evolution of social behavior in the study population.  
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Abstract 

The northern social spider, Anelosimus studiosus, exhibits two behavioral phenotypes: subsocial and 

social.  This is the only documented spider species inhabiting a temperate climate exhibiting social 

behavior.  While the subsocial and aggressive, phenotype is most common and ubiquitous throughout the 

range, the alternate social behavioral phenotype occurs in small isolated pockets in northern latitudes.  

This study examines the evolution of the social phenotype within a segment of the spider’s range.  Two 

mutually exclusive hypotheses are tested: 1) the pockets of social behavior represent a single origin of 

evolution that is spreading through the population; possibly in concert with range expansion or 2) the 

pockets of social behavior represent local evolutions within a locale, thus leading to multiple origins of 

social behavior.  In six locations where both phenotypes are observed, six microsatellite loci were used to 

determine genetic structure of the population and to estimate the evolution of social behavior.  All loci 

showed lower observed than expected heterozygosities and all populations showed indications of high 

levels of inbreeding.  This suggests the demography of subsocial populations could purge deleterious 

alleles, facilitating the transition to sociality.  An UPGMA analysis indicates four of the six populations 

group by location, not phenotype.  We propose these results reflect multiple, and possibly recent, local 

evolutions of the social behavior. 

 
Introduction 

Sociality 

Sociality in spiders is rare, as aggressive and solitary behaviors describe the majority of the nearly 

42,000 spider species (Platnick 2010).  However, spider species exhibit a wide range of behaviors that 

vary from solitary nests, to aggregations of individual webs, to communal colonies.  Solitary nests consist 

of an adult female and the current offspring generation.  Multiple solitary nests can be found in a common 

location, but each web is maintained individually without cooperation between spiders.  Communal 

colonies are those in which multiple adult females and offspring cooperate in nest tasks.  Varying stages 

of sociality have been extensively described in the literature but in only 23 species (for review see Avilés 
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1997; Uetz & Hieber 1997).  Species that have evolved sociality; Anelosimus eximius (Theridiidae), 

Agelena consociata (Agelenidae), Stegodyhpus mimosarum (Eresidae), benefit from cooperation but also 

must deal with potential costs.  Selection for sociality may increase the fitness of the individual as a 

function of group cooperation (Whitehouse & Lubin 2005), but the evolution of sociality requires the 

benefits of those behaviors to outweigh the costs.  An individual can increase its fitness by either 

reproducing (direct fitness) or providing for an increase in reproduction of siblings/relatives (indirect 

fitness) (Hamilton 1964).  Increased fitness can be achieved by group living or cooperative behaviors as 

cooperative brood care can increase the indirect fitness of the population.  These behaviors include caring 

for the egg case of or fostering the offspring of a related adult female.   

In subsocial species (Wilson 1971; Krafft 1979), also described as non-territorial periodic-social 

(Avilés 1997), nests consist of a single adult female and her offspring from the most recent generation.  

Non-territorial periodic-social refers to the time of delayed juvenile dispersal and extended maternal care.  

These two behaviors typify subsocial species (Wilson 1971) and have been described in the spider 

families Theridiidae, Eresidae, and Desidae (see Avilés 1997).  The juveniles remain in the natal web 

until there reach maturity when they disperse.  Adult females are aggressive towards other conspecific 

adult females. 

Social species, also described as “quasi-social” (Wilson 1971), non-territorial permanent social (Avilés 

1997), and cooperative (Riechert 1985), are typified by multiple adult females and various aged offspring 

maintaining a common nest and cooperatively participating in web maintenance, prey capture, and brood 

care.  Cooperative brood care, where egg sacs and young can be cared for by multiple females, increases 

the likelihood of survival in the event of the death of a mother (Jones et al. 2007).  As offspring mature, 

they increasingly participate in tasks within the colony which is presumed to increase the overall fitness 

of the group (Jones & Parker 2002).  Cooperative behavior can potentially allow for an increase in prey 

capture as a larger, more robust nest and multiple adult females improves the chance of the capture of 

larger or more prey (Nentwig & Christenson 1986).  This ability to increase prey capture can lead to 

increased survivorship of a social colony.  Most social species of spider are tropical, as optimal year-
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round weather conditions allow for the development and maintenance of social behavior (see Avilés 

1997).   

Sociality in spiders has repeated origins across phylogenetically distant groups with 18 or 19 

independent evolutions among only 23 species (Agnarsson et al. 2007).  This indicates the transition to 

sociality, though rare, has occurred multiple times and at different locations.  Most social species are 

phylogenetically adjacent to species that exhibit subsocial behavior, suggesting that subsociality is 

antecedent to permanent sociality (Agnarsson et al. 2007).  Congruent to the evolution of sociality is a 

transition from outbred to inbred mating systems.   

Routes to sociality 

Sociality in spiders can be reached by two routes: parasocial and subsocial.  The parasocial route to 

sociality can be characterized by aggregations of individual spiders in a common area.  These 

aggregations of typically aggressive solitary spiders can form colonies.  In some species these 

aggregations can be temporary, lasting for only part of or for one generation or, in other species, can be 

permanent, lasting successive generations.  The individuals share supporting web structure; however, they 

forage on individual orbs (Uetz & Hieber 1997) and exhibit no maternal care beyond egg laying (see 

Whitehouse & Lubin 2005).  The subsocial pathway leads to sociality through extended maternal care and 

delayed offspring dispersal.  This leads to varying degrees of family interactions on a single web.   

Species can be pre-adapted for sociality (Krafft 1979) due to delayed juvenile dispersal, extended 

maternal care, and the ability to use a common web.  This predisposition may have arisen from prolonged 

interaction with conspecifics and reduced pre-mating dispersal (Kullmann 1972; Avilés 1997).   

One critical question is the mechanism by which the alternative social behavior is evolving.  Because 

sociality in spiders in so rare and phylogenetically scattered, the commonly accepted hypothesis is that the 

solitary phenotype is the ancestral state (Avilés 1997; Agnarsson et al. 2006).  Species that exhibit both 

subsocial and social phenotypes in the same area can provide insight into the evolution of sociality.  
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Microsatellites 

Microsatellites are simple sequence tandem repeats of usually 1-6 nucleotides occurring in the nuclear 

genomes of most taxa.  Microsatellites are in non-coding regions, either intergenic regions or introns, and 

presumably mutate neutrally (Ellegren 2004), but at high rates, in a stepwise fashion (for review see 

Selkoe & Toonen 2006).  Their location and mutation patterns create high allelic diversity in individuals 

through successive generations, making them appropriate for population-level studies.  These 

characteristics have positioned microsatellites as powerful genetic markers.  The analysis of microsatellite 

variation has allowed estimations of relatedness in many species including ants (Goropashnaya et al. 

2001), mites (Carbonnelle et al. 2007), bees (Paxton et al. 1996),  crab spiders (Evans & Goodisman 

2002), and sheep (Mukesh et al. 2006) and have been used in phylogenetic estimates in animals: 

Drosophila (Orsini et al. 2004) and bettongs (Pope et al. 2000) as well as plants: Cicer reticulatum (Sethy 

et al. 2006) and Sinojackia (Yao et al. 2008).   Microsatellites allow for the estimation of evolutionary 

history of a given population over time, which can be combined with the geography of the organism to 

develop a phylogeography of the species as it evolves.  The validity of using microsatellites markers in 

Anelosimus studiosus was established by Duncan et al. (2010).   

Anelosimus studiosus 

The comb-footed spider, Anelosimus studiosus (Hentz) (Theridiidae,) has a range from Argentina in 

South America to New England in North America.  It has been described as a subsocial species (Brach 

1977) as throughout most of its range there are webs containing single adult females that exhibit extended 

maternal care and delayed juvenile dispersal.  A subsocial nest consists of a single adult females and the 

most recent offspring generation.  After dispersal of the current generation a second brood, though 

uncommon, can be produced (Jones and Parker 2002).  Juveniles are fed regurgitated food until old 

enough to take prey without assistance.  Interspersed within the larger and most common subsocial nest 

populations in northern latitudes are isolated pockets of social colonies.  Though A. studiosus was 

previously documented in eastern Tennessee, Furey (1998) was first to describe the social colony 

structure of the species as far north as 36°N, a temperate climate.  Furey also described evidence for 
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social behavior (e.g. cooperative feeding, brood care, and web maintenance) and noted that subsocial 

nests are generally annual while social colonies are perennial.  The presence of social colonies in northern 

temperate climates is contrary to the notion that year-round activity in the tropics allows for social 

behavior, whereas shorter optimum seasons at higher latitudes better suit solitary colonies (Lin & 

Michener 1972).  All other described social spider species are only found in tropical climates, which 

highlights the uniqueness of this system.  Social colonies of A. studiosus are most commonly found along 

waterways, apparently having some level of dependency water bodies.  Social colonies in the southeastern 

Unites States are found in correlation with increasing latitude; from 1% at 26°N to 33% at 36°N (Riechert 

& Jones 2008).  A model suggest that the transition to sociality in A. studiosus is a “bet-hedging” strategy 

(Jones et al. 2007), predicting mothers will forgo their potential maximum relative fitness for a more 

stable but less-than-maximal relative fitness, giving the best average chance of success.  

Hypotheses 

Locations with both subsocial and social phenotypes may provide insight into the evolutionary question 

of how the social strategy is evolving.  Presuming that the social behavior has evolved from the ancestral 

subsocial phenotype, this study examines two possible hypotheses for evolution of the social strategy.  

First, the number of origins of evolution of social behavior can be few, potentially only one, with the split 

in behaviors occurring further back in evolutionary history.  Each phenotype would belong to a separate 

lineage and the social strategy would spread simply by range expansion of the strategy or of the species as 

a whole.  In this case, individuals of the same phenotype would form a monophyletic group regardless of 

location.  The limited evolution hypothesis, hypothesis 1 (Figure 1A), predicts the number of origins of 

sociality are few, grouping individuals by phenotype not location.  Evidence for limited evolution can be 

seen in Halictus rubicundus (Soucy & Danforth 2002).  They found a limited number of origins of 

alternate behavior with individuals expressing different phenotypes belonging to phylogenetically 

separate lineages.  Alternatively, the social strategy could be evolving multiple times from the ancestral 

phenotype locally across the population.  For this, individuals would group together according to location 

not phenotype.  The local evolution hypothesis, hypothesis 2 (Figure 1B), predicts many local origins of 
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social behavior.  Evidence of local evolution can be seen in a Tetramorium ant (Schlick-Steiner et al. 

2007).  The ancestral phenotype in Tetramorium moravicum is a strategy of a single large queen while the 

alternate strategy is multiple small queens in the same nest.  This species shows two distinct geographical 

lineages with the alternate strategy evolving separately in both.  In our study two mutually exclusive 

hypotheses (Figure 1) are tested to gauge the evolutionary relationship of subsocial and social populations 

of A. studiosus.   

 
 

 

 

 

 

 

 

Figure 2.1 Graphical representation of hypotheses.  Hypothetical populations are indicated by collection site (Loc1 or Loc2) and phenotype 

(sub = subsocial, soc = social) with tree A indicating limited origins and tree B local (multiple) origins of evolution of social behavior 

 
We examined populations in a 600 km range in east Tennessee along the Tennessee River watershed.  

Six microsatellite loci were used to test for genetic differentiation and estimate the number of origins of 

evolution of social behavior in the study population.  

 
Materials and Methods 

Sampling 

  A study area was defined along the Tennessee River watershed in northern Alabama and eastern 

Tennessee.  The total distance by waterway of the study was 600 km from Guntersville Lake, AL (34°N) 

to Steele Creek Lake, TN (36°N).  Collections were completed between June and October 2008 and in 

August 2009.  Locations were selected where known A. studiosus populations existed and where both 

phenotypes were present and interspersed.  Individuals were taken from multiple colonies of each 

A. Hypothesis 1 – Limited evolution               B.     Hypothesis 2 – Local evolution 

   Loc1sub          Loc2sub           Loc1soc                 Loc2soc              Loc1sub                   Loc1soc                     Loc2sub                           Loc2socc 
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phenotype per site to decrease the chance of sampling siblings.  Sampling in this manner was an attempt 

to reduce clustering based on relatedness.  A total of 113 individuals were sampled from 6 localities 

(Table 1, Figure 2) with sample sizes as follows: BLsoc = 10, BLsub = 9; WPsoc = 10, WPsub = 10; SCsoc = 8, 

SCsub = 10; MHsoc = 9, MHsub = 9 ; KNsoc = 9, KNsoc = 9; GLsoc = 10, GLsub = 10.  Specimens were 

collected in the field and transported to the laboratory for preparation.  Individuals not immediately 

prepared were preserved in 70% ethanol prior to DNA extraction.  

 
Table 2.1 Collection site information: site abbreviation, GPS coordinates, elevation, sample size of social, subsocial, and  

total individuals 

Location GPS Coordinates Elevation (ft) Nsoc Nsub Ntot 

Boone Lake (BL) 36°26’51.02” N      82°25’41.14” W 1385 10 9 19 

Warriors Path (WP) 36°29’43.26” N      82°28’21.96” W 1264 10 10 20 

Steele Creek (SC) 36°34’16.55” N      82°13’58.75” W 1581 8 10 18 

Melton Hill (MH) 35°59’29.76” N      84°11’44.55” W 795 9 9 18 

Kingston (KN) 35°51’53.41” N      84°32’37.04” W 743 9 9 18 

Guntersville, AL (GL) 34°22’19.85” N      86°14’55.58” W 601 10 10 20 

 

 

Figure 2.2 Locations of collection sites 

 
DNA extraction and amplification 

DNA from living samples was extracted following the Qiagen DNeasy July 2006 protocol for Animal 

Tissue.  Non-living, preserved samples were air dried for 15 minutes prior to DNA extraction as residual 

ethanol can interfere with DNA extraction.  Adult female A. studiosus were ground in 180 µL lysis Buffer 
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ATL followed by 20 µL proteinase K.  The samples were incubated at 57°C for 4 hours then vortexed.  

Next, 200 µL of both Buffer AL and ethanol were combined and added to the sample.  The tube was then 

centrifuged thrice with corresponding applications of 500 µL Buffer AW1 and AW2 and a final 

application of 200 µL Buffer AE.  The resulting DNA material was refrigerated until used.   

Six microsatellite loci we used were amplified using a modified version of the protocol in Duncan et al. 

(2010).   PCR reactions were run with a final volume of 20 µL, consisting of 10 µL Sigma Aldrich 

ReadyMix, 6.4 µL biology grade water, 0.8 µL forward and reverse primers and 2 µL template DNA.  All 

amplifications were performed using a Bio Rad MyCycler thermocycler with general parameters as 

follows: an initial denaturation of 94°C for 3 min, 35 iterations of 94°C for 40s, annealing at 55.7 – 

57.6°C (optimized by locus – Table 2) for 45s, and extension at 72°C for 35s.  That was followed by 

72°C for 20 min and a final hold at 10°C.   

 
Table 2.2 Six polymorphic loci information: forward (F) and reverse (R) primer sequence, optimal annealing temperature, allele range,                 

number of alleles per locus, dilution concentration, repeat motif and HWE deviation 

Locus Primer Sequence 

Topt 

(°C) 

Allele 

range 

Allele 

per locus 

Dilution 

conc. 

Repeat 

motif 

HWE deviation 

p-value 

D5 F – AGAGCCACTAAAGCAAGCA 

R – TAAGGGCATTTTTGTAGCG  

55.7 105 – 153 47 1:10 TAGA 0.1522 

D225 F – AATTCCGACTGTCGTATCC 

R – TCAGGGGCATTTTAGATTC  

55.6 223 – 265 9 1:10 TAGA  < 0.0001 

C106 F – AAGCAAAATGCCTCCTT 

R – GCTCAGAAGACGAGTGATTC 

55.7 139 – 182 10 1:50 ATG  < 0.0001 

B112 F – CGTCATCTAAACGTGGTTC 

R - TAGCTTGTATGTTGTCCAGTTT 

56.8 142 – 309 29 1:25 AAC  < 0.0001 

D103 F – TCCAACGGCTGTCATTTC 

R – GGGGCACCTGGTAACATT 

56.8 99 – 187  12 1:25 TATC  < 0.0001 

D110 F – GGAGAAATTCTGTCAAATCTGG 

R – GGCGATGTTACCTTTATTAACG  

57.6 218 – 271 16 1:75 TAGA  < 0.0001 

 

Agarose gel electrophoresis was used to ensure adequate product was being obtained.  For analysis, loci 

were multiplexed by individual, diluted (dilution concentrations in Table 2) and combined with 

formamide to a final volume of 10 µL.  GeneScan 600 LIZ Standard, a size standard used with fragments 
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between 20 and 600 bp, was added and analysis was completed at Yale DNA Facility on an Applied 

Biosystems 3730xl 96-Capillary Genetic Analyzer. 

Data Analysis 

Microsatellite fragments for each individual locus pair were visualized and scored with Softgenetics® 

GeneMarker® (www.softgenetics.com) with each specimen assigned a genotype for each locus.  

Genepop 4.0.10 (Raymond & Rousset 1995) was used to calculate alleles per locus, allele frequencies, 

heterozygosities, F statistics, and deviations from Hardy-Weinberg equilibrium (HWE).   

Analyses of Molecular Variance (AMOVA) were carried out using Arlequin (Excoffier et al. 2005) to 

examine potential population differentiation.  This program partitions the sum of the squared deviations 

into hierarchical variance components.  In Duncan et al. (2010), AMOVA was used to determine if the 

phenotypes represent demographically separated populations, focusing on a single population covering 

200 m (two-100 m transects), and found no detectable genetic differentiation between subsocial 

(subsocial referred to as solitary in Duncan et al. (2010)) and social phenotypes.  We expanded this to test 

for population differentiation throughout our study range, roughly 600 km, running two AMOVAs to 

gauge the levels of differentiation throughout the study area.  Two levels of AMOVA were used.  The 

first level had two groups with each phenotype making a group.  The second level had six groups with 

each collection site making a group.  These levels provide insight to the cause of variation in the 

population. 

A potential drawback when using microsatellites for phylogenetics is the presence of null alleles.  Any 

allele that continually fails to amplify can be defined as a null allele and is usually caused by poor primer 

annealing caused by point mutations.  It is important to accurately accommodate for null alleles as failure 

to do so may lead to over-estimates of homozygosity and false deviations from Hardy-Weinberg 

Equilibrium.  To account for null alleles, the software package ML-Relate (Kalinowski et al. 2006) was 

used and the data set was analyzed with and without assumptions of null alleles.  Finding no differences 

between the two analyses, we report the data assuming no null alleles.  Dendrograms were created with 

POPTREE2 (Takezaki et al. 2010) by UPGMA using Nei’s DA distance (Nei et al. 1983).  Unweighted 

http://www.softgenetics.com/�
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pair group method with arithmetic mean (UPGMA) is a method of hierarchical clustering commonly used 

in reconstruction of phylogenetic trees from diploid markers (i.e. Petren et al. 1999; Sethy et al. 2006; 

Yao et al. 2008;). 

 
Results 

Phylogenetic analysis 

The clustering of the study populations was evaluated by construction of a UPGMA-based tree (Figure 

3).  In four of the six population pairs (Kingston, Warriors Path, Melton Hill, Guntersville) the tree 

significantly (by bootstrap values indicated on tree) grouped the phenotypes within each location; 

indicating the phenotypes are more similar within location rather than over the whole study area.    

 

 
Not as strong support exists for the Kingston population forming its own group.  Steele Creek 

populations do not group together and cluster with populations from Guntersville Lake, AL.  Though 

support is not as strong, populations from Boone Lake and Warriors Path tend to group together, 

potentially representing a lack of differentiation due to geographical proximity (11 km).  

  

 

Figure 2.3 Dendrogram of collection sites: using UPGMA with significant bootstrap values indicated in bold.  Labels 
indicate location and phenotype (subscript: soc = social, sub = subsocial) 
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Genetic structure 

Genetic data for populations and loci are summarized in Table 3.  All populations showed significantly 

lower observed heterozygosities (mean HOBS = 0.39) compared to expected (mean HEXP = 0.65) by Hardy-

Weinberg supporting the position that social spider species exhibit inbreeding.  Five of six loci showed 

deviations from Hardy-Weinberg, with marker D5 being within parameters of equilibrium (Table 3).   

 
Table 2.3 Location and  phenotype data: expected and observed heterozygosities and HWE deviation 

Location Phenotype HEXP HOBS HWE deviation p-value 

Boone Lake (BL) Subsocial 

Social 

0.72 

0.79 

0.62 

0.44 

p = 0.0016 

p < 0.0001 

Warriors Path (WP) Subsocial 

Social 

0.69 

0.72 

0.40 

0.43 

p < 0.0001 

p < 0.0001 

Steele Creek (SC) Subsocial 

Social 

0.67 

0.65 

0.33 

0.34 

p = 0.0002 

p < 0.0001 

Melton Hill (MH) Subsocial 

Social 

0.57 

0.59 

0.49 

0.37 

p = 0.0049 

p < 0.0001 

Kingston (KN) Subsocial 

Social 

0.39 

0.61 

0.10 

0.32 

p = 0.0009 

p < 0.0001 

Guntersville, AL (GL) Subsocial 

Social 

0.74 

0.64 

0.45 

0.39 

p < 0.0001 

p < 0.0001 

 

Two models of AMOVA (Table 4) were used to estimate variation between phenotypes (A) and among 

locations (B).  The largest amount of variation was explained by differences among individuals within 

populations (A: 31.54%, B: 31.04) and within individuals (A: 49.13%, B: 48.36) in both models.  Both 

phenotypes show high levels of inbreeding, subsocial FIS = 0.39 (p < 0.0001); social FIS = 0.52 (p < 

0.0001).  Differences between phenotypes (Table 4a) account for no (~0.0%) variation, while differences 

between locations (Table 4b) contribute to the variation (~8%).  FCT (among group index) values are low 

among phenotypes (A: FCT = -0.02, p = 0.9045) indicating little contribution to shaping the population.   
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Table 2.4 AMOVA results from Arlequin: source of variation, percent of variation from source and fixation indices.  Part A: data in two 

groups, by phenotype.  Part B: data in six groups, by location  

A.    B.    

Cause of variation Percent 

variation 

Fixation 

index 

p-value Cause of variation Percent 

variation 

Fixation 

index 

p-value 

Among phenotypes 

 

0.0 

 

FCT = -0.017 0.9045 Among locations 7.67 FCT = 0.08 < 0.0001 

Among populations 

within phenotypes 

 

21.03 FSC = 0.21 < 0.0001 Among populations 

within locations 

2.92 FSC = 0.14 < 0.0001 

Among individuals 

within populations 

 

31.54 FIS = 0.39 < 0.0001 Among individuals 

within populations 

31.04 FIS = 0.39 < 0.0001 

Within individuals 47.43 FIT = 0.51 < 0.0001 Within individuals 48.37 FIT = 0.52 < 0.0001 

 

For variation among locations a small but significant effect is indicated (B: FCT = 0.08, p < 0.00010).  A 

regression of FST by geographic distance (Figure 4) indicates a weak but significant correlation between 

the two (R2 = 0.012, p = 0.03). 

 

 

Figure 2.4 FST / Distance regression: FST regressed with log transformed distance by waterway. 
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Discussion 

Anelosimus studiosus provides a distinctive system in which to investigate the transition to social 

behavior.  With the species exhibiting both subsocial and social behavioral phenotypes sympatrically, 

insight is provided into many of the questions surrounding the evolution and maintenance of sociality 

(Jones et al. 2007; Jones & Riechert 2008).  The clustering seen on the dendrogram suggests phenotypes 

are more similar genetically within locations than across the study area.  These results support hypothesis 

2 of multiple local evolutions of social behavior.  It is generally accepted the subsocial phenotype is 

ancestral to the social strategy (Avilés 1997; Agnarsson et al. 2006) and given the prominence of 

subsocial nests across the study range, we presume this is also the case in A. studiosus.  Considering this 

and the cluster strength in Warriors Path, Melton Hill, Guntersville Lake, and Kingston (Figure 3), we 

propose the social phenotype has evolved, or is currently evolving, from the subsocial phenotype.  The 

strongest support is for the clusters of Guntersville Lake and Melton Hill with values of 96 and 85 

respectively.  Strong support is presented for Kingston populations grouping by phenotype but also 

separating from the other populations.  The reasons behind this separation remain unknown. Marginal but 

convincing support is shown for Warriors Path with a bootstrap value of 44.  The Steele Creek population 

is unusual as it groups, though weakly, with the geographically distant Guntersville Lake population.  

This could reflect the horticultural history of Steele Creek.  Many of the trees were planted from nursery 

stock 20 – 25 years ago (Laughlin, personal communication) potentially introducing a more distant 

founder population.  The group containing Boone Lake and Warriors Path, though not strongly supported, 

could reflect effects of geography.  The two sites represent the shortest distance between any two study 

locations, 11 kilometers.  This short distance could allow for enough gene flow to prevent further 

differentiation of these two sites.  A regression of FST by geographic distance shows weak but significant 

support for isolation by distance. 

Genetic diversity 

Our data show reduced heterozygosity and high inbreeding coefficients.  As expected, social colonies 

are highly inbred but subsocial colonies are also inbred, though slightly less that social colonies.  This fits 
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with the consensus that social spider species mate within or near their natal nest (Riechert & Roeloffs 

1993; Avilés 1997; Bilde et al. 2007) leading to highly inbred populations.  Inbreeding in A. studiosus is a 

result primarily of limited dispersal and even when females disperse, the distance covered is small 

(Riechert & Jones 2008) with some species dispersing no more than five meters (Powers & Avilés 2003).  

Though A. studiosus is inbred within phenotypes there is evidence for gene flow among populations.  

This is opposite of permanently social species that are genetic isolated with little or no gene flow between 

populations.  It should be noted that even though little is known about male dispersal in A. studiosus; 

subsocial males prefer social females when given the choice (Pruitt 2009).  Analysis of molecular 

variance with all individuals grouped into phenotypes showed no differentiation.  This inability to 

discriminate populations based on phenotype is in support of the findings in Duncan et al. (2010).  

However, when the individuals are grouped by location, a small but significant amount of differentiation 

is evident.  This is also the case in Anelosimus eximius, where differentiation was found to be at the 

colony cluster level (Smith 1986).  This supports the clustering seen in the dendrogram by phenotypes 

within locations.   

Demography  

The transition to sociality should be impeded by inbreeding depression (Charlesworth & Charlesworth 

1987), with an overall reduced fitness due to inbreeding.  In A. studiosus, however, the transition to 

sociality seems to be made without inbreeding depression with fecundities being similar between 

phenotypes (Jones et al. In press).  An explanation of this transition could be answered by the 

demography of the species.  With this species’ “ancestral” state being subsocial and the social phenotype 

evolving from that (Avilés 1997; but see Agnarsson et al. 2006), the inbreeding depression has potentially 

already been overcome; that is, the deleterious alleles have already been purged from the population 

(Charlesworth & Charlesworth 1987).   

Individuals of A. studiosus can be scored as subsocial or social in behavior with subsocial individuals 

being less tolerant of adult conspecifics and social individuals being more tolerant.  Both subsocial and 

social scored individuals are found throughout the eastern United States (Riechert & Jones 2008) though 
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social colonies are only found in northern latitudes.  Social colonies are an emergent property of an 

increasing proportion of social individuals presumably reaching a threshold at which the transition to 

sociality is made.  The variation in social structure naturally exists in the population throughout the range 

which implies that a transition to sociality would not require novel mutations. 

Environmental component 

Ecological factors also need to be considered when studying the increased prevalence of the social 

phenotypes.  Though ecological conditions do not directly cause the evolution of sociality, they do 

provide the appropriate microclimate for social colonies.  In A. studiosus, subsocial nests are predominant 

throughout the species’ range within North America (26° - 36°N).  Social colonies do not first appear 

until northern Florida (30°N) and increase in proportion into northern Tennessee (36°N) (Jones et al. 

2007).  Social colonies in northern, cooler regions seem to contradict the idea that warm, year-round 

growing seasons allow for larger colonies to persist (Wilson 1971).  The more stable temperatures of the 

tropics allow spiders to forego over-wintering and colonies to grow larger by continuous activity.  For 

similar continuous activity in cooler regions temperatures must be buffered to prevent colony reduction or 

extinction during harsh winter months.  The advent of impoundments along the Tennessee River and its 

watershed by the Tennessee Valley Authority (TVA) could provide temperature buffering to support 

larger colony proliferation.  Even though social colonies are conspicuous and should have been easily 

documented if existing, they were not described until 1998 (Furey 1998).  Impoundments, which began in 

1933 to control flooding, improve navigation, and provide power, created lakes and reservoirs throughout 

the region.  These bodies of water could buffer ambient temperatures along the edges of water providing 

thermal stability and allowing for suitable habitat for social colonies to persist.  It has been shown that A. 

studiosus can adapt to very specific microclimates (Jones et al. 2007) 

Conclusion 

The system is primed for the transition in behavioral strategy.  The social variation already exists in the 

population with subsocial populations containing individuals that score as social.  With evidence 

indicating populations of both phenotypes are inbred, it can be presumed inbreeding depression would not 
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hinder the shift in strategy.  Not surprising, this evidence supports hypothesis 2, multiple local evolutions 

of social behavior in A. studiosus.  A more profound question is why the social strategy is the minority 

throughout the range.  An empirically refined model by Jones and Riechert (2008) predicts smaller social 

colonies would have an advantage in both warm and cool microclimates in the north.  The relatively new 

introduction of suitable environmental conditions and no documentation of conspicuous social colonies 

until 1998 is evidence for novelty.   

With the evidence presented here and the prediction of the Jones and Riechert (2008) model we suggest 

we are witnessing the active transition of the subsocial phenotype to the predicatively more advantageous 

social strategy.   

Future work 

To provide further support for active evolution of sociality in A. studiosus, we are currently continuing 

a long-term and large-scale study to quantify this transition.  We are also expanding our study area to 

include TVA dam sites in middle and west Tennessee.  We are also broadening our study northern, into 

Virginia and further to better track the prevalence of social behavior in the north.  
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CHAPTER 3 

DISCUSSION 

Anelosimus studiosus provides a distinctive system in which to investigate the transition to social 

behavior.  With the species exhibiting both subsocial and social behavioral phenotypes sympatrically, 

insight is provided into many of the questions surrounding the evolution and maintenance of sociality 

(Jones et al. 2007; Jones & Riechert 2008).  The clustering seen on the dendrogram suggests phenotypes 

are more similar genetically within locations than across the study area.  These results support hypothesis 

2 of multiple local evolutions of social behavior.  It is generally accepted the subsocial phenotype is 

ancestral to the social strategy (Avilés 1997; Agnarsson et al. 2006) and given the prominence of 

subsocial nests across the study range, we presume this is also the case in A. studiosus.  Considering this 

and the cluster strength in Warriors Path, Melton Hill, Guntersville Lake, and Kingston (Figure 3), we 

propose the social phenotype has evolved, or is currently evolving, from the subsocial phenotype.  The 

strongest support is for the clusters of Guntersville Lake and Melton Hill with values of 96 and 85 

respectively.  Strong support is presented for Kingston populations grouping by phenotype but also 

separating from the other populations.  The reasons behind this separation remain unknown. Marginal but 

convincing support is shown for Warriors Path with a bootstrap value of 44.  The Steele Creek population 

is unusual as it groups, though weakly, with the geographically distant Guntersville Lake population.  

This could reflect the horticultural history of Steele Creek.  Many of the trees were planted from nursery 

stock 20 – 25 years ago (Laughlin, personal communication) potentially introducing a more distant 

founder population.  The group containing Boone Lake and Warriors Path, though not strongly supported, 

could reflect effects of geography.  The two sites represent the shortest distance between any two study 

locations, 11 kilometers.  This short distance could allow for enough gene flow to prevent further 

differentiation of these two sites.  A regression of FST by geographic distance shows weak but significant 

support for isolation by distance. 
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Genetic Diversity 

Our data show reduced heterozygosity and high inbreeding coefficients.  As expected, social colonies 

are highly inbred but subsocial colonies are also inbred, though slightly less that social colonies.  This fits 

with the consensus that social spider species mate within or near their natal nest (Riechert & Roeloffs 

1993; Avilés 1997; Bilde et al. 2007) leading to highly inbred populations.  Inbreeding in A. studiosus is a 

result primarily of limited dispersal and even when females disperse, the distance covered is small 

(Riechert & Jones 2008) with some species dispersing no more than five meters (Powers & Avilés 2003).  

Though A. studiosus is inbred within phenotypes, there is evidence for gene flow among populations.  

This is opposite of permanently social species that are genetic isolated with little or no gene flow between 

populations.  It should be noted that even though little is known about male dispersal in A. studiosus, 

subsocial males prefer social females when given the choice (Pruitt 2009).  Analysis of molecular 

variance with all individuals grouped into phenotypes showed no differentiation.  This inability to 

discriminate populations based on phenotype is in support of the findings in Duncan et al. (2010).  

However, when the individuals are grouped by location, a small but significant amount of differentiation 

is evident.  This is also the case in Anelosimus eximius, where differentiation was found to be at the 

colony cluster level (Smith 1986).  This supports the clustering seen in the dendrogram by phenotypes 

within locations.   

Demography 

The transition to sociality should be impeded by inbreeding depression (Charlesworth & Charlesworth 

1987), with an overall reduced fitness due to inbreeding.  In A. studiosus, however, the transition to 

sociality seems to be made without inbreeding depression with fecundities being similar between 

phenotypes (Jones et al. In press).  An explanation of this transition could be answered by the 

demography of the species.  With this species’ “ancestral” state being subsocial and the social phenotype 

evolving from that (Avilés 1997; but see Agnarsson et al. 2006), the inbreeding depression has potentially 

already been overcome; that is, the deleterious alleles have already been purged from the population 

(Charlesworth & Charlesworth 1987).   
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Individuals of A. studiosus can be scored as subsocial or social in behavior with subsocial individuals 

being less tolerant of adult conspecifics and social individuals being more tolerant.  Both subsocial and 

social scored individuals are found throughout the eastern United States (Riechert & Jones 2008), though 

social colonies are only found in northern latitudes.  Social colonies are an emergent property of an 

increasing proportion of social individuals presumably reaching a threshold at which the transition to 

sociality is made.  The variation in social structure naturally exists in the population throughout the range 

which implies that a transition to sociality would not require novel mutations. 

Environmental Component 

Ecological factors also need to be considered when studying the increased prevalence of the social 

phenotypes.  Though ecological conditions do not directly cause the evolution of sociality, they do 

provide the appropriate microclimate for social colonies.  In A. studiosus subsocial nests are predominant 

throughout the species’ range within North America (26° - 36°N).  Social colonies do not first appear 

until northern Florida (30°N) and increase in proportion into northern Tennessee (36°N) (Jones et al. 

2007).  Social colonies in northern, cooler regions seem to contradict the idea that warm, year-round 

growing seasons allow for larger colonies to persist (Wilson 1971).  The more stable temperatures of the 

tropics allow spiders to forego over-wintering and colonies to grow larger by continuous activity.  For 

similar continuous activity in cooler regions temperatures must be buffered to prevent colony reduction or 

extinction during harsh winter months.  The advent of impoundments along the Tennessee River and its 

watershed by the Tennessee Valley Authority (TVA) could provide temperature buffering to support 

larger colony proliferation.  Even though social colonies are conspicuous and should have been easily 

documented if existing, they were not described until 1998 (Furey 1998).  Impoundments, which began in 

1933 to control flooding, improve navigation, and provide power, created lakes and reservoirs throughout 

the region.  These bodies of water could buffer ambient temperatures along the edges of water providing 

thermal stability and allowing for suitable habitat for social colonies to persist.  It has been shown that A. 

studiosus can adapt to very specific microclimates (Jones et al. 2007) 

 



40 
 

Conclusion 

The system is primed for the transition in behavioral strategy.  The social variation already exists in the 

population with subsocial populations containing individuals that score as social.  With evidence 

indicating populations of both phenotypes are inbred, it can be presumed inbreeding depression would not 

hinder the shift in strategy.  Not surprising, this evidence supports hypothesis 2, multiple local evolutions 

of social behavior in A. studiosus.  A more profound question is why the social strategy is the minority 

throughout the range.  An empirically refined model by Jones and Riechert (2008) predicts smaller social 

colonies would have an advantage in both warm and cool microclimates in the north.  The relatively new 

introduction of suitable environmental conditions and no documentation of conspicuous social colonies 

until 1998 is evidence for novelty.  With the evidence presented here and the prediction of the Jones and 

Riechert (2008) model we suggest we are witnessing the active transition of the subsocial phenotype to 

the predicatively more advantageous social strategy.   

Future Work 

To provide further support for active evolution of sociality in A. studiosus, we are currently continuing 

a long-term and large-scale study to quantify this transition.  We are also expanding our study area to 

include TVA dam sites in middle and west Tennessee.  We are also broadening our study northern, into 

Virginia and further to better track the prevalence of social behavior in the north. 
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