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ABSTRACT 

Synesthetic Sensor Fusion Via A Cross-Wired Artificial Neural Network 
 

 
by 

Stephen S. Seneker 

 

The purpose of this interdisciplinary study was to examine the behavior of two artificial neural 
networks cross-wired based on the synesthesia cross-wiring hypothesis.  Motivation for the study 
was derived from the study of psychology, robotics, and artificial neural networks, with 
perceivable application in the domain of mobile autonomous robotics where sensor fusion is a 
current research topic.  This model of synesthetic sensor fusion does not exhibit synesthetic 
responses.  However, it was observed that cross-wiring two independent networks does not 
change the functionality of the individual networks but allows the inputs to one network to 
partially determine the outputs of the other network in some cases.  Specifically, there are 
measurable influences of network A on network B, and yet network B retains its ability to 
respond independently. 
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CHAPTER 1 

INTRODUCTION 

 

 A human being perceives and recognizes an environment through the use of many 

sources of sensory information.  The integration of sensory information can be complimentary, 

enhancing the response of one sense in response to another sense, or it can compensate for a 

deficiency in a sense.  Robotics researchers are using sensor fusion to overcome the limitations 

of individual sensor shortcomings that limit their applicability.  Fused sensory information can 

be more veridical than that provided by a single sensor because individual sensor measurements 

may be uncertain, erroneous, and incomplete, whereas the fusion of multiple sensors results in a 

more reliable percept.  In the field of robotics, the potential benefits of sensor fusion has 

motivated research, yet no general-purpose method for accomplishing sensor fusion across 

perceptual levels has been proposed (Arkin, 1998; Murphy, 1996, 1999, 2000). 

 Sensor fusion is a broad term used to describe any process in which sensor information or 

percepts are combined from multiple sensors into a single percept.  Motivation for robotic sensor 

fusion stems from three basic combinations of sensors: redundant (or competing), 

complimentary, and coordinated.  Redundant sensors generate a percept in one sensory modality.  

Complimentary sensors provide disjoint information about a percept.  Whereas, coordinated 

sensor fusion, sequences of sensors are used, often for cue-ing or providing focus-of-attention 

(Arkin, 1998; Murphy, 2000). 

 According to Arkin (1998), Murphy drew on studies from cognitive psychology and 

neurophysiology showing that behavioral sensor fusion occurs in animals and, therefore, should 

be part of a robot’s behavioral repertoire.  Murphy (1996) reports that Stein and Meredith (1993) 

offer a neurological model of sensor fusion derived mainly from studies of the superior colliculus 

in the feline brain.  The superior colliculus in cats is similar to that of most mammals, including 
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humans, thus the studies are accepted as representative of the general phenomenon of sensor 

fusion. 

 Stein and Meredith (1993) show that different sense stimuli are initially segregated at the 

neural level.  That is, neurons associated with one sense do not interact with neurons originating 

from other senses until they are transmitted to the brain.  In the brain sensory signals converge on 

the same target, the superior colliculus.  In addition to receiving inputs from the senses, the 

superior colliculus also receives signals from the cerebral cortex, which modulates or influences 

behavior.  It is important to note that while the majority of neurons entering the superior 

colliculus are sense specific, the majority of neurons leaving the superior colliculus, estimated at 

75%, are multisensory.  The output of these neurons may be greater when multiple contributing 

neurons experience weak stimuli than if one undergoes a strong stimulus.  Even though outputs 

go to many other structures, multisensory neurons appear mostly to form pathways to muscles 

and behavior control (Murphy, 1996). 

 The neurological model of sensor fusion describes several aspects important to robotic 

sensor fusion.  Neurological studies of the superior colliculus integration of sensory inputs that 

influence motor control suggests sensor fusion is purposeful and not an artifact or by-product of 

the central nervous system.  Sensor fusion couples perception with action and incorporates 

contextual information.  Multisensory neurons in the superior colliculus include inputs from the 

cerebral cortex, which in turn modulates behavior.  An aspect of particular importance is the 

observation that multisensory neurons can respond more to multiple weak stimuli suggesting that 

sensor evidence accrues as opposed to being averaged.  Thus, for example, an agent can ascertain 

danger from multiple weak clues.  In the case of robotics, accrual of sensory signals from several 

inexpensive coarse sensors may be used instead of a single expensive fine-grain sensor.  Sensor 

fusion also allows a robotic perceptual system to be modular - where sensors can be added or 

removed from a sensor suite without impacting the operation of other sensors (Murphy, 1996). 
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 Research into the perceptual phenomenon of synesthesia motivates a unique approach to 

sensory fusion.  Synesthesia is a fascinating condition in which an otherwise normal person who 

experiences sensation in one sensory modality results in involuntary perception in another 

sensory modality simultaneously.  A common example is colored hearing cases, where a person 

experiences colors when listening to a particular sound.  The synesthesias are typically specific 

and stable.  For example, separate instruments might evoke different visual sensations, such as 

hues and forms (RamsØy, 2001). 

 Ramachandran and Hubbard (2001) review experiments they performed and assert they 

clearly establish for the first time that synesthesia is genuinely sensory.  For example, in one 

experiment they showed that synesthetically induced colors lead to pop-out.  Subjects were 

presented with displays composed of graphemes, such as a matrix of randomly placed computer-

generated ‘2’s.  Within this display was embedded a shape, such as a triangle composed of other 

graphemes, computer-generated ‘5’s.  In this case the ‘5’s are mirror images of ‘2’s made up of 

identical features.  Non-synesthetic subjects found it difficult to detect the embedded shape 

composed of ‘5’s.  Whereas, synesthetic subjects, who see ‘2’s as one color and ‘5’s as a 

different color, see the display as a red triangle amidst a background of green ‘2’s.  Performance 

measures show that synesthetic subjects were significantly better at detecting the embedded 

shape than non-synesthetic subjects. 

 The idea synesthesia may be the result of neural cross-wiring has been around for at least 

100 years.  A neuro-imaging study by Paulesu et al. (1995) used Positron Emission Tomography 

(PET) to investigate if a neural basis for synesthesia exist.  In this study word-color synesthetes 

were presented with pure tones or single words.  Regional cerebral blood flow measurements 

were taken during tone listening and word listening.  Areas of the posterior inferior temporal 

cortex and parieto-occipital junction, but not early visual areas such as V1, V2, or V4, were 

activated significantly more during word listening than during tone listening in synesthetic 

subjects but not in controls.  Due to the resolution of the technique, no precise anatomical 
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localization was possible.  Yet, the results suggest synesthesia results from activity in brain areas 

that deal with language and visual feature integration, and conscious visual experience occurs 

with activation of the primary visual cortex (Paulesu et al., 1995). 

 The cross-wiring hypothesis is supported by anatomical, physiological, and imaging 

studies in both humans and monkeys that implicate the fusiform gyrus.  Ramachandran and 

Hubbard (2001) have identified different subtypes of number-color synesthesia and propose they 

are caused by hyperconnectivity between color and number brain areas at different stages in 

processing.  It is speculated that this hyperconnectivity may be caused by a genetic mutation 

resulting in defective pruning of connections between brain maps and this is related to the 

neonatal synesthesia hypothesis, which proposes that all humans go through a normal synesthetic 

period during development.  Lower synesthetes may have cross-wiring (or cross-activation) 

within the fusiform gyrus, whereas higher synesthetes may have cross-activation in the angular 

gyrus.  The fusiform gyrus of the human brain holds the functional regions responsible for color, 

identification of face, and recognition of facial expression, Figure 1 blue, green, and red colored 

areas. 

Figure 1.  Location of the fusiform gyrus in the brain. 

The fusiform gyrus of the brain contains the functional regions responsible for color (blue), 

identification of face (green), and recognition of facial expression (red). Damage to any of these 
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brain areas leads to a deficit for that mode of visual function.  Ramachandran and Hubbard 

question whether it is a coincidence that the most common form of synesthesia involves 

graphemes and colors and the brain areas corresponding to these are next to each other.  They 

suggest that synesthesia is caused by cross-wiring (cross-activation) between these two areas, 

and in such a way as to be analogous to the cross-activation of the hand area by the face in 

amputees with phantom arms (Ramachandran & Hubbard, 2001).  

Synesthesia is a concrete sensory phenomenon whose neural basis is just beginning to be 

understood, and this can be used as an experimental lever for developing polysensory 

mechanisms for robotics applications.  The hypothesis tested in this study, based on the 

synesthesia cross-wiring hypothesis, is that cross-wired artificial neural networks would exhibit 

synesthetic sensory fusion. 

The remainder of this thesis details the interdisciplinary background and motivation for 

the research conducted.  The chapters are organized as follows.  Chapter 2 provides a review of 

synesthesia.  Chapter 3 is a historical perspective of relevant work by Grey Walter who took a 

unique approach to modeling brain function.  Chapter 4 presents Donald Olding Hebb’s seminal 

ideas on how the neurons in the brain learn.  Chapter 5 introduces behavior-based robotics and 

the concept of sensor fusion.  Chapter 6 examines the relationship between biological and 

artificial neural networks.  Chapter 7 details the experimental design, and Chapter 8 concludes 

with the experimental results and their interpretation. 
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CHAPTER 2 

SYNESTHESIA 

 

 The phenomenon of synesthesia derives its name from the Greek syn, together, and 

aisthesis, to perceive, and means to perceive together.  Synesthetes have perceptual experiences 

in which they typically perceive two sensory modalities together.  That is, sensation in one sense 

modality induces involuntary perception in another sensory modality simultaneously.  For 

example, people with this condition see sounds, smell colors, and taste shapes.  The most 

common type is experiencing color when hearing sounds. 

According to Richard Cytowic, a clinical neurologist studying synesthesia, when we 

speak “we all intermingle the five senses all the time.  We say that red is a ‘warm’ color, but 

green is ‘cool’; her voice is ‘sweet,’ or sadness is ‘blue.’”  However, for synesthetes these are 

more than just mere metaphors, they are perceived as vivid real experiences.  Through clinical 

testing Cytowic found that a true synesthete will repeatedly affirm that B-flat is green or that 

roast beef feels like an archway.  If synesthesia were due to merely the creative use of language, 

associations would vary over time.  Instead what has been found is that synesthetic associations 

do not vary over time (as cited in Lemley, 1984). 

 John Locke first described synesthesia in 1690 when he wrote about a blind man who 

claimed to understand what the color scarlet was because it was like the sound of a trumpet.  

Later in 1710 it was described in medical terms by Thomas Whoolhouse, and in 1869 Francis 

Galton noted synesthesia, and it has periodically received attention since that time (Cytowic, 

1993).  Even though synesthesia was a topic of scientific interest well over a hundred years ago, 

by the 1940s interest had faded due to the rise of behaviorism.  Investigations of synesthesia 

depended on introspection, which relies on self-report data from subjects.  Introspection was no 

longer considered a worthy avenue of data collection in experimental psychology; therefore, 
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interest in synesthesia plummeted (Baron-Cohen, Burt, Smith-Laittan, Harrison, & Bolton, 

1996). 

Little was known about synesthesias underlying physiological causes until progress in the 

development of brain imaging technology, electrophysiological recording, DNA analysis, and 

other techniques became available.  Renewed interest in synesthesia has followed the attention it 

was given in the early 1980s by Richard Cytowic (1993).  

The following sections of this chapter describe who synesthesia affects and details 

characteristics of synesthesia and relates several accounts of what synethetes perceptually 

experience.  Next, theory concerning synesthesia is considered with a progression to an 

examination of research directly and indirectly related to synesthesia.   

 

Synesthetes 

 Regardless of the senses joined in a given synesthete, the similar histories synesthetes 

share are uncanny.  Synesthetes are typically surprised to learn others do not perceive words, 

numbers, sounds, taste, and etceteras as they do.  They recall always having idiosyncratic 

perceptions as earlier as they can remember, and that mentioning them at an early age often 

resulted in ridicule and disbelief (Cytowic, 1995). 

 Synesthesia runs in families with a pattern that is either autosomal or x-linked dominant 

transmission, meaning it can be inherited from either parent.  More women than men have 

synesthesia, and in the United States the ratio is 3:1 (Cytowic, 1989), while in the United 

Kingdom women out number men in a ratio of 6:1. Approximately one in 2,000 people are 

synesthetes (Baron-Cohen et al., 1996).  However, some experts suspect that as many as one in 

300 people have a variation of the condition (Carpenter, 2001). 

Synesthetes are preponderantly non-right-handed.  They are normal in the conventional 

sense, appear intelligent, and come from all walks of life.  They typically exhibit superior 

performance on the Wechsler Memory Scale.  However, within their overall high intelligence, 
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synesthete’s cognitive skills are uneven.  A minority are dyscalculic, an inability to 

conceptualize arithmetic facts, such as numbers, numeric relationships, and outcomes of 

numerical operations, e.g., estimating the answers to numerical problems before performing 

calculations.  However, the majority of synesthetes have subtle mathematical deficiencies such 

as lexical-to-digit transcoding.  Many exhibit allochiria, right-left confusion, as well as a poor 

sense of direction for vector rather than network maps (Cytowic, 1995). 

Synesthetic relationships are typically unidirectional meaning for instance a particular 

synesthete’s sight may induce touch perception, but touch does not induce visual perception.  

This means the number of permutations for synesthetic experiences, if perception of movement 

is included, is 30.  However, the senses of sight and sound are involved considerably more often 

than others, and it is rare for smell and taste to be either the trigger or the synesthetic response 

(Cytowic, 1995). 

 The strangest synesthesia is perhaps audiomotor.  An adolescent boy with this condition 

positioned his body in different postures according to the sounds of different words.  The boy 

claimed English and nonsense sounds had defined physical movements, which he would 

demonstrate with various poses.  The physician who described this boy re-tested him 10 years 

later without warning, and he assumed without hesitation the identical postures of a decade 

earlier (Cytowic, 1995). 

 Synesthetic perceptions are generic and durable, never pictorial or elaborated.  Durable 

refers to the fact that synesthetic cross-sensory associations do not change over time, and this has 

been verified by test-retest sessions given even decades apart without warning.  Generic means 

the synesthetic experience is unelaborated.  While a nonsynesthete may imagine a rich floral 

landscape while listening to classical music, synesthetes perceptions are characterized as blobs, 

lines, spirals, and lattice shapes; feeling smooth or rough textures; an agreeable or disagreeable 

taste such as salty, sweet, or metallic (Cytowic, 1995). 
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The synesthetic experience is emotional and is accompanied by a sense of certitude that is 

perceived as real and valid.  The following accounts relate how a few synesthetes describe their 

synesthetic perceptions. 

 

Michael Watson 

Michael Watson a New York City stage-lighting designer describes his sense of taste as 

feeling geometric forms, which can be considerably complex, pressing against his face and 

hands.  He describes his perception of spearmint as follows.   

I can reach my hand out and rub it along the backside of a curve.  I can't feel 

where the top and bottom end: so it's like a column.  It's cool to the touch, as if it 

were made of stone or glass.  What is so wonderful about it, though, is its 

absolute smoothness.  Perfectly smooth.  I can't feel any pits or indentations in 

the surface, so it must not be made of granite or stone.  Therefore, it must be 

made of glass (Cytowic, 1993). 

 

Carol Crane  

Carol Crane a psychologist loves most kinds of music, but concerts have an unusual 

affect on her.  “The sound of guitars always feels like someone is blowing on my ankles.  The 

piano presses on me right here,” she says, tapping her chest just over her heart.  “And New 

Orleans-type jazz hits me all over like heavy, sharp raindrops.”  In addition she has reactions to 

letters and numbers.  For instance the letter b is a navy blue, c is tawny crimson, and the numeral 

4 causes her to see tomato red (Lemley, 1999).   

 

Sean Day 

Sean Day a linguistics professor describes his sense of taste as being colored in 

Technicolor.  The taste of beef, such as a steak, produces a rich blue.  Mango sherbet appears as 
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a wall of lime green with thin wavy strips of cherry red.  Steamed gingered squid produces a 

large glob of bright orange foam, about four feet away, directly in front of me (Carpenter, 2001). 

 

Julie Roxburgh 

Julie Roxburgh’s synesthesia differs from the preceding accounts in that not only does 

she see color when she hears sound, but has the reverse, she hears sound whenever she sees 

color.  However, for her it is not a pleasant experience and has resulted in a great deal of 

suffering.  This form of synesthesia leads to substantial interference, stress, dizziness, an 

overwhelming feeling of information overload, and a need to avoid situations that are too noisy 

or too colorful.  Unlike other cases, synesthesia for Roxburgh has lead to social withdrawal and 

disrupts everyday life (Baron-Cohen, 1996). 

 

Phenomenology 

 A problem with synesthesia is that is has almost exclusively been characterized in 

phenomenological terms.  Diagnosis relies heavily on phenomenological evidence, which is 

subjective.  Yet, without compelling physiological or anatomical substantiation, synesthesia was 

destined to be treated with scientific skepticism and caution (Costa, 1996) 

A growing body of evidence supports the fact that cross-modal associations take place in 

the mammalian brain.  The following theories and research highlight recent developments in the 

understanding of synesthesia. 

 

Neonatal Synesthesia Hypothesis 

 Maurer’s (1993) developmental theory of synesthesia states all human neonates are 

synesthetic. The Neonatal Synesthesia (NS) hypothesis argues that in early infancy, up to about 4 

months of age, all babies experience sensory input in an undifferentiated manner.  In contrast the 

Cross-Modal Transfer (CMT) hypothesis suggest objects can be recognized in more than one 
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modality because infants are able to represent objects in an abstract form.   There is evidence in 

support of the CMT hypothesis.  For example, Rose, Gottfried, and Bridger (1978) found that 12 

month olds looked longer at an object they had just orally explored. 

 The NS hypothesis builds on CMT evidence and suggests there is an anatomical basis for 

neonatal synesthesia if one considers transient connections between neural structures in neonates 

of other species.  For example, the neonatal hamster has transient connections between the retina 

and main somatosensory and auditory nuclei of the thalamus.  Maurer suggests the same may be 

true of human neonates.  It has been found that only during early infancy, evoked responses to 

spoken language are detectable over the temporal cortex, as expected, and they are also found 

over the occipital cortex simultaneously.  This suggest that the primary sensory cortex is not as 

specialized in infants as it is in adults (Baron-Cohen, 1996). 

 

Synesthesia and Concepts 

 A study done by researchers at the University of Waterloo indicates that for one 

synesthete, color experiences associated with digits could be induced even if the digits were not 

present.  Researchers presented a synesthete with simple arithmetic problems, such as “5 + 2.”  

The experiment showed solving an arithmetic problem activated the concept of 7, leading the 

synesthete to perceive the color associated with 7.  The significance of this experiment is that it 

shows synesthetic experiences can be elicited by activating the concepts of digits, and suggest 

color experiences are associated with a digit’s meaning and not merely its form (Dixon, Smilek, 

Cudahy, & Merikle, 2000). 

 

Physiology of Colored Hearing 

 Neuroimaging studies suggest synesthesia has a biological basis.  Evidence comes from 

studies showing that synesthesia can be induced in normal individuals through the use of 

hallucinogenic drugs such as LSD and mescaline (Cytowic, 1993).  Positron Emission 
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Tomography (PET) has been used to investigate if a neural basis for synesthesia exist.  In a study 

by Paulesu et al. (1995) six synesthetic women were compared with six matched controls. 

PET detects brain activity as changes in regional cerebral blood flow (rCBF).  Auditory 

words, not tones, were used as stimulation to trigger synesthesia.  When hearing words while 

blindfolded, the synesthetes showed abnormal activation, as a measure of rCBF, in areas of the 

visual association cortex.   In both groups word stimulation, as opposed to tone, activated 

language areas of the perisylvian regions.  However, in synesthetes a number of additional visual 

associative areas were activated, including the posterior inferior temporal cortex and the parieto-

occipital junctions. 

 The inferior temporal cortex has been implicated in the integration of color with shape, as 

well as in verbal tasks that require attention to visual features of named objects.  Synesthetes also 

had activation in the right prefrontal cortex, insula, and superior temporal gyrus, but no 

significant activity was detected in the lower visual areas, including V1, V2, and V4.  The results 

from their study suggest synesthesia results from activity in brain areas that deal with language 

and visual feature integration, and conscious visual experience occurs with activation of the 

primary visual cortex (Paulesu et al., 1995). 

 

The Limbic System 

 June 29, 1981, Cytowic in an experiment with the synesthete Michael Watson (MW), 

measured cortical metabolism by means of radioactive 133Xenon inhalation while he was 

undergoing a synesthetic experience.  Use of this technique yielded interesting, yet unclear, 

results.  The results showed that hemispheric regional Cerebral Blood Flow (rCBF) dropped a 

full 18% in the left hemisphere during the trial.  This is unusual because it is expected that during 

an active state activity in the cortical areas should rise.  MWs mean hemispheric flows were 

already low and inhomogeneous, yet he showed an additional decrease of 18%, which is 

impossible to obtain in a normal person.  Such a drastic drop would make a normal subject 
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candidate for paralysis or some other visibly disabling condition, and such a condition is not 

obtainable in a normal person even with a drug (Cytowic, 1993, 1995; Lovelace 1999). 

 According to Cytowic, MWs metabolism dropped to such a low point during synesthesia 

that he should have been blind, paralyzed, or shown some conventional sign of a brain lesion.  

MWs left hemispheric flows were almost three standard deviations below the labs established 

acceptable limits of normal.  However, his thinking and neurological exams were unimpaired 

(Cytowic, 1995).  Cytowic took these results to mean that it is the limbic system and not the 

cortex that figures heavily in producing synesthetic responses.  Based on a single subject he 

concluded that the limbic system has dominance over the cortex (Cytowic, 1993). 

      Building on these findings Cytowic cites the hippocampus as the most important structure for 

producing these responses because limbic epilepsy, which is usually observed as centering 

around the hippocampus, is known to evoke the same type of cross-modal perceptions 

synesthetes experience (Cytowic, 1995).  However, Lovelace (1999) criticizes this conclusion 

based on the following observation. 

 MWs observed levels of deactivation were more than 3 standard deviations below the 

normal mean.  The subject had a history of alcoholism and does not have a left posterior-

communicating artery.  He speculates with due logic that the observed results could be due to 

either miscalibrated instrumentation or attributable to physiological abnormalities in MW 

unrelated to synesthesia.  Given the immediacy that concurrent sensations appear and that 

stimulus-induced changes in blood flow take seconds to occur, it is unlikely such a slow 

mechanism could explain a percept with such a brief onset latency (Lovelace, 1999). 

 

Binding of Visual Features 

 What form does information stored in the human mind below the level of awareness 

take?  In the field of visual perception there is an ongoing debate that centers around the question 

of whether things seen are stored as fragments and features or as an integrated whole.  Are 
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features of an object unbound when one is not aware of them, becoming bound together as a 

whole only when attention is employed?  Mattingley, Rich, Yelland, and Bradshaw (2001) 

address this by studying synesthetes who experience color when they see certain graphemes, 

such as letters or digits. 

 Neurobiological evidence shows that separate features of visual information are projected 

to different cortical regions of the human brain.  Relatively early in the processing of visual 

stimuli, color and shape are separate, and the brain can encode these features without awareness.  

This work supports the idea of modularity in the human cortex (Mattingley et al., 2001). 

It is possible that color-graphemic synesthesia results from a flaw in the modular 

organization of the brain.  Mattingley et al.’s (2001) results agree with the possibility that 

cortical regions for processing shape and color are abnormally linked, but only during awareness.  

These finding suggest that attention signals associated with awareness are required to produce 

normal binding (Robertson, 2001). 

 

Visual Auditory Illusion 

 Vision is believed to dominate perception; however, Shams, Kamitani, and Shimojo 

(2000) have challenged this established view by showing that auditory information can alter the 

perception of a visual stimulus to create a visual illusion.  They have discovered a visual illusion 

induced by sound.  When a visual flash is accompanied by multiple auditory beeps, the single 

flash is incorrectly perceived as multiple flashes.  In their experiment observers consistently 

reported incorrectly seeing multiple flashes whenever a single flash was accompanied by more 

than one beep.  The illusion persisted even in informed subjects aware of the fact that there was 

only one flash. 

 Their results indicate illusory flashing is caused by an alteration of visual perception by 

auditory stimuli.  Modification of visual perception by sound is not categorical but selective.  

Their results also showed that sound did not have a fusing effect when multiple flashes were 
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accompanied by a single beep, and suggest the direction of cross-modal interactions is partially 

dependent on the type of stimulus.  They propose that the perception of a continuous stimulus in 

one modality is rendered more malleable by a discontinuous stimulus in another modality than 

vice versa (Shams et al., 2000). 

 

Tactile Discrimination 

 The visual cortex in blind humans is known to be involved in nonvisual perception, 

which has been attributed to neural plasticity resulting from visual deprivation.  Zangaladze, 

Epstein, Grafton, and Sathlan (1999) showed that discrimination of the orientation of a grating 

on the fingerpad is associated with subjective reports of visual imagery. Positron emission 

tomography (PET) shows an increase in regional cerebral blood flow (rCBF) relative to what is 

seen during discrimination of grating texture in a contralateral region of extrastriate visual cortex 

near the parieto-occipital fissure.  In a study using functional magnetic resonance imaging 

(fMRI), it was found that visual cortical areas are also active during tactile object recognition, 

compared with texture discrimination.  Processing in the visual cortex may reflect top-down 

activation of visual representation used to facilitate tactile discrimination of orientation or shape. 

Alternatively the observed activity may be an epiphenomenon. 

 In order to distinguish between these two possibilities, researchers used transcranial 

magnetic stimulation (TMS) over the occipital scalp to block visual perception by disrupting 

function in the extrastriate visual cortex. The results show that TMS interferes with the tactile 

discrimination of grating orientation.  Its time course and spatial restriction illustrate the 

specificity of the effect over the scalp.  It is also shown by the failure of occipital TMS to affect 

detection of electrical stimulus applied to the fingerpad or tactile discrimination of grating 

texture.  In contrast TMS applied to the somatosensory cortex blocked discrimination of grating 

texture and orientation. 
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The findings indicate that the visual cortex is involved in tactile discrimination of 

orientation. The findings also demonstrate that the visual cortex is necessary for normal tactile 

perception in normally sighted subjects (Zangaladze et al., 1999). 

 

Excogitare 

 Synesthesia is an idiosyncratic condition that is not maladaptive, except in rare cases.  

For the synesthete, their perceptions are as normal and as real as a non-synesthete.  Introspective 

reports have been verified by means of test-retest scenarios showing that synesthete’s 

perceptions are not attributable to imagination.  In light of the fact that synesthesia has been 

documented as a real phenomenon since 1690, substantial research was not undertaken until 

physiological investigations implicated a neural basis for synesthesia. 

 Research has shown that synesthetes differ neurophysiologically.  Maurer theorized that 

synesthesia is a natural developmental state all humans go through in which transient 

connections exist between neural structures.  Neurophysiologial evidence from other species and 

recordings of evoked potentials in humans during early infancy show cross-sensory activation in 

the temporal cortex and occipital cortex.  Research has also documented that in some synesthetes 

that the mere thought of the concept of a number results in a synesthetic perception.  In normal 

individuals synesthesia can be drug induced with hallucinogenics such as LSD or mescaline.  

Neuroimaging studies using PET and fMRI suggest synesthesia results from activity in brain 

areas that deal with language and visual feature integration.  Additionally research has shown 

that a visual illusion can be induced by audition in normal individuals. 

But why do polysensory mechanisms exist in the brain?  Considered in terms of 

evolutionary theory, one avenue of reasoning is they exist because the ability to pair perceptions 

has survival value.  This implies that in an unconscious manner all humans have cross-sensory 

mechanisms, but synesthetes have cross-modal perceptions.  However, this researcher speculates, 

based on the findings of research directly and indirectly related to synesthesia, that the 
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functioning of the human brain, and other brains, is an efficient cooperative process in which 

neural structures are reused.  Simply stated, it is efficient to reuse an existing mechanism. 

The Zangaladze et al. (1999) investigation showed that the visual cortex is involved in 

the process of tactile discrimination of orientation.  One does not have to ask why, but must ask 

what advantage does this offer?  If vision and touch were absolutely separate systems, then each 

would have to posses its own mechanism for determining orientation.  This would essentially be 

a replication of function.  Instead, why not let the two systems share an orientation discriminator, 

which is what this research suggests.  Because vision is dominant and has a well-developed 

orientation discriminator, it may be that tactions uses a resource normally devoted to vision.  

Based on research findings, it is obvious that the brain is modular, and that these modules work 

together in a cooperative manner. 
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CHAPTER 3 

HISTORICAL PERSPECTIVE: Machina speculatrix 
 

 Imagine a simple machine that explores its environment, is attracted to light, and 

maneuvers around obstacles.  A robot that behaves like an animal sounds like something from 

science fiction or the latest in artificial life.  Valentino Braitenberg, in his 1984 book Vehicles: 

Experiments In Synthetic Psychology, presents a series of thought experiments in which vehicles, 

simple systems of increasing complexity are constructed from elementary mechanical and 

electronic components that exhibit complex life-like behaviors.  Each of these imaginary 

vehicles in some way mimics intelligent behavior.   Vehicles in the series incorporate essential 

features of earlier models, and as these vehicles evolve; they are attributed with qualities such as 

aggression, love, logic, foresight, concept formation, creative thinking, personality, and free will.  

Yet, if one did not know the principles behind the vehicles’ construction, these qualities would 

not be attributed to the simple control mechanisms that generate their behaviors. 

 Braitenberg presents these vehicles as evidence for what he calls the “law of uphill 

analysis and downhill invention,” meaning that it is significantly more difficult to try to guess 

internal structure from mere observation of behavior than it is to create the structure that results 

in the behavior.  Stated another way, it is easier to design a mechanism anew to do something, 

than it is to figure out how nature has evolved to do it.  This suggests that perhaps nature’s way 

is not really insuperably complicated. 

Braitenberg’s basic machine is a motor connected to a sensor that controls activation of 

the motor.  These simple machines hardly qualify as brutes, and he considers them for no more 

than a few pages.  Next he adds multiple sensors and multiple motors, crossing their wires, and 

makes some of the connections inhibitory.  The results are extremely simple machines, creatures, 

an observer has no difficulty in attributing with fear, aggression, love, and affection along with a 

wandering eye; behavior resembling much of what is expected from biological systems. 
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Braitenberg pursued thought experiments, however, more than 30 years earlier, W. Grey 

Walter, a British neurophysiologist, used the same idea of complex behavior arising from simple 

components to build what he called “imitations of life” (as cited in Levy, 1992).  This chapter 

describes Walter’s robotic research, detailing the first robots, Elmer and Elsie, that he built 

between Easter 1948 and Christmas 1949.  Next a robot that learns through classical condition, 

an evolution of the original is described. 

 

W. Grey Walter 

 Over 50 years ago Dr. Grey Walter at the Burden Neurological Institute was engaged in 

pioneering research on mobile autonomous robots, building three-wheeled autonomous robotic 

vehicles as part of his quest to model brain function.  Walter, well known for his work on the 

electroencephalogram, was deeply interested in investigating electromechanical models of 

simple reflexes exhibited by living creatures.  He wanted to study the basis of simple reflex 

actions and to test his theory on complex behavior arising from neural interconnections.  

According to Sabbatini (1999), Walter was convinced that even organisms with extremely 

simple nervous systems could exhibit complex and unexpected behaviors. 

 Walter had a reputation as an interdisciplinarian genius, a pioneer who explored the 

interface between electronics and biology.  Exceptionally skilled and possessing an 

understanding of these two sciences, Walter, with uncanny insight, created the first autonomous 

robotic animals.  These three-wheeled robots he called tortoise after an “Alice in Wonderland” 

character (Sabbatini, 1999).  He nicknamed the first two built Elmer and Elsie, after the initials 

of the terms describing them – ELectro MEchanical Robots, Light Sensitive, with Internal and 

External stability (Walter, 1950). 

The electronics and mechanics of these robotic animals were simple, consisting of a light 

sensor, touch sensor, drive motor, steering motor, and two miniature vacuum tubes.  The robot’s 

drive train consisted of three wheels arranged in a tricycle-like formation.  The front wheel 
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provided propulsion and steering, each function controlled by separate motors.  The sense organs 

were simple, a light sensor and a contact sensor. Power was supplied by a miniature hearing aid 

B battery and a six-volt storage battery mounted at the back of the assembly, and a Perspex, an 

acrylic plastic, shell protected and covered the complete assembly.   

The nervous system of these creatures, a simple artificial neural network, consisted of just 

two neurons, an analog circuit built using two vacuum tubes; a pair of interlinked amplifiers 

controlled the wheel motors and the direction using information from the sensors.  The turtles 

were designed to perform two actions.  First, they knew how to avoid large obstacles, retreating 

if they hit one.  Second, they would seek out a light source, and if the light was of sufficient 

intensity they would move away from instead of toward the source; like moths they are 

phototropic animals.  With this simple design, Walter demonstrated that his robotic creations 

exhibited a variety of complex behaviors.  Based on their behavior, Walter named these robots 

with the mock-biological name, Machina speculatrix, because “it explores its environment 

actively, persistently, systematically as most animals do” (Walter, 1950).  

 

Machina speculatrix 

 Machina speculatrix was unlike other robotic creations preceding them, and its 

uniqueness stems from the fact that they did not have a fixed behavior.  Instead the robots had 

reflexes, and through interaction with their environment, behaviors resulted that were never 

exactly repeated in the same manner, but rather followed a general pattern much in the same way 

animals do.  This emergent life-like behavior was an early form of what is now called Artificial 

Life.  These robots were the first artificial mechanical creatures having some of the typical 

properties of living creatures, such as behavior and self-organization. 

 Walter’s interest in Artificial Life stemmed from his work in neurophysiology.  In order 

to understand the complexities of the brain, he proposed building electronic models.  However, 

he recognized that the sheer number of neurons present in the brain was an obstacle towards 
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understanding.  Walter, in his book, The Living Brain, (1953) states, “If the secret of the brain’s 

elaborate performance lies there, in the number of its units, that would be indeed the only road, 

and that road would be closed” (p. 118).  Therefore, his focus was based on the assumption that 

it was not the sheer number of cells in the brain but that the “richness of their interconnections” 

was more so important (Ward, 1998).  Walter (1950) states, “The fact that only a few richly 

interconnected elements can provide practically infinite modes of existence suggests that there is 

no logical or experimental necessity to invoke more than number to account for our subjective 

conviction of freedom of will and our objective awareness of personality in our fellow men” (p. 

44). 

 Walter built his first robot in 1948.  Its brain, so to speak, consisted of two neurons, a 

pair of interlinked amplifiers connecting its two sensors to two motors.  The light sensor was 

attached to the spindle of the steering column so that it always faced in the same direction of the 

single front drive wheel.  One motor steered the machine by turning the spindle, while the other 

drove the wheel.  The other sensor was a contact switch that closed whenever the robot shell 

bumped into something and this tipped one of the amplifiers into oscillation (Ward, 1998). 

 Emerging from these simple connections, a panoply of behaviors was exhibited.  

Normally the light sensor, a photocell, scanned round and round while the drive wheel revolved 

at half speed, sending the robot in a series of curves in search of dim lights, a cycloidal gait.  If 

light was detected, it would stop scanning and race towards it, but if the light was too bright, 

dazzled, the robot would begin scanning again, turning away from the light.  If an object was hit, 

the contact reflex would switch the robot between its normal and dazzled states; thus it would 

repeatedly backup and turn until an obstacle had been negotiated. 

 When the robot was in the presence of a single light source, it would circle around it in a 

complex path of advance and withdrawal.  However, if there were another light source farther 

away, the robot would first visit one and then the other and would continually stroll back and 

forth between the two.  Due to the nature of their design these robots elegantly solved the 
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dilemma of Buridan’s ass, who scholastic philosophers said would die of starvation when placed 

between two barrels of hay if it did not possess a transcendental free will.  However, this should 

be considered in the context of the details of the robots operation.  When the photocell detects a 

light, both tubes amplify the signal.  If the light is very weak, a change of illumination is the 

effective signal, but a stronger signal is amplified without loss of its absolute level.  The effect in 

either case is to halt the steering wheel so the robot moves toward the light with the least amount 

of difficulty.  When the light intensity increases to a sufficient level, the signal becomes strong 

enough to operate a relay in the first tube, which has the opposite effect on the second tube.  This 

results in the steering mechanism operating at double speed causing the robot to abruptly sheer 

away in favor of gentle stimulation (Walter, 1950). 

 Walter’s robots were designed to seek out a hutch where they normally stayed when 

recharging their batteries.  Inside of the hutch were a 20-watt lamp and a battery charger.  When 

the batteries were sufficiently charged, the robot would be attracted to light from distant sources, 

but, at threshold, the brilliance is so that it acts as a repellent, causing the robot to wander off and 

explore its environment.  However, when the batteries’ charge was low, the effect enhanced the 

sensitivity of the amplifier so the attraction of light was increased.  In this way the robot could 

locate its hutch and be attracted home, because the bright light was no longer dazzling.  Once 

inside the hutch and connected to the battery charger, the flow of current effectively put the robot 

to sleep, because power was disconnected from its nervous system.  After the batteries charged, 

the internal circuits would be automatically reconnected.  Now light that had attracted the robot 

to its home repels it away (Walter, 1950). 

 Inevitably this peripatetic robot encountered objects that it could not see, even though it 

avoided obstacles that cast a shadow when approaching a light source.  However, these robots 

were equipped with a device enabling them to navigate around obstacles.  The robot’s Perspex 

shell was suspended on a single rubber mount and had enough flexibility that allowed it to move 

and close a ring contact.  When the ring contact closed it converted the two-stage amplifier into a 
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multivibrator whose oscillations rhythmically opened and closed the relays that controlled the 

application of power to the motors for steering and crawling, and at the same time ignored 

signals from the photocell.  When contact was made with an obstacle, regardless of operation 

mode, all stimuli were ignored and the gait was transformed into a succession of butts, 

withdrawals, and sidesteps until the obstacle was either pushed aside or circumvented.  

Oscillation continued for about a second after the obstacle has been cleared and during this 

period the robot attempts to move to a sufficient distance for maneuvering (Walter, 1950). 

Machina speculatrix displayed a diverse array of behaviors that emerged from a simple 

set of elementary components.  For instance, Walter fitted a small flash-lamp on Elmer’s head 

that turned-off whenever the light sensor received an adequate light signal.  Quickly the robot 

homed in on a mirror hung in the room and a dance of oscillations ensued.  Exposure to light 

reflected from the indicator lamp was sufficient to operate the circuit controlling the robot’s light 

response, thus, causing the machine to be attracted to its own reflection.  “The model flickers and 

jigs at its reflection in a manner so specific that were it an animal a biologist would be justified 

in attributing to it a capacity for self-recognition” (Walter, 1950, p. 45).  This behavior is due to 

the reflected light resulting in the indicator light being switched off, and darkness in turn 

switches it on again, resulting in an oscillation of light being set up.  When Elmer and Elsie were 

placed in the same room, each with an indicator lamp, they engaged in a complex dance of 

attraction and repulsion.  Yet, each attracted by the light of the other, both extinguished its own 

source of attraction.  This resulted in the two becoming involved in a mutual oscillation that 

eventually led to a stately retreat (Walter, 1950, 1953). 

 

Machina docilis 

Walter building on the Machina speculatrix model constructed another robot that 

behaved even more like an animal.  He gave this robot the mock-biological name Machina 

docilis, from the Latin word meaning teachable, because it could be trained using classical 



31 

conditioning much like Pavlov’s dog.  Machina docilis was an evolved Machina speculatrix that 

had what Walter called the Conditioned Reflex Analogue (CORA).  This mechanism created a 

connection between the robot’s light reflex or contact reflex and another stimuli, such as a 

whistle.  The robot could be trained by blowing the whistle and then kicking it to trigger the 

contact reflex.  “After a dozen kicks the model [robot] will know that a whistle means trouble, 

and it can thus be guided away from danger by its master” (Walter, 1951, p. 62).  In Machina 

docilis the associative memory is formed by oscillations in a feedback circuit.  The deterioration 

of these oscillations is analogous to forgetting.  The central part of CORA was a capacitor 

connected to the inputs.  If the shell were kicked after a whistle blow, the capacitor charged until 

reaching a threshold.  At this point the capacitor would discharge causing an electronic gate to 

open that allowed the whistle to stimulate the same response as kicking the machine.  

Additionally, if conditioning was not reinforced, extinction occurred and CORA shut the gate 

(Walter, 1953).  

Walter was not the first to attempt constructing a machine that imitated a living creature’s 

behavior as distinguished from appearance versus performance.  Thomas Ross in 1938 made a 

machine that could find its way out of a maze.  Through trial and error it could learn to find its 

way to a goal on a system of toy train tracks (Walter, 1953).  Yet, Walter’s tortoises may be 

considered the first autonomous mobile robots. 

 

Excogitare 

 While many of Walter’s theories have since been abandoned, the significance of the ideas 

at the foundation of his robots is now only being realized.  According to Owen Holland, Walter 

built Machina speculatrix for a specific purpose, “He wanted to prove that rich connections 

between a small number of brain cells produces very rich behaviour” (as cited in Ward, 1998, p. 

55).  This is an idea that has a modern feel.  According to Ward (1998) Rodney Brooks of the 
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Massachusetts Institute of Technology used the idea to lay the foundation of a field that has 

become known as behavior-based robotics. 

 Unlike earlier intelligent robots that used large control programs for decision making that 

limited them to very specific tasks, Brooks went against the top-down control paradigm in favor 

of the bottom-up approach in which control is delegated to very simple elements.  For instance, 

each leg of his six-legged walking robot, Genghis, controlled its own actions, and the robot could 

walk and avoid objects or clamber over them (Brooks, 1999). 

Brooks, in formulating his approach, drew on Walter’s work.  The animal-like behavior 

of Machina speculatrix is a trait singled out by adherents of behavior-based robotics.  The 

emergence of unpredictable behavior, a hallmark of the natural world, is key to their claims they 

are progressing towards genuinely lifelike artificial organisms. 

Walter was optimistic others would create similar creatures, imitating life with yet more 

complex machines.  In the near future he predicted that similar imitations of life would be 

capable of repairing and reproducing themselves.  However, as classical Artificial Intelligence 

imposed the top-down paradigm as dogma on experimental robotics and demanded creations 

possess a human-like grasp of logic, the supple, animal-like behaviors of Elmer and Elsie were 

destined for the curiosity heap (Levy, 1992). 

 The destiny of Elmer and Elsie may have been the curiosity heap, but Walter’s optimism 

has been realized.  Researchers such as Rodney Brooks, Ronald Arkin, and Robin Murphy have 

created robots that in essence imitate life.  Like Brooks, Walter’s work has provided motivation 

for this researcher.  Moravec (1988) wrote, “I believe that robots with human intelligence will be 

common within fifty years” and that, “… I now expect to see a general-purpose robot usable in 

the home within ten years.”  Even though Moravec (1999) states, “There are still no mobile 

utility robots to help us around the house,” and in light of his revised prediction that by 2010 

utility robots will be common, this researcher does not share his optimism. 
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CHAPTER 4 

CELL ASSEMBLIES 

 

 Grey Walter like Donald Hebb was interested in how the brain functions.  Walter built his 

first robot in 1948 shortly before Hebb published his neurophysiological postulate.  Other than 

sharing similar interests, it is not stated in the literature whether or not a mutual influence 

between their work existed.  While Walter was primarily interested in how behavior arose from 

neural interconnections, Hebb postulated about how learning amongst neurons occurred and is 

the topic of this chapter. 

 

D. O. Hebb 

 Donald Olding Hebb (1904-1985) was an extraordinarily influential figure in the 

discipline of psychology.  His opposition to radical behaviorism and emphasis on understanding 

what happens between stimulus and response helped pave the way for the cognitive revolution.  

Viewing psychology as a biological science, his neurophysiological cell assembly proposal 

renewed interest in physiological psychology.  Since his death, Hebb’s seminal ideas continue to 

exert a growing influence on those interested in mind, brain, and how brains bring about mind 

(Klein, 1999). 

 Hebb’s influence extends beyond the domain Psychology.  For example, in 1943, 

mathematicians Warren McCulloch and Walter Pitts showed that it was possible to compute with 

a neural network.  Six years later Hebb showed how a neural net could learn.  If there is a core to 

the field of Artificial Intelligence today, it is most likely the connectionist school of neural 

networks.  In this sense, McCulloch, Pitts, and Hebb can be considered the founding fathers of 

Artificial Intelligence (Susac, 1997). 
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Cell Assemblies and Phase Sequences 

 Hebb’s fundamental idea, his neurophysiological postulate, was to assume that the brain 

is constantly making changes at the synapses.  Hebb stated this assumption in his 1949 book The 

Organization of Behavior.  “When an axon of cell A is near enough to excite cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased” 

(Hebb, 1949, p. 62).  This was a bold assumption on his part because at the time he had no 

evidence to support it whatsoever.  Having made this assumption, however, he argued that these 

synaptic changes were in fact the basis of learning and memory.  For example, a sensory impulse 

coming in from the eyes leaves a trace on the neural network by strengthening all the synapses 

that are along its path.  As a result, Hebb said, a network that was initially random would rapidly 

organize itself.  Experience would accumulate through a kind of positive feedback, where strong, 

frequently used synapses grow stronger, while weak, infrequently used synapses atrophy.  The 

favored synapses would eventually become so well established that the memories would be 

locked in due to structural change.  These memories, in turn, would be widely distributed over 

the brain, with each one corresponding to a complex pattern of synapses involving potentially 

millions of neurons. 

Hebb’s second assumption was that the selective strengthening of the synapses would 

cause the brain to self organize into cell assemblies, where subsets of thousands of neurons in 

which circulating nerve impulses would reinforce themselves and continue to circulate.  Hebb 

considered these cell assemblies the basic building blocks of information in the brain, each 

corresponding for example to a sound, an image, or a fragment of an idea.  Yet, these assemblies 

would not necessarily be physically distinct, overlapping with neurons belonging to other cell 

assemblies.  Because of this overlap, activation of one cell assembly would influence the 

activation of others, and this activation would lead to the activation of yet others, and so these 
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fundamental building blocks would quickly organize themselves into larger concepts and 

complex behaviors.  Thus, for Hebb, the cell assembly is the fundamental quanta of thought. 

 Just as cell assemblies are formed as aspects of an object become neurologically 

interrelated, in a similar fashion cell assemblies become neurologically interrelated to form phase 

sequences.  A phase sequence is “a temporally integrated series of assembly activities; it 

amounts to one current in the stream of thought” (Hebb, 1959).  Once developed, a phase 

sequence, like a cell assembly, can be fired internally, externally, or by a combination of internal 

and external stimulation.  When any single cell assembly or combination of assemblies in a 

phase sequence is fired, the entire phase sequence tends to fire.  When a phase sequence fires, 

one experiences a stream of thought, i.e., a series of ideas arranged in some logical order 

(Hergenhahn & Olson, 2000). 

 When considering Hebb’s cell assemblies, a shortcoming should be noted.  Without 

inhibiting factors, learning would strengthen synaptic connections until all neurons fired 

continuously, hence it would make the system useless.  In 1950 Nathaniel Rochester and his 

colleagues at the IBM research laboratory in Poughkeepsi, New York, observed this in a 

computer model of the cell assembly.  Hebb himself never used a computer to test his idea that 

random nerve nets could organize themselves to store and retrieve information.  In spite of this, 

Hebb’s work later inspired many computer models, from the perceptron to parallel distributed 

processing (Milner, 1993). 

 

Research 

 Hebb proposed 53 years ago that animals perceive objects and carry out actions due to 

the collective ability of large assemblies of brain cells.  However, since then, brain researchers 

have tended to focus on the responses of one or a few neurons at a time. 

 Two investigations appearing in the February 4th, 1999, Nature go against the 

experimental grain and bolster Hebb’s notion.  Both indicate that human perception and learning 
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arise from synchronized activity of clusters of neurons.  Large numbers of nerve cells may 

briefly align the peaks and valleys of their electrical outbursts in order to render unified scenes 

and meanings from diverse sensations (Bower, 1999). 

 Some studies have used microelectrodes implanted in the brain.  These studies have 

linked synchronized neural firing in cats and other nonhuman animals to perception and memory 

(Bower, 1998). 

 New efforts instead rely on measuring brainwaves by means of electrodes placed on the 

scalp.  Brain waves arising from the synchronized neural activity known as gamma waves are the 

result of thousands of neurons firing at around forty hertz (Bower, 1999). 

 A study by Pulvermüller investigated the psychophysiology of word processing.  In this 

investigation he adopted Hebb’s theoretical position that cell assemblies are the building blocks 

of cognitive functions.  He suggests these assemblies are not necessarily restricted to small 

cortical locus but may be dispersed over distant cortical areas.  Different assembly topographies 

can be postulated for different kinds of words.  Evidence from evoked potentials and gamma-

band electrocortical responses elicited by lexical material supports a cell assembly model of 

language and other higher cognitive functions (Pulvermüller, 1996). 

 

Rodriguez 

Rodriguez et al. (1999) conducted a study in which 10 adults looked at images of either 

human faces or abstract shapes.  To indicate what they saw they pressed one of two computer 

keys. 

 Brain tissue involved in vision exhibited gamma activity for an instant when volunteers 

scrutinized faces but not when they viewed the shapes.  These synchronized responses are 

considered by Rodriguez’s group to be crucial for integrating related sensations into a vision of a 

face, but they dissipated before any key was pressed.  A second gamma burst arose in the motor 
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areas of the brain as participants pressed a key, which may have helped coordinate an appropriate 

reaction (Rodriguez et al., 1999). 

 

Miltner 

Wolfgang Miltner of Fredrich Schiller University in Jena, Germany, has performed an 

investigation that indicates learning fosters synchronized neural activity.  For this investigation 

16 volunteers in a series of trials saw a flash of colored light that was immediately followed by a 

mild shock to the third finger of either the right or left hand.  After the participants were 

conditioned, the flashing light alone-evoked surges of gamma activity in brain areas devoted to 

vision and to representation of the finger that had been shocked.  This gamma activity was not 

observed once the participants learned not to expect a shock to a finger after seeing the flashing 

light (Miltner, Braun, Arnold, White, & Taub, 1999). 

 According to Wolf Singer of the Max Planck Institute for Brain Research in Frankfurt, 

Germany, although these studies do not demonstrate any precise functions for synchronized 

neural responses, gamma activity, they “could well be the mechanism that binds neurons into 

functionally coherent assemblies” (as cited in Bower, 1999). 

 

Pulvermüller 

According to Pulvermüller (1996) some ideas included in the Hebbian framework are 

now common features of brain theories about language and other cognitive functions.  The 

assumption that neuron assemblies can be distributed over wide cortical areas is shared by recent 

large-scale neuronal theories.  Apparently, there is a broad consensus that neurons of distant 

cortical areas can work together as functional units.  The Hebbian framework, in addition to 

postulating there are large-scale neuronal networks, also provides criteria for the formation of 

cell assemblies, and thus an explanation for assembly topographies (Pulvermüller, 1996). 



38 

Within the Hebbian framework, Pulvermüller asks not where cognitive entities are 

represented in the cortex but where in the cortex correlated neuronal activity takes place when 

cognitive entities are being learned.  Cell assemblies representing phonological word forms are 

localized in the perisylvian cortices, associative learning must take place to store the rules that 

determine sequencing of words in well-form sentences and the meaning of word forms.  In the 

Hebbian framework, frequently coactivated neurons strengthen their connections and develop 

into a higher order assembly representing the phonological word form together with its meaning.  

As such, theses assemblies related to meaningful words may actually be distributed over the 

entire cortex (Pulvermüller, 1996). 

Studies of neurological patients with linguistic deficits revealed that lesions involving 

areas outside the perisylvian language cortices of the left hemisphere could lead to problems in 

processing words of particular categories.  Lesions in the frontal lobe in the vicinity of Broca’s 

area tend to result in problems in accessing verbs.  Whereas, lesions in the inferior temporal lobe 

and the temporo-occipital areas tend to selectively affect the ability to access nouns 

(Pulvermüller, 1996). 

In a positron emission tomography study by Martin, Haxby, Lalonde, Wiggs, and 

Ungerleider (1995) had subjects generate verbs and color words.  These researchers found 

increased metabolic turnover in the ventral temporal lobe when color words were generated, and 

generation of verbs activated more superior temporal and inferior frontal areas but no additional 

motor cortices. 

Data from evoked potentials have provided evidence that words of similar length and 

frequency can have different cortical counterparts.  It has been suggested that these cortical 

representations are Hebbian cell assemblies.  Although these ideas provide a tentative 

explanation of findings concerning high-frequency cortical responses related to cognitive 

processes, future theoretical and experimental research is necessary to further validate them 

(Pulvermüller, 1996). 
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CHAPTER 5 

BEHAVIOR-BASED ROBOTICS AND SENSOR FUSION 

 

 Grey Walter built his robots to explore how behavior arose from rich interconnections 

amongst a small group of neurons and Donald Hebb postulated about how learning amongst 

neurons occurred.  Walter’s and Hebb’s theories about brain functions inform those involved in 

robotics research.  Rodney Brooks of the Massachusetts Institute of Technology influenced by 

the work of Walter used the idea of organizing a robot controller as a set of behaviors to lay the 

foundation of a field that has become known as behavior-based robotics the first topic of this 

chapter. 

 

Behavior-Based Robotics 

 Two important characteristics of classical Artificial Intelligence (AI) methodology are the 

ability to represent hierarchical structure by abstraction and the use of strong knowledge that 

employs explicit symbolic representational assertions about an environment.  The influence of 

AI on robotics was the idea that knowledge and its representation is central to intelligence and 

may have been a result of AI’s preoccupation with human-level intelligence.  Behavior-based 

robotics reacted against these traditions. 

 According to Rodney Brooks (1987), “Planning is just a way of avoiding figuring out 

what to do next.”  Even though this paradigm shift was initially resisted, the notion of sensing 

and acting within an environment has grown in preeminence in AI related robotics research over 

the previous focus on knowledge representation and planning.  Advances in robotics and sensor 

hardware made it feasible to test behavior-based robotic hypotheses, and the results enamoured 

the imagination of AI researchers (Arkin, 1998). 

 The behavior-based approach to robotics has been evolving since about 1984 in a number 

of laboratories.  Instead of modularizing perception, environment modeling, planning, and 



40 

execution, this approach builds intelligent control systems where individual modules each 

directly generate part of the behavior of the robot.  Along with an arbitration scheme, an 

integrated part of the framework, that controls which behavior producing modules has control of 

part of the robot at any given instance. 

 The behavior-based approach is an interdisciplinary effort that draws inspirations from 

neurobiology, ethology, psychophysics, and sociology.  This approach grew out of 

dissatisfaction with traditional robotics and artificial intelligence that seemed unable to deliver 

real-time performance in dynamic environments.  The central idea of the new approach is to 

advance both AI and robotics by considering the problems of building an autonomous agent that 

is physically an autonomous mobile robot that carries out some useful task in an environment 

that has not been specially engineered for it (Brooks, 1991). 

 A number of researchers starting about 1984 began rethinking the general problem of 

organizing intelligence.  A reasonable requirement was that intelligence should be reactive to 

dynamic aspects of the environment, and that a mobile autonomous robot should operate on time 

scales similar to those of animals and humans.  In addition intelligence should be able to 

generate robust behavior in light of uncertain sensors in an unpredictable environment. 

 Some of the key realizations about the organization of intelligence were that most of what 

people do in their day-to-day lives is not problem-solving or planning, but are routine activities 

in a relatively benign yet dynamic environment.  Representations an agent uses of objects in its 

environment do not have to rely on naming those objects with symbols the agent possesses but 

can be defined through interactions of the agent with its environment.  An observer can talk 

about an agent’s beliefs and goals in light of the fact that the agent does not manipulate symbolic 

data structures.  Brooks has argued that in order to really test ideas of intelligence it is important 

to build complete agents that operate in dynamic environments using real sensors.  Internal world 

models, complete representations of an environment are impossible to obtainfs and are not 

necessary for agents to act competently.  Further, many of the actions of an agent are separable, 
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and coherent intelligence can emerge from independent subcomponents interacting with the 

environment (Brooks, 1991). 

 Two key ideas have led to solutions that use behavior-producing modules, situatedness 

and embodiment.  When a robot is situated in its environment, it does not have to deal with 

abstract descriptions but instead deals with the here and now of the environment that directly 

influences the behavior of the system.  Embodiment means that robots have bodies and 

experience their environment directly.  Robot actions are part of a dynamic with an environment, 

and its actions have immediate feedback on the robots’ own sensations. 

 The following example highlights the issues of situatedness and embodiment.  A current 

generation industrial spray-painting robot is embodied but is not situated.  That is, it has a 

physical extent and its servo routines correct for its interactions with gravity and noise present in 

the system.  Yet, it does not perceive any aspects of the shape of an object presented to it for 

painting and merely goes through a pre-programmed series of actions (Brooks, 1991). 

 

Subsumption Architecture 

 Brooks (1991) states that some success is achieved in the control of autonomous robots 

by combining sets of behavioral modules running in parallel.  Classic approaches to robotics do 

not typically decompose control into separate behaviors.  Instead, control is decomposed into 

functional modules that process information from sensation to output in serial stages.  A module 

for perception attempts to reconstruct from visual input a representation of what things are and 

their location.  This representation is then used by another module to make plans to reach the 

robot’s objectives.  Next commands from planning are passed on to an effector module that 

executes them.   

Brooks (1986) explores an alternative that de-emphasizes classical approaches 

construction of internal representations.  In the subsumption architecture control is decomposed 

into separate modules that guide simple behaviors.  Each module uses sensory input to find 
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features relevant for controlling its behavior.  For example, object avoidance modules that use 

sonar sensors placed around the robot body to steer it away from nearby objects.  Individual 

modules operate in parallel and detect cues from sensory input and generate commands to move 

the robot.  When commands from several modules are combined, they can produce a robot 

capable of navigating an uncertain environment without collision. 

Early work in behavior-based robotics used a fixed priority scheme called subsumption 

architecture to combine commands from behavior modules.  In the subsumption architecture, 

behaviors are organized into ascending levels of competence.  A behavior at the lowest level 

executes its commands with no awareness of the other behaviors above it.  Yet, even at the 

lowest level of competence the robot can execute meaningful actions for its survival.   A basic 

behavior, such as obstacle avoidance can still function even in the absence of navigation goals by 

moving the robot out of the path of approaching vehicles.  As higher level behaviors are added, 

they impose additional constraints on the robot’s behavior.  Higher level behaviors take as input 

both sensory information and the outputs from lower level.  When necessary, high levels modify 

the output from lower levels and substitute their own commands.  For example, a behavior that 

moves the robot towards landmarks can replace the movement suggested by obstacle avoidance 

with an alternative that still avoids the obstacle but also moves closer to the landmark.  Robots 

based on the subsumption architecture can be constructed with more sophisticated behavior by 

incrementally adding higher levels of competence (Brooks, 1989). 

 

Robotic Sensor Fusion 

Neurophysiologists and cognitive psychologists are studying sensory integration and 

intersensory perception in order to generate an accurate model of perception, while engineers, 

computer scientists, and robotics researchers are building robots, which require mechanisms, not 

theoretical models, for performing sensor fusion.  Single sensor systems have not been 

completely successful for demanding tasks in navigation, target or goal recognition, and general 
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scene interpretation.  The primary disadvantage of a single sensor system is its inability to reduce 

uncertainty.  Uncertainty occurs when features are missing or when the sensor cannot measure 

all the relevant attributes of a percept and when the observation is ambiguous (Murphy, 1996).   

Yet, no complete theory of sensor fusion has been presented in the cognitive and biological 

literature explaining how sensors influence and dominate each other while producing more 

accurate or confident perception (Murphy, 1994).  

 Sensor fusion is also an interest for those in the Artificial Intelligence (AI) and Artificial 

Neural Network (ANN) who work with autonomous mobile robots.  The issue of interest is how 

to use information from one sensor to focus attention of another, and how to combine 

information from multiple sensors to improve measurement accuracy or confidence in 

recognition.  Additionally, the demands of an unpredictable environment necessitate the use of 

multiple sensors to provide robustness in light of one sensor’s shortcomings (Murphy, 1994). 

According to Arkin (1998) and Murphy (2000) behavior-based systems can organize perceptual 

information in three general ways: sensor fission, action-oriented sensor fusion, and perceptual 

sequencing or sensor fashion, Figure 2 through 4 illustrate these concepts.  Sensor fission is 

easily understood, for example, a motor behavior requires a specific stimulus to produce a 

response, thus a dedicated perceptual model is used to channel its output directly to the behavior. 

Behavior 2

Behavior 1

Behavior 3

Percept 1

Percept 3

Percept 2

Response 1

Response 3

Response 2 Response
Combination
Mechanism

Figure 2.  How percepts are combined in sensor fission. 
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Figure 3.  How percepts are combined in sensor fusion. 
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 Figure 4.  How percepts are combined in sensor fashion. 

 

Action-oriented sensor fusion facilitates the construction of temporary representations (percepts) 

that are locals to behaviors.  Increased robustness is achieved by restricting the final percept to 

the requirements of a particular behavior’s requirements and context as well as retaining the 

advantage of reactive control while permitting more than one sensor to provide input (Arkin, 

1998). 

 Fixed-action patterns sometime require varying stimuli to support their operation over 

time and space.  Different sensors or different views of an environment may modulate a 

behavioral response as it unfolds.  Perceptual sequencing allows the coordination of multiple 

perceptual algorithms over time in support of a single behavioral activity.  Based on the needs 

and environment, an agent’s perceptual algorithms are phased in and out.  The phrase sensor 

fashion describes the significance of differing perceptual modules, changing over time and space 

(Arkin, 1998). 
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Sensor Fusion Effects Architecture 

 According to Murphy (1994) forays by the AI community into sensor fusion have 

essentially ignored cognitive and behavioral psychology.  Murphy’s work coalesced in the 

development of the Sensor Fusion Effects (SFX) architecture, which consist of three generic 

mechanisms derived from her study of cognitive psychology and neurophysiology.   Figure 5 

shows the neurophysiological influenced cognitive model of sensing based on studies of sensing 

in cats that SFX is modeled after. 
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Figure 5.  Cognitive model of sensing used in SFX. 

 

The cognitive model suggests sensory processing is initially local to each sensor and may 

have its own sense-dependent field.  According to Murphy (2000) the model is consistent with 

reactive robotic behaviors and at least with the motivation for sensor fission.  Sensor processing 
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then appears to branch where duplicates go to the superior colliculus and to the cerebral cortex, 

where branching allows the same sensor stream to be used in multiple ways.  In SFX the 

equivalent superior colliculus functions are implemented in a reactive layer, and cortical 

activities are implemented in a deliberative layer.  Perceptual branching is accomplished through 

the use of whiteboards, a global cognitive data structure common in many AI systems. 

The SFX model has three states: 

State 1.  Complete Sensor Fusion: All sensors cooperate with each other in 

determining a valid percept. 

State 2. Fusion with the possibility of discordance and resultant recalibration of 

dependent perceptual sources: Recalibration of suspect sensors occurs rather than 

the forced integration of their potentially spurious readings into the derived 

percept. 

State 3. Fusion with the possibility of discordance and a resultant suppression of 

discordant perceptual sources: Spurious readings are entirely ignored by 

suppressing the output stream of the sensor(s) in question (Arkin, 1998). 

SFX uses Dempster-Shafer theory to combine and propagate evidence, where evidence 

accrues like biological neural network models of sensor fusion advocated by Stein and Meredith 

(1993).  SFX defines a perceptual process capable of performing sensor fusion that executes in 

two phases, an investigatory phase and a performatory phase, both derived from the study of 

orienting behavior.  The investigatory phase relies on a configuration mechanism, while the 

performatory phases uses an execution and exception handling mechanisms (Murphy, 1996). 

 The responsibility of the configuration mechanism is to select the most appropriate 

sensing plan based on current operating conditions and the activated plan guides the execution of 

the execution mechanism that collects, processes, and fuses observations and evidence.  Task-

specific perceptual schemas for sensor fusion yield percepts directly related to the needs of a 

motor behavior.  Perceptual schemas feed their parent schema and support higher-level schemas.  
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Each source of sensor data eventually grounds this recursive formulation.  A parent perceptual 

schema combines the incoming subschema information using statistical techniques to produce a 

percept and a measure of its belief that is used in the motor schema (Arkin, 1998). 

 

Sensor Fusion in a Time-Triggered Network 

 Elmenreich and Pitzek (2001) state that sensor fusion technologies are advantageous for 

systems that interact with their environment via a set of sensors, and that sensor fusion combined 

with smart transducer technologies leads to an effective system in terms of cost, robustness, 

decomposability and maintainability.  An architectural model that supports a break down of a 

sensor fusion application into three levels, a node level, cluster level, and control application 

level, is used in the construction of a mobile robot.  Communication between these levels is 

performed by means of a well-defined interface system. 

 In this study a mobile robot, a smart car, equipped with a suite of pivoted distance 

sensors, an electric drive, and a steering unit was used.  Each sensor is represented as Time 

Triggered Protocol/Architecture (TTP/A) nodes, where each node is implemented on a separate 

low-cost microcontroller equipped with a smart transducer interface.  The network also has a 

master node and a data processing node.  The robot’s distance sensors are able to scan the area in 

front of it because they are mounted on swivels moved by a servo motors.  The distance sensors 

generate a value corresponding to the distance of an object. 

 The stream of data generated by the distance sensors is used by the data processing node 

that fuses the perceptions from the distance sensors with a model of the robot’s environment.  In 

the model studied, the shapes of obstacles were stored and assigned a probability value that 

decreases with the progression of time and increases when the object is re-scanned.  The robot 

has 16 slave nodes and one master node, where navigation and sensor fusion is hosted on a single 

node.  Sensor fusion techniques were used to establish a hardware independent interface to a 

control application.  The Elmenreich and Pitzek (2001) study proved that openness to changes or 
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extensions of sensor nodes and modifications of the control program result in a reduction of the 

system complexity at the cluster and control application level. 

 

Just-in-Time Sensor Fusion 

 Rekleitis, Dudek, and Freedman (1996) describe an approach to combine range data from 

a set of sonar sensors and a directional laser range finder to take advantage of the characteristics 

of both devices when exploring and mapping unknown environments.  The approach is described 

as “just in time” because it uses the more accurate yet constrained laser range sensor only as 

needed based on interpretation of sonar data.  The key to their approach is that one sensor 

provides a large-scale but low-resolution depiction of the environment while a second sensor 

provides a more costly but higher resolution view.  Research in sensor fusion has tended to focus 

on issues of how best to combine measurements from different sensors or how to best extract 

data with a single sensor and fuse the measurements over time.  This research differs in that it is 

shown how to selectively extract measurements from different types of sensors. 

 Experimentation with a mobile robot equipped with sonar and a laser range finder 

demonstrated that judicious usage of the more accurate but more complex laser range finder was 

able to deal with known ambiguity that arises in sonar data.  The algorithm used is based on 

knowledge of how sensor errors manifest themselves as well as how the environment is typically 

structured.  It is this knowledge that allows the informed selection of locations to be probed with 

the more accurate sensor.  The result was better mapping of a space at little additional 

computational expense (Rekleitis et al., 1996). 

 

Neural Network Sensor Fusion 

 Davis and Stentz (1995) use a neural network paradigm to perform simulated and real-

world navigation tasks that require the use of multiple sensing modalities.  Their research uses 

backpropagation neural networks because when properly trained a neural network can 
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automatically select and weigh the most important features of an environment, with the added 

capability of being able to tackle a significantly different environment by just changing the 

training data. 

 The goal of the research was to achieve autonomous navigation using the Carnegie 

Mellon University autonomous navigation High Mobility Multi-Wheeled Vehicle (HMMWV), a 

four-wheel-drive military ambulance. The goal was for the vehicle to safely wander around while 

avoiding obstacles.  Testing was done in two environments, a square kilometer virtual world and 

on a 2-kilometer by 2-kilometer outdoor testing site.  Two monolithic neural network 

architectures were used that performed almost identically in addition to a modular network 

architecture, the Modular Architecture Multi-Modal Theory network (MAMMOTH) – a network 

architecture and a training paradigm.  MAMMOTH consists of two segments, a feature level and 

a task level.  The feature level is a set of feature neural networks trained to recognize specific 

features in any sensory modality serving as an input source.  The task level uses information 

from the feature level network’s hidden layers as input to a network trained to perform the 

navigation task. The implications for sensor fusion in general are the ease with which new sensor 

modalities can be added to a given task.  Results showed that a monolithic neural network is 

capable of learning to fuse sensing modalities (Davis & Stentz, 1995). 
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CHAPTER 6 

BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS 

 

Biological Neurons and Networks 

 Neural network architectures are motivated by models of the brain and nerve cells.  

Individual neurons are complicated and have a myriad of parts, sub-systems, and control 

mechanisms.  Neurons communicate information by means of a variety of electrochemical 

pathways.  There are over 100 different classes of neurons, depending on the method of 

classification.  Collectively neurons and their connections form a process that is not binary, 

stable, nor synchronous (Anderson, 1995). 

The brain is a dense neural network consisting of an estimated 100 billion neurons that 

use biochemical processes to receive, process and transmit information.  A diagram of a nerve 

cell typical of those in the brain is shown in Figure 6.  The output area of the neuron is a long 

branching fibre called the axon.  The input area of the neuron is a set of branching fibres called 

dendrites (Dayhoff, 1990; Smock, 1999). 

 

Figure 6.  Schematic of a biological nerve cell. 
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The dendritic tree of a neuron is connected to thousands of other neurons.  When one of 

those neurons fires, a positive or negative charge is received by a dendrite.  The strengths of all 

the received charges are added together through the processes of spatial and temporal 

summation.  Spatial summation occurs when several weak signals are converted into a single 

large one, while temporal summation converts a rapid series of weak pulses from one source into 

a large signal.  The aggregate input is then passed to the cell body or soma.  Yet, the soma and 

the nucleus do not take an active role in the processing of incoming and outgoing data.  Their 

primary function is the continuous maintenance needed to keep the neuron functional.  The axon 

hillock is the part of the soma that does play a role in determining the output signal of a neuron.  

If the aggregate input to the neuron is greater than the axon hillock’s threshold value, then the 

neuron fires, i.e., an output signal is generated that is transmitted down the axon.  The strength of 

the output is constant, even if the input was just barely above the threshold, or a thousand times 

as great.  Additionally, the output strength is not affected by the many branches of the axon, the 

signal reaches each terminal bouton with the same intensity (Smock, 1999).  This uniformity of 

signal is critical in analog devices such as the brain where small errors can multiply and because 

error correction is more difficult than in digital systems (Dayhoff, 1990). 

 

Figure 7.  The synapse, a small gap between neurons. 
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The terminal bouton of one neuron, as illustrated in Figure 7, does not physically make contact 

with another neuron.  Each terminal bouton forms a connection to other neurons across a small 

gap called a synapse.  The neurochemical and physical characteristics determine the strength and 

polarity of the input signal for each synapse.  This is where the brain is the most flexible, and the 

most vulnerable.  Altering the composition of the various neurotransmitter chemicals can 

increase or decrease the amount of stimulation that the firing axon conveys to the neighboring 

dendrite.  Changing the neurotransmitters can also change whether the stimulation a neuron 

receives is excitatory or inhibitory (Nicholls, Martin, & Wallace, 1992). 

 

Artificial Neurons and Networks 

 Neural networks are computational structures inspired by the study of biological neural 

processing.  The field is known by many names, such as connectionism, parallel distributed 

processing, neuro-computing, natural intelligent systems, machine learning algorithms, and 

artificial neural networks.  An artificial neural network is an attempt to simulate within 

specialized hardware or by means of simulation software, the multiple layers of simple 

processing elements of neurons, where each neuron is linked to a number of neighboring neurons 

with varying coefficients of connectivity that represent the strengths of the connections.  

Learning is accomplished by adjusting the strength of these connections, causing the overall 

network to output appropriate results (Haykin, 1999). 

 The basic components of a neural network are modeled after the structure of the brain.  

Some neural network structures are not closely related to the brain and some do not have a 

biological equivalent in the brain.  Yet, neural networks have a strong similarity to the biological 

brain and, therefore, share terminology from neuroscience. 
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 The elemental unit of a neural network is the artificial neuron that simulates the basic 

functions of biological neurons.  Artificial neurons are simpler than their biological counterparts; 

Figure 8 shows the elements of an artificial neuron. 

Figure 8.  Elements of an artificial neuron. 

 

The inputs to the network are represented by xn and each of these inputs is multiplied by a 

connection weight wn.  In the simplest case, these products are simply summed and processed by 

a transfer function to generate a result, and then an output.  Even though all artificial neural 

networks are constructed using this basic building block, the fundamentals may vary (Rao & 

Rao, 1995). 

 Biological neural networks are constructed in three dimensions from microscopic 

components.  While these neurons appear capable of unrestricted interconnections, this is not 

true of artificial networks that are the simple clustering of simple artificial neurons.  Clustering 

occurs by creating layers, which may vary, and these are connected to one another.  Essentially, 

all artificial neural networks have a similar topology, where a layer of neurons form external 

connections to receive inputs from the outside world and another layer of neurons provide the 

network’s outputs to the outside world; all remaining neurons are hidden from view. 

 



54 

 

Figure 9.  Layers in an artificial neural network. 

 

Figure 9 illustrates how neurons are organized into layers.  The input layer consists of 

neurons receiving input from external sources.  The output layer consists of neurons that 

communicate the results of the network to a user or entity.  Additionally there are typically one 

or more hidden layers between the input and output layers, and layers are usually fully 

interconnected but are not required to be so (Dayhoff, 1990). 

Neurons are connected via a network of connections carrying the output of one neuron as 

input to other neurons.  These paths are normally unidirectional, but there may be a two-way 

connection between two neurons because there may be another path in the reverse direction.  A 

neuron receives input from many neurons and produces a single output that is input to other 

neurons.  Additionally, the neurons in a layer may communicate with each other, but the neurons 

of one layer are always connected to at least one other layer (Haykin, 1999).
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Learning 

 Neural networks are sometimes called machine learning algorithms because during 

training the connection weights are altered to cause the network to learn the solution to a 

problem.  The connection strength between neurons is stored as a weight-value for a specific 

connection.  The network learns by adjusting these connection weights. 

 Training typically consists of one of three methods, unsupervised learning, reinforcement 

learning, or back-error propagation.  In unsupervised learning the hidden layer neurons 

determine how to organize themselves without external assistance.  In this approach, no 

exemplars are provided to the network against which it can measure its performance for a given 

input vector (Haykin, 1999). 

In reinforcement learning the connections among the neurons in the hidden layer are 

randomly set then adjusted as the network is told how close it is to solving the problem.  

Reinforcement learning is also called supervised learning because it requires a teacher that may 

be a training set or an observer who rates the performance of the network. 

Back-error propagation is a proven, highly successful method used for training 

multilayered neural networks.  In this method the network is given reinforcement and 

information about errors is also propagated back through the system and used to adjust the 

connections between the layers (Dayhoff, 1990). 

 

Learning Rules 

 There are numerous learning rules used for training neural networks.  These rules are 

mathematical algorithms used to update connection weights.  The majority of these rules are 

variations of the most prevalent and oldest learning rules.  The understanding of how 

neurological processing works is limited, and learning is more complex than the simplification 

represented by learning rules developed for artificial neural networks.  A few of the major 

learning rules are: 
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• Hebb’s Rule 

Donald Olding Hebb introduced the best know learning rule in 1949 in his book The 

Organization of Behavior.  The rule states that if a neuron receives input from another 

neuron, and if both are highly active, the weight between them should be 

strengthened. 

• Hopfield Rule 

This rule is similar to Hebb’s Rule with the exception that it specifies the magnitude 

of the strengthening or weakening.  The rule states that if the desired output and the 

input are both active or inactive, the connection weight is incremented by the learning 

rate, otherwise the weight is decremented by the learning rate. 

• The Delta Rule 

The Delta Rule is a variation of Hebb’s Rule, and it is one of the most commonly 

used.  It is based on the idea of continuously modifying the strengths of the input 

connections to reduce the difference, delta, between desired output value and actual 

output value of a neuron.  This rule changes the connection weights in such a way 

that it minimizes the mean squared error of the network.  The error is propagated back 

into previous layers one at a time.  The process of propagating the errors back into 

previous layers continues until the first layer is reached.  This rule is also known as 

the Widrow-Hoff Learning Rule and the Least Mean Square Learning Rule. 

• Kohonen’s Learning Rule 

This rule was developed by Teuvo Kohonen and was motivated by learning in 

biological systems.  In this process neurons compete for the opportunity to learn, i.e., 

update their weights.  The neuron with the largest output is deemed the winner and 

has the ability to inhibit its competitors as well as exciting its neighbors.  Only the 

winning neuron is permitted output, and only the winner and its neighbors are 
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allowed to update their connection weights.  Additionally, this rule does not require 

knowledge of the desired output (Dayhoff, 1990; Haykin, 1999; Rao & Rao, 1995). 

 

 Neural networks are an effective approach for a broad spectrum of applications.  They 

excel at problems involving patterns – pattern mapping, pattern completion, and pattern 

classification.  Neural networks may be applied to translate images into keywords, translate 

financial data into financial predictions, or map visual images into robotic commands.  Neural 

networks offer an alternative method to analyze data, and to recognize patterns within data, than 

traditional computing methods.  Noisy patterns, such as those with missing segments, may be 

completed with a neural network trained to recall the completed patterns (Dayhoff, 1990). 
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CHAPTER 7 

EXPERIMENTAL DESIGN 

 

 The hypothesis to be tested in the study conducted was motivated by the synesthesia 

cross-wiring hypothesis, which states synesthetic perceptions are due to neurological cross-wired 

connections in the brain.  Therefore, would cross-wiring two artificial neural networks result in a 

synesthetic response in one network.  Research was conducted by means of computer simulation 

using software developed to simulate a cross-wired artificial neural network.  The software 

architecture is detailed along with the source code in Appendix A. 

 

Cross-Wired Artificial Neural Network Architecture 

 Figure 10 depicts the architecture of the cross-wired neural networks.  The two networks, 

referred to as Network A and Network B, are cross-wired in the hidden and output layers of the 

network.  In this design both networks have the same number of layers and same number of cells 

per layer.  Each cell in the hidden and output layer receives input from the corresponding cell in 

the other network.  In the figure, the red lines show the connections from Network A to Network 

B, and the blue lines show the connections from Network B to Network A. 
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Network A Network B

 

Figure 10. Cross-wired artificial neural network architecture. 

 

Network Training 

 Training of the networks was performed in two stages.  The first stage of training was 

performed using back-error propagation software by Rao and Rao (1995).  In this stage each 

network, Network A and Network B, was independently trained to map 62 input vectors, 

patterns, to 62 output vectors, patterns, (see Table 1 and 2 in Appendix B).  A root-mean-squared 
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error tolerance of 0.001 was used in this training to evaluate when a network had converged, i.e., 

learned its training set.  Each network was trained with the same input vector set but with 

different output vector sets.  The rationale is that each network is independently coding for a 

feature, such as a grapheme or a color. 

 In the second stage of training, software developed for this researched was used to train 

the simulated cross-wired artificial neural network.  Cross-wired connection training consisted of 

two steps, an initial Hebbian step followed by a Residual Hebbian step.  Network A is influenced 

less by Network B, while Network B is influenced more by Network A because synesthesia is a 

unidirectional phenomenon. 

In the first step, the initial values of the cross-wired connection weights for Network A 

are determined using a local Hebbian learning rule of the form: 

 ∑
=

+
φ

=
n

i
in W

n
W

1
1    (1) 

where 

φ = 0.6180339. 

The rationale for deriving the initial cross-wired connection weight, Wn+1, for a cell is that it 

should preserve the balance of excitation and inhibition present in the existing weights.  The new 

weight is computed to be the average of the existing connection weights multiplied by φ, the 

Golden Ratio. The factor φ was used in determining the initial weights because of the 

significance attributed to it in nature (Goodwin, 1994).  

 The Golden Ratio is a concept of elementary geometry that in the past as well as 

currently holds significant relevance in both human and natural designs.  Consider the following 

line segment: 

 

    Figure 11.  Line segment. 
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The ratio of the lengths of the two parts of this line segment is the Golden Ratio where: 

 .φ==
AC
BC

BC
AB  (2) 

 The initial values for the cross-wired connection weights for Network B are determined 

by a similar local Hebbian rule as Network A: 

 ∑
=

+
Φ

=
n

i
in W

n
W

1
1    (3) 

where 

 1.6180339.  =1
=Φ

φ
 (4) 

In this case, the strength of the cross-wired connection weights in Network B is greater-than 

those in Network A.  Network A is influenced less by Network B, φ = 0.6180339, while Network 

B is influenced more by Network A, Φ = 1.6180339.   

 Step two of the second stage of training applies a Residual Hebbian learning rule to 

adjust the weights.  In this step all weights are updated using the following local learning rule: 

 ∑
=

−=
n

j
jii W

n
WW

1
'   β  (5) 

where 0.000015×= φβ  for Network A, and 0.00015×Φ=β for Network B.  The average of all 

weights is multiplied by a small bias factor β, a small fractional constant value, and is subtracted 

from each weight until the weights converge.  The residual leaning can be thought of as a small 

penalty that is proportional to what the cell already knows.  

 

Testing Scenarios 

 To test for potential synesthetic responses three scenarios were used to exercise the cross-

wired networks.  Table 1 and 2 in Appendix B contain the input vectors referred to in each 

scenario.  In the following scenarios Network A receives the same input vectors in all three test 

scenarios, input vectors 1 through 62.  The rationale for this choice in the design of the testing 
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scenarios was that it would simplify the identification of candidate vectors for synesthetic 

responses because Network A exerts more influence on Network B than Network B exerts on 

Network A.  Thus, based on the response of Network B, an input vector or input vectors to 

Network A need to be identified in all three scenarios. 

 

Scenario 1 

 In this scenario 62 mixed input vector pairs were presented as input to the networks.  

Input pairs consisted of input vectors 1 through 62 for Network A paired with input vectors 32 

through 62 and input vectors 1 through 31 for Network B, for a total of 62 input vector pairs. 

 

Scenario 2 

 In this scenario the input vector for Network B was held constant while the input vector 

for Network A varied.  Input vector pairs consisted of input vectors 1 through 62 for Network A 

paired with two different input vectors for Network B, vector 31 and vector 62, for a total of 62 

input vector pairs per run. 

 

Scenario 3 

 In this scenario the same input vector was used for both networks.  Sixty-two input vector 

pairs consisting of the same vector were presented as input to the networks.  These input vector 

pairs consisted of input vectors 1 through 62 for Network A and input vectors 1 through 62 for 

Network B. 
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CHAPTER 8 

RESULTS 

 

 For each scenario the mean of the absolute value of the error per output vector was 

computed; error is the difference between the non-cross-wired network output vector and the 

output vector for the network when cross-wired – not the ideal output value in the training set.  

Plots of the mean absolute error for each output vector were plotted to qualitatively determine if 

Network A consistently induced a synesthetic response in Network B.  A synesthetic response in 

this context is a significant deviation in the response of Network Bs output vector induced 

consistently by Network A and associated with a specific input vector of Network A.   The error 

tolerance used during the back-error propagation stage of training was a root-mean-squared error 

tolerance of 0.001; this value indicates a network has learned its training set.  A significant 

deviation in this case is a mean absolute error greater than 0.001 because each of the eight values 

in an output vector may vary by a factor of ±0.001 and still be considered within the initial 

training tolerance. 
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Scenario 1 Results 

 In this scenario Network A and Network B receive mixed input patterns. 
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Figure 12.  Error mixed input vectors. 

 

 By design, Network A receives less influence from Network B, and Network B receives 

more influence from Network A.  Figure 12, the graph of the average absolute error per output 

vector for each network shows that indeed Network A is influenced very little, while Network B 

is influenced more.  Network B exhibits 9 significant deviations for input vector pairs 8, 11, 12, 

15, 16, 17, 29, 41, and 42.   Therefore, these vectors are candidates for synesthetic responses. 
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Scenario 2 Results 

 In this scenario Network Bs input vector is fixed for two independent runs.  Input vector 

31 and 62 were used as constant input to Network B. 
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Figure 13.  Error fixed input vector Network B. 

 

 In this scenario no input vector pair is identified as suspect for synesthetic response 

because none of the errors are significant.  However, the graph in Figure 13 indicates there are 

small influences in each network by the other. 
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Scenario 3 Results 

 In this scenario the input pairs consisted of the same vectors for both networks. 

Figure 14.  Error Network A and Network B same input vectors. 

 

The results depicted in Figure 14 show that Network A is biased a small amount away from its 

expected output.  Network B exhibits 6 significant deviations for input vector pairs 37, 38, 39, 

41, 58, and 59.  Yet, none of these vectors coincide with other candidate vectors in the other 

scenarios except for vector 41 in the first scenario, but the errors are different. 

 

Conclusion 

 Qualitatively the collective results depicted in Figure 12 through 14 indicate that cross-

wiring two artificial neural networks in the manner described does not significantly alter the 

behavior of the individual networks.  It is observed that each network partially determines the 

output of the other network.  Even though each network influences the other, it was observed that 

each network independently responded to its own inputs. 
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The purpose of this study was to determine whether or not two cross-wired artificial 

neural networks would exhibit synesthetic responses.  Based on the results, no input vector 

causes a significant stable alteration in the output vectors of either network in all three scenarios.  

Thus, it is concluded that no synesthetic response occurs in this design of two cross-wired 

artificial neural networks. 

 The results additionally show that cross-wiring two independent artificial neural networks 

does not significantly alter the functionality of the individual networks, but it does allow inputs 

to one network to partially determine the outputs of the other network in some cases.  That is, 

there are measurable influences of Network A on Network B, and yet, Network B retains its 

ability to respond independently to its own inputs. 

 A benefit of cross-wiring independently trained networks is that it potentially allows for 

the reuse of previously trained networks without the need to retrain.  This implies complex 

networks may be constructed in a modular fashion.  Modularization and reuse are desirable goals 

as they afford a saving in time as well as foster the reuse of design knowledge. 

 In the context of robotic sensor fusion, the results indicate that cross-wiring two initially 

independent networks is a feasible means of fusing sensor data using artificial neural networks.  

It is speculated, for instance, that this arrangement is operationally feasible for application in 

autonomous mobile robot navigation.  In such an arrangement, it is conceivable that a proximity 

sensor network could bias a navigation network away from obstacles. 

 Further research is needed to assess the potential benefits of cross-wiring artificial neural 

networks.  In this study only a single connection between neurons in adjacent layers was 

considered.  Yet, it is conceivable that fully, partially, or sparsely interconnected layers may have 

merit.  Additionally, it is speculated that the use of an interconnecting layer of neurons between 

networks may yield better results.  In this case the interconnecting layer would act much like the 

hidden layers in a feed forward network, acting as a feature detector, thus allowing for a selective 

influence. 
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APPENDIX A 

Cross-Wired Network Simulation Software 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 15.  Cross-wired network simulation software UML diagram. 
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Simulation Software C++ Software Source Code 
 

//------------------------------------------------------------------------------ 
// 
// list.h 
// 
// Template Class - implements basic list container class - UNORDERED Collection 
// The list is setup as deque - doubly linked list - but not taken advantage of currently. 
// 
//------------------------------------------------------------------------------ 
#ifndef LIST_H 
#define LIST_H 
#include <_null.h> 
#include "truefalse.h" 
 
template <class TYPE> 
class List 
{ 
private: 
  class NODE 
  { 
  public: 
    TYPE  data;    // data stored at node 
    NODE* previous;    // previous node in list 
    NODE* next;    // next node in list 
 
    NODE(void) { previous = next = NULL; } // default CTOR 
  }; 
 
  NODE* head;    // head of the list 
  NODE* tail;                          // tail of the list 
  NODE* iteratorPosition;              // position of iterator in the list 
  int   iteratorEndOfListFlag; 
 
  int nodeCount; 
 
public: 
 
  List(void)    // DEFAULT ctor 
  { 
    head                  = NULL; 
    tail                  = NULL; 
    iteratorPosition      = NULL; 
    iteratorEndOfListFlag = FALSE; 
    nodeCount             = 0; 
  }; 
 
    List(const List<TYPE> &source);  // copy constructor 
   ~List();     // dtor 
 
    List &operator=(const List<TYPE> &rvalue); 
    TYPE &operator[](int index);         
    int  operator==(const List<TYPE> &rvalue) const; 
    int  operator!=(const List<TYPE> &rvalue) const; 
 
    int  insert(const TYPE &value);  // insert item into list 
    int  insert(void);    // insert new node - default values - empty 
    int  remove(const TYPE &value);  // delete specified item from list 
    TYPE iterator(void);   // iterates over items in list 
    void resetIterator(void) { iteratorPosition = head; } // point to first item in list 
    int  getCount(void) const{ return nodeCount; }          // how many items are in list 
    void clear(void);    // clear content of list - empty list 
}; 
 
#include "list.cpp"                    // add member function implementation 
 
#endif LIST_H 
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// list.cpp 
 
// copy constructor 
template<class TYPE> 
List<TYPE>::List(const List<TYPE> &source) 
{ 
  if(nodeCount) 
  { 
    NODE* current; 
 
    current = source.head; 
 
    do 
    { 
       insert(current->data); 
       current = current->next; 
    } 
    while(current); 
  } 
} 
 
 
// destructor 
template<class TYPE> 
List<TYPE>::~List() 
{ 
 if(nodeCount) 
 { 
  NODE* next; 
 
  do 
  { 
   next = head->next; 
   delete head; 
   head = next; 
  } 
     while(next); 
   } 
} 
 
 
template<class TYPE> 
List &List<TYPE>::operator=(const List<TYPE> &rvalue) 
{ 
 if(nodeCount)   // if there are items in the list - clear it before copying... 
    clear(); 
 
   NODE* current = rvalue.head; 
 
 do 
 { 
  insert(current->data); 
       current = current->next; 
  } 
  while(current); 
 
   return *this; // return reference to object pointed to by "this" - not a copy 
} 
 
 
 



77 

template<class TYPE> 
TYPE& List<TYPE>::operator[](int index) 
{ 
 static TYPE Error; 
 if( ((index >= 0) && (index < nodeCount)) && nodeCount ) 
    { 
 NODE* current = head; 
 
  for(int i=0; i<index; i++) 
        { 
   current = current->next; 
  } 
 
        return current->data; 
    } 
    else 
    { 
  return Error; 
  // it would be better to throw an exception here! 
    } 
} 
 
 
template<class TYPE> 
int List<TYPE>::operator==(const List<TYPE> &rvalue) const 
{ 
 int result = FALSE; 
 
   if( nodeCount == rvalue.nodeCount ) 
   { 
    int i; 
 
  NODE* leftList  = head; 
      NODE* rightList = rvalue.head; 
 
    for( i = 0; i < nodeCount; i++) 
        if( leftList->data != rightList->data ) 
           { 
            break; 
           } 
           else 
           { 
            leftList  = leftList->next; 
               rightList = rightList->next; 
           } 
 
        if( i == nodeCount ) 
         result = TRUE; 
   } 
   return result; 
} 
 
 
template<class TYPE> 
int List<TYPE>::operator!=(const List<TYPE> &rvalue) const 
{ 
 return !(operator==(rvalue)); 
}
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template<class TYPE> 
int List<TYPE>::insert(const TYPE &value) 
{ 
  int   success = FALSE;     // success of operartion 
  NODE* newNode = new NODE;    // pointer to new node 
 
  if(newNode) 
  { 
    newNode->data = value; 
 
    if(!nodeCount)     // if the list is empty 
    { 
      head = tail = newNode;         // then head and tail are the same 
      iteratorPosition = head;    // this is an issue to be addressed - who and when sets this 
    } 
    else                              // add new node to end of list 
    { 
      newNode->previous = tail; 
//    newNode->next     = NULL;    // by default - end of list 
      tail->next        = newNode;    // tail next node point to new node 
      tail              = newNode;    // tail is now the new node 
    } 
 
    ++nodeCount; 
 
    success = TRUE; 
  } 
  return success; 
} 
 
 
// Insert new node of TYPE - empty 
template<class TYPE> 
int List<TYPE>::insert(void) 
{ 
   TYPE newType; 
 
   return insert(newType); 
} 
 
 
template<class TYPE> 
int List<TYPE>::remove(const TYPE &value) 
{ 
  int found = 0; 
 
  if(head)      // if there are NO nodes in the list then how can one be removed? 
  { 
    NODE* current = head; 
    NODE* temp; 
 
    do 
    { 
      if( current->data == value ) 
      { 
        ++found;     // number of occurrences deleted 
        --nodeCount; 
 
        if(current->previous)    // point around node being deleted 
          current->previous->next = current->next; 
        else 
        { 
          current->next->previous = NULL; 
          head = current->next; 
        } 
 
        if(current->next) 
          current->next->previous = current->previous; 
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        else 
        { 
          current->previous->next = NULL; 
          tail = current->previous; 
        } 
 
        temp = current;     // copy so it can be deleted! 
        current = temp->next;    // point to next node 
        delete temp;     // delete node 
      } 
      else 
        current = current->next; 
    } 
    while(current); 
  } 
 
  return found; 
} // remove(const TYPE &value) 
 
 
// iterator - iterates over items in the list, Calls successively return each item in the list. 
// When end of list is reached NULL is returned.   If list is empty NULL is returned. 
// Note: revise... better algorithm! 
template<class TYPE> 
TYPE List<TYPE>::iterator(void)     // returns a copy - should retun a reference! 
{ 
  if(iteratorEndOfListFlag) 
  { 
    iteratorEndOfListFlag = FALSE; 
    iteratorPosition      = head;              // start at the head of the list 
    return (TYPE) NULL; 
  } 
 
  TYPE* returnItem = NULL; 
 
  if(iteratorPosition) 
  { 
    returnItem       = &iteratorPosition->data; 
    iteratorPosition =  iteratorPosition->next; 
 
    if(!iteratorPosition) 
      iteratorEndOfListFlag = TRUE; 
  } 
  return *returnItem; 
} 
 
 
template<class TYPE> 
void List<TYPE>::clear(void) 
{ 
 if(nodeCount)    // if there are NO nodes in the list then it is already clear. 
 { 
  NODE* current = head; 
  NODE* temp; 
 
  do 
  { 
         temp = current; 
            current = current->next; 
   delete temp; 
        } 
        while(current); 
 
      head    = NULL; 
      tail      = NULL; 
  nodeCount = 0; 
 } 
} 



80 

// cell.h ---------------------------------------------------------------------- 
// 
// Stephen S. Seneker 
// 
// March 2002 
// MALS Thesis Research 
//------------------------------------------------------------------------------ 
// 
// This class defines a cell used by a network class - component of an 
// artifical neural network. 
// 
//------------------------------------------------------------------------------ 
 
#ifndef CELL_H 
#define CELL_H 
 
#include <stdlib.h> 
#include <_null.h> 
#include "list.h" 
 
class Cell;     // forward reference... 
 
class InputTuple 
{ 
private: 
 
 Cell* inputCell;   // pointer to cell that is an input 
 long double weight;   // weight associated with preceding inputCell 
 
public: 
 
   InputTuple(void) { inputCell = NULL; 
   weight =  ( (long double) (rand() % 1000)) / 1000.0; }  // randomize() needs to be called somewhere? 
 
  // copy constructor 
   InputTuple(const InputTuple &source) { inputCell = source.inputCell; 
       weight  = source.weight; } 
 
   InputTuple(const int &value) { inputCell = NULL; 
       weight    = (long double) value; } 
 
   InputTuple &operator=(const InputTuple &rvalue) {  inputCell = rvalue.inputCell;      
     weight    = rvalue.weight; 
                                                        return *this; } // return reference to object pointed to by "this" - not a copy 
 
   InputTuple &operator=(Cell* &rvalue) { inputCell = rvalue; 
       return *this; } 
 
   InputTuple &operator=(long double &rvalue) { weight = rvalue; 
              return *this; } 
 
   int operator==(const InputTuple &rvalue) const { return inputCell == rvalue.inputCell; } 
   int operator==(const void*      &rvalue)     const { return inputCell == rvalue; } 
   int operator!=(const InputTuple &rvalue)  const { return inputCell != rvalue.inputCell; } 
   int operator!=(const void*      &rvalue)      const { return inputCell != rvalue; } 
 
   long double& getWeight(void)   { return weight; } 
   long double* getWeightPtr(void) { return &weight; } 
   void   setWeight(const long double &newWeight) { weight = newWeight; } 
   void   setCell(Cell* &inCell)  { inputCell = inCell; } 
   Cell*  getCell(void)   { return inputCell; } 
   void   updateWeight(long double factor)  { weight *= factor; } 
 
}; 
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class Cell 
{ 
private: 
 
   long double cellState;    // Current state of the cell - value of its current output 
   long double newState;     // Next State of the cell - value of the output after update 
 
   List<InputTuple> inputList;   //List of cells this cell receives input from 
 
public: 
 
    Cell(void);     // ctor - default 
    Cell(const long double &defaultState);  // ctor - initilize current state 
    Cell(const Cell &source);   // ctor - copy 
   ~Cell();     // dtor 
 
   // ---- Operators ------------------------------------------------------------------ 
   long double &operator[](const int index);   // return weight for Kth input tuple 
   Cell &operator=(const Cell &rvalue); 
 
   int operator==(const Cell  &rvalue) const; 
   int operator==(const void* &rvalue) const { return (((cellState == 0.0) && (newState == 0.0) && !inputList.getCount()) && !rvalue); } 
   int operator!=(const Cell  &rvalue) const { return !(operator==(rvalue)); } 
   int operator!=(const void* &rvalue) const { return !(operator==(rvalue));} 
 
   long double getState(void);     // return the current state of this cell 
   void  setState(const long double &newState);    // set the state of this cell - used for input layer cells 
   void  nextState(void);      // computer next state of this cell 
   void  updateState(void);    // update cell to reflect new state (calculated by nextState()) 
   void  addInputCell(Cell* inputCell);   // adds a cell to the list of inputs for this cell 
   void  addInputCell(Cell* inputCell, long double weight); // adds a cell to the list of inputs for this cell with an associated weight 
   int   getCount(void) { return inputList.getCount(); }   // number of inputs and weights for this cell 
 
}; 
 
#endif CELL_H 



82 

// cell.cpp -------------------------------------------------------------------- 
// 
// Implements cell class. 
// 
// Stephen S. Seneker 
// 
// March 2002 
// MALS Thesis Research 
// 
//------------------------------------------------------------------------------ 
 
#include <iostream.h> 
#include <math.h> 
#include "cell.h" 
 
 
// default CTOR 
 
Cell::Cell(void) 
{ 
   cellState = 0.0; 
   newState  = 0.0; 
} 
 
 
// initialize CTOR 
 
Cell::Cell(const long double &defaultState) 
{ 
   cellState = defaultState; 
   newState  = 0.0; 
} 
 
 
// copy CTOR 
 
Cell::Cell(const Cell &source) 
{ 
  cellState = source.cellState; 
  newState  = source.newState; 
  inputList = source.inputList; 
} 
 
 
// DTOR 
 
Cell::~Cell() 
{ 
  inputList.clear(); 
} 
 
 
long double& Cell::operator[](const int index) 
{ 
  static long double Error = NULL; 
 
 if( (index >=0) && (index < inputList.getCount()) && inputList.getCount() ) 
    { 
  return inputList[index].getWeight(); 
    } 
    else 
    { 
  return Error; 
    } 
} 
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Cell& Cell::operator=(const Cell &rvalue) 
{ 
   cellState = rvalue.cellState; 
   newState  = rvalue.newState; 
 
   for(int k = 0; k < rvalue.getCount();  k++) 
    inputList.insert(rvalue[k]); 
 
   return *this; 
} 
 
 
int Cell::operator==(const Cell &rvalue) const 
{ 
 return ( (inputList == rvalue.inputList) && (cellState == rvalue.cellState) && (newState == rvalue.newState)); 
} 
 
 
// Returns the current state of this cell. 
long double Cell::getState(void) 
{ 
 return cellState; 
} 
 
 
// sets the state of this cell 
// used for input layer cells 
void Cell::setState(const long double &newCellState) 
{ 
  cellState = newCellState; 
} 
 
 
// Compute the next state for this cell, i.e., it's next output value. 
void Cell::nextState(void) 
{ 
 if( inputList.getCount() ) 
    { 
  InputTuple tuple; 
     Cell* inputCell; 
 
  newState = 0.0; 
  while( (tuple = inputList.iterator()) != NULL ) 
     { 
   inputCell = tuple.getCell(); 
 
   newState += tuple.getWeight() * inputCell->getState(); 
     } 
  // sigmoid Function 
     newState = (1.0 / (1.0 + expl(-1.0 * newState))); 
 } 
} 
 
 
// Update the output of this cell. 
void Cell::updateState(void) 
{ 
 cellState = newState; 
} 
 
 
// Assigns a cell as input to this cell. 
void Cell::addInputCell(Cell* inputCell) 
{ 
   InputTuple newTuple; 
   newTuple = inputCell; 
   inputList.insert(newTuple); 
} 
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// Assigns a cell as input to this cell and a default weight. 
 
void Cell::addInputCell(Cell* inputCell, long double weight) 
{ 
     InputTuple newTuple; 
 
     newTuple = inputCell; 
     newTuple = weight; 
 
     inputList.insert(newTuple); 
} 



85 

// layer.h -------------------------------------------------------------------- 
// 
// Declares Layer Class - a collection of cells. 
// 
//------------------------------------------------------------------------------ 
 
#ifndef LAYER_H 
#define LAYER_H 
 
#include "list.h" 
#include "cell.h" 
 
class Layer 
{ 
private: 
 
 List<Cell> cellRow;  // A layer is a ROW of cells... a list of cells. 
 
public: 
 
 Layer(void); 
    Layer(int count); 
    Layer(const Layer &source) { cellRow = source.cellRow; }  // copy constructor 
   ~Layer(); 
 
   int operator==(const Layer &rvalue) const; 
    int operator==(const void* &rvalue) const { return (!cellRow.getCount() && !rvalue); } 
    int operator!=(const Layer &rvalue) const { return !(operator==(rvalue)); } 
    int operator!=(const void* &rvalue) const { return !(operator==(rvalue)); } 
 
    Cell  &operator[](const int index); 
    Layer &operator=(const Layer &rvalue); 
 
    void addCell(void); 
    void addCells(int count);    // layer will consist of count cells 
    void nextState(void); 
    void updateState(void); 
    int  getCount(void)    { return cellRow.getCount(); } 
 
}; 
 
#endif 
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//------------------------------------------------------------------------------ 
// 
// layer.cpp 
// 
//------------------------------------------------------------------------------ 
// 
// Implements layer class - a collection of cells. 
// 
//------------------------------------------------------------------------------ 
 
#include <iostream.h> 
#include <iomanip.h> 
#include <_null.h> 
#include "cell.h" 
#include "layer.h" 
#include "list.h" 
#include "truefalse.h" 
 
 
Layer::Layer(void) 
{ 
} 
 
 
Layer::Layer(int count) 
{ 
 addCells(count); 
} 
 
 
Layer::~Layer() 
{ 
 cellRow.clear(); 
} 
 
 
// Two layers are equal if all the cells have the same STATE... 
int Layer::operator==(const Layer &rvalue) const 
{ 
 int result = TRUE; 
 
 if( getCount() == rvalue.getCount() ) 
    { 
  for(int k = 0; k < getCount(); k++) 
        { 
         if( cellRow[k].getState() != rvalue.cellRow[k].getState() ) 
            { 
             result = FALSE; 
                break; 
            } 
        } 
    } 
 
 return result; 
} 
 
 
Cell& Layer::operator[](const int index) 
{ 
 static Cell Error; 
 
 if( (index >=0) && (index < cellRow.getCount()) && cellRow.getCount() ) 
    { 
  return cellRow[index]; 
    } 
    else 
    return Error;   // revision should THROW an exception... 
} 
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Layer& Layer::operator=(const Layer &rvalue) 
{ 
 cellRow.clear(); 
 
    for(int i = 0; i < rvalue.getCount(); i++) 
    { 
  cellRow.insert( rvalue[i] ); 
    } 
 
 return *this; 
} 
 
 
void Layer::addCell(void) 
{ 
 cellRow.insert(); 
} 
 
 
void Layer::addCells(int count) 
{ 
 if(count > 0) 
    { 
  for(int i = 0; i < count; i++) 
   addCell(); 
    } 
} 
 
 
void Layer::nextState(void) 
{ 
   for(int i = 0; i < cellRow.getCount(); i++) 
    cellRow[i].nextState(); 
} 
 
 
void Layer::updateState(void) 
{ 
   for(int i = 0; i < cellRow.getCount(); i++) 
    cellRow[i].updateState(); 
} 
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// matrix.h ------------------------------------------------------------------------------ 
// 
// Declares Matrix Class 
// 
// A matrix is a collection of layers. 
// A layer is a collection of cells. 
// 
//------------------------------------------------------------------------------ 
 
#ifndef MATRIX_H 
#define MATRIX_H 
 
#include "layer.h" 
#include "list.h" 
 
class Matrix 
{ 
private: 
 
 List<Layer> layers; 
 
public: 
 
 Matrix(void); 
    Matrix(char* filename); 
   Matrix(int numberOfLayers); 
   ~Matrix(); 
 
 Matrix &operator=(const Matrix &source) { //layers = source.layers; - deep copy needs to be DONE for future work. 
           return *this; } 
 
   Layer &operator[](const int index); 
 
   Layer &addLayer(void); 
   int    addLayers(int count);   // add count number of layers to the matrix 
 
   void nextState(void);    // generate next state of matrix 
   void updateState(void);   // update the state of the matrix 
   void update(void);    // update state of matrix - one layer at time 
   int  getCount(void) { return layers.getCount(); } // number of layers in matrix 
 
   void interconnectLayers(void);   // FULLY interconnect layers of the matrix 
 
   void loadMatrix(char* filename);   // load matrix from file 
   void saveMatrix(char* filename);       // save matrix to file 
 
}; 
 
#endif 
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//------------------------------------------------------------------------------ 
// 
// matrix.cpp 
// 
//------------------------------------------------------------------------------ 
// 
// Implements matrix class - a network/lattice of cells. 
// 
//------------------------------------------------------------------------------ 
#include<iostream.h> 
#include<fstream.h> 
#include<iomanip.h> 
#include "matrix.h" 
 
Matrix::Matrix() 
{ 
} 
 
 
Matrix::Matrix(char* filename) 
 
{ 
 loadMatrix(filename); 
} 
 
 
Matrix::Matrix(int numberOfLayers) 
{ 
 addLayers(numberOfLayers); 
} 
 
 
Matrix::~Matrix() 
{ 
 layers.clear(); 
} 
 
 
Layer& Matrix::operator[](const int index) 
{ 
 static Layer Error; 
 
 if( (index >=0) && (index < layers.getCount()) && layers.getCount() ) 
    { 
  return layers[index]; 
    } 
    else 
     return Error;   // revision should THROW an exception... 
} 
 
 
Layer& Matrix::addLayer(void) 
{ 
 layers.insert();   // insert an empty layer 
    return layers[layers.getCount() - 1]; 
} 
 
 
int Matrix::addLayers(int numberOfLayers) 
{ 
 
 for(int i = 0; i < numberOfLayers; i++) 
    { 
  addLayer(); 
    } 
 
 return TRUE;   // optimitic - must handle errors betters! 
} 
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void Matrix::nextState(void) 
{ 
 for(int i = 1; i < layers.getCount(); i++) // layer 0 is the input layer - skip 
     layers[i].nextState(); 
} 
 
 
void Matrix::updateState(void) 
{ 
 for(int i = 1; i < layers.getCount(); i++) // layer 0 is the input layer - skip 
     layers[i].updateState(); 
} 
 
 
void Matrix::update(void) 
{ 
 for(int i = 1; i < layers.getCount(); i++) // layer 0 is the input layer - skip 
    { 
     layers[i].nextState();   // generate next state for layer i 
     layers[i].updateState();  // update state for layer i 
    } 
} 
 
 
// Fulley interconnect layers... 
void Matrix::interconnectLayers(void) 
{ 
 int clyr; // current layer 
 int plyr; // previous layer 
 int ccel;   // cell in current layer 
 int pcel;   // cell in previous layer 
 
 for(clyr = 1; clyr < layers.getCount(); clyr++) 
    { 
     plyr = clyr - 1; 
     for(pcel = 0; pcel < layers[plyr].getCount(); pcel++) 
        { 
         for(ccel = 0; ccel < layers[clyr].getCount(); ccel++) 
            { 
    layers[clyr][ccel].addInputCell(&layers[plyr][pcel]); 
            } 
        } 
    } 
 
} 
 
 
// load matrix from specified stream/file... 
void Matrix::loadMatrix(char *filename) 
{ 
 ifstream wgts(filename); 
 
    if(!wgts) 
    { 
  cout << "Matrix::loadMatrix - Cannot open file: " << filename << endl; 
        exit(0); 
    } 
 
    // Create Layers... 
 int numberOfLayers; 
 
    wgts >> numberOfLayers; 
 
    addLayers(numberOfLayers); 
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 // Add Cells to each layer... 
    for(int lyr = 0; lyr < numberOfLayers; lyr++) 
 { 
  int numberOfCells; 
 
        wgts >> numberOfCells; 
 
  layers[lyr].addCells(numberOfCells); 
 
    } 
 
    // interconnect layers... 
 
    interconnectLayers(); 
 
    int lyr, cel, wgt; 
    float weight; 
 
 for(lyr = 1; lyr < layers.getCount(); lyr++) 
    { 
     for(cel = 0; cel < layers[lyr].getCount() ; cel++) 
        { 
         for(wgt = 0; wgt < layers[lyr][cel].getCount() ; wgt++) 
            { 
             wgts >> weight; 
       layers[lyr][cel][wgt] = weight; 
            } 
        } 
    } 
 
    wgts.close(); 
} 
 
 
void Matrix::saveMatrix(char* filename) 
{ 
 ofstream wgts(filename); 
 
    if(!wgts) 
    { 
  cout << "Matrix::saveMatrix -Cannot open file: " << filename << endl; 
       exit(0); 
    } 
 
    wgts.setf(ios::showpoint | ios::fixed); 
    wgts.precision(12); 
 
       wgts << layers.getCount() << endl;  // line 0: number of layers 
 
 for(int i = 0; i < layers.getCount(); i++)  // line 1: number of cells in each layer 
    { 
  wgts << layers[i].getCount() << " "; 
    } 
    wgts << endl; 
 
 for(int lyr = 1; lyr < layers.getCount(); lyr++)     // weights starting at layer 1 cell 1 - layer zero is input layer 
    { 
     for(int cel = 0; cel < layers[lyr].getCount(); cel++) 
        { 
   for(int wgt = 0; wgt < layers[lyr][cel].getCount(); wgt++) 
            { 
    wgts << layers[lyr][cel][wgt] << " "; 
            } 
            wgts << endl; 
        } 
    } 
 wgts.close(); 
} 
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// crosswire.h ------------------------------------------------------------- 
// 
// Declares Cross-Wired network class. 
// Simulation proper. 
// 
//------------------------------------------------------------------------------ 
 
#ifndef CROSSWIRED_H 
#define CROSSWIRED_H 
 
#include "matrix.h" 
 
class CrossWire 
{ 
private: 
 
 Matrix networkA; 
  Matrix networkB; 
 
public: 
 
 CrossWire(); 
    CrossWire(char* filenameA, char* filenameB); 
   ~CrossWire(); 
 
   void linkNetworks(void);    // link network A and B 
   void trainCrossWire(void);    // train cross-wire weights 
 
 void nextState(void);     // compute next state for cross-wired networks 
    void updateState(void);                 // update output of cross-wired networks 
    void update(void);     // update networks 
    void updateStable(void); 
 
 void loadNetworksAB(char* filenameA, char* filenameB); // without cross-wired connections 
    void loadCrossWire(char* filenameA, char* filenameB);        // save cross-wired weights 
    void saveCrossWire(char* filenameA, char* filenameB); // save cross-wried weights 
 
    void displayNetworks(void);    // display input and ouput for each network 
 void setInputs(void);     // set inputs for each network - by hand 
 int  setInputs(ifstream &wgtsA, ifstream &wgtsB);            // set cross-wird network inputs 
    void runCrossWire(char* inFileA, char* inFileB);  // run networks using fileA/fileB as inputs 
}; 
 
 
#endif 
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//------------------------------------------------------------------------------ 
// crosswire.cpp 
// 
//------------------------------------------------------------------------------ 
// 
// Implements cross-wired network class. 
// Networks to be cross-wired must have identical layout - same number layers 
// with identical rows and columns. 
// 
//------------------------------------------------------------------------------ 
 
#include<iostream.h> 
#include<fstream.h> 
#include<iomanip.h> 
 
#include <stdlib.h>  // randomize 
#include <time.h>        // randomize 
#include <math.h>  // sqrt() 
 
#include "crosswire.h" 
 
CrossWire::CrossWire() 
{ 
} 
 
 
CrossWire::CrossWire(char* filenameA, char* filenameB) 
{ 
 loadCrossWire(filenameA, filenameB); 
} 
 
CrossWire::~CrossWire() 
{ 
} 
 
 
// cross-wire networkA and networkB 
// BOTH must have same configuration! 
void CrossWire::linkNetworks(void) 
{ 
 // link network A to network B 
    for(int lyr = 1; lyr < networkA.getCount(); lyr++) 
    { 
  for(int cel = 0; cel < networkA[lyr].getCount(); cel++) 
        { 
         networkA[lyr][cel].addInputCell(&networkB[lyr][cel]);   // link this cell to correcponding cell in netowrkB 
         networkB[lyr][cel].addInputCell(&networkA[lyr][cel]);  // link this cell to corresponding cell in networkA 
        } 
    } 
} 
 
 
 



94 

void CrossWire::trainCrossWire(void) 
{ 
//------------------------------------------------------------------------------ 
// Initial Hebbian Training 
//------------------------------------------------------------------------------ 
 // Propportion of new weight to average of existing weights. 
 const long double phi = 0.618033987498948482;          // Golden Ratio 
 const long double Phi = 1.618039987498948482; 
 
//------- Network A ------------------------------------------------------------ 
 for(int lyr = 1; lyr < networkA.getCount(); lyr++) 
    { 
  for(int cel = 0; cel < networkA[lyr].getCount(); cel++) 
        { 
         long double numberOfWeights = networkA[lyr][cel].getCount() - 1; 
            long double wgtSum          = 0.0; 
 
   int wgt; 
            for(wgt = 0; wgt < numberOfWeights; wgt++) 
            { 
                wgtSum += networkA[lyr][cel][wgt]; 
            } 
 
   networkA[lyr][cel][wgt] = (wgtSum / numberOfWeights) * phi; 
        } 
    } 
 
//------- Network B ------------------------------------------------------------ 
 for(int lyr = 1; lyr < networkB.getCount(); lyr++) 
    { 
  for(int cel = 0; cel < networkB[lyr].getCount(); cel++) 
        { 
         long double numberOfWeights = networkB[lyr][cel].getCount() - 1; 
            long double wgtSum          = 0.0; 
 
   int wgt; 
            for(wgt = 0; wgt < numberOfWeights; wgt++) 
            { 
                wgtSum += networkB[lyr][cel][wgt]; 
            } 
 
   networkB[lyr][cel][wgt] = (wgtSum / numberOfWeights) * Phi; 
        } 
    } 
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//------------------------------------------------------------------------------ 
// Residual Hebbian Training 
//------------------------------------------------------------------------------ 
 const long double bias    = phi * 0.000015; 
 const long double Bias    = Phi * 0.00015; 
   const int  MaxPass = 5500000; 
 
//------- Network A ------------------------------------------------------------ 
 for(int lyr = 1; lyr < networkA.getCount(); lyr++) 
    { 
  int crossWeight  = networkA[lyr][0].getCount() - 1;         
  
  // cross-wired connection weight is last weight in cell weight list; each cell in a layer has the same number of inputs 
  int cellsInLayer = networkA[lyr].getCount(); // number of cells in the layer 
  List<long double> weights;   // list of new cross-wired connection weights 
  List<long double> lastWeights;  // weights computed in previous iteration - used to detect convergence 
 
        for(int cel = 0; cel < cellsInLayer; cel++)  // make a list of cross-wired connection weights for this layer 
        { 
     weights.insert(networkA[lyr][cel][crossWeight]); 
        } 
 
     int pass = 0; 
     do 
        { 
            lastWeights = weights; 
 
            long double wgtSum  = 0.0; 
   long double wgtAvg  = 0.0; 
            long double cellCnt = cellsInLayer; // - 1; 
 
            for(int i = 0; i < cellsInLayer; i++) 
            { 
             for(int j = 0; j < cellsInLayer; j++) 
                { 
                 //if( j != i ) 
                    wgtSum += weights[j]; 
                } 
 
                wgtAvg      = wgtSum / cellCnt; 
                weights[i] -= wgtAvg * bias; 
 
            } 
   ++pass; 
  } 
        while( (lastWeights != weights) && (pass < MaxPass) ); 
 
 cout << "Passes: " << pass << endl; 
 
       for(int cel = 0; cel < cellsInLayer; cel++)    // update weights in layer 
     networkA[lyr][cel][crossWeight] = weights[cel]; 
 
 } // for() - layer 
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//------- Network B ------------------------------------------------------------ 
 for(int lyr = 1; lyr < networkB.getCount(); lyr++) 
    { 
  int crossWeight  = networkB[lyr][0].getCount() - 1;         
  
  // cross-wired connection weight is last weight in cell weight list; each cell in a layer has the same number of inputs 
  int cellsInLayer = networkB[lyr].getCount();  // number of cells in the layer 
 
  List<long double> weights;   // list of new cross-wired connection weights 
  List<long double> lastWeights;  // weights computed in previous iteration - used to detect convergence 
 
        for(int cel = 0; cel < cellsInLayer; cel++)  // make a list of cross-wired connection weights for this layer 
        { 
     weights.insert(networkB[lyr][cel][crossWeight]); 
        } 
 
     int pass = 0; 
     do 
        { 
            lastWeights = weights; 
 
            long double wgtSum  = 0.0; 
   long double wgtAvg  = 0.0; 
            long double cellCnt = cellsInLayer; // - 1; 
 
 
            for(int i = 0; i < cellsInLayer; i++) 
            { 
             for(int j = 0; j < cellsInLayer; j++) 
                { 
                 // if( j != i ) 
                    wgtSum += weights[j ]; 
                } 
 
                wgtAvg      = wgtSum / cellCnt; 
                weights[i] -= wgtAvg * bias; 
            } 
 
   ++pass; 
  } 
        while( (lastWeights != weights) && (pass < MaxPass) ); 
 
  cout << "Passes: " << pass << endl; 
 
        for(int cel = 0; cel < cellsInLayer; cel++)    // update weights in layer 
     networkB[lyr][cel][crossWeight] = weights[cel]; 
 
 } // for() - layer 
}  // trainCrossWire(void) 
 
 
void CrossWire::nextState(void) 
{ 
 networkA.nextState(); 
 networkB.nextState(); 
} 
 
 
void CrossWire::updateState(void) 
{ 
 networkA.updateState(); 
 networkB.updateState(); 
} 
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void CrossWire::update(void) 
{ 
 networkA.nextState(); 
 networkA.updateState(); 
 networkB.nextState(); 
 networkB.updateState(); 
} 
 
 
// update - output converges to steady state 
void CrossWire::updateStable(void) 
{ 
 Layer lastOutputA; 
    Layer lastOutputB; 
 
    int stopFlag = FALSE; 
    int outLyr = networkA.getCount() - 1; 
 
 update();    // prime 
 
    lastOutputA = networkA[outLyr]; 
 lastOutputB = networkB[outLyr]; 
 
    int i = 0; 
    do 
    { 
        update();   // update state of both networks 
 
        if((lastOutputA == networkA[outLyr]) && (lastOutputB == networkB[outLyr])) 
        { 
         stopFlag = TRUE; 
        } 
        else 
        { 
      lastOutputA = networkA[outLyr]; 
      lastOutputB = networkB[outLyr]; 
        } 
        ++i; 
 
        if(i==100) 
           stopFlag = TRUE; 
    } 
    while(!stopFlag); 
} 
 
 
void CrossWire::loadNetworksAB(char* filenameA, char* filenameB) 
{ 
 networkA.loadMatrix(filenameA); 
    networkB.loadMatrix(filenameB); 
 linkNetworks(); 
} 
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void CrossWire::loadCrossWire(char* filenameA, char* filenameB) 
{ 
 ifstream wgtsA(filenameA); 
 ifstream wgtsB(filenameB); 
 
    if(!wgtsA) 
    { 
  cout << "CrossWire::loadCrossWire - Cannot open fileA: " << filenameA << endl; 
        exit(0); 
    } 
 
    if(!wgtsB) 
    { 
  cout << "CrossWire::loadCrossWire - Cannot open fileB: " << filenameB << endl; 
        exit(0); 
    } 
 
    // Create Layers... 
 int numberOfLayersA; 
    int numberOfLayersB; 
 
    wgtsA >> numberOfLayersA; 
    wgtsB >> numberOfLayersB; 
 
    if( numberOfLayersA != numberOfLayersB ) 
    { 
  cout << "CrossWire::loadCrossWire - LayersA != LayersB" << endl; 
        exit(0); 
    } 
 
    // add layers... 
    networkA.addLayers(numberOfLayersA); 
    networkB.addLayers(numberOfLayersB); 
 
    // Add Cells to each layer... 
    for(int lyr = 0; lyr < numberOfLayersA; lyr++) 
 { 
  int numberOfCellsA; 
        int numberOfCellsB; 
 
        wgtsA >> numberOfCellsA; 
        wgtsB >> numberOfCellsB; 
 
  if( numberOfCellsA != numberOfCellsB ) 
     { 
   cout << "CrossWire::loadCrossWire - cellsA != cellsB - layer:" << lyr << endl; 
         exit(0); 
     } 
 
  networkA[lyr].addCells(numberOfCellsA); 
  networkB[lyr].addCells(numberOfCellsB); 
    } 
 
    // interconnect layers... 
 
    networkA.interconnectLayers(); 
    networkB.interconnectLayers(); 
 
    // link NetworkA and NetworkB 
 
 linkNetworks(); 
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 // read weights from streams (files) 
 
    int lyr, cel, wgt; 
 
 for(lyr = 1; lyr < networkA.getCount(); lyr++) 
    { 
     for(cel = 0; cel < networkA[lyr].getCount() ; cel++) 
        { 
         for(wgt = 0; wgt < networkA[lyr][cel].getCount() ; wgt++) 
            { 
             wgtsA >> networkA[lyr][cel][wgt]; 
                wgtsB >> networkB[lyr][cel][wgt]; 
            } 
        } 
    } 
 
   wgtsA.close(); 
   wgtsB.close(); 
 
} // loadCrossWire(char* filenameA, char* filenameB) 
 
 
void CrossWire::saveCrossWire(char* filenameA, char* filenameB) 
{ 
 networkA.saveMatrix(filenameA); 
    networkB.saveMatrix(filenameB); 
} 
 
 
void CrossWire::displayNetworks(void) 
{ 
 int outLyrA = networkA.getCount() - 1; 
 int outLyrB = networkB.getCount() - 1; 
 
 cout << "Network A: "; 
    cout.precision(1); 
    for(int i = 0; i < networkA[0].getCount(); i++) 
     cout << networkA[0][i].getState() << ", "; 
    cout << " :  "; 
 
    cout.precision(6); 
    for(int i = 0; i < networkA[outLyrA].getCount(); i++) 
     cout << networkA[outLyrA][i].getState() << ", "; 
    cout << endl; 
 
//------------------------------------------------------------------------------ 
 
 cout << "Network B: "; 
    cout.precision(1); 
    for(int i = 0; i < networkB[0].getCount(); i++) 
     cout << networkB[0][i].getState() << ", "; 
    cout << " :  "; 
 
    cout.precision(6); 
    for(int i = 0; i < networkB[outLyrB].getCount(); i++) 
     cout << networkB[outLyrB][i].getState() << ", "; 
    cout << endl; 
} 
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// setInputs - user entered 
void CrossWire::setInputs(void) 
{ 
 long double cellState; 
 
 cout << "Inputs for networkA(" << networkA[0].getCount() << "): "; 
    for(int i = 0; i < networkA[0].getCount(); i++) 
    { 
     cin >> cellState; 
        networkA[0][i].setState(cellState); 
    } 
    cout << endl; 
 
 cout << "Inputs for networkB(" << networkB[0].getCount() << "): "; 
    for(int i = 0; i < networkB[0].getCount(); i++) 
    { 
     cin >> cellState; 
        networkB[0][i].setState(cellState); 
    } 
    cout << endl; 
} 
 
 
// read inputs from file stream 
// networkA and networkB must be same architecture 
int CrossWire::setInputs(ifstream &wgtsA, ifstream &wgtsB) 
{ 
 long double cellStateA; 
    long double cellStateB; 
 
    int i; 
    for(i = 0; (i < networkA[0].getCount()) && !wgtsA.eof() && !wgtsB.eof(); i++) 
    { 
     wgtsA >> cellStateA; 
     wgtsB >> cellStateB; 
        networkA[0][i].setState(cellStateA); 
        networkB[0][i].setState(cellStateB); 
    } 
 
    return !(networkA[0].getCount() - i); 
} 
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// 1. read input files inFileA/inFileB 
// 2. display inputs and outputs 
// 3. repeat 4 and 5 for all inputs 
void CrossWire::runCrossWire(char* inFileA, char* inFileB) 
{ 
   ifstream inVcA(inFileA);  // input Vector A 
   ifstream inVcB(inFileB);  // input Vector B 
 
   if(!inVcA) 
   { 
    cout << "CrossWire::runnCrossWire() - Cannot open input file: " << inFileA << endl; 
       exit(0); 
   } 
 
   if(!inVcB) 
   { 
    cout << "CrossWire::runnCrossWire() - Cannot open input file: " << inFileB << endl; 
       exit(0); 
   } 
 
   while( setInputs(inVcA, inVcB) ) 
   { 
 
 updateStable(); 
 
 displayNetworks(); 
   } 
 
   inVcA.close(); 
   inVcB.close(); 
} 
 
 
 
//------------------------------------------------------------------------------ 
// 
// Cross Wire ------------------------------------------------------------------ 
// 
//------------------------------------------------------------------------------ 
void main(void) 
{ 
 CrossWire networks; 
 
    networks.loadNetworksAB("netA1288s.wgts", "netB1288s.wgts");  // load AND interlink networks 
 
    networks.linkNetworks();          
        // link networks 
 
 networks.trainCrossWire();          
        // train cross-wired connections 
 
 networks.runCrossWire("inputA128.dat", "inputB128.dat");  // run cross-wired with these input lists 
 
    networks.saveCrossWire("testA128.wgts", "testB128.wgts");  // save new weights 
} 
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 APPENDIX B 
 

Network Training Data 
 
Table 1 
 
Network A Training Set 

Pattern
1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
2 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1
3 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0
4 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
5 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0
6 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1
7 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
8 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1
9 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
10 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1
11 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
12 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
13 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1
14 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
15 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1
16 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0
17 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1
18 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
19 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1
20 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0
21 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1
22 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0
23 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1
24 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0
25 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1
26 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
27 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1
28 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0
29 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1
30 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0
31 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
32 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0
33 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1
34 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0
35 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1
36 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
37 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1
38 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0
39 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1
40 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0
41 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1
42 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
43 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1
44 1 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0
45 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
46 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0
47 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1
48 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0
49 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1
50 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0
51 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1
52 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
53 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
54 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0
55 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1
56 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0
57 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1
58 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0
59 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
60 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
61 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1
62 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0

Input Vector Expected Output Vector
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Table 2 
 
Network B Training Set 

 

Pattern
1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
2 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1
3 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1
4 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
5 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1
6 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1
7 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1
8 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
9 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1
10 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1
11 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0
12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0
13 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0
14 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0
15 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0
16 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0
17 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0
18 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0
19 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0
20 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0
21 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0
22 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0
23 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0
24 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0
25 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0
26 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1
27 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1
28 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1
29 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1
30 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1
31 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1
32 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1
33 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1
34 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1
35 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1
36 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1
37 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0
38 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0
39 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0
40 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
41 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0
42 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0
43 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0
44 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
45 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0
46 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0
47 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0
48 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0
49 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0
50 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0
51 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0
52 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1
53 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1
54 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1
55 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1
56 1 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1
57 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1
58 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1
59 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1
60 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1
61 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1
62 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1

Input Vector Expected Output Vector
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