
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

5-2002

Synesthetic Sensor Fusion via a Cross-Wired
Artificial Neural Network.
Stephen Samuel Seneker
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Liberal Studies Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Seneker, Stephen Samuel, "Synesthetic Sensor Fusion via a Cross-Wired Artificial Neural Network." (2002). Electronic Theses and
Dissertations. Paper 673. https://dc.etsu.edu/etd/673

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by East Tennessee State University

https://core.ac.uk/display/214069315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1042?utm_source=dc.etsu.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Synesthetic Sensor Fusion Via A Cross-Wired Artificial Neural Network

A thesis

presented to

the faculty of the Department of Liberal Studies

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Arts in Liberal Studies

by

Stephen S. Seneker

May 2002

Dr. Jeff Knisley, Chair

Dr. Michael Woodruff

Mr. William Hemphill

Keywords: Synesthesia, Sensor Fusion, Robotics, Neural Networks

2

ABSTRACT

Synesthetic Sensor Fusion Via A Cross-Wired Artificial Neural Network

by

Stephen S. Seneker

The purpose of this interdisciplinary study was to examine the behavior of two artificial neural
networks cross-wired based on the synesthesia cross-wiring hypothesis. Motivation for the study
was derived from the study of psychology, robotics, and artificial neural networks, with
perceivable application in the domain of mobile autonomous robotics where sensor fusion is a
current research topic. This model of synesthetic sensor fusion does not exhibit synesthetic
responses. However, it was observed that cross-wiring two independent networks does not
change the functionality of the individual networks but allows the inputs to one network to
partially determine the outputs of the other network in some cases. Specifically, there are
measurable influences of network A on network B, and yet network B retains its ability to
respond independently.

3

CONTENTS

 Page

ABSTRACT .. 2

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

Chapter

 1. INTRODUCTION .. 8

 2. SYNESTHESIA .. 13

 Synesthetes .. 14

 Michael Watson .. 16

 Carol Crane ... 16

 Sean Day ... 16

 Julie Roxburgh .. 17

 Phenomenology ... 17

 Neonatal Synesthesia Hypothesis ... 17

 Synesthesia and Concepts ... 18

 Physiology of Colored Hearing .. 18

 The Limbic System ... 19

 Binding of Visual Features ... 20

 Visual Auditory Illusion ... 21

 Tactile Discrimination .. 22

 Excogitare ... 23

4

Chapter Page

 3. HISTORICAL PERSPECTIVE: Machina speculatrix.. 25

 W. Grey Walter ... 26

 Machina speculatrix .. 27

 Machina docilis ... 30

 Excogitare ... 31

 4. CELL ASSEMBLIES ... 33

 D. O. Hebb .. 33

 Cell Assemblies and Phase Sequences ... 34

 Research .. 35

 Rodriguez .. 36

 Miltner ... 37

 Pulvermüller .. 37

 5. BEHAVIOR-BASED ROBOTIC AND SENSOR FUSION 39

 Behavior-based Robotics .. 39

 Subsumption Architecture .. 41

 Robotic Sensor Fusion .. 42

 Sensor Fusion Effects Architecture ... 45

 Sensor Fusion in a Time-Triggered Network .. 47

 Just-in-Time Sensor Fusion ... 48

 Neural Network Sensor Fusion.. 48

 6. BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS 50

 Biological Neurons and Networks .. 50

 Artificial Neurons and Networks .. 52

 Learning ... 55

5

Chapter Page

 Learning Rules ... 55

 7. EXPERIMENTAL DESIGN ... 58

 Cross-Wired Artificial Neural Network Architecture ... 58

 Network Training .. 59

 Testing Scenarios .. 61

 Scenario 1... 62

 Scenario 2... 62

 Scenario 3... 62

 8. RESULTS ... 63

 Scenario 1 Results ... 64

 Scenario 2 Results ... 65

 Scenario 3 Results ... 66

 Conclusion .. 66

REFERENCES .. 68

APPENDICES ... 73

 Appendix A: Cross-Wired Network Simulation Software 74

 Simulation Software C++ Software Source Code .. 75

 Appendix B: Network Training Data .. 102

VITA.. 104

6

LIST OF TABLES

Table Page

 1. Network A Training Set... 104

 2. Network B Training Set.. 105

7

LIST OF FIGURES

Figure Page

 1. Location of the Fusiform Gyrus in the Brain .. 11

 2. How Percepts are Combined in Sensor Fission ... 43

 3. How Percepts are Combined in Sensor Fusion ... 43

 4. How Percepts are Combined in Sensor Fashion ... 44

 5. Cognitive Model of Sensing Used in SFX .. 45

 6. Schematic of a Biological Nerve Cell.. 50

 7. The Synapse, a Small Gap Between Neurons.. 51

 8. Elements of an Artificial Neuron... 53

 9. Layers in an Artificial Neural Network ... 54

 10. Cross-Wired Artificial Neural Network Architecture ... 59

 11. Line Segment ... 60

 12. Error Mixed Input Vectors .. 64

 13. Error Fixed Input Vector Network B .. 65

 14. Error Network A and Network B Same Input Vectors ... 66

 15. Cross-Wired Network Simulation Software UML Diagram .. 75

8

CHAPTER 1

INTRODUCTION

 A human being perceives and recognizes an environment through the use of many

sources of sensory information. The integration of sensory information can be complimentary,

enhancing the response of one sense in response to another sense, or it can compensate for a

deficiency in a sense. Robotics researchers are using sensor fusion to overcome the limitations

of individual sensor shortcomings that limit their applicability. Fused sensory information can

be more veridical than that provided by a single sensor because individual sensor measurements

may be uncertain, erroneous, and incomplete, whereas the fusion of multiple sensors results in a

more reliable percept. In the field of robotics, the potential benefits of sensor fusion has

motivated research, yet no general-purpose method for accomplishing sensor fusion across

perceptual levels has been proposed (Arkin, 1998; Murphy, 1996, 1999, 2000).

 Sensor fusion is a broad term used to describe any process in which sensor information or

percepts are combined from multiple sensors into a single percept. Motivation for robotic sensor

fusion stems from three basic combinations of sensors: redundant (or competing),

complimentary, and coordinated. Redundant sensors generate a percept in one sensory modality.

Complimentary sensors provide disjoint information about a percept. Whereas, coordinated

sensor fusion, sequences of sensors are used, often for cue-ing or providing focus-of-attention

(Arkin, 1998; Murphy, 2000).

 According to Arkin (1998), Murphy drew on studies from cognitive psychology and

neurophysiology showing that behavioral sensor fusion occurs in animals and, therefore, should

be part of a robot’s behavioral repertoire. Murphy (1996) reports that Stein and Meredith (1993)

offer a neurological model of sensor fusion derived mainly from studies of the superior colliculus

in the feline brain. The superior colliculus in cats is similar to that of most mammals, including

9

humans, thus the studies are accepted as representative of the general phenomenon of sensor

fusion.

 Stein and Meredith (1993) show that different sense stimuli are initially segregated at the

neural level. That is, neurons associated with one sense do not interact with neurons originating

from other senses until they are transmitted to the brain. In the brain sensory signals converge on

the same target, the superior colliculus. In addition to receiving inputs from the senses, the

superior colliculus also receives signals from the cerebral cortex, which modulates or influences

behavior. It is important to note that while the majority of neurons entering the superior

colliculus are sense specific, the majority of neurons leaving the superior colliculus, estimated at

75%, are multisensory. The output of these neurons may be greater when multiple contributing

neurons experience weak stimuli than if one undergoes a strong stimulus. Even though outputs

go to many other structures, multisensory neurons appear mostly to form pathways to muscles

and behavior control (Murphy, 1996).

 The neurological model of sensor fusion describes several aspects important to robotic

sensor fusion. Neurological studies of the superior colliculus integration of sensory inputs that

influence motor control suggests sensor fusion is purposeful and not an artifact or by-product of

the central nervous system. Sensor fusion couples perception with action and incorporates

contextual information. Multisensory neurons in the superior colliculus include inputs from the

cerebral cortex, which in turn modulates behavior. An aspect of particular importance is the

observation that multisensory neurons can respond more to multiple weak stimuli suggesting that

sensor evidence accrues as opposed to being averaged. Thus, for example, an agent can ascertain

danger from multiple weak clues. In the case of robotics, accrual of sensory signals from several

inexpensive coarse sensors may be used instead of a single expensive fine-grain sensor. Sensor

fusion also allows a robotic perceptual system to be modular - where sensors can be added or

removed from a sensor suite without impacting the operation of other sensors (Murphy, 1996).

10

 Research into the perceptual phenomenon of synesthesia motivates a unique approach to

sensory fusion. Synesthesia is a fascinating condition in which an otherwise normal person who

experiences sensation in one sensory modality results in involuntary perception in another

sensory modality simultaneously. A common example is colored hearing cases, where a person

experiences colors when listening to a particular sound. The synesthesias are typically specific

and stable. For example, separate instruments might evoke different visual sensations, such as

hues and forms (RamsØy, 2001).

 Ramachandran and Hubbard (2001) review experiments they performed and assert they

clearly establish for the first time that synesthesia is genuinely sensory. For example, in one

experiment they showed that synesthetically induced colors lead to pop-out. Subjects were

presented with displays composed of graphemes, such as a matrix of randomly placed computer-

generated ‘2’s. Within this display was embedded a shape, such as a triangle composed of other

graphemes, computer-generated ‘5’s. In this case the ‘5’s are mirror images of ‘2’s made up of

identical features. Non-synesthetic subjects found it difficult to detect the embedded shape

composed of ‘5’s. Whereas, synesthetic subjects, who see ‘2’s as one color and ‘5’s as a

different color, see the display as a red triangle amidst a background of green ‘2’s. Performance

measures show that synesthetic subjects were significantly better at detecting the embedded

shape than non-synesthetic subjects.

 The idea synesthesia may be the result of neural cross-wiring has been around for at least

100 years. A neuro-imaging study by Paulesu et al. (1995) used Positron Emission Tomography

(PET) to investigate if a neural basis for synesthesia exist. In this study word-color synesthetes

were presented with pure tones or single words. Regional cerebral blood flow measurements

were taken during tone listening and word listening. Areas of the posterior inferior temporal

cortex and parieto-occipital junction, but not early visual areas such as V1, V2, or V4, were

activated significantly more during word listening than during tone listening in synesthetic

subjects but not in controls. Due to the resolution of the technique, no precise anatomical

11

localization was possible. Yet, the results suggest synesthesia results from activity in brain areas

that deal with language and visual feature integration, and conscious visual experience occurs

with activation of the primary visual cortex (Paulesu et al., 1995).

 The cross-wiring hypothesis is supported by anatomical, physiological, and imaging

studies in both humans and monkeys that implicate the fusiform gyrus. Ramachandran and

Hubbard (2001) have identified different subtypes of number-color synesthesia and propose they

are caused by hyperconnectivity between color and number brain areas at different stages in

processing. It is speculated that this hyperconnectivity may be caused by a genetic mutation

resulting in defective pruning of connections between brain maps and this is related to the

neonatal synesthesia hypothesis, which proposes that all humans go through a normal synesthetic

period during development. Lower synesthetes may have cross-wiring (or cross-activation)

within the fusiform gyrus, whereas higher synesthetes may have cross-activation in the angular

gyrus. The fusiform gyrus of the human brain holds the functional regions responsible for color,

identification of face, and recognition of facial expression, Figure 1 blue, green, and red colored

areas.

Figure 1. Location of the fusiform gyrus in the brain.

The fusiform gyrus of the brain contains the functional regions responsible for color (blue),

identification of face (green), and recognition of facial expression (red). Damage to any of these

12

brain areas leads to a deficit for that mode of visual function. Ramachandran and Hubbard

question whether it is a coincidence that the most common form of synesthesia involves

graphemes and colors and the brain areas corresponding to these are next to each other. They

suggest that synesthesia is caused by cross-wiring (cross-activation) between these two areas,

and in such a way as to be analogous to the cross-activation of the hand area by the face in

amputees with phantom arms (Ramachandran & Hubbard, 2001).

Synesthesia is a concrete sensory phenomenon whose neural basis is just beginning to be

understood, and this can be used as an experimental lever for developing polysensory

mechanisms for robotics applications. The hypothesis tested in this study, based on the

synesthesia cross-wiring hypothesis, is that cross-wired artificial neural networks would exhibit

synesthetic sensory fusion.

The remainder of this thesis details the interdisciplinary background and motivation for

the research conducted. The chapters are organized as follows. Chapter 2 provides a review of

synesthesia. Chapter 3 is a historical perspective of relevant work by Grey Walter who took a

unique approach to modeling brain function. Chapter 4 presents Donald Olding Hebb’s seminal

ideas on how the neurons in the brain learn. Chapter 5 introduces behavior-based robotics and

the concept of sensor fusion. Chapter 6 examines the relationship between biological and

artificial neural networks. Chapter 7 details the experimental design, and Chapter 8 concludes

with the experimental results and their interpretation.

13

CHAPTER 2

SYNESTHESIA

 The phenomenon of synesthesia derives its name from the Greek syn, together, and

aisthesis, to perceive, and means to perceive together. Synesthetes have perceptual experiences

in which they typically perceive two sensory modalities together. That is, sensation in one sense

modality induces involuntary perception in another sensory modality simultaneously. For

example, people with this condition see sounds, smell colors, and taste shapes. The most

common type is experiencing color when hearing sounds.

According to Richard Cytowic, a clinical neurologist studying synesthesia, when we

speak “we all intermingle the five senses all the time. We say that red is a ‘warm’ color, but

green is ‘cool’; her voice is ‘sweet,’ or sadness is ‘blue.’” However, for synesthetes these are

more than just mere metaphors, they are perceived as vivid real experiences. Through clinical

testing Cytowic found that a true synesthete will repeatedly affirm that B-flat is green or that

roast beef feels like an archway. If synesthesia were due to merely the creative use of language,

associations would vary over time. Instead what has been found is that synesthetic associations

do not vary over time (as cited in Lemley, 1984).

 John Locke first described synesthesia in 1690 when he wrote about a blind man who

claimed to understand what the color scarlet was because it was like the sound of a trumpet.

Later in 1710 it was described in medical terms by Thomas Whoolhouse, and in 1869 Francis

Galton noted synesthesia, and it has periodically received attention since that time (Cytowic,

1993). Even though synesthesia was a topic of scientific interest well over a hundred years ago,

by the 1940s interest had faded due to the rise of behaviorism. Investigations of synesthesia

depended on introspection, which relies on self-report data from subjects. Introspection was no

longer considered a worthy avenue of data collection in experimental psychology; therefore,

14

interest in synesthesia plummeted (Baron-Cohen, Burt, Smith-Laittan, Harrison, & Bolton,

1996).

Little was known about synesthesias underlying physiological causes until progress in the

development of brain imaging technology, electrophysiological recording, DNA analysis, and

other techniques became available. Renewed interest in synesthesia has followed the attention it

was given in the early 1980s by Richard Cytowic (1993).

The following sections of this chapter describe who synesthesia affects and details

characteristics of synesthesia and relates several accounts of what synethetes perceptually

experience. Next, theory concerning synesthesia is considered with a progression to an

examination of research directly and indirectly related to synesthesia.

Synesthetes

 Regardless of the senses joined in a given synesthete, the similar histories synesthetes

share are uncanny. Synesthetes are typically surprised to learn others do not perceive words,

numbers, sounds, taste, and etceteras as they do. They recall always having idiosyncratic

perceptions as earlier as they can remember, and that mentioning them at an early age often

resulted in ridicule and disbelief (Cytowic, 1995).

 Synesthesia runs in families with a pattern that is either autosomal or x-linked dominant

transmission, meaning it can be inherited from either parent. More women than men have

synesthesia, and in the United States the ratio is 3:1 (Cytowic, 1989), while in the United

Kingdom women out number men in a ratio of 6:1. Approximately one in 2,000 people are

synesthetes (Baron-Cohen et al., 1996). However, some experts suspect that as many as one in

300 people have a variation of the condition (Carpenter, 2001).

Synesthetes are preponderantly non-right-handed. They are normal in the conventional

sense, appear intelligent, and come from all walks of life. They typically exhibit superior

performance on the Wechsler Memory Scale. However, within their overall high intelligence,

15

synesthete’s cognitive skills are uneven. A minority are dyscalculic, an inability to

conceptualize arithmetic facts, such as numbers, numeric relationships, and outcomes of

numerical operations, e.g., estimating the answers to numerical problems before performing

calculations. However, the majority of synesthetes have subtle mathematical deficiencies such

as lexical-to-digit transcoding. Many exhibit allochiria, right-left confusion, as well as a poor

sense of direction for vector rather than network maps (Cytowic, 1995).

Synesthetic relationships are typically unidirectional meaning for instance a particular

synesthete’s sight may induce touch perception, but touch does not induce visual perception.

This means the number of permutations for synesthetic experiences, if perception of movement

is included, is 30. However, the senses of sight and sound are involved considerably more often

than others, and it is rare for smell and taste to be either the trigger or the synesthetic response

(Cytowic, 1995).

 The strangest synesthesia is perhaps audiomotor. An adolescent boy with this condition

positioned his body in different postures according to the sounds of different words. The boy

claimed English and nonsense sounds had defined physical movements, which he would

demonstrate with various poses. The physician who described this boy re-tested him 10 years

later without warning, and he assumed without hesitation the identical postures of a decade

earlier (Cytowic, 1995).

 Synesthetic perceptions are generic and durable, never pictorial or elaborated. Durable

refers to the fact that synesthetic cross-sensory associations do not change over time, and this has

been verified by test-retest sessions given even decades apart without warning. Generic means

the synesthetic experience is unelaborated. While a nonsynesthete may imagine a rich floral

landscape while listening to classical music, synesthetes perceptions are characterized as blobs,

lines, spirals, and lattice shapes; feeling smooth or rough textures; an agreeable or disagreeable

taste such as salty, sweet, or metallic (Cytowic, 1995).

16

The synesthetic experience is emotional and is accompanied by a sense of certitude that is

perceived as real and valid. The following accounts relate how a few synesthetes describe their

synesthetic perceptions.

Michael Watson

Michael Watson a New York City stage-lighting designer describes his sense of taste as

feeling geometric forms, which can be considerably complex, pressing against his face and

hands. He describes his perception of spearmint as follows.

I can reach my hand out and rub it along the backside of a curve. I can't feel

where the top and bottom end: so it's like a column. It's cool to the touch, as if it

were made of stone or glass. What is so wonderful about it, though, is its

absolute smoothness. Perfectly smooth. I can't feel any pits or indentations in

the surface, so it must not be made of granite or stone. Therefore, it must be

made of glass (Cytowic, 1993).

Carol Crane

Carol Crane a psychologist loves most kinds of music, but concerts have an unusual

affect on her. “The sound of guitars always feels like someone is blowing on my ankles. The

piano presses on me right here,” she says, tapping her chest just over her heart. “And New

Orleans-type jazz hits me all over like heavy, sharp raindrops.” In addition she has reactions to

letters and numbers. For instance the letter b is a navy blue, c is tawny crimson, and the numeral

4 causes her to see tomato red (Lemley, 1999).

Sean Day

Sean Day a linguistics professor describes his sense of taste as being colored in

Technicolor. The taste of beef, such as a steak, produces a rich blue. Mango sherbet appears as

17

a wall of lime green with thin wavy strips of cherry red. Steamed gingered squid produces a

large glob of bright orange foam, about four feet away, directly in front of me (Carpenter, 2001).

Julie Roxburgh

Julie Roxburgh’s synesthesia differs from the preceding accounts in that not only does

she see color when she hears sound, but has the reverse, she hears sound whenever she sees

color. However, for her it is not a pleasant experience and has resulted in a great deal of

suffering. This form of synesthesia leads to substantial interference, stress, dizziness, an

overwhelming feeling of information overload, and a need to avoid situations that are too noisy

or too colorful. Unlike other cases, synesthesia for Roxburgh has lead to social withdrawal and

disrupts everyday life (Baron-Cohen, 1996).

Phenomenology

 A problem with synesthesia is that is has almost exclusively been characterized in

phenomenological terms. Diagnosis relies heavily on phenomenological evidence, which is

subjective. Yet, without compelling physiological or anatomical substantiation, synesthesia was

destined to be treated with scientific skepticism and caution (Costa, 1996)

A growing body of evidence supports the fact that cross-modal associations take place in

the mammalian brain. The following theories and research highlight recent developments in the

understanding of synesthesia.

Neonatal Synesthesia Hypothesis

 Maurer’s (1993) developmental theory of synesthesia states all human neonates are

synesthetic. The Neonatal Synesthesia (NS) hypothesis argues that in early infancy, up to about 4

months of age, all babies experience sensory input in an undifferentiated manner. In contrast the

Cross-Modal Transfer (CMT) hypothesis suggest objects can be recognized in more than one

18

modality because infants are able to represent objects in an abstract form. There is evidence in

support of the CMT hypothesis. For example, Rose, Gottfried, and Bridger (1978) found that 12

month olds looked longer at an object they had just orally explored.

 The NS hypothesis builds on CMT evidence and suggests there is an anatomical basis for

neonatal synesthesia if one considers transient connections between neural structures in neonates

of other species. For example, the neonatal hamster has transient connections between the retina

and main somatosensory and auditory nuclei of the thalamus. Maurer suggests the same may be

true of human neonates. It has been found that only during early infancy, evoked responses to

spoken language are detectable over the temporal cortex, as expected, and they are also found

over the occipital cortex simultaneously. This suggest that the primary sensory cortex is not as

specialized in infants as it is in adults (Baron-Cohen, 1996).

Synesthesia and Concepts

 A study done by researchers at the University of Waterloo indicates that for one

synesthete, color experiences associated with digits could be induced even if the digits were not

present. Researchers presented a synesthete with simple arithmetic problems, such as “5 + 2.”

The experiment showed solving an arithmetic problem activated the concept of 7, leading the

synesthete to perceive the color associated with 7. The significance of this experiment is that it

shows synesthetic experiences can be elicited by activating the concepts of digits, and suggest

color experiences are associated with a digit’s meaning and not merely its form (Dixon, Smilek,

Cudahy, & Merikle, 2000).

Physiology of Colored Hearing

 Neuroimaging studies suggest synesthesia has a biological basis. Evidence comes from

studies showing that synesthesia can be induced in normal individuals through the use of

hallucinogenic drugs such as LSD and mescaline (Cytowic, 1993). Positron Emission

19

Tomography (PET) has been used to investigate if a neural basis for synesthesia exist. In a study

by Paulesu et al. (1995) six synesthetic women were compared with six matched controls.

PET detects brain activity as changes in regional cerebral blood flow (rCBF). Auditory

words, not tones, were used as stimulation to trigger synesthesia. When hearing words while

blindfolded, the synesthetes showed abnormal activation, as a measure of rCBF, in areas of the

visual association cortex. In both groups word stimulation, as opposed to tone, activated

language areas of the perisylvian regions. However, in synesthetes a number of additional visual

associative areas were activated, including the posterior inferior temporal cortex and the parieto-

occipital junctions.

 The inferior temporal cortex has been implicated in the integration of color with shape, as

well as in verbal tasks that require attention to visual features of named objects. Synesthetes also

had activation in the right prefrontal cortex, insula, and superior temporal gyrus, but no

significant activity was detected in the lower visual areas, including V1, V2, and V4. The results

from their study suggest synesthesia results from activity in brain areas that deal with language

and visual feature integration, and conscious visual experience occurs with activation of the

primary visual cortex (Paulesu et al., 1995).

The Limbic System

 June 29, 1981, Cytowic in an experiment with the synesthete Michael Watson (MW),

measured cortical metabolism by means of radioactive 133Xenon inhalation while he was

undergoing a synesthetic experience. Use of this technique yielded interesting, yet unclear,

results. The results showed that hemispheric regional Cerebral Blood Flow (rCBF) dropped a

full 18% in the left hemisphere during the trial. This is unusual because it is expected that during

an active state activity in the cortical areas should rise. MWs mean hemispheric flows were

already low and inhomogeneous, yet he showed an additional decrease of 18%, which is

impossible to obtain in a normal person. Such a drastic drop would make a normal subject

20

candidate for paralysis or some other visibly disabling condition, and such a condition is not

obtainable in a normal person even with a drug (Cytowic, 1993, 1995; Lovelace 1999).

 According to Cytowic, MWs metabolism dropped to such a low point during synesthesia

that he should have been blind, paralyzed, or shown some conventional sign of a brain lesion.

MWs left hemispheric flows were almost three standard deviations below the labs established

acceptable limits of normal. However, his thinking and neurological exams were unimpaired

(Cytowic, 1995). Cytowic took these results to mean that it is the limbic system and not the

cortex that figures heavily in producing synesthetic responses. Based on a single subject he

concluded that the limbic system has dominance over the cortex (Cytowic, 1993).

 Building on these findings Cytowic cites the hippocampus as the most important structure for

producing these responses because limbic epilepsy, which is usually observed as centering

around the hippocampus, is known to evoke the same type of cross-modal perceptions

synesthetes experience (Cytowic, 1995). However, Lovelace (1999) criticizes this conclusion

based on the following observation.

 MWs observed levels of deactivation were more than 3 standard deviations below the

normal mean. The subject had a history of alcoholism and does not have a left posterior-

communicating artery. He speculates with due logic that the observed results could be due to

either miscalibrated instrumentation or attributable to physiological abnormalities in MW

unrelated to synesthesia. Given the immediacy that concurrent sensations appear and that

stimulus-induced changes in blood flow take seconds to occur, it is unlikely such a slow

mechanism could explain a percept with such a brief onset latency (Lovelace, 1999).

Binding of Visual Features

 What form does information stored in the human mind below the level of awareness

take? In the field of visual perception there is an ongoing debate that centers around the question

of whether things seen are stored as fragments and features or as an integrated whole. Are

21

features of an object unbound when one is not aware of them, becoming bound together as a

whole only when attention is employed? Mattingley, Rich, Yelland, and Bradshaw (2001)

address this by studying synesthetes who experience color when they see certain graphemes,

such as letters or digits.

 Neurobiological evidence shows that separate features of visual information are projected

to different cortical regions of the human brain. Relatively early in the processing of visual

stimuli, color and shape are separate, and the brain can encode these features without awareness.

This work supports the idea of modularity in the human cortex (Mattingley et al., 2001).

It is possible that color-graphemic synesthesia results from a flaw in the modular

organization of the brain. Mattingley et al.’s (2001) results agree with the possibility that

cortical regions for processing shape and color are abnormally linked, but only during awareness.

These finding suggest that attention signals associated with awareness are required to produce

normal binding (Robertson, 2001).

Visual Auditory Illusion

 Vision is believed to dominate perception; however, Shams, Kamitani, and Shimojo

(2000) have challenged this established view by showing that auditory information can alter the

perception of a visual stimulus to create a visual illusion. They have discovered a visual illusion

induced by sound. When a visual flash is accompanied by multiple auditory beeps, the single

flash is incorrectly perceived as multiple flashes. In their experiment observers consistently

reported incorrectly seeing multiple flashes whenever a single flash was accompanied by more

than one beep. The illusion persisted even in informed subjects aware of the fact that there was

only one flash.

 Their results indicate illusory flashing is caused by an alteration of visual perception by

auditory stimuli. Modification of visual perception by sound is not categorical but selective.

Their results also showed that sound did not have a fusing effect when multiple flashes were

22

accompanied by a single beep, and suggest the direction of cross-modal interactions is partially

dependent on the type of stimulus. They propose that the perception of a continuous stimulus in

one modality is rendered more malleable by a discontinuous stimulus in another modality than

vice versa (Shams et al., 2000).

Tactile Discrimination

 The visual cortex in blind humans is known to be involved in nonvisual perception,

which has been attributed to neural plasticity resulting from visual deprivation. Zangaladze,

Epstein, Grafton, and Sathlan (1999) showed that discrimination of the orientation of a grating

on the fingerpad is associated with subjective reports of visual imagery. Positron emission

tomography (PET) shows an increase in regional cerebral blood flow (rCBF) relative to what is

seen during discrimination of grating texture in a contralateral region of extrastriate visual cortex

near the parieto-occipital fissure. In a study using functional magnetic resonance imaging

(fMRI), it was found that visual cortical areas are also active during tactile object recognition,

compared with texture discrimination. Processing in the visual cortex may reflect top-down

activation of visual representation used to facilitate tactile discrimination of orientation or shape.

Alternatively the observed activity may be an epiphenomenon.

 In order to distinguish between these two possibilities, researchers used transcranial

magnetic stimulation (TMS) over the occipital scalp to block visual perception by disrupting

function in the extrastriate visual cortex. The results show that TMS interferes with the tactile

discrimination of grating orientation. Its time course and spatial restriction illustrate the

specificity of the effect over the scalp. It is also shown by the failure of occipital TMS to affect

detection of electrical stimulus applied to the fingerpad or tactile discrimination of grating

texture. In contrast TMS applied to the somatosensory cortex blocked discrimination of grating

texture and orientation.

23

The findings indicate that the visual cortex is involved in tactile discrimination of

orientation. The findings also demonstrate that the visual cortex is necessary for normal tactile

perception in normally sighted subjects (Zangaladze et al., 1999).

Excogitare

 Synesthesia is an idiosyncratic condition that is not maladaptive, except in rare cases.

For the synesthete, their perceptions are as normal and as real as a non-synesthete. Introspective

reports have been verified by means of test-retest scenarios showing that synesthete’s

perceptions are not attributable to imagination. In light of the fact that synesthesia has been

documented as a real phenomenon since 1690, substantial research was not undertaken until

physiological investigations implicated a neural basis for synesthesia.

 Research has shown that synesthetes differ neurophysiologically. Maurer theorized that

synesthesia is a natural developmental state all humans go through in which transient

connections exist between neural structures. Neurophysiologial evidence from other species and

recordings of evoked potentials in humans during early infancy show cross-sensory activation in

the temporal cortex and occipital cortex. Research has also documented that in some synesthetes

that the mere thought of the concept of a number results in a synesthetic perception. In normal

individuals synesthesia can be drug induced with hallucinogenics such as LSD or mescaline.

Neuroimaging studies using PET and fMRI suggest synesthesia results from activity in brain

areas that deal with language and visual feature integration. Additionally research has shown

that a visual illusion can be induced by audition in normal individuals.

But why do polysensory mechanisms exist in the brain? Considered in terms of

evolutionary theory, one avenue of reasoning is they exist because the ability to pair perceptions

has survival value. This implies that in an unconscious manner all humans have cross-sensory

mechanisms, but synesthetes have cross-modal perceptions. However, this researcher speculates,

based on the findings of research directly and indirectly related to synesthesia, that the

24

functioning of the human brain, and other brains, is an efficient cooperative process in which

neural structures are reused. Simply stated, it is efficient to reuse an existing mechanism.

The Zangaladze et al. (1999) investigation showed that the visual cortex is involved in

the process of tactile discrimination of orientation. One does not have to ask why, but must ask

what advantage does this offer? If vision and touch were absolutely separate systems, then each

would have to posses its own mechanism for determining orientation. This would essentially be

a replication of function. Instead, why not let the two systems share an orientation discriminator,

which is what this research suggests. Because vision is dominant and has a well-developed

orientation discriminator, it may be that tactions uses a resource normally devoted to vision.

Based on research findings, it is obvious that the brain is modular, and that these modules work

together in a cooperative manner.

25

CHAPTER 3

HISTORICAL PERSPECTIVE: Machina speculatrix

 Imagine a simple machine that explores its environment, is attracted to light, and

maneuvers around obstacles. A robot that behaves like an animal sounds like something from

science fiction or the latest in artificial life. Valentino Braitenberg, in his 1984 book Vehicles:

Experiments In Synthetic Psychology, presents a series of thought experiments in which vehicles,

simple systems of increasing complexity are constructed from elementary mechanical and

electronic components that exhibit complex life-like behaviors. Each of these imaginary

vehicles in some way mimics intelligent behavior. Vehicles in the series incorporate essential

features of earlier models, and as these vehicles evolve; they are attributed with qualities such as

aggression, love, logic, foresight, concept formation, creative thinking, personality, and free will.

Yet, if one did not know the principles behind the vehicles’ construction, these qualities would

not be attributed to the simple control mechanisms that generate their behaviors.

 Braitenberg presents these vehicles as evidence for what he calls the “law of uphill

analysis and downhill invention,” meaning that it is significantly more difficult to try to guess

internal structure from mere observation of behavior than it is to create the structure that results

in the behavior. Stated another way, it is easier to design a mechanism anew to do something,

than it is to figure out how nature has evolved to do it. This suggests that perhaps nature’s way

is not really insuperably complicated.

Braitenberg’s basic machine is a motor connected to a sensor that controls activation of

the motor. These simple machines hardly qualify as brutes, and he considers them for no more

than a few pages. Next he adds multiple sensors and multiple motors, crossing their wires, and

makes some of the connections inhibitory. The results are extremely simple machines, creatures,

an observer has no difficulty in attributing with fear, aggression, love, and affection along with a

wandering eye; behavior resembling much of what is expected from biological systems.

26

Braitenberg pursued thought experiments, however, more than 30 years earlier, W. Grey

Walter, a British neurophysiologist, used the same idea of complex behavior arising from simple

components to build what he called “imitations of life” (as cited in Levy, 1992). This chapter

describes Walter’s robotic research, detailing the first robots, Elmer and Elsie, that he built

between Easter 1948 and Christmas 1949. Next a robot that learns through classical condition,

an evolution of the original is described.

W. Grey Walter

 Over 50 years ago Dr. Grey Walter at the Burden Neurological Institute was engaged in

pioneering research on mobile autonomous robots, building three-wheeled autonomous robotic

vehicles as part of his quest to model brain function. Walter, well known for his work on the

electroencephalogram, was deeply interested in investigating electromechanical models of

simple reflexes exhibited by living creatures. He wanted to study the basis of simple reflex

actions and to test his theory on complex behavior arising from neural interconnections.

According to Sabbatini (1999), Walter was convinced that even organisms with extremely

simple nervous systems could exhibit complex and unexpected behaviors.

 Walter had a reputation as an interdisciplinarian genius, a pioneer who explored the

interface between electronics and biology. Exceptionally skilled and possessing an

understanding of these two sciences, Walter, with uncanny insight, created the first autonomous

robotic animals. These three-wheeled robots he called tortoise after an “Alice in Wonderland”

character (Sabbatini, 1999). He nicknamed the first two built Elmer and Elsie, after the initials

of the terms describing them – ELectro MEchanical Robots, Light Sensitive, with Internal and

External stability (Walter, 1950).

The electronics and mechanics of these robotic animals were simple, consisting of a light

sensor, touch sensor, drive motor, steering motor, and two miniature vacuum tubes. The robot’s

drive train consisted of three wheels arranged in a tricycle-like formation. The front wheel

27

provided propulsion and steering, each function controlled by separate motors. The sense organs

were simple, a light sensor and a contact sensor. Power was supplied by a miniature hearing aid

B battery and a six-volt storage battery mounted at the back of the assembly, and a Perspex, an

acrylic plastic, shell protected and covered the complete assembly.

The nervous system of these creatures, a simple artificial neural network, consisted of just

two neurons, an analog circuit built using two vacuum tubes; a pair of interlinked amplifiers

controlled the wheel motors and the direction using information from the sensors. The turtles

were designed to perform two actions. First, they knew how to avoid large obstacles, retreating

if they hit one. Second, they would seek out a light source, and if the light was of sufficient

intensity they would move away from instead of toward the source; like moths they are

phototropic animals. With this simple design, Walter demonstrated that his robotic creations

exhibited a variety of complex behaviors. Based on their behavior, Walter named these robots

with the mock-biological name, Machina speculatrix, because “it explores its environment

actively, persistently, systematically as most animals do” (Walter, 1950).

Machina speculatrix

 Machina speculatrix was unlike other robotic creations preceding them, and its

uniqueness stems from the fact that they did not have a fixed behavior. Instead the robots had

reflexes, and through interaction with their environment, behaviors resulted that were never

exactly repeated in the same manner, but rather followed a general pattern much in the same way

animals do. This emergent life-like behavior was an early form of what is now called Artificial

Life. These robots were the first artificial mechanical creatures having some of the typical

properties of living creatures, such as behavior and self-organization.

 Walter’s interest in Artificial Life stemmed from his work in neurophysiology. In order

to understand the complexities of the brain, he proposed building electronic models. However,

he recognized that the sheer number of neurons present in the brain was an obstacle towards

28

understanding. Walter, in his book, The Living Brain, (1953) states, “If the secret of the brain’s

elaborate performance lies there, in the number of its units, that would be indeed the only road,

and that road would be closed” (p. 118). Therefore, his focus was based on the assumption that

it was not the sheer number of cells in the brain but that the “richness of their interconnections”

was more so important (Ward, 1998). Walter (1950) states, “The fact that only a few richly

interconnected elements can provide practically infinite modes of existence suggests that there is

no logical or experimental necessity to invoke more than number to account for our subjective

conviction of freedom of will and our objective awareness of personality in our fellow men” (p.

44).

 Walter built his first robot in 1948. Its brain, so to speak, consisted of two neurons, a

pair of interlinked amplifiers connecting its two sensors to two motors. The light sensor was

attached to the spindle of the steering column so that it always faced in the same direction of the

single front drive wheel. One motor steered the machine by turning the spindle, while the other

drove the wheel. The other sensor was a contact switch that closed whenever the robot shell

bumped into something and this tipped one of the amplifiers into oscillation (Ward, 1998).

 Emerging from these simple connections, a panoply of behaviors was exhibited.

Normally the light sensor, a photocell, scanned round and round while the drive wheel revolved

at half speed, sending the robot in a series of curves in search of dim lights, a cycloidal gait. If

light was detected, it would stop scanning and race towards it, but if the light was too bright,

dazzled, the robot would begin scanning again, turning away from the light. If an object was hit,

the contact reflex would switch the robot between its normal and dazzled states; thus it would

repeatedly backup and turn until an obstacle had been negotiated.

 When the robot was in the presence of a single light source, it would circle around it in a

complex path of advance and withdrawal. However, if there were another light source farther

away, the robot would first visit one and then the other and would continually stroll back and

forth between the two. Due to the nature of their design these robots elegantly solved the

29

dilemma of Buridan’s ass, who scholastic philosophers said would die of starvation when placed

between two barrels of hay if it did not possess a transcendental free will. However, this should

be considered in the context of the details of the robots operation. When the photocell detects a

light, both tubes amplify the signal. If the light is very weak, a change of illumination is the

effective signal, but a stronger signal is amplified without loss of its absolute level. The effect in

either case is to halt the steering wheel so the robot moves toward the light with the least amount

of difficulty. When the light intensity increases to a sufficient level, the signal becomes strong

enough to operate a relay in the first tube, which has the opposite effect on the second tube. This

results in the steering mechanism operating at double speed causing the robot to abruptly sheer

away in favor of gentle stimulation (Walter, 1950).

 Walter’s robots were designed to seek out a hutch where they normally stayed when

recharging their batteries. Inside of the hutch were a 20-watt lamp and a battery charger. When

the batteries were sufficiently charged, the robot would be attracted to light from distant sources,

but, at threshold, the brilliance is so that it acts as a repellent, causing the robot to wander off and

explore its environment. However, when the batteries’ charge was low, the effect enhanced the

sensitivity of the amplifier so the attraction of light was increased. In this way the robot could

locate its hutch and be attracted home, because the bright light was no longer dazzling. Once

inside the hutch and connected to the battery charger, the flow of current effectively put the robot

to sleep, because power was disconnected from its nervous system. After the batteries charged,

the internal circuits would be automatically reconnected. Now light that had attracted the robot

to its home repels it away (Walter, 1950).

 Inevitably this peripatetic robot encountered objects that it could not see, even though it

avoided obstacles that cast a shadow when approaching a light source. However, these robots

were equipped with a device enabling them to navigate around obstacles. The robot’s Perspex

shell was suspended on a single rubber mount and had enough flexibility that allowed it to move

and close a ring contact. When the ring contact closed it converted the two-stage amplifier into a

30

multivibrator whose oscillations rhythmically opened and closed the relays that controlled the

application of power to the motors for steering and crawling, and at the same time ignored

signals from the photocell. When contact was made with an obstacle, regardless of operation

mode, all stimuli were ignored and the gait was transformed into a succession of butts,

withdrawals, and sidesteps until the obstacle was either pushed aside or circumvented.

Oscillation continued for about a second after the obstacle has been cleared and during this

period the robot attempts to move to a sufficient distance for maneuvering (Walter, 1950).

Machina speculatrix displayed a diverse array of behaviors that emerged from a simple

set of elementary components. For instance, Walter fitted a small flash-lamp on Elmer’s head

that turned-off whenever the light sensor received an adequate light signal. Quickly the robot

homed in on a mirror hung in the room and a dance of oscillations ensued. Exposure to light

reflected from the indicator lamp was sufficient to operate the circuit controlling the robot’s light

response, thus, causing the machine to be attracted to its own reflection. “The model flickers and

jigs at its reflection in a manner so specific that were it an animal a biologist would be justified

in attributing to it a capacity for self-recognition” (Walter, 1950, p. 45). This behavior is due to

the reflected light resulting in the indicator light being switched off, and darkness in turn

switches it on again, resulting in an oscillation of light being set up. When Elmer and Elsie were

placed in the same room, each with an indicator lamp, they engaged in a complex dance of

attraction and repulsion. Yet, each attracted by the light of the other, both extinguished its own

source of attraction. This resulted in the two becoming involved in a mutual oscillation that

eventually led to a stately retreat (Walter, 1950, 1953).

Machina docilis

Walter building on the Machina speculatrix model constructed another robot that

behaved even more like an animal. He gave this robot the mock-biological name Machina

docilis, from the Latin word meaning teachable, because it could be trained using classical

31

conditioning much like Pavlov’s dog. Machina docilis was an evolved Machina speculatrix that

had what Walter called the Conditioned Reflex Analogue (CORA). This mechanism created a

connection between the robot’s light reflex or contact reflex and another stimuli, such as a

whistle. The robot could be trained by blowing the whistle and then kicking it to trigger the

contact reflex. “After a dozen kicks the model [robot] will know that a whistle means trouble,

and it can thus be guided away from danger by its master” (Walter, 1951, p. 62). In Machina

docilis the associative memory is formed by oscillations in a feedback circuit. The deterioration

of these oscillations is analogous to forgetting. The central part of CORA was a capacitor

connected to the inputs. If the shell were kicked after a whistle blow, the capacitor charged until

reaching a threshold. At this point the capacitor would discharge causing an electronic gate to

open that allowed the whistle to stimulate the same response as kicking the machine.

Additionally, if conditioning was not reinforced, extinction occurred and CORA shut the gate

(Walter, 1953).

Walter was not the first to attempt constructing a machine that imitated a living creature’s

behavior as distinguished from appearance versus performance. Thomas Ross in 1938 made a

machine that could find its way out of a maze. Through trial and error it could learn to find its

way to a goal on a system of toy train tracks (Walter, 1953). Yet, Walter’s tortoises may be

considered the first autonomous mobile robots.

Excogitare

 While many of Walter’s theories have since been abandoned, the significance of the ideas

at the foundation of his robots is now only being realized. According to Owen Holland, Walter

built Machina speculatrix for a specific purpose, “He wanted to prove that rich connections

between a small number of brain cells produces very rich behaviour” (as cited in Ward, 1998, p.

55). This is an idea that has a modern feel. According to Ward (1998) Rodney Brooks of the

32

Massachusetts Institute of Technology used the idea to lay the foundation of a field that has

become known as behavior-based robotics.

 Unlike earlier intelligent robots that used large control programs for decision making that

limited them to very specific tasks, Brooks went against the top-down control paradigm in favor

of the bottom-up approach in which control is delegated to very simple elements. For instance,

each leg of his six-legged walking robot, Genghis, controlled its own actions, and the robot could

walk and avoid objects or clamber over them (Brooks, 1999).

Brooks, in formulating his approach, drew on Walter’s work. The animal-like behavior

of Machina speculatrix is a trait singled out by adherents of behavior-based robotics. The

emergence of unpredictable behavior, a hallmark of the natural world, is key to their claims they

are progressing towards genuinely lifelike artificial organisms.

Walter was optimistic others would create similar creatures, imitating life with yet more

complex machines. In the near future he predicted that similar imitations of life would be

capable of repairing and reproducing themselves. However, as classical Artificial Intelligence

imposed the top-down paradigm as dogma on experimental robotics and demanded creations

possess a human-like grasp of logic, the supple, animal-like behaviors of Elmer and Elsie were

destined for the curiosity heap (Levy, 1992).

 The destiny of Elmer and Elsie may have been the curiosity heap, but Walter’s optimism

has been realized. Researchers such as Rodney Brooks, Ronald Arkin, and Robin Murphy have

created robots that in essence imitate life. Like Brooks, Walter’s work has provided motivation

for this researcher. Moravec (1988) wrote, “I believe that robots with human intelligence will be

common within fifty years” and that, “… I now expect to see a general-purpose robot usable in

the home within ten years.” Even though Moravec (1999) states, “There are still no mobile

utility robots to help us around the house,” and in light of his revised prediction that by 2010

utility robots will be common, this researcher does not share his optimism.

33

CHAPTER 4

CELL ASSEMBLIES

 Grey Walter like Donald Hebb was interested in how the brain functions. Walter built his

first robot in 1948 shortly before Hebb published his neurophysiological postulate. Other than

sharing similar interests, it is not stated in the literature whether or not a mutual influence

between their work existed. While Walter was primarily interested in how behavior arose from

neural interconnections, Hebb postulated about how learning amongst neurons occurred and is

the topic of this chapter.

D. O. Hebb

 Donald Olding Hebb (1904-1985) was an extraordinarily influential figure in the

discipline of psychology. His opposition to radical behaviorism and emphasis on understanding

what happens between stimulus and response helped pave the way for the cognitive revolution.

Viewing psychology as a biological science, his neurophysiological cell assembly proposal

renewed interest in physiological psychology. Since his death, Hebb’s seminal ideas continue to

exert a growing influence on those interested in mind, brain, and how brains bring about mind

(Klein, 1999).

 Hebb’s influence extends beyond the domain Psychology. For example, in 1943,

mathematicians Warren McCulloch and Walter Pitts showed that it was possible to compute with

a neural network. Six years later Hebb showed how a neural net could learn. If there is a core to

the field of Artificial Intelligence today, it is most likely the connectionist school of neural

networks. In this sense, McCulloch, Pitts, and Hebb can be considered the founding fathers of

Artificial Intelligence (Susac, 1997).

34

Cell Assemblies and Phase Sequences

 Hebb’s fundamental idea, his neurophysiological postulate, was to assume that the brain

is constantly making changes at the synapses. Hebb stated this assumption in his 1949 book The

Organization of Behavior. “When an axon of cell A is near enough to excite cell B and

repeatedly or persistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased”

(Hebb, 1949, p. 62). This was a bold assumption on his part because at the time he had no

evidence to support it whatsoever. Having made this assumption, however, he argued that these

synaptic changes were in fact the basis of learning and memory. For example, a sensory impulse

coming in from the eyes leaves a trace on the neural network by strengthening all the synapses

that are along its path. As a result, Hebb said, a network that was initially random would rapidly

organize itself. Experience would accumulate through a kind of positive feedback, where strong,

frequently used synapses grow stronger, while weak, infrequently used synapses atrophy. The

favored synapses would eventually become so well established that the memories would be

locked in due to structural change. These memories, in turn, would be widely distributed over

the brain, with each one corresponding to a complex pattern of synapses involving potentially

millions of neurons.

Hebb’s second assumption was that the selective strengthening of the synapses would

cause the brain to self organize into cell assemblies, where subsets of thousands of neurons in

which circulating nerve impulses would reinforce themselves and continue to circulate. Hebb

considered these cell assemblies the basic building blocks of information in the brain, each

corresponding for example to a sound, an image, or a fragment of an idea. Yet, these assemblies

would not necessarily be physically distinct, overlapping with neurons belonging to other cell

assemblies. Because of this overlap, activation of one cell assembly would influence the

activation of others, and this activation would lead to the activation of yet others, and so these

35

fundamental building blocks would quickly organize themselves into larger concepts and

complex behaviors. Thus, for Hebb, the cell assembly is the fundamental quanta of thought.

 Just as cell assemblies are formed as aspects of an object become neurologically

interrelated, in a similar fashion cell assemblies become neurologically interrelated to form phase

sequences. A phase sequence is “a temporally integrated series of assembly activities; it

amounts to one current in the stream of thought” (Hebb, 1959). Once developed, a phase

sequence, like a cell assembly, can be fired internally, externally, or by a combination of internal

and external stimulation. When any single cell assembly or combination of assemblies in a

phase sequence is fired, the entire phase sequence tends to fire. When a phase sequence fires,

one experiences a stream of thought, i.e., a series of ideas arranged in some logical order

(Hergenhahn & Olson, 2000).

 When considering Hebb’s cell assemblies, a shortcoming should be noted. Without

inhibiting factors, learning would strengthen synaptic connections until all neurons fired

continuously, hence it would make the system useless. In 1950 Nathaniel Rochester and his

colleagues at the IBM research laboratory in Poughkeepsi, New York, observed this in a

computer model of the cell assembly. Hebb himself never used a computer to test his idea that

random nerve nets could organize themselves to store and retrieve information. In spite of this,

Hebb’s work later inspired many computer models, from the perceptron to parallel distributed

processing (Milner, 1993).

Research

 Hebb proposed 53 years ago that animals perceive objects and carry out actions due to

the collective ability of large assemblies of brain cells. However, since then, brain researchers

have tended to focus on the responses of one or a few neurons at a time.

 Two investigations appearing in the February 4th, 1999, Nature go against the

experimental grain and bolster Hebb’s notion. Both indicate that human perception and learning

36

arise from synchronized activity of clusters of neurons. Large numbers of nerve cells may

briefly align the peaks and valleys of their electrical outbursts in order to render unified scenes

and meanings from diverse sensations (Bower, 1999).

 Some studies have used microelectrodes implanted in the brain. These studies have

linked synchronized neural firing in cats and other nonhuman animals to perception and memory

(Bower, 1998).

 New efforts instead rely on measuring brainwaves by means of electrodes placed on the

scalp. Brain waves arising from the synchronized neural activity known as gamma waves are the

result of thousands of neurons firing at around forty hertz (Bower, 1999).

 A study by Pulvermüller investigated the psychophysiology of word processing. In this

investigation he adopted Hebb’s theoretical position that cell assemblies are the building blocks

of cognitive functions. He suggests these assemblies are not necessarily restricted to small

cortical locus but may be dispersed over distant cortical areas. Different assembly topographies

can be postulated for different kinds of words. Evidence from evoked potentials and gamma-

band electrocortical responses elicited by lexical material supports a cell assembly model of

language and other higher cognitive functions (Pulvermüller, 1996).

Rodriguez

Rodriguez et al. (1999) conducted a study in which 10 adults looked at images of either

human faces or abstract shapes. To indicate what they saw they pressed one of two computer

keys.

 Brain tissue involved in vision exhibited gamma activity for an instant when volunteers

scrutinized faces but not when they viewed the shapes. These synchronized responses are

considered by Rodriguez’s group to be crucial for integrating related sensations into a vision of a

face, but they dissipated before any key was pressed. A second gamma burst arose in the motor

37

areas of the brain as participants pressed a key, which may have helped coordinate an appropriate

reaction (Rodriguez et al., 1999).

Miltner

Wolfgang Miltner of Fredrich Schiller University in Jena, Germany, has performed an

investigation that indicates learning fosters synchronized neural activity. For this investigation

16 volunteers in a series of trials saw a flash of colored light that was immediately followed by a

mild shock to the third finger of either the right or left hand. After the participants were

conditioned, the flashing light alone-evoked surges of gamma activity in brain areas devoted to

vision and to representation of the finger that had been shocked. This gamma activity was not

observed once the participants learned not to expect a shock to a finger after seeing the flashing

light (Miltner, Braun, Arnold, White, & Taub, 1999).

 According to Wolf Singer of the Max Planck Institute for Brain Research in Frankfurt,

Germany, although these studies do not demonstrate any precise functions for synchronized

neural responses, gamma activity, they “could well be the mechanism that binds neurons into

functionally coherent assemblies” (as cited in Bower, 1999).

Pulvermüller

According to Pulvermüller (1996) some ideas included in the Hebbian framework are

now common features of brain theories about language and other cognitive functions. The

assumption that neuron assemblies can be distributed over wide cortical areas is shared by recent

large-scale neuronal theories. Apparently, there is a broad consensus that neurons of distant

cortical areas can work together as functional units. The Hebbian framework, in addition to

postulating there are large-scale neuronal networks, also provides criteria for the formation of

cell assemblies, and thus an explanation for assembly topographies (Pulvermüller, 1996).

38

Within the Hebbian framework, Pulvermüller asks not where cognitive entities are

represented in the cortex but where in the cortex correlated neuronal activity takes place when

cognitive entities are being learned. Cell assemblies representing phonological word forms are

localized in the perisylvian cortices, associative learning must take place to store the rules that

determine sequencing of words in well-form sentences and the meaning of word forms. In the

Hebbian framework, frequently coactivated neurons strengthen their connections and develop

into a higher order assembly representing the phonological word form together with its meaning.

As such, theses assemblies related to meaningful words may actually be distributed over the

entire cortex (Pulvermüller, 1996).

Studies of neurological patients with linguistic deficits revealed that lesions involving

areas outside the perisylvian language cortices of the left hemisphere could lead to problems in

processing words of particular categories. Lesions in the frontal lobe in the vicinity of Broca’s

area tend to result in problems in accessing verbs. Whereas, lesions in the inferior temporal lobe

and the temporo-occipital areas tend to selectively affect the ability to access nouns

(Pulvermüller, 1996).

In a positron emission tomography study by Martin, Haxby, Lalonde, Wiggs, and

Ungerleider (1995) had subjects generate verbs and color words. These researchers found

increased metabolic turnover in the ventral temporal lobe when color words were generated, and

generation of verbs activated more superior temporal and inferior frontal areas but no additional

motor cortices.

Data from evoked potentials have provided evidence that words of similar length and

frequency can have different cortical counterparts. It has been suggested that these cortical

representations are Hebbian cell assemblies. Although these ideas provide a tentative

explanation of findings concerning high-frequency cortical responses related to cognitive

processes, future theoretical and experimental research is necessary to further validate them

(Pulvermüller, 1996).

39

CHAPTER 5

BEHAVIOR-BASED ROBOTICS AND SENSOR FUSION

 Grey Walter built his robots to explore how behavior arose from rich interconnections

amongst a small group of neurons and Donald Hebb postulated about how learning amongst

neurons occurred. Walter’s and Hebb’s theories about brain functions inform those involved in

robotics research. Rodney Brooks of the Massachusetts Institute of Technology influenced by

the work of Walter used the idea of organizing a robot controller as a set of behaviors to lay the

foundation of a field that has become known as behavior-based robotics the first topic of this

chapter.

Behavior-Based Robotics

 Two important characteristics of classical Artificial Intelligence (AI) methodology are the

ability to represent hierarchical structure by abstraction and the use of strong knowledge that

employs explicit symbolic representational assertions about an environment. The influence of

AI on robotics was the idea that knowledge and its representation is central to intelligence and

may have been a result of AI’s preoccupation with human-level intelligence. Behavior-based

robotics reacted against these traditions.

 According to Rodney Brooks (1987), “Planning is just a way of avoiding figuring out

what to do next.” Even though this paradigm shift was initially resisted, the notion of sensing

and acting within an environment has grown in preeminence in AI related robotics research over

the previous focus on knowledge representation and planning. Advances in robotics and sensor

hardware made it feasible to test behavior-based robotic hypotheses, and the results enamoured

the imagination of AI researchers (Arkin, 1998).

 The behavior-based approach to robotics has been evolving since about 1984 in a number

of laboratories. Instead of modularizing perception, environment modeling, planning, and

40

execution, this approach builds intelligent control systems where individual modules each

directly generate part of the behavior of the robot. Along with an arbitration scheme, an

integrated part of the framework, that controls which behavior producing modules has control of

part of the robot at any given instance.

 The behavior-based approach is an interdisciplinary effort that draws inspirations from

neurobiology, ethology, psychophysics, and sociology. This approach grew out of

dissatisfaction with traditional robotics and artificial intelligence that seemed unable to deliver

real-time performance in dynamic environments. The central idea of the new approach is to

advance both AI and robotics by considering the problems of building an autonomous agent that

is physically an autonomous mobile robot that carries out some useful task in an environment

that has not been specially engineered for it (Brooks, 1991).

 A number of researchers starting about 1984 began rethinking the general problem of

organizing intelligence. A reasonable requirement was that intelligence should be reactive to

dynamic aspects of the environment, and that a mobile autonomous robot should operate on time

scales similar to those of animals and humans. In addition intelligence should be able to

generate robust behavior in light of uncertain sensors in an unpredictable environment.

 Some of the key realizations about the organization of intelligence were that most of what

people do in their day-to-day lives is not problem-solving or planning, but are routine activities

in a relatively benign yet dynamic environment. Representations an agent uses of objects in its

environment do not have to rely on naming those objects with symbols the agent possesses but

can be defined through interactions of the agent with its environment. An observer can talk

about an agent’s beliefs and goals in light of the fact that the agent does not manipulate symbolic

data structures. Brooks has argued that in order to really test ideas of intelligence it is important

to build complete agents that operate in dynamic environments using real sensors. Internal world

models, complete representations of an environment are impossible to obtainfs and are not

necessary for agents to act competently. Further, many of the actions of an agent are separable,

41

and coherent intelligence can emerge from independent subcomponents interacting with the

environment (Brooks, 1991).

 Two key ideas have led to solutions that use behavior-producing modules, situatedness

and embodiment. When a robot is situated in its environment, it does not have to deal with

abstract descriptions but instead deals with the here and now of the environment that directly

influences the behavior of the system. Embodiment means that robots have bodies and

experience their environment directly. Robot actions are part of a dynamic with an environment,

and its actions have immediate feedback on the robots’ own sensations.

 The following example highlights the issues of situatedness and embodiment. A current

generation industrial spray-painting robot is embodied but is not situated. That is, it has a

physical extent and its servo routines correct for its interactions with gravity and noise present in

the system. Yet, it does not perceive any aspects of the shape of an object presented to it for

painting and merely goes through a pre-programmed series of actions (Brooks, 1991).

Subsumption Architecture

 Brooks (1991) states that some success is achieved in the control of autonomous robots

by combining sets of behavioral modules running in parallel. Classic approaches to robotics do

not typically decompose control into separate behaviors. Instead, control is decomposed into

functional modules that process information from sensation to output in serial stages. A module

for perception attempts to reconstruct from visual input a representation of what things are and

their location. This representation is then used by another module to make plans to reach the

robot’s objectives. Next commands from planning are passed on to an effector module that

executes them.

Brooks (1986) explores an alternative that de-emphasizes classical approaches

construction of internal representations. In the subsumption architecture control is decomposed

into separate modules that guide simple behaviors. Each module uses sensory input to find

42

features relevant for controlling its behavior. For example, object avoidance modules that use

sonar sensors placed around the robot body to steer it away from nearby objects. Individual

modules operate in parallel and detect cues from sensory input and generate commands to move

the robot. When commands from several modules are combined, they can produce a robot

capable of navigating an uncertain environment without collision.

Early work in behavior-based robotics used a fixed priority scheme called subsumption

architecture to combine commands from behavior modules. In the subsumption architecture,

behaviors are organized into ascending levels of competence. A behavior at the lowest level

executes its commands with no awareness of the other behaviors above it. Yet, even at the

lowest level of competence the robot can execute meaningful actions for its survival. A basic

behavior, such as obstacle avoidance can still function even in the absence of navigation goals by

moving the robot out of the path of approaching vehicles. As higher level behaviors are added,

they impose additional constraints on the robot’s behavior. Higher level behaviors take as input

both sensory information and the outputs from lower level. When necessary, high levels modify

the output from lower levels and substitute their own commands. For example, a behavior that

moves the robot towards landmarks can replace the movement suggested by obstacle avoidance

with an alternative that still avoids the obstacle but also moves closer to the landmark. Robots

based on the subsumption architecture can be constructed with more sophisticated behavior by

incrementally adding higher levels of competence (Brooks, 1989).

Robotic Sensor Fusion

Neurophysiologists and cognitive psychologists are studying sensory integration and

intersensory perception in order to generate an accurate model of perception, while engineers,

computer scientists, and robotics researchers are building robots, which require mechanisms, not

theoretical models, for performing sensor fusion. Single sensor systems have not been

completely successful for demanding tasks in navigation, target or goal recognition, and general

43

scene interpretation. The primary disadvantage of a single sensor system is its inability to reduce

uncertainty. Uncertainty occurs when features are missing or when the sensor cannot measure

all the relevant attributes of a percept and when the observation is ambiguous (Murphy, 1996).

Yet, no complete theory of sensor fusion has been presented in the cognitive and biological

literature explaining how sensors influence and dominate each other while producing more

accurate or confident perception (Murphy, 1994).

 Sensor fusion is also an interest for those in the Artificial Intelligence (AI) and Artificial

Neural Network (ANN) who work with autonomous mobile robots. The issue of interest is how

to use information from one sensor to focus attention of another, and how to combine

information from multiple sensors to improve measurement accuracy or confidence in

recognition. Additionally, the demands of an unpredictable environment necessitate the use of

multiple sensors to provide robustness in light of one sensor’s shortcomings (Murphy, 1994).

According to Arkin (1998) and Murphy (2000) behavior-based systems can organize perceptual

information in three general ways: sensor fission, action-oriented sensor fusion, and perceptual

sequencing or sensor fashion, Figure 2 through 4 illustrate these concepts. Sensor fission is

easily understood, for example, a motor behavior requires a specific stimulus to produce a

response, thus a dedicated perceptual model is used to channel its output directly to the behavior.

Behavior 2

Behavior 1

Behavior 3

Percept 1

Percept 3

Percept 2

Response 1

Response 3

Response 2 Response
Combination
Mechanism

Figure 2. How percepts are combined in sensor fission.

Fusion

Percept 1

Percept 2

Percept 3

Percept ResponseBehavior

Figure 3. How percepts are combined in sensor fusion.

44

Behavior

Percept 1

Percept 2

Percept 3

Response

Sequence Selector

 Figure 4. How percepts are combined in sensor fashion.

Action-oriented sensor fusion facilitates the construction of temporary representations (percepts)

that are locals to behaviors. Increased robustness is achieved by restricting the final percept to

the requirements of a particular behavior’s requirements and context as well as retaining the

advantage of reactive control while permitting more than one sensor to provide input (Arkin,

1998).

 Fixed-action patterns sometime require varying stimuli to support their operation over

time and space. Different sensors or different views of an environment may modulate a

behavioral response as it unfolds. Perceptual sequencing allows the coordination of multiple

perceptual algorithms over time in support of a single behavioral activity. Based on the needs

and environment, an agent’s perceptual algorithms are phased in and out. The phrase sensor

fashion describes the significance of differing perceptual modules, changing over time and space

(Arkin, 1998).

45

Sensor Fusion Effects Architecture

 According to Murphy (1994) forays by the AI community into sensor fusion have

essentially ignored cognitive and behavioral psychology. Murphy’s work coalesced in the

development of the Sensor Fusion Effects (SFX) architecture, which consist of three generic

mechanisms derived from her study of cognitive psychology and neurophysiology. Figure 5

shows the neurophysiological influenced cognitive model of sensing based on studies of sensing

in cats that SFX is modeled after.

receptive
field

sense

receptive
field

sense

receptive
field

sense

Cerebral Cortex

Superior
Colliculus

muscle
muscle

muscle

cognitive
influences

focus-of-attention
feedback for

recalibration, adaptation

Figure 5. Cognitive model of sensing used in SFX.

The cognitive model suggests sensory processing is initially local to each sensor and may

have its own sense-dependent field. According to Murphy (2000) the model is consistent with

reactive robotic behaviors and at least with the motivation for sensor fission. Sensor processing

46

then appears to branch where duplicates go to the superior colliculus and to the cerebral cortex,

where branching allows the same sensor stream to be used in multiple ways. In SFX the

equivalent superior colliculus functions are implemented in a reactive layer, and cortical

activities are implemented in a deliberative layer. Perceptual branching is accomplished through

the use of whiteboards, a global cognitive data structure common in many AI systems.

The SFX model has three states:

State 1. Complete Sensor Fusion: All sensors cooperate with each other in

determining a valid percept.

State 2. Fusion with the possibility of discordance and resultant recalibration of

dependent perceptual sources: Recalibration of suspect sensors occurs rather than

the forced integration of their potentially spurious readings into the derived

percept.

State 3. Fusion with the possibility of discordance and a resultant suppression of

discordant perceptual sources: Spurious readings are entirely ignored by

suppressing the output stream of the sensor(s) in question (Arkin, 1998).

SFX uses Dempster-Shafer theory to combine and propagate evidence, where evidence

accrues like biological neural network models of sensor fusion advocated by Stein and Meredith

(1993). SFX defines a perceptual process capable of performing sensor fusion that executes in

two phases, an investigatory phase and a performatory phase, both derived from the study of

orienting behavior. The investigatory phase relies on a configuration mechanism, while the

performatory phases uses an execution and exception handling mechanisms (Murphy, 1996).

 The responsibility of the configuration mechanism is to select the most appropriate

sensing plan based on current operating conditions and the activated plan guides the execution of

the execution mechanism that collects, processes, and fuses observations and evidence. Task-

specific perceptual schemas for sensor fusion yield percepts directly related to the needs of a

motor behavior. Perceptual schemas feed their parent schema and support higher-level schemas.

47

Each source of sensor data eventually grounds this recursive formulation. A parent perceptual

schema combines the incoming subschema information using statistical techniques to produce a

percept and a measure of its belief that is used in the motor schema (Arkin, 1998).

Sensor Fusion in a Time-Triggered Network

 Elmenreich and Pitzek (2001) state that sensor fusion technologies are advantageous for

systems that interact with their environment via a set of sensors, and that sensor fusion combined

with smart transducer technologies leads to an effective system in terms of cost, robustness,

decomposability and maintainability. An architectural model that supports a break down of a

sensor fusion application into three levels, a node level, cluster level, and control application

level, is used in the construction of a mobile robot. Communication between these levels is

performed by means of a well-defined interface system.

 In this study a mobile robot, a smart car, equipped with a suite of pivoted distance

sensors, an electric drive, and a steering unit was used. Each sensor is represented as Time

Triggered Protocol/Architecture (TTP/A) nodes, where each node is implemented on a separate

low-cost microcontroller equipped with a smart transducer interface. The network also has a

master node and a data processing node. The robot’s distance sensors are able to scan the area in

front of it because they are mounted on swivels moved by a servo motors. The distance sensors

generate a value corresponding to the distance of an object.

 The stream of data generated by the distance sensors is used by the data processing node

that fuses the perceptions from the distance sensors with a model of the robot’s environment. In

the model studied, the shapes of obstacles were stored and assigned a probability value that

decreases with the progression of time and increases when the object is re-scanned. The robot

has 16 slave nodes and one master node, where navigation and sensor fusion is hosted on a single

node. Sensor fusion techniques were used to establish a hardware independent interface to a

control application. The Elmenreich and Pitzek (2001) study proved that openness to changes or

48

extensions of sensor nodes and modifications of the control program result in a reduction of the

system complexity at the cluster and control application level.

Just-in-Time Sensor Fusion

 Rekleitis, Dudek, and Freedman (1996) describe an approach to combine range data from

a set of sonar sensors and a directional laser range finder to take advantage of the characteristics

of both devices when exploring and mapping unknown environments. The approach is described

as “just in time” because it uses the more accurate yet constrained laser range sensor only as

needed based on interpretation of sonar data. The key to their approach is that one sensor

provides a large-scale but low-resolution depiction of the environment while a second sensor

provides a more costly but higher resolution view. Research in sensor fusion has tended to focus

on issues of how best to combine measurements from different sensors or how to best extract

data with a single sensor and fuse the measurements over time. This research differs in that it is

shown how to selectively extract measurements from different types of sensors.

 Experimentation with a mobile robot equipped with sonar and a laser range finder

demonstrated that judicious usage of the more accurate but more complex laser range finder was

able to deal with known ambiguity that arises in sonar data. The algorithm used is based on

knowledge of how sensor errors manifest themselves as well as how the environment is typically

structured. It is this knowledge that allows the informed selection of locations to be probed with

the more accurate sensor. The result was better mapping of a space at little additional

computational expense (Rekleitis et al., 1996).

Neural Network Sensor Fusion

 Davis and Stentz (1995) use a neural network paradigm to perform simulated and real-

world navigation tasks that require the use of multiple sensing modalities. Their research uses

backpropagation neural networks because when properly trained a neural network can

49

automatically select and weigh the most important features of an environment, with the added

capability of being able to tackle a significantly different environment by just changing the

training data.

 The goal of the research was to achieve autonomous navigation using the Carnegie

Mellon University autonomous navigation High Mobility Multi-Wheeled Vehicle (HMMWV), a

four-wheel-drive military ambulance. The goal was for the vehicle to safely wander around while

avoiding obstacles. Testing was done in two environments, a square kilometer virtual world and

on a 2-kilometer by 2-kilometer outdoor testing site. Two monolithic neural network

architectures were used that performed almost identically in addition to a modular network

architecture, the Modular Architecture Multi-Modal Theory network (MAMMOTH) – a network

architecture and a training paradigm. MAMMOTH consists of two segments, a feature level and

a task level. The feature level is a set of feature neural networks trained to recognize specific

features in any sensory modality serving as an input source. The task level uses information

from the feature level network’s hidden layers as input to a network trained to perform the

navigation task. The implications for sensor fusion in general are the ease with which new sensor

modalities can be added to a given task. Results showed that a monolithic neural network is

capable of learning to fuse sensing modalities (Davis & Stentz, 1995).

50

CHAPTER 6

BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS

Biological Neurons and Networks

 Neural network architectures are motivated by models of the brain and nerve cells.

Individual neurons are complicated and have a myriad of parts, sub-systems, and control

mechanisms. Neurons communicate information by means of a variety of electrochemical

pathways. There are over 100 different classes of neurons, depending on the method of

classification. Collectively neurons and their connections form a process that is not binary,

stable, nor synchronous (Anderson, 1995).

The brain is a dense neural network consisting of an estimated 100 billion neurons that

use biochemical processes to receive, process and transmit information. A diagram of a nerve

cell typical of those in the brain is shown in Figure 6. The output area of the neuron is a long

branching fibre called the axon. The input area of the neuron is a set of branching fibres called

dendrites (Dayhoff, 1990; Smock, 1999).

Figure 6. Schematic of a biological nerve cell.

51

The dendritic tree of a neuron is connected to thousands of other neurons. When one of

those neurons fires, a positive or negative charge is received by a dendrite. The strengths of all

the received charges are added together through the processes of spatial and temporal

summation. Spatial summation occurs when several weak signals are converted into a single

large one, while temporal summation converts a rapid series of weak pulses from one source into

a large signal. The aggregate input is then passed to the cell body or soma. Yet, the soma and

the nucleus do not take an active role in the processing of incoming and outgoing data. Their

primary function is the continuous maintenance needed to keep the neuron functional. The axon

hillock is the part of the soma that does play a role in determining the output signal of a neuron.

If the aggregate input to the neuron is greater than the axon hillock’s threshold value, then the

neuron fires, i.e., an output signal is generated that is transmitted down the axon. The strength of

the output is constant, even if the input was just barely above the threshold, or a thousand times

as great. Additionally, the output strength is not affected by the many branches of the axon, the

signal reaches each terminal bouton with the same intensity (Smock, 1999). This uniformity of

signal is critical in analog devices such as the brain where small errors can multiply and because

error correction is more difficult than in digital systems (Dayhoff, 1990).

Figure 7. The synapse, a small gap between neurons.

52

The terminal bouton of one neuron, as illustrated in Figure 7, does not physically make contact

with another neuron. Each terminal bouton forms a connection to other neurons across a small

gap called a synapse. The neurochemical and physical characteristics determine the strength and

polarity of the input signal for each synapse. This is where the brain is the most flexible, and the

most vulnerable. Altering the composition of the various neurotransmitter chemicals can

increase or decrease the amount of stimulation that the firing axon conveys to the neighboring

dendrite. Changing the neurotransmitters can also change whether the stimulation a neuron

receives is excitatory or inhibitory (Nicholls, Martin, & Wallace, 1992).

Artificial Neurons and Networks

 Neural networks are computational structures inspired by the study of biological neural

processing. The field is known by many names, such as connectionism, parallel distributed

processing, neuro-computing, natural intelligent systems, machine learning algorithms, and

artificial neural networks. An artificial neural network is an attempt to simulate within

specialized hardware or by means of simulation software, the multiple layers of simple

processing elements of neurons, where each neuron is linked to a number of neighboring neurons

with varying coefficients of connectivity that represent the strengths of the connections.

Learning is accomplished by adjusting the strength of these connections, causing the overall

network to output appropriate results (Haykin, 1999).

 The basic components of a neural network are modeled after the structure of the brain.

Some neural network structures are not closely related to the brain and some do not have a

biological equivalent in the brain. Yet, neural networks have a strong similarity to the biological

brain and, therefore, share terminology from neuroscience.

53

 The elemental unit of a neural network is the artificial neuron that simulates the basic

functions of biological neurons. Artificial neurons are simpler than their biological counterparts;

Figure 8 shows the elements of an artificial neuron.

Figure 8. Elements of an artificial neuron.

The inputs to the network are represented by xn and each of these inputs is multiplied by a

connection weight wn. In the simplest case, these products are simply summed and processed by

a transfer function to generate a result, and then an output. Even though all artificial neural

networks are constructed using this basic building block, the fundamentals may vary (Rao &

Rao, 1995).

 Biological neural networks are constructed in three dimensions from microscopic

components. While these neurons appear capable of unrestricted interconnections, this is not

true of artificial networks that are the simple clustering of simple artificial neurons. Clustering

occurs by creating layers, which may vary, and these are connected to one another. Essentially,

all artificial neural networks have a similar topology, where a layer of neurons form external

connections to receive inputs from the outside world and another layer of neurons provide the

network’s outputs to the outside world; all remaining neurons are hidden from view.

54

Figure 9. Layers in an artificial neural network.

Figure 9 illustrates how neurons are organized into layers. The input layer consists of

neurons receiving input from external sources. The output layer consists of neurons that

communicate the results of the network to a user or entity. Additionally there are typically one

or more hidden layers between the input and output layers, and layers are usually fully

interconnected but are not required to be so (Dayhoff, 1990).

Neurons are connected via a network of connections carrying the output of one neuron as

input to other neurons. These paths are normally unidirectional, but there may be a two-way

connection between two neurons because there may be another path in the reverse direction. A

neuron receives input from many neurons and produces a single output that is input to other

neurons. Additionally, the neurons in a layer may communicate with each other, but the neurons

of one layer are always connected to at least one other layer (Haykin, 1999).

55

Learning

 Neural networks are sometimes called machine learning algorithms because during

training the connection weights are altered to cause the network to learn the solution to a

problem. The connection strength between neurons is stored as a weight-value for a specific

connection. The network learns by adjusting these connection weights.

 Training typically consists of one of three methods, unsupervised learning, reinforcement

learning, or back-error propagation. In unsupervised learning the hidden layer neurons

determine how to organize themselves without external assistance. In this approach, no

exemplars are provided to the network against which it can measure its performance for a given

input vector (Haykin, 1999).

In reinforcement learning the connections among the neurons in the hidden layer are

randomly set then adjusted as the network is told how close it is to solving the problem.

Reinforcement learning is also called supervised learning because it requires a teacher that may

be a training set or an observer who rates the performance of the network.

Back-error propagation is a proven, highly successful method used for training

multilayered neural networks. In this method the network is given reinforcement and

information about errors is also propagated back through the system and used to adjust the

connections between the layers (Dayhoff, 1990).

Learning Rules

 There are numerous learning rules used for training neural networks. These rules are

mathematical algorithms used to update connection weights. The majority of these rules are

variations of the most prevalent and oldest learning rules. The understanding of how

neurological processing works is limited, and learning is more complex than the simplification

represented by learning rules developed for artificial neural networks. A few of the major

learning rules are:

56

• Hebb’s Rule

Donald Olding Hebb introduced the best know learning rule in 1949 in his book The

Organization of Behavior. The rule states that if a neuron receives input from another

neuron, and if both are highly active, the weight between them should be

strengthened.

• Hopfield Rule

This rule is similar to Hebb’s Rule with the exception that it specifies the magnitude

of the strengthening or weakening. The rule states that if the desired output and the

input are both active or inactive, the connection weight is incremented by the learning

rate, otherwise the weight is decremented by the learning rate.

• The Delta Rule

The Delta Rule is a variation of Hebb’s Rule, and it is one of the most commonly

used. It is based on the idea of continuously modifying the strengths of the input

connections to reduce the difference, delta, between desired output value and actual

output value of a neuron. This rule changes the connection weights in such a way

that it minimizes the mean squared error of the network. The error is propagated back

into previous layers one at a time. The process of propagating the errors back into

previous layers continues until the first layer is reached. This rule is also known as

the Widrow-Hoff Learning Rule and the Least Mean Square Learning Rule.

• Kohonen’s Learning Rule

This rule was developed by Teuvo Kohonen and was motivated by learning in

biological systems. In this process neurons compete for the opportunity to learn, i.e.,

update their weights. The neuron with the largest output is deemed the winner and

has the ability to inhibit its competitors as well as exciting its neighbors. Only the

winning neuron is permitted output, and only the winner and its neighbors are

57

allowed to update their connection weights. Additionally, this rule does not require

knowledge of the desired output (Dayhoff, 1990; Haykin, 1999; Rao & Rao, 1995).

 Neural networks are an effective approach for a broad spectrum of applications. They

excel at problems involving patterns – pattern mapping, pattern completion, and pattern

classification. Neural networks may be applied to translate images into keywords, translate

financial data into financial predictions, or map visual images into robotic commands. Neural

networks offer an alternative method to analyze data, and to recognize patterns within data, than

traditional computing methods. Noisy patterns, such as those with missing segments, may be

completed with a neural network trained to recall the completed patterns (Dayhoff, 1990).

58

CHAPTER 7

EXPERIMENTAL DESIGN

 The hypothesis to be tested in the study conducted was motivated by the synesthesia

cross-wiring hypothesis, which states synesthetic perceptions are due to neurological cross-wired

connections in the brain. Therefore, would cross-wiring two artificial neural networks result in a

synesthetic response in one network. Research was conducted by means of computer simulation

using software developed to simulate a cross-wired artificial neural network. The software

architecture is detailed along with the source code in Appendix A.

Cross-Wired Artificial Neural Network Architecture

 Figure 10 depicts the architecture of the cross-wired neural networks. The two networks,

referred to as Network A and Network B, are cross-wired in the hidden and output layers of the

network. In this design both networks have the same number of layers and same number of cells

per layer. Each cell in the hidden and output layer receives input from the corresponding cell in

the other network. In the figure, the red lines show the connections from Network A to Network

B, and the blue lines show the connections from Network B to Network A.

59

Network A Network B

Figure 10. Cross-wired artificial neural network architecture.

Network Training

 Training of the networks was performed in two stages. The first stage of training was

performed using back-error propagation software by Rao and Rao (1995). In this stage each

network, Network A and Network B, was independently trained to map 62 input vectors,

patterns, to 62 output vectors, patterns, (see Table 1 and 2 in Appendix B). A root-mean-squared

60

error tolerance of 0.001 was used in this training to evaluate when a network had converged, i.e.,

learned its training set. Each network was trained with the same input vector set but with

different output vector sets. The rationale is that each network is independently coding for a

feature, such as a grapheme or a color.

 In the second stage of training, software developed for this researched was used to train

the simulated cross-wired artificial neural network. Cross-wired connection training consisted of

two steps, an initial Hebbian step followed by a Residual Hebbian step. Network A is influenced

less by Network B, while Network B is influenced more by Network A because synesthesia is a

unidirectional phenomenon.

In the first step, the initial values of the cross-wired connection weights for Network A

are determined using a local Hebbian learning rule of the form:

 ∑
=

+
φ

=
n

i
in W

n
W

1
1 (1)

where

φ = 0.6180339.

The rationale for deriving the initial cross-wired connection weight, Wn+1, for a cell is that it

should preserve the balance of excitation and inhibition present in the existing weights. The new

weight is computed to be the average of the existing connection weights multiplied by φ, the

Golden Ratio. The factor φ was used in determining the initial weights because of the

significance attributed to it in nature (Goodwin, 1994).

 The Golden Ratio is a concept of elementary geometry that in the past as well as

currently holds significant relevance in both human and natural designs. Consider the following

line segment:

 Figure 11. Line segment.

61

The ratio of the lengths of the two parts of this line segment is the Golden Ratio where:

 .φ==
AC
BC

BC
AB (2)

 The initial values for the cross-wired connection weights for Network B are determined

by a similar local Hebbian rule as Network A:

 ∑
=

+
Φ

=
n

i
in W

n
W

1
1 (3)

where

 1.6180339. =1
=Φ

φ
 (4)

In this case, the strength of the cross-wired connection weights in Network B is greater-than

those in Network A. Network A is influenced less by Network B, φ = 0.6180339, while Network

B is influenced more by Network A, Φ = 1.6180339.

 Step two of the second stage of training applies a Residual Hebbian learning rule to

adjust the weights. In this step all weights are updated using the following local learning rule:

 ∑
=

−=
n

j
jii W

n
WW

1
' β (5)

where 0.000015×= φβ for Network A, and 0.00015×Φ=β for Network B. The average of all

weights is multiplied by a small bias factor β, a small fractional constant value, and is subtracted

from each weight until the weights converge. The residual leaning can be thought of as a small

penalty that is proportional to what the cell already knows.

Testing Scenarios

 To test for potential synesthetic responses three scenarios were used to exercise the cross-

wired networks. Table 1 and 2 in Appendix B contain the input vectors referred to in each

scenario. In the following scenarios Network A receives the same input vectors in all three test

scenarios, input vectors 1 through 62. The rationale for this choice in the design of the testing

62

scenarios was that it would simplify the identification of candidate vectors for synesthetic

responses because Network A exerts more influence on Network B than Network B exerts on

Network A. Thus, based on the response of Network B, an input vector or input vectors to

Network A need to be identified in all three scenarios.

Scenario 1

 In this scenario 62 mixed input vector pairs were presented as input to the networks.

Input pairs consisted of input vectors 1 through 62 for Network A paired with input vectors 32

through 62 and input vectors 1 through 31 for Network B, for a total of 62 input vector pairs.

Scenario 2

 In this scenario the input vector for Network B was held constant while the input vector

for Network A varied. Input vector pairs consisted of input vectors 1 through 62 for Network A

paired with two different input vectors for Network B, vector 31 and vector 62, for a total of 62

input vector pairs per run.

Scenario 3

 In this scenario the same input vector was used for both networks. Sixty-two input vector

pairs consisting of the same vector were presented as input to the networks. These input vector

pairs consisted of input vectors 1 through 62 for Network A and input vectors 1 through 62 for

Network B.

63

CHAPTER 8

RESULTS

 For each scenario the mean of the absolute value of the error per output vector was

computed; error is the difference between the non-cross-wired network output vector and the

output vector for the network when cross-wired – not the ideal output value in the training set.

Plots of the mean absolute error for each output vector were plotted to qualitatively determine if

Network A consistently induced a synesthetic response in Network B. A synesthetic response in

this context is a significant deviation in the response of Network Bs output vector induced

consistently by Network A and associated with a specific input vector of Network A. The error

tolerance used during the back-error propagation stage of training was a root-mean-squared error

tolerance of 0.001; this value indicates a network has learned its training set. A significant

deviation in this case is a mean absolute error greater than 0.001 because each of the eight values

in an output vector may vary by a factor of ±0.001 and still be considered within the initial

training tolerance.

64

Scenario 1 Results

 In this scenario Network A and Network B receive mixed input patterns.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

Er
ro

r

Input Pattern Pair

 Error - Mixed Input

Network A
Network B

Figure 12. Error mixed input vectors.

 By design, Network A receives less influence from Network B, and Network B receives

more influence from Network A. Figure 12, the graph of the average absolute error per output

vector for each network shows that indeed Network A is influenced very little, while Network B

is influenced more. Network B exhibits 9 significant deviations for input vector pairs 8, 11, 12,

15, 16, 17, 29, 41, and 42. Therefore, these vectors are candidates for synesthetic responses.

65

Scenario 2 Results

 In this scenario Network Bs input vector is fixed for two independent runs. Input vector

31 and 62 were used as constant input to Network B.

1 6

11 16 21 26 31 36 41 46 51 56 61

0.00000

0.00010

0.00020

0.00030

0.00040

0.00050

0.00060

Er
ro

r

Input Pattern Pair

Error - Fixed Input Network B

Network A
Network B (31)
Network A
Network B (62)

Figure 13. Error fixed input vector Network B.

 In this scenario no input vector pair is identified as suspect for synesthetic response

because none of the errors are significant. However, the graph in Figure 13 indicates there are

small influences in each network by the other.

66

Scenario 3 Results

 In this scenario the input pairs consisted of the same vectors for both networks.

Figure 14. Error Network A and Network B same input vectors.

The results depicted in Figure 14 show that Network A is biased a small amount away from its

expected output. Network B exhibits 6 significant deviations for input vector pairs 37, 38, 39,

41, 58, and 59. Yet, none of these vectors coincide with other candidate vectors in the other

scenarios except for vector 41 in the first scenario, but the errors are different.

Conclusion

 Qualitatively the collective results depicted in Figure 12 through 14 indicate that cross-

wiring two artificial neural networks in the manner described does not significantly alter the

behavior of the individual networks. It is observed that each network partially determines the

output of the other network. Even though each network influences the other, it was observed that

each network independently responded to its own inputs.

1 6

11 16 21 26 31 36 41 46 51 56 61

0.0000

0.0050

0.0100

0.0150

0.0200

Er
ro

r

Input Pattern

Error Same Input Pattern

Network A
Network B

67

The purpose of this study was to determine whether or not two cross-wired artificial

neural networks would exhibit synesthetic responses. Based on the results, no input vector

causes a significant stable alteration in the output vectors of either network in all three scenarios.

Thus, it is concluded that no synesthetic response occurs in this design of two cross-wired

artificial neural networks.

 The results additionally show that cross-wiring two independent artificial neural networks

does not significantly alter the functionality of the individual networks, but it does allow inputs

to one network to partially determine the outputs of the other network in some cases. That is,

there are measurable influences of Network A on Network B, and yet, Network B retains its

ability to respond independently to its own inputs.

 A benefit of cross-wiring independently trained networks is that it potentially allows for

the reuse of previously trained networks without the need to retrain. This implies complex

networks may be constructed in a modular fashion. Modularization and reuse are desirable goals

as they afford a saving in time as well as foster the reuse of design knowledge.

 In the context of robotic sensor fusion, the results indicate that cross-wiring two initially

independent networks is a feasible means of fusing sensor data using artificial neural networks.

It is speculated, for instance, that this arrangement is operationally feasible for application in

autonomous mobile robot navigation. In such an arrangement, it is conceivable that a proximity

sensor network could bias a navigation network away from obstacles.

 Further research is needed to assess the potential benefits of cross-wiring artificial neural

networks. In this study only a single connection between neurons in adjacent layers was

considered. Yet, it is conceivable that fully, partially, or sparsely interconnected layers may have

merit. Additionally, it is speculated that the use of an interconnecting layer of neurons between

networks may yield better results. In this case the interconnecting layer would act much like the

hidden layers in a feed forward network, acting as a feature detector, thus allowing for a selective

influence.

68

REFERENCES

Anderson, J. (1995). An introduction to neural networks. Cambridge, MA: The MIT Press.

Arkin, R. (1998). Behavior-based robotics. Cambridge, MA: The MIT Press.

Baron-Cohen, S. (1996). Is there a normal phase of synaesthesia in development? Psyche,

2(27), <http://psyche.cs.monash.edu.au> [February 21, 2002].

Baron-Cohen, S., Burt, L., Smith-Laittan, F., Harrison, J., & Bolton, P. (1996). Synaesthesia:

prevalence and familiality. Perception, 25, 1073-1079.

Baron-Cohen, S., Harrison, J., Goldstein, L. H., & Wyke, M. (1993). Coloured speech

perception: Is synaesthesia what happens when modularity breaks down? Perception, 22,

419-426.

Bower, B. (1998). All fired up: Perception may dance to the beat of collective neuronal rythms.

Science News, 153(8), 120-121.

Bower, B. (1999). Neural ties that bind perception. Science News, 155(8), 122.

Braitenberg, V. (1984). Vehicles, experiments in synthetic psychology. Cambridge, MA: The

MIT Press.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, RA-2, 14-23.

Brooks, R. (1987). Planning is just a way of avoiding figuring out what to do next. Working

paper 303, MIT Artificial Intelligence Laboratory.

Brooks, R. (1989). A robot that walks: Emergent behaviors from a carefully evolved network.

Neural Computation, 1, 253-262.

Brooks, R. (1991). New approaches to robotics. Science, 253, 1227-1232.

Brooks, R. (1999). Cambrian intelligence: The early history of the new ai. Cambridge, MA:

The MIT Press.

69

Carpenter, S. (2001). Everyday fantasia: The world of synesthesia. Monitor On

Psychology, 32(3), <http://www.apa.org/monitor> [March 7, 2001].

Costa, L. F. (1996). Synesthesia – A real phenomenon? Or real phenomena? Psyche, 2(26),

<http://psyche.cs.monash.edu.au> [April 21, 2001].

Cytowic, R. (1989). Synaesthesia: A union of the senses. Cambridge, MA: The MIT Press.

Cytowic, R. (1993). The man who tasted shapes. Cambridge, MA: The MIT Press.

Cytowic, R. (1995). Synesthesia: Phenomenology and neuropsychology. Psyche, 2(10),

<http://psyche.cs.monash.edu.au> [January 21, 2002].

Davis, I., & Stentz, A. (1995). Sensor fusion for autonomous outdoor navigation using neural

network. Proceedings of the IEEE/RSJ International Conference On Intelligence Robotic

Systems, 3, 338-343.

Dayhoff, J. (1990). Neural network architectures. New York: Van Nostrand Reinhold.

Dixon M., Smilek, D., Cudahy, C., & Merikle, P. (2000). Five plus two equals yellow:

Mental arithmetic in people with synaesthesia is not coloured by visual experience.

Nature, 406, 365.

Elmenreich, W., & Pitzek, S. (2001). Using sensor fusion in a time-triggered network.

Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society.

Goodwin, B. (1994). How the leopard changed its spots: The evolution of complexity. New

York: Charles Scribner’s Sons.

Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River, NJ:

Prentice Hall.

Hebb, D. O. (1949). The organization of behavior. New York: John Wiley & Sons.

Hebb, D. O. (1959). A neurophysiological theory. In S. Koch (ed.), Psychology: A study of

science (Vol 1, pp. 629-643). New York: McGraw-Hill.

Hergenhahn, B., & Olson, M. (2000). An introduction to theories of learning (6th ed.). Upper

Saddle River, NJ: Prentice Hall.

70

Johnson, J, Schamschula, M., Inguva, R., & Caulfield, H. (1998). Pulse-coupled neural network

sensor fusion. Processing of the international society for optical engineering, USA,

3376, 219-226.

Klein, R. (1999). The hebb legacy. Canadian Journal of Experimental Psychology, 53(1), 1-3.

Lemley, B. (1984). Synesthesia: Seeing is feeling. Psychology Today, 65.

Lemley, B. (1999). Do you see what they see? Discover, 20(12), 79-87.

Levy, S. (1992). Artificial life: The quest for a new creation. New York: Pantheon Books.

Lovelace, C. T., Grossenbacher, P. G., & Crane, C. A. (1999). Functional connectivity

underlying synesthetic perception: theories and data. <http://www.wfubmc.edu/nba/

postdocs/lovelace/cnsposter99/cns.html> [January 24, 2001].

Martin, A., Haxby, J., Lalonde, F., Wiggs, C., & Ungerleider, L. (1995). Discrete cortical

regions associated with knowledge of color and knowledge. Science, 270, 102-104.

Mattingley, J., Rich, A., Yelland, G., & Bradshaw, J. (2001). Unconscious priming eliminates

automatic binding of color and alphanumeric form in synaesthesia. Nature, 410, 580-

582.

Maurer, D. (1993). Neonatal synesthesia: Implications for the processing of speech and faces.

In de Boysson-Bardies, B., de Schonen, S., Jusczyk, P., McNeilage, P., & Morton, J.

(eds.) Developmental Neurocognition: Speech and face processing in the first year of life.

Dordrecht: Kluwer Academic Publishers.

Milner, P. (1993). The mind and Donald O. Hebb. Scientific American, 268(1), 124-129.

Miltner, W., Braun, C., Arnold, M., White, H., & Taub, E. (1999). Coherence of gamma-band

EEG as a basis for associative learning. Nature, 397, 434-436.

Moravec, H. (1988). Mind children: The future of robot and human intelligence. Cambridge,

MA: Harvard University Press.

Moravec, H. (1999). Robot: Mere machine to transcendent mind. New York: Oxford University

Press.

71

Murphy, R., & Arkin R. (1992). SFX: an architecture for action-oriented sensor fusion.

Proceedings of the International Conference on Intelligent Robotics and Systems, (IROS

1992), 1079-1086.

Murphy, R. (1994). Sensor fusion. In M. Arbib (ed.), The handbook of brain theory and neural

networks. (pp. 857-860). Cambridge, MA: MIT Press.

Murphy, R. (1996). Biological and cognitive foundations of intelligent sensor fusion. IEEE

Transactions on Systems, Man, and Cybernetics, 20(1), 42-45.

Murphy, R. (1999). Dempster-shafter theory for sensor fusion in autonomous mobile robots.

IEEE Transcation on Robotics and Automation, 14(2), 197-206.

Murphy, R. (2000). Introduction to ai robotics. Cambridge, MA: MIT Press.

Nicholls, J., Martin, A., & Wallace, B., (1992). From neuron to brain. Sunderland, MA:

Sinauer Associates.

Paulesu, E., Harrison, J., Baron-Cohen, S., Watson, J., Goldstein, L., Heather, J., et al. (1995).

The physiology of colored hearing. Brain, 118, 661-676.

Pulvermüller F. (1996). Hebb’s concept of cell assemblies and the psychophysiology of word

processing. Psychophysiology, 33(4), 317-333.

Ramachandran, V., & Hubbard, E. (2001). Synaesthesia - a window into perception, thought and

language. Journal of Consciousness Studies, 8(12), 3-34.

RamsØy, T. (2001). Seeing sounds, hearing tastes. Science & Consciousness Review, 1(1),

<http://www.geocities.com/science_consciousness_review/AR_103001_

synesthesia.htm> [March 14, 2002].

Rao, V., & Rao, H. (1995). C++ neural networks & fuzzy logic. New York: MIS:Press.

Rekleitis, I., Dudek, G., & Freedman, P. (1996). Just-in-time sensing: Efficiently combining

sonar and laser range data for exploring unknown worlds. Proceedings of the IEEE

International Conference on Robotics and Automation, 1, 667-672.

Robertson, L. (2001). Colour my i’s blue. Nature, 410, 533-534.

72

Rodriguez, E., George, N., Lachaux, J., Martinerie, J., Renault, B., & Francisco J. (1999).

Perception’s shadow: Long-distance synchronization of human brain activity. Nature,

397, 430-433.

Rose, S., Gottfried, A., & Bridger, W. (1978). Effects of visual, haptic, and manipulator

experiences on infants’ visual recognition memory of objects. Developmental

Psychology, 17, 90-98.

Sabbatini, R. (1999). Imitation of life: A history of the first robots. <http://www.epub.org.br/

cm/n09/historia/turties_i.htm> [March 18, 2002].

Shams, L., Kamitani, Y., & Shimojo, S. (2000). What you see is what you hear. Nature, 408,

788.

Smock, T. (1999). Physiological psychology: A neuroscience approach. Upper Saddle River,

NJ: Prentice-Hall.

Stein, B., & Meredith, M. (1993). The merging of the senses. Cambridge, MA: The MIT Press.

Susac, D. (1997). More AI history. <http://ai.about.com/compute/ai/library/weekl/aa080397.htm

?iam=dpile&terms=%2B%22dona> [November 16, 2000].

Walter, W. G. (1950). An imitation of life. Scientific American, 182(5), 42-45.

Walter, W. G. (1951). A machine that learns. Scientific American, 184(8), 60-63.

Walter, W. G. (1953). The living brain. New York: W. W. Norton.

Ward, M. (1998). Walter’s world. New Scientist, 159(2144), 54-55.

Zangaladze, A., Epstein, C. M., Grafton, S. T., & Sathlan, K. (1999). Involvement of visual

cortex in tactile discrimination of orientation. Nature, 401, 587-590.

73

APPENDICES

74

APPENDIX A

Cross-Wired Network Simulation Software

Figure 15. Cross-wired network simulation software UML diagram.

1

TYPE

List

InputTuple

(List< InputTuple >)

Cell

0..11

-inputCell

1

1

(List< Cell >)
Layer

1 1

-cellRow

CrossWire

(List< Layer >)

Matrix

1

1

-networkA

1

1

-networkB

1

1

-layers

0..11

1

1

1

1

1

1

1

1

1

-inputList

75

Simulation Software C++ Software Source Code

//--
//
// list.h
//
// Template Class - implements basic list container class - UNORDERED Collection
// The list is setup as deque - doubly linked list - but not taken advantage of currently.
//
//--
#ifndef LIST_H
#define LIST_H
#include <_null.h>
#include "truefalse.h"

template <class TYPE>
class List
{
private:
 class NODE
 {
 public:
 TYPE data; // data stored at node
 NODE* previous; // previous node in list
 NODE* next; // next node in list

 NODE(void) { previous = next = NULL; } // default CTOR
 };

 NODE* head; // head of the list
 NODE* tail; // tail of the list
 NODE* iteratorPosition; // position of iterator in the list
 int iteratorEndOfListFlag;

 int nodeCount;

public:

 List(void) // DEFAULT ctor
 {
 head = NULL;
 tail = NULL;
 iteratorPosition = NULL;
 iteratorEndOfListFlag = FALSE;
 nodeCount = 0;
 };

 List(const List<TYPE> &source); // copy constructor
 ~List(); // dtor

 List &operator=(const List<TYPE> &rvalue);
 TYPE &operator[](int index);
 int operator==(const List<TYPE> &rvalue) const;
 int operator!=(const List<TYPE> &rvalue) const;

 int insert(const TYPE &value); // insert item into list
 int insert(void); // insert new node - default values - empty
 int remove(const TYPE &value); // delete specified item from list
 TYPE iterator(void); // iterates over items in list
 void resetIterator(void) { iteratorPosition = head; } // point to first item in list
 int getCount(void) const{ return nodeCount; } // how many items are in list
 void clear(void); // clear content of list - empty list
};

#include "list.cpp" // add member function implementation

#endif LIST_H

76

// list.cpp

// copy constructor
template<class TYPE>
List<TYPE>::List(const List<TYPE> &source)
{
 if(nodeCount)
 {
 NODE* current;

 current = source.head;

 do
 {
 insert(current->data);
 current = current->next;
 }
 while(current);
 }
}

// destructor
template<class TYPE>
List<TYPE>::~List()
{
 if(nodeCount)
 {
 NODE* next;

 do
 {
 next = head->next;
 delete head;
 head = next;
 }
 while(next);
 }
}

template<class TYPE>
List &List<TYPE>::operator=(const List<TYPE> &rvalue)
{
 if(nodeCount) // if there are items in the list - clear it before copying...
 clear();

 NODE* current = rvalue.head;

 do
 {
 insert(current->data);
 current = current->next;
 }
 while(current);

 return *this; // return reference to object pointed to by "this" - not a copy
}

77

template<class TYPE>
TYPE& List<TYPE>::operator[](int index)
{
 static TYPE Error;
 if(((index >= 0) && (index < nodeCount)) && nodeCount)
 {
 NODE* current = head;

 for(int i=0; i<index; i++)
 {
 current = current->next;
 }

 return current->data;
 }
 else
 {
 return Error;
 // it would be better to throw an exception here!
 }
}

template<class TYPE>
int List<TYPE>::operator==(const List<TYPE> &rvalue) const
{
 int result = FALSE;

 if(nodeCount == rvalue.nodeCount)
 {
 int i;

 NODE* leftList = head;
 NODE* rightList = rvalue.head;

 for(i = 0; i < nodeCount; i++)
 if(leftList->data != rightList->data)
 {
 break;
 }
 else
 {
 leftList = leftList->next;
 rightList = rightList->next;
 }

 if(i == nodeCount)
 result = TRUE;
 }
 return result;
}

template<class TYPE>
int List<TYPE>::operator!=(const List<TYPE> &rvalue) const
{
 return !(operator==(rvalue));
}

78

template<class TYPE>
int List<TYPE>::insert(const TYPE &value)
{
 int success = FALSE; // success of operartion
 NODE* newNode = new NODE; // pointer to new node

 if(newNode)
 {
 newNode->data = value;

 if(!nodeCount) // if the list is empty
 {
 head = tail = newNode; // then head and tail are the same
 iteratorPosition = head; // this is an issue to be addressed - who and when sets this
 }
 else // add new node to end of list
 {
 newNode->previous = tail;
// newNode->next = NULL; // by default - end of list
 tail->next = newNode; // tail next node point to new node
 tail = newNode; // tail is now the new node
 }

 ++nodeCount;

 success = TRUE;
 }
 return success;
}

// Insert new node of TYPE - empty
template<class TYPE>
int List<TYPE>::insert(void)
{
 TYPE newType;

 return insert(newType);
}

template<class TYPE>
int List<TYPE>::remove(const TYPE &value)
{
 int found = 0;

 if(head) // if there are NO nodes in the list then how can one be removed?
 {
 NODE* current = head;
 NODE* temp;

 do
 {
 if(current->data == value)
 {
 ++found; // number of occurrences deleted
 --nodeCount;

 if(current->previous) // point around node being deleted
 current->previous->next = current->next;
 else
 {
 current->next->previous = NULL;
 head = current->next;
 }

 if(current->next)
 current->next->previous = current->previous;

79

 else
 {
 current->previous->next = NULL;
 tail = current->previous;
 }

 temp = current; // copy so it can be deleted!
 current = temp->next; // point to next node
 delete temp; // delete node
 }
 else
 current = current->next;
 }
 while(current);
 }

 return found;
} // remove(const TYPE &value)

// iterator - iterates over items in the list, Calls successively return each item in the list.
// When end of list is reached NULL is returned. If list is empty NULL is returned.
// Note: revise... better algorithm!
template<class TYPE>
TYPE List<TYPE>::iterator(void) // returns a copy - should retun a reference!
{
 if(iteratorEndOfListFlag)
 {
 iteratorEndOfListFlag = FALSE;
 iteratorPosition = head; // start at the head of the list
 return (TYPE) NULL;
 }

 TYPE* returnItem = NULL;

 if(iteratorPosition)
 {
 returnItem = &iteratorPosition->data;
 iteratorPosition = iteratorPosition->next;

 if(!iteratorPosition)
 iteratorEndOfListFlag = TRUE;
 }
 return *returnItem;
}

template<class TYPE>
void List<TYPE>::clear(void)
{
 if(nodeCount) // if there are NO nodes in the list then it is already clear.
 {
 NODE* current = head;
 NODE* temp;

 do
 {
 temp = current;
 current = current->next;
 delete temp;
 }
 while(current);

 head = NULL;
 tail = NULL;
 nodeCount = 0;
 }
}

80

// cell.h --
//
// Stephen S. Seneker
//
// March 2002
// MALS Thesis Research
//--
//
// This class defines a cell used by a network class - component of an
// artifical neural network.
//
//--

#ifndef CELL_H
#define CELL_H

#include <stdlib.h>
#include <_null.h>
#include "list.h"

class Cell; // forward reference...

class InputTuple
{
private:

 Cell* inputCell; // pointer to cell that is an input
 long double weight; // weight associated with preceding inputCell

public:

 InputTuple(void) { inputCell = NULL;
 weight = ((long double) (rand() % 1000)) / 1000.0; } // randomize() needs to be called somewhere?

 // copy constructor
 InputTuple(const InputTuple &source) { inputCell = source.inputCell;
 weight = source.weight; }

 InputTuple(const int &value) { inputCell = NULL;
 weight = (long double) value; }

 InputTuple &operator=(const InputTuple &rvalue) { inputCell = rvalue.inputCell;
 weight = rvalue.weight;
 return *this; } // return reference to object pointed to by "this" - not a copy

 InputTuple &operator=(Cell* &rvalue) { inputCell = rvalue;
 return *this; }

 InputTuple &operator=(long double &rvalue) { weight = rvalue;
 return *this; }

 int operator==(const InputTuple &rvalue) const { return inputCell == rvalue.inputCell; }
 int operator==(const void* &rvalue) const { return inputCell == rvalue; }
 int operator!=(const InputTuple &rvalue) const { return inputCell != rvalue.inputCell; }
 int operator!=(const void* &rvalue) const { return inputCell != rvalue; }

 long double& getWeight(void) { return weight; }
 long double* getWeightPtr(void) { return &weight; }
 void setWeight(const long double &newWeight) { weight = newWeight; }
 void setCell(Cell* &inCell) { inputCell = inCell; }
 Cell* getCell(void) { return inputCell; }
 void updateWeight(long double factor) { weight *= factor; }

};

81

class Cell
{
private:

 long double cellState; // Current state of the cell - value of its current output
 long double newState; // Next State of the cell - value of the output after update

 List<InputTuple> inputList; //List of cells this cell receives input from

public:

 Cell(void); // ctor - default
 Cell(const long double &defaultState); // ctor - initilize current state
 Cell(const Cell &source); // ctor - copy
 ~Cell(); // dtor

 // ---- Operators --
 long double &operator[](const int index); // return weight for Kth input tuple
 Cell &operator=(const Cell &rvalue);

 int operator==(const Cell &rvalue) const;
 int operator==(const void* &rvalue) const { return (((cellState == 0.0) && (newState == 0.0) && !inputList.getCount()) && !rvalue); }
 int operator!=(const Cell &rvalue) const { return !(operator==(rvalue)); }
 int operator!=(const void* &rvalue) const { return !(operator==(rvalue));}

 long double getState(void); // return the current state of this cell
 void setState(const long double &newState); // set the state of this cell - used for input layer cells
 void nextState(void); // computer next state of this cell
 void updateState(void); // update cell to reflect new state (calculated by nextState())
 void addInputCell(Cell* inputCell); // adds a cell to the list of inputs for this cell
 void addInputCell(Cell* inputCell, long double weight); // adds a cell to the list of inputs for this cell with an associated weight
 int getCount(void) { return inputList.getCount(); } // number of inputs and weights for this cell

};

#endif CELL_H

82

// cell.cpp --
//
// Implements cell class.
//
// Stephen S. Seneker
//
// March 2002
// MALS Thesis Research
//
//--

#include <iostream.h>
#include <math.h>
#include "cell.h"

// default CTOR

Cell::Cell(void)
{
 cellState = 0.0;
 newState = 0.0;
}

// initialize CTOR

Cell::Cell(const long double &defaultState)
{
 cellState = defaultState;
 newState = 0.0;
}

// copy CTOR

Cell::Cell(const Cell &source)
{
 cellState = source.cellState;
 newState = source.newState;
 inputList = source.inputList;
}

// DTOR

Cell::~Cell()
{
 inputList.clear();
}

long double& Cell::operator[](const int index)
{
 static long double Error = NULL;

 if((index >=0) && (index < inputList.getCount()) && inputList.getCount())
 {
 return inputList[index].getWeight();
 }
 else
 {
 return Error;
 }
}

83

Cell& Cell::operator=(const Cell &rvalue)
{
 cellState = rvalue.cellState;
 newState = rvalue.newState;

 for(int k = 0; k < rvalue.getCount(); k++)
 inputList.insert(rvalue[k]);

 return *this;
}

int Cell::operator==(const Cell &rvalue) const
{
 return ((inputList == rvalue.inputList) && (cellState == rvalue.cellState) && (newState == rvalue.newState));
}

// Returns the current state of this cell.
long double Cell::getState(void)
{
 return cellState;
}

// sets the state of this cell
// used for input layer cells
void Cell::setState(const long double &newCellState)
{
 cellState = newCellState;
}

// Compute the next state for this cell, i.e., it's next output value.
void Cell::nextState(void)
{
 if(inputList.getCount())
 {
 InputTuple tuple;
 Cell* inputCell;

 newState = 0.0;
 while((tuple = inputList.iterator()) != NULL)
 {
 inputCell = tuple.getCell();

 newState += tuple.getWeight() * inputCell->getState();
 }
 // sigmoid Function
 newState = (1.0 / (1.0 + expl(-1.0 * newState)));
 }
}

// Update the output of this cell.
void Cell::updateState(void)
{
 cellState = newState;
}

// Assigns a cell as input to this cell.
void Cell::addInputCell(Cell* inputCell)
{
 InputTuple newTuple;
 newTuple = inputCell;
 inputList.insert(newTuple);
}

84

// Assigns a cell as input to this cell and a default weight.

void Cell::addInputCell(Cell* inputCell, long double weight)
{
 InputTuple newTuple;

 newTuple = inputCell;
 newTuple = weight;

 inputList.insert(newTuple);
}

85

// layer.h --
//
// Declares Layer Class - a collection of cells.
//
//--

#ifndef LAYER_H
#define LAYER_H

#include "list.h"
#include "cell.h"

class Layer
{
private:

 List<Cell> cellRow; // A layer is a ROW of cells... a list of cells.

public:

 Layer(void);
 Layer(int count);
 Layer(const Layer &source) { cellRow = source.cellRow; } // copy constructor
 ~Layer();

 int operator==(const Layer &rvalue) const;
 int operator==(const void* &rvalue) const { return (!cellRow.getCount() && !rvalue); }
 int operator!=(const Layer &rvalue) const { return !(operator==(rvalue)); }
 int operator!=(const void* &rvalue) const { return !(operator==(rvalue)); }

 Cell &operator[](const int index);
 Layer &operator=(const Layer &rvalue);

 void addCell(void);
 void addCells(int count); // layer will consist of count cells
 void nextState(void);
 void updateState(void);
 int getCount(void) { return cellRow.getCount(); }

};

#endif

86

//--
//
// layer.cpp
//
//--
//
// Implements layer class - a collection of cells.
//
//--

#include <iostream.h>
#include <iomanip.h>
#include <_null.h>
#include "cell.h"
#include "layer.h"
#include "list.h"
#include "truefalse.h"

Layer::Layer(void)
{
}

Layer::Layer(int count)
{
 addCells(count);
}

Layer::~Layer()
{
 cellRow.clear();
}

// Two layers are equal if all the cells have the same STATE...
int Layer::operator==(const Layer &rvalue) const
{
 int result = TRUE;

 if(getCount() == rvalue.getCount())
 {
 for(int k = 0; k < getCount(); k++)
 {
 if(cellRow[k].getState() != rvalue.cellRow[k].getState())
 {
 result = FALSE;
 break;
 }
 }
 }

 return result;
}

Cell& Layer::operator[](const int index)
{
 static Cell Error;

 if((index >=0) && (index < cellRow.getCount()) && cellRow.getCount())
 {
 return cellRow[index];
 }
 else
 return Error; // revision should THROW an exception...
}

87

Layer& Layer::operator=(const Layer &rvalue)
{
 cellRow.clear();

 for(int i = 0; i < rvalue.getCount(); i++)
 {
 cellRow.insert(rvalue[i]);
 }

 return *this;
}

void Layer::addCell(void)
{
 cellRow.insert();
}

void Layer::addCells(int count)
{
 if(count > 0)
 {
 for(int i = 0; i < count; i++)
 addCell();
 }
}

void Layer::nextState(void)
{
 for(int i = 0; i < cellRow.getCount(); i++)
 cellRow[i].nextState();
}

void Layer::updateState(void)
{
 for(int i = 0; i < cellRow.getCount(); i++)
 cellRow[i].updateState();
}

88

// matrix.h --
//
// Declares Matrix Class
//
// A matrix is a collection of layers.
// A layer is a collection of cells.
//
//--

#ifndef MATRIX_H
#define MATRIX_H

#include "layer.h"
#include "list.h"

class Matrix
{
private:

 List<Layer> layers;

public:

 Matrix(void);
 Matrix(char* filename);
 Matrix(int numberOfLayers);
 ~Matrix();

 Matrix &operator=(const Matrix &source) { //layers = source.layers; - deep copy needs to be DONE for future work.
 return *this; }

 Layer &operator[](const int index);

 Layer &addLayer(void);
 int addLayers(int count); // add count number of layers to the matrix

 void nextState(void); // generate next state of matrix
 void updateState(void); // update the state of the matrix
 void update(void); // update state of matrix - one layer at time
 int getCount(void) { return layers.getCount(); } // number of layers in matrix

 void interconnectLayers(void); // FULLY interconnect layers of the matrix

 void loadMatrix(char* filename); // load matrix from file
 void saveMatrix(char* filename); // save matrix to file

};

#endif

89

//--
//
// matrix.cpp
//
//--
//
// Implements matrix class - a network/lattice of cells.
//
//--
#include<iostream.h>
#include<fstream.h>
#include<iomanip.h>
#include "matrix.h"

Matrix::Matrix()
{
}

Matrix::Matrix(char* filename)

{
 loadMatrix(filename);
}

Matrix::Matrix(int numberOfLayers)
{
 addLayers(numberOfLayers);
}

Matrix::~Matrix()
{
 layers.clear();
}

Layer& Matrix::operator[](const int index)
{
 static Layer Error;

 if((index >=0) && (index < layers.getCount()) && layers.getCount())
 {
 return layers[index];
 }
 else
 return Error; // revision should THROW an exception...
}

Layer& Matrix::addLayer(void)
{
 layers.insert(); // insert an empty layer
 return layers[layers.getCount() - 1];
}

int Matrix::addLayers(int numberOfLayers)
{

 for(int i = 0; i < numberOfLayers; i++)
 {
 addLayer();
 }

 return TRUE; // optimitic - must handle errors betters!
}

90

void Matrix::nextState(void)
{
 for(int i = 1; i < layers.getCount(); i++) // layer 0 is the input layer - skip
 layers[i].nextState();
}

void Matrix::updateState(void)
{
 for(int i = 1; i < layers.getCount(); i++) // layer 0 is the input layer - skip
 layers[i].updateState();
}

void Matrix::update(void)
{
 for(int i = 1; i < layers.getCount(); i++) // layer 0 is the input layer - skip
 {
 layers[i].nextState(); // generate next state for layer i
 layers[i].updateState(); // update state for layer i
 }
}

// Fulley interconnect layers...
void Matrix::interconnectLayers(void)
{
 int clyr; // current layer
 int plyr; // previous layer
 int ccel; // cell in current layer
 int pcel; // cell in previous layer

 for(clyr = 1; clyr < layers.getCount(); clyr++)
 {
 plyr = clyr - 1;
 for(pcel = 0; pcel < layers[plyr].getCount(); pcel++)
 {
 for(ccel = 0; ccel < layers[clyr].getCount(); ccel++)
 {
 layers[clyr][ccel].addInputCell(&layers[plyr][pcel]);
 }
 }
 }

}

// load matrix from specified stream/file...
void Matrix::loadMatrix(char *filename)
{
 ifstream wgts(filename);

 if(!wgts)
 {
 cout << "Matrix::loadMatrix - Cannot open file: " << filename << endl;
 exit(0);
 }

 // Create Layers...
 int numberOfLayers;

 wgts >> numberOfLayers;

 addLayers(numberOfLayers);

91

 // Add Cells to each layer...
 for(int lyr = 0; lyr < numberOfLayers; lyr++)
 {
 int numberOfCells;

 wgts >> numberOfCells;

 layers[lyr].addCells(numberOfCells);

 }

 // interconnect layers...

 interconnectLayers();

 int lyr, cel, wgt;
 float weight;

 for(lyr = 1; lyr < layers.getCount(); lyr++)
 {
 for(cel = 0; cel < layers[lyr].getCount() ; cel++)
 {
 for(wgt = 0; wgt < layers[lyr][cel].getCount() ; wgt++)
 {
 wgts >> weight;
 layers[lyr][cel][wgt] = weight;
 }
 }
 }

 wgts.close();
}

void Matrix::saveMatrix(char* filename)
{
 ofstream wgts(filename);

 if(!wgts)
 {
 cout << "Matrix::saveMatrix -Cannot open file: " << filename << endl;
 exit(0);
 }

 wgts.setf(ios::showpoint | ios::fixed);
 wgts.precision(12);

 wgts << layers.getCount() << endl; // line 0: number of layers

 for(int i = 0; i < layers.getCount(); i++) // line 1: number of cells in each layer
 {
 wgts << layers[i].getCount() << " ";
 }
 wgts << endl;

 for(int lyr = 1; lyr < layers.getCount(); lyr++) // weights starting at layer 1 cell 1 - layer zero is input layer
 {
 for(int cel = 0; cel < layers[lyr].getCount(); cel++)
 {
 for(int wgt = 0; wgt < layers[lyr][cel].getCount(); wgt++)
 {
 wgts << layers[lyr][cel][wgt] << " ";
 }
 wgts << endl;
 }
 }
 wgts.close();
}

92

// crosswire.h ---
//
// Declares Cross-Wired network class.
// Simulation proper.
//
//--

#ifndef CROSSWIRED_H
#define CROSSWIRED_H

#include "matrix.h"

class CrossWire
{
private:

 Matrix networkA;
 Matrix networkB;

public:

 CrossWire();
 CrossWire(char* filenameA, char* filenameB);
 ~CrossWire();

 void linkNetworks(void); // link network A and B
 void trainCrossWire(void); // train cross-wire weights

 void nextState(void); // compute next state for cross-wired networks
 void updateState(void); // update output of cross-wired networks
 void update(void); // update networks
 void updateStable(void);

 void loadNetworksAB(char* filenameA, char* filenameB); // without cross-wired connections
 void loadCrossWire(char* filenameA, char* filenameB); // save cross-wired weights
 void saveCrossWire(char* filenameA, char* filenameB); // save cross-wried weights

 void displayNetworks(void); // display input and ouput for each network
 void setInputs(void); // set inputs for each network - by hand
 int setInputs(ifstream &wgtsA, ifstream &wgtsB); // set cross-wird network inputs
 void runCrossWire(char* inFileA, char* inFileB); // run networks using fileA/fileB as inputs
};

#endif

93

//--
// crosswire.cpp
//
//--
//
// Implements cross-wired network class.
// Networks to be cross-wired must have identical layout - same number layers
// with identical rows and columns.
//
//--

#include<iostream.h>
#include<fstream.h>
#include<iomanip.h>

#include <stdlib.h> // randomize
#include <time.h> // randomize
#include <math.h> // sqrt()

#include "crosswire.h"

CrossWire::CrossWire()
{
}

CrossWire::CrossWire(char* filenameA, char* filenameB)
{
 loadCrossWire(filenameA, filenameB);
}

CrossWire::~CrossWire()
{
}

// cross-wire networkA and networkB
// BOTH must have same configuration!
void CrossWire::linkNetworks(void)
{
 // link network A to network B
 for(int lyr = 1; lyr < networkA.getCount(); lyr++)
 {
 for(int cel = 0; cel < networkA[lyr].getCount(); cel++)
 {
 networkA[lyr][cel].addInputCell(&networkB[lyr][cel]); // link this cell to correcponding cell in netowrkB
 networkB[lyr][cel].addInputCell(&networkA[lyr][cel]); // link this cell to corresponding cell in networkA
 }
 }
}

94

void CrossWire::trainCrossWire(void)
{
//--
// Initial Hebbian Training
//--
 // Propportion of new weight to average of existing weights.
 const long double phi = 0.618033987498948482; // Golden Ratio
 const long double Phi = 1.618039987498948482;

//------- Network A --
 for(int lyr = 1; lyr < networkA.getCount(); lyr++)
 {
 for(int cel = 0; cel < networkA[lyr].getCount(); cel++)
 {
 long double numberOfWeights = networkA[lyr][cel].getCount() - 1;
 long double wgtSum = 0.0;

 int wgt;
 for(wgt = 0; wgt < numberOfWeights; wgt++)
 {
 wgtSum += networkA[lyr][cel][wgt];
 }

 networkA[lyr][cel][wgt] = (wgtSum / numberOfWeights) * phi;
 }
 }

//------- Network B --
 for(int lyr = 1; lyr < networkB.getCount(); lyr++)
 {
 for(int cel = 0; cel < networkB[lyr].getCount(); cel++)
 {
 long double numberOfWeights = networkB[lyr][cel].getCount() - 1;
 long double wgtSum = 0.0;

 int wgt;
 for(wgt = 0; wgt < numberOfWeights; wgt++)
 {
 wgtSum += networkB[lyr][cel][wgt];
 }

 networkB[lyr][cel][wgt] = (wgtSum / numberOfWeights) * Phi;
 }
 }

95

//--
// Residual Hebbian Training
//--
 const long double bias = phi * 0.000015;
 const long double Bias = Phi * 0.00015;
 const int MaxPass = 5500000;

//------- Network A --
 for(int lyr = 1; lyr < networkA.getCount(); lyr++)
 {
 int crossWeight = networkA[lyr][0].getCount() - 1;

 // cross-wired connection weight is last weight in cell weight list; each cell in a layer has the same number of inputs
 int cellsInLayer = networkA[lyr].getCount(); // number of cells in the layer
 List<long double> weights; // list of new cross-wired connection weights
 List<long double> lastWeights; // weights computed in previous iteration - used to detect convergence

 for(int cel = 0; cel < cellsInLayer; cel++) // make a list of cross-wired connection weights for this layer
 {
 weights.insert(networkA[lyr][cel][crossWeight]);
 }

 int pass = 0;
 do
 {
 lastWeights = weights;

 long double wgtSum = 0.0;
 long double wgtAvg = 0.0;
 long double cellCnt = cellsInLayer; // - 1;

 for(int i = 0; i < cellsInLayer; i++)
 {
 for(int j = 0; j < cellsInLayer; j++)
 {
 //if(j != i)
 wgtSum += weights[j];
 }

 wgtAvg = wgtSum / cellCnt;
 weights[i] -= wgtAvg * bias;

 }
 ++pass;
 }
 while((lastWeights != weights) && (pass < MaxPass));

 cout << "Passes: " << pass << endl;

 for(int cel = 0; cel < cellsInLayer; cel++) // update weights in layer
 networkA[lyr][cel][crossWeight] = weights[cel];

 } // for() - layer

96

//------- Network B --
 for(int lyr = 1; lyr < networkB.getCount(); lyr++)
 {
 int crossWeight = networkB[lyr][0].getCount() - 1;

 // cross-wired connection weight is last weight in cell weight list; each cell in a layer has the same number of inputs
 int cellsInLayer = networkB[lyr].getCount(); // number of cells in the layer

 List<long double> weights; // list of new cross-wired connection weights
 List<long double> lastWeights; // weights computed in previous iteration - used to detect convergence

 for(int cel = 0; cel < cellsInLayer; cel++) // make a list of cross-wired connection weights for this layer
 {
 weights.insert(networkB[lyr][cel][crossWeight]);
 }

 int pass = 0;
 do
 {
 lastWeights = weights;

 long double wgtSum = 0.0;
 long double wgtAvg = 0.0;
 long double cellCnt = cellsInLayer; // - 1;

 for(int i = 0; i < cellsInLayer; i++)
 {
 for(int j = 0; j < cellsInLayer; j++)
 {
 // if(j != i)
 wgtSum += weights[j];
 }

 wgtAvg = wgtSum / cellCnt;
 weights[i] -= wgtAvg * bias;
 }

 ++pass;
 }
 while((lastWeights != weights) && (pass < MaxPass));

 cout << "Passes: " << pass << endl;

 for(int cel = 0; cel < cellsInLayer; cel++) // update weights in layer
 networkB[lyr][cel][crossWeight] = weights[cel];

 } // for() - layer
} // trainCrossWire(void)

void CrossWire::nextState(void)
{
 networkA.nextState();
 networkB.nextState();
}

void CrossWire::updateState(void)
{
 networkA.updateState();
 networkB.updateState();
}

97

void CrossWire::update(void)
{
 networkA.nextState();
 networkA.updateState();
 networkB.nextState();
 networkB.updateState();
}

// update - output converges to steady state
void CrossWire::updateStable(void)
{
 Layer lastOutputA;
 Layer lastOutputB;

 int stopFlag = FALSE;
 int outLyr = networkA.getCount() - 1;

 update(); // prime

 lastOutputA = networkA[outLyr];
 lastOutputB = networkB[outLyr];

 int i = 0;
 do
 {
 update(); // update state of both networks

 if((lastOutputA == networkA[outLyr]) && (lastOutputB == networkB[outLyr]))
 {
 stopFlag = TRUE;
 }
 else
 {
 lastOutputA = networkA[outLyr];
 lastOutputB = networkB[outLyr];
 }
 ++i;

 if(i==100)
 stopFlag = TRUE;
 }
 while(!stopFlag);
}

void CrossWire::loadNetworksAB(char* filenameA, char* filenameB)
{
 networkA.loadMatrix(filenameA);
 networkB.loadMatrix(filenameB);
 linkNetworks();
}

98

void CrossWire::loadCrossWire(char* filenameA, char* filenameB)
{
 ifstream wgtsA(filenameA);
 ifstream wgtsB(filenameB);

 if(!wgtsA)
 {
 cout << "CrossWire::loadCrossWire - Cannot open fileA: " << filenameA << endl;
 exit(0);
 }

 if(!wgtsB)
 {
 cout << "CrossWire::loadCrossWire - Cannot open fileB: " << filenameB << endl;
 exit(0);
 }

 // Create Layers...
 int numberOfLayersA;
 int numberOfLayersB;

 wgtsA >> numberOfLayersA;
 wgtsB >> numberOfLayersB;

 if(numberOfLayersA != numberOfLayersB)
 {
 cout << "CrossWire::loadCrossWire - LayersA != LayersB" << endl;
 exit(0);
 }

 // add layers...
 networkA.addLayers(numberOfLayersA);
 networkB.addLayers(numberOfLayersB);

 // Add Cells to each layer...
 for(int lyr = 0; lyr < numberOfLayersA; lyr++)
 {
 int numberOfCellsA;
 int numberOfCellsB;

 wgtsA >> numberOfCellsA;
 wgtsB >> numberOfCellsB;

 if(numberOfCellsA != numberOfCellsB)
 {
 cout << "CrossWire::loadCrossWire - cellsA != cellsB - layer:" << lyr << endl;
 exit(0);
 }

 networkA[lyr].addCells(numberOfCellsA);
 networkB[lyr].addCells(numberOfCellsB);
 }

 // interconnect layers...

 networkA.interconnectLayers();
 networkB.interconnectLayers();

 // link NetworkA and NetworkB

 linkNetworks();

99

 // read weights from streams (files)

 int lyr, cel, wgt;

 for(lyr = 1; lyr < networkA.getCount(); lyr++)
 {
 for(cel = 0; cel < networkA[lyr].getCount() ; cel++)
 {
 for(wgt = 0; wgt < networkA[lyr][cel].getCount() ; wgt++)
 {
 wgtsA >> networkA[lyr][cel][wgt];
 wgtsB >> networkB[lyr][cel][wgt];
 }
 }
 }

 wgtsA.close();
 wgtsB.close();

} // loadCrossWire(char* filenameA, char* filenameB)

void CrossWire::saveCrossWire(char* filenameA, char* filenameB)
{
 networkA.saveMatrix(filenameA);
 networkB.saveMatrix(filenameB);
}

void CrossWire::displayNetworks(void)
{
 int outLyrA = networkA.getCount() - 1;
 int outLyrB = networkB.getCount() - 1;

 cout << "Network A: ";
 cout.precision(1);
 for(int i = 0; i < networkA[0].getCount(); i++)
 cout << networkA[0][i].getState() << ", ";
 cout << " : ";

 cout.precision(6);
 for(int i = 0; i < networkA[outLyrA].getCount(); i++)
 cout << networkA[outLyrA][i].getState() << ", ";
 cout << endl;

//--

 cout << "Network B: ";
 cout.precision(1);
 for(int i = 0; i < networkB[0].getCount(); i++)
 cout << networkB[0][i].getState() << ", ";
 cout << " : ";

 cout.precision(6);
 for(int i = 0; i < networkB[outLyrB].getCount(); i++)
 cout << networkB[outLyrB][i].getState() << ", ";
 cout << endl;
}

100

// setInputs - user entered
void CrossWire::setInputs(void)
{
 long double cellState;

 cout << "Inputs for networkA(" << networkA[0].getCount() << "): ";
 for(int i = 0; i < networkA[0].getCount(); i++)
 {
 cin >> cellState;
 networkA[0][i].setState(cellState);
 }
 cout << endl;

 cout << "Inputs for networkB(" << networkB[0].getCount() << "): ";
 for(int i = 0; i < networkB[0].getCount(); i++)
 {
 cin >> cellState;
 networkB[0][i].setState(cellState);
 }
 cout << endl;
}

// read inputs from file stream
// networkA and networkB must be same architecture
int CrossWire::setInputs(ifstream &wgtsA, ifstream &wgtsB)
{
 long double cellStateA;
 long double cellStateB;

 int i;
 for(i = 0; (i < networkA[0].getCount()) && !wgtsA.eof() && !wgtsB.eof(); i++)
 {
 wgtsA >> cellStateA;
 wgtsB >> cellStateB;
 networkA[0][i].setState(cellStateA);
 networkB[0][i].setState(cellStateB);
 }

 return !(networkA[0].getCount() - i);
}

101

// 1. read input files inFileA/inFileB
// 2. display inputs and outputs
// 3. repeat 4 and 5 for all inputs
void CrossWire::runCrossWire(char* inFileA, char* inFileB)
{
 ifstream inVcA(inFileA); // input Vector A
 ifstream inVcB(inFileB); // input Vector B

 if(!inVcA)
 {
 cout << "CrossWire::runnCrossWire() - Cannot open input file: " << inFileA << endl;
 exit(0);
 }

 if(!inVcB)
 {
 cout << "CrossWire::runnCrossWire() - Cannot open input file: " << inFileB << endl;
 exit(0);
 }

 while(setInputs(inVcA, inVcB))
 {

 updateStable();

 displayNetworks();
 }

 inVcA.close();
 inVcB.close();
}

//--
//
// Cross Wire --
//
//--
void main(void)
{
 CrossWire networks;

 networks.loadNetworksAB("netA1288s.wgts", "netB1288s.wgts"); // load AND interlink networks

 networks.linkNetworks();
 // link networks

 networks.trainCrossWire();
 // train cross-wired connections

 networks.runCrossWire("inputA128.dat", "inputB128.dat"); // run cross-wired with these input lists

 networks.saveCrossWire("testA128.wgts", "testB128.wgts"); // save new weights
}

102

 APPENDIX B

Network Training Data

Table 1

Network A Training Set

Pattern
1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
2 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1
3 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0
4 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
5 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0
6 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1
7 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
8 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1
9 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
10 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1
11 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
12 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
13 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1
14 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
15 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1
16 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0
17 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1
18 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
19 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1
20 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0
21 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1
22 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0
23 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1
24 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0
25 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1
26 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
27 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1
28 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0
29 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1
30 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0
31 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
32 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0
33 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1
34 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0
35 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1
36 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
37 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1
38 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0
39 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1
40 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0
41 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1
42 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
43 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1
44 1 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0
45 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
46 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0
47 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1
48 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0
49 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1
50 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0
51 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1
52 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
53 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
54 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0
55 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1
56 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0
57 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1
58 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0
59 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
60 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
61 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1
62 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0

Input Vector Expected Output Vector

103

Table 2

Network B Training Set

Pattern
1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
2 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1
3 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1
4 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
5 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1
6 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1
7 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1
8 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
9 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1
10 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1
11 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0
12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0
13 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0
14 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0
15 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0
16 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0
17 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0
18 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0
19 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0
20 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0
21 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0
22 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0
23 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0
24 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0
25 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0
26 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1
27 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1
28 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1
29 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1
30 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1
31 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1
32 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1
33 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1
34 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1
35 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1
36 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1
37 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0
38 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0
39 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0
40 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
41 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0
42 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0
43 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0
44 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
45 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0
46 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0
47 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0
48 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0
49 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0
50 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0
51 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0
52 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1
53 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1
54 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1
55 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1
56 1 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1
57 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1
58 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1
59 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1
60 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1
61 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1
62 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1

Input Vector Expected Output Vector

104

VITA

STEPHEN S. SENEKER

Personal Data: Date of Birth: March 21, 1971
 Place of Birth: Norfolk, Virginia
 Marital Status: Single

Education: Northeast State Technical Community College, Blountville, Tennessee;

Computer Engineering Technology, A.A.S., 1996
 East Tennessee State University, Johnson City, Tennessee;

Computer Science, B.S., 1999
 Liberal Studies, M.A., 2002

Professional
Experience: Adjunct Instructor, East Tennessee State University, Department of Computer

Science 2001.
 Instructor, East Tennessee State University, Upward Bound Program, 2001.

Professional
 Associations: Phi Kappa Phi

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2002

	Synesthetic Sensor Fusion via a Cross-Wired Artificial Neural Network.
	Stephen Samuel Seneker
	Recommended Citation

	Microsoft Word - senekerThesis.doc

