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ABSTRACT

MALDI-TOF MS Data Processing Using Splines, Wavelets and Clustering

Techniques

by

Shuo Chen

Mass Spectrometry, especially matrix assisted laser desorption/ionization (MALDI)

time of flight (TOF), is emerging as a leading technique in the proteomics revolution.

It can be used to find disease-related protein patterns in mixtures of proteins derived

from easily obtained samples. In this paper, a novel algorithm for MALDI-TOF MS

data processing is developed. The software design includes the application of splines

for data smoothing and baseline correction, wavelets for adaptive denoising, multivari-

able statistics techniques such as clustering analysis, and signal processing techniques

to evaluate the complicated biological signals. A MatLab implementation shows the

processing steps consecutively including step-interval unification, adaptive wavelet

denoising, baseline correction, normalization, and peak detection and alignment for

biomarker discovery.
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1 Introduction to MALDI-TOF Data

Matrix-assisted laser desorption/ionization, time of flight (MALDI-TOF) mass spec-

trometry (MS) is a technology on the cutting edge and plays an important role in the

proteomics revolution. MALDI-TOF MS can directly measure the complex mixture

of proteins obtained from biological fluids such as serum, urine, or nipple aspirate

fluids. By comparing healthy and ill tissue, the disease-related proteomic patterns

can be found[6].

1.1 Mass Spectrum

The mass spectrum technique is an attractive analytical tool used in the study of

molecular biology. It converts neutral molecules into gaseous ions and separates

those ions according to their mass weights. The spectrum has mass as a predictor

and charge value/molecules’s intensity as response.

In recent years, ionization techniques have been developed so that not only volatile

samples but also liquid and solid samples can be ionized to intact molecules. The

major advantage of this progress is that we can analyze compounds of higher molec-

ular weight such as peptides, proteins and oligonucleotides. Thus, for a tiny sample

of tissue, we can find the mass spectrum and determine how many proteins there are

at some molecular weights. That helps us understand the protein composition of the

tissues.
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1.2 TOF Mass Spectrum

With increasing development of optics, laser, electronics(sensor) and signal processing

technology, it is only now possible for time of flight(TOF) mass spectrometers to pro-

cess the high mass range and the high sensitivity multichannel recording capabilities

that were anticipated so many years ago, although the low mass resolution is still not

so precise [1]. The basic principle of time of flight is that the ions are extracted from a

electron impact source by a constant electrical field to final energies of approximately

500 eV, flying through the entire region to the same final kinetic energy:

mv2

2
=eV

resulting in velocities given by:

v = [2eV
m

]1/2

and flight times:

t = [ m

2eV]1/2D.

Thus, we can see the flight time depends on the square root of mass[1]. However, the

ions which have the same molecular weights do not arrive at their destination at the

same time. Actually, from the mass spectrum, we can see the time of flight of a group

of ions at the same molecular weights distribute in a bell shaped pattern(normal

distribution). The peak of the bell, as well as the mean, is an unbiased estimator

of the flight time/mass of this kind of ion, and the ion detector refreshes (charges

become zero) at a certain frequency. Thus, the spectrum we get is in the discrete

data form; the x-axis is the time domain with time interval corresponding to the
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clock of the machine while the y-axis is the quantity of charge at each fixed point of

time. By the time/mass ratio, we can figure out what the compounds contain (which

molecules at which proportions).

For the spectrum data, mass resolution is defined as m
4m . For time of flight mass

spectrum, the resolution satisifies:

m
4m= t

24t .

Thus, mass resolution depends on time resolution and (therefore) upon laser pulse

initial kinetic energies (and velocities) [1].

1.3 Properties of MALDI TOF MS Data

In the real procedure, there are some characteristic properties of the MALDI TOF

MS data (Figure 1.1):

1. The discrete data have basic shapes of several bumps, and the bumps are steep

at small mass while moderate at relatively large mass.

2. The mass range of the data of interest is generally from 4000 Daltons to 50000

Daltons.

3. The intensities of proteins of smaller molecular weights are obviously greater,

because of the matrix molecules that form an integral part of the technology and the

breaking up of large proteins during the ionization process.

One of the main problems in MS data processing is to deal with the variation.

Though it is believed that there is substantial variability in the technology, and that

changes in data acquisition protocols and parameters can affect MS profiles drastically,
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the variability arises from the application of inadequate algorithms for the MS data

processing. In this paper, we propose a novel algorithm to process MALDI-TOF

data using mathematical and statistical tools and signal processing techniques. The

algorithm involves a number of complicated steps. The basic goal is to identify the

locations of peaks and to quantify the window sizes for accuracy. For the MS spectra

sample set, one notices that the spectra are different in length of data, wave shape,

amplitude, and peak position. In medical study, we could have different samples

from a single tissue. Therefore, the initial key step in MS data processing is to assign

common mass to each spectrum. This is also called mass alignment in literature.

One of the goals in cancer study is to find disease-related proteins in a spectrum

of a certain tissue. Therefore, the signal processing of the MS data needs to be effi-

cient and effective, and then the biomarker discovery should be based on advanced

statistical analysis. In this paper, several mathematical tools are applied in MS data

processing, such as splines for data smoothing and baseline correction, wavelets for

adaptive denoising, multivariable statistical techniques (such as clustering analysis),

and signal processing techniques are combined to evaluate the complicated biological

signals. An algorithm package for MALDI-TOF MS data processing is developed,

which processes the raw MALDI TOF MS data consecutively until a general form

of protein distribution for a certain tissue is expressed. The algorithm package is

implemented in MatLab, a commercial “Matrix Laboratory” package which operates

as an interactive programming environment. Some program skills innovated in this

package include: unifying the time interval of discrete data by spline functions, adap-

tive stationary discrete wavelet denoising, and the center alignment binning algorithm
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based on clustering. The software package was tested using a data set collected at

Vanderbilt-Ingram Cancer Center.

The remainder of the paper is organized as follows. In the next section, we discuss

wavelet applications for MALDI-TOF MS data analysis. In Section 3, clustering anal-

ysis, as a multivariable statistics technique, is applied in an initial study of biomarkers

discovery in cancer study from MALDI-TOF spectra. The complete software package

for MALDI-TOF MS data processing using splines, wavelets, clustering and signal

processing techniques is developed in the final section. The appendix contains figures

and tables.
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2 Wavelets and Applications in MALDI TOF MS

Data Analysis

In recent years, wavelet methodology has been developed into a powerful tool to re-

solve various practical problems in signal processing, image compression, numerical

analysis and statistics ([8],[9],[10],[11]). Wavelets are also an important support in

biomedical signal processing ([3],[4]). In this chapter, we will discuss wavelets’ appli-

cation in the analysis of MALDI TOF MS data. Since the data are one dimensional

and discrete, we will use 1-D discrete wavelet transforms.

2.1 Wavelet Analysis

As a new tool for signal analysis, wavelets can be used for the signal of long time in-

tervals where we want more precise low-frequency information and for shorter regions,

where we want high-frequency information, by the variable-sized windows technique.

By using wavelet analysis, we can not only obtain information on the frequency do-

main but also information on the time domain.

Comparing wavelets with sine waves, the basis of the classic Fourier analysis, we

can see that sinusoids have a support of the entire time domain through the x-axis

from minus to plus infinity, and are periodical and symmetric while wavelets have

compact support and tend to be irregular and asymmetric. Furthermore, Fourier

analysis consists of breaking up a signal into sine waves of various frequencies which

convert a signal from the time domain to the frequency domain by the formula:

F(w) =
∫

f(t)e−jwt dt
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in the form of scalar production; a signal f(t) is convoluted by the sinusoids at

frequency of w. Similarly, wavelet analysis is the breaking up of a signal into shifted

and scaled versions of the mother wavelet. It is important to understand that, for

orthognal wavelets, any two different wavelets are orthogonal because the wavelet

of each scale level has a mean value of zero, and any two wavelet lengths of two

scale levels have a multiple relationship. Thus, any square integrable function can

be expressed in the wavelet decomposition form. For a certain scale, the original

signal is broken up into a sequence of coefficients, and each coefficient is the result of

convolution with the wavelet on that time interval position. The following formula is

a wavelet transform:

C(scale, position) =
∫

f(t)Ψ(scale, position, t)dt

where Ψ(scale position) is a wavelet generated from a mother wavelet Ψ. Generally,

Ψa,b = a−1/2Ψ(x−b
a

), for a ∈ R+ and b ∈ R

Thus, at different levels of scales, there is a sequence of coefficients. If scale doubles,

the number of coefficients will decrease to half of the previous scale level. Clearly,

wavelets have one advantage over the Fourier analysis-we can find the signal charac-

teristics around some fixed time positions. Because of this nice local analysis perfor-

mance of wavelets, aspects are revealed such as trends, breakdown points, disconti-

nuities in higher derivatives, and self-similarity that are lost in other signal analysis

techniques.

Furthermore, because it affords a new form of data with both frequency and

time information, wavelet analysis can often compress or de-noise a signal without
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appreciable degradation.

2.2 DWT Denoising

2.2.1 Discrete Wavelet Transform

Calculating wavelet coefficients at every possible scale is a fair amount of work, and

it generates numerous data as a result. If we choose scales and positions based on

powers of two, then our analysis will be much more efficient and just as accurate.

We obtain such an analysis from the discrete wavelet transform (DWT). Actually, in

1988 Mallat produced a fast wavelet decomposition and reconstruction algorithm [5].

The Mallat algorithm for discrete wavelet transform (DWT) is, in fact, a classical

scheme in the signal processing community, known as a two-channel subband coder

(see page 1 of the book Wavelets and F ilter Banks, by Strang and Nguyen [12])

using conjugate quadrature filters or quadrature mirror filters (QMF).

The Mallat algorithm mainly includes two steps: decomposition and reconstruc-

tion. The decomposition step begins with an original signal s, next calculates cA1

and cD1, the approximation and detail coefficients at level one, by the low-pass and

high-pass filters followed by downsample, and then cA2 and cD2, and so on (see

Figure 2.1).

The reconstruction step is also called the inverse discrete wavelet transform (IDWT),

which starts from the approximation and detail coefficients of cAj and cDj, next inserts

the odd-number signal as zeros into the coefficients, and goes through the low/high

filters, then calculates the coefficients of cAj-1 by summing the signal from the two

8



filters, and then, using cAj-1 and cDj-1, calculates those of cAj-2, and so on (see

Figure 2.2).

According to the chosen wavelet, we can obtain four high/low-frequency filters of

decomposition as well as the ones of reconstruction.

2.2.2 Wavelet Denoising

A noisy signal can be expressed as:

s(t) = f(t)+σe(t)

where t is discrete with constant interval.

First, we assume that e(n) is a Gaussian white noise N(0,1) and the noise level σ

is equal to 1. Our goal is to grab the true signal f from the noisy signal s.

The basic denoising procedure can be described in this way:

1. Decomposition: Calculate the coefficients of a signal by DWT. There are two

parameters we need to choose: the level of decomposition N and the type of wavelet.

2. Thresholding detail coefficients: For each level from 1 to N, select a threshold

and omit the detail coefficients below the thresholds. We can choose hard or soft

thresholds, and values of thresholds.

3. Reconstruction: Compute wavelet reconstruction using the original approxi-

mation coefficients of level, N , and the modified detail coefficients of levels from 1 to

N by IDWT.

Comment: For hard thresholding, the thresholded coefficient x is x if |x| > t, and

is 0 if |x| < t, while for soft threshold, the thresholded coefficient x is sign(x)(|x| − t)

if |x| > t and is 0 if |x| < t. The values of the thresholds are determined by the signal
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itself with some algorithms, such as: Stein’s Unbiased Risk Estimate (SURE) and

square root of double length log. We can see a denoising example in Section 4.2.

2.3 Advanced Wavelet Denoising Methods

Recently, some advanced wavelet methods have been developed to solve many prac-

tical problems efficiently. These problems include infinite white noise processing and

shift invariant signal processing.

2.3.1 UDWT Denoising

The classical DWT denoising method has a drawback: the DWT is not shift-variant.

That means, even for periodic signals such as sine waves, the coefficients will change

if the original signal is shifted. Considering that Fourier transforms will remain the

same if there is a time shift, the DWT is dependent on the phase of the signal.

In order to restore the translation invariance, an Undecimated Discrete Wavelet

Transform (UDWT) method is proposed. The UDWT algorithm is slightly different

from the DWT algorithm. The DWT decomposition step generally includes two filters

and two downsamplers. For downsampling, the output signal is dyadic-decimated

which only records the even-ordered signal. As a result, the coefficients cAj or cDj

only have half of the length of cAj-1. Comparatively, the decomposition step of

UDWT does not have the downsample part. Thus, coefficients cAj or cDj are as long

as cAj-1. For instance, if we decompose the original signal s of length at j level, then

we will get a j × n coefficient matrix, one row of approximations, and j − 1 rows of

details. Then, by the same method, we can threshold the coefficient matrix and the
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hard threshold method is better [6]. Moreover, in the inverse undecimated wavelet

transform, we also do not need to insert zeros as the odd indexed coefficients.

There is a restriction: we define the UDWT only for signals of length divisible by

2J, where J is the maximum decomposition level, and we use the DWT with periodic

extension. There is an algorithm, called padding, that can make the signal extend to

the proper length (jth power of 2).

UWDT can bring some good properties such as time-shift invariance, less loss

of information (because of the redundancy of the coefficients at each level), and

smoothness as well as l2 space performance [13].

2.3.2 Adaptive Denoising

For the noisy signal model:

s(t) = f(t)+σe(t)

Considering the situation that the σe(t) is associated with time t, it is unreasonable

to set one threshold for all the coefficients. There are several different variance values

on several time intervals, which are both unknown parameters. Thus, we need to find

the change points or intervals. In this section, we propose an algorithm based on the

wavelet toolbox of Matlab, and we focus on UWDT. The method is as follows:

1. Decomposition: We decompose the original signal at level j by UWDT to get

the coefficient matrix, then we have j − 1 rows of details.

2. Replace 2 percent of the biggest values by the mean, because the weight of

these values in the detail vectors is great while the quantity is relatively small. In

other words, they are outliers.

11



3. Use Matlab function ’wvarchg’ for estimating the change points of the revised

j − 1 rows of details. For example, we have k change points for a row details, then

this row can be divided into k + 1 intervals.

4. Set different threshold values for different intervals, then determine threshold

by the hard/soft method.

5. Reconstruction.

The application example of adaptive UDWT denoising can be found in Chapter

4 and the Matlab codes are in the appendix.

12



3 Clustering Analysis

As a multivariable statistics technique, clustering analysis is widely used in many

different fields of study such as engineering, genetics, medicine, psychology, and mar-

keting. Generally, after clustering, we get the result that the profiles of objects in

the same cluster are very similar and the profiles of objects in different clusters are

relatively quite different.

In the 50 patients case that will be discussed in detail later in this chapter, there

are many tissue mass spectra from healthy people and from several groups of sick

patients who have different types of cancer. We can see that, even if we do not know

the distribution in advance, we can divide the spectra into several groups that are

almost the same as the real distribution through the use of clustering analysis.

Generally, we build the model in this way: the initial object can be modeled as

a p×n matrix with n vectors of length p. According to the characteristics of the

vectors, we can cluster the matrix into several groups in the form of several matrices:

p×n1, p×n2, p×n3... for
∑

ni = n.

3.1 Basic Concepts

There are mainly two clustering methods: hierarchical clustering and k-means clus-

tering. We will discuss both methods in this section.

13



3.1.1 Hierarchical Clustering

The hierarchical clustering method shows us a grouping structure of the data in the

form of a cluster tree. The tree is not a single set of clusters, rather a multi-level

hierarchy where clusters are more similar at the lower level. This allows you to decide

what level or scale of clustering is most appropriate for your data.

For a p×n matrix, there are n vectors (objects), and we group them according

to the their relationship (similarity). The distance between two vectors is used to

measure the similarity of a pair of vectors. For two vectors x and y, both having

length p, there are several types of distance between them such as

Euclidean distance:

dx,y = [
∑

(xi - yi)
2]1/2

Manhattan distance:

dx,y =
∑ |xi - yi|

Correlation distance:

dx,y = 1 - ρx,y

and so on. Different distances may lead to production of different cluster trees.

For n vectors, we will have n(n− 1)/2 pair distances. Then we need to link these

newly formed clusters to other objects to create bigger clusters until all the objects in

the original matrix are linked together in a hierarchical tree. There are several ways

to create a cluster hierarchy tree such as shortest/longest distance, average distance

and centroid distance. Matlab has a function to display the hierarchical tree.

14



Then, we should determine where to divide the hierarchical tree into clusters. We

choose the proper cutoff points so that we can cut the trees into several groups.

3.1.2 K-means Clustering

Compared to the tree structure of hierarchical clustering, the k-means clustering

method has set up the number of groups before clustering. All objects are then

grouped into k clusters, objects within each cluster are as close to each other as

possible, and as far from objects in other clusters as possible. There are several

member objects and a centroid, or center, in one cluster. The center for each cluster

is a vector, which has the minimum sum of distances from all objects. K-means

clustering uses an iterative algorithm to move objects between clusters until the sum

of distances cannot be decreased further. We will apply the center concept in Chapter

4.

3.1.3 Distinct Elements

We have divided the p×n matrix into k clusters, but not all the elements in one

cluster are different from the ones other clusters. Therefore, we should figure out

which elements are distinct in one cluster. In other words, the characteristic elements

must be determined. For any two clusters, we can do a paired t-test of the objects

and find the rows of small p-values; or we can find the weighted average distance at

a certain row:

w = dB/(k1dw1 + k2dw2 + ε) ,

15



where dB is the distance between cluster centers, dwi is the average (Euclidean) dis-

tance among all sample pairs in one cluster, and ki = ni/(n1 + n2) [7]. Basically, if

the objects in a cluster are close to each other then the distances between centers

of two clusters is large. At last, if the distance is great enough or p-value is small

enough, we can say this element is distinct.

3.2 A Practical Example-50 Patients

There are MALDI TOF MS data from tissue samples of 50 patients, including healthy

people (normal) and cancer patients with adeno, squamous, large and other cancers.

We did the clustering analysis to the 1628×50 matrix, then compared the results of

clustering and the real distribution from the table, to find the distinct elements.

We mainly used hierarchical clustering, because we didn’t know the exact num-

ber of groups in advance. We did cluster analysis by the Euclidean distance and

correlation distance.

The hierarchical trees almost match the real distribution and the correlation

method seemed to have a better performance (Figure 3.1, Figure 3.2, the real dis-

tribution Table 1). Also, we found the distinct elements of the normal and cancer

cluster; rows 38, 350, 356 are significantly different and the p-value of them are 0.

Moreover, rows 38 350 356 953 986 991 are relatively distinct. That means these

proteins may be disease-related.
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4 Matlab mass spectrum data processing package

We collected the MALDI mass spectrum data of tissues from the cancer mice

and the healthy mice. In this chapter, we propose a novel method for low level

processing of MALDI mass spectrum data, including following steps:

1. Restep: unifying the input discrete data by making the sample intervals con-

stant.

2. Denoising: denoising the signal by undecimated discrete wavelet transform

(UDWT) method.

3. Baseline correction and normalization: baseline correction by spline fitting and

normalization of all the vectors.

4. Peak processing: trivial peak detection, binning and alignment of the data.

4.1 Restep

As we know, for most applications in discrete signal processing, the time interval

between samples is kept constant (for example, sample every millisecond) unless ex-

ternally clocked. However, the raw MS data’s mass steps (the mass differences of two

data points which are next to each other) are not uniform at different positions in a

spectrum. For the signal itself, no matter whether the x-axis means the flight time or

the mass weights, the intervals are not constant for the reason that the ions would not

reach the detector in a constant time interval. Therefore, the inconstant property is

inconvenient for discrete signal processing. For instance, when we do discrete wavelet

decomposition to the vector of discrete intensities in wavelet denoising, we transform
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the vector from the time/mass domain to the wavelet domain by the assumption that

the sample intervals are constant. It is true we could do denoising to the un-restepped

data, which would also smooth the data. But, if we use wavelet denoising, the coeffi-

cients in the wavelet domain of the un-restepped data would be apart from the ones

of the true mass-intensities data, and this could bring bad denoising results.

In our method, we did splines by letting x, the mass vector, and y, the intensities

vector, be input first. In detail, we did interpolation splines to fit all the data and

got a continuous curve. Then, we sampled the continuous curve at some frequency

(every 1 Dalton or 0.5 Dalton). The resultant output is a set of discrete data with

the same mass distance between any two consecutive data points. Certainly, different

choices of power of the splines will produce different output: the linear and quadratic

splines have smaller variation, the cubic or higher order will have more fluctuations.

We compared the three curves obtained: the mass-intensity original graph (the

graph of the default input to the Matlab function), the intensities y graph and the

splines-resampled data graph (Fig 4.1). Conspicuously, the mass-intensity graph and

our splines-resampled data graph matched well with each other. They had almost

the same shapes and peaks, while the intensities y graph was quite different from the

others. Thus, our method could adjust the original signal into a standard discrete

signal keeping the shapes and peaks of the spectra.

The advantages of the restep method are: 1. Standard discrete data is built

with very little variance from the true mass-intensities data, 2. During the signal-

processing step, the spectrum signal in the frequency domain can be analyzed cor-

rectly, 3. All spectrum vectors have the same length. From this graph, we can see

18



that the restep method matched both the shape and the peaks of original signal,

while the unrestepped one is shifted.

4.2 Denoising

We processed the normal discrete data by stationary discrete wavelet transform

SDWT or undecimated discrete wavelet transform UDWT denoising. The coeffi-

cients of the orthogonal DWT are not redundant and efficient computationally, but

they are shift-variant [6]. Thus, the denoising performance can change drastically if

the starting position of the signal is shifted [6]. The UDWT is shift-invariant, and it

yields better visual and qualitative denoising, with a small added cost in computa-

tional complexity ([14], [15]). For orthogonal DWT coefficients, the total number of

coefficients (the approximates and details) is fixed (almost the same as the original

signal) no matter at what level the signal is decomposed. The UDWT coefficients

are not decimated, so that for every level decomposition, the approximate and detail

coefficients will increase as much as the length of the original signal.

The UDWT also requires the length of the discrete signal to be multiple of 2k.

Since the number of our spectrum data approaches 21000, and this also is close to 5

times the 12th power of 2, (20480), we did all the processing by level 12. Thus, we

got two 20480 × 12 matrices of approximate and detail coefficients.

Now, we could denoise the details of every level by the thresholds we set. As for

the thresholds, we basically used soft or hard thresholds. When we used the hard

thresholds, we set the detail coefficients below the threshold value to zero; when we

used soft thresholds, after setting the detail coefficients below the threshold value to
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zero, we made the coefficients above threshold value shrink towards zeros. Generally

with DWT, hard thresholds have better l2 performance while soft thresholds have

better smoothness. But with UDWT, since the coefficients are undecimated, hard

thresholds will have both good l2 performance and smoothness properties ([13]). Ad-

ditionally, the higher the level we denoise the signal, the smoother are the denoised

signals. Considering the loss of the signal and the smoothness, level 12 was good for

our spectrum data.

Next, we should set the threshold values. We supposed the noise essentially were

white Gaussian noise. Therefore, we used multiples of the median absolute deviation

(MAD)/0.67 (in RWT implementation), which gave us a robust estimate of their

variability [6]. We could easily notice that the noise of our spectrum data reduced as

the mass increased because we detected more ions of small molecular weights which

added more noise in the small mass segments. Thus, we should set different thresh-

olds at different mass segments by different MAD. We computed the MAD values of

different mass segments, and the thresholds of different segments were different. In

this way, the denoised signal would reduce the variance in the beginning part, as well

as retain the useful information in the posterior part.

We can see their denoising effects from an example of a restepped discrete signal in

Figure 4.2. In order to see the differences of different curves, we shifted the UDWT

uniform threshold curve upward 1000 units and adaptive thresholds upward 2000

units. Clearly, the two methods kept the same peaks and shapes when removing the

minor fluctuations. But, by any method, we cannot guarantee ability to remove all

the noise without any loss of useful information. Our goal is to reduce the number of
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false peaks.

4.3 Baseline Correction and normalization

The denoised data is still different from the true proteins’ distribution because of

fragmentation of higher mass proteins. By no means, can we figure out how many

proteins broke up. However, we can pull the curve toward the base, which makes the

curve closer to the true protein distribution [6]. First, we did splines fitting to the

local minimum of the denoised signal. Then, the signal minus the splined baseline

equaled the estimated true signal. The estimated signal might had have very few

(less than 5) points less than zero by a small value; this is generated by quadratic

splines. If we used the step function as the baseline, there would be no points below

zero but the baseline would not be estimated as well as the splined one. We’d prefer

the splined method, by setting all the points below zero (normally very a limited

number) to zero.

We often do normalization just after baseline correction, since the curve after

baseline correction is closer to the true distribution of the signal. Moreover, for a

certain sample, the intensity values could vary greatly from one spectrum of data

to another, although they might have similar peaks and wave shapes. Therefore,

we would prefer to normalize every element in one vector so that we could compare

elements in different vectors. Usually, we make an element, xi, in a vector normalized

to ẋi by ẋi = xi√∑
x2

i
n

.
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4.4 Peak processing

The normalized spectra data in a group could be compared by peaks processing.

First, we made all the normalized spectra of one group data as a matrix. Next, we

could find the trivial local maximum as the trivial peaks of each spectrum. However,

the number of these peaks for each vector seemed relatively numerous (about 1000).

Therefore, we filtered the points with too low S/N ratio. The S/N ratio is defined by

signal divided by noise.

Noise = signalbeforedenoisingandbaselinecorrection - signalafterdenoisingandbeforebaseline.

Signal = signalafterbaselinecorrection.

We retained the signals with S/N ratio greater than 3.

Another limitation is the separation range; during the separation range (SR) (sr

= 2 + mass/1000 Daltons), only one peak will be identified. Thus, we kept the

greatest one within the sr. To retain all the significant peaks, we kept the peaks of

the trivial peaks first. Then, in every SR, we only left the maximum one until the

distance between every two peaks were more than or equal to the length of SR. This

gave the refined peak matrix.

However, in the refined peaks matrix the positions of peaks of each column around

the same mass were different from each other a little (2 or 3 rows’ distance). Therefore,

we should bin the peaks around some fixed mass to obtain one vector of peaks that

would represent the general peaks distribution of the group. We would like to find

the general case using the so-called center alignment algorithm as follows.

1. Finding the center. Using the method of multivariable statistics, we could

find the center of the set of data that had the minimum sum of pairwise distances to
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all the other vectors. The center vector could basically represent the general protein

distribution in a mass interval of a matrix. We used correlation distance here, which is

one minus the correlation of two vectors. Consider these two facts: 1. The correlation

does not mean anything if the vector is too long. 2. In different mass intervals, a

different spectrum data vector could represent the general case better. We would like

to do the clustering on several mass intervals, and find the centers for different mass

intervals. Clearly, since the refined peaks matrix has too many zeros and it is not easy

to find the center, we should find which columns are the centers of the normalized

matrix first. Thus we could record which vector is the center, at fixed mass intervals.

Then the refined peaks of recorded center vectors are used as final centers.

2. Convergence of the close peaks. Now, we aligned the matrix by moving other

vectors’ peaks near the center vector’s peaks to the center peaks’ positions. This

means we aligned the peaks in other vectors in a matrix according to the center vector.

In other words, the center represented the whole matrix in some mass interval. We

usually did the alignment twice, because the first time alignment would miss some

true peaks if some peaks of the center were far away from the majority. When we did

the alignment for the second time, we found the centers of the matrix without the

center of the first matrix and then made all the existent peaks near to each other at

the same positions.

3. Adjustment. Since we divided the mass axis into several intervals, the peaks

could be distributed around the cut mass line. Thus, we combined the peaks of the

matrix that were close to each other. Certainly, there are some nonzero rows with

respect to the majority zero rows; if necessary, we could omit those nonzero rows that
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had less than half of the number of columns with values nonzero. Finally, for each

group of data, we had a matrix with aligned peaks. The aligned matrix had peaks at

certain mass positions, which means generally speaking, that at these masses there

are peaks.

The aligned matrix might have shifted from the true one. We checked the matrix

by the known biomarkers, and shifted the matrix back to the known place, according

to the biomarkers. We used three known biomarkers with the molecular weights

around 5444, 9667 and 14041. As a result, we noticed that the first two biomarkers

matched our data very well, but for the known protein of the mass weight 14041, all

three groups of data peaks shifted downward about 6 Daltons. Some possible reasons:

1. The time/mass relationship should have some change in great mass. 2. There are

some errors in the package. 3. Coincidence.

5 Summary

All the codes of the package are written in MatLab. The test results from eight sets of

MALDI-TOF MS data from healthy mice and mice with tumors collected at Vander-

bilt Ingram Cancer Center shows that this algorithm is both efficient and effective for

this kind of proteomic data processing. Further study should include web-based soft-

ware design for this package, increasing functions of baseline selection, data denoising

using empirical mode decomposition, binning with weighted wavelet coefficients, and

data analysis and biomarker identification using more advanced statistical tools.
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A Figures

Chapter 1

Figure 1.1 An Example of MALDI TOF MS Data
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Chapter 2

Figure 2.1 DWT Decomposition

Figure 2.2 DWT Reconstruction
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Chapter 3

Figure 3.1 Hierarchical Trees by Euclidean Distance

Figure 3.2 Hierarchical Trees by Correlation Distance
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Chapter 4

Figure 4.1 Restep

Figure 4.2 UWDT Denoising
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Chapter 4

Figure 4.3 Baseline Correction
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B Table

TABLE

Table 1: The real patient distribution

Column 1 Column 2

1-14 Adeno Cancer
15-29 Squamous Cancer
30-34 Large Cancer
35-39 meta- Cancer
39-42 rec-/car Cancer
43-50 Healthy people
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