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ABSTRACT 

 

Novel Roles of Replication Protein A Phosphorylation in Cellular Response to DNA Damage  

by 

Moises Alejandro Serrano 

Human replication protein A (RPA) is an eukaryotic single-stranded DNA binding protein 

directly involved in a variety of DNA metabolic pathways including replication, recombination, 

DNA damage checkpoints and signaling, as well as all DNA repair pathways.  This project 

presents 2 novel roles of RPA in the cellular response to DNA damage.  The first elucidates the 

regulation of RPA and p53 interaction by DNA-dependent protein kinase (DNA-PK), ataxia 

telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) in homologous recombination 

(HR).  HR and nonhomologous end joining (NHEJ) are 2 distinct DNA double-stranded break 

(DSB) repair pathways. Here, we report that DNA-PK, the core component of NHEJ, partners 

with DNA-damage checkpoint kinases ATM, and ATR to synergistically regulate HR repair of 

DSBs. The regulation was accomplished through modulation of the p53-RPA interaction. We 

show that upon DNA damage p53 and RPA are freed from the p53–RPA complex. This is done 

through simultaneous phosphorylation of RPA by DNA-PK, and p53 by ATR and ATM. Neither 

the phosphorylation of RPA nor that of p53 alone could dissociate the p53-RPA complex; 

furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results 

reveal a mechanism for the crosstalk between HR and NHEJ repair through the coregulation of 

p53–RPA interaction by DNA-PK, ATM and ATR. 

The second part of this project reveals a novel role of RPA32 phosphorylation in suppressing the 

signaling of programmed cell death, also known as apoptosis. Our results show that deficiency in 
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RPA32 phosphorylation leads to increased apoptosis after genotoxic stress. Specifically, PARP-1 

cleavage, Caspase-3 activation, sub-G1 cell population, annexin V staining and the loss of 

mitochondrial membrane potential were significantly increased in the phospho-deficient RPA32 

cells (PD-RPA32). The lack of RPA phosphorylation also promoted activation of initiator 

Caspase-9 and effector Caspase-3 and -7. This regulation is dependent on the kinase activity of 

DNA-PK and is mediated by PUMA through the ATM-p53 pathway. Our results suggest a novel 

role of RPA phosphorylation in apoptosis that illuminates a new target that lies on the crossroads 

of DNA repair and cell death, a pivotal point that could be of importance for sensitizing cancer 

cells to chemotherapy.  
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CHAPTER 1 

 

INTRODUCTION 

 

The DNA Damage Response 

 

The genetic information carried by DNA is extremely precious because it presents the 

molecular unit of heredity of living organisms; nevertheless, various endogenous and 

environmental stresses such as exposure to ultraviolet radiation and tobacco smoke constantly 

threaten the integrity of our DNA. Different repair machineries have developed in cells to deal 

with a variety of DNA lesions (Figure 1-1). Single-strand break repair (SSBR) restores the sugar 

backbone of the broken single-stranded DNA filament 1. Base excision repair (BER) corrects 

lesions arising from oxidation, alkylation, deamination, and depurination/depyrimidation 

reactions 2. Bulky and helix-distorting lesions such as pyrimidine dimers and 6,4 photoproducts 

are corrected by nucleotide excision repair (NER) 3. Mismatch repair (MMR) takes action when 

replication and recombination machinery causes a mismatch of a base or the insertion of a 

deletion loop (IDL) 4. Finally, double-strand break repair (DSBR) is assigned to repair the sugar 

backbone of both DNA filaments after both strands of DNA break 5,6. Double stranded breaks 

(DSBs) are the most lethal form of DNA damage and are of particular interest in this research 

project.  
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Figure 1-1. The DNA Repair Machinery. The DNA repair machinery has evolved into 

separate systems that specialize in the repair of different DNA lesions. 

DNA Double-Strand Break Repair 

 DSBs are formed when both strands of the double helix DNA are broken. DSBs can be 

beneficial when they occur in a managed manner, such as during development of the immune 

system and generation of genetic diversity in meiosis 7-9; however, DSBs can also be detrimental. 

Such detrimental effects can be produced spontaneously during normal DNA metabolism by 

external factors like ionizing radiation (IR) and tobacco smoke or by certain classes of 

chemicals. Regardless of their source DSBs if not repaired are the most toxic form of DNA 

damage and can cause various developmental, immunological, and neurological disorders as well 
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as genome rearrangement and genome instability, 2 main drivers of cancer 10,11. The major 

endogenous source of DSBs occurs when DNA replication forks encounter unrepaired DNA 

lesions and subsequently trigger the collapse of replication forks (Figure 1-2) 12. Agents currently 

used in the treatment of cancer such as camptothecin (CPT) analogous take advantage of 

replication to generate DSBs and induce cell death. CPT is a topoisomerase I inhibitor that 

arrests the topoisomerase I-nicked DNA intermediate. The mechanism of topoisomerase I 

poisoning is mediated by CPT’s capacity to stabilize the covalent enzyme-DNA complex and 

block re-ligation of the 2 broken DNA ends. In rapidly dividing cells the cytotoxic effects of 

CPT are enhanced by the collision of DNA replication forks with trapped Top I-DNA 

complexes, converting DNA single-strand breaks into potentially lethal, irreversible double 

strand DNA breaks 13,14. 

	  

Figure 1-2. Replication Fork Collapse. The collision of unrepaired DNA lesions with the 

replication machinery renders the replication-induced DSB. Pol: DNA polymerases, MCMs: 

Mini-chromosome maintenance complex 2-7 (MCM2-7), yellow ovals: Other coupling proteins 

involve in DNA replication. (Adapted from Berens et al. 2012 15)      

Two major DSB repair pathways have evolved: homologous recombination (HR) and 

nonhomologous end joining (NHEJ) (Figure 1-3).  NHEJ repairs DNA breaks using very limited 
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or no sequence homology to rejoin the juxtaposed ends in a manner that is error prone. The 

initial step of NHEJ occurs when the Ku70/Ku80 complex binds to the ends of the break. The 

Ku70/Ku80 complex then loads DNA-protein kinase (DNA-PK). The DNA-PK complex recruits 

XRCC4 (X-ray repair cross-complementin protein 4), DNA ligase IV and DNA polymerase to 

fill the gaps and ligate the ends (Figure 1-3 right). Because NHEJ promotes the direct ligation of 

the DSB ends, this pathway frequently results in insertions, deletions, substitutions of bases at 

the break site, and possible translocations if DSBs from different parts of the genome are joined 

16. In contrast to NHEJ, HR is error free and is initiated when the DSB is resected by the 

nucleases and helicases Mre11/Rad50/NbsI (MRN complex). This generates two 30-nucleotide 

single-stranded DNA (ssDNA) overhangs onto which the Rad51, RPA (Replication Protein A), 

Rad52, and Rad54 assemble the nucleoprotein filament. This structure can invade the 

homologous duplex DNA of the sister chromatid which is then used as a template for error-free 

DNA synthesis by DNA polymerase 17. Although NHEJ can be activated throughout every phase 

of the cell cycle and is favored in G1 cells, HR is predominant during DNA replication because 

an identical sister chromatid is closely available for repair. 
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Figure 1-2. Double-Strand DNA Break Repair by HR and NHEJ. HR (left): One of 2 

sister chromatids has suffered a DSB. Initial processing of the break results in single-stranded 

tails. The tails are a substrate for filament formation by direct homology recognition and DNA 

strand invasion to facilitate joining of the broken DNA strand with the intact sister chromatid. 

DNA strand ligation and DNA synthesis are followed to complete error-free repair. NHEJ 

(right): The DNA ends after the break are substrates for binding of the Ku70/Ku80 heterotrimer. 

DNA-PK proceeds to promote juxtaposition and to recruit other core components of NHEJ to 

complete the error-prone rejoining reaction.  MRN: Mre11/Rad50/NbsI complex, BRCA1: 

Breast cancer type 1 susceptibility protein, BRCA2: Breast cancer type 2 susceptibility protein. 

Proteins are color-coded (Adapted from Binz et al. 2004  18)  
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Cell Cycle Checkpoints 

A successful DNA damage response is not only dependent on the efficient execution of 

the DNA repair mechanisms but also on the effectiveness of the cell-cycle checkpoint 

machinery. The cell cycle checkpoint machinery is a control mechanism that ensures cell 

division fidelity by attenuating cell cycle progression and facilitating DNA repair, thereby 

preventing DNA lesions from being converted to persistent mutations. The most important 

function of the checkpoints is to assess the presence and ensure the complete removal of DNA 

damage before allowing initiation of the next phase. The cell cycle checkpoint machinery 

surveys the structural integrity of genomic DNA, when damage is found, it signals attenuation of 

the cell cycle until repair is achieved, or if the damage is too extensive, the activation of cell 

destruction pathways. Checkpoints are equipped with sensors that detect DNA damage and 

generate distinct checkpoint signals primarily in the form of kinase-mediated protein 

phosphorylations (Figure 1-4). Such signals are processed to effect downstream targets 

(mediators) that coordinate with transducers to pass the response to effectors, as a result, the cell 

cycle is arrested. While arrested, DNA repair mechanisms react to restore the damage 

appropriately. If the genome integrity is too compromised, the cell is forced into death 

(apoptosis/necrosis).  The key sensors in DNA damage recognition are the MRN complex and 

the phosphoinositide (PI) 3-kinases: ataxia telangiectasia mutated (ATM), ATM-Rad3-related 

(ATR) and DNA-PK (reviewed previously in NHEJ pathway). The PI3 kinases phosphorylate a 

multitude of proteins and thus initiate the DNA damage response. Downstream of the sensor 

proteins are pathways that either stimulate survival (repair) or induce cell death. Studies from 

past decades have identified many proteins participating in the cell cycle checkpoint machinery, 

which have established its overall framework. However, many important questions remain 
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unanswered as new components of the checkpoint network continue to emerge. Here, we focus 

on the molecular network of 2 important proteins, RPA and p53, which lie downstream of the 

sensor checkpoint kinases and play key roles for the development of this project. 

.   

Figure 1-3. Signal Transduction Cascade that Leads to Cell Cycle Arrest. Cells are 

equipped with sensors that detect DNA damage and coordinate with mediators and transducers to 

pass the signal via kinases to effectors. Finally, effectors evoke the inhibition of the G1/S, S or 

G2/M progression (Adapted from Sancar et al. 2004  19) 

	  
Persistent DNA Lesions Trigger Cell Death 

DNA is the target for most, if not all, genotoxic agents. Some of the most common agents 

include UV light, ionizing radiation (X-rays), and common anticancer drugs such as cisplatin, 

adriamycin, CPT, and others.  It has been well established that if damage to DNA is not repaired 
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harmful effects such as chromosomal aberrations, recombination, gene mutations, and cancer can 

emerge (Figure 1-5); however, persistent DNA lesions, can also trigger cell death. The data 

supporting this idea come mainly from studies of cells that are defective in DNA repair genes. 

Recent data have shown that nearly all cells that either have mutations, or a knockdown of 

essential repair proteins are hypersensitive to killing by genotoxins 20. However, the mechanisms 

that decide whether a particular cell should stop dividing and enter the programmed self-death 

pathway remain largely obscure. 

 

Figure 1-5. DNA Damage-Induced Endpoints. DNA lesions are repaired by different 

mechanisms (BER, NER, MMR and DSBR) that allow cells to survive and prevent mutations.  If 

the damage is not properly repaired, gene mutations and chromosomal aberrations leading to 

cancer or cell death may follow.  

 

Error-free DSB 
repair
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Apoptosis 

Apoptosis is a specific mode of cell death that is performed in a regulated manner. 

Apoptosis is used as a defense mechanism against stressful changes in internal and external 

environments as well as during proper cell development. Maintaining a balance between the 

degree of cell proliferation and cell death is critical for the conservation of normal physiological 

processes and, more important for this project, for the restraining of damaged cells that could 

become cancerous 21,22. The formation of cancer cells is a complex multistep process that 

requires a sequence of alterations to the genome and breaching of a series of intracellular 

mechanisms. In the last century extensive research in the cancer field has investigated infringing 

of these mechanisms. Of particular interest is the mechanism that allows cancer cells to avoid 

death and confer survival advantage, thus understanding the mechanisms of apoptosis avoidance 

will improve therapeutic efficacy and will significantly improve cancer therapies 23.   

	  
Replication Protein A 

Structure of RPA 

 Human RPA is a heterotrimer consisting of 3 subunits: 70, 32, and 14 kDa (referred to as 

RPA70, RPA32, and RPA14). Figure 1-6 represents the domain arrangement of RPA. RPA was 

initially discovered during studies of the simian vacuolating virus 40 (SV40) where it was found 

to be essential for replication. RPA is a major eukaryotic single-stranded DNA (ssDNA) binding 

protein and consists of a series of six DNA-binding domains (DBDs). Each DBD consists of a 

structural domain known as oligonucleotide/oligosaccharide binding fold (OB-fold). The OB-

fold is a folding motif comprised of one 5-stranded β sheet coiled to form a β barrel and is 

capped by an α-helix located between the third and the fourth β strand. There are 4 OB-folds in 

the RPA70 subunit: DBD-F (amino acids 1-110), DBD-A (amino acids 181-290), DBD-B 
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(amino acids 300-420), and DBD-C (amino acids 436-616) 24. RPA32 contains only one OB-

fold, DBD-D (amino acids 43-170), which is flanked at the N terminus by an unstructured tail 

that can be heavily phosphorylated, and at the C terminus by a helix-turn-helix (HtH) domain 

(amino acids 200-270). RPA14 has a single OB-fold (amino acids 1-114), referred to as DBD-E, 

that is structurally important for the trimerization of RPA, but lacks DNA binding activity 25.    

 

Figure 1-6. Schematic Representation of Replication Protein A. DBD A-F: DNA binding 

domain A-F). CTD: C-terminal domain. Numbers represent the amino acids sequence in each 

domain structure.   

	  
RPA Interaction with ssDNA 

RPA binds ssDNA using only 4 of the 6 OB-fold domains: DBD-A, DBD-B, DBD-C (in 

the RPA70 subunit), and DBD-D (in the RPA32 subunit). It is thought that the binding follows a 

sequential assembly in which DBD-A through DBD-D bind to ssDNA 5’ to 3’ (Figure 1-7) 26,27. 

During the RPA-ssDNA interaction, 3 distinct modes of binding occur according to the length of 

ssDNA. The first is the 8-10 nucleotide-binding mode that consists of the serial binding of DBD-

A and DBD-B to their cognate elements 28. The second is the 13-14 nucleotide-binding mode 

where only the RPA70 subunit contacts the DNA through the OB-fold domains of DBD-A, 
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DBD-B, and DBD-C 29. And in the third mode of binding all four domains, the 3 in RPA70 and 

the DBD-D in RPA32, mediate the 30-nucleotide mode 30. 

	  

Figure 1-7. Proposed Model for RPA Binding to ssDNA (Adapted from Bochkarev et al. 

2004  24). RPA binds to ssDNA through 3 sequential steps that depend on the length of ssDNA. 

Palms represent the OB-folds, DBDs are labeled A-F, 70N represents the N-terminus of RPA70, 

32 represents RPA32 subunit and 14 represents the RPA14 subunit. Lines represent flexible 

linkers. ssDNA is represented with an arrow and the triangle represents the 3-helix subunit 

interface. 
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RPA in DNA Metabolism 

Because of its affinity towards ssDNA, RPA is directly involved in a large variety of 

DNA metabolic pathways such as replication, transcription, recombination, and all DNA repair 

pathways 31. During replication, in studies performed on the SV-40 virus, it was shown that in 

the first step of initiation RPA was required for the unwinding of the DNA at origins; however, 

this function was not specific. RPA mutants that bind to ssDNA with high affinity and most 

other single-stranded binding proteins support the unwinding reaction 32. Nevertheless, in the 

very next step of initiation the DNA polymerase alpha/primase complex recognizes the partially 

unwound DNA bound to RPA and the RNA primer is synthesized, a step where RPA is 

indispensable 33,34. During this step RPA70 is primarily responsible for the interaction; however, 

RPA32 and RPA14 are also needed. Isolated RPA70 alone and other mutant forms of RPA 

missing the smaller 2 subunits were not able to support DNA replication 35-37. In addition, RPA is 

important for DNA elongation once replication forks are established RPA remains associated 

with the replication machinery 38. Therefore, cells in S phase show distinct RPA colocalization 

with the replication foci 39. 

During DNA repair, RPA participates in DNA damage recognition, excision, and 

resynthesis of DNA at the site of damage 31. During DSB repair pathways, the focus of repair 

mechanism of this project, RPA interacts with multiple key proteins. In the HR pathway RPA 

associates with 2 Rad52 epistasis group proteins, Rad51 and Rad52, and modulates their 

activities by dictating their binding order to the DNA lesion. RPA promotes Rad51 presynaptic 

filament assembly by reducing secondary structure in the long ssDNA regions but also 

suppresses the assembly by occluding the DNA. The inhibitory effect of RPA, nevertheless, can 

be overcome significantly in the presence of Rad52 because Rad52 recognizes RPA-bound 
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ssDNA, and this activity of Rad52 allows the Rad51–Rad52 complex to gain access to ssDNA 

already covered with RPA 40 (Figure 1-3). In NHEJ, RPA has been observed to interact with 

DNA-PK and to colocalize with the MRN complex 41; however RPA’s role in NHEJ is not well 

defined.  

RPA in Cell Cycle Checkpoints 

 There are substantial data suggesting a role of RPA in the regulation of cell cycle 

checkpoints after DNA damage. In budding and fission yeast, different mutations in RPA32 and 

RPA70 caused hypersensitivity of cells to genotoxic agents, defective G1/S and intra-S 

checkpoint activation and prevented the downstream phosphorylation of checkpoint sensors ATR 

and ATM 42-44. Cells containing the rfa1-t11 mutation (RPA70-K54E) 45 had decreased Rad53 

phosphorylation (Chk2, checkpoint kinase 2) and failed to arrest at the G2/M checkpoint when 

DSBs were introduced 42,44. A more recent report has shown that the coating of ssDNA by RPA 

is recognized by ATR-interacting protein (ATRIP) and that RPA is indispensable for the 

activation of checkpoint kinase 1 (Chk1) 46. This report suggests that RPA is important for the 

localization of ATR to sites of DNA damage and activation of ATR kinase activity. In addition 

to ATR/ATRIP, RPA has been shown to be required for the loading of 2 other well-established 

checkpoint sensors: the Rad9-Rad1-Hus1 (9-1-1) complex and the Rad17-Rfc complex. These 

complexes are homologous to replication factor C (RFC) and PCNA respectively, which are 

required for DNA replication 47,48. RPA also interacts with a number of well-known regulatory 

proteins and tumor suppressors such as p53, BRCA1, BRCA2, and PI3 kinases: ATR, ATM, and 

DNA-PK 41,46,49-54.  
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Phosphorylation of RPA  

 In the absence of DNA damage, RPA is phosphorylated in a cell-cycle dependent 

manner. During S phase 40-50% of endogenous RPA is phosphorylated and the timing of 

phosphorylation correlates with the initiation of replication 55. RPA32 is phosphorylated at Ser-

23 and Ser-29 during the G1/S transition and M-phase and then dephosphorylated at the 

completion of M-phase. These phosphorylations during an unperturbed cell cycle are primarily 

carried out by cyclin-CDKs 56-59. In response to DNA damage, RPA32 is phosphorylated at 

several additional sites.  Although it stills remains unclear how many and which of these residues 

are concurrently phosphorylated on each RPA molecule, the hyper-phosphorylated RPA has 

between five and nine sites of phosphorylation within RPA32N. These sites include Ser-4, Ser-8, 

Ser-11/Ser-12/Ser-13, Thr-21, Ser-23, Ser-29 and Ser-33.  The DNAdamage-induced 

hyperphosphorylation of RPA is thought to be carried out by three members of the PIKK family: 

ATR, ATM and DNA-PK, likely dependent on the types of DNA damage. Given the important 

role of ATR, ATM and DNA-PK in DNA damage response and the regulation of cell cycle 

checkpoints, it is likely that RPA hyperphosphorylation is required for the regulation of these 

cell pathways.  

 It has been suggested that RPA undergoes a structural transformation when the RPA32N 

becomes hyper-phosphorylated. This structural transformation occurs via the inter-subunit 

interaction between the hyperphosphorylated RPA32N (hyp-RPA32N) and the DBD-B of 

RPA70 subunit. Results suggest that such structural alteration reduces the binding affinity of 

RPA to other binding partners and to short ssDNA; this is likely due to the blockage of DBD-B 

by hyp-RPA32N 60. In agreement, the phosphorylation of RPA32 has been shown to modulate 

several RPA interactions including the interaction with 9-1-1 complex 61 and with 2 important 
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DSB repair proteins, Rad51 and Rad52 62. Additionally, the hyperphosphorylation of RPA32 has 

been shown to disrupt the RPA interaction with DNA polymerase α in vitro 63 and a RPA32 

mutant that mimics the hyperphosphorylation by substitution of Ser-8, Ser-11, Ser-12, Ser-13, 

Thr-21, and Ser-33 with aspartic acid fails to localize to replication centers in cells 64.  

In summary, RPA has a role in recognition of DNA damage for repair and for initiation 

of cell cycle checkpoints, a necessary role during initiation of DNA replication and an important 

role in all DNA repair pathways. In addition, RPA has been shown to be a regulatory protein by 

undergoing hyperphosphorylation in response to genotoxic stress. These together allude to 

RPA’s potential role as a pivotal orchestrator between stoppage of DNA replication, initiation of 

DNA repair, and activation of cell cycle checkpoints in response to DNA damage.  

	  

Protein p53 

p53 is a tumor suppressor whose inactivation is a key step of carcinogenesis for over half 

of human cancers. As ‘the guardian of the genome’, p53 is a key regulator of genome 

stabilization through its roles in cell cycle checkpoints, apoptosis, and DNA repair. p53 under 

unperturbed conditions is inactive due to its rapid degradation by its counterpart, the ubiquitin 

ligase Mdm2. However, upon the infliction of almost any cellular stress, Mdm2 is contained and 

p53 becomes highly abundant in the cell becoming a dominating transcription factor. Despite 

massive research efforts and the very impressive progress made over the past several decades on 

p53, it is increasingly evident that our current knowledge is incomplete. The constant discoveries 

of vast and different transcriptional targets controlled by p53 raises new questions about how 

these regulated networks interlock to promote tumor suppression. The significance of p53 in 

tumor suppression in humans is highlighted by the dramatic cancer predisposition of individuals 
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with Li-Fraumeni syndrome (LFS), who inherit a p53 allele mutated, in most cases, between 

exons 5 and 8 of the p53 gene. Persons with LFS have a 25-fold increase predisposition to 

acquire a malignant tumor by the age of 50 65. 

 Most tumor suppressor genes found to be mutated in cancer are inactivated by truncating 

mutations unlike them, the TP53 gene in most human tumors is found to undergo a missense 

mutation that causes deficient transcription of p53’s canonical targets. Most p53 mutations occur 

in exons 4-9, which encode the DBD of the protein, and 30% of these mutations fall within 

residues R175, G245, R248, R249, R273, and R282 (Figure 1-8) 66. In addition, many p53 

mutants can antagonize p53 tumor suppression roles by becoming dominant negative (DN) 

regulators.  Because the active form of p53 functions only as a tetramer, a single DN p53 can 

heavily interfere with the proper activity of p53 as a tumor suppressor 67,68. Furthermore, TP53 

mutations are often followed by loss of heterozygosity (LOH), where a particular locus 

heterozygous for a mutant and a wild-type allele has the wild-type allele either deleted or 

mutated 69,70. Evidence also supports a gain-of-function (GOF) mechanism whereby many 

mutant p53 isoforms can acquire oncogenic properties 70. DN, LOH, GOF effects and the tumor 

suppressor abilities of p53 may be one major weakness of our genome and the reasoning for its 

mutation in over half of human cancers. 

Phosphorylation of p53 Transactivational Domain 

 Because of p53’s importance in tumorigenesis, there have been extensive studies of the 

signaling cascades that connect DNA damage with p53. Phosphorylation in p53 is largely 

clustered in the transactivational domain (TAD), linker and the regulatory domain (REG); 

however focus will be placed on the TAD phosphorylation sites because this region is of 

importance to the development of this project. Mutations in the TAD1 and TAD2 
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phosphorylation sites generally result in changes in p53 stabilization and activation of its 

canonical targets. The alanine substitution of all phosphorylation residues in the TAD1 and 

TAD2 domain leads to a significant loss of p53 transactivational activity 71. Additionally, studies 

have identified a variety of kinases that phosphorylate p53: ATR, ATM, Chk1 and Chk2 in the 

TAD region (Figure 1-8). Recent characterization of genetically manipulated mice incapable of 

p53 phosphorylation at Ser-18 and Ser-23 (Ser-15 and Ser-20 in humans), the 2 main sites 

targeted by the ATR/ATM/Chk1/Chk2 kinases, indicated the important role of these 

phosphorylation residues in the DNA damage induced p53-dependent responses 72. The Ser-

18/23 mutated mice were severely compromised in p53-dependent apoptosis with overall levels 

of apoptosis in γ-irradiated thymocytes similar to those in p53-/- while the Ser-18 mutated mice 

showed impaired G1/S cell cycle arrest following UV irradiation in mouse embryonic fibroblast 

(MEF) and diminished p53-dependent apoptosis in thymocytes following IR exposure 72-74.  

 Knock-in mice containing a single p53 allele with Thr-21 and Ser-23 mutated to aspartic 

acid (p53T21D,S23D/-), which mimics the constitutively phosphorylated p53, showed premature 

aging and a significantly reduced life span 75. Moreover, untreated cells from these mice showed 

increased p53-dependent transcription and apoptosis as compared with the p53+/- cells, but this 

activity was unaffected or even lowered when DNA damaged was impinged. A human p53 

knock-in mouse (HUPKI) was generated to introduce a Ser-46 to alanine mutation, as this 

residue is not conserved in mice. The HUPKI mice showed decreased p53 levels after UV and IR 

exposure accompanied by a modest decrease in transactivation of p53 targets, such as Noxa and 

PUMA, along with an overall mild reduction of p53-dependent apoptosis 76.  Thus, results in the 

genetically modified p53-mice are concordant with other models in demonstrating the 

importance of phosphorylation in the TAD1 and TAD2 domains of p53 in the modulation of 



	   29	  

many protein-protein interactions that either change the stability of p53, change its subcellular 

localization or direct its function as a transcription factor.   

	  

Figure 1-8. Schematic Representation of p53. Domain structure of p53 showing various 

sites of posttranslational modifications and mutations. Ovals represent phosphorylation sites, 

serines are yellow and threonines are orange. Hexagons represent sites ubiquitinated by Mdm2. 

Stars represent most commonly known mutations in the p53 protein in human cancers. TAD: 

Transactivational domain, PRD: Proline-rich domain, TET: Tetramerization domain, REG: 

Regulatory domain (Adapted from Jenking et al. 2012 77).  

	  
Interacting Partners of p53 Transactivational Domain 

 To date structures of p53 transactivational domain (TAD) in complex with 6 different 

partner proteins have been reported 77. The first, and most studied, is the complex with the 

negative p53 regulator Mdm2. Mdm2 is the main regulator of p53 and restrains p53 by 2 main 

mechanisms: 1) the binding of Mdm2 to the N-terminal of p53 masks the TAD required for p53 

transcriptional activity and 2) targeting p53 for degradation via the ubiquitin-proteasome system 

by the ubiquitin ligase activity of Mdm2 (Figure 1-8) 78. In the Mdm2-p53 complex 3 highly-

conserved hydrophobic residues (Phe-19, Trp-23, and Leu-26) align along one face of the TAD1 

helix and are packed deeply in a hydrophobic cleft of Mdm2 forming a relative strong complex 
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(Kd~100 nM) 79. On the other hand, Mdm2 also has been shown to be a positive regulator of 

p53. A recent report demostrated that, upon DNA damage, ATM phosphorylates Mdm2 at Ser-

395 that promotes the remodeling of the Mdm2 RING domain; the new conformation of Mdm2 

is then able to bind p53 mRNA and promote p53 translation 80. As a result, both p53 and Mdm2 

participate in an auto-regulatory feedback loop that under normal conditions restrains p53 

functions and under stressed conditions drives p53 activation.    

 The only other structures in complex with the p53 TAD include the CBP and p300 

proteins, 2 homologous histone acetyltransferases that facilitate p53 transcriptional activity by 

promoting chromatin unwinding near the promoters of target genes 81, the p53 TAD-MdmX 

complex, the p53 TAD-p62, and the p53 TAD-RPA70N complex. The p53 TAD-RPA70N 

complex, most important for this project, represents a separate class of p53-interacting proteins 

that recognize the TAD as if it were ssDNA. In this complex TAD binds to the OB folds of 

RPA70 directly. The RPA70N -TAD binding competes with ssDNA-TAD allowing RPA to 

repress the transcriptional activity of p53 53. The p53 TAD interaction with ssDNA-binding 

proteins reveals a distinctive type of interaction in which acidic residues in TAD compete with 

negatively-charged phosphate groups of ssDNA. 

p53 in Apoptosis 

p53 can activate apoptosis via both transcription-dependent and transcription-independent 

mechanisms 82. In the transcription-independent pathway, it has been shown that, following 

apoptotic stimuli, a portion of p53 localizes directly to the mitochondria where it physically 

interacts with Bcl-2 and/or Bcl-XL and antagonizes their antiapoptotic function at the outer 

mitochondrial membrane 83. p53 also has been shown to directly activate Bax, thereby leading to 
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mitochondrial outer membrane permeabilization (MOMP); this facilitates the release of 

cytochrome c leading to apoptosis 83-87.  

In the transcription-dependent pathway, p53 can activate both the intrinsic and the 

extrinsic signaling pathways that converge at the level of Caspase activation but differ in the 

upstream cascade. The Bcl-2 family members regulate the intrinsic pathway by the ratio of 

proapoptotic (Bax and Bak) to prosurvival (Bcl-2, Bcl-XL and Mcl-1) Bcl-2-family effector 

proteins. Proapoptotic Bcl-2 effector proteins oligomerize at the mitochondrial outer membrane 

resulting in MOMP and eventually activating effector caspases. The prosurvival Bcl-2 family 

members bind directly to the proapoptotic members, thus inhibiting MOMP. p53 can activate the 

intrinsic apoptotic pathway by transcriptionally activating Bax, PUMA, and Noxa. The extrinsic 

apoptotic pathway is triggered by the transmembrane death-domain at the surface of cells and 

p53 is involved by the direct activation of receptors and ligands such as Fas, Killer/Dr5 and Pidd.  
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Questions to be Answered in These Studies 

 

The requirement of RPA in such a broad range of cellular processes including initiation 

of replication, recognition of DNA lesions, efficient DNA repair, and cell cycle checkpoint 

signaling allude to its potential role in the coordination and regulation of these cellular processes; 

however, the mechanistic details are still poorly understood. Recent findings from our laboratory 

and others have shown that RPA undergoes hyperphosphorylation mediated by DNA damage 

checkpoint kinases and that this hyperphosphorylation is crucial for the cellular responses to 

DNA damage 60-64,88. We therefore hypothesize that the checkpoint-mediated 

hyperphosphorylation alters the interacting activity of RPA with ssDNA and proteins resulting in 

the facilitation and modulation of DNA damage responses. We propose that the modulation of 

the DNA damage response is achieved by 2 possible mechanisms: 1) hyperphosphorylation 

induces precise structural transformation of RPA that in turn modifies its biochemical activity 

towards ssDNA and proteins, and 2) recognition of the hyperphosphorylated motif of RPA by 

hyperphospho-binding proteins. In this way, hyperphosphorylation of RPA may constitute a 

regulatory mechanism by which some DNA damage responses are inhibited while others are 

activated owing to the failure or success of the molecular interaction with the 

hyperphosphorylated RPA.  

Among the RPA–protein interactions, the RPA-p53 interaction is of particular interest as 

p53 is thought to be a main tumor suppressor. The interaction of RPA and p53 has been known 

for quite some time; however, the mechanisms that modulate the RPA-p53 binding as well as the 

importance of the association/dissociation of the RPA-p53 complex in the cellular response to 

DNA damage remains far from clear.  In the study published in Oncogene (2013 vol.32 (19) pp. 
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2452-2462), and presented here in Chapter 2 89, we reveal a detailed mechanism for the 

regulation of the RPA-p53 interaction. 

DSBs are the most toxic form of DNA damage and can cause genome rearrangement, 

making them a major driver of cancer. Two major DSB repair machineries have evolved: 

homologous recombination (HR) and nonhomologous end joining (NHEJ) 90. At first these 2 

major repair machineries were thought to function independently of one another; however, in 

recent years there has been evidence for the crosstalk between these 2 pathways 91,92. In Chapter 

2, we provide for the first time, mechanistic details of a crosstalk between HR and NHEJ repair 

machineries, involving coordinated interactions between p53, RPA, DNA-PK, ATM, and ATR 

in the DNA damage response. 

Various reports suggest the involvement of RPA phosphorylation in the coordination of 

DNA repair, replication and cell cycle checkpoints; however, very little is currently known about 

the role of RPA in the regulation of apoptosis. In the study presented in Chapter 3, we tested the 

hypothesis that the lack of RPA phosphorylation after DNA damage promotes cell death. In 

order to test this hypothesis, we assayed common apoptotic markers in RPA phosphorylation-

deficient cells after the induction of genotoxic stresses. Our findings reveal a novel role of RPA 

phosphorylation in the induction of apoptosis that illuminates a novel target for chemotherapy. 
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CHAPTER 2 
 

 

DNA-PK, ATM AND ATR COLLABORATIVELY REGULATE p53–RPA 

INTERACTION TO FACILITATE HOMOLOGOUS RECOMBINATION DNA REPAIR. 

MA Serrano1, Z Li1, M Dangeti 2, PR Musich1, S Patrick2, M Roginskaya1, B Cartwright1, and Y 

Zou1 

 

Abstract 

Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA 

double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein 

kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint 

kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR 

repair of DSBs. The regulation was accomplished through modulation of the p53 and replication 

protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a 

p53–RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 

subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by 

ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could 

dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR 

repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ 

through the co-regulation of p53–RPA interaction by DNA-PK, ATM and ATR. 
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Introduction 
 

DNA damage is a major cause of genome instability and, thus, the development of human 

cancer. In cells, DNA damage is removed by DNA repair pathways in coordination with DNA 

damage checkpoints. The latter halts cell cycle progression to allow time for DNA repair before 

cell cycling can resume 1-6. DNA double- stranded breaks (DSBs) are the most lethal form of 

DNA damage and mainly are repaired by homologous recombination (HR) and nonhomologous 

end joining (NHEJ) pathways in mammalian cells. NHEJ repairs the DSBs induced by genotoxic 

agents such as ionizing radiation. By contrast, HR repairs DSBs induced by genotoxins such as 

camptothecin (CPT). CPT is a topoisomerase I inhibitor that arrests the topoisomerase I-nicked 

DNA intermediate complex and leads to replication fork collapse at the nicked site to form DSBs 

7, 8. Although crosstalk may occur between HR and NHEJ 9, 10, the molecular mechanism remains 

unknown. 

DNA-dependent protein kinase (DNA-PK) has a key role in NHEJ by recognizing DSBs, 

initiating NHEJ repair and assembling the repair machinery. DNA-PK is a 615 kDa 

heterotrimeric complex consisting of the catalytic subunit of DNA protein kinase, plus Ku70 and 

Ku80. As a member of the phosphatidylinositol 3-kinase- related kinase (PIKK) family, DNA-

PK also phosphorylates proteins, such as H2AX, replication protein A (RPA), p53, XRCC4, 

Ku70 (XRCC6) and Ku80 (XRCC5) involved in DNA damage responses 11, 12. Of those proteins, 

RPA is the major eukaryotic single-stranded DNA (ssDNA) binding protein and is a heterotrimer 

containing RPA70, RPA32 and RPA14 subunits. In addition to binding ssDNA, RPA also 

interacts with other proteins during the DNA damage response 5, 13-25 and is involved in almost 

all DNA metabolic pathways including the HR repair pathway. A mutation in RPA also is 

implicated in cancer 26, 27. A remarkable fact about RPA is that upon DNA damage, the N-
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terminus of RPA32 is hyper-phosphorylated by PIKK kinases 28. We and others have presented 

evidence supporting a role of RPA in coordinating DDR pathways via the RPA32 

hyperphosphorylation. 13, 14, 29-35 We have shown that upon hyperphosphorylation RPA 

undergoes a structural reorganization. 32 

Among RPA-protein interactions, the p53-RPA interaction 24, 36-41 is of particular interest 

as p53 is a tumor suppressor whose inactivation is a key step of carcinogenesis for over half of 

human cancers 42, 43. As “the guardian of the genome” p53 is a key regulator of genome 

stabilization through its roles in cell cycle checkpoints, apoptosis and facilitating DNA repair 44. 

It is well known that phosphorylation of p53 plays a critical role in regulating p53 activities in 

various DNA DAMAGE REPONSE pathways. Almost all the post-translational modifications 

on p53 occur in the unstructured region of the protein formed by the transactivation domain 

(TAD), the linker between the DNA-binding and TET domains, and the C-terminal 30 residues 

45. These same regions are involved in the p53 interaction with RPA dadad24, 37, 45. However, how 

the p53-RPA interaction is modulated and affects DNA damage responses is poorly understood. 

In the present study, we determined the mechanism by which the p53-RPA interaction is 

modulated as well as the impacts of the regulation on HR repair. We found that the p53-RPA 

complex was disassembled upon the phosphorylations of RPA and p53 by DNA-PK and 

ATM/ATR, respectively, in a synergistic manner. While phosphorylation of RPA or p53 alone 

showed no effect, phosphorylation deficiency of either p53 or RPA inhibited the dissociation of 

p53 and RPA. Also, the inhibition of phosphorylation significantly reduced the efficiency of HR 

repair. Our results unveil the mechanistic details of a crosstalk between HR and NHEJ repair 

machineries which involves highly coordinated interactions between p53, RPA, DNA-PK, ATM 

and ATR in the DNA damage response. 
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Materials and Methods 

 

Cells, Cell Culture, Proteins and Antibodies 

A549 cells were maintained at 37°C under a humidified atmosphere of 5% CO2 in 

Dulbecco’s modified Eagle medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine 

serum (FBS; HyClone), 1% penicillin/streptomycin. U2OS cells expressing RPA32 wild-type 

(WT-RPA) or a hyperphosphorylation-deficient mutant (PD-RPA) (kindly provided by Dr. 

Xiaohua Wu; Scripps Research Institute, La Jolla, California, USA) were maintained in DMEM 

supplemented with 10% FBS and antibiotics as described above. These U2OS cells were grown 

in hygromycin (200 µg/mL) and puromycin (1 µg/mL) to maintain plasmid expression. These 

are stable cell lines in which the endogenous RPA32 was stably knocked down while 

recombinant WT-RPA or PD-RPA were stably produced 34. The HCT-116 ATR-/- cells, also 

known as ATRflox/- cells (kindly provided by Dr. Stephen Elledge, Harvard University), were 

grown as described above using McCoy’s 5A medium (ATCC). 

Recombinant human RPA was expressed and purified as described (Yang et al., 2002 17).  

Hyp-RPA was purified using previous procedures (Patrick et al., 2005 30). In addition, 

hyperphosphorylation of RPA by purified DNA-PK (Promega, Madison, WI, U.S.A.) was 

carried out as described (Liu et al., 2005 32).   

Antibodies used in this study include anti-RPA32 (Sigma R3280), anti-p53 (Invitrogen 

AHO0142 or Santa Cruz sc-6243), anti-phospho-p53(pSer15) (R&D AF1043 and Cell Signaling  

9286), anti-phospho-p53(pSer20) (AnaSpec 54428), anti-phospho-p53(pSer37) (Santa Cruz sc-

135633), anti-phospho-p53(Ser46) (Cell Signaling 2521), anti-DNA-PK (Santa Cruz sc-9051), 
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anti-ATM (Bethyl Lab A300-299A), anti-ATR (Bethyl Lab A300-138A) and anti-RAD51 (Santa 

Cruz sc-8349). 

S phase Cell Synchronization 

To optimize RPA32 hyperphosphorylation in response to CPT treatment cells were 

synchronized in S phase by incubating with aphidicolin (APH) (1 µg/mL) for 18 hours before 

release into fresh media for 2 hrs. Synchronized cells were then treated with CPT. 

Co-Immunoprecipitation  

Immunoprecipitation (IP) in U2OS cell lysates was done after subcellular fractionation: 

cells were collected with a policeman and resuspended in CSK buffer (10 mM PIPES, pH 6.8, 

100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 1 mM EGTA, 0.1% Triton X-100, phosphatases 

and protease inhibitors) and incubated at 4 °C for 5 min. Low speed centrifugation (1,300xg/5 

min) separated cytoplasmic proteins from pelleted nuclei. Isolated nuclei were lysed in solution 

B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT, phosphatase and protease inhibitors). Chromatin-

bound proteins were collected (1500xg centrifugation/5 min), and resuspended in IP buffer (20 

mM Tris-HCl, pH 7.8, 137 mM NaCl, 10% glycerol, 2 mM EDTA, 1% NP-40) and subjected to 

DNase I digestion. Lysates were cleared (centrifugation at 13,000xg/15 min, 4 °C) and received 

3 µg of anti-p53 antibodies for immunoprecipitation and incubated overnight at 4 °C, followed 

by incubation with protein G beads (Invitrogen 10-1242) for 2 hrs. Immune complexes were 

collected by centrifugation at 1,000xg. 

Pull-Down Assays 

Recombinant GST-tagged p53 protein (SignalChem P05-30BG) was incubated with 

purified RPA or hyp-RPA in RPA binding buffer at 4 °C overnight. 10% of the sample was 

loaded as “Input”. Pre-equilibrated GST-agarose beads (GE) were added to the remaining sample 
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and incubated at 4 °C for 2 hrs.  Immune complexes were collected by centrifugation at 1000 x g, 

washed 3X with RPA binding buffer and analyzed by western blotting. 

For the p53-RPA interaction involving ssDNA, purified RPA or hyp-RPA was incubated 

with 5’-biotinylated ssDNA (dT30mer or dT90mer) at indicated ratios for 30 min at 25 °C in 

RPA binding buffer.  Pre-equilibrated streptavidin beads were supplied and the samples 

incubated for 2 hrs at 4 °C.  DNA-streptavidin complexes were collected, and then washed twice 

with RPA binding buffer to remove unbound RPA. Subsequently, recombinant p53 was supplied 

and the mixture incubated overnight at 4 °C. Complexes were collected at 1000 x g, washed 3X 

with RPA binding buffer and analyzed by western blotting. 

siRNA and Plasmid Constructs Transfections  

Cells were transfected with siRNA for 72 hrs using INTERFERin transfection reagent 

(Polyplus 409-10) following the manufacturer instructions. The siRNAs include ATM: 

CAUACUACUCAAAGACAUUTT, AAUGUCUUUGAGUAGUAUGTT, ATR: 

CCUCCGUGAUGUUGCUUGATT, UCAAGCAACAUCACGGAGGTT, DNA-PK: 

AGGGCCAAGCUGUCACUCUTT, AGAGUGACAGCUUGGCCCUTT. The pCB6-p53-WT 

and pCB6-p53-S15A expression constructs (kindly provided by Dr. Karen Vousden, Beatson 

Institute for Cancer, Bearsden, Glasgow, UK) were transfected into cells using JetPI transfection 

reagent (Polyplus 101-10) according to the manufacturer’s instructions for 72 hrs. Similar 

transfections were performed with pCAG3.1-p53-WT, -S15A, -S20A, -S37A and -S46A 

expression vectors (kindly provided by Dr. Carl W. Anderson, Biology Department, Brookhaven 

National Laboratory, Upton, New York). 
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Comet Assay 

U2OS cells stably expressing RPA32-WT or PD-RPA were treated with increasing doses 

of CPT for 2 hrs. Then, neutral comet assays were carried out using the Comet Assay System 

(Trevigen) according to the manufacturer’s instructions.  Fluorescence images were captured 

using a Nikon inverted fluorescent microscope with attached CCD camera at 100X magnification 

and the comet tail moment was measured using Comet Assay IV software (Perceptive). At least 

50 cells were assessed per treatment. In parallel with the comet assay, cell cultures with the same 

treatments were harvested for co-immunoprecipitation and the proteins analyzed by western 

blotting.  

Homologous Recombination Assays 

H1299 (p53-/-) or A549 cells were transfected with the HR reporter pDR-GFP (a gift of 

Maria Jasin, Addgene plasmid #26475) for 48 hrs. H1299 cells also were transfected 

simultaneously with the p53-expression constructs (WT, S37A and S46A), while A549 cells 

were treated with ATM and/or ATR inhibitors. Then, cells were either treated with 5 µM CPT 

for 24 hrs to induce phosphorylation of RPA and p53 and DNA double-strand breaks or 

transfected for 36 hrs (control) with an I-SceI expression vector (pCBASceI, a gift of Maria 

Jasin, Addgene plasmid #26477). Following the treatments, cells were visualized in phase 

contract or for green fluorescence using fluorescence microscopy. At least 100 cells were scored 

for GFP positive in three independent experiments. 
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Results 

 

Interaction of RPA with p53 in Cells 

In order to address the functional implications of the p53-RPA interaction, we examined 

the ability of p53 to bind to the hyperphosphorylated form of RPA32 in cells by co-

immunoprecipitation (co-IP). Cells expressing phosphorylation-deficient RPA32 (PD-RPA) and 

wild-type RPA32 34, respectively, were treated with CPT for 3 hrs. CPT is a DNA DSB inducer 

and was able to induce RPA hyperphosphorylation in cells as indicated by the bands of 

hyperphosphorylated RPA32 (hyp-RPA32) which migrate slower than the nonphosphorylated 

RPA32 band on SDS-PAGE (2-1A). In contrast, as expected, CPT treatment resulted in no 

hyperphosphorylation of RPA32 in the PD-RPA cells. As shown in Figure 2-1A, the association 

of p53 with RPA predominately occurred between p53 and the unphosphorylated RPA with little 

or no hyp-RPA32 associating with p53. This suggests that RPA hyperphosphorylation may have 

disrupted the p53-RPA association. Note that a DNase I pretreatment of the cell lysate precludes 

a DNA linkage between RPA and p53 as an explanation for these immunoprecipitation (IP) 

results. To confirm that the preferential binding of p53 to unphosphorylated RPA was due to 

direct protein-protein interaction, we used purified recombinant RPA 17 which had been 

hyperphosphorylated 30. After p53 IP from cell lysates with anti-p53 antibody, the 

immunoprecipitates were washed with buffer containing concentrations of NaCl up to 1 M to 

remove possible p53-associated proteins (Figure 2-1B). The wash was efficient as indicated by 

the removal of bound endogenous RPA. Then, an equimolar mixture of purified RPA and hyp-

RPA was supplied to allow for interaction with the immunoprecipitated endogenous p53. 
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Subsequent blotting analysis of the co-immunoprecipitates confirmed that p53 directly interacted 

with the nonphosphorylated RPA while having little or no affinity to the hyp-RPA (Figure 2-1C).  

  

Figure 2-1. Hyperphosphorylated RPA is Unable to Interact with Endogenous p53. (A) 

Stable U2OS cells expressing WT- or PD-RPA32 were treated with 10 µM CPT for 3 hrs to 

induce RPA hyperphosphorylation. Cells were harvested and chromatin-bound proteins were 

isolated. Chromatin was subjected to DNase I digestion and 10% of the sample was loaded onto 

the gel (INPUT). The remaining lysate was immunoprecipitated using anti-p53 antibody. 

Samples were analyzed by western blotting.  (B) IP was performed in A549 cell lysates using 

anti-p53 antibody. Immunoprecipitates were washed with buffer of increasing concentrations of 

salt (0.2-1.0 M) to remove proteins bound to p53, including endogenous RPA. Washed 

immunoprecipitates were analyzed by western blotting. (C) p53 from A549 cell lysates treated 

with 10 µM CPT for 2 hrs or 2 mM HU for 24 hrs was isolated by IP with anti-p53 antibody, 

followed by a 1 M salt buffer wash. Equimolar amounts of purified RPA and hyp-RPA were 

added and the proteins were allowed to interact for 6 hrs. Then, the p53 complexes were pulled 

down, washed and analyzed by western blotting.  
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In vitro Interaction of p53 with Native and Hyperphosphorylated RPA in the Presence or 

Absence of ssDNA 

To further describe the p53-RPA interaction, co-IP assays with purified RPA/hyp-RPA 

and p53 proteins were performed. Surprisingly, the binding of recombinant p53 to the hyp-RPA 

is greater than that to native RPA (Figure 2-2A), contradicting the cellular results shown in 

Figure 2-1. The same experiment also was performed with RPA hyperphosphorylated by purified 

DNA-PK (Promega Corp., Madison, WI) 32 and a similar preference for hyp-RPA was obtained 

(Figure 2-2B). To investigate this discrepancy, similar in vitro immunoprecipitation was 

conducted in the presence of ssDNA as the binding to ssDNA is a major function of RPA in 

cells. After RPA pre-incubation with 5’-biotinylated dT30mer or dT90mer ssDNA, the ssDNA-

bound RPA was pulled down with streptavidin-agarose beads, and then the RPA-ssDNA 

complex was incubated with purified recombinant p53. Recombinant p53 still bound more 

efficiently to hyp-RPA than native RPA in the presence of dT30mer or dT90mer (Figures 2-2A, 

2-2B and 2-2C). To further determine the possible effect of ssDNA on the p53 interaction with 

native RPA and hyp-RPA, the immunoprecipitated p53-RPA complex of purified proteins was 

titrated with increasing concentrations of dT30mer ssDNA (Figure 2-2D). The ssDNA had little 

or no effect on the p53-RPA binding when the ssDNA had a 1:1 molar ratio to the proteins, but 

did competed with p53 for hyp-RPA at significantly higher ssDNA-to-protein ratios.  

Alternatively, RPA also was pre-incubated with various concentrations of ssDNA and then p53 

was supplied.  Similar results were obtained although native RPA binding to p53 also was 

affected at high ssDNA-to-protein ratios (Figure 2-2E). These data indicate that 1) 

hyperphosphorylation of RPA does not disrupt the RPA interaction with recombinant p53 in 

vitro; and 2) ssDNA does not play a significant role in mediating the phosphorylation-induced 
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disruption of cellular p53-RPA interaction observed in Figure 2-1. Thus, the 

hyperphosphorylation of RPA alone may not be sufficient to substantially impact the p53-RPA 

interaction; the post-translational modifications on p53 also may be important. 

 

 

Figure 2-2. In vitro p53-RPA Interaction with and without ssDNA. (A) Recombinant 

GST-tagged p53 protein was incubated with either recombinant RPA or hyp-RPA. Except for the 
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10% of sample volume loaded for input, samples were incubated with GST-agarose beads, 

collected by centrifugation, washed and analyzed by western blotting. (B) Recombinant RPA 

protein was phosphorylated in vitro using DNA-PK kinase, and then incubated with GST-p53, 

followed by IP as in (A).  (C) Recombinant RPA or hyp-RPA was incubated with either dT90 or 

dT30 ssDNA. Recombinant p53 was supplied in excess to the RPA-ssDNA complex and 

incubated overnight. Biotinylated DNA complexes were collected by centrifugation, washed and 

analyzed by western blotting. (D) Recombinant RPA and hyp-RPA were mixed followed by 

incubation with p53 for 6 hrs. The ssDNA (dT30) was added in increasing molar ratios of DNA-

to-RPA. The samples were subjected to immunoprecipitation with GST beads and analyzed by 

western blotting. (E) Recombinant RPA and hyp-RPA were mixed and incubated with increasing 

molar ratios of ssDNA (dT30). Purified p53 protein then was supplied at an equimolar RPA 

amount for binding for 6 hrs. The samples were subjected to p53 immunoprecipitation with GST 

beads and analyzed by western blotting. 

	  
Effect of p53 Phosphorylation on p53-RPA Interaction 

To determine whether post-translational modifications of p53 are involved in the 

modulation of p53-RPA interactions, cells were treated with CPT followed by 

immunoprecipitation of p53 from the nuclear lysates. The p53 immunoprecipitates were washed 

with the 1M NaCl buffer to remove p53-associated proteins (Figure 2-1B). A portion of the 

endogenous p53 was treated with Calf Intestinal Alkaline Phosphatase (CIAP) to remove the 

endogenous phosphorylations. Then, recombinant RPA and hyp-RPA were supplied as an 

equimolar mix to allow for the interaction with p53. Western blotting analysis of the samples is 

shown in Figure 2-3 where the endogenous p53 predominately bound to the unphosphorylated 

form of RPA (lane 5). However the binding preference was reversed after the same endogenous 

p53 was de-phosphorylated with CIAP, then the p53-hypRPA interaction is favored (lane 4). The 

results indicated that phosphorylation of p53 also is involved in the modulation of the p53-RPA 

interaction. 
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Figure 2-3. p53 Phosphorylation is Required for Regulation of p53-RPA Binding. p53 is 

immunoprecipitated from A549 cell lysates using anti-p53 antibody. Samples were washed with 

1 M salt buffer and incubated with Calf Intestinal Alkaline Phosphatase (CIP). After washing, 

recombinant RPA and hyp-RPA were added in equal molar amounts and incubated with the 

endogenous p53 overnight. Samples were then spun down, washed and analyze by western 

blotting.  

 

Modulation of p53-RPA Binding upon CPT Treatment is DNA-PK, ATR and ATM Dependent 

Hyperphosphorylation of RPA in response to DNA damage is carried out by members of 

the phosphoinositide-3-kinase-related protein kinase (PIKK) family which includes ATM, ATR 

and DNA-PK 5, 39, 46. To identify the protein kinases involved in the phosphorylation-mediated 

regulation of the cellular p53-RPA interaction in response to CPT treatment, RPA 

hyperphosphorylation was evaluated in the cells treated with protein kinase inhibitors (Figures 2-

4A and 2-4B), or depleted of ATR, ATM or DNA-PK by siRNAs (Figure 2-4C). The kinase 

activities of ATR and ATM were efficiently inhibited by caffeine, an inhibitor of ATR and 

ATM, as demonstrated by the inhibition of p53 phosphorylation at Ser15, a downstream DNA 

damage signaling event in the ATR and ATM checkpoint pathways (Figure 2-4A, left). The 

caffeine treatment inhibited the release of hyp-RPA from p53 since the hyp-RPA remained 

bound efficiently to p53 as compared with native RPA following DNA damage (Figure 2-4A, 

right). The results were further confirmed by the more specific ATM and ATR inhibitors 
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Ku55933 and Nu6027, respectively (Figure 2-4B). Consistent results were also obtained with 

ATR-deficient cells (Figure S2-1). To further assess the effect of individual PIKK proteins on 

modulation of p53-RPA interaction, siRNAs were used to knockdown ATR, ATM, or DNA-PK 

(Figure 2-4C). Subsequent co-immunoprecipitation assays of cell lysates indicated that in 

agreement with the results of inhibitor treatments, depletion of ATR or ATM significantly 

increased the level of hyp-RPA binding to p53 versus control siRNA (Figure 2-4C). In addition, 

we found that DNA-PK was required for the CPT-induced RPA hyperphosphorylation while 

ATM and ATR are not, which is consistent with the previous reports 39, 46-48. As expected, 

knockdown of DNA-PK kept RPA bound to p53 (Figure 2-4C).  
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Figure 2-4. Modulation of p53-RPA Binding is Dependent on DNA-PK as well as ATM 

and ATR. (A) A549 cells were treated with caffeine to inhibit ATM and ATR activities prior to 

the CPT treatment. Whole cell lysates were loaded in a 10% SDS page (left). Nuclear lysates 

then were isolated and subjected to DNase I digestion and 10% of sample was loaded as input.  

IP was subsequently performed using anti-p53 antibody and co-immunoprecipitated proteins 

were analyzed by western blotting with the indicated antibodies (B) A549 cells were transfected 

with ATM siRNA, ATR siRNA, DNA-PK siRNA or their combinations. Cells were treated with 

CPT. Whole cell lysates were collected and analyzed by western blotting with indicated 

antibodies. Nuclear lysates then were isolated and subjected to DNase I digestion. Complexes 
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with p53 were isolated by IP using anti-p53 antibody and the co-immunoprecipitated proteins 

were analyzed by western blotting. 

 

Phosphorylation of p53 at Ser37 and Ser46 is Important for Regulation of p53-RPA binding 

Since phosphorylation of p53 at serine 15 is involved in DNA damage checkpoint 

signaling, it is of interest to determine if phosphorylation of this site is involved in modulating 

the p53-RPA interaction. We therefore transfected constructs for expressing wild type and 

mutant p53 in which the serine was replaced with an alanine (S15A), respectively, into H1299 

cells (p53-/-).  After transfection cells were treated with CPT, nuclear lysates were prepared, and 

co-immunoprecipitation performed using anti-p53 antibody. In agreement with our in vivo data 

described above, we found that only non-phosphorylated RPA32 was able to be co-

immunoprecipitated with p53 and that the S15A mutation did not affect the p53 binding to RPA 

(Figure 2-5A).  To confirm the results, the same immunoprecipitates were washed with 1 M 

NaCl buffer to remove p53-associated proteins. Then, an equimolar amount of recombinant RPA 

and hyp-RPA proteins were added.  As shown in Figure 2-5B, the mutation at Ser15 in p53 did 

not affect p53-RPA binding.  

 To identify the phosphorylation site(s) of p53 important for regulation of the p53-RPA 

interaction, we transfected H1299 cells with a series of p53 mutant expression constructs in 

which one single serine had been mutated to alanine. The mutations were all localized in the N-

terminus of p53 (S15A, S20A, S37A, S46A). The transfected H1299 cells were treated with CPT 

to induce phosphorylation of p53 (Figure 2-5C). Anti-p53 antibody then was used to pull-down 

the p53. After washing with 1 M salt buffer, the immunoprecipitates were mixed with equimolar 

amounts of recombinant RPA and hyp-RPA to test their interactions with the p53 proteins. The 

S37A and S46A mutations prevented p53 dissociation from hyp-RPA relative to WT-p53, 
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indicating that phosphorylations at Ser37 and Ser46 of p53 are required for release of RPA upon 

phosphorylation of RPA32 (Figure 2-5D). These observations suggest that the two particular 

serines are involved in regulating p53-RPA complex formation and stability in the CPT-induced 

DNA DAMAGE REPONSE. Furthermore, individual knockdown of ATR and ATM identify the 

checkpoint kinases responsible for specific serine phosphorylation: the CPT-induced 

phosphorylation of p53 at Ser37 is primarily dependent on ATR while the phosphorylation at 

Ser46 depends on ATM. 
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Figure 2-5. Phosphorylations of Ser37 and Ser46 of p53 are Important for Regulation of 

p53-RPA Binding. (A) H1299 cells (p53-/-) were transfected with p53 wild type (WT) and p53 

S15A constructs for 72 hrs. The cells were synchronized with APH before treatment with 10 µM 

CPT for 2 hrs. Nuclear fractions were isolated, treated with DNase I, followed by 

immunoprecipitation with anti-p53 antibody. The co-immunoprecipitated proteins were analyzed 

by western blotting using indicated antibodies. (B) The immunoprecipitates generated as in (A) 

were washed with 1 M salt buffer to remove co-immunoprecipitated proteins. Then equimolar 

quantities of RPA and hyp-RPA were supplied to allow interaction with the immunoprecipitated 

p53. The p53-RPA interaction was analyzed by collecting the p53 immunoprecipitates for 

analysis by western blotting. (C) H1299 cells were transfected with four different p53 constructs 
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in which one single serine was mutated to alanine on the N terminus of p53 (WT, S15A, S20A, 

S37A, S46A). Transfections were done for 72 hrs, followed by treatment with CPT to induce p53 

phosphorylation. (D) Whole cell lysates were prepared and subjected to IP with anti-p53 

antibody. The immunoprecipitates were washed with 1 M salt buffer, and then supplied with 

equimolar mixture of purified RPA and hyp-RPA. The p53-RPA complex formation was 

analyzed by western blotting. (E) Cells were transfected with ATM siRNA, ATR siRNA, or a 

combination of both, followed by CPT treatment. Prepared whole cell lysates with or without 

lambda phosphatase treatment were analyzed by western blotting. 

 

Loss of Hyperphosphorylation of RPA Compromises DSB Repair 

DNA damage-induced hyperphosphorylation of RPA stimulates RPA localization to DSB 

repair and checkpoint complexes 13, 14, thus likely enhancing DSB repair. Also, the interaction of 

p53 with RPA mediates suppression of HR 24.  Therefore, it is of interest to determine if 

phosphorylation-mediated regulation of the p53-RPA interaction plays a role in modulating DSB 

repair. Neutral comet assays were performed to assess the HR repair of CPT-induced DSBs in 

cells expressing PD-RPA versus cells expressing WT-RPA32. As shown in Figures 2-6A and 2-

6B, repair of CPT-induced DSBs was significantly compromised in cells with PD-RPA in 

comparison to cells with WT-RPA. Consistently, in parallel experiments unphosphorylated RPA 

was efficiently co-immunoprecipitated with p53 in the cells expressing PD-RPA, while most 

hyp-RPA in the cells expressing wt-RPA was incapable of co-immunoprecipitation with p53 

(Figure 2-6C, compare hyp-RPA to RPA ratios in lanes 6- 8 with lanes 14-16, respectively). 

These data suggest that RPA was unphosphorylated and, thus, sequestered in a p53-RPA 

complex in PD-RPA cells, inhibiting HR repair of CTP-induced DSBs. By contrast, RPA was 

extensively hyperphosphorylated and mostly free of binding to p53 in WT-RPA cells, making 

them available for HR repair.  
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We reasoned that RPA released from p53 sequestration by RPA32 phosphorylation 

would remain in the supernatant after IP pull-down of p53 and show association with DSB repair 

proteins. To test this, lysates from CPT-treated A549 cells were subjected to two consecutive 

immunoprecipitation steps in which p53 was immunoprecipitated first and then Rad51 was 

immunoprecipitated from the remaining supernatant.  Although native RPA was efficiently 

sequestered by p53, little hyp-RPA was bound to the p53 in CPT-treated or -untreated cells 

(Figure 2-6D, lanes 3 and 4). Subsequently, anti-Rad51 antibody co-immunoprecipitated Rad51 

and hyp-RPA from the remaining supernatant (lane 7) while little non-phosphorylated RPA was 

co-immunoprecipitated with Rad51. Similar results were obtained with U2OS cells expressing 

PD-RPA32 as compared with WT-RPA (Figure S2-2). Furthermore, CPT-induced nuclear focus 

formation of Rad52 was significantly reduced in cells expressing PD-RPA32 than those 

expressing wild-type RPA32 (Figures 2-6E and 2-6F). Rad51 interaction with ssDNA-bound 

RPA plays an important role in promoting Rad51 presynaptic filament assembling at DSBs 49-51, 

Thus, a significant amount of cellular RPA is sequestered in a p53-RPA complex under normal 

conditions and upon DNA damage, phosphorylation releases RPA or prevents hyp-RPA from 

binding to p53, promoting DSB repair.  
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Figure 2-6. Phosphorylation-Mediated Regulation of p53-RPA Binding is required for 

DSB Repair. (A) Stable U2OS cells expressing WT- or PD-RPA32 were treated with CPT in a 

dose-dependent manner for 2 hrs. Comet assay under neutral conditions was performed to assess 
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the efficiency of DSB repair.  (B) Tail moment was measured using the Comet Assay IV 

software (Perceptive). At least 50 cells were assessed per treatment (* represents a p-value less 

than 0.001). (C) Co-immunoprecipitation assay was performed simultaneously using duplicate 

cell cultures. Nuclear lysates were isolated and anti-p53 antibody was used for 

immunoprecipitation; samples were then analyzed by western blotting using the indicated 

antibodies. (D) A549 cells were treated with CPT or mock treated, followed by nuclear 

fractionation and incubation with DNase I. Soluble fractions were incubated with anti-p53 

antibodies for co-immunoprecipitation (lanes 3-4). The supernatant after p53 IP then was 

immunoprecipitated again using Rad51 antibodies (lanes 7-8). (E) Cells expressing WT- or PD-

RPA32 were treated with CPT and subjected to immunofluorescence microscopic determination 

of nuclear focus formation of Rad52. (F) Quantitative analysis of the data from (E). 100 cells 

were randomly selected in three separate experiments. Cells with at least one focus were counted 

(* represents a p-value less than 0.001).   

 

Phosphorylation of Ser37 and Ser46 of p53 are Important for Homologous Recombination 

Repair 

To further confirm the above results, constructs for expression of p53 with S37A or S46A 

mutation were generated. Then, we performed the pDR-GFP-based HR assays 52, 53 in H1299 

cells transfected with the S37A or S46A p53 constructs in the presence or absence of CPT. As 

shown in Figures 2-7A and 2-7B, homologous recombination repair of the CPT-induced DSBs, 

as indicated by the cells emitting green fluorescence, was significantly compromised in cells 

expressing the S37A or the S46A p53 constructs in comparison to the cells expressing WT p53.  

 

ATM and ATM Inhibition Impairs Homologous Recombination Repair 

 The same pDR-GFP-based HR assays also were performed with cells treated with ATM 

and ATR inhibitors KU55933 and NU6027, respectively.   Figures 2-7C and 2-7D show that the 

inhibition of ATR kinase significantly reduced HR efficiency in cells treated with CPT. 
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Furthermore, in the cells treated with the ATM inhibitor, the HR activity was also reduced, 

though not statistically significant (p = 0.08), as compared to the mock-treated cells. 

Consistently, when both inhibitors were used, the HR rate was significantly reduced in the 

inhibitor-treated versus mock-treated cells. Together, these results support a role of ATM and 

ATR kinases in regulation of HR, at least partially through their regulation of the p53-RPA 

interaction. 
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Figure 2-7. ATM- and ATR-Dependent Phosphorylation of Ser37 and Ser46 of p53 is 

Important for Efficient HR Repair of DSBs. (A) H1299 cells (p53-/-) were transfected 

simultaneously with the HR reporter pDR-GFP and a p53 construct (WT, S37A or S46A) for 48 

hrs. The cells then were either treated with 5 µM CPT for 24 hrs to induce phosphorylation of 

p53 and DNA double-strand breaks or transfected with an I-SceI endonuclease expression vector 

for 36 hrs as a positive control. Phase contrast microscopy was used to visualize cells and GFP 

expressing cells were scored by fluorescence microscopy. Cells with green fluorescence 

indicated functional HR. (B) Percentage of GFP-positive cells was measured from a random 

selection of 100 cells in three separate experiments. (C) A549 cells were transfected with the HR 

reporter pDR-GFP for 48 hrs.  Cells then were treated with 10 µM ATM and/or ATR inhibitors 

for 1 hr prior to CPT treatment (5 µM for 24 hrs). (D) Percentage of GFP positive cells was 

measured and analyzed as above. (E) Proposed mechanism. 

 

Discussion 

 Cellular DDRs are a complex defense system against genome instability and involves 

multiple biochemical pathways. In particular, HR and NHEJ repair pathways and ATM and ATR 

checkpoints play pivotal roles in cellular response to DSB damage. This study addresses 

important questions concerning how these pathways are regulated and coordinated with one 

another, important information for our understanding of the mechanisms of DDRs. We provide 

evidence that DNA-PK, the hallmark protein of NHEJ, together with ATR and ATM plays a 

regulatory role in the repair of CPT-induced DSBs, and this regulation is mediated by synergistic 

phosphorylations of both p53 and RPA. This finding reveals a novel crosstalk mechanism 

between HR and NHEJ pathways and coordination between ATM/ATR/p53 checkpoints and 

DNA-PK. 

 The complex mechanism unveiled in this study is centered on the regulation of p53-RPA 

interaction via site-specific post-translational modifications of p53 and RPA. Remarkably, the 
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regulation requires participation of all three major PIKK family members involved in DDRs, 

DNA-PK, ATM and ATR. Upon DNA damage, each kinase phosphorylates specific sites of p53 

or RPA to make a synergistic contribution to inducing p53-RPA dissociation. Specifically, DNA-

PK hyperphosphorylates RPA at multiple sites in the N-terminal domain of RPA32, while ATR 

and ATM phosphorylate p53 at Ser37 and Ser46, respectively (Figure 2-5). Surprisingly, 

phosphorylation of p53 at Ser15, well known for its role in ATR/ATM-dependent checkpoint 

activation and DDRs 54-57 is not required (Figure 2-5). In addition, phosphorylation of p53 at 

Ser20 by Chk2 58 does not participate either (Figure 2-5) consistent with the lack of effect of 

Chk2 or Chk1 on p53-RPA interaction (Figure S2-3).  These data suggest that p53 

phosphorylations involved in modulating p53-RPA interactions are carried out directly by ATR 

and ATM in a Chk1/Chk2-independent manner. Although excess ssDNA interfered with RPA-

p53 complex formation 38, we found that equimolar ssDNA did not substantially inhibit the p53-

RPA interaction (Figures 2-2C and 2-2D). 

The impact of p53-RPA association/dissociation on their cellular functions could occur at 

multiple levels. Normally, RPA expression is constant at a relatively abundant level during cell 

cycle transit 59. It is known that p53 interacts with RPA via p53’s N-terminal domain containing 

the transactivation and trans-repression functions of the protein 60.  Since a basal level of p53 is 

required for antioxidant activities in normal cell growth 61, the p53-RPA complex formation may 

serve to mask this p53 domain and prevent the above-basal levels of free p53 from interrupting 

normal cellular functions, complementing the Mdm2 function of sequestering and inactivating 

p53. With significant DNA damage, however, cellular p53 is elevated while expression of RPA 

remains unaffected 62. Here, disruption of the p53-RPA complex may be necessary to free RPA 

for functioning in DDRs as RPA plays indispensable roles in DNA damage checkpoint and 
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repair pathways. Indeed, our results indicate that a deficiency in RPA phosphorylation and 

release from the p53-RPA complex significantly reduces repair efficiency of DSBs induced by 

CPT (Figures 2-6 and 2-7). The released hyp-RPA binds much more efficiently to Rad51 than 

does native RPA (Figure 2-6D) 13. These observations suggest that the phosphorylations of RPA 

and p53 not only frees RPA during the DNA damage response, but also allows RPA to more 

efficiently recruit Rad51 to the DSB sites during an early step of HR, thus promoting the repair 

process 13, 33. In addition, the phosphorylations may serve to prevent RPA sequestration by 

increasing amounts of p53. Furthermore, although p53 is highly expressed in cells following 

DNA damage, it is also possible that released phosphorylated p53 could enhance the DNA 

damage checkpoints and transcriptional activation of genes involved in DDRs. In this 

enhancement, RPA might be a regulatory element ensuring that p53 would be available only 

after DNA damage. 

The multiple diverse functions for both RPA and p53 imply that the DNA-PK/ATM/ATR 

modulation of the p53-RPA interaction may have multiple, varied impacts on the DDRs beyond 

HR repair. Activation of tumor suppressor protein p53 orchestrates multiple cellular responses 

involved in cell cycle control and apoptosis 42, 43. Also, RPA is involved in almost every, if not 

all, DNA damage response pathways, from damage signaling, checkpoint activation through 

DNA repair 5. Also, hyp-RPA is more efficient in recruiting the checkpoint complex 

Rad9/Rad1/Hus1 14, preventing its association with replication centers 29, facilitating mitotic exit 

in response to mitotic DNA damage63,  and regulating mismatch repair 31. These potential hyp-

RPA activities in the DNA damage response network depend on the stability of the p53-RPA 

interaction regulated by the PIKK members.  
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Given that p53 interacts with RPA via its N-terminal domain 60 and that the 

phosphorylation at S37 and S46 in the N-terminus of p53 by ATR/ATM disrupted p53-RPA 

interactions (Figure 2-5), these phosphorylations may interfere with RPA binding to the N-

terminus of p53. This disruption of the p53-RPA complex requires the concomitant 

hyperphosphorylation of RPA32. As reported previously, hyperphosphorylation alters RPA 

conformation 32. Thus, this may structurally change the p53-binding domain/motif of RPA 

although this change alone may not be sufficient to disrupt the formation of the p53-RPA 

complex. On the other hand, the phosphorylation at S37 and S46 in the N-terminal domain of 

p53 changes both the chemistry and structure of the domain. It is likely that combination of these 

changes with those in RPA due to hyperphosphorylation prevents RPA from binding to p53. 

However, revealing the details of the phosphorylation-induced structural changes is beyond the 

scope of the current study but deserves further investigation.  

Taken together, we propose that under unstressed conditions, the low level of ‘free’ p53 

is sequestered by the abundant RPA in cells. The sequestration not only prevents relatively high 

levels of p53 from interfering with normal cellular functions and cell cycle progression, but also 

may help to maintain a basal level of p53 for upregulation of a few genes for activities against 

DNA damage induced by endogenous reactive oxygen species in cells under normal growth 

conditions. Upon severe DNA damage, however, phosphorylation of p53 and RPA by 

ATM/ATR and DNA-PK, respectively, prevents RPA sequestration by the damage-induced high 

level accumulation of p53, freeing phosphorylated forms of both p53 and RPA for DNA damage 

response functions. 
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CHAPTER 3 

 

LACK OF PHOSPHORYLATION OF REPLICATION PROTEIN A FACILITATES DNA 

DAMAGE-INDUCED APOPTOSIS 

MA Serrano, Z Li, PR. Musich, Y Zou1 

 

Abstract 

DNA damage triggers a diverse response of cellular processes in eukaryotic cells 

including DNA repair, cell cycle checkpoints and apoptosis. Human replication protein A (RPA), 

the major single-stranded DNA-binding protein, has been shown to be important for many 

cellular DNA metabolic pathways; however, its role in apoptosis remains highly elusive. RPA is 

a heterotrimer composed of RPA70, RPA32, and RPA14 subunits. The N-terminal region of 

RPA32 undergoes hyperphosphorylation in response to DNA damage, which is believed to play 

a role in modulating many cellular activities.  In this study, using the U2OS cells expressing wild 

type (WT-RPA32) or phospho-deficient RPA32 (PD-RPA32), we show that deficiency in 

RPA32 phosphorylation led to a significant increase in apoptosis induced by genotoxic stress. 

Specifically, PARP-1 cleavage, sub-G1 phase population, and loss of mitochondrial membrane 

potential were significantly increased in PD-RPA32 vs. WT-RPA32 cells after DNA damage. 

The lack of RPA phosphorylation promoted the activation of initiator Caspase-9 and effector 

Caspase -3 and -7. Furthermore, we found that the effect of RPA phosphorylation on apoptosis 

was dependent on the kinase activity of DNA-PK and was mediated by PUMA through the 

ATM-p53 pathway. Our results suggest a novel role of RPA phosphorylation in regulation of 
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apoptosis which could be of importance in development of new therapeutic strategies for 

sensitization of cancer cells.   

 

Introduction 

 

The cellular DNA repair machinery plays a critical role in preventing detrimental 

mutations into our DNA. Defects in DNA repair underlie a number of human genetic diseases 

that affect a wide variety of body systems, most notably a predisposition to cancer. When DNA 

damage is excessive to the point that it overwhelms the DNA repair machinery, cells trigger their 

destruction by activating a stepwise process known as apoptosis. The evidence supporting that 

vast amounts of DNA lesions trigger apoptosis is conclusive; however, the molecular 

mechanisms that signal the initiation of apoptosis remain elusive. Drugs that favor apoptosis over 

DNA repair could be of great importance for the sensitization of tumor cells, as a result great 

attention has been brought to finding components capable of regulating these two pathways.  

Replication protein A (RPA), a heterotrimer of RPA70/RPA32/RPA14, is the major 

eukaryotic single-stranded DNA binding protein and is involved in all aspects of DNA 

metabolism: replication, repair, and recombination. RPA32 is hyperphosphorylated in response 

to DNA damage and evidence suggests that, upon hyperphosphorylation, RPA undergoes a 

structural reorganization which provides a model for the coordination of different DNA damage 

response pathways 60-64,88,89,93,94. Various reports involve RPA phosphorylation in the 

coordination of DNA repair and cell cycle checkpoints. Particularly, RPA phosphorylation has 

been shown to modulate interactions with the 9-1-1 complex 61, Rad51/ Rad52 62 and p53 89. 
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However, little is currently known about the role of RPA phosphorylation in the initiation of 

apoptosis.  

p53 is a key regulator of genome instability and is one of the most commonly inactivated 

genes in human cancers. p53 is a major regulator of cellular fate in response to genotoxic stresses 

because it can trigger several cellular events: cell-cycle arrest, senescence, differentiation and 

apoptosis. The option chosen is dependent on the circumstances under which p53 is activated 95-

98. Under some circumstances, p53 can contribute to repair which potentially allows the cell to 

recover back into the proliferating pool 99,100. However, in most cases, activation of p53 leads to 

irreversible inhibition of cell proliferation, mostly accomplished by the activation of apoptosis by 

its transcriptional activity. There are a vast number of genes that can be activated by the 

transcriptional activity of p53; an important one encodes a protein called PUMA, or p53-

Upregulated Modulator of Apoptosis. PUMA is a BH3-only family member that promotes 

apoptosis by antagonizing anti-apoptotic proteins through their BH3 domain interactions 101. 

Specifically, PUMA is thought to bind Bcl-2 and Bcl-XL, therefore, promoting cytochrome c 

release 102,103. 

DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage and are 

repaired in mammalian cells by homologous recombination (HR) and nonhomologous end 

joining (NHEJ) pathways. Camptothecin (CPT), a widely used chemotherapy drug in its 

analogous forms, is a topoisomerase I inhibitor that arrests topoisomerase I-nicked DNA 

intermediate complexes leading to replication fork collapse at the nicked site resulting in DSB 

formation 13,14. Ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-

kinase- related kinase (PIKK) family, plays a key role in surveillance of the genome’s integrity 

and is the main signal transducer in response to DSBs. ATM phosphorylates well known targets: 
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histone H2AX, the Mre11-Rad50-NBS1 (MRN) complex, Chk2, RPA and Mdm2. DNA-

dependent protein kinase (DNA-PK), also a PIKK family member, has a key role in initiating 

NHEJ by recognizing DSBs and recruiting other members of NHEJ machinery. DNA-PK 

phosphorylates proteins involved in DNA damage responses such as H2AX, RPA, p53, XRCC4, 

Ku70 (XRCC6) and Ku80 (XRCC5) 104,105. 

In the present study, we show a novel role of RPA phosphorylation in the inhibition of 

apoptosis. We found that the lack of RPA32 phosphorylation facilitates DNA damage-induced 

apoptosis and that the pro-apoptotic effects are dependent upon DNA-PK. We determined that, 

in response to CPT, ATM is responsible for carrying the signal that starts the p53-dependent 

apoptotic cascade resulting in the activation of PUMA. PUMA, in turn, promotes the activation 

of initiator Caspase-9 and effector Caspase -3 and -7. Overall this study reveals an important new 

role of RPA32 phosphorylation in the DNA damage response leading to programmed cell death. 

RPA32 could be of potential interest in the development of novel chemotherapies targeting the 

crossroads of two important mechanisms: DNA repair and apoptosis.  

 

Materials and Methods 

 

Cells, Cell Culture, Treatments and Antibodies 

U2OS cells expressing RPA32 wild-type (WT-RPA32) or a hyperphosphorylation- 

deficient mutant (PD-RPA32) (kindly provided by Dr. Xiaohua Wu; Scripps Research Institute, 

La Jolla, CA, USA) were maintained in Dulbecco’s modified Eagle medium supplemented with 

10% fetal bovine serum (FBS: HyClone), 1% penicillin/streptomycin, hygromycin (200 mg/ml) 

and puromycin (1 mg/ml) to maintain plasmid expression. These are stable cell lines in which the 
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endogenous RPA32 was knocked down while recombinant WT-RPA32 or PD-RPA32 were 

produced 94. UV-C irradiation was performed using a 254 nm lamp at 0.83 J/m2/sec. CPT was 

purchased from Sigma Chemical Co. (C9911). Stock solutions of CPT were made in dimethyl 

sulfoxide (DMSO) before addition to cell culture medium. The ATR kinase inhibitor, NU6027, 

the ATM kinase inhibitor, Ku55933, and the DNA-PK inhibitor, NU7441, were purchased from 

EMD Millipore and used at a final concentration of 10 µM in cell culture medium. Inhibitors 

were added 1h before CPT treatment.   

Antibodies used in this study include RPA32 (Sigma R3280), phospho-RPA32-Ser4/8 

(Bethyl A300-245A), p53 (Santa Cruz sc-6243), phospho-p53 (pSer15) (Cell Signaling 9286), 

DNA-PK (Santa Cruz sc-9051), ATM (Bethyl Lab A300-299A), ATR (Bethyl Lab A300-138A), 

cleaved-Caspase-3 (Cell Signaling 9664), PARP-1 (Santa Cruz sc-8007), PUMA (Cell Signaling 

4976), MHSP70 (MA3-028; Thermo Scientific), pChk2 (Thr68) (Cell Signaling 2661) and a 

FITC-conjugated β-Actin antibody (Sigma Chemical Co).    

Sub-G1 Population Analysis  

Nuclear DNA was propidium iodide stained as described previously 106. Cells were 

grown in dishes to reach 70-80% confluence, trypsin-harvested, fixed with 70% ethanol at 4°C, 

and then pelleted and re-suspended in PBS containing 20 µg/mL of propidium iodide and 100 U 

RNase. Samples were then incubated for 30 minutes at 37°C. After staining, 30,000 cells were 

counted using the Accuri C6 flow cytometer to measure the DNA content. 

Mitochondrial Membrane Potential Analysis 

MitoTracker Red CMXRos (Life Sciences M7512) is a red-fluorescent dye that stains 

mitochondria in live cells and its accumulation is dependent upon an intact mitochondrial 

membrane potential. Cells were seeded at a confluence of 70% one day ahead of DNA damage 
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treatments. To prepare a stock solution, MitoTracker Red CMXRos was dissolved in DMSO to a 

final concentration of 1 mM. Right before use, the dye was diluted to 200 nM in growth medium 

and incubated 30 minutes in the dark with the cells. Both the adherent and non-adherent cells 

were harvested, washed with PBS, and analyzed by both flow cytometer and fluorescence 

microscopy. 

S phase Cell Synchronization 

To optimize RPA32 hyperphosphorylation in response to CPT treatment cells were 

synchronized in S phase by incubating with aphidicolin (APH) (1 ug/ml) for 18 h before release 

into fresh media for 2 h. Synchronized cells were treated with 10 µM CPT for the indicated 

times. 

Cell Fractionation 

Mitochondrial isolation was performed using the Mitochondria Isolation Kit for Cultured 

Cells (Thermo Scientific 89874) according to the manufacturer’s instructions. Cells were 

suspended in lysis buffer to disrupt the plasma membrane. Plasma membranes and 

compartmentalized organelles, such as endoplasmic reticulum, mitochondria, and nuclei, 

remained intact and were collected by centrifugation at 1000xg for 10 min. The resulting pellet 

was resuspended in disruption buffer, repeatedly passed through a 21-gauge needle, and re-

centrifuged at 1000xg for 10 min to pellet nuclei, cell debris, and unbroken cells. The 

supernatant that contains mitochondria was re-centrifuged at 6000xg for 10 min to pellet 

mitochondria. After removal of the supernatant, mitochondria were lysed with 1X SDS loading 

buffer and analyzed by SDS-PAGE and western blotting. 

  



	   74	  

Caspase-3/7 Activation Assay 

 Caspase-3 and Caspase-7 activities were measured using a Caspase-Glo assay kit 

(Promega G8090) according to the manufacturer’s instructions. Cells were grown in a 96-well 

white-walled plate and treated accordingly. Then the activity of Caspase-3/7 was measured by 

adding a luminescent substrate containing the DEVD sequence, which upon Caspase-3/7 

cleavage, releases the luciferase aminoluciferin. The luminescent signal was then measured in a 

plate-reader luminometer.  

siRNA and Plasmid Transfections 

 Cells were transfected with siRNA for 48 h using INTERFERin transfection reagent 

(409-10, Polyplus-transfection Inc., New York, NY, USA) following the manufacturer’s 

instructions. The siRNAs include ATM: CAUACUACU CAAAGACAUUTT, 

AAUGUCUUUGAGUAGUAUGTT, ATR: CCUCCGUGAUG UUGCUUGATT, 

UCAAGCAACAUCACGGAGGTT, DNA-PK: AGGGCCAAGCUG UCACUCUTT, 

AGAGUGACAGCUUGGCCCUTT, and Chk1: ACAGUAUUUCGGUAUAAUATT. The 

pCB6-p53-WT expression construct (kindly provided by Dr. Karen Vousden, Beatson Institute 

for Cancer, Bearsden, Glasgow, UK) were transfected into cells using JetPI transfection reagent 

(Polyplus 101-10) according to the manufacturer’s instructions for 48 h. 

Apoptosis Analysis by Annexin V Staining 

Phosphatidylserine exposure on the outer leaflet of the plasma membrane was detected by 

the FITC-annexin V apoptosis detection Kit II (Invitrogen V13242) according to the 

manufacturer's instructions. Cells were pelleted following treatment and washed in PBS. Cells 

were re-suspended in binding buffer at 1X106 cells/ml, mixed with FITC-annexin V and 
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incubated at room temperature for 15 minutes in the dark. The annexin V– positive cells were 

analyzed by flow cytometry. 

 

Results 

 

Lack of RPA32 Hyperphosphorylation Results in PARP-1 Cleavage and Accumulation of Cells 

in Sub-G1 

Cleavage of PARP-1 (poly(ADP-ribose) polymerase) has been suggested to be an 

important inactivation mechanism of DNA repair and is a widely used marker for cells 

undergoing apoptosis 25,26. PARP-1 usually aids in DNA repair; however, during apoptosis 

PARP-1 is cleaved producing an 89 kDa C-terminal fragment containing the catalytic domain, 

and a 24 kDa N-terminal fragment harboring the DNA binding domain. The DNA-binding 

domain detached from the catalytic domain converts PARP-1 into a negative regulator of repair 

and an indicator of cell death. To investigate the effect of RPA phosphorylation on apoptosis, we 

examined the PARP-1 cleavage after genotoxic stress in phosphorylation-deficient RPA32 (PD-

RPA32) cells and wild-type RPA32 (WT-RPA32) cells 94. As shown in Figure 3-1A, cells were 

UV irradiated and let to recover for the indicated times or incubated with CPT for the indicated 

periods of time. Both UV- and CPT-treated cells were able to generate RPA32 phosphorylation 

in the WT-RPA32 cells as indicated by the bands of hyperphosphorylated RPA32 (hyp-RPA) 

which migrated slower than the non-phosphorylated RPA32 band on SDS–PAGE; however, the 

PD-RPA32 cells were incapable of undergoing phosphorylation in RPA32. As shown in Figure 

3-1A, the DNA damage-induced cleavage of PARP was significantly more in the PD-RPA32 

cells as compared to that in WT-RPA32 cells and the degradation was evident as early as 6 hours 
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after CPT or UV exposure. Furthermore, the induction of PARP cleavage is also higher in PD-

RPA32 vs WT-RPA32 cells treated with etoposide (Etop), a topoisomerase II inhibitor, which 

causes DSBs by preventing the re-ligation of DNA strands (Figure 3-1B). Interestingly, although 

the induction of PARP degradation in PD-RPA32 cells appears to be independent of the type of 

DNA damaging agent, hydroxyurea-treated (HU) cells did not undergo PARP cleavage despite 

the RPA32 hyperphosphorylation. The results of HU-treated cells might be of importance and 

will be addressed in the discussion.  

 To confirm the role of RPA32 phosphorylation in cell death, we performed propidium 

iodide staining of fixed cells to ascertain the percentage of cells in the sub-G1 population. Our 

results indicate that CPT exposure resulted in a significant increase in the percentage of cells in 

the sub-G1 phase in the PD-RPA32 cells when compared to the WT-RPA32; however, as 

expected, in the absence of CPT no significant differences in sub-G1 distributions were observed 

(Figure 3-1C and 3-1D).  
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Figure 3-1. Lack of RPA Phosphorylation Results in PARP-1 Cleavage and 

Accumulation of Cells in Sub-G1. (A) Stable U2OS cells expressing WT- or PD- RPA32 were 

treated with 10 µM CPT for 3, 6, 12 and 24h or were irradiated with 30 J/m2 and allowed to 

recovered for the indicated times. Whole-cell lysates were then analyzed by western blotting. (B) 

Cells were treated with 10 µM CPT, 100 µM etoposide, 2 mM HU for 12 hours or were exposed 
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to 30 J/m2 UV and let to recover for 12 hours and analyzed as in (A). Caldesmon was used as 

loading control. (C) Cells were treated with 10 µM CPT for the indicated times, stained with 

propidium iodide (PI) and analyzed by flow cytometry. (D) The percentage of cells in sub-G1 

was measured (left quadrant) and statistical significance was determined by student t-test for 3 

independent samples. Bars represent SD; **, P<0.002. 

Phosphorylation Deficiency of RPA32 Promotes Loss of Mitochondrial Membrane Potential and 

Cytochrome C Release 

 We reasoned that cells with extensive and persistent DNA damage might not be able to 

maintain mitochondrial membrane potential across the inner membrane which is believed to play 

a role in the apoptotic process. The integrity of the mitochondrial membrane potential was 

evaluated using MitoTracker Red CMXRos, a fluorophore labeling active mitochondria. Cells 

were treated with CPT for 6, 12 or 24 hours, incubated for 30 min with the fluorophore and then 

harvested and analyzed by flow cytometry. PD-RPA32 cells had a significantly greater loss of 

mitochondrial membrane potential at all time points when compared to the WT-RPA32 cells 

(Figure 3-2A and 3-2B).  To further elucidate the cell death stimulated by PD-RPA32, we 

analyzed the release of cytochrome c. Cytochrome c acts as an important molecule at the early 

stages of the apoptosis pathway; its release from mitochondria into the cytosol leads to the 

activation of Caspase-9, which then converts Caspase-3 into its active form, resulting in 

apoptosis. To address this question, mitochondria and cytosol were isolated from WT-RPA32 

and PD-RPA32 cells after CPT or UV exposure. As shown in Figure 3-2C, cytochrome c was 

released into the cytosol of PD-RPA32 cells, but little of WT-RPA32 cells. Additionally, 

corroborating the results from Figure 3-1, the nuclear fraction of the PD-RPA32 cells showed 

significantly more PARP cleavage when compared to the WT-RPA32 cells (Figure 3-2C). This 

indicates that cytochrome c participates in the executioner phase of the apoptotic cell death 
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cascade and that the regulation of RPA phosphorylation in apoptosis is upstream of 

mitochondrial events.  

 

Figure 3-2. RPA32 Phosphorylation Deficiency Promotes Loss of Mitochondrial 

Membrane Potential and Cytochrome C Release. (A) Stable U2OS cells expressing WT- or PD- 

RPA32 were treated with 10 µM CPT for the indicated times and labeled using MitoTracker Red 

CMXRos. The percentages of cells with intact mitochondrial membrane potential (positively 

stained, right peak) were counted using flow cytometry. (B) Statistical significance was 

determined by student t-test for 3 independent samples. Bars represent SD; **, P<0.002. (C) 
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WT-or PD-RPA32 cells were treated with CPT (10 µM) or UV (30J/m2), then mitochondria, 

cytosol and nuclei were isolated and analyzed by western blotting.  

 

RPA32 Phosphorylation Deficiency Promotes Activation of Caspases  

Release of cytochrome c into the cytosol induces oligomerization of apoptotic peptidase 

activating factor 1 (APAF1) to form the apoptosome. The apoptosome then activates pro-

Caspase-9, the initiator Caspase in the intrinsic apoptosis pathway 107. Active Caspase-9, in turn, 

triggers the cleavage and activation of the executioner Caspase-3 and Caspase-7.  To address 

whether RPA phosphorylation has an effect in this cascade of events, we first analyzed the 

activation of Caspase-3. As shown in Figure 3A, executioner Caspase-3 was activated at a much 

higher rate in cells deficient in RPA32 phosphorylation. The activation of Caspase-3 was seen as 

early as 6 hours post-UV irradiation in PD-RPA32 cells. Additionally, Caspase-3 was activated 

with CPT and etoposide treatment, but not with HU (Figure 3-3B). Caspase-3/7 activities were 

measured by monitoring the cleavage of the tetra-peptide sequence DEVD, a Caspase-3/7 

substrate. As Figure 3-3C shows, Caspase-3/7 activities were elevated in PD-RPA32 cells after 

etoposide treatment, but not in the WT-RPA32. To further elucidate the apoptotic pathway, 

Figure 3-3C shows that PD-RPA32 cells activated Caspase-9 and Caspase-7 after exposure to 

CPT and UV while WT-RPA32 had little Caspase-9/7 activities.   
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Figure 3-3. RPA32 Phosphorylation Deficiency Promotes Activation of Caspases. (A) 

Stable U2OS cells expressing WT- or PD- RPA32 were treated with 30J/m2 UV and allowed to 

recover for the indicated times. Whole-cell lysates were analyzed by western blotting for cleaved 
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Caspase-3. (B) Cells were treated with 10 µM CPT, 100 µM etoposide, 2 mM HU for 12 hours, 

or were irradiated with 30 J/m2 UV and let to recover for 12 hours.  Cells were harvested and 

analyzed as in (A). (C) Cells were treated with 300 µM Etoposide for 24 hours and Caspase-3/7 

activities were measured using the luminogenic Promega Caspase-Glo assay. Statistical 

significance was determined by student t-test for 3 independent samples. Bars represent SD; **, 

P<0.002. (D) Cells were treated with 10 µM CPT for 12 hours or irradiated with 30 J/m2 UV and 

let to recover for 12 hours. Whole-cell lysates were analyzed for the cleavage of Caspase-9, 

Caspase-7 and Caspase-6 by western blotting. 

	  
RPA32 Phosphorylation-Dependent Apoptosis is Dependent on ATM 

CPT’s ability to generate DSBs depends on replication, making it an important 

chemotherapy agent because it targets rapid replicating cells. Since RPA is extremely important 

for replication 64 and because RPA32 phosphorylation after CPT treatment prevents RPA’s 

association with p53 89, we will primarily use CPT as our apoptosis-inducing agent.   

Non-repaired DSBs are a main trigger of apoptosis 108 and generally DSBs evoke the 

ATM-ATR signaling pathway 109. To test whether these two members of the PIKK family have 

any role in the RPA32 phosphorylation-deficiency induced apoptosis, we used caffeine, a widely 

used radio-sensitizing agent that has been shown to inhibit the kinase activities of ATM and 

ATR 110-113, the ATM kinase inhibitor Ku55933, and the ATR kinase inhibitor NU6027. Figure 

3-4A shows that caffeine and the ATM/ATR inhibitors were able to diminish the cleavage of 

PARP after CPT treatment in both WT-RPA32 and PD-RPA32; however, when we used the 

ATM and the ATR inhibitors individually, we found that the inhibition of apoptosis was only 

dependent on ATM but not on ATR (Figure 3-4B and 3-4C).  
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Figure 3-4. RPA32 Phosphorylation-Dependent Apoptosis is Dependent on ATM. (A) 

Stable U2OS cells expressing WT- or PD- RPA32 were synchronized in S phase, thereafter, 

caffeine or ATM/ATR inhibitors were added to the culture for 1 hour. Cells were then treated 

with CPT for 12 hours in the presence of caffeine or the ATM/ATR inhibitors. Cells were 

harvested and whole cell lysates were loaded in SDS-PAGE. (B,C) Cells were synchronized in S 

phase and treated with ATR inhibitor (B) or ATM inhibitor (C). 1h after the addition of ATR or 

ATM inhibitor cells were treated with CPT for 12 hours in the presence of the inhibitors. Whole-

cell extracts were then loaded in SDS-PAGE.  
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Effect of DNA-PK on RPA32 Phosphorylation Deficiency-Induced Apoptosis 

 We, as well as others, have shown that the induction of RPA32 phosphorylation after 

CPT treatment is attributed to DNA-PK 41,89 and not to any other PIKK family member. If the 

apoptotic phenotypes that are observed in the PD-RPA32 cells are due to lack of RPA32 

phosphorylation, we should be able to mimic this apoptotic response by inhibiting the kinase 

activity of DNA-PK in the WT-RPA32 cells. Figure 3-5A shows that in the WT-RPA32 cells 

both the DNA-PK inhibitor and the siRNA to DNA-PK inhibited the phosphorylation of RPA32. 

The apoptotic response of the WT-RPA32 cells was amplified with this inhibition; the 

percentage of PARP-1 degradation after CPT treatment in the presence of the DNA-PK inhibitor 

was significantly increased when compared to control sample that had no DNA-PK inhibitor 

(Figure 3-5A, compare lanes 2 with 4). Similar results were obtained with the siRNA to DNA-

PK (Figure 3-5A, compare lanes 6 and 8). Additionally, the amount of Caspase-3 cleavage and 

the percentage of PARP-1 degradation were proportional to the dose of DNA-PK inhibitor used 

(Figure 3-5B). As the concentration of the DNA-PK inhibitor was increased, so was the amount 

of Caspase-3 cleavage and PARP-1 degradation in the WT-RPA32. Overall, Figure 3-5 shows 

that the phosphorylation of RPA32 is important for the signal transduction that directs the cell 

towards apoptosis and that the signaling pathway is dependent on DNA-PK.     
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Figure 3-5. Effect of DNA-PK on RPA32 Phosphorylation Deficiency-Induced 

Apoptosis. (A, lanes 1-4) Stable U2OS cells expressing WT- or PD- RPA32 were synchronized 

in S phase and treated with DNA-PK inhibitor 1 hour before CPT treatment (10 µM, 18 hours). 

Whole-cell lysates were prepared and analyzed by western blotting. (A, lanes 5-8) Cells were 

transfected with siRNA to DNA-PK for a total of 48 hours. Before CPT treatment (10 µM, 18 

hours) cells were synchronized in S phase as described in Materials and Methods. Prepared 

whole-cell lysates were analyzed by western blotting. (B) Stable U2OS cells expressing WT- or 

PD- RPA32 were treated with increasing concentrations of DNA-PK inhibitor 1 hour before CPT 

treatment (18 hours). Whole-cell lysates were prepared and analyzed by western blotting. 
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Numbers indicate the ratio of cleaved-Caspase-3 in WT-RPA32 to cleaved-Caspase-3 in PD-

RPA32 cells. 

 

Effect of p53 on RPA32 Phosphorylation Deficiency-Induced Apoptosis 

 We noticed that in S phase synchronous cells treated with CPT the levels of p53 in the 

PD-RPA32 cells were higher than that of the WT-RPA32 (Figure 3-6A, lanes 1and 2). So we 

investigated the involvement of p53 in the induction of apoptosis in these cells. Our results 

revealed (Figure 3-6A) that when p53 was depleted using siRNA, the amount of PARP-1 

cleavage in the PD-RPA32 cells decreased to the level seen in WT-RPA32 cells (lanes 3 and 4). 

Additionally, cleaved Caspase-3 levels were decreased. Similar results were obtained when p53-

dependent transactivation was inhibited by pifithrin-α: the amount of cleaved PARP-1 (c-PARP-

1) in the PD-RPA32 cells was reduced to the same levels of the WT-RPA32 cells (Figure 3-6b). 

Furthermore, overexpression of p53 revealed that the amount of PARP-1 degradation in the WT-

RPA32 increased when compared to the control WT-RPA32 that had basal p53 levels (Figure 3-

6C, lanes 3 and 4), suggesting that abundance of p53 in the cell enhances the induction of 

apoptosis. Overall, Figure 3-6 indicates that the induction of apoptosis by the lack of RPA32 

phosphorylation is mediated by p53 through its transactivation pathways.  
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Figure 3-6. Effect of p53 on RPA32 Phosphorylation Deficiency-Induced Apoptosis. (A) 

Stable U2OS cells expressing WT- or PD- RPA32 were transfected with siRNA to p53 for a total 

of 48 hours. Before CPT treatment cells were synchronized in S phase as stated in Materials and 
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Methods. Prepared whole-cell lysates were analyzed by western blotting. (B) Cells were treated 

with pifithrin-α for 2 hours to inhibit the transcriptional activity of p53. Cells were treated with 

10 µM CPT for 18 hours in the presence of pifithrin-α. Whole-cell lysates were analyzed by 

western blotting. Anti-pRPA32-Ser4/8 was used to detect bands specific to Ser-4/8 

phosphorylated in RPA32 (C) U2OS cells were transfected with p53 wild-type for 48 hours, 

synchronized in S phase and treated with 10 µM CPT for 6 hours. Whole cell lysates were then 

loaded in SDS-PAGE and were analyzed by western blotting. 

 

Lack of RPA32 Phosphorylation Stimulates the Expression of PUMA 

PUMA is a BH-3 only family member originally identified as a p53-inducible gene. The 

BH-3-only family members also include Bad, Bid, Bik, Hrk, Bim and Noxa; which promote 

apoptosis by antagonizing anti-apoptotic proteins through their BH3 domain interactions 101. 

Specifically, PUMA is thought to bind Bcl-2 and Bcl-XL and promote cytochrome c release and 

apoptosis 102,103. Figure 3-7A shows whole cell lysates analyzed by western blotting of both PD-

RPA32 and WT-RPA32 cells treated with CPT after S phase synchronization in which the total 

levels of PUMA in the PD-RPA32 cells were elevated when compared to the WT-RPA32. The 

elevated levels of PUMA correlate with the higher levels of PARP-1 degradation. In addition, 

cellular fractionation confirmed the abundance of PUMA in the cytosolic fraction of PD-RPA32 

cells and not in the WT-RPA32 cells (Figure 3-7B).  
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Figure 3-7. Lack of RPA32 Phosphorylation Stimulates the Expression of PUMA. 

(A) Stable U2OS cells expressing WT- or PD- RPA32 were synchronized in S phase as indicated 

in Material and Methods and treated with 10 µM CPT for the indicated times. Whole cell lysates 

were analyzed by western blotting. (B) Mitochondria, cytosol and nuclei were isolated at 8 hours 

after CPT (10 µM) or UV (30 J/m2) treatments. Samples were then analyzed by western blotting.  

 

Discussion 

 

The mechanism that dictate whether a cell should stop dividing and enter the self-death 

pathway remain largely obscure and correspond to a major challenge in cancer research. 

Defective or inefficient apoptosis is an acquired hallmark of cancer; thus, understanding the 
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mechanism used to avoid apoptosis will expose efficient treatments for the eradication of such 

cells. In this project, we reveal a novel role of RPA32 phosphorylation in the DNA damage 

response that links lack of RPA32 phosphorylation to the induction of apoptosis.  

Although we observed the enhanced activation of apoptosis in PD-RPA32 cells after the 

use of various genotoxic agents such as etoposide and UV light (Figure 3-1 and 3-3B), we 

decided to focus on dissecting the signaling cascade after CPT treatment only. CPT-treated PD-

RPA32 cells showed enhanced PARP-1 degradation and Caspase-3 cleavage (Figure 3-1 and 

Figure 3-3), in addition to increased of sub-G1 phase population (Figure 3-1C and 3-1D), 

augmented loss of mitochondrial membrane potential (Figure 3-2A and 3-2B), and significantly 

more cytochrome c release from mitochondria into cytosol (Figure 3-2C) when compared to the 

WT-RPA32.  

We show that the signaling cascade that leads to apoptosis in CPT-treated cells is 

dependent on the kinase activity of DNA-PK. Results in Figure 3-5 show that DNA-PK 

inhibition and not ATM or ATR, results in increased apoptosis in the WT-RPA32 cells. 

Moreover, such increase of apoptosis in the DNA-PK-inhibited WT-RPA32 mimics the high 

amounts of apoptosis seen originally in PD-RPA32 cells without the DNA-PK inhibition. In 

agreement with previous publications exhibiting DNA-PK as the kinase responsible for 

phosphorylating RPA32 after CPT treatment 41,89, the results in Figure 3-5 show that by using an 

alternative mechanism for impeding the phosphorylation of RPA32, in this case by limiting the 

kinase activity of DNA-PK, we are able to enhance the induction of apoptosis.  

Additionally, when the kinase activity of ATM is inhibited, not that of DNA-PK or ATR, 

the signal that triggers apoptosis diminishes in both cell lines.  This piece of evidence puts ATM 

as an important checkpoint activator for the CPT response that leads to apoptosis in these cells, 
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but it also shows that ATM is not a modulator of the response. In other words, because ATM 

inhibition cause the same effect in both WT- and PD- RPA32 cells, ATM does not account for 

the enhanced apoptotic response seen in the cells incapable of undergoing RPA32 

phosphorylation.  

Thereafter, Figure 3-6 shows that the p53-dependent pathway modulates the activation of 

apoptosis in PD-RPA32. PD-RPA32 cells induce higher levels of p53 when treated with CPT 

and the inhibition of p53 by siRNA results in the reduction of the apoptotic response in this cell 

line (Figure 3-6A and 3-6B). Furthermore, the overexpression of p53 was able to increase 

apoptosis in WT-RPA32 cells while the PD-RPA32 cells did not show a significant change 

(Figure 3-6C). In addition, the p53 transcriptional activity plays a role in the activation of 

apoptosis as pifithrin-α, a p53 transcriptional inhibitor, decreases the apoptotic signaling in PD-

RPA32 cells (Figure 3-6B). Finally, CPT-treated PD-RPA32 cells activate the canonical p53 

target PUMA which is a direct inducer of apoptosis (Figure 3-7) 103.  

During this study, we discovered that CPT treatment is a good vehicle for analyzing the 

behavior of RPA phosphorylation in the induction of apoptosis. CPT is a topoisomerase I 

inhibitor which generates DSBs when the replication machinery crashes into the topoisomerase 

I-nicked DNA intermediate complex. For this reason, CPT is a more potent chemotherapy drug 

in actively replicating cells because it can generate high amounts of DSBs. Together with 

previous data stating that the replication machinery can discriminate the hyperphosphorylated 

state of RPA32 and prevents hyperphosphorylated RPA from stable association with pre-

replication origins (Figure S3-1) and replication centers 64 leads us to infer that, upon CPT 

treatment, the PD-RPA32 cells are unable to slow down replication; thus, generating more DSBs.  
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Meanwhile, WT-RPA32 cells are able to dissociate from replication centers and slow down 

replication because of the phosphorylated stated of RPA32, generating fewer DSBs. 

Additionally, our lab and others have shown that the hyperphosphorylated state of 

RPA32 is important for efficient repair of DSBs 62,89. The generation of more abundant DSBs by 

the PD-RPA32 cells and the fact that prompt repair of the DNA lesions requires RPA32 

phosphorylation 62,89 points us to believe that the augmented apoptotic response is due to these 

two factors: inefficient repair and augmented generation of DSBs. Moreover, the results in 

Figure 3-5 show that the inhibition of DNA-PK increases the apoptotic response of the WT-

RPA32 cells, revealing that the apoptotic signal from PD-RPA32 cells is, in part, a cause of 

inefficient repair considering that the major role of DNA-PK is in the initiation of DSB repair by 

NHEJ. Additionally, HU-treated cells did not show enhanced apoptosis in PD-RPA32 cells 

(Figure 3-1B and Figure 3-4B). HU is a chemotherapy drug that reduces the production of 

deoxyribonucleotides (dNTPs) via the inhibition of ribonucleotide reductase. The treatment of 

HU initially results in stalled replication forks that, after prolong treatment, collapse into DSB’s. 

The lack of apoptosis seen after HU treatment could be attributed to the innate characteristic of 

HU taking extended periods time to generate DSB’s.  In addition, in the PD-RPA32 background 

specifically, the lack of DSBs generation in HU-treated cells could be credited to HU itself 

inhibiting replication by the depletion of dNTPs. When replication is inhibited by other means, in 

this case by HU, the generation of DSBs is not enhanced by the lack RPA32 phosphorylation. In 

other words, HU-treated cells do not use the phosphorylation of RPA32 as the main sensor for 

signaling the stoppage of replication. Other drugs used in this study (etoposide, CPT and UV) 

that show up-regulated apoptotic response do not slow down replication directly. 
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Taken together, our results show that the inhibition of RPA32 phosphorylation enhances 

the apoptotic response of CPT-treated cells by the complementary contribution of two cellular 

machineries: DNA replication and DNA repair. By using CPT and disabling RPA32 

phosphorylation, the generation of DNA damage is increased by pressing the cells to continue 

replicating while topoisomerase I-nicked intermediates generate; thus, creating higher levels of 

DSBs. Meanwhile, the DSB repair machinery is hampered by the lack of phosphorylation of 

RPA32 62,89. The combination of both augmented DSB production and inefficient DSB repair by 

CPT-treated PD-RPA32 cells could be of importance for generating more efficient 

chemotherapies.  
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CHAPTER 4 

 

SUMMARY AND CONCLUSIONS 

 

Human health is challenged every day by the constant exposure to a variety of genotoxic 

agents which cause DNA damage, mutations and potentially cancers. The major biological 

defense system against DNA damage is the DNA repair machinery that recognizes and removes 

DNA lesions in cells. It is believed that efficient DNA repair occurs in cells through the coupling 

of the DNA repair machineries with DNA damage checkpoints. RPA is a eukaryote single-

stranded DNA-binding protein shown to be directly involved in a variety of DNA metabolic 

pathways. Importantly, the RPA32 subunit undergoes N-terminal hyperphosphorylation (hyp-

RPA32N) by DNA damage checkpoint kinases and this hyperphosphorylation is crucial for the 

cellular responses to DNA damage. Therefore, in this project we addressed the notion that the 

recognition of the hyp-RPA32N motif would represent a newly stimulated interaction between 

the new form of RPA and the recognizing protein. This recognition may also disrupt native RPA 

interaction with other proteins. Previously, our lab has shown that, upon hyperphosphorylation, 

RPA undergoes a structural reorganization featured by the binding of hyp-RPA32N to DBD-B in 

RPA70 60.   Because DBD-B is involved in many RPA-protein interactions, we hypothesized that 

a competitive binding on hyp-RPA32N to DBD-B may inhibit these RPA-protein interactions. 

The change in equilibrium marked by this type of dynamic competition is believed to be the 

basis for the regulation that modulates the different biochemical pathways in cells. This hands-

off/hands-on mechanism may allow RPA to coordinate different components of the DNA 

damage response mechanisms.  



	   95	  

Of particular interest is the RPA-p53 interaction. p53 is a tumor suppressor and plays a 

critical role in cellular DNA damage responses, particularly DNA damage checkpoints. 

Importantly, the RPA-p53 interaction inhibits homologous recombination 52. In other words, the 

disruption of RPA-p53 binding increases HR activity in cells. Since HR is required for repair of 

DSBs and hyperphosphorylation of RPA enhances RPA interaction with Rad51 and Rad52 62, 

two pivotal proteins for HR repair, we decided to conduct studies to address the regulation of the 

switch-on and –off mechanism of the RPA-p53 complex. Conclusively, we found in Chapter 2 of 

this dissertation that the RPA-p53 interaction is modulated via site-specific post-translational 

modifications on both p53 and RPA (Figure 2-7e). Specifically, after DNA damage, RPA is 

hyperphosphorylated by DNA-PK at multiple sites in RPA32N while p53 is phosphorylated by 

ATM and ATR at Ser-37 and Ser-46, respectively (Figure 2-5).  Such molecular alterations 

interfere with RPA binding to the N-terminus of p53, therefore, freeing RPA and p53. Figure 2-6 

and Figure 2-7 show that a deficiency in RPA phosphorylation and release from the p53–RPA 

complex significantly reduces repair efficiency of DSBs induced by CPT. In parallel, the 

released hyp-RPA binds much more efficiently to Rad51 than does native RPA (Figure 2-6d) 

suggesting that the phosphorylation of RPA and p53 not only releases RPA during the DNA 

damage response, but also allows RPA to more efficiently recruit Rad51 to the DSB sites during 

an early step of HR, thus promoting the repair process. In addition, the study in Chapter 2 

addresses a lingering hypothesis in the DNA repair field on the cross-communication of the two 

independent DSB repair pathways: HR and NHEJ 91. Before this study, no detailed mechanism 

had been offered for the collaboration of HR and NHEJ in DSB repair. The results in Chapter 2 

provide evidence that DNA-PK, the hallmark protein of NHEJ, together with ATR and ATM 

have a regulatory role in HR repair efficiency of CPT-induced DSBs. Our findings also show, for 
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the first time, that all three major PIKK family members together are involved in the DNA 

damage response for DSB repair. Upon DNA damage DNA-PK, ATM or ATR phosphorylates 

specific sites of p53 or RPA to make a synergistic contribution to inducing p53–RPA 

dissociation for effective HR repair. Taking together, the switch-on and –off  interaction between 

RPA and p53 constitute an important mechanism for the regulation of DSB by HR with the 

concomitant contribution of DNA-PK. 

 The exact mechanisms that command the switch from stoppage of cell division to 

initiation of cell death remain obscure and still correspond to one of the major challenges in 

cancer research. Major research has been conducted in understanding the mechanisms that lead 

to apoptosis for improving therapeutic efficacy and selectivity in killing cancer cells 23.  Because 

RPA has been reported to be involved in many pathways of the DNA damage responses and the 

fact that, upon phosphorylation, RPA modulates many cellular processes, we hypothesize that 

the inhibition of RPA phosphorylation could become an important target for the sensitization of 

cancer cell killing. One key property of all cancer cells is accelerated growth. This uncontrolled 

growth is due to a series of breaches in the checkpoint machinery that leads to inefficient 

stoppage of replication. Some chemotherapy drugs already take advantage of this accelerated 

growth; prominent examples are the analogues of topoisomerase I inhibitor camptothecin (CPT), 

which act by generating DSBs when the replication machinery crashes into the topoisomerase I-

nicked DNA intermediate complex. CPT is able to generate DSB’s only in actively replicating 

cells, so the killing effects of CPT are potent in cancer cells. Additionally, RPA32 

phosphorylation prevents RPA association with replication centers 64 and suppresses the 

activation of origin firing (Figure S3-1, unpublished data). Both pieces of evidence suggest that 

the replication machinery can discriminate the hyperphosphorylated state of RPA32 and impede 
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the initiation of replication. This discrimination has been also shown to lead to stoppage of 

replication by activation of cell cycle checkpoints 61. Taken together, the inhibition of RPA 

phosphorylation after DNA damage can cause failure in arresting the cell cycle.  

Because of both, CPT’s killing effects being dependent on replication and lack of RPA 

phosphorylation leading to failure of cell cycle arrest, we hypothesized that this combination 

should enhance cell death in cancer cells. Conclusively, in Chapter 3 we found that lack of 

RPA32 phosphorylation in CPT-treated cells leads to enhanced apoptosis. Specifically CPT-

treated PD-RPA32 cells showed augmented PARP-1 degradation (Figure 3-1A), Caspase-3 

cleavage (Figure 3-3), sub-G1 cell accumulation (Figure 3-1C and 3-1D), loss of mitochondrial 

membrane potential (Figure 3-2A and 3-2B), and cytochrome c release into the cytosol (Figure 

3-2C) when compared to the WT-RPA32. Additionally, we found that the signaling cascade that 

leads to apoptosis in the PD-RPA32 cells is affected by the kinase activity of DNA-PK and is 

achieved by the augmentation of p53 levels in the cell. Higher levels of p53 are caused by the 

generation of persistent DSBs (Figure 2-6A and 2-6B) and activation of the sensor kinase ATM. 

Augmented p53 levels, in turn, induce higher amounts of apoptosis modulator PUMA. Our 

results suggest that the lack of RPA32 phosphorylation enhances apoptosis, illuminating a novel 

target that lies on the crossroads of DNA repair and cell death which could be of importance to 

the sensitization of cancer cells to chemotherapy. 
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APPENDICES 

 

APPENDIX A 

 

SUPPLEMENTARY FIGURES 

 

 

Figure S2-1. Modulation of p53-RPA Binding is Dependent on ATM and ATR. HCT-116 

ATR-/- cells were synchronized in S phase as stated in Materials and Methods Chapter 2 and 

treated with 10 µM ATM inhibitor (Ku55933) for 1 hour prior to CPT treatment (10 µM for 2.5 

hours). Whole cell lysates were subjected to DNase I digestion and 5% of the sample was loaded 

as input. IP was subsequently performed using anti-p53 antibody and co-immunoprecipitated 

proteins were analyzed by western blotting with the indicated antibodies. Bottom figure shows a 

western blot of whole cell lysates of HCT-116 ATR+/+ and HCT-116 ATR flox/- cells used in this 

figure.  
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Figure S2-2. Hyperphosphorylation of RPA Promotes RPA-Rad51 Interaction. Stable 

U2OS WT or PD cells were synchronized in S phase with APH, and then treated with 10 µM 

CPT for 3 hrs. Chromatin was isolated and incubated with DNase I. Subsequently, samples were 

incubated with anti-p53 antibody and co-immunoprecipitated proteins were analyzed by western 

blotting (lanes 3-4). The supernatant after IP was immunoprecipitated again using Rad51 

antibodies and analyzed (lanes 5-6). 
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Figure S2-3. Effects of ATR, ATM, Chk2 and Chk1 on p53-RPA Interaction. A549 cells 

were transfected with siRNAs targeting ATM, ATR, Chk1, Chk2 or combinations for 48 hours. 

Cells were treated with 10 µM CPT for 3 hrs to induce RPA phosphorylation. Whole cell lysates 

were prepared and analyzed by western blotting to confirm silencing (bottom). Nuclear lysates 

were isolated and treated with DNase I. Samples were incubated with anti-p53 antibodies and co- 

immunoprecipitated proteins were analyzed by western blotting. 
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Figure S3-1. Hyperphosphorylated RPA is Unable to Associate with Replication Origins. 

Stable U2OS WT or PD cells were synchronized in S phase with APH, followed by treatment 

with 10 µM CPT for 3 hrs. Chromatin Immunoprecipitation (ChIP) assay was performed 

following a previously published procedure 114. After treatment, cells were incubated with 

formaldehyde to crosslink interacting protein-DNA and protein-protein complexes. The 

crosslinking reaction was terminated with 250 mM glycine in PBS. Nuclei were prepared by 

fractionation. The chromatin was sheared to 200-1500 bp fragments by sonication. The sheared 

chromatin was then incubated with anti-ORC2 (a subunit of ORC) antibody, followed by 

precipitation with Protein G Sepharose beads. The immunoprecipitates were boiled for 30 

minutes to reverse the crosslinks. Proteins that co-precipitate with replication origin-containing 

chromatin were detected by western blotting. Top panel: western blotting with anti-RPA32 

antibody. The arrow indicates the hyperphosphorylated forms of RPA32. Bottom panel: western 

Blotting with anti-ORC2.  It has been well documented that one of the prerequisites for initiation 

of DNA replication is the binding of RPA to the short ssDNA region of the DNA bubble and its 

interaction with ORC (origin recognition complex) at replication origins 115.  This data suggest 

that the hyperphosphorylation of RPA32 inhibits its interaction with the replication origins thus 

inhibiting origin firing or the start of replication. 
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APPENDIX	  B	  

	  

ABBREVIATIONS	  

	  

DN, dominant negative 

LOH, loss of heterozygosity 

GOF, gain of function 

9-1-1 complex, Rad9-Rad1-Hus11 complex 

ATM, Ataxia telangiectasia mutated 

ATR, Ataxia telangiectasia and Rad3 related 

ATRIP, ATR interacting protein 

BER, base excision repair 

ChIP, chromatin immunoprecipitation assay 

CPT, camptothecin 

DBD, DNA-binding domain 

DDR, DNA damaged response 

DMEM, Dulbecco’s modified Eagle medium  

DNA-PK, DNA-dependent protein kinase 

DNA, deoxyribonucleic acid 

DSB, double-strand break 

DSBR, double-strand break repair 

dNTPs, deoxyribonucleotides 

FBS, fetal bovine serum 
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HR, Homologous recombination 

HtH, helix-turn-helix 

hyp-RPA32, hyperphosphorylated RPA32 

hyp-RPA32N, hyperphosphorylated N-terminus of RPA32 

IDL, insertion of a deletion loop 

IR, ionizing radiation 

kDa, kilo Dalton 

LFS, Li-Fraumeni syndrome 

MMR, mis-match repair 

MRN, Mre11/Rad50/NBSI complex 

NER, nucleotide excision repair 

NHEJ, nonhomologous end joining 

OB-fold, oligonucleotide/oligosaccharide binding fold. 

PARP-1, Poly-ADP ribose polymerase-1 

PD-RPA32, phospho-deficient replication protein A 32 kDa subunit   

PI 3-kinase, phophoinositide 3-kinase 

RFC, replication factor C 

RPA, replication protein A 

RPA14, replication protein A 14 kDa subunit 

RPA32, replication protein A 32 kDa subunit 

RPA32N, N-terminus of RPA32 

RPA70, replication protein A 70 kDa subunit 

SDS-PAGE, sodium docecyl sulfate polyacrylamide gel electrophoresis 
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siRNA, small interfering ribonucleic acid 

SSBR, single-strand break repair 

ssDNA, single-stranded DNA 

SV40, Simian vacuolating virus 

WT-RPA32, wild-type replication protein A 32 kDa subunit 

XRCC4, X-ray repair cross-complementin protein 4 
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