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ABSTRACT 

 

Adaptive Strategies for Foraging and Their Implications for Flower Constancy, or:  

Do Honey Bees Multitask? 

 

by 

 

Ashley E. Wagner 

 

Classical experiments on honey bee time-memory showed that foragers trained to collect food at 

a fixed time of day return the following day with remarkable time-accuracy. Previous field 

experiments revealed that not all foragers return to a food source on unrewarded test days. 

Rather, there exist 2 subgroups: “persistent” foragers reconnoiter the source; “reticent” foragers 

wait in the hive for confirmation of source availability. To examine how these foragers 

contribute to a colony’s ability to reallocate foragers across sources with rapidly changing 

availabilities, foragers were trained to collect sucrose during a restricted window for several days 

and observed over 3 days throughout which the feeder was empty. In 2 separate trials, activity 

monitoring revealed a high level of activity apparently directed at other food sources. This 

“extracurricular” activity showed extensive temporal overlap with visits to the feeder, indicating 

that honey bees can manage at least 2 different overlapping time memories. 
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CHAPTER 1 

INTRODUCTION 

 

What is multitasking? Is it fair to say that any instance of being engaged in 2 or more 

tasks at once constitutes multitasking? If someone is chewing gum, walking down a flight of 

stairs, and talking on the phone simultaneously, would this be multitasking? Critically evaluating 

the situation, most people would tend to say that such a scenario does not truly involve 

multitasking but would have a difficult time explaining why. To determine if a honey bee or 

anything (or anyone) else is multitasking at a given moment, a satisfactory definition of this 

process must first be established.  

Returning to the previous example, the most likely explanation for why walking and 

chewing gum are not sufficient to constitute multitasking is that each is controlled by a central 

pattern generator (CPG) in the spinal cord, and thus neither requires conscious thought once the 

task has been initiated. In insects such as the honey bee, CPGs also control activities such as 

flying and feeding (Pearson and Gordon 2000). If we exclude these and other functions that do 

not require conscious attention (e.g. breathing), then we are left with a very short list of functions 

that may be engaged simultaneously (e.g. speaking, operating something by hand, listening). 

However, consider the outcome if someone attempts to speak while typing a letter. Although the 

tasks are not in physical conflict with one another, the task performer will almost invariably be 

forced to switch attention between the activities (i.e. planning what to say and planning what to 

write), and there is likely to be a physical lag in each activity caused by this switching (Pashler 
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2000). If each task is not truly performed simultaneously (that is, if task switching must occur), 

are we willing to discount this scenario as multitasking as well?  

Before we decide, it may be worthwhile to visit upon the history of the word itself, where 

it has been used in the computer industry to describe the ability of a processor to complete 

multiple tasks at once. Not unlike the human brain, early single core processors were only 

capable of addressing a single task at a time, and the ability to multitask only arose when the 

processor rapidly switched between performing 2 tasks (albeit the processor was switching at 

several times per second) (Clements 2006). Later advances that allowed for the creation of 

multicore processors brought about what are regarded as “true” multitasking processors. Given 

that the argument could be made that humans are not inherently capable of sustained 

multitasking, the current limits of the human brain dictate that some concessions must be made 

in our definition of multitasking if we intend to apply the term to human behavior at all, let alone 

that of insects.  

Still, relaxing our definition of multitasking does not necessarily detract from the 

probability that it represents some form of higher-order functioning. If we delve more deeply 

into the existence of multitasking in humans, it is not altogether surprising to find that this ability 

can be disturbed by brain lesions while the ability to engage in singular tasks remains largely 

unperturbed (Shallice and Burgess 1991; Burgess et al. 2000). The resulting disability is known 

as “strategy application disorder”, which is marked by a patient’s deficit in what may be 

described as “multiple sub-goal scheduling” (Shallice and Burgess 1991). A key component of 

the inability to successfully perform in such situations arises from failings in the ability to form 

and act upon time-delayed intent (Burgess et al. 2000). For example, someone with strategy 
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application disorder would be unable to effectively complete 3 tasks in a given time frame, such 

as starting laundry, brushing teeth, and walking the dog all within 30 minutes. Although it is 

tempting to adopt this as a definition for honey bee multitasking, we must be more specific as to 

the time component. However, determining what the duration of such a timing component 

should be is not entirely straight-forward and must be dictated by our knowledge of honey bee 

behavior in multiple spheres, as we will soon see.  

Aristotle was not known to be a beekeeper, but he had observed that forager honey bees 

performed what is now known as flower constancy (Aristotle and Cresswell 1902). Bennett 

(1883) and Christy (1883) more carefully demonstrated that honey bees indeed exhibited flower 

constancy; however, what is the significance of such constancy? Constancy to a given floral 

species is important to the evolution of foraging insects, as it is commonly believed that the 

coevolution of flowers and their pollinators could not have occurred without it (Darwin 1876). 

The failure to achieve pollination is undesirable for both the plant itself and the honey bee, as the 

long-term survival of honey bees depends on the relative availability of nectar and pollen (which 

will become scarcer in environments where pollination is not able to occur readily).  A bee has 

the potential to demonstrate flower constancy over the course of a single foraging bout, a day, 

multiple days, or even her lifetime. Notably, the constancy of a bee to a given source appears to 

diminish as the length of this frame of reference expands (Free 1963) (i.e. honey bees display the 

highest levels of flower constancy over a single foraging bout and less constancy over multiple 

bouts and days of foraging).  

As to the significance of flower constancy to multitasking, failure to remain flower 

constant within a single bout of foraging or across a single day (where foragers would 
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traditionally be expected to remain flower constant) could be construed as an act of multitasking, 

depending on precisely how it is defined. For simplicity, we will define multitasking for forager 

honeybees here by the creation and subsequent activation of multiple intentions within a single 

foraging bout. That is, a forager must be required to not only create intentions based on prior 

foraging experience as she works, but she must also activate those intentions on an observable 

(behavioral) level. 

Where the assumptions of within-bout flower constancy are broken (foragers are visiting 

more than a single flower species without returning to the hive), foragers might violate this 

assumption in 1 of 2 basic ways: 1, by exploiting a single source and successively exploiting a 

secondary source or 2, by alternating between the exploitation of 2 different sources (Betts 

1920). The collection and subsequent examination of the pollen loads of returning foragers can 

be used to determine the constancy of bees over a given foraging bout, Pollen loads can be 

distinguished by the manner in which foraging took place (successive or alternate foraging). That 

is, clearly visible demarcations will often exist in the pollen load itself where one load was 

packed on top of another when bees worked 2 sources in succession (a “segregated” load), or 

pollen grains from two different species may be a virtually homogenous mixture when bees 

continuously alternated between 2 sources throughout a foraging bout (a “mingled” load) (Betts 

1920).  

Several such observations on the contents of bees’ pollen baskets have been undertaken 

(Betts 1920; Clements and Long 1923; Brittain and Newton 1933). Betts (1920) sampled the 

greatest number of pollen loads and recorded the lowest estimate of mixed loads (likely no more 

than 5% of the total number of pollen loads). Betts also observed that, for the mixed loads 
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examined, a majority were found to be of the homogenous type, in spite of the fact that sampling 

bias would have tended to cause the oversampling of those loads that were collected from 2 

species successively (it is easier to observe a mingled load than a segregated load during 

collection). Identification of the plant species from which these pollen loads originated suggested 

that in cases where foragers were not flower constant, this may have been due almost exclusively 

to the proximity of the secondary source.  

Such findings with regards to proximity are consistent with observations on place 

constancy in the honey bee, that is, the tendency of honey bees to remain constant to a particular 

location (Butler et al. 1943a; Grant 1950), where constancy to a floral species simply may be 

incidental due to the tendency of flowers to occur in clusters (Chittka et al. 1999). However, 

Chittka’s argument that flower constancy is driven primarily by place preference seems unlikely 

due to the rarity with which Betts detected pollen loads containing 3 or more species, even when 

the available forage sites included multifloral gardens. A similar explanation for the relationship 

of source fidelity to place preference is presented by Free (1963) in review of work done by 

Ribbands (1949) where 2 out of 5 bees were observed to visit 2 or more floral species during a 

single foraging bout in a garden. In either case, there may be cases when a forager abandons a 

source that has become poor in quality and switches to a new source (e.g., by scouting). While 

this may look indistinguishable from multitasking to the uninformed observer, this would 

actually be a case of permanently starting a new occupation.  

Indeed, the incidental collection of pollen from 2 sources that overlap spatially (resulting 

in a “mingled” pollen load) does not constitute multitasking if the associated task is simply 

“forage”. However, it is not necessarily true that place constancy must exist as a mutually 
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exclusive phenomenon from multitasking. Rather than individual source constancy and place 

constancy having arisen as 2 separate foraging strategies, place constancy may have developed 

as an energetically optimal solution to the problem of remaining constant at a source that has 

ceased to be profitable while beginning to forage at a secondary source as well. Considering that 

other commonly observed foraging strategies have been shown to be energetically optimal at the 

colony level (Van Nest and Moore 2012), this would hardly be surprising. Although speculative, 

such an interpretation is in keeping with observations that even those foragers that appear to have 

become place constant tend to restrict their foraging to no more than 2 species, even in gardens 

(Betts 1920). 

Recent work has discovered the apparent existence of 2 classes of foragers honey bees: 

persistent and reticent (Moore et al. 2011).  Persistent foragers were described as those that 

continued to make investigative flights to past-profitable feeders even when the feeder was 

empty, while reticent foragers appeared to remain in the hive awaiting confirmation by the 

persistent foragers of source availability via the waggle dance.  Given the necessity to ascertain a 

less ambiguous measure of forager intent in regards to a food source (i.e. if her presence is 

incidental due to place preference) and to examine how these 2 classes of foragers contributed to 

the allocation of forager resources in the colony, Wagner et al. (2013) expanded on this work, 

closely examining the behaviors of these 2 classes of foragers both at a defunct feeder (following 

multiple training days) and at the hive entrance.  

To describe the manner in which forager reallocation occurs with respect to persistent 

and reticent foragers, 3 hypotheses were proposed: it was first hypothesized that both persistent 

and reticent foragers would tend to remain faithful to the original food source and be slow to find 
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alternative sources, both displaying a period of nonprofitable employment where they remain 

exclusively faithful to the nonprofitable feeder. The second hypothesis proposed that persistent 

bees alone will tend to remain faithful to the original food source but reticent bees will not. Thus, 

reticent bees will only spend a short amount of time (perhaps a day) waiting for confirmation of 

source availability from persistent bees on the dance floor before becoming receptive to 

advertisement for other food sources, while persistent foragers will remain faithful for a longer 

period. The final hypothesis suggests that neither persistent nor reticent bees will remain faithful 

to the original food source for a substantial period of time, and thus both persistent and reticent 

foragers will begin visiting alternative food sources soon after determining that the feeder is not 

productive.  

The results of this study found that most foragers that continued to make inspection 

flights to a defunct feeder did so as a component of a longer foraging bout to other sources, most 

typically at the beginning or the end of such a bout. Although “checking” at either the beginning 

or the end of a foraging bout for another source might be construed as an attempt at source 

switching, this does not have a deleterious effect on our ability to consider this an act of 

multitasking because foragers were unambiguously attempting to exploit 2 different food sources 

with overlapping windows of food availability.  Management of activities and memories of 

multiple food sources that fall within a common time frame has not been described previously, 

with the exception of those studies that attribute alternately foraging from 2 species to proximity.  

Notably, in at least one case examined by the authors, the ‘extracurricular’ food source being 

exploited was observed to be adjacent to the table with the empty feeder (as would be consistent 

with descriptions of place preference (Grant 1950; Free 1963)).  Thus, this begs the question of 

whether this apparent violation of flower constancy during a single foraging bout was actually a 
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case of location constancy (although, as noted previously, the phenomenon of place constancy is 

not necessarily mutually exclusive with multitasking). Estimates of the total size of the area to 

which a honey bee may become constant, or “fixed” suggest an area with a diameter of 5 yards 

(Butler et al. 1943b), and while the sites discussed in Wagner et al. were slightly further apart 

than this, it seems reasonable to suggest that place constancy remains a plausible explanation for 

the behavior observed by this individual bee, calling into question whether or not this event 

clearly shows multitasking. However, the findings in regards to other individual foragers (who 

tended to make a brief yet deliberate visit to the defunct feeder at either the beginning or the end 

of an extended foraging bout) are less easily disputed as requiring some level of cognitive input 

to enable the use of 2 wholly separate food sources and foraging strategies.  

In addition to within-bout inconstancy, Wagner et al. (2013) also produced evidence that 

at least some of these foragers were aware of the existence of additional natural sources because 

they had already been exploiting them outside of the window of artificial feeder availability. This 

is consistent with observations showing that honey bees are capable of shifting their focus across 

multiple plants throughout the day (Philp and Vansell 1932). Taken collectively with previous 

literature (particularly that on pollen load purity), these findings suggest that, at minimum, a 

large proportion of a colony’s foragers are capable of managing memories for multiple sources 

(even those which may compete temporally); however, only under specific conditions do 

foragers actually engage in multitasking behavior.  Although multitasking stands out as 

potentially being a higher-order behavior, multitasking also provides an additional example of 

how honey bee behavior is extremely plastic in ways that enable efficient resource search and 

subsequent exploitation (Seeley 1984). Such adaptability is likely at the core of the honey bee’s 

success and has even allowed honey bees to out-compete native pollinators in regions where 
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honey bees have been introduced (Huryn 1997). In conclusion, it seems that there is strong 

evidence for the capability and existence of multitasking by honey bees. However, in practice, it 

seems that the majority of foragers tend to remain largely flower constant in situations where a 

single source is abundant and mixing of floral species tends to be relatively low. Ultimately, the 

implementation of multitasking strategies by foragers may represent an adaptive behavior to 

maximize resource exploitation.  
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CHAPTER 2 

PERSISTENCE, RETICENCE AND THE MANAGEMENT OF MULTIPLE TIME 

MEMORIES BY FORAGER HONEY BEES 

 

Running Title: Multiple time memory expression in honey bees 

 

Abstract 

Honey bee foragers form time memories that enable them to match their foraging activity to the 

time of day when a particular food source is most productive. Persistent foragers show food-

anticipatory activity by making reconnaissance flights to the previously productive food source 

and may continue to inspect it for several days. In contrast, reticent foragers do not investigate 

the source but wait for confirmation from returning persistent foragers. To determine how 

persistent and reticent foragers might contribute to the colony’s ability to rapidly reallocate 

foragers among sources, we trained foragers to collect sucrose from a feeder at a restricted time 

of day for several days and then observed their behavior for three consecutive days during which 

the feeder was empty. In two separate trials, video monitoring of the hive entrance during 

unrewarded test days in parallel with observing reconnaissance visits to the feeder revealed a 

high level of activity, in both persistent and reticent foragers, thought to be directed at other food 

sources. This “extracurricular” activity showed a high degree of temporal overlap with 

reconnaissance visits to the feeder. In some cases, inspection flights to the unrewarded feeder 

were made within the same trip to an extracurricular source, indicating that honey bees have the 

ability to manage at least two different time memories despite coincidence with respect to time 
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of day. The results have major implications for understanding flower fidelity throughout the day, 

flower constancy within individual foraging excursions, and the sophisticated cognitive 

management of spatiotemporal memories in honey bees. 

 

Introduction 

A major determinant of animal behavior is control arising from the internal circadian 

clock. For example, in most animals, the daily rhythm of sleep and wakefulness is driven by the 

underlying circadian system. Other physiological and behavioral functions under circadian 

control include eating and drinking behavior, hormonal secretions, temperature regulation, 

locomotor activity, antipredator behavior, cognitive performance and reproductive behavior 

(Moore-Ede et al., 1982; Dunlap et al., 2004). To date, most of our understanding of the 

circadian control of behavior has come from experiments performed under laboratory conditions. 

Although it is assumed that possession of a circadian clock is adaptive, enabling the organism to 

schedule different behaviors at the most appropriate time of day, only a few studies (DeCoursey 

et al., 1997; DeCoursey et al., 2000) have been conducted on any animals under natural 

conditions to test this assumption.  

Historically, perhaps the first convincing suggestion that circadian clock systems do, in 

fact, contribute adaptively significant function came from observations of the honey bee time 

memory (Moore-Ede et al., 1982). A honey bee forager will remember the time of day it 

exploited a profitable food source and will return to that source at approximately the same time 

on the following day (von Buttel-Reepen, 1900; Beling, 1929; Wahl, 1932; Wahl, 1933; Renner, 

1955; Renner, 1957; Beier, 1968; Beier and Lindauer, 1970; Frisch and Aschoff, 1987; Moore 
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and Rankin, 1983; Moore et al., 1989). This time memory enables bees to match their foraging 

efforts with nectar secretion rhythms of flowers by cuing on either the time of highest nectar 

concentration (Butler, 1945; Corbet and Delfosse, 1984; Kleber, 1935) or highest total sugar 

(Giurfa and Núñez, 1992; Rabinowitch et al., 1993; Edge et al., 2012). This means that many 

foragers do not start their day as novices: the time memory eliminates the need to expend excess 

energy required to rediscover the same food sources each day.  

Of course, numerous other inputs besides signals from the circadian clock influence 

behavior. A largely unexplored area of research concerns how control from the circadian clock is 

integrated with other influences both internal and external to the animal. Some progress has been 

made in the case of the honey bee. For example, young adult honey bees typically do not express 

daily rhythms in behavioral activity in the hive until about 2 weeks of age (Moore et al., 1998; 

Shemesh et al., 2007) as they begin to make the transition from in-hive duties (performed 

around-the-clock) to foraging behavior. The onset of behavioral rhythmicity may be delayed, 

accelerated and even reversed depending on colony demographic influences that also regulate 

division of labor (Blochand Robinson, 2001; Bloch et al., 2001). In the case of another clock-

driven function, the time memory, the first collecting visit of the day to a particular source 

appears to establish a temporal link between the circadian clock and the food source, whereas the 

number of successful collecting visits determines whether the forager will exhibit food-

anticipatory flights and, if so, how many inspection flights it will make (Moore and Doherty, 

2009). The number of days a forager is rewarded at a particular food source influences the 

number of days it will continue to visit that source in the absence of further food rewards (Moore 

et al., 2011).  
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At any given time during the flowering season, there may be several different foraging 

groups within the hive, each group containing individuals that exploit a particular floral source 

(Wahl, 1933; Kleber, 1935; von Frisch, 1967; Visscher and Seeley, 1982).Recent work has 

shown that not all foragers trained to collect food from productive feeders during restricted times 

of the day make inspection flights. Rather, the trained foraging group comprises two classes: 

persistent bees and reticent bees. Persistent bees leave the hive to reconnoiter their food source in 

anticipation of the previously rewarding time of day, whereas reticent bees will not visit the 

source until they receive information from another bee confirming source availability (Moore et 

al., 2011). On each day following removal of the food source, both classes cluster on the dance 

floor in anticipation of the training time (B.N.V.N., A.E.W., C.N.H. and D.M., unpublished). 

Despite the ability of foragers to reactivate other foragers rapidly via the waggle dance (Körner, 

1940; Seeley, 1995; von Frisch, 1967), a surprisingly high proportion of foragers are persistent – 

on average 40%, 60% or 80% of foragers with 1, 2 or 3 days of experience at a food source, 

respectively (Moore et al., 2011). A recent, agent-based foraging simulation model 

(incorporating time memory-driven anticipatory flights to investigate previously productive food 

sources) showed that such high levels of persistence are energetically favorable, allowing the 

foraging group to efficiently exploit food sources under a wide variety of ecological conditions 

(Van Nest and Moore, 2012).  

Despite an abundance of information concerning factors that contribute to efficient 

foraging by honey bees (including dance recruitment, time memory, the existence of persistent 

and reticent foragers, etc.), many details of the day-to-day foraging enterprise remain unknown. 

This is especially true at the level of the individual forager. It is thought that, on a typical day, 

most members of a foraging group have adjusted the timing of their flight behavior to coincide 
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with the time window during which food at the source is available or at its most profitable 

(Wahl, 1932; Kleber, 1935).Foragers gather at the dance floor as this optimal time of day 

approaches (Körner, 1940; von Frisch, 1940; Moore et al., 1989)and apparently station 

themselves there, either to launch reconnaissance flights to the source or to be alerted by waggle 

dances performed by a successful group member returning from the source. However, during the 

food source’s time window, when foragers are positioned on the dance floor, they appear to be 

resistant to recruitment to alternative sources (Kleber, 1935; Moore et al., 1989; Seeley and 

Towne, 1992). Outside of this time window, foragers withdraw from the activity of the dance 

floor, apparently to rest (Körner, 1940; von Frisch, 1940; Moore et al., 1989) and are, therefore, 

unavailable for recruitment. According to von Frisch, most foragers adhere to this scenario 

(specializing on a single food source)but some may collect food from a second source, if its 

optimal time does not overlap with that of the first source (von Frisch, 1967). Forager honey bees 

certainly can be trained to collect sucrose from the same location at multiple times of day 

(Beling, 1929; Wahl,1932; Koltermann, 1974) as well as from different locations, each 

productive at a different time of day (Wahl, 1932; Finke, 1958). However, the recently 

discovered genotypic differences in individual honey bee preferences for ‘early’ and ‘late’ 

foraging shift work (Kraus et al., 2011) would seem to contribute to flower fidelity by temporally 

restricting the forager’s presence on the dance floor. In nature, food sources for honey bee 

colonies are ephemeral. Honey bee colonies are well adapted to this dynamic environment by 

constantly exploiting profitable new sources and abandoning poor ones as conditions change 

(Butler, 1945; Visscher and Seeley, 1982). Such reallocation of foragers among food patches is a 

decentralized process, involving decisions by individual foragers to either abandon or continue 

foraging on a particular food patch. Each bee independently evaluates its source with respect to 
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distance from the hive and nectar concentration and by interpreting feedback from the food 

receiver bees in the colony (Lindauer, 1948; Seeley, 1986; Seeley, 1989; Seeley et al., 1991; 

Seeley et al., 1996). The rates of abandonment of less-profitable sources by individual foragers 

are presumed to be crucial factors in the colony’s foraging success (Seeley, 1995; Cox and 

Myerscough, 2003; Beekman et al., 2003). However, honey bees are slow to abandon 

experimental food sources that decline in sucrose concentration through the day (Beekman et al., 

2003). It is important to note that foragers do not [as suggested by Tautz (Tautz, 2008)] 

immediately ‘forget’ a food source upon finding it empty, never to return to that original source 

again. Indeed, it is now well demonstrated that many forager bees do, in fact, retain a time-linked 

memory for the food source over the course of several unrewarded test days (Moore, 2001; 

Moore and Doherty, 2009; Moore et al., 2011). Furthermore, honey bees can retain the time 

memory over at least 1 day of inclement weather even when no reconnaissance flights are made; 

moreover, on unrewarded test days following a day of inclement weather, persistence levels are 

elevated above those expected for fair-weather days (Moore et al., 2011). Why should honey 

bees return to a food source that was empty on the previous day? Simply put, it is adaptive for 

foragers to assume that if nectar or pollen sources are depleted on one day, they may be 

replenished by the next.  

At the level of the individual forager, we have very limited information concerning how 

foragers switch from one food source to another. How can the tendency of foragers to maintain 

visitation flights to defunct food sources for several days be reconciled with the ability of the 

colony to reallocate foragers quickly from poor quality sources to better ones? As a first step in 

addressing this question, we trained honey bees in two separate trials to forage from an artificial 

feeder at a fixed time of day for several days. Then, for three consecutive ‘test days’, during 
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which no food was presented at the feeder, we monitored the departure and arrival times at the 

hive of all individually marked bees in the training group using cameras fixed to the hive 

entrance, with particular attention to potential differences in the behavior of persistent and 

reticent foragers. These data, in combination with parallel records of the arrival times of 

persistent foragers making reconnaissance flights to the feeder, provided insight into the total 

foraging activity of all bees in the foraging group.  

The primary objective of our study was to examine, over three consecutive days, the 

flight behavior of individual foragers to a previously productive feeder as well as to alternative 

food sources. More specifically, we focused on the potential differences between persistent and 

reticent foragers with respect to the number of days elapsed before the forager would exhibit 

flight activity to food sources other than the empty experimental feeder. We proposed three 

hypotheses with respect to the relative roles of persistent and reticent foragers in switching from 

one food source to another. The first hypothesis (H1) simply asserts that both persistent and 

reticent foragers tend to remain faithful to the original food source and are slow to find 

alternative sources. The appropriate prediction for H1 is that neither persistent nor reticent bees 

will show flight activity to alternative food sources for several days. The second hypothesis (H2) 

proposes that persistent bees tend to remain faithful to the original food source but reticent bees 

do not. A major prediction from this hypothesis is that reticent bees may be recruited to 

alternative sources on test day 1 after failing to be reactivated to the training station by persistent 

bees during the previously experienced training time and certainly by test day 2. Persistent bees, 

in contrast, would not be expected to be recruited to alternative food sources until they stopped 

making investigative flights to the training station. The third hypothesis (H3) asserts that neither 

persistent nor reticent bees remain faithful to the original food source. A major prediction from 
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H3 is that both persistent and reticent foragers will be visiting alternative food sources by test 

day 1 (after determining that the feeder is not productive) or at least by test day 2. The results 

have implications for understanding how a circadian clock-controlled behavior (food-

anticipatory activity) operates within a variable environment. 

 

Materials and Methods 

 

Time Training 

Two trials of a field study were conducted at the former Marine Corps Armory property 

in Johnson City, TN, USA. This site consisted of wildflower meadows interspersed with clusters 

of trees. In both trials, forager honey bees (Apis mellifera L.) were time trained from a glass-

sided observation colony housed in a protective shed. The colony occupied six standard beehive 

frames (containing about 12,000 bees) in trial 1 and a different colony occupied eight frames 

(about 16,000 bees) in trial 2. Bee entrances and exits from the colony occurred through the wall 

of the shed via a 15 cm passageway constructed from clear acrylic sheets. The first trial took 

place from 25 September to 5 October 2008 and the second trial from 19 to 26 August 2009.  

In both trials, foragers were trained to an artificial feeder located 190 m from the hive 

using a technique described previously (von Frisch, 1967). The feeder, a sucrose-filled 96-well 

plate positioned over a filter paper disc (15 cm diameter), was placed initially at the hive 

entrance and then moved away from the colony in incremental steps following discovery by 

foragers. Once the feeder was several meters from the hive entrance, the filter paper disc was 

scented with four drops of essential oil of lilac. The training table then was moved gradually 
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until the target distance was reached. All bees recruited during this orientation phase of the 

experiment were marked on the thorax with silver paint dots (Testors Enamel, The Testor 

Corporation, Rockford, IL, USA) and excluded from data analyses.  

Following orientation, there were eight consecutive training days for trial 1 and five 

consecutive training days for trial 2, during which observations were made at the feeder for a 

restricted period (14:00 h to 15:35 h and 13:00 h to 15:00 h, respectively) of food availability and 

lilac scent presentation. Sucrose concentration was varied from 0.75 to 1.75mol l
-1

 in order to 

maintain a steady rate of recruitment. Foragers naturally recruited hive mates to the feeder via 

the waggle dance on training days, thus yielding different cohorts of uniquely identifiable bees 

with differing amounts of experience at the training station. Each new recruit was marked 

individually on its first arrival to the training station using combinations of colored paint dots 

(Testors Enamel) applied to the thorax and abdomen (von Frisch, 1967). These color codes 

allowed observers to record the individual forager’s identity and timing of all subsequent 

rewarded visits. After the time window of sucrose availability ended on each training day, the 

training table and feeder were thoroughly doused with water, and the filter paper disc was 

exchanged for a new (unscented) one. For the purposes of the present study, bees that skipped 

one or more days of training were excluded from all analyses. 

 

 

Training Station Observations 

Following the training period of each trial, three test days were conducted, during which 

the feeder remained in place but was not supplied with food and scent. Observers recorded the 
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time and identification of all arrivals by marked bees from 10:00 h to 19:00 h for trial 1 and from 

09:00 h to 19:00 h for trial 2. Following the testing period, foragers were classified as persistent 

or reticent for each day based on training station arrivals. If a forager was seen making a 

minimum of one reconnaissance flight to the unrewarded training station on a given day, then 

that forager was classified as persistent for that test day; likewise, a forager that made no 

reconnaissance flights to the training station on a given day was classified as reticent for that 

day.  

 

Hive Entrance Observations  

In trial 1, a hive landing platform was constructed to attempt to funnel all entering and 

exiting bees upright through a single location that could be video recorded from above. The use 

of a video camera (Sony Handycam DCR-SR65; 30 frames s
-1

) to monitor the traffic of all 

marked bees was necessary to determine whether the experimental foragers were exploiting other 

(natural) food sources. An entryway was constructed from transparent acrylic sheets mounted 

over a wooden block (20×20×8 cm) that was attached to the flat upper surface of the landing 

platform proper. To traverse this passageway, bees had to walk up the sheer faces of the block, 

thus requiring them to pass over the top surface of the block in the upright position. In this 

orientation, the foragers’ paint codes were visible to the camera mounted directly above and 

focused on the top surface of the block. The top sheet of acrylic was mounted one bee height 

above the block to prevent bees from climbing over one another and obscuring the identities of 

the bees below. Unfortunately, a small percentage of foragers (~10%) still were able to cross the 

platform upside-down. To address this, in trial 2, a new entryway to the hive was constructed 
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with wooden sides and glass slats for the top and bottom to allow recording from both the top 

and bottom orientations. The entryway height was restricted as before so that bees would be 

unable to climb over one another. A video frame capture from trial 2 (Fig. 1) illustrates a portion 

of the entryway with individually marked forager WRB (white–red–blue) and several unmarked 

foragers.  

 

Fig. 1. Frame capture showing the entryway (from a camera mounted above it) to the observation hive from trial 2. 

Foragers were required to transit between two glass panes in order to enter or exit the hive. Seen in this frame is one 

individually marked forager (lower left, with white, red and blue paint dots; WRB) and several unmarked foragers. 

The hive entrance is at the top side of the entryway. A horizontal blue strip is positioned on the upper surface of the 

glass. A second video camera, pointing upwards, is positioned below the glass to record the identities of bees 

traversing the entryway upside-down.  

Following video analysis, the timings of forager entries and exits were compared with 

training station arrivals to determine which flights were ‘extracurricular’ (i.e. to sources other 

than the feeder). Although bees do leave the hive for reasons other than to forage (including the 
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orientation flights of naive bees), such excursions typically are shorter than 5 min (Dukas and 

Visscher, 1994). Thus, any flight 5 min or greater in duration and not accompanied by a visit to 

the training station was determined to be a flight to an extracurricular source. Special care was 

taken to ensure that, for persistent foragers, a flight to the training station would not be 

misinterpreted as an extracurricular flight: entries and exits from the hive were compared with 

the timing of arrivals at the training station. Persistent bees’ inspections of the feeder on test days 

rarely lasted more than a few minutes; therefore, pure reconnaissance flights typically lasted only 

a few minutes. Any flight at least 30 min in duration that was accompanied by a training station 

visit was assumed to be both reconnaissance and extracurricular.  

 

Census  

During the test days of trial 1 and trial 2, hourly hive scans were made from 10:00 h to 

19:00 h and from 09:00 h to 19:00 h, respectively, noting the identities and locations (from a grid 

pattern drawn on the glass sides of the observation hive) of all marked bees within the colony. A 

hive census was performed for each test day by compiling data from these hive scans, training 

station observations and videos. If a time-trained (and, therefore, individually marked) forager 

was observed in any one of these locations on a given test day, it was assumed to be alive 

through the entirety of that test day as well as on any preceding test days. All analyses in this 

study were based on data collected from foragers confirmed to be alive on each test day.  

 

Statistical Analyses  
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In cases of relatively small sample sizes, data from training cohorts were pooled. For 

example, in trial 1, data pertaining to foragers with 6 or 8 days of experience were combined as 

were the data from foragers with 3 or 4 and 1 or 2 days of experience at the training station. In 

trial 1, there were no foragers with 7 or 5 days of experience because weather conditions 

restricted recruitment of new foragers on those particular training days. In trial 2, only data from 

foragers with 4 or 5 days of experience at the food source were pooled.  

The number of extracurricular flights per bee were compared among training cohorts on 

each test day as well as among test days for each cohort using the Kruskal–Wallis test. The 

Mann–Whitney U-test was used to compare the mean number of extracurricular flights per day 

per bee as well as extracurricular flight durations between persistent and reticent foragers on 

each test day. 

 

Results 

 

Extracurricular Flights  

In addition to reconnaissance flights to the training station, other flights to and from the 

colony were monitored by one (trial 1) or two (trial 2) video cameras positioned at the hive 

entrance. Flights of 5 min or more in duration were termed ‘extracurricular’ flights if they did 

not correspond to a reconnaissance flight to the training station. By definition, all flights of at 

least 5 min duration made by reticent bees (i.e. those foragers not visiting the training station on 

any particular test day) were extracurricular. As shown in Table 1, the majority of time-trained 

foragers (both persistent and reticent) made extracurricular flights on each test day in both trials. 
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Only 10% of all time-trained foragers in trial 1 and 18% in trial 2 failed to make flights to 

another source on at least one occasion throughout the three consecutive test days.  

Of all the foraging flights made by the time-trained bees in this study, a surprisingly large 

proportion was devoted to food sources other than the training station (Fig. 2). On each test day, 

in both trials, there was substantial temporal overlap between these extracurricular flights and 

those flights directed to the training station (Fig. 2). In both trials, the proportion of total flights 

devoted to reconnaissance of the training station diminished over the three consecutive test days 

(Fig. 2). In contrast, the mean number of extracurricular flights per bee showed no significant 

changes within any training cohort over the three test days (Fig. 3; Kruskal–Wallis, P>0.05 in all 

cases). There also were no significant differences in mean number of extracurricular flights per 

bee among training cohorts during any of the test days in either trial (Fig. 3; Kruskal–Wallis, 

P>0.05 in all cases).  

With the exception of activity directed toward the training station, other aspects of 

foraging behavior between persistent and reticent bees were remarkably similar. For example, 

Table 1. Proportions of persistent and reticent foragers on each test day that made extracurricular flights 

 Test day 1  Test day 2  Test day 3 

 
Persistent Reticent  Persistent Reticent  Persistent Reticent 

Trial 1 0.62 0.64  0.78 0.60  0.75 0.65 

 
N = 82 N = 14  N = 45 N = 35  N = 12 N = 49 

Trial 2 0.71 0.56  0.71 0.65  0.68 0.76 

 
N = 145 N = 18  N = 70 N = 83  N = 22 N = 117 

N, sample size. 
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Fig. 2. Total number of extracurricular flights made by all trained foragers stacked with arrivals at the training 

station by persistent foragers with respect to time of day over all three test days for both trials. Training times are 

indicated by vertical rectangles. Extracurricular and training station flights overlap nearly completely over the 

course of the day, suggesting that the two occur concurrently rather than at strictly separate times on test days.  

 

Fig. 3. Mean (and s.e.m.) number of extracurricular flights per bee by training cohort for both trials. Color codes 

indicate the number days of experience at the training station by cohort. No significant differences were found 

among any set of cohorts on any test day (Kruskal–Wallis, P>0.05), indicating that the amount of experience a 

forager received at the training station does not impact the intensity of its activity at other sources. Numbers within 

bars indicate sample size.  
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there were no significant differences in mean number of extracurricular flights made per bee 

between persistent and reticent foragers on any test day in either trial (Fig. 4; Mann–Whitney U-

test, P>0.05 in all cases). Similarities in extracurricular foraging behavior between persistent and 

reticent bees also extended to the duration of extracurricular flights on each test day (Fig. 5): 

with one exception (trial 1, test day 2), there were no significant differences (Mann–Whitney U-

test, P>0.05). Additionally, as shown in Fig. 6 (all three test days for both trials), persistent and 

reticent bees apparently did not partition their extracurricular flights during different phases of 

the day. The distributions of extracurricular flights with respect to time of day were closely 

matched; about 81% of all sampled hours during both trials contained extracurricular flights 

from both persistent and reticent foragers.  

 

Fig. 4. Number of extracurricular flights per bee by persistent (P) and reticent (R) foragers, compared on each test 

day for both trials. Box plots depict medians, 25% and 75% quartiles (horizontal lines), lowest and highest values 

within 1.5 times the interquartile range (whiskers), outliers (circles), and means (crosshairs). Significance values are 

indicated for each pair: no significant differences were found on any test day (Mann–Whitney U-test, P>0.05). The 

results show that persistent and reticent bees perform a similar number of flights each day directed to sources other 

than the experimental training station.  



 

32 

 
 

 

Fig. 5. Extracurricular flight duration by persistent (P) and reticent (R) foragers, compared on each test day for both 

trials. Significance values are indicated for each pair (Mann–Whitney U-tests). Only one pair showed a significant 

difference (trial 1, test day 2). Box plot characteristics as i

between persistent and reticent bees in the time invested in foraging behavior to sources other than the experimental 

training station.  

 

Fig. 6. Average number of extracurricular flights made per hour per bee by persistent and reticent foragers, 

compared on each test day for both trials. Data were compiled in 1 h bins for all of the observed hours. The results 

indicate a high level of similarity in the scheduling of flights to sources other than the experimental training station.  
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Multiple Time Memory Expression  

The finding of considerable temporal overlap between reconnaissance visits to the 

training station and extracurricular flights (Fig. 2) raises an interesting question concerning the 

planning of schedules by individual foragers. Are reconnaissance and extracurricular flights 

always executed as separate foraging excursions or can they be combined during the same trip? 

The answer is quite clear (Table 2): depending upon the test day, between 11.4% and 22.2% of 

persistent foragers performing extracurricular flights in trial 1 and between 26% and 40% in trial 

2 showed reconnaissance flights overlapping in time with visits to alternative food sources. 

Using test day 1 of trial 2 as an example, 30 of the 103 persistent foragers exhibiting 

extracurricular flights incorporated at least one reconnaissance flight within an extracurricular 

excursion, thereby expressing behavior driven by two different spatiotemporal memories during 

a single foraging trip. Most of these bees also made pure reconnaissance flights (i.e. flights to the 

training station that did not overlap with extracurricular sorties). The behavioral profiles of all 30 

(which, notably, include members from all of the training cohorts) are illustrated in Fig. 7. In 

many cases, reconnaissance visits were scheduled at the very beginning of an extracurricular 

bout (e.g. forager RBY), occasionally at the very end (e.g. forager YWG) or at both the 

beginning and the end (e.g. forager WWW). Sometimes, reconnaissance visits occurred more 

Table 2. Temporal overlap of extracurricular and reconnaisance flights in persistent foragers 

 Test day 1  Test day 2  Test day 3 

 
Total Overlap  Total Overlap  Total Overlap 

Trial 1 51 7  35 4  9 2 

Trial 2 103 30  50 13  15 6 

The table shows the total number of persistent foragers on each test day that perform both reconnaissance and 

extracurricular flights and the number of these foragers that combine these visits within a single excursion (i.e. 

visits to the unrewarded training station overlap in time with visits to the alternative foodsource); both trials are 

shown. 
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Fig. 7. Time lines showing performance of both reconnaissance visits to the experimental training station (yellow 

circles) and flight excursions to extracurricular sources (horizontal black bars) by individually marked foragers. 

Overlap between the two sources indicates that visits to the feeder and to an extracurricular source were made 

during the same foraging excursion. Data were taken from all 30 foragers showing such overlap on test day 1 of trial 

2. Individual bee identities (from paint codes) are indicated to the left of each time line; the number of training days 

received by each forager is shown on the right. The vertical rectangle indicates when food was presented during 

training.  
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centrally within the extracurricular bout (e.g. forager WGR). In trial 1, for all cases of overlap 

between training station reconnaissance and extracurricular flights, 48.1% of the reconnaissance 

visits occurred early (within 5 min of extracurricular bout initiation), 14.8% occurred late (within 

5 min of bout termination) and 37.1% occurred at an intermediate time. Similarly, for all cases of 

overlap in trial 2, 52.8% of the reconnaissance flights occurred early, 7.5% occurred late and 

39.6% occurred at an intermediate time within extracurricular bouts.  

Persistent foragers exhibited a remarkable degree of variation in the patterning of 

reconnaissance and extracurricular flights. Some persistent bees failed to show overlap between 

extracurricular flights and training station visits over all three test days (Fig. 8A). Some foragers 

showed temporal separation between extracurricular and reconnaissance flights on test day 1 but 

overlap between the two on test day 2 (Fig. 8B). Others showed overlap on both test day 1 and 2 

(Fig. 8C). Both foragers depicted in Fig. 8B,C made reconnaissance flights early during 

extracurricular foraging bouts and stopped making reconnaissance flights on test day 3. Finally, 

some foragers scheduled reconnaissance visits repeatedly throughout extracurricular foraging 

bouts (Fig. 8D). On two occasions, the extracurricular (natural) food source was positively 

identified: two persistent foragers from trial 2 on test day 3 were observed foraging on flowers of 

Spotted Joe-Pye Weed (Eupatoriadelphus maculatus L.) in the immediate vicinity of the training 

station. One of these foragers interrupted its work on Joe-Pye flowers to make two inspections of 

the training station (not shown) and the other repeatedly alternated between the natural flowers 

and the unrewarded training station during two separate foraging bouts (Fig. 8D). 
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Fig. 8. Time lines showing diversity of foraging behavior by individually marked bees over three consecutive, 

unrewarded test days (no food presented at the experimental feeder); reconnaissance visits to the experimental 

training station (yellow circles) and flight excursions to extracurricular sources (horizontal black bars) are 

illustrated. Vertical rectangles indicate when food was presented during training. Foragers from trial 1 (A,B) and 

trial 2 (C,D) are represented. Red circles (D) indicate reconnaissance flights that overlap with an identified 

extracurricular food source. See Results for details.  

 

Discussion 

 In both trials conducted for this study, many of the honey bee foragers that collected 

sucrose during a restricted feeding time for one or more training days returned to the feeder on 

subsequent unrewarded test days. Those foragers investigating the feeder on any particular test 

day were characterized as ‘persistent’ foragers for that particular day. Most of the reconnaissance 

flights performed by persistent foragers (Fig. 2) occurred early with respect to the restricted 
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training time, in agreement with many previous studies concerned with the honey bee time 

memory (Beling, 1929; Wahl, 1932; Wahl, 1933; Renner, 1957; Beier, 1968; Beier and 

Lindauer, 1970; Moore and Rankin, 1983; Moore et al., 1989; Moore and Doherty, 2009). Those 

time-trained foragers not returning to the training station on any particular test day were 

classified as ‘reticent’ foragers with respect to that food source on that test day. We compared 

the flight behavior of persistent and reticent foragers to extracurricular sources over three test 

days during which the experimental feeder was not provisioned with food. These experiments 

were designed to assess how the two behavioral subtypes might contribute to the colony’s ability 

to rapidly reallocate foragers from poor or defunct sources to productive ones. Previous studies 

noted that honey bee colonies can shift their foraging force among food sources from one day to 

the next or even within the same day (Butler, 1945; Visscher and Seeley, 1982; Seeley et al., 

1991; Granovskiy et al., 2012). However, the contributions of individual foragers (including 

those currently or recently engaged with other sources) to such rapid reallocations are largely 

undocumented. If persistent or reticent foragers can contribute to this rapid reallocation, then it 

would be expected that at least some of them might start visiting alternative sources after they 

determine that the training feeder is not productive on test day 1 and certainly by test day 2. 

Three hypotheses were examined. The first hypothesis (H1: both persistent and reticent foragers 

are not involved in promptly finding alternative food sources) was not supported: the majority of 

both persistent and reticent foragers made extracurricular flights (i.e. not directed to the training 

station) on all three test days (Table 1). As a large proportion of both persistent and reticent 

foragers were visiting alternative sources on all three test days, the second hypothesis (H2: 

reticent but not persistent foragers are involved in promptly finding alternative sources) also was 

rejected. H2 proposed that there were behavioral differences between the foraging subtypes with 
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respect to extracurricular food sources; however, at least three lines of evidence indicate 

otherwise. First, there were no significant differences between persistent and reticent foragers 

with respect to the number of extracurricular flights per bee on any of the three test days in either 

trial (Fig. 4); second, with one exception (test day 2, trial 1), there were no significant differences 

in extracurricular flight duration (Fig. 5); and third, there was a great deal of overlap in the 

timing of their extracurricular flights throughout the day (Fig. 6). Furthermore, because 

persistent bees with more experience at the training station take more days to abandon the 

defunct training station than those with less experience (Moore et al., 2011), it might be expected 

that bees with greater experience at the training station would make fewer flights to alternative 

sources. However, there were no significant differences in the number of extracurricular flights 

per bee among any of the training cohorts on any test day in either trial (Fig. 3). These results 

also suggest that the performance of reconnaissance flights to the training station has no material 

effect on the performance of extracurricular flights. The fact that both persistent and reticent 

foragers were making extracurricular flights on all three test days is most consistent with the 

third hypothesis (H3: both persistent and reticent foragers are involved expeditiously in 

exploiting alternative food sources). Contrary to the predictions of any of the hypotheses, 

however, is the finding that both persistent and reticent bees already were foraging on 

extracurricular sources before the feeder’s training time on test day 1 in both trials (Figs 2, 6), 

indicating that the bees were visiting alternative food sources before they discovered that the 

training station was not providing food on that day.  

As shown in Table 1, many persistent and reticent foragers were performing 

extracurricular flights on test day 1. The most likely scenario is that these foragers were working 

other food sources during training days. The alternative, that they switched to the experimental 



 

39 

 
 

feeder during training and then switched back to the natural source after training, is unlikely 

because they were already visiting the extracurricular sources before the feeder’s time window 

(i.e. the training time) on test day 1 (Figs 2, 6), thus precluding their ability to determine whether 

the feeder was exploitable. These results are contrary to the long-held assumption that most 

honey bee foragers specialize on a single species each day and that, once the forager has 

collected food during that source’s time window of availability, the forager rests in the hive until 

the appropriate time on the following day (Körner, 1940; von Frisch, 1940; von Frisch, 1967; 

Moore et al., 1989; Moore, 2001). According to von Frisch, some foragers may find a second 

food source, but only during the hours when the first one is not yielding food (von Frisch, 1967). 

In fact, bees can be trained to collect sucrose from as many as four different places at four 

different times of day (Finke, 1958). Our data, in contrast, indicate that honey bee foragers 

manage to attend to two different sources that have overlapping time windows (Figs 2, 6, 7). The 

conduct of scheduling visits to two different food sources at the same time of day is difficult to 

reconcile with previous studies showing that foragers do not respond to recruitment dances 

advertising alternative food sources during the first source’s time window of availability (Kleber, 

1935; Moore et al., 1989). If foragers were already involved with a profitable food source at a 

particular time of day, then why would they be susceptible to recruitment to yet another source 

(or begin scouting for other sources) at the same time of day? Given that two different food 

sources overlap in time, a potential solution to this problem might be found in the behavioral 

pattern by which the honey bee time memory is expressed. For example, one food source may be 

productive from 10:00 h to 15:00 h and a second from 13:00 h to 18:00 h, providing a 2 h period 

of overlap. It is important to note that foragers anticipate the time of day at which a food source 

is available by making reconnaissance flights that are earlier than the first successful flight of the 
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previous day (Moore and Doherty, 2009). If the second source is discovered relatively late (say 

17:30 h), then, on the following day, the forager will schedule its visits to this source somewhat 

earlier than 17:30 h. Over the course of several days, the visits to the second source may 

encroach into the first source’s productive time window.  

Our results indicate that honey bee foraging behavior is much more versatile than 

previously reported. In a study using individually marked bees (Seeley et al., 1991), it was noted 

that only 2 of 117 bees attending to two simultaneous feeders switched from the relatively poor 

feeder to the richer one: reallocation was achieved largely by changes in the recruitment of naive 

foragers to the two feeders. Similar results were obtained in a more recent study (Granovskiy et 

al., 2012) using foragers marked with feeder-specific colors. The increase in the number of 

foragers to the most profitable feeder among three different feeders (as the highest quality feeder 

was switched from one to the next throughout the day) was accomplished primarily by an 

increase in new recruits and visits from foragers previously trained to that feeder. Very few bees 

previously trained to one feeder switched to feed at a higher quality one. In contrast, in both 

trials of the present study, the majority of foragers with experience at the artificial feeder 

apparently also foraged on alternative food sources (Table 1). Because both reticent and 

persistent foragers have knowledge of at least two sources simultaneously, shifting from one 

source to another (depending on their relative profitabilities) may be accomplished with ease and 

with little or no delay. Persistent bees have the ability to shift between sources immediately: if a 

persistent forager finds the source productive during one of its reconnaissance flights, it may 

choose to work that particular source until it declines. Reticent bees with prior experience with 

this particular source may be reactivated to it via waggle dances from these persistent bees.  
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One particularly intriguing set of future studies will be determining exactly when foragers 

learn of the extracurricular sources. Previous work (Seeley and Towne, 1992; Seeley, 1995) has 

shown that foragers show a consistent pattern of behavior following discontinuation of their food 

source. Bees were monitored in an observation hive during 1 day immediately following 2 days 

of training at a feeder that provided sucrose from 08:00 h to 17:00 h, a situation similar to test 

day 1 in the present study (with the exception that our feeder provided food for a relatively short 

period of time). Typically, foragers did not follow any recruitment dances for several hours but 

made investigative flights to the feeder. This was followed by a period of ‘cursory dance 

following’ in which the bee briefly would follow several dancers but would not respond to them. 

This period also would occupy several hours. Finally, the bee would exhibit ‘thorough dance 

following’, fixating on a single dancer and would leave the hive in search of the advertised food 

source. Most of these newly recruited foragers were not successful in locating the source on the 

first try, but required several dance-guided searches (Seeley and Towne, 1992). These 

unsuccessful ventures out of the hive averaged about 15 min in duration. The aspect of this 

scenario most relevant to the present study is that several hours usually transpire between the 

time when a forager discovers that a food source is not productive on a particular day and when 

it commences activity directed at finding alternative sources. In both trials of the present study, 

both persistent and reticent bees were making extracurricular flights well in advance of the 

training time (Figs 2, 6) and, for a number of persistent foragers, these flights coincided with 

investigative visits to the training station (Figs 7, 8). Thus, it appears that most of our persistent 

foragers making both reconnaissance and extracurricular flights already had knowledge of 

alternative food sources on test day 1 and returned to them before they could determine whether 

the feeder was productive on that particular day (i.e. they were making extracurricular flights 
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before the onset of the training time and before they discovered that the feeder was empty). An 

intriguing possibility is that honey bee foragers may have different strategies in different 

environments. For example, the differences between our results and the previous work (Seeley 

and Towne, 1992) possibly could be attributed to differences in the duration of food availability: 

1.6–2.0 h for our study compared with 9 h for theirs. Perhaps short time windows of food 

availability constitute incentives for foragers to seek more foraging opportunities. Other possible 

explanations are be differences in the number of available alternative food sources (thereby 

yielding different numbers of foraging groups within the hive) or differences in the manner in 

which flowers replenish their nectar after it has been collected. These hypotheses can be tested in 

further field experiments.  

Honey bee foragers clearly have the cognitive ability to manage complex information sets 

and to recall them according to time of day. For example, recent work has shown that honey bee 

foragers apparently can ‘plan their activities in both time and space’ – they can choose the 

correct visual pattern within the proper context (associated with either the food source or the 

hive), and these combinations of factors can change according to time of day (Zhang et al., 

2006). Honey bees link a number of cues (circadian time, location, color and visual pattern) into 

an integrated whole, forming a so-called ‘circadian timed episodic-like memory’ (Pahl et al., 

2007). Most recently, Najera and colleagues showed that forager honey bees can switch from one 

auxiliary feeder to another in an array of feeders depending on the presence or absence of food at 

a primary feeder and the learned time of day of food availability at three auxiliary feeders, each 

feeder offering food at a different time of day (Najera et al., 2012). Earlier, Bogdany 

demonstrated that color, scent and time could be connected, thus forming a learning ‘Gestalt’ 

(Bogdany, 1978). These studies showed that bees can learn and remember to associate different 
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constellations of cues with different times of day, equivalent to scheduling different 

appointments at different times. Our work reveals yet another level of complexity. In both trials 

of this study, there was substantial temporal overlap between extracurricular flights and 

reconnaissance flights to the training station on test days (Figs 2, 6). As detailed in 

majority of both persistent and reticent foragers made extracurricular flights on all test days. 

Evidence from individual foragers (Figs 7, 8) indicates that reconnaissance visits to the training 

station often were conducted within longer (extracurricular) flight excursions. In both trials, there 

were several late-season flowers in bloom during the test days, including tall ironweed (Vernonia 

altissima), New England asters (Aster novae-angliae), various goldenrods (Solidago spp.) and 

spotted Joe-Pye weed (E. maculatus), thereby providing ample opportunities for extracurricular 

food collection. Most often, the reconnaissance flights occurred at the beginning of the 

extracurricular bout and, less often, at the end of the trip or at an intermediate time. Because our 

field experiments were designed primarily to monitor visits to the training station as well as 

traffic at the hive entrance, we do not have direct observations of foraging behavior on 

extracurricular sources by most of our time-trained individuals. However, there were two 

fortunate cases in which an individually marked forager was observed alternately working a 

natural flower (Joe-Pye weed) and interrupting its labor to check the training station (Fig. 8D). 

Also, it is probable that at least some of the extracurricular flights were scouting flights. We also 

have observed during other field experiments using individually marked foragers (D.M. and 

B.N.V.N., unpublished) that some persistent bees visit our empty training stations on test days 

bearing full pollen loads. These results indicate that at least some honey bee foragers possess the 

ability to monitor one food source while working another. In other words, it is not necessary to 

have different complex memories parceled into separate time windows (i.e. different phases of 
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the circadian clock). The forager honey bee can schedule two appointments at the same time: it 

can execute an ongoing bout of foraging activity directed at collecting food from a particular 

resource (or, alternatively, scouting for new resources) and briefly include within this larger 

activity one or more investigations of the recently productive food source. Upon finding the 

resource unproductive, it can resume its primary activity.  

Furthermore, the finding that a substantial number of foragers in our study (Table 2, Figs 

7, 8) visited the feeder and a natural source during the same foraging flight is contrary to the 

assumption that honey bees are flower constant (Butler et al., 1943; Butler, 1945; Free, 1963; 

Waser, 1986; Hill et al., 1997; Chittka et al., 1999). ‘Flower constancy’ is a behavior in which 

each forager specializes on one particular floral species during any given foraging trip and will 

bypass other, often equally profitable, food sources while searching for the target species. 

Presumably, commitment to a single species is adaptive because it eliminates the period of time 

needed to learn flower handling and nectar extraction when switching to another species (Waser, 

1986; Chittka et al., 1999). Honey bees show greater levels of flower constancy in artificial 

flower arrays when nectar volume, concentration or the number of nectar rewards is increased, 

providing that these factors are ecologically realistic (Grüter et al., 2011). Another possible 

explanation for flower constancy is a limited cognitive capacity (Dukas and Real, 1993). This 

hypothesis gains support from the finding that, in butterflies, the performance of one activity 

interferes with memory about other activities (Lewis, 1986). In honey bees, color and scent may 

be linked together with time of day to form an apparent learning Gestalt; however, varying any 

one of these cues (presumably analogous to encountering a new species of blossom) reduces the 

orientation to the other two cues (Bogdany, 1978). However, exceptions to flower constancy 

have been reported previously but have been widely overlooked. Ribbands clearly showed 
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examples of a small number of honey bees visiting multiple flower species within single foraging 

flights (Ribbands, 1949). For example, one bee routinely alternated between meadowfoam 

(Limnanthes) and poppy (Eschscholzia) species. The two species were adjacent and 

intermingled. The meadowfoam offered pollen only, whereas the poppies offered both pollen and 

nectar. It was assumed that the bee switched from one species to the other according to the 

relative attractiveness of the flowers throughout the day, based on changes in the amount of time 

required for the bee to accumulate full loads and return to the hive. How prevalent in nature are 

honey bees that visit multiple flowers per day or multiple sources within the same foraging trip? 

Do these behaviors occur only under certain conditions (e.g. relative dearth or abundance of food 

sources, different seasons, existence of an especially profitable food source, etc.) or are they 

universal? These questions can be answered only with extensive field studies.  

It is well established that forager honey bees are capable of organizing complex sets of 

information and associating each set with a different time of day (Zhang et al., 2006; Pahl et al., 

2007). In other words, foragers ‘plan’ their day according to a sophisticated appointment book. 

Such appointments form the essence of the honey bee time sense: foragers associate the 

presence of food with both location and time of day and then schedule anticipatory flights to the 

appropriate location and time on the following day (reviewed in Moore, 2001). Recently, such 

spatiotemporal memories have been shown to correspond with distinct neurogenomic signatures, 

as revealed by microarray analyses on time-trained foragers (Naeger et al., 2011). The results of 

the present study indicate that a forager’s appointments do not have to occupy different time 

slots (i.e. circadian phases) but may overlap with one another (as observed earlier by Ribbands, 

1949). Recall of one spatiotemporal memory within the temporal confines of another reveals not 
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only a surprising level of cognitive complexity but also an extremely versatile foraging strategy. 

The dynamics of the interactions among spatiotemporal memories as well as the adaptive 

significance of such complex behavioral programs have yet to be explored.  
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