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ABSTRACT

RADICAL p-CHAINS IN L3(2)

by

Donald D. Belcher

The McKay-Alperin-Dade Conjecture, which has not been finally verified, predicts the num-
ber of complex irreducible characters in various p-blocks of a finite group G as an alternating
sum of the numbers of characters in related p-blocks of certain subgroups of G. The sub-
groups involved are the normalizers of representatives of conjugacy classes of radical p-chains
of G. For this reason, it is of interest to study radical p-chains. In this thesis, we examine the
group L3(2) and determine representatives of the conjugacy classes of radical p-subgroups
and radical p-chains for the primes p = 2, 3, and 7. We then determine the structure of the
normalizers of these subgroups and chains.
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CHAPTER 1

INTRODUCTION

The McKay-Alperin-Dade Conjecture, which has not been finally verified, predicts the

number of complex irreducible characters in various p-blocks of a finite group G as an al-

ternating sum of the numbers of characters in related p-blocks of certain subgroups of G.

The subgroups involved are the normalizers of representatives of conjugacy classes of radical

p-chains of G. For this reason, it is of interest to study radical p-chains.

We will begin by defining some terms which will be referred to throughout the thesis,

with the main definitions being that of a radical p-subgroup and radical p-chain. This will

lead to some minor results concerning radical p-subgroups. Then we will look at an example

group and its radical p-subgroups and radical p-chains. Next, we examine the group L3(2)

and determine representatives of the conjugacy classes of radical p-subgroups and radical

p-chains for the primes p = 2, 3, and 7. In addition, we will determine the structure of the

normalizers of these subgroups and chains. Finally, we will summarize the results.

1.1 Definitions and Minor Results

We begin with some definitions. Let G be any group and p be any prime. Let |G| be the
order of G. We define H ≤ G as “H is a subgroup of G”. We call H a normal subgroup

of G if g−1hg ∈ H for all h ∈ H and g ∈ G. From this we can say that G is a normal

subgroup of itself, since g−1
1 g2g1 ∈ G for g1, g2 ∈ G. We will call the product g−1

1 g2g1

the conjugate of g2 by g1. If H,K ≤ G, then we define the normalizer of H in K as

NK(H) = {k ∈ K|k−1hk ∈ H, ∀h ∈ H}. We will call G the semi-direct product of H and

K, denoted H ∝ K, if K is a normal subgroup of G, G = HK = {hk|h ∈ H, k ∈ K}, where
1



multiplication is defined by (h1k1)(h2k2) = h1h2 h
−1
2 k1h2| {z }
∈K

k2 = h3k3 ∈ HK, and H ∩K = 1,

the trivial subgroup. A p-subgroup of G is a subgroup of G with order pn, n = 0, 1, 2, . . .,

such that pn divides |G|. A Sylow-p subgroup of G is a p-subgroup of order pm, where m is

the largest exponent such that pm divides |G|. We will use the notation Op(G) to denote

the largest normal p-subgroup of G. We may now define a radical p-subgroup of G to be a

subgroup P ≤ G such that P = Op(NG(P )). That is, P is the largest normal p-subgroup of its

normalizer in G. For this thesis, we will use the notation Pp,n to denote a radical p-subgroup

of order pn, with an interesting exception we will see later. A p-chain C of G is any non-

empty, strictly increasing chain C : P0 < P1 < P2 < · · · < Pn of p-subgroups Pi of G. The

stabilizer of C in any K ≤ G is the “normalizer” NK(C) = NK(P0)∩NK(P1)∩ · · ·∩NK(Pn).

A radical p-chain of G is a p-chain C : P0 < P1 < · · · < Pn of G satisfying P0 = Op(G) and

Pi = Op(NG(Ci)) for i = 1, . . . , n, where Ci : P0 < · · · < Pi.

We may now discuss some minor results. First, NK(H) ≤ G. If K = G, then H ≤
NG(H), since H ≤ G and h−1

1 h2h1 ∈ H for any h1, h2 ∈ H. In fact, H is a normal subgroup

of NG(H) by the definition of a normalizer. With this information we can conclude that H

is a normal subgroup of G if and only if NG(H) = G. Now suppose H is a Sylow-p subgroup

of G. Then H is a normal subgroup of NG(H) and, since there can be no p-subgroup larger

than H, H = Op(NG(H)). Therefore, if H is a Sylow-p subgroup of G, then H is a radical p-

subgroup of G. Finally, we note that the trivial subgroup of G, denoted by 1, is a p-subgroup

for any prime p which divides |G|, since |1| = 1 = p0, while NG(1) = G.
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1.2 Examples

As an example, let us examine A5, the set of all even permutations of five elements. The

order of this group is |A5| = 60 = 22 · 3 · 5. Note that this group is simple. That is, the
only normal subgroups are A5 and 1. For this reason, we may conclude that 1 is a radical

p-subgroup for p = 2, 3, and 5. It must also be noted that in each case we only need to

find one representative radical p-subgroup of each conjugacy class, for the others can then

be found by conjugation. That is, radical p-subgroups of the same order are in the same

conjugacy class for each p, unless otherwise noted. This is true of their normalizers as well.

For p = 2, the 2-subgroups of A5 have orders 2
2 = 4, 21 = 2, and 20 = 1. The subgroups

of order 4 are the Sylow-2 subgroups. These are isomorphic to ZZ2 × ZZ2. An example of

such a group is {1, (12)(45), (14)(25), (15)(24)}, and we will denote these groups as P2,2. The

normalizers of these subgroups in A5 are subgroups of A5 isomorphic to A4. For an example

of this subgroup, consider all the even permutations of the set {1, 2, 4, 5}. That is, take all
the even permutations of any four of the five elements of {1, 2, 3, 4, 5}, and you will have a
subgroup of A5 isomorphic to A4. No subgroup of A5 with order 4 can be isomorphic to

ZZ4 because there is no element of order 4 in A5. That is, no element of A5 can generate a

subgroup of order 4. The next subgroups we will look at have order 2, and are isomorphic

to ZZ2, an example of which is {1, (12)(34)}. The normalizers of these subgroups in A5

are the P2,2 subgroups, so no subgroup of order 2 can be a radical 2-subgroup. The last

subgroup we consider is the trivial subgroup 1, whose normalizer is NA5(1) = A5. No other

2-subgroups of A5 are normal subgroups of A5, so 1 is a radical 2-subgroup, denoted P2,0.

The radical 2-chains are then C21 : P2,0, and C22 : P2,0 < P2,2. The stabilizers of these chains

are NA5(C21) = A5 and NA5(C22) ∼= A4.

3



The p-subgroups of A5 for p = 3 have orders 3
1 = 3 and 30 = 1. The subgroups of order 3

are the Sylow-3 subgroups, which we will denote P3,1, and are isomorphic to ZZ3. An example

of such a subgroup is < (124) >= {1, (124), (142)}. The normalizers in A5 of these subgroups

are isomorphic to ZZ2 ∝ ZZ3. As an example of this subgroup, let ZZ2 = {1, (24)(35)} and
let ZZ3 be as above. Then ZZ2 ∝ ZZ3 would consist of the products of the elements of ZZ2

with the elements of ZZ3. As a side note, this subgroup is also isomorphic to S3, the set

of all permutations of three elements. Now we consider the only other 3-group, the trivial

subgroup 1, whose normalizer in A5 is A5. No other 3-subgroup is normal in A5, so 1 is a

radical 3-subgroup, denoted P3,0. The radical 3-chains are C31 : P3,0 and C32 : P3,0 < P3,1.

The stabilizers of these chains are NA5(C31) = A5 and NA5(C32) ∼= ZZ2 ∝ ZZ3.

For p = 5, the 5-subgroups of A5 have orders 5
1 = 5 and 50 = 1. The subgroups of order

5 are the Sylow-5 subgroups, denoted P5,1, and are isomorphic to ZZ5. An example of this

subgroup is

< (12345) >= {1, (12345), (13524), (14253), (15432)}.

The normalizer of this group in A5 is isomorphic to ZZ2 ∝ ZZ5. Using the above example

as ZZ5, we let ZZ2 be the group {1, (12)(35)}. Then ZZ2 ∝ ZZ5 will consist of the product of

the elements of ZZ2 with the elements of ZZ5. The only other subgroup to consider is 1, with

NA5(1) = A5. No other 5-subgroup is normal in A5, so 1 is a radical 5-subgroup, denoted

P5,0. The radical 5-chains are then C51 : P5,0 and C52 : P5,0 < P5,1. The stabilizers of these

chains are NA5(C51) = A5 and NA5(C52) ∼= ZZ2 ∝ ZZ5.

4



Table 1: Radical p-chain Summary for A5

p Radical p-subgroups Normalizers Radical p-chains Stabilizers
2 P2,2

∼= ZZ2 × ZZ2 NA5(P2,2) ∼= A4 C21 : P2,0 NA5(C21) = A5

P2,0 = 1 NA5(P2,0) = A5 C22 : P2,0 < P2,2 NA5(C22) ∼= A4

3 P3,1
∼= ZZ3 NA5(P3,1) ∼= ZZ2 ∝ ZZ3 C31 : P3,0 NA5(C31) = A5

P3,0 = 1 NA5(P3,0) = A5 C32 : P3,0 < P3,1 NA5(C32) ∼= ZZ2 ∝ ZZ3

5 P5,1
∼= ZZ5 NA5(P5,1) ∼= ZZ2 ∝ ZZ5 C51 : P5,0 NA5(C51) = A5

P5,0 = 1 NA5(P5,0) = A5 C52 : P5,0 < P5,1 NA5(C52) ∼= ZZ2 ∝ ZZ5

5



CHAPTER 2

THE GROUP L3(2)

We will begin our examination of L3(2) by discussing some properties of this group. Most

of this information is provided by the Atlas of Finite Groups [1]. First, L3(2) is the group

of invertible three by three matrices whose entries come from a field of order two. We will

represent an element of this group by a matrix whose entries are either 1 or 0. For example,
1 1 1

0 1 1

0 0 1

 ∈ L3(2). The order of this group is |L3(2)| = 168 = 23 · 3 · 7.

L3(2) is a simple group, just as A5 is. This means, of course, that the trivial subgroup 1

is a radical p-subgroup for p = 2, 3, and 7, with normalizer NL3(2)(1) = L3(2).

There are three types of maximal subgroups in L3(2), that is, there are no subgroups

of L3(2) which contain them as subgroups. One such subgroup is isomorphic to ZZ3 ∝ ZZ7.

The other two are isomorphic to S4. However, these two subgroups are not conjugate. This

means that all the elements of one of these S4 subgroups cannot be found by conjugating

the elements from the other S4 subgroup by the same element.

2.1 Radical 7-chains

We will now determine the radical 7-chains of L3(2), as well as their stabilizers, by proving

the following theorem.

Theorem 2.1 The radical 7-subgroups of L3(2) are P7,0 = 1 and P7,1
∼= ZZ7. The radical 7-

chains of L3(2) are C71 : P7,0, and C72 : P7,0 < P7,1. The stabilizers are NL3(2)(C71) = L3(2)

and NL3(2)(C72) ∼= ZZ3 ∝ ZZ7.
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Proof: The only possible radical 7-subgroups must have order seven or order one. The

subgroups of order seven are the Sylow-7 subgroups, which we have already determined to

be radical 7-subgroups. The only subgroup of order one is the trivial subgroup 1. We have

already concluded that 1 is a radical 7-subgroup with NL3(2)(1) = L3(2). Thus it is clear that

C71 : P7,0 = 1 is a radical 7-chain. The stabilizer of this chain is NL3(2)(C71) = NL3(2)(1) =

L3(2).

It is only left to determine the structure of the Sylow-7 subgroups and their normalizers.

Since the order of the Sylow-7 subgroups is seven, a prime, they must all be isomorphic to

ZZ7. To demonstrate this we need only to find one example of such a group, and the others

may be found by conjugation. Consider the matrix A1 =


1 0 1

1 0 0

0 1 0

 ∈ L3(2). The group

it generates is

< A1 >=




1 0 0

0 1 0

0 0 1

 ,


1 0 1

1 0 0

0 1 0

 ,


0 1 1

1 1 1

1 0 1

 ,


0 1 0

0 0 1

1 1 0

 ,


1 1 0

0 1 1

1 1 1

 ,


0 0 1

1 1 0

0 1 1

 ,


1 1 1

1 0 1

1 0 0




which has order seven, and must be isomorphic to ZZ7. Thus P7,1
∼= ZZ7.

We will now use < A1 > to determine NL3(2)(P7,1). Consider A2 =


1 0 0

0 1 1

0 1 0

 ∈ L3(2).

This element has order three, that is, this element generates a subgroup of order three. It is

simple to check that A2, A
−1
2 ∈ NL3(2)(< A1 >). In particular,

A2 : A1 → (A1)
4 → (A1)

2 → A1,

A2 : (A1)
3 → (A1)

5 → (A1)
6 → (A1)

3,

and sends the identity element to itself under conjugation. By this we can tell that a

subgroup isomorphic to ZZ3 ∝ ZZ7 is contained in NL3(2)(< A1 >). Since ZZ3 ∝ ZZ7 is a

7



maximal subgroup structure in L3(2), either NL3(2)(< A1 >) ∼= ZZ3 ∝ ZZ7, or NL3(2)(< A1 >)

= L3(2). However, L3(2) is a simple group, which means < A1 > is not a normal subgroup

of L3(2). Thus NL3(2)(< A1 >) 6= L3(2), and NL3(2)(< A1 >) ∼= ZZ3 ∝ ZZ7. Since < A1 >

is a representative of the conjugacy class of radical all 7-subgroups of L3(2), we can say

NL3(2)(P7,1) ∼= ZZ3 ∝ ZZ7, for any radical 7-subgroup P7,1 of L3(2).

This gives us the radical 7-chain C72 : P7,0 < P7,1, with stabilizerNL3(2)(C72) = NL3(2)(1)∩

NL3(2)(P7,1) = NL3(2)(P7,1) ∼= ZZ3 ∝ ZZ7. 2

2.2 Radical 3-chains

We will prove the following theorem for the radical 3-chains of L3(2):

Theorem 2.2 The radical 3-subgroups of L3(2) are P3,0 = 1 and P3,1
∼= ZZ3. The radical

3-chains of L3(2) are C31 : P3,0 and C32 : P3,0 < P3,1. The stabilizers are NL3(2)(C31) = L3(2)

and NL3(2)(C32) ∼= S3.

Proof: The only possible radical 3-subgroups must have order three or order one. The

subgroups of order three are the Sylow-3 subgroups, which we have already determined to

be radical 3-subgroups. The only subgroup of order one is the trivial subgroup 1. We have

already concluded that 1 is a radical 3-subgroup with NL3(2)(1) = L3(2). Thus it is clear that

C31 : P3,0 = 1 is a radical 3-chain. The stabilizer of this chain is NL3(2)(C31) = NL3(2)(1) =

L3(2).

8



Of course, it only remains to determine the structure of the Sylow-3 subgroups and their

normalizers. Since the order of the Sylow-3 subgroups is three, a prime, the subgroups must

be isomorphic to ZZ3. As proof, consider the element A3 =


0 0 1

0 1 0

1 0 1

. The subgroup it
generates is

< A3 >=



1 0 0

0 1 0

0 0 1

 ,

0 0 1

0 1 0

1 0 1

 ,

1 0 1

0 1 0

1 0 0




which has order three and is isomorphic to ZZ3. Thus P3,1
∼= ZZ3.

To determine the structure of NL3(2)(P3,1), we will use < A3 >. Consider the element

A4 =


1 0 0

0 1 0

1 0 1

. This element has order two, and A4 ∈ NL3(2)(< A3 >) since A4 : A3 →

(A3)
2 → A3 by conjugation. This gives us a subgroup isomorphic to ZZ2 ∝ ZZ3

∼= S3. We will

show that this is, in fact, equal to NL3(2)(< A3 >).

To show this, we must look at the centralizer of A3, which is the subgroup

C(A3) = {A ∈ L3(2)|AA3 = A3A}. According to [1], the order of its centralizer is

|C(A3)| = 3. This means C(A3) =< A3 >.

Consider an element of order seven. In order for it to be in NL3(2)(< A3 >), it must

fix each element of < A3 > by conjugation. This is because of its odd order and the fact

that there are only two non-trivial elements in < A3 >. In other words, this element must

be in the centralizer of A3. Since this is not the case, no element of order seven can be in

NL3(2)(< A3 >). The same argument can be made for elements of order three which are not

in < A3 >.

9



Now consider an element of order four. In order for it to be in NL3(2)(< A3 >), its square

must fix each element of < A3 > by conjugation. The square of an order four element is

an element of order two. Thus, for an element of order four to be in NL3(2)(< A3 >), its

square must be in C(A3). Again, this is not the case, so no element of order four can be in

NL3(2)(< A3 >). This case rules out the possibility of NL3(2)(< A3 >) ∼= S4.

Finally, we note that S3 is a maximal subgroup structure of S4. Since we have ruled

out S4 and all elements of order seven, we can conclude that NL3(2)(< A3 >) ∼= S3. Since

< A3 > is a representative of the conjugacy class of all radical 3-subgroups of L3(2), we can

say NL3(2)(P3,1) ∼= S3.

Hence we have the radical 3-chain C32 : P3,0 < P3,1, which has stabilizer NL3(2)(C32) =

NL3(2)(1) ∩NL3(2)(P3,1) = NL3(2)(P3,1) ∼= S3. 2

2.3 Radical 2-chains

We will now determine the radical 2-chains for L3(2). In the following theorem, note that

there are two conjugacy classes for the radical 2-subgroups of order 4.

Theorem 2.3 The radical 2-subgroups of L3(2) are P2,0 = L3(2), P2,2
∼= ZZ2×ZZ2(I), P 02,2

∼=

ZZ2×ZZ2(II), and P2,3
∼= ZZ2 ∝ ZZ4

∼= D4. The radical 2-chains are C21 : P2,0, C22 : P2,0 < P2,2,

C23 : P2,0 < P
0
2,2, C24 : P2,0 < P2,2 < P2,3, C25 : P2,0 < P

0
2,2 < P2,3, and C26 : P2,0 < P2,3. The

stabilizers are NL3(2)(C21) = L3(2), NL3(2)(C22) ∼= S4(I), NL3(2)(C23) ∼= S4(II), NL3(2)(C24) ∼=

D4, NL3(2)(C25) ∼= D4, and NL3(2)(C26) ∼= D4. We use (I) and (II) to denote the two non-

conjugate elementary abelian 2-subgroups of order 4 and their respective normalizers.
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Proof: The only possible radical 2-subgroups of L3(2) have order 2
3 = 8, 22 = 4, 21 = 2,

and 20 = 1. The only subgroup of order one is the trivial subgroup 1, which is a radical 2-

subgroup. This, of course, gives us the radical 2-chain C21 : P2,0 with stabilizer NL3(2)(C21) =

NL3(2)(P2,0) = L3(2).

The radical 2-subgroups of order eight are the Sylow-2 subgroups. They are isomorphic

to ZZ2 ∝ ZZ4
∼= D4, a dihedral subgroup. To demonstrate such a group let us consider the

elements A5 =


1 0 1

0 1 1

0 0 1

, which has order 2, and A6 =


1 1 1

0 1 1

0 0 1

, which has order 4.
Then < A5 >∼= ZZ2 and < A6 >∼= ZZ4. We get ZZ2 ∝ ZZ4 by taking products of elements from

these two groups. In this case, the group is

(" 1 0 0

0 1 0

0 0 1

#
,

" 1 1 1

0 1 1

0 0 1

#
,

" 1 1 0

0 1 1

0 0 1

#
,

" 1 0 1

0 1 0

0 0 1

#
,

" 1 0 1

0 1 1

0 0 1

#
,

" 1 0 0

0 1 1

0 0 1

#
,

" 1 1 1

0 1 0

0 0 1

#
,

" 1 1 0

0 1 0

0 0 1

#)

and is isomorphic to ZZ2 ∝ ZZ4
∼= D4. Thus P2,3

∼= D4.

Before we can determine the normalizer of this group, we must first determine possible

radical 2-subgroups of order 4. Using our D4 subgroup as a guide, we can find two possible

structures. One is isomorphic to ZZ4, an example of which is

1 0 0

0 1 0

0 0 1

 ,

1 1 1

0 1 1

0 0 1

 ,

1 1 0

0 1 1

0 0 1

 ,

1 0 1

0 1 0

0 0 1


 .

This group is < A6 >, and is a subgroup of our D4 subgroup.

Any other possible subgroup is isomorphic to ZZ2 × ZZ2, two examples of which are

H1 =



1 0 b

0 1 c

0 0 1

 : b, c ∈ F2
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and

H2 =



1 a b

0 1 0

0 0 1

 : a, b ∈ F2


where F2 denotes a field of order two. Both are subgroups of our D4 subgroup, and with

tedious calculations it can be shown that they are not conjugate.

As an example of such a calculation, consider A =


1 1 0

0 1 0

0 0 1

 ∈ H2 andD =


1 0 0

0 1 1

0 0 1

 ∈H1.

For a matrix β =


a b c

d e f

g h i

 to send A to D under conjugation, it must be true that


a b c

d e f

g h i



1 1 0

0 1 0

0 0 1

 =

1 0 0

0 1 1

0 0 1



a b c

d e f

g h i

 ,
or 

a a+ b c

d d+ e f

g g + h i

 =


a b c

d+ g e+ h f + i

g h i

 .

Under this condition and the condition that det



a b c

d e f

g h i


 = 1, we get a = g = i = 0,

c = d = h = 1, and our matrix becomes β =


0 b 1

1 e f

0 1 0

.

Now consider B =


1 0 1

0 1 0

0 0 1

 ∈ H2, and E =


1 0 1

0 1 1

0 0 1

 , F =

1 0 1

0 1 0

0 0 1

 ∈ H1. In

order to send B to E under conjugation by β, it must be true that βB = Eβ, or
0 b 1

0 e 1 + f

0 1 0

 =

0 1 + b 1

0 1 + e f

0 1 0

 .
12



This is impossible. In order to send B to F under conjugation by β, it must be true that

βB = Fβ, or 
0 b 1

1 e 1 + f

0 1 0

 =

0 1 + b 1

0 e f

0 1 0

 .
This is impossible as well. In this way, we determine that it is not possible to conjugate the

elements of H2 by β and get elements of H1.

We now refer to Proposition 1.48(iv), page 40-41, in The Classification of Finite Simple

Groups [2], which states, “If X is a group with dihedral Sylow 2-subgroup S, then we

have . . . According as |S| = 4 or |S| > 4, X has one or two conjugacy classes of four-

subgroups.” Since the Sylow-2 subgroups are dihedral with order greater than four, there

are two conjugacy classes of 4-subgroups. This confirms our calculations. We can conclude

that these two conjugacy classes have subgroups isomorphic to ZZ2 × ZZ2, since both H1 and

H2 are both isomorphic to ZZ2 × ZZ2, yet are not conjugate. We will denote the conjugacy

class which contains H1 as ZZ2 × ZZ2(I) and the class which contains H2 as ZZ2 × ZZ2(II).

We will now look at the normalizers of these groups, beginning with H1. It can be verified

that A6, the element of order four in D4, is in NL3(2)(H1), so we can conclude that D4 ≤

NL3(2)(H1). SinceD4 is a maximal subgroup structure of S4 and S4 is maximal in L3(2), either

NL3(2)(H1) ∼= D4 or NL3(2)(H1) ∼= S4. However, the element A7 =


1 1 0

1 0 0

0 0 1

 /∈ D4, of order

three, is an element of NL3(2)(H1). Thus NL3(2)(H1) ∼= S4. The same holds for NL3(2)(H2),

using the element A2 =


1 0 0

0 1 1

0 1 0

, also of order three. Since there are two conjugacy
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classes of S4 and two conjugacy classes of ZZ2×ZZ2, we can conclude NL3(2)(H1) ∼= S4(I) and

NL3(2)(H2) ∼= S4(II).

With this information, we can now determineNL3(2)(P2,3). We know A7 ∈ NL3(2)(H1), but

A7 /∈ NL3(2)(D4), and also A2 ∈ NL3(2)(H2), but A2 /∈ NL3(2)(D4). Hence NL3(2)(D4) 6∼= S4.

We must conclude that NL3(2)(D4) ∼= D4. Thus NL3(2)(P2,3) = P2,3.

Now we will determine NL3(2)(ZZ4) by finding NL3(2)(< A6 >), where again A6 is our

element of order four in D4. It can be verified that A5 ∈ NL3(2)(< A6 >), where A5 has

order two and is in D4, so D4 ≤ NL3(2)(< A6 >). However, no element of order three can

be an element of NL3(2)(< A6 >), since sending A6 → (A6)
2 → (A6)

3 is impossible because

(A6)
2 has order two. The order of C(A6) is 4, however, which means C(A6) =< A6 >, and

does not have any elements of order three. Thus NL3(2)(< A6 >) 6∼= S4, and we can conclude

NL3(2)(< A6 >) ∼= D4. Hence NL3(2)(ZZ4) = P2,3.

The last possible radical 2-subgroups have order two, and are isomorphic to ZZ2. As an

example, consider the element A8 =


1 0 1

0 1 0

0 0 1

. The subgroup it generates is


1 0 0

0 1 0

0 0 1

 ,

1 0 1

0 1 0

0 0 1




which is isomorphic to ZZ2. For any element A to be in NL3(2)(< A8 >), A
−1A8A must equal

A8, since the conjugate of the identity by any other element is itself. Thus NL3(2)(< A8 >)=

C(A8). Well, |C(A8)| = 8 ([1]), so NL3(2)(< A8 >) ∼= D4. Hence NL3(2)(ZZ2) ∼= D4.
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Based on this information, ZZ4 and ZZ2 cannot be radical 2-subgroups. Therefore, the

radical 2-subgroups are P2,3
∼= D4, P2,2

∼= ZZ2×ZZ2(I), P
0
2,2
∼= ZZ2× ZZ2(II), and P2,0 = L3(2).

The radical 2-chains are then C211 : P2,0, C22 : P2,0 < P2,2, C23 : P2,0 < P
0
2,2, C24 : P2,0 <

P2,2 < P2,3, C25 : P2,0 < P 02,2 < P2,3, and C26 : P2,0 < P2,3, with stablizers NL3(2)(C21) =

L3(2), NL3(2)(C22) = NL3(2)(P2,2) ∼= S4(I), NL3(2)(C23) = NL3(2)(P
0
2,2)

∼= S4(II), NL3(2)(C24) =

NL3(2)(P2,3) ∼= D4, NL3(2)(C25) = NL3(2)(P2,3) ∼= D4, and NL3(2)(C26) ∼= D4. 2
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CHAPTER 3

CONCLUSIONS

The table on the next page summarizes our results.

As you can see, finding radical p-chains and their stabilizers can be an interesting un-

dertaking. As future research, the information gathered here can be applied to the McKay-

Alperin-Dade Conjecture to verify the claim for L3(2), or it could prove to be a counterex-

ample. Only time will tell.
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Table 2: Radical p-chain Summary for L3(2)
p Radical p-subgroups Normalizers Radical p-chains Stabilizers

2 P2,3
∼= ZZ2 ∝ ZZ4

∼= D4 NL3(2)(P2,3) ∼= D4 C21 : P2,0 NL3(2)(C21) = L3(2)

P2,2
∼= ZZ2 × ZZ2(I) NL3(2)(P2,2) ∼= S4(I) C22 : P2,0 < P2,2 NL3(2)(C22) ∼= S4(I)

P 0
2,2
∼= ZZ2 × ZZ2(II) NL3(2)(P

0
2,2) ∼= S4(II) C23 : P2,0 < P 0

2,2 NL3(2)(C23) ∼= S4(II)

P2,0 = 1 NL3(2)(P2,0) = L3(2) C24 : P2,0 < P2,2 < P2,3 NL3(2)(C24) ∼= D4

C25 : P2,0 < P 0
2,2 < P2,3 NL3(2)(C25) ∼= D4

C26 : P2,0 < P2,3 NL3(2)(C26) ∼= D4

3 P3,1
∼= ZZ3 NL3(2)(P3,1) ∼= S3 C31 : P3,0 NL3(2)(C31) = L3(2)

P3,0 = 1 NL3(2)(P3,0) = L3(2) C32 : P3,0 < P3,1 NL3(2)(C32) ∼= S3

7 P7,1
∼= ZZ7 NL3(2)(P7,1) ∼= ZZ3 ∝ ZZ7 C71 : P7,0 NL3(2)(C71) = L3(2)

P7,0 = 1 NL3(2)(P7,0) = L3(2) C72 : P7,0 < P7,1 NL3(2)(C72) ∼= ZZ3 ∝ ZZ7
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