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ABSTRACT 
 
 

A Statistical Evaluation of Algorithms for  
 

Independently Seeding Pseudo-Random Number Generators of 
 

Type Multiplicative Congruential (Lehmer-Class) 
 
 

by 
 

Robert Grisham Stewart  
 
 

To be effective, a linear congruential random number generator (LCG) should produce values 

that are (a) uniformly distributed on the unit interval (0,1) excluding endpoints and (b) 

substantially free of serial correlation. It has been found that many statistical methods produce 

inflated Type I error rates for correlated observations. Theoretically, independently seeding an 

LCG under the following conditions attenuates serial correlation: (a) simple random sampling of 

seeds, (b) non-replicate streams, (c) non-overlapping streams, and (d) non-adjoining streams. 

Accordingly, 4 algorithms (each satisfying at least 1 condition) were developed: (a) zero-leap, 

(b) fixed-leap, (c) scaled random-leap, and (d) unscaled random-leap. Note that the latter 

satisfied all 4 independent seeding conditions.   

 

To assess serial correlation, univariate and multivariate simulations were conducted at 3 equally 

spaced intervals for each algorithm (N=24) and measured using 3 randomness tests: (a) the serial 

correlation test, (b) the runs up test, and (c) the white noise test. A one-way balanced 

multivariate analysis of variance (MANOVA) was used to test 4 hypotheses:  (a) omnibus, (b) 

contrast of unscaled vs. others, (c) contrast of scaled vs. others, and (d) contrast of fixed vs. 

others. The MANOVA assumptions of independence, normality, and homogeneity were 

satisfied.  

 

In sum, the seeding algorithms did not differ significantly from each other (omnibus hypothesis). 

For the contrast hypotheses, only the fixed-leap algorithm differed significantly from all other 

algorithms. Surprisingly, the scaled random-leap offered the least difference among the 
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algorithms (theoretically this algorithm should have produced the second largest difference). 

Although not fully supported by the research design used in this study, it is thought that the 

unscaled random-leap algorithm is the best choice for independently seeding the multiplicative 

congruential random number generator. Accordingly, suggestions for further research are 

proposed. 
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CHAPTER 1 

INTRODUCTION 

The field of computational statistics has become indispensable to modern civilization. 

Indeed, essential contributions include (a) facilitating experimentation through enhancements to 

random selection (sampling) and random assignment (permuting), (b) simulating (modeling) 

physical processes, (c) aiding attempts to develop analytic solutions for mathematical 

expressions, (d) providing surrogates for mathematical expressions that are analytically 

intractable, and (e) improving the robustness of statistical methods through the enhancement of 

resampling schemes. One should note that advancements in digital computer technology (viz., 

increases in memory capacity and computational speed) have played a major role in the field�s 

success. 

An indispensable tool of the computational statistician is the pseudo-random number 

(PRN). Indeed, PRNs serve as basic building blocks in that most probability distributions can be 

sampled with numbers that are uniform and on the interval (0,1 [excluding endpoints]) (Morgan, 

1984). The term �pseudo-random number� emphasizes the deterministic process that results from 

combining arithmetic formula with digital computers (i.e., the quantity of non-repeating random 

numbers is finite; moreover, any number can be predicted if the input value is given). Although 

true random numbers are available (e.g., physical devices can be used as inputs to a digital 

computer), PRNs have seen the widest use. Accordingly, substantial literature has been produced 

along two lines: (a) the development of pseudo-random number generators and (b) the 

assessment of generator performance. To date, the linear congruential family of generators has 

been the most widely applied and the most thoroughly studied method for producing PRNs. 
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Background of the Study 

 To be effective, a linear congruential generator (LCG) should produce values that are (a) 

uniformly distributed on the unit interval (0,1 [excluding endpoints]) and (b) substantially free of 

serial correlation (Gentle, 1998). Satisfying the former is not problematic for LCGs (see Fan, 

Felsovalyi, Sivo, & Keenan, 2002 for empirical results and Knuth, 1981, for a theoretical 

framework). As to the latter condition, the Principium of Seeding (Mihram, 1972) prescribes two 

criteria: (a) the values used to start the generator --- the �seeds� --- should be independent (i.e., 

each seed should be compiled from a validated source of random digits; e.g., the RAND table; 

RAND Corporation, 1955) and (b) the seeds should not be replicated. However, these criteria 

constitute a minimum degree of independence (i.e., for large applications a chance exists that at 

least two sequences could overlap to the extent that only one value is unique; Clark & 

Woodward, 1992, p. 14).  

To further attenuate serial correlation, two additional conditions have been proposed: (a)  

non-overlapping sequences (Clark & Woodward, 1992; Fan et al., 2002; Gentle, 1998) and (b) 

non-adjoining sequences, that is, a fixed (or random) number of values are leaped (skipped, 

discarded) to allow space between sequences (Gentle; Kaplan, 1981). Accordingly, four seeding 

algorithms can be defined that meet the criteria of non-overlapping and non-replicate sequences:  

(a) zero-leap, (b) fixed-leap, (c) scaled random-leap, and (d) unscaled random-leap. (Note that 

the latter three also satisfy the condition of non-adjacent sequences.)  Although each algorithm 

satisfies the conditions for �theoretical independence�, the degree of �empirical independence� 

(i.e., the lack of serial correlation achieved in applications) is not known.  
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 Depending on the application, pseudo-random numbers can produce correlational 

structures that have disastrous effects. More generally, Stevens (1996) surmised that departures 

from independence (viz., correlated observations) would increase the number of times the null 

hypotheses would be falsely rejected (i.e., relationships would be assumed where none existed 

[cf. Type I errors]). In the case of analysis of variance (ANOVA) of correlated data, Scariano 

and Davenport (1987) found Type I error rates that were inflated nearly 10 times the level of 

significance (i.e., tests that specified a .05 alpha level were actually tested at .50). It is plausible 

that seeding algorithms could attenuate the serial correlation found in pseudo-random numbers. 

And subsequently improve the correlational properties of applications that use pseudo-random 

numbers.     

Purpose of the Study 

 The objectives of this study were three-fold: (a) to develop an algorithm that satisfies the 

four theoretical conditions for producing independent seeds, (b) to statistically compare the 

performance of four algorithms (zero-leap, fixed-leap, scaled random-leap, and unscaled 

random-leap), and (c) to identify areas for further research.  

Null Hypotheses 

Theoretically, at least one of the four seeding algorithms should differ in ability to 

attenuate serial correlation (Gentle, 1998; Kaplan, 1981; Mihram, 1972). Moreover, algorithms 

that randomly vary the distance between sequences should decrease serial correlation (Kaplan). 

Therefore, one would expect that the unscaled random-leap would produce the least serial 

correlation followed by the scaled random-leap, and lastly the fixed leap. Accordingly, the 

following relationships are of interest:   
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1. There will be no difference (at the .01 level) in the output of four seeding algorithms 

(one-way explanatory variable) on three measures of dependence: (a) serial correlation 

test, (b) runs up test, (c) white noise test.  

2. There will be no difference (at the .01 level) in the output of the unscaled random 

algorithm and all other algorithms on three measures of dependence.  

3. There will be no difference (at the .01 level) in the output of the scaled random 

algorithm and all other algorithms on three measures of dependence.  

4. There will be no difference (at the .01 level) in the output of the fixed interval 

algorithm and all other algorithms on three measures of dependence.  

Terms 

Algorithm 

According to Skiena (1998, p. 3), �an algorithm is a procedure to accomplish a specific 

task . . . and is the idea behind any computer program.�  In designing algorithms, three properties 

are desirable:  correctness, efficiency, and ease of use (Skiena). Moreover, an algorithm �will 

always produce correct results� while a heuristic will �do a good job without providing any 

guarantee� for the results (Skiena, p. 4).  

Pseudo-Random Number 

According to Sedgewick (1983, p. 33), �a random number is a precisely defined 

mathematical concept: every number should be equally likely to occur.�  Often the term arbitrary 

number is used instead of random number; however,  �one is saying that one doesn�t really care 

what number one gets: almost any number will do� (Sedgewick, p.33). Numbers produced using 

deterministic methods (e.g., digital computer algorithms) are not random, however, because such 

numbers �seem to be randomly drawn from some known distribution� the term pseudo-random 
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number is appropriate (Gentle, 1998, p. 1). Note that quasi-random numbers  �correspond to 

samples from a U(0,1) distribution� but are largely dependent (Gentle).   

Independently Seeded 

According to Mihram (1972, p. 251), an encounter is independently seeded if �each 

successive seed . . . [is] randomly determined by selecting its value from some published source 

of random numbers . . . and the successive seeds . . . [are] inspected to forbid repetitions in the 

set.�   

Simulation vs. Monte Carlo Studies 

The terms �simulation� and �Monte Carlo� are often used interchangeably in the 

literature (for an example see Stevens, 1996, p. 237); however, each term does have a specific 

sense: simulation � the generation of sample data from a known distribution; Monte Carlo � an 

evaluation framework for solving mathematical problems or comparing statistical methods 

(Gentle, 1998).  

Assumptions 

 The three statistical requirements for the multivariate analysis of variance (MANOVA) 

are the core assumptions for this study. These are (a) multivariate independence, (b) multivariate 

normality, and (c) homogeneity of the variance-covariance matrices. A detailed analysis of each   

assumption can be found in Chapter 4.  

Delimitations 

 The core delimitations for this study involve selecting values for the constants in the 

linear congruential generator equation. A discussion of each constant follows: 
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 Value for Increment (b) 

To obtain the full cycle length of a linear congruential generator the increment (b) must 

be greater than 0. However, �large cycle lengths do not necessarily result in sequences of �good� 

pseudo-random numbers� (Morgan, 1984, p. 59). Moreover, letting b=0 removes the addition 

step thereby increasing computational efficiency. Accordingly, the increment was set at 0 for this 

study.  

Value for Modulus (m) 

The modulus is the number of unique values produced by the generator. Several 

�shuffling� techniques have been developed to extend the modulus (period) of the linear 

congruential family of generators (see Gentle, 1998). However, these techniques were not 

applied to the generator used in this study. 

Value for Multiplier (a) 

Over 500 million multipliers are valid for the linear congruential generator (n.b., the 

multipliers must be a primitive root of the modulus; Gentle, 1998). Subsequently, 17 multipliers 

have been subjected to extensive exploratory analysis (see Hoaglin, 1976). Of these, the value 

397204094 was found to be optimal and subsequently was the only multiplier used in this study.  

Limitations 

 The primary limitations of this study stem from constraints imposed by the multivariate 

analysis of variance (MANOVA). A discussion of each constraint follows: 

Dependent Variables 

The number of dependent variables should be reduced to the most relevant for three 

reasons: (a) small discrepancies among many variables may mask real discrepancies in a few; (b) 

generally, test power declines as variables count increases; and (c) the lack of reliability among 
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measures may confound model interpretation (Stevens, 1996, p. 227). Accordingly, three 

dependent variables (measures) were selected for this study: (a) the serial correlation test, (b) the 

runs up test, and (c) the Bartlett Komolgorov Smirnoff white noise test (Bartlett, 1966). Two 

additional measures were applicable: (a) the runs down test and (b) Fisher�s white noise test. 

Consequently, these measures (if added or substituted) could have produced different outcomes 

for the hypotheses defined in this study.  

Planned Comparisons 

To reduce the probability of spurious results (i.e., Type I errors),  planned comparisons 

should be reduced to the most essential (Stevens, 1986). More specifically, the number of 

planned comparisons �should not exceed the number of degrees of freedom [df] for the effect� 

(Littell, Freund, & Spector, 1991, p. 71). Accordingly, three planned comparisons (contrasts) 

were allowed for this study (i.e., df = 3). Of the four algorithms, the unscaled random-leap, 

scaled random-leap, and fixed-leap were compared singly to all other algorithms. The zero-leap 

algorithm was excluded based on its theoretically low performance potential. Consequently, the 

zero-leap algorithm (if added or substituted) could have produced different outcomes for the 

hypotheses defined in this study.  

Non-Directional Hypotheses 

A balanced one-way multivariate analysis of variance (MANOVA) was used in this 

study. Consequently, a MANOVA does not allow the testing of directional hypotheses; 

therefore, it was not possible to determine which algorithm provides the best attenuation for 

serial correlation. At this point in the investigation, it was decided that testing for an effect 

(regardless of direction) was more useful that testing for a direction (with the possibility of 

missing an effect). 
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CHAPTER 2 

REVIEW OF THE LITERATURE 
 

The Statistical Independence of Observations 
 

Fisherian (frequency-based) statistical methods require that variables be (a) independent 

and (b) identically distrubuted (Freiberger & Grenander, 1971). Throughout the literature this 

concept is commonly abbreviated as IID (or i.i.d) and is generally synonymous with the terms  

�statistical independence�, �stochastic independence� and, �dependence (antonym sense)�. 

Although complete independence requires no relationship between observations, the following 

linear definition (relationship) is commonly cited: �Let Xi and Xj be observations sampled from 

an infinite population with mean mu and variance sigma squared. The observations Xi and Xj are 

non-independent if E[(Xi � mu)(Xj � mu)] does not equal zero� (Kenny & Judd, 1986, p. 423). 

Indeed, it is widely acknowledged that the presentation of  completely independent observations 

is seldom encountered in practice � thereby requiring independence to be assumed for statistical 

modeling (for pedagogical examples of this methodological trade-off see Scariano and 

Davenport, 1987; for a conceptual framework see Kruskal, 1998).  

Forms of Dependence 

As to the statistical dependence of observations, Kenny and Judd (1986) identified 

three forms. The first is group based, which is manifested in several ways: (a) selecting (or 

assigning) subjects non-randomly (e.g., convenience sampling), (b) exposing subjects to the 

same artifacts (e.g., students having the same teacher), and (c) allowing subjects to interact 

during an experiment. The second form of dependence is due to sequence (i.e., observations 

taken from an experimental unit over time). Two basic patterns are formed by sequence: (a) the 

first-order moving-average model and (b) the first-order autoregressive model. Two effects can 



 

 18

contribute to sequence dependence: (a) cycle effects (e.g., subjects may alter their behavior 

depending on the day of the week) and (b) subject effects (e.g., subjects may alter behavior 

depending on intrinsic factors). The final form of dependence is due to space, �that is, 

observations that are nearer together in space may be more or less similar than those farther away 

in space� (Kenny & Judd, 1986, p. 425). The pattern formed by space dependence is referred to 

as the nearest neighbor model (and is analogous to the moving average model for sequences). 

Moreover, spatial dependence manifests according to the same factors as group dependence (i.e., 

non-random selection or assignment, central artifacts, and subject interaction). 

Effects of Dependence 

 Substantial literature has been devoted to studying the effects of dependence. 

Accordingly, contributions can be divided along two lines: (a) Developing tests that detect 

dependence and (b) assessing the effects of dependence on model outcomes. A discussion of 

each line follows: 

Test Development. Christensen and Bedrick (1997) acknowledged that while dependence 

can take many forms, testing methodology has mainly focused on serial and spatial effects. 

Moreover, dependence testing in general has lagged behind other diagnostic areas (e.g., testing 

for non-normality, heteroscedasticity, and lack of fit). In justifying this latency, Christensen and 

Bedrick (1997) pointed out that  �unlike other assumptions, independence is not a property of the 

population in question. Independence is a property of the manner in which the population is 

being sampled. . . . as a result, there is no way to check independence without thinking hard 

about the method of sampling� (p. 1006). Furthermore, Murray (1972) noted that �testing for 

independence can be a Herculean task since there are literally an infinite number of possible 

relationships among the observations� (p. 534). 
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 Despite these challenges, three general measures of dependence are available: (a) the 

intraclass correlation for group data, (b) the autocorrelation for sequence data, and (c) the 

adjusted autocorrelation for spatial data (Kenny & Judd, 1986). Other noteworthy test 

methodologies follow: (a) Murray (1972) developed a composite approach that tests for errors in 

data against classical assumptions (independence, normality, zero mean, and homogeneous 

variance); (b) Kiefer (1982) derived the Lagrange multiplier (score statistic) to test the 

independence hypothesis of multivariate probit models; (c) Hearne, Clark, and Hatch (1983) 

presented a likelihood ratio test for serial correlation patterns found in univariate repeated-

measures designs; (d) Kenny and Judd (1986) offered two equations for the calculation of bias 

for three cases of dependence (groups, sequence, and space); however, these are limited to the 

one-way discrete analysis of variance case; (e) Beran (1992) offered a review of tests for long-

range dependence (i.e., the Hurst effect); (f) Christensen and Bedrick (1997) proposed replicate 

lack-of-fit tests based on rational subgroup formation which are suitable for detecting serial, 

spatial, and other forms of correlation; and (g) Fisher and Switzer (2001) proposed the Chi-plot 

to assess bivariate dependence structures. 

Effect Assessment. To date, literature on the effects of dependence on model outcomes 

can be divided along two lines: (a) analytic frameworks and (b) empirical studies of error rates. 

As to the former, Kenny and Judd (1986, pp. 426-427) identified two additional consequences of 

dependence on the F-ratio: (a) increased mean square variability and (b) correlated means 

squares that produce distributions other than F. Scariano and Davenport (1987) constructed a 

family of non-identity error correlation matrices useful for studying the relationship of Type I 

and II errors in the one-way analysis of variance case.  
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As to empirical studies of error rates, the following contributions are noteworthy: (a) In a 

pioneering contribution, Gastwirth and Rubin (1971) showed that minimal serial correlation 

strongly inflated the significance levels of the mean, the sign test, and the Wilcoxon test; (b) 

Similarly, Moore (1982) and Gleser and Moore (1983, 1985) used a proof approach that showed 

inflated Type I error rates for chi squared and empiric distribution tests of fit; (c) In the case of 

univariate repeated measures, Hearne et al. (1983) showed that covariance matrices with serial 

correlation (simplex pattern) obtained probability levels that exceed the nominal level (.05) by 

more than threefold; (d) Kenny and Judd (1986) demonstrated considerable biasing effects in the 

case of �mean squares used to test the effect of some discrete independent variable� (p. 422); (e) 

As to post-hoc analyses for ANOVA, Pavur (1988) studied the effect of two correlation patterns 

(i.e., same correlations for any two observations [a] within a group [b] in different groups) on the 

Type I error rates of four multiple comparison procedures (Fisher�s least significant difference 

[LSD], Tukey�s honestly significant difference [HSD],  Student-Newman-Keuls significant 

difference [SNK], and Scheffe`�s significant difference [SSD]) and concluded that �small 

correlations can be amplified by the number of replications in a one-way layout and these 

correlations can thus easily inflate the Type I error [with the least affect for the LSD method ]� 

(Pavur, 1988, p. 173); and (f) In the case of meta-analysis of correlation coefficients, Tracz, 

Elmore, and Pohlmann (1992, p. 879) found that �the assumption of independence was violated 

when more than one predictor with an intercorrelation exceeding zero were used [in a Monte 

Carlo simulation]� (see also Tracz & Elmore, 1985, for an earlier exploratory study). 

Adjustments for Dependence 

 Given that (a) the assumption of independence is seldom meet and (b) dependence can 

have extreme effects on tests of significance, many methods for countering dependence have 
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been proposed. Accordingly, these methods fall into one of two categories: (a) design-phase and 

(b) model-phase. A discussion of each follows: 

 Design-Phase. To improve independence, random sampling and permuting of units 

(subjects) have been widely employed in the design of experiments. Kendall and Babington-

Smith (1938) cogently described this relationship as  �a random method of selection, applied to 

the characteristic C of a Universe U, as a method which is independent of C in U� (p. 151). The 

most common applications are (a) randomly sampling elements from a population and (b) 

randomly assigning elements to different categories. For either case, two basic actions are 

required to obtain randomness. First, each element is assigned an identification number which is 

usually sequential (i.e., 1, 2, 3, �, N; where N is the total number of elements). Second, an 

identification number is produced so that each number has an equal chance of selection (i.e., a 

random number). In the case of sampling, the element with an identification-random number 

match is selected from the population. In the case of assignment, the element with an 

identification-random number match is repositioned as the first element. Note that an 

identification number can be used again (selection with replacement) or excluded (selection 

without replacement). The selection of elements without replacement and with reranking (as in 

random assignment) is often called a random permutation. Many variations on these basic 

procedures have been proposed (see Brysbaert, 1991; Manly, 1997; Sedgewick, 1977) . 

 Model-Phase. To date, model-based adjustments for dependence vary according to data 

type and modeling procedure. For example, Gleser and Olkin (1994) and Tracz, Newman, and 

McNeil (1986) proposed methods for the special case of meta-analytic data. More generally, 

Lahiri (2003) and Manly (1997) discussed resampling adjustments applicable to temporal and 

spatial data (n.b., Manly also includes grouped data, e.g., ANOVA). Within the context of 
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multivariate analysis of variance, Stevens (1996) suggested four approaches: (a) adjusting the 

significance level to account for inflated error rates, (b) using the means as the units of analysis, 

(c) using hierarchical modeling (see Raudenbush & Bryk, 2002), and (d) using the quasi-F or 

pseudogroup procedures developed by Myers, DiCecco, and Lorch (1981) (and featured in 

Myers & Well, 2003). 

The Statistical Randomness of Numbers 

 Random numbers are the basic buildings blocks for the field of computational statistics. 

Accordingly, the literature of random numbers can be divided along two lines: (a) methods for 

producing random numbers and (b) methods for evaluating random numbers. A discussion of 

each line follows: 

Production of Random Numbers 

Historically, two simultaneous challenges have confronted computational statisticians: 

producing a sufficient quantity of random numbers with acceptable properties (quality). To date, 

three processes have been used: (a) human, (b) physical, and (c) arithmetical. A discussion of 

each process follows: 

 Human Processes. The literature on producing random numbers (digits) using human 

processes is voluminous --- yet inconclusive (see Nickerson, 2002, for an exhaustive theoretical 

and empirical review). Indeed, the prevailing hypothesis is that humans are not good producers 

of a random series (for a recent study see Boland & Hutchinson, 2000). However, the alternative 

hypothesis is also likely (see Kareev, 1992; Wagenaar, 1971). Wagenarr (1972) pointed out that 

although many studies had been conducted, comparisons were difficult given that researchers 

used conflicting constructs for randomness and different experimental conditions.  
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Physical Processes. An effective method for producing random numbers involves 

manipulating physical devices. In the simplest case, one can use dice to obtain random numbers 

(e.g., see Hamaker, 1949, for a dice throwing technique to obtain random sampling numbers). 

However, more elaborate methods exist, such as the randomizing machine described by Kendall 

and Babington-Smith (1938): 

 
The machine consists of a disc divided into ten equal sections, on which the digits 0 to 9 
are inscribed. The disc rotates rapidly at a speed which can, if necessary, be made 
constant to a high degree of approximation by means of a tuning-fork. The experiment is 
conducted in a dark room, and the disc is illuminated from time to time by an electric 
spark or by a flash of a neon lamp, which is of such short duration that the disc appears to 
be at rest. At each flash a number is chosen from the apparently stationary disc by means 
of a pointer fixed in space. In the actual experiment, the disc was rotated by an electric 
motor at about 250 revolutions per minute. It was illuminated by a neon lamp in parallel 
with a condenser in an independent electric circuit which was broken by means of a key. 
Owing to experimental conditions, the time between the making of the circuit and the 
passing of the flash varied, but to add an extra element of randomness the key was tapped 
irregularly by the experimenter. Flashes occurred, on the average, about once in three or 
four seconds. (p. 157) 
 

The RAND Corporation�s electronic roulette wheel is another complicated approach: 

Briefly, a random frequency pulse source, providing on the average about 100,000 pulses 
per second, was gated about once per second by a constant frequency pulse. Pulse 
standardization circuits passed the pulses through a 5-place binary counter. In principle 
the machine was a 32-place roulette wheel which made, on the average, about 3000 
revolutions per trial and produced one number per second. A binary-to-decimal converter 
was used which converted 20 of the 32 numbers (the other twelve were discarded) and 
retained only the final digit of two-digit numbers; this final digit was fed into an IBM 
punch to produce finally a punched card table of random digits. This table was subjected 
to fairly exhaustive tests and it was found that it still contained small but statistically 
significant biases. The table was regarded as reasonably satisfactory because the 
deviations from expectations in the various tests were all very small--the largest being 
less than 2 per cent--and no further effort was made to generate better numbers with the 
machine. However, the table was transformed by adding pairs of digits modulo 10 in 
order to improve the distribution of the digits. (RAND Corporation, 1955, p. 1) 
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More recently, methods have been proposed that provide input to a digital computer. For 

example, Millenson and Sullivan (1969) proposed using the leakage from a reversed biased 

diode, while Schmidt (1977) proposed using a Geiger counter. Teichroew (1965) noted that 

values from a physical process must be stored if an application is to be replicated. Moreover, 

because physical processes are indeterministic, values must be exhaustively tested prior to 

application (Teichroew). Ultimately, these factors have hampered widespread use of physical 

processes.  

 Arithmetical Processes. The most prevalent process for producing random numbers 

results from coupling arithmetical formulas with modern digital computers. Indeed, with the 

advent of digital computers, it is possible to produce many samples from a variety of statistical 

distributions. In using random numbers (e.g., Monte Carlo studies), Mooney (1997) advised that 

although the number of experiments should be small (to reduce interdependence), the number of 

samples per experiment should be as high as possible. Consequently, the quantity of pseudo-

random numbers required for modern applications easily exceeds those provided in print tables 

or obtainable from local physical devices (Mooney).  

To date, three computer-based arithmetical processes have been developed: (a) linear 

congruential generators (Gentle, 1998), (b) feedback shift registers (Gentle), and (c) combination 

(compound) generators (see Collings, 1987; L�Ecuyer, 1988; MacLaren & Marsaglia, 1965; 

Wichmann & Hill, 1982, 1984). Of these, the linear congruential have been the most successful. 

Indeed, Morgan (1984, p. 64), pointed out that �the advantage of congruential generators is that 

they can be shown to possess certain desirable features and to give guaranteed cycle lengths.� 

Specific congruential generators are (a) linear, (b) multiple recursive, (c) lagged Fibonacci, (d) 

add-with-carry, (e) subtract-with-borrow, (f) multiply-with-carry, (g) inverse, and (h) matrix.  
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Evaluation of Random Numbers 

 The computational efficiency afforded by pseudo-random numbers is offset by the 

weaker distributional properties of said numbers (note that true random numbers have better 

properties but are more difficult to apply). Consequently, suggestions for evaluating pseudo-

random numbers are prominent in the literature that can be divided along two lines: (a) 

distributional properties and (b) test protocols.  A discussion of each line follows:  

 Distributional Properties. Useful pseudo-random numbers will satisfy the distributional 

properties of uniformity and randomness. The following definition of uniformity is commonly 

cited: �Let α and β be real numbers, 0 ≤ α < β ≤ 1, and Ui be the random sequence {Ui: 

i=1,2,�}, where 0≤Ui≤1. If the proportion of Ui�s satisfying alpha ≤Ui < β � α (as the number of 

deviates generated approaches infinity), the sequence Ui is said to be uniform� (Clark & 

Woodward, 1992, p. 13).  Subsequently, the concept of randomness involves a more complicated 

expression (Clark & Woodward, 1992). For Ui, �if the Pr(α1 ≤ Ui < β1 and α2 ≤ Ui+1< β2) = (β1 � 

α1)(β2 � α2) for any four numbers α1, β1, α2, and β2, where 0 ≤ αj ≤ βj  ≤ 1 and 1 ≤ j ≤  k. A 

sequence Ui is ∞-distributed if it is k-distributed for all k=1,2,� A sequence that is ∞-distributed 

can be considered random (Knuth, 1981)� (as cited in Clark & Woodward, 1992, p. 13).   

 Testing Protocols. Generally, two forms of random number evaluation are proposed: (a) 

theoretical (global) tests of the generator and (b) empirical (local) tests of generator output. 

Based on an evaluation of  generators using a known analytical solution, Ferrenberg, Landau, 

and Wong (1992) developed the following protocol: (a) use generators with the best theoretical 

test results and (b) conduct empirical tests of output for each new application, ignoring how well 

the generator has performed in prior applications. (Note that Manly, 1997, acknowledged that the 

latter is likely skipped by practitioners). For applications that involve normal distributions, Bang, 
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Schumacker, and Schlieve (1998) developed the following protocol: (a) test the number 

distribution for normality, (b) use a large sample size (i.e., n > 10,000), (c) test the starting seed 

values for normality, (d) consider the extent that numbers will be allowed to repeat (if at all), (e) 

examine the serial correlation of number sequences, and (f) test the number distribution for 

uniformity.  

As to the testing of random numbers, Fan et al. (2002) advised using as many tests as 

possible. However, an infinite number of tests for the randomness of sample values are possible 

(Morgan, 1984). Consequently, a discussion of all testing methods is beyond the scope of this 

study (but see Fan et al., chap. 3; Gentle, 1998, chap. 6; Gruenberger & Jaffray, 1965; Kennedy 

& Gentle, 1980, chap. 6; Knuth, 1981, chap. 3; Mihram, 1972, chap. 2; Morgan, 1984, chap. 6; 

Rubinstein, 1981, chap. 2; Sedgewick, 1983, pp. 40-42; Strube, 1983; Tuckwell, 1988, pp. 90-

97). Note that Chapter 3 � Methods contains a detailed discussion of the three empirical tests 

used in this study. 

 
The Lehmer Class of Random Number Generators 

 
 In 1948, Lehmer (1951), proposed the most prevalent method for producing pseudo-

random numbers with digital computers: the linear congruential generator (LCG). The basic 

form of the linear congruential family of generators is the following recursive equation (which 

follows the notation used by Morgan, 1984):  xi + 1 = (axi + b) mod m; where a, b, and m are 

fixed integer constants (called the �multiplier�, the �increment�, and the �modulus� 

respectively); where  x and i are non-negative integers (called the �sequence� and �index�, 

respectively) with i ≥ 0. Note that some software programs allow a negative value for x to 

indicate that the computer�s clock value will be the initial seed (see SAS Institute, Inc, 1990a, p. 

592). The sequence values (xi) are scaled on the unit interval (0,1; excluding endpoints) as 
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follows: ui = xi/m (Gentle, 1998, p. 6). The first value for x (called the �seed) must be supplied 

externally and is often represented as x0 since it is not produced by the generator (this value can 

be included in the output if desired; see Fan et al., 2002, pp. 38-39). The values for a, b, and m 

are optimized to satisfy four properties: efficiency, periodicity, uniformity, and randomness 

(Clark & Woodward, 1992). A discussion of each constant follows: 

Value for Increment (b) 

When the increment value is equal to 1, the term �additive� is used to classify the linear 

congruential generator. When the addition operation is eliminated (i.e., increment=b=0) an 

increase in computational efficiency is gained (Gentle, 1998). Subsequently, this generator is 

classified as �multiplicative congruential�. Note that the term �mixed congruential� is also 

applied to generators where b is not equal to 0 (Gentle).  

Value for Modulus (m) 

�The period of the random number generator is the number of values produced by the 

generator before it begins repeating the sequence� (Clark & Woodward, p. 13). In an ideal world, 

all generator periods would be infinite; however, the period of the linear congruential generator 

cannot exceed the modulus (Clark & Woodward, 1992). Moreover, xi cannot = 0 for the 

multiplicative generator (i.e., 0 will be returned for every successive xi), hence the modulus is 

reduced by 1. The maximal period is attained �if (and only if) m is a prime and the multiplier, a, 

is a primitive root modulo m . . . [which] is a number such that the smallest positive k satisfying 

ak=1 mod m is m-1� (Gentle, 1998, p. 7). The most prevalent modulus value is likely the 

Mersenne prime 2,147,483,647 (programmed as 231-1) (Gentle). Note that scaling xi on the unit 

interval (0,1 excluding endpoints) further reduces the modulus by 1 to 2,147,483,646 (or 231-2) 

(Fan et al., 2002, p. 27).  
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Value for Multiplier (a) 

To attain the maximal period, a multiplier must be a primitive root of the modulus 

(Gentle, 1998, p. 7). Indeed, more than 500 million multipliers satisfy this criterion (Clark & 

Woodward, 1992, p. 13). Accordingly, Fishman and Moore (1982) evaluated 17 multipliers 

using statistical tests for randomness and uniformity (from 1 to 3 dimensions). Most of these 

multipliers were identified by an exploratory study conducted by Hoaglin (1976). The value 

397204094 was found to be an optimal multiplier (even after the approximation formulas used 

by Hoaglin were replaced with exact methods; Clark & Woodward, p. 13). (Note that the SAS 

System uses this multiplier to produce uniform random variates; SAS Institute, 1990a, p. 592.)  

Effectiveness Studies 

The linear congruential method is the most widely researched of the random number 

generators. Although a complete review of is not possible here, the following studies are 

noteworthy: (a) Coveyou (1959) proposed multiplier and increment constants aimed at reducing 

the serial correlation of number sequences; (b) Peach (1961) showed that harmonics (sub-

periods) significantly reduce the variance of long number sequences vs. the theoretical values; 

(c) DeMatteis and Pagnutti (1988, p.595) found strong autocorrelations existing between parallel 

generator runs and concluded that �only small fractions of the sequences can be safely used�; 

and (d) Eichenauer-Herrmann and Grothe (1989) replicated the findings of DeMatteis and 

Pagnutti when prime moduli were specified for multiplicative congruential generators. 

Seeding Algorithms 

The literature regarding independently seeding random number generators of type 

multiplicative congruential can be divided along two lines: (a) theoretical conditions and (b) 

published programs. A discussion of each line follows: 
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Theoretical Conditions. With regard to obtaining independent samples from a pseudo-

random number generator, Mihram (1972) offered several points: even if parameters are altered 

(i.e., independent experiments occur), sequence seeds should be independently seeded that is,  (a) 

each seed should be compiled from a published source of random digits (e.g., the RAND table; 

RAND Corporation, 1955) and (b) any repeating seed values must be discarded. These points are 

cogently summarized as the Principium of Seeding: In any sequence of n encounters with a 

verified stochastic simulation model, the n successive random number seeds shall be selected 

randomly [from among the admissible set of seeds p. 252] and independently, though repetitions 

shall be forbidden (Mihram, p. 251).  

The condition of  �non-repeating seeds� imposed by Mihram (1972) to achieve sequence 

independence, only allows that two sequences of the same length (number of values) will not 

have identical values. Indeed, when combined with the condition of  �random seed selection� a 

chance exists that at least two sequences could overlap to the extent that only 1 value between 

sequences is unrepeated (constituting a minimum degree of independence). Clark and Woodward  

(1992) concluded that for a moderately sized application such a chance is small given the period 

(i.e., over 2 billion numbers for a multiplicative congruential generator) . However, for 

applications that involve a large number of long sequences it is recommended that the condition 

of �non-overlapping sequences� be met (Clark & Woodward, p. 14; Fan et al., 2002, pp. 38-39; 

Gentle, 1998, pp. 14, 36, 169). The general condition of �non-overlapping sequences� can be 

further refined based on the interval length (i.e., the number of values skipped [leaped, 

discarded]) allowed between sequences. In general, three intervals are recognized: zero, fixed, 

and random. Gentle advised using either fixed or random intervals. Kaplan (1981) concluded that 

random intervals should provide the best results, based on his exploratory analysis of the 
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statistical independence of seeding linear congruential generators (additive, multiplicative, and 

mixed).  

Published Programs. Several computer programs based on independent seeding principles 

were found in the literature. Kelly (2000) provided a SAS program that adds a small perturbation 

(64) to each consecutive seed obtained from multiplicative congruential generator (cf. mixed 

congruential generator)� thereby producing random and unrepeated (independent) seeds (n.b., an 

alternative approach would be to use the consecutive seeds as sampling (serial) numbers for the 

population of seeds). Clark and Woodward (1992, p. 18) and Fan et al. (2002, pp. 38-39) 

developed SAS computer programs that produce non-overlapping sequences. The SAS programs 

by Clark and Woodward (1992, p. 18) and Fan et al. will support the �zero-leap� and �fixed-

leap� conditions (albeit in straightforward applications). These programs more closely match 

systematic random sampling (Scheaffer, Mendenhall, & Ott, 1996, chap. 7) rather than the 

simple random sampling without replacement imposed by Mihram�s Principium of Seeding. 

Examples of computer programs for the �random-leap� condition were not found (see Chapter 3 

for description of a program that uses approximate simple random sampling and ensures �non-

overlapping sequences�).  
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CHAPTER 3 

METHODS 

In this chapter, two issues are addressed: (a) the development of effective seeding 

algorithms and (b) the evaluation of algorithm performance. A discussion of each follows:    

Algorithm Development 

Four algorithms that produce seeds for multiplicative congruential generators were 

developed (or refined) for this study. These are (a) zero-leap, (b) fixed-leap, (c) scaled random-

leap, and (d) unscaled random-leap. Features common to each algorithm are: (a) a single 

computer session is used to produce seeds for an entire simulation study, (b) interval length and 

sample size are separate parameters, and (c) the generator�s period cannot be exceeded (which 

prevents production of overlapping sequences). A discussion of each algorithm follows: 

Algorithm 1: Zero Leap 

 The zero-leap algorithm is the simplest of the four algorithms and is the most economical 

with regard to value output (i.e., all values in the period can be used). However, it has the 

weakest sampling properties of the four algorithms (i.e., the starting seed is the only random 

component since successive values are in serial order). Moreover, many values could have no 

chance of inclusion if far enough away from the starting seed.  

Algorithm 2: Fixed Leap 

The fixed-leap algorithm provides better theoretical sampling properties than the zero-

leap. The number of values leaped is computed by subtracting the period from the total number 

of values required then dividing by the number of seeds. In this way, the entire period is 

traversed by the algorithm (allowing all values a chance to be included). However, this algorithm 

is closer to systematic sampling than the simple random sampling imposed by Mihram�s (1972) 



 

 32

Principium of Seeding. Depending on the circumstances, the efficiency of systematic sampling 

can differ from designs that have a direct random component (Madow, 1946). Indeed, Madow 

advised that �the chief danger in applying a systematic design occurs when the data have a 

periodic formation, and the sampling interval chosen is equal to the period of the data� (p. 213).   

Algorithm 3: Scaled Random-Leap 

An application of the random-leap algorithm was not found in the literature. Accordingly, 

the method for computing the fixed-leap distance was applied. The maximum number of skips 

between seeds is used to scale the last uniform random number in a sample (say from 1 to 100) 

that then becomes the number of values leaped after that sample. Although this algorithm offers 

better random sampling properties than the zero or fixed-leap algorithms, it has the potential to 

exclude more values (reducing the number of values available for an application).  

Algorithm 4: Unscaled Random-Leap 

 Of the four algorithms considered, the unscaled random-leap provides the closest match 

to Mihram�s (1972) Principium of Seeding (i.e., using simple random sampling to obtain seeds) 

while satisfying the conditions of non-replicated, non-overlapping, and non-adjoining seeds. 

Specifically, a block of seeds produced by the generator become sampling numbers for the entire 

population of seeds. To prevent the chance that sampling numbers will produce overlapping 

seeds, the distance between each sampling number is computed and checked against the sample 

size parameter. If the sequences overlap, then that sampling number is rejected. (Note that extra 

sampling numbers are generated to allow for any rejects.)    

 

 

 



 

 33

Algorithm Evaluation 

 In this section, four issues regarding evaluation of the seeding algorithms are considered. 

These are (a) simulation design, (b) units of analysis, (c) dependent variables, and (d) data 

analysis. A discussion of each follows:  

Simulation Design 

A simulation study approach was used to evaluate the four seeding algorithms. The 

primary design constraint for a simulation is the total number of unique uniform values required. 

Three factors affect this value: (a) the number of experiments in the simulation, (b) the number 

of samples per experiment, and (c) the number of observations per sample. A discussion of each 

follows: 

Number of Experiments. In practice, the number of experiments for a given simulation 

can vary greatly (Mooney, 1997). Mooney strongly admonished delimiting the number of 

experiments in a simulation to those offering the most variation. Moreover, the number of 

experiments must be balanced against computational limitations (e.g., the amount of time 

allotted to run a simulation, the length of the random number generator period). 

Number of Samples per Experiment. As to the number of samples (trials), Mooney (1997, 

p. 58), advised that �there are no general theoretical guidelines for the number of trials required 

for experimental results to be valid.�  Generally, from 1-100 trials are suggested for exploratory 

work, while as many trials as possible are suggested for confirmatory work (e.g., 1,000-25,000: 

Mooney, p. 58).  

Number of Observations per Sample. In determining the number of sample observations, 

two factors must be considered: (a) the number of variables in the sample and (b) the type of 

probability distribution(s) each variable should approximate. The former assumes that one would 
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conduct either a univariate simulation or multivariate simulation (but not both with regard to the 

same problem). For the latter, values from probability distributions can be obtained by 

transforming one (or more) values from a uniform distribution (see Gentle 1998; Johnson, 1987; 

Mooney, 1997; Morgan, 1984). Note that competing methods for transforming uniform values 

exist as do alternatives to uniform transformation methods (see Gentle; Morgan). For example, 

one method for generating four (multivariate) correlated non-normal values (see Headrick & 

Sawilowsky, 1999a, 1999b) requires 6 standard normal values with each of these requiring 2 

uniform values (i.e., 12 uniform values are required to generate 4 correlated  non-normal values). 

However, other methods require fewer uniform values (e.g., Fleishman�s, 1978, equation 

requires only 2 uniform values per multivariate value).  

Accordingly, this simulation study was composed of two designs: (a) a univariate design 

of 18 experiments, with 10,000 samples per experiment, with 6 experiments of sample size 10, 

50, and 100 respectively and (b) a multivariate design with 8 experiments, with 10,000 samples 

per experiment with 4 experiments of sample size 10 and 50 respectively [each with multiples of 

4 and 8 to account for multiple variables and or distributional transformations]. 

Units of Analysis 

 The stream of 231-2 of unrepeated random values offers a source of variation. That is, the 

effectiveness among the algorithms will likely vary depending on where they are initiated 

because the quality of randomness varies within the stream. This variation was used to increase 

the units of analysis by initiating each of the two simulations at three different equally spaced 

points in the random number stream yielding a total of 24 observations for this study (2 

simulations x 4 algorithms x 3 starting points). Although arbitrary, three intervals should 

maximize coverage of variation within the stream while maintaining independence among the 
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units of analysis (Mooney, 1997, pp. 62-63). Equally spaced starting seeds were obtained for 

each simulation (design 1:  684543030, 1400370912, 2116198794; design 2: 123535106, 

839362988, 1555190870) using the following procedure (Mihram, 1972, p. 251):     

1. Select a 10-digit number from the RAND table using the manual procedure (RAND 

Corporation, 1955).  

2. If the 10-digit value is equal to 0, greater than 8589934584 (i.e., the largest 

equiprobable seed value) or already listed, then discard and return to step 1. 

3. If the 10-digit value is greater than 2147483646, then subtract 2147483646 until the 

value is less than or equal to 2147483646 and list as the first seed. 

4. To obtain the second seed, add p (where p = 2147483646 divided by the number of 

intervals [3]) to the first seed and list. To obtain the third seed, add p to the second seed 

and list. 

5. Repeat steps 1-4 for each experiment (for the SAS program see Appendix C). 

6. Pass each set seed to the �check for overlapping sequences� routine of the 

produce_seeds SAS program (Appendix A). 

7. If a seed is rejected, repeat steps 1-4 to obtain a replacement set and repeat step 6.  

Dependent Variables 

An infinite number of tests for the randomness of sample values are possible (Morgan, 

1984). Fan et al. (2002) suggested using as many tests as possible to determine randomness. 

However, two constraints guided the selection of dependent variables for this study: (a) the need 

for tests that provide a meaningful single measure (e.g., p-value) based on an entire stream of 

numbers (say 1,800,000) rather than substreams (samples of size 10) and (b) the need for the 

number of dependent variables in a multivariate k-populations design to be as small as 
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theoretically possible (Stevens 1996, p. 227). Accordingly, three fundamental properties of 

randomness were the dependent variables for this study: (a) independence, (b) monotonicity, and 

(c) periodicity. A discussion of the measure for each property follows: 

Independence Measure. To measure independence, the serial correlation test (as defined 

by Anderson, 1942) was applied to each simulation (for the SAS program see Fan et al., 2002, 

pp. 30-34; for examples see Kennedy & Gentle, 1980, pp. 170-171 and Knuth, 1981, pp. 70-71). 

Note that the serial test (Good, 1957; Knuth, 1981, p. 60; Morgan, 1984, p. 140-142) is not an 

analogue of the serial correlation test. Applications of the serial correlation test have been based 

on Pearson�s product-moment correlation coefficient using the standard score formula (Hinkle, 

Wiersma, & Jurs, 1994, chap. 5). Although any cyclically shifted sequence can be used to lag the 

test (Knuth, 1981, p. 71), the immediate successor sequence is preferred because of its 

simplicity. Accordingly, correlations were computed between the ith and (i+j)th random number 

where j=1,2, . . . n and n = the highest value for lagging (in this case 100). To obtain a 

probability value (p-value) for each simulation, the arithmetic mean of the lagged p-values was 

computed. A small p-value indicates lack of independence (i.e., rejection of the two-sided null 

hypothesis that the correlation is equal to 0).  

Monotonicity Measure. To evaluate monotonicity, the runs up test was applied to each 

simulation (for discussions see Gentle, 1998; Kennedy & Gentle, 1980; Knuth, 1981; Morgan, 

1984). Note that different runs test can be constructed thru various combinations of the 

following: (a) 3 problem forms (i.e., constant probability events with either fixed or unfixed 

sample sizes [Bradley, 1968, chap. 11] and non-constant probability events with unfixed sample 

sizes [Bradley, chap. 12]); (b) 3 event forms (i.e., runs up [i.e., monotonic increasing sequences], 

runs down [i.e., monotonic decreasing sequences], or runs up and down); (c) 3 metric forms (i.e., 
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total number of runs, length of runs, or length of longest run); (d) 3 alternative hypotheses (one-

sided [i.e., either too few runs or too many runs] or two-sided [i.e., monotonic pattern 

unknown]); and (e) distributional form (e.g., binomial, chi-square, normal). More specifically, a 

modified version of the non-constant probability, runs up and down, length of runs, two-sided 

chi-square test (Wallis & Moore, 1941) was applied (for the SAS program see Appendix B). 

Indeed, a constant probability test is not applicable since the process for randomness is of interest 

(Bradley, p. 271). Moreover, the chi-square length of runs test is more sensitive to departures 

from randomness than the total number of runs test based on the normal distribution (Kennedy & 

Gentle; Wallis & Moore). Finally, a two-tailed test is appropriate since a pattern of too many (or 

to few) runs is not known a priori. 

 The run (phase) lengths of a sequence are not completely independent of each other 

(Wallis & Moore, 1941). Accordingly, Wallis and Moore (p. 403) acknowledged that �very large 

and very small values . . . [for their chi-square test statistic] are a little more likely� while the 

mean and variance exceed those of the ordinary application. Indeed, Knuth (1981, p. 65), Levene 

and Wolfowitz (1944, p. 66) and Morgan (1984, p. 144) disapprove of the usual chi-square test 

(given the negative correlation that exists among the various run lengths; Kennedy & Gentle, 

1980, p. 172). Subsequently, Levene and Wolfowitz proposed adjusting the expected values for 

the runs up and down chi-square test using a variance-covariance matrix (for a cogent example 

see Kennedy & Gentle; for a version based on the number of runs up see Knuth; Morgan). For 

reliable asymptotic results, Levene and Wolfowitz recommend a minimum sample size of 100 

while Knuth advises 4000.  

Because the samples values are scaled on the unit interval (0,1 [excluding endpoints]; 

Gentle, 1998, p. 6) and are non-repeating for 231-2 values, the following test assumptions (see 
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Bratley, 1992, p. 278) are satisfied: (a) each observation position is unique, and (b) each 

observation value is unique (i.e., no ties between observations for either position or value).  

The probability value for each sample will be used as the measure of within sample 

independence. A small p-value indicates lack of independence (i.e.,  rejection of the two-sided 

null hypothesis that expected number of runs for each length corresponds to the observed �on the 

probability sense of order square root n�; Levene & Wolfowitz, 1944, p. 68).  

 Periodicity Measure. The Bartlett Komolgorov Smirnoff white noise test (as defined by 

Bartlett, 1966) was used to evaluate the periodicity of each simulation (for the SAS program see 

SAS Institute Inc., 1986). Note that Fisher�s Kappa (Wei, 1990) also provides a test for the white 

noise null hypothesis (by checking for a single sinusoidal component formed in white noise) (for 

the SAS program see Woodfiel, 1991). The Bartlett test is preferred because it checks for a more 

complex departure from white noise (viz., by accumulating �departures from the white noise 

hypothesis over all frequencies� [SAS Institute Inc., p. 217]). 

Data Analysis 

Overall, this study employed a �second order� analysis (i.e., analyzing the output from 

statistical tests [e.g., p-values] with other statistical tests), which is an accepted practice for 

simulation studies (see Gentle, 1998, p. 158; Morgan, 1984, pp. 145-148). Accordingly, the p- 

values obtained from the three dependent measures were modeled using a balanced one-way 

multivariate analysis of variance (MANOVA). Stevens� (1996) framework was used to evaluate 

the statistical assumptions required for this model (i.e., multivariate independence, normality, 

and homogeneity). Moreover, Keselman�s (2005) protocol for accessing and improving 

multivariate normality was integrated with Steven�s framework. A discussion of each assumption 

follows:  
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Independence Assumption. Of the three MANOVA assumptions, independent-identically 

distributed observations (IID) is the most critical for two reasons: (a) non-independence will 

likely inflate the Type I error rates for linear models and (b) IID is a requirement for unbiased 

testing of normality and homogeneity assumptions (Stevens, 1996). Although the data were 

sampled in a manner designed to reduce non-independence (i.e., the seeding algorithms used 

random sampling schemes [albeit to varying degrees]), substantial serial correlation is known to 

exist in the population of values. Accordingly, the intraclass correlation coefficient (ICC) for 

groups (as defined by Kenny & Judd, 1986, p.204) was computed for each dependent variable 

(for the SAS program see Appendix D). Subsequently, the sample autocorrelation function 

(ACF) for residuals (as defined by Kundu & Basu, 2004, p. 229) was plotted for each dependent 

variable (for adaptable SAS programs see Twagilimana, 2005, p. 6 and Piegorsch & Bailer, 

2005, p. 238). Note that the minimum number of observations for an ACF should be greater than 

50 (Box & Jenkins, 1970). Consequently, ACFs were not plotted for each independent variable 

group as the sample size was deemed insufficient (i.e., n=6). 

Normality Assumption. In testing the assumption of multivariate normality (MVN), 

Johnson and Wichern (1998) advocated testing univariate normality (UVN) first because it is a 

requirement (but not a guarantee) for MVN. In a comparative study of UVN tests, Seier (2002, p. 

1) found that the Shapiro-Wilk test was the best overall choice (�but was not uniformly most 

powerful against all alternatives considered�). Accordingly, the Shapiro-Wilk test was computed 

for each dependent variable (for the SAS program see D�Agostino, Belanger, & D�Agostino, 

1990). Subsequently, univariate box-plots and quantile-quantile (Q-Q) plots were prepared for 

each dependent variable (for the SAS programs see Friendly, 1991). Note that Stevens (1996) 
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computed the Shaprio-Wilk test for each group of the independent variable where the smallest 

sample size was 8, eventhough D�Agostino et al. mandated a minimum sample size of 9 for 

UVN hypothesis testing. Consequently, the Shapiro-Wilk test was not computed for each 

independent variable group as the sample size was deemed insufficient (i.e., n=6). 

For the case of MVN, Looney (1995, p. 69) advised using multiple tests given that there 

are a variety of departures from multivariate normality, therefore, �one test . . . [cannot] be 

expected to be uniformly most powerful against all [others].� In choosing MVN tests, Looney 

pointed out three difficulties: (a) Over 50 MVN tests have been proposed (see Mecklin & 

Mundfrom, 2004, for a bibliography and critical review); (b) studies of relative power are few; 

and (c) many tests require special computations for significance values. Consequently, Looney 

suggested that tests be delimited to those with reliable (published) software for calculating test 

statistics and p-values. Accordingly, three tests met this criterion: (a) Mardia�s (1970) tests for 

skewness and kurtosis and (b) the cube root test developed by Mudholkar McDermott and 

Srivastava (1992) (for the SAS programs see Khattree & Naik, 1999). As to multivariate 

graphical analyses, the following plots were prepared: (a) bivariate ellipse plots, (b) quantile-

quantile (Q-Q) plots for the chi and gamma distributions, (c) a probability-probability (P-P) plot, 

and (d) an outlier plot (for the SAS programs see Friendly, 1991 [a]; Khattree & Naik,[b, c, d]).  

Homogeneity Assumption. Of the three MANOVA assumptions, homogeneity of the 

covariance matrices is the most restrictive (i.e., the most likely not to be satisfied in practice; 

Stevens, 1996). Accordingly, this assumption was tested using the Bartlett likelihood ratio test 

(as defined by Morrison, 1976, pp. 268-273 and programmed by the SAS Institute, Inc., 1990b, 

pp. 690-691). Subsequently, spread-versus-level (SVL) values (as defined by Hoaglin, 1991) 

were plotted for each dependent variable (for an adaptable SAS program see Friendly, 1991). 
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Although alternative formulations for the SVL plot exist (for definitions see Emerson & Soto, 

1982; for commentary see Myers & Well, 2003; for SAS programs see Friendly), Hoaglin�s 

definition is the most appropriate for the exploratory analysis of variance approach used in this 

study (Hoaglin).  
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CHAPTER 4 

RESULTS 

A balanced one-way multivariate analysis of variance (MANOVA) was performed on 

three dependent variables: (a) the serial correlation test, (b) the runs up test, and (c) the white 

noise test (Bartlett Komolgorov Smirnov). Results from this analysis are summarized in two 

sections: (a) model assumptions and (b) model outcomes. A discussion of each section follows: 

Model Assumptions 

Independence 

          The intraclass correlation coefficient (ICC) for strength of association was computed for 

each dependent variable: serial correlation test (r=0.14341), runs up test (r=0.11511), white noise 

test (r=0.44903). �A positive value means that scores within groups are on average more similar 

than scores between groups� (Kenny & Judd, 1986, p. 424). Given that each dependent variable 

has a positive correlation coefficient, it is reasonable to assume that dependence would likely 

cause the actual alpha level to be several times greater than the assumed alpha. Consequently, 

four options for dealing with correlated observations are commonly cited: (a) deleting 

observations from each independent variable group, (b) tightening the significance level, (c) 

using the means as the units of analysis, and (d) using alternative models (e.g., hierarchical 

modeling [Raudenbush & Bryk, 2002]; quasi-F and pseudogroup procedures [Myers, DiCecco, 

& Lorch, 1981; Myers & Well, 2003]). Stevens (1996, p. 241) suggested testing hypotheses �at a 

more stringent level of significance� (viz., .01) if the assumed error rate is expected to be inflated 

by a factor of at least 10. Moreover, Scariano and Davenport (1987) demonstrated that for a 

group size of 3 with 10 observations, alpha levels were .2227 for an ICC of .10 and .5379 for an 

ICC of .30. Accordingly, MANOVA hypotheses and contrasts were tested at the .01 level of 
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significance (rather than .05) to adjust for the positive intraclass correlation of the three 

dependent variables. 

 The sample autocorrelation function (ACF) was plotted for each dependent variable (see 

Figures 1-3). �Large values [of residuals], especially at the beginning of the plot [i.e., small 

lags], signal presence of autocorrelation [i.e., the residuals still contain information that must be 

explained]� (Wiersma, 2004, p. 145). Non-significant autocorrelation coefficients were obtained 

for each dependent variable. Moreover, the pattern of positive and negative correlations were 

equally dispersed across lags, indicating a lack of autocorrelation. Note that non-linear 

dependencies can still exist for the residuals. 

 

 

 
 
Figure 1. ACF Plot (correlogram) of MANOVA Residuals for the Serial Correlation Test.  
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Figure 2. ACF Plot (correlogram) of MANOVA Residuals for the Runs Up Test. 
 

 

 

Figure 3. ACF Plot (correlogram) of MANOVA Residuals for the White Noise Test. 
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Normality 

To test the assumption of normality, both univariate and multivariate anlayses were used. 

A discussion of each follows. 

Univariate Analyses. Each dependent variable was tested for univariate normality  (as 

outlined by D�Agostino et al., 1990; Looney, 1995). Table 1 contains the p-values of four 

univariate tests for normality. All null hypotheses (normality) were supported for the serial and 

runs up tests. However, the white noise test obtained a significant p-value (0.0047) for the 

Pearson kurtosis test as well as for both omnibus tests --- ignoring the Bonferroni adjustment 

(Shapiro-Wilk W = 0.0317,  and D�Agostino-Pearson K2 =0.0171). Analysis of the histogram 

and the large negative value for Fisher�s kurtosis (g2 = -1.455) indicate that the empirical 

distribution is likely bimodal. Although the MANOVA is quite robust to non-normality, Stevens 

(1996) suggested applying transformations rather than relying on model robustness. Accordingly, 

the Box-Cox family of power transformations were applied to each dependent variable (for the 

SAS program see Timm & Mieczkowski, 1997). Subsequently, small improvements for the 

white noise normality hypotheses were obtained (see Table 2). Moreover, an analysis of box-

plots (see Figures 4-6) and quantile-quantile (Q-Q) plots (see Figures 7-12) of the transformed 

data indicate that a moderate outlying value is likely affecting white noise normality. Given a 

Bonferroni adjusted alpha level of .0125 (i.e., .05 shared among the four tests) all univariate 

normality hypotheses were supported. (Note that the kurtosis p-value for the white noise test was 

.0125.) Although univariate (marginal) normality is a requirement for multivariate (joint) 

normality, it does not guarantee joint normality (Stevens, 1996). 
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Table 1 

p-values for Univariate Tests of Normality  
 

Dependent Variable  
    ______________________________________________________ 
 
Statistic    Serial Correlation Runs Up    White Noise  
 
Shapiro-Wilk   0.1293   0.4013   0.0316 
 
Skewness   0.3489   0.9336   0.7170 
 
Kurtosis   0.9316   0.0787   0.0047* 
 
D�Agostino Pearson** 0.6425   0.2124   0.0171 
 
Note. *p < .0125. ** Chi Square (2 df) 
 
 
 
 

Table 2 

p-values for Univariate Tests of Normality (Transformed) 
 

Dependent Variable  
    ______________________________________________________ 
 
Statistic    Serial Correlation Runs Up   White Noise 
 
Shapiro-Wilk   0.1439   0.4924   0.0222 
 
Skewness   0.3935   0.6928   0.4324 
 
Kurtosis   0.9277   0.1773   0.0125* 
 
D�Agostino Pearson** 0.6920   0.3723   0.0326 
 
Note. *p < .0125. ** Chi Square (2 df) 
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Figure 4. Box-Plot of Serial Correlation Test p-Values. 
 
 
 

 
 
Figure 5. Box-Plot of Runs Up Test p-Values. 
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Figure 6. Box-Plot of White Noise Test p-Values. 
 
 
 

 

Figure 7. Q-Q Plot of Serial Correlation Test p-Values. 
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Figure 8. Q-Q Plot of Serial Correlation Test p-Values (de-trended). 

 

 

Figure 9. Q-Q Plot of Runs Up Test p-Values. 
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Figure 10. Q-Q Plot of Runs Up Test p-Values (de-trended). 

 

 

Figure 11. Q-Q Plot of White Noise Test p-Values. 
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Figure 12. Q-Q Plot of White Noise Test p-Values (de-trended). 

 

Multivariate Analyses. For the transformed data, moderate departures from multivariate 

normality were indicated by graphical analyses. Specifically, (a) the bivariate plots were semi-

elliptical (see Figures 13-15) and (b) the Q-Q plots (to include the P-P plot) departed from the 

reference line (see Figures 16-18). Although one or more outlying values was suspected (see 

Osborne & Overbay, 2004), the outlier plot did not show any drastic departures from the 1 scale 

line (see Figure 19) (Johnson & Wichern, 1998). Given a Bonferonni adjusted alpha level of 

0.025, all significance tests supported the null hypothesis. The p-values for Mardia�s (1970) tests 

for multivariate skewness and kurtosis were 0.6298 and 0.1770 respectively. Additionally, the 

cube root test  p-value was 0.1481 (Mudholkar, McDermott, & Srivastava, 1992). 
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Figure 13. Bivariate Plot of Serial Correlation Test vs. Runs Up Test p-Values. 

 

 

Figure 14. Bivariate Plot of Serial Correlation Test vs. White Noise Test p-Values. 
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Figure 15. Bivariate Plot of Runs Up Test vs. White Noise Test p-Values. 

 

 

Figure 16. Multivariate Q-Q Plot of p-Values (chi). 
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Figure 17. Multivariate Q-Q Plot of p-Values (gamma). 

 

 

Figure 18. Multivariate P-P Plot of p-Values (gamma). 
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Figure 19. Multivariate Outlier Plot of p-Values (chi). 

 

Homogeneity 

 The assumption of homogeneity of the covariance matrices was tested using the Bartlett 

likelihood ratio test. For the transformed data, the hypothesis of homogeneity was supported 

(df=18, p-value= 0.4561). Subsequently, the spread-versus-level plots for each dependent 

variable (see Figures 20-22) suggested power transformations for the serial correlation and white 

noise variables (slope=-3.13 and -0.52 respectively; power [i.e., 1-slope]= 4 and 2 respectively).  

Although transformations would likely improve homogeneity (and normality), in this case the 

measurement scale is not arbitrary (i.e., it is expected that the measurement scale [p-values] will 

vary linearly with the independent variable levels [the degree of randomness attained by the 

seeding algorithms]Myers & Well, 2003). Consequently, gauging effects (if any) would likely be 

difficult as �the relative distances among means may change� (Myers & Well, 2003, p. 224). 
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Figure 20. Spread-Versus-Level Plot for the Serial Correlation Test.  

 

 

Figure 21. Spread-Versus-Level Plot for the Runs Up Test.  
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Figure 22. Spread-Versus-Level Plot for the White Noise Test.  

 

Model Outcomes 

 In this section, the results of the hypothesis and contrasts for the MANOVA design are 

presented in the following order: (a) omnibus hypothesis -- no difference among seeding 

algorithms at the .01 level, (b) contrast 1: unscaled random algorithm vs. all others, (c) contrast 

2: scaled random algorithm vs. all others, and (d) contrast 3: fixed algorithm vs. all others. Given 

that all model assumptions have been satisfied (independence, normality, and homogeneity), any 

of the four tests statistics (i.e., Wilk�s lamda, Roy�s largest root, the Hotelling-Lawley trace, the 

Pillai-Bartlett trace) are valid. However, preference is given to Wilk's lambda.  
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Table 3 
 
MANOVA for the Hypothesis of No Overall Algorithm Effect 
 
 
     
Statistic    df(num) df(den)  F  p 
 
 
Wilks� Lambda  9  43.958  2.26  0.0356 
 
Pillai�s Trace   9  60  1.90  0.0692 
 
Hotelling-Lawley Trace 9  25.285  2.64  0.0263 
 
Roy�s Greatest Root  3  20  8.32  0.0009 
 
Note. F Statistic for Roy�s Greatest Root is an upper bound. 
 

Hypothesis 1 stated that there would be no significant difference (at the .01 level) among 

four seeding algorithms as measured by (a) the serial test, (b) the runs up test, and (c) the white 

noise test. Although hypothesis 1 was supported (Wilk�s lambda p-value= 0.0356), it should be 

noted that the significance level was adjusted downward to compensate for the moderate 

dependence of the white noise test. The overall strength of the p-value does suggest that the 

algorithms differ (if not significantly). 
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Table 4 
 
MANOVA for the Hypothesis of No Overall Unscaled vs. Others Effect 
 
 
     
Statistic    df(num) df(den)  F  p 
 
 
Wilks� Lambda  3  18      4.09  0.0223 
 
Pillai�s Trace   3  18  4.09  0.0223 
 
Hotelling-Lawley Trace 3  18      4.09  0.0223 
 
Roy�s Greatest Root  3  18  4.09  0.0223 
 
Note. F Statistic for Roy�s Greatest Root is an upper bound. 

 

Hypothesis 2 (contrast 1) stated that there would be no significant difference (at the .01 

level) between the unscaled random seeding algorithm and all other algorithms. Hypothesis 2 

was supported (Wilk�s lambda p-value= 0.0223). This outcome is surprising because this 

algorithm has the best theoretical properties among the other algorithms. However, the overall 

strength of the p-value suggests that the unscaled algorithm differs from the others (if not 

significantly). 
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Table 5 
 
MANOVA for the Hypothesis of No Overall Scaled vs. Others Effect 
 
 
     
Statistic    df(num) df(den)  F  p 
 
 
Wilks� Lambda  3  18      0.41  0.7477 
 
Pillai�s Trace   3  18  0.41  0.7477 
 
Hotelling-Lawley Trace 3  18      0.41  0.7477 
 
Roy�s Greatest Root  3  18  0.41  0.7477 
 
Note. F Statistic for Roy�s Greatest Root is an upper bound. 
 
 

Hypothesis 3 (contrast 2) stated that there would be no significant difference (at the .01 

level) between the scaled random algorithm and all other algorithms. Hypothesis 3 was 

supported (Wilk�s lambda p-value= 0.7477). This outcome is surprising because theoretically the 

scaled random algorithm has better theoretical properties than either the zero-leap or fixed-leap 

algorithms. The strength of the p-value suggests that the scaled random algorithm does not differ 

substantially from the others. 
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Table 6 
 
MANOVA Hypothesis of No Overall Fixed vs. Others Effect 
 
 
     
Statistic    df(num) df(den)  F  p 
 
 
Wilks� Lambda  3  18      6.03  0.0050 
 
Pillai�s Trace   3  18  6.03  0.0050 
 
Hotelling-Lawley Trace 3  18      6.03  0.0050 
 
Roy�s Greatest Root  3  18  6.03  0.0050 
 
Note. F Statistic for Roy�s Greatest Root is an upper bound. 
 

 
Hypothesis 4 (contrast 3) stated that there would be no significant difference (at the .01 

level) between the fixed seeding algorithm and all other algorithms. Hypothesis 4 was not 

supported (Wilk�s lambda p-value= 0.0050). This outcome is surprising because intuitively one 

would not expect the fixed-leap algorithm to differ significantly in its ability to disrupt the serial 

correlation patterns in the random number stream. Indeed, one would expect that either the 

scaled random or unscaled random algorithms would be better disrupters of serial correlation 

patterns. 

In sum, the MANOVA assumptions of independence, normality, and homogeneity were 

satisfied. Seeding algorithms did not differ significantly from each other. However, the fixed-

leap algorithm differed significantly from all other algorithms. Surprisingly, the scaled random-

leap had the least difference among the algorithms (theoretically this algorithm should have 

produced the second largest difference).  
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CHAPTER 5 
 

CONCLUSIONS 
 

 The objectives of this study were three-fold: (a) to develop an algorithm that satisfies the 

four theoretical conditions for producing independent seeds, (b) to statistically compare the 

performance of the four algorithms, and (c) to identify areas for further research. A discussion of 

each objective follows: 

Algorithm Development 

 Four theoretical conditions for producing independent seeds have been proposed. 

Accordingly, seeds should be (a) obtained using simple random sampling, (b) non-replicated, (c) 

non-overlapping, and (d) non-adjoining (ideally values should be leaped between sequences). Of 

these, obtaining all seeds using simple random sampling is the most difficult to satisfy. Indeed, 

the algorithms proposed (prior to this study) only allow the starting seed to be randomly selected. 

Moreover, manually compiling all seeds (e.g., 100,000) from a source of random digits would be 

a formidable task. Consequently, an algorithm satisfying all four criteria had to be developed for 

this study. To satisfy the random sampling condition, an initial block of seeds become sampling 

numbers for selecting seeds from the entire random number stream.   

Statistical Comparisons 

As to statistical comparisons, the primary implication of this study follows: Seeding 

algorithms have an effect on three properties (independence, monotonicity, and periodicity) of 

pseudo-random numbers obtained from multiplicative congruential generators. Specifically, the 

fixed-leap algorithm differed significantly from all other algorithms. Intuitively, one would not 

expect the systematic sampling approach of the fixed-leap algorithm to simultaneously differ 
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from the algorithms following a random sampling approach (viz., unscaled and scaled random-

leap) and the zero-leap algorithm (which offers minimal randomness). However, Madow (1946, 

p. 213) pointed out that in some circumstances systematic sampling could offer improved 

efficiencies over random sampling designs but warned that �the chief danger in applying a 

systematic design occurs when the data have a periodic formation, and the sampling interval 

chosen is equal to the period of the data.�   In this case the latter is troubling given that by chance 

a fixed-leap seeds could match the periodicity of the serial correlation, thereby yielding 

undesirable pseudo-random numbers.  

Although the unscaled random-leap differed substantially from all other algorithms, 

significant differences were not obtained. This finding is a surprise. Indeed, intuitively one 

would expect this algorithm to have the best randomness properties because it satisfies the four 

theoretical conditions of independent seeding. A possible explanation involves the degree that 

the non-adjoining condition was satisfied. Although randomly selected, a small leap value (say 

100) between two (or more) sequences may not have been sufficient to attenuate serial 

correlation (i.e., some sequences likely approximated the zero-leap algorithm --- theoretically the 

weakest of the four algorithms). One solution would be to parameterize a minimum leap value 

(say 1000) to further strengthen the non-adjoining condition.    

A second surprise finding involves the lack of insignificance obtained by the scaled 

random-leap when compared with all other algorithms. Indeed, the strength of the p-value 

(Wilk�s lamba = 0.7477) offered little support for differences. As with the unscaled random-leap, 

it is plausible that small leap values caused one or more sequences to approximate a joined 

sequence (as produced by the zero-leap algorithm). It should be noted that the zero-leap 

algorithm could not be compared singly with all other algorithms (due to modeling constraints 
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governing the number of planned comparisons). Although a glaring limitation, it is likely this 

algorithm would not have differed significantly from the others. 

 Caution should be exercised given the exploratory and inconclusive nature of these 

findings. One is tempted to favor the fixed-leap algorithm; however, it could yield disastrous 

results if the leap matches the periodic component of the generator�s serial correlation. Although 

not fully supported by the research design used in this study, it is thought that the unscaled 

random-leap algorithm is the best choice for independently seeding the multiplicative 

congruential random number generator.  

Further Research 

As to further research, a first priority should be to resolve the methodological limitations 
 

exposed by this study. Specific suggestions are: 
 

1. The fixed-leap and unscaled random-leap algorithms should be compared using the 

runs up test and the following directional hypothesis: the mean of the runs up test p-

values will be greater for the fixed-leap algorithm than the unscaled random-leap (at the 

.025 level). 

2. The zero-leap and unscaled random-leap algorithms should be compared using the runs 

up test and the following directional hypothesis: the mean of the runs up test p-values 

will be greater for the zero-leap algorithm than the unscaled random-leap (at the .025 

level). 

3. The number of equally spaced seeds (for both simulation designs) should be increased 

from three to nine (see Chapter 3 for selection procedures). This should make it more 

likely that the algorithms will encounter increased serial correlation effects. However, it 

may also increase dependence among the observations causing (a) positive intraclass 
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correlation coefficients and (b) larger Bonferroni type adjustments for the significance 

level. Alternatively, a collinear MANVOA may be applicable (see Langsrud, 2002).                                 

4. The use of exact tests to measure the dependent variables should be considered            

(e.g., Dieter & Ahrens, 1971, have developed an exact serial correlation test for pseudo-

random number sequences based on Dedekind sums). 

5. More broadly, the assessment protocol established by this study should be applied to  

other classes of random number generators that require seeding. 
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APPENDICES 

Appendix A: SAS Program for Producing Independent Seeds 

/******************************************************************* 
Program: PRODUCE_SEEDS                                        
                                                                  
Parameters:   
 

Seed – The random number for starting the generator (value cannot be 
greater than 2147483646). 

 
Interval – Specifies one of the following seeding algorithms: 

 
Zero - The zero-leap algorithm is the simplest of the four 
algorithms and is the most economical with regard to value output 
(i.e., all values in the period can be used). However, it has the 
weakest sampling properties of the four algorithms (i.e., the 
starting seed is the only random component since successive 
values are in serial order). Moreover, many values could have no 
chance of inclusion if far enough away from the starting seed.  

 
Fixed - The fixed-leap algorithm provides better theoretical 
sampling properties than the zero-leap. The number of values 
leaped is computed by subtracting the period from the total 
number of values required then dividing by the number of seeds. 
In this way, the entire period is traversed by the algorithm 
(allowing all values a chance to be included).  Note that Madow 
(1946, p. 213) advised that “the chief danger in applying a 
systematic design occurs when the data have a periodic  
formation, and the sampling interval chosen is equal to the 
period of the data.”   

 
Scaled – The scaled random leap algorithm uses the maximum number 
of skips between seeds to scale the last uniform random number in 
a sample (say from 1 to 100) which then becomes the number of 
values leaped after that sample. Although this algorithm offers 
better random sampling properties than the zero or fixed-leap 
algorithms,it has the potential to exclude more values (reducing 
the number of values available for an application).  

 
Unscaled - Of the four algorithms considered, the unscaled 
random-leap provides the closest match to Mihram’s Principium of 
Seeding. A block of seeds produced by the generator become 
sampling numbers for the entire population of seeds. To prevent 
the chance that sampling numbers will produce overlapping seeds, 
the distance between each sampling number is computed and checked 
against the sample size parameter. If the sequences overlap, then 
that sampling number is rejected. (Note that extra sampling 
numbers are generated to allow for any rejects.)                            

 
Simulation_design – An object-oriented SAS IML macro containing values 
for (a) the number of samples per experiment and (b) the size of each 
sample. Simply replace the existing values with a new design. 
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Random_number_generator – An object-oriented SAS IML macro specifying 
values for the constants of the multiplicative congruential generator. 

  
Output_path – The file path for saving the seeds. 

 
Extra – Specifies the number of extra values to generate to allow for 
rejected seeds. 
 
Check – Checks if enough seeds (the extra parameter) have been 
specified (1=Yes, 0=No). 

 
Notes: 
 

1. The main macro contains the experiments used to evaluate the 
performance of the four seeding algorithms. Simply replace these 
variables with a new design.  

 
2. The start and finish parameters of the main macro allow experiments 
   to be run in parallel (if desired).  

 
Author: 
 

Robert Grisham Stewart                                                             
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phone: (423) 282-4124                                                               

                                                                                          
Released:  August 2007                                                                    
                                                                                          
Changes:   None     
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/***********************************************************************/ 
%macro check_seed ; 
   if (seed > ((2##31)-2)) then 
      do ; 
         print 'ERROR: Start seed cannot be greater than 2147483646' ,, 
               '-----------------  Start Seed   ------------------' ,, 
               seed[format=10.0] ; 
         exit = 1 ; 
      end ; 
   if (seed < 1) then 
      do ; 
         print 'ERROR: Start seed cannot be less than 1' ,, 
               '-----------------  Start Seed   ------------------' ,, 
               seed[format=10.0] ; 
         exit = 1 ; 
      end ; 
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%mend ; 
/**********************************************************************/ 
%macro check_totunifs ; 
   if (totunifs > (2##31-2)) then 
      do ; 
         print 'ERROR: Total uniforms exceed period of 2147483646' ,, 
               '----------------- Total Uniforms -----------------' ,, 
               totunifs[format=10.0] ; 
         exit = 1 ; 
      end ; 
%mend ; 
/**********************************************************************/ 
%macro check_totskips ; 
   if (totskips < totseeds) then 
      do ; 
         maxskips_per_seed = int(totskips/totseeds) ; 
         print 'ERROR: Maximum skips per seed must be greater than 0' ,, 
               '-------------- Maximum Skips Per Seed --------------' ,, 
               maxskips_per_seed[format=10.0] ; 
         exit = 1 ; 
      end ; 
%mend ; 
/**********************************************************************/ 
%macro seed_nunifs ; 
   do i=1 to ncol(nunifs) ; 
      _nunifs_=_nunifs_//repeat(nunifs[,i],nsamples[,i],1) ; 
   end ; 
   _matx_=_seed_||_nunifs_ ; 
   free _seed_ _nunifs_ ; 
%mend ; 
/**********************************************************************/ 
%macro print_report ; 
   print '----------------- Interval Type ------------------' ,, 
         %upcase("&interval.") ,,,, 
         '-----------------  Output Path  ------------------' ,, 
         %upcase("&output_path.") ,,,, 
         '-----------------  Start Seed   ------------------' ,, 
         seed1 ,,,, 
         '----------------- Design Matices -----------------' ,, 
         nsamples[format=10.0] ,, nunifs[format=10.0] ,,,, 
         '----------------- Design Totals ------------------' ,, 
         totseeds[format=10.0] totunifs[format=10.0]  ; 
%mend ; 
/**********************************************************************/ 
%macro matrix2data 
     ( matx = , 
       data = , 
       vars = ) ; 
      varname = &vars ; 
      create &data 
      from &matx [colname=varname] ; 
      append from &matx ; 
      close &data ; 
%mend ; 
/**********************************************************************/ 
%macro matrix2file 
     ( matx = , 
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       path = , 
       wd = , 
       s = ) ; 
   start matrix2file(matx) ; 
      file "&path." ; 
         do i=1 to nrow(matx) ; 
            do j=1 to ncol(matx) ; 
               put (matx[i,j]) &wd &s @ ; 
            end ; 
            put ; 
         end ; 
      closefile "&path." ; 
   finish ; 
   run matrix2file(&matx) ; 
%mend ; 
/**********************************************************************/ 
%macro produce_seeds 
     ( seed = , 
       interval = , 
       simulation_design = , 
       random_number_generator = , 
       output_path = , 
       extra = , 
       check = ) ; 
   %local exit cnt err msg1 msg2 msg3 msg4 msg5 msg6 msg7 ; 
      proc iml ; 
         start matrix2macro(matx,mvar) ; 
            if type(matx)='N' then 
               matx=trim(char(matx)) ; 
            call execute('%let ', mvar, '=', matx, ';') ; 
         finish ; 
         exit = 0 ; 
         seed = &seed ; 
         interval = %upcase("&interval.") ; 
         %&simulation_design 
         totseeds = sum(nsamples) ; 
         totunifs = sum(nsamples#nunifs) ; 
         totskips = ((2##31-2)-totunifs) ; 
         %check_seed 
         %check_totunifs 
         %if (%upcase("&interval.") = "FIXED") | 
             (%upcase("&interval.") = "SCALED") %then 
            %check_totskips ; 
         run matrix2macro(exit,{exit}) ; 
      quit ; 
   %if (&exit=0) %then 
   %do ; 
      %if (%upcase("&interval.") = "UNSCALED") %then 
      %do ; 
         proc iml ; 
            exit = 0 ; 
            err = 0 ; 
            chk = &check ; 
            seed = &seed ; 
            %&simulation_design 
            totseeds = sum(nsamples) ; 
            totunifs = sum(nsamples#nunifs) ; 
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            %if (%index(&extra,.)>0) %then 
               %do ; 
                  allseeds=totseeds+int(totseeds*&extra) ; 
               %end ; 
            %else 
               %do ; 
                  allseeds=(totseeds+&extra) ; 
               %end ; 
            s_all = repeat({.},allseeds,1) ; 
            s_tot = repeat({.},totseeds,1) ; 
            do i=1 to allseeds ; 
               %&random_number_generator 
               seed=u*((2##31)-1) ; 
               s_all[i,]=seed ; 
            end ; 
            temp = s_all ; 
            temp[rank(s_all),] = s_all ; 
            s_all = temp ; 
            free temp ; 
            do i=1 to ncol(nsamples) ; 
               x = x//repeat(nunifs[,i],nsamples[,i],1) ; 
            end ; 
            i=1 ; 
            j=2 ; 
            k=1 ; 
            do while(exit=0) ; 
               dif = abs((s_all[j,]-s_all[i,])) ; 
               if (dif >= x[k,]) then 
                  do ; 
                     s_tot[k,]=s_all[i,] ; 
                     i = j ; 
                     k = (k+1) ; 
                     if (k=totseeds) then 
                        exit = 1 ; 
                  end ; 
               j=(j+1) ; 
               if (exit=0) then 
                  if (j>nrow(s_all)) then 
                     do ; 
                        exit = 1 ; 
                        err = 1 ; 
                     end ; 
            end ; 
            if (err=0) then 
               do ; 
                  s_tot[k,]=s_all[i,] ; 
                  s_last = s_all[i,] ; 
                  free s_all ; 
                  s_next = (s_last + x[totseeds,]) ; 
                  free x ; 
                  if ( s_next>((2##31)-2) ) then 
                     if ( (s_next-((2##31)-2))>s_tot[1,] ) then 
                        err = 1 ; 
                end ; 
            if (chk=1) & (err=1) then 
               print 'ERROR: Increase value of extra parameter.' ; 
            if (chk=1) & (err=0) then 
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               do ; 
                  nextra = (j-1) - totseeds ; 
                  print 'Number of Extra Seeds' ,, nextra ; 
               end ; 
            if (chk=0) & (err=0) then 
               do ; 
                  %matrix2data(matx=s_tot,data=_s_,vars='_s_') ; 
               end ; 
         quit ; 
         %if (%sysfunc(exist(_s_))=1) %then 
            %do ; 
               proc iml ; 
                  use _s_ ; 
                  read all into s ; 
                  call delete (work,_s_) ; 
                  seed1 = &seed ; 
                  seed = seed1 ; 
                  %&simulation_design 
                  totseeds = sum(nsamples) ; 
                  totunifs = sum(nsamples#nunifs) ; 
                  _seed_ = repeat({.},totseeds,1) ; 
                  cnt = 1 ; 
                  do i=s[1,] to s[totseeds,] ; 
                     if (i=s[cnt,]) then 
                        do ; 
                           _seed_[cnt,] = seed ; 
                           cnt = (cnt+1) ; 
                        end ; 
                     %&random_number_generator 
                     seed = u*((2##31)-1) ; 
                  end ; 
                  %seed_nunifs 
                  %matrix2file(matx=_matx_,path=&output_path,wd=10.0,s=+1) 
                  %print_report 
               quit ; 
            %end ; 
         %else 
            %do ; 
               %let msg1 = The unscaled interval will produce ; 
               %let msg2 = overlapping samples for the simulation design. ; 
               %let msg3 = Try the following: ; 
               %let msg4 = (a) Increase the value for the extra parameter ; 
               %let msg5 = (b) Use a different start seed ; 
               %let msg6 = (c) Use a different interval ; 
               %let msg7 = (d) Alter the simulation design. ; 
               %put ERROR: &msg1 &msg2 &msg3 &msg4 &msg5 &msg6 &msg7 ; 
            %end ; 
      %end ; 
      %else 
         %do ; 
            proc iml ; 
               seed1 = &seed ; 
               seed = seed1 ; 
               interval = %upcase("&interval.") ; 
               %&simulation_design 
               totseeds = sum(nsamples) ; 
               totunifs = sum(nsamples#nunifs) ; 
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               totskips = ((2##31-2)-totunifs) ; 
               if (interval = 'ZERO') then 
                  do ; 
                     maxskips_per_seed = 0 ; 
                     nskips = 0 ; 
                  end ; 
               else 
                  do ; 
                     maxskips_per_seed = int(totskips/totseeds) ; 
                     nskips = maxskips_per_seed ; 
                  end ; 
               _seed_=repeat({.},totseeds,1) ; 
               cnt = 0 ; 
               do i=1 to ncol(nsamples) ; 
                  do j=1 to nsamples[,i] ; 
                     cnt = (cnt+1) ; 
                     _seed_[cnt,]=seed ; 
                     do k=1 to (nunifs[,i] + nskips) ; 
                        %&random_number_generator 
                        seed = u*((2##31)-1) ; 
                     end ; 
                     if (interval ='SCALED') then 
                        nskips = int(u*(maxskips_per_seed+1)) ; 
                  end ; 
               end ; 
               %seed_nunifs 
               %matrix2file(matx=_matx_,path=&output_path,wd=10.0,s=+1) 
               %print_report 
               print maxskips_per_seed[format=10.0] nskips[format=10.0] ; 
            quit ; 
         %end ; 
   %end ; 
%mend ; 
/**********************************************************************/ 
%macro sim1 ; 
   nsamples = repeat({10000},1,18) ; 
   nunifs   = repeat({10},1,6)||repeat({50},1,6)||repeat({100},1,6) ; 
%mend ; 
%macro sim2 ; 
   nsamples = repeat({10000},1,8) ; 
   mult     = { 4  4  8  8  4  4  8  8} ; 
   nobs     = {10 50 10 50 10 50 10 50} ; 
   nunifs   = mult#nobs ; 
%mend ; 
/**********************************************************************/ 
%macro mcg32 ; 
   u = (mod(16807*seed,2##31-1))/((2##31)-1) ; 
%mend ; 
%macro mcg64 ; 
   u = uniform(seed) ; 
%mend ; 
/**********************************************************************/ 
%macro main(start=,finish=,dir=,ext=) ; 
   %let s1 = 684543030 ; 
   %let s2 = 1400370912 ; 
   %let s3 = 2116198794 ; 
   %let s4 = 123535106 ; 
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   %let s5 = 839362988 ; 
   %let s6 = 1555190870 ; 
   %let x1  = x1_sim1_mcg64_zero_&s1 ; 
   %let x2  = x2_sim1_mcg64_zero_&s2 ; 
   %let x3  = x3_sim1_mcg64_zero_&s3 ; 
   %let x4  = x4_sim1_mcg64_fixed_&s1 ; 
   %let x5  = x5_sim1_mcg64_fixed_&s2 ; 
   %let x6  = x6_sim1_mcg64_fixed_&s3 ; 
   %let x7  = x7_sim1_mcg64_scaled_&s1 ; 
   %let x8  = x8_sim1_mcg64_scaled_&s2 ; 
   %let x9  = x9_sim1_mcg64_scaled_&s3 ; 
   %let x10 = x10_sim1_mcg64_unscaled_&s1 ; 
   %let x11 = x11_sim1_mcg64_unscaled_&s2 ; 
   %let x12 = x12_sim1_mcg64_unscaled_&s3 ; 
   %let x13 = x13_sim2_mcg64_zero_&s4 ; 
   %let x14 = x14_sim2_mcg64_zero_&s5 ; 
   %let x15 = x15_sim2_mcg64_zero_&s6 ; 
   %let x16 = x16_sim2_mcg64_fixed_&s4 ; 
   %let x17 = x17_sim2_mcg64_fixed_&s5 ; 
   %let x18 = x18_sim2_mcg64_fixed_&s6 ; 
   %let x19 = x19_sim2_mcg64_scaled_&s4 ; 
   %let x20 = x20_sim2_mcg64_scaled_s5 ; 
   %let x21 = x21_sim2_mcg64_scaled_&s6 ; 
   %let x22 = x22_sim2_mcg64_unscaled_&s4 ; 
   %let x23 = x23_sim2_mcg64_unscaled_&s5 ; 
   %let x24 = x24_sim2_mcg64_unscaled_&s6 ; 
 
   %do i=&start %to &finish ; 
      %produce_seeds 
         ( simulation_design = %scan(&&&x&i,2,_) , 
           random_number_generator = %scan(&&&x&i,3,_) , 
           interval = %scan(&&&x&i,4,_) , 
           seed = %scan(&&&x&i,5,_) , 
           output_path = &dir.&&&x&i..&ext , 
           extra = 826 , 
           check = 1 ) 
   %end ; 
 
%mend ; 
%main(start=1,finish=24,dir=c:\,ext=.txt) 
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Appendix B: SAS Program for Evaluating Seeds 

/******************************************************************* 
Program:   EVALUATE_SEEDS                                       
                                                                
Parameters: 
 
 Exp – Name of the file containing the seeds for given experiment. 
 
 Dir – Specifies the directory holding the file (e.g., c:\) 
 
 Ext – Specifies the extension of the file (e.g., .txt) 
 
 
Notes: 
 

1. The main macro contains the experiments used to evaluate the 
performance of the four seeding algorithms. Simply replace these 
variables with a new design.  

 
2. The start and finish parameters of the main macro allow experiments 
to be run in parallel (if desired). 
 
3. The seral correlation and Fisher’s Kappa macro must be added to the 
program using the %include statement.   

 
 
Author: 
 

Robert Grisham Stewart                                                              
Claudius G. Clemmer College of Education                                            
Dept. of Educational Leadership and Policy Analysis                                 
East Tennessee State University                                                     
phone: (423) 282-4124                                                               

       
                                                                                          
Released:  August 2007                                                                    
                                                                                          
Changes:   None     
 
References: 
 

Fan, X., Felsovalyi, A., Sivo, S. A., & Keenan, S. C. (2002). SAS for 
Monte Carlo studies: A guide for quantitative researchers. Cary, 
NC: SAS Institute. 

 
Woodfiel (1991). Appendix 1: Calculating P-Values for Fisher's Kappa. 

Retrieved July 13, 2007, from  
http://ftp.sas.com/techsup/download/observations/4q91/woodfiel/wo
odfiel.sas 

                                                  
/*******************************************************************/ 
%macro put_data 
     ( data = ,   /* name of data set */ 
       vars = ,   /* name of variable(s) */ 
       path = ,   /* path to file w/ dir. and folder(s) 
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                        [e.g., c:/sas/my_folder/ ] */ 
       name = ,   /* name of file w/o id (if any) 
                        [e.g., file_1 would be file_] */ 
       id = ,     /* file id (if any) 
                        [e.g., 1 ] */ 
       ext = ,    /* extension of file w/dot 
                        [e.g., .sas, .txt ] */ 
       mode = ) ; /* mode for writing to file: 
                        old = replaces contents 
                            = replaces contents 
                        mod = appends to contents */ 
 
   %if "&data." ne "%str()" and 
       "&vars." ne "%str()" and 
       "&path." ne "%str()" %then 
      %do ; 
 
         data _null_ ; 
            set &data ; 
            file "&path.&name.&id.&ext" &mode ; 
            put &vars ; 
         run ; 
 
      %end ; 
   %else 
      %do ; 
         %if "&data." eq "%str()" %then 
            %put NOTE: [PUT_DATA] Value for required parameter "data" is 
null. ; 
         %if "&vars." eq "%str()" %then 
            %put NOTE: [PUT_DATA] Value for required parameter "vars" is 
null. ; 
         %if "&path." eq "%str()" %then 
            %put NOTE: [PUT_DATA] Value for required parameter "path" is 
null. ; 
      %end ; 
 
%mend put_data ; 
/**************************************************************************/ 
%macro seed2unif 
     ( data = , 
       temp = , 
        out = ) ; 
   %local i nsamples nobs ; 
   %if (%sysfunc(exist(&out))=1) %then 
      %delete_data(&out) ; 
   %let nsamples=%nobs(&data) ; 
   %printlog(no) 
   %do i=1 %to &nsamples ; 
      data &temp (keep=&out) ; 
         set &data (firstobs=&i obs=&i) ; 
         do i=1 to nunifs ; 
            &out=ranuni(seed) ; 
            output ; 
         end ; 
      run ; 
      proc append out = &out 
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                  new = &temp ; 
      run ; 
   %end; 
   %printlog(yes) 
   %delete_data(&temp &data) 
%mend ; 
/************************************************************************/ 
%macro nobs(dsname) ; 
   %local dsid nobs rc ; 
   %let dsid = %sysfunc(open(&dsname,i)) ; 
   %let nobs = %sysfunc(attrn(&dsid,nobs)) ; 
   %let rc = %sysfunc(close(&dsid)) ; 
   &nobs 
%mend ; 
/*******************************************************************/ 
%macro delete_data 
     ( datname , 
       libname = work , 
       memtypes = data , 
       opts = nolist ) ; 
   proc datasets 
      library = &libname 
      memtype = (&memtypes) &opts ; 
      delete &datname / memtype = &memtypes ; 
   run ; 
   quit ; 
%mend ; 
/*******************************************************************/ 
%macro printlog(action) ; 
   %if (%upcase("&action.") = "YES") %then 
      %do ; 
         options source source2 notes %str(;) 
      %end ; 
   %else 
      %do ; 
         options nosource nosource2 non-otes %str(;) 
      %end ; 
%mend ; 
/******************************************************************/ 
%macro runstest 
     ( data = , 
       test = up ) ; 
   %local i op1 op2 ; 
   %let op1 = > ; 
   %let op2 = < ; 
   %if (%upcase("&test.") = "DOWN") %then 
      %do ; 
         %let op1 = < ; 
         %let op2 = > ; 
      %end ; 
   proc iml ; 
      use &data ; 
      read all var _num_ into data ; 
      %do i=1 %to 6 ; 
         c&i = 0 ; 
      %end ; 
      n = nrow(data) ; 
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      i = 1 ; 
      do while(i<n) ; 
         if (data[i,] &op1 data[i+1,]) then 
            do ; 
               if (i=(n-1)) then 
                  c1=c1+2 ; 
               else 
                  c1=c1+1 ; 
               i=(i+1) ; 
            end ; 
         else 
            do ; 
               runlen=1 ; 
               exit=0 ; 
               do while(exit=0) ; 
                  if (data[i,] &op2 data[i+1,]) then 
                     do ; 
                        runlen = (runlen+1) ; 
                        i=(i+1) ; 
                        if (i=n) then 
                           exit = 1 ; 
                     end ; 
                  else 
                     do ; 
                        exit=1 ; 
                        i=(i+1) ; 
                        if (i=n) then 
                           c1=(c1+1) ; 
                     end ; 
               end ; 
               if (runlen=2) then 
                  c2 = (c2+1) ; 
               else if (runlen=3) then 
                  c3 = (c3+1) ; 
               else if (runlen=4) then 
                  c4 = (c4+1) ; 
               else if (runlen=5) then 
                  c5 = (c5+1) ; 
               else if (runlen>=6) then 
                  c6 = (c6+1) ; 
            end ; 
      end ; 
      c = c1//c2//c3//c4//c5//c6 ; 
      free / c n ; 
      b1 = 1/6 ; 
      b2 = 5/24 ; 
      b3 = 11/120 ; 
      b4 = 19/720 ; 
      b5 = 29/5040 ; 
      b6 = 1/840 ; 
      b = b1//b2//b3//b4//b5//b6 ; 
      a ={ 4529.4 9044.9 13568  18091  22615  27892 , 
           9044.9  18097 27139  36187  45234  55789 , 
            13568  27139 40721  54281  67852  83685 , 
            18091  36187 54281  72414  90470 111580 , 
            22615  45234 67852  90470 113262 139476 , 
            27892  55789 83685 111580 139476 172860 } ; 
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      x = repeat({.},6,6) ; 
      do i=1 to 6 ; 
         do j=1 to 6 ; 
            x[i,j] = (c[i,]-n*b[i,])*(c[j,]-n*b[j,])*a[i,j] ; 
         end ; 
      end ; 
      s = sum(x) ; 
      * print s ; 
      v = 1/n*sum(x) ; 
      p = probchi(v,6,0) ; 
      * print n ,, a,, b,, c,, v,, p ; 
      test = %upcase("&test.") ; 
      if ( test = 'UP' ) then 
         print 'RUNS UP TEST' ,, v p ; 
      else 
         print 'RUNS DOWN TEST' ,, v p ; 
   quit ; 
%mend ; 
/*************************************************************/ 
%macro whitetest(data=,var=) ; 
   proc spectra whitetest data=&data ; 
      var &var ; 
   run ; 
%mend ; 
/************************************************************/ 
%include 'd:\corrtest.sas' ; 
/************************************************************/ 
%include 'd:\fisher_kappa_pvalue.sas' ; 
/************************************************************/ 
%macro evaluate_seeds 
     ( exp = , 
       dir = , 
       ext = .txt ) ; 
 
  %let path = &dir.&&&exp..&ext ; 
 
  data seeds ; 
    infile "&path" ; 
    input seed nunifs ; 
  run ; 
 
  data seeds ; 
     set seeds (firstobs=1 obs=1000) ; 
  run ; 
 
  %seed2unif( data = seeds , 
              temp = temp , 
              out = u ) 
  title1 "&&&exp" ; 
  /*-----------------------------------------------------*/ 
  %corrtest (data=u, var=u, hlag=100) 
  %put_data ( data = work , 
              vars = pvalue , 
              path = c:\Documents and Settings\zrgs1\Desktop, 
              name = &&&exp , 
              id   = _corr, 
              ext  = .txt ) 
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  /*-----------------------------------------------------*/ 
  title2 'Runs Up Test'; 
  %runstest (data=u, test=up) 
  /*-----------------------------------------------------*/ 
  title2 'Runs Down Test'; 
  %runstest(data=u, test=down) 
  /*-----------------------------------------------------*/ 
  title2 'White Noise Test' ; 
  %whitetest(data=u, var=u) 
  /*-----------------------------------------------------*/ 
  title2 'Fisher Kappa (White Noise Test)'; 
  %fisher_kappa_pvalue(data=u, var=u, out=fish) 
  %put_data ( data = fish , 
              vars = period r z mz gprob , 
              path = c:\Documents and Settings\zrgs1\Desktop, 
              name = &&&exp , 
              id   = _fish, 
              ext  = .txt ) 
  /*------------------------------------------------------*/ 
  proc datasets lib=work nolist memtype=data kill ; 
  run; quit; 
 
%mend ; 
/************************************************************/ 
%macro main(start=,finish=,dir=,ext=); 
   %let s1 = 684543030 ; 
   %let s2 = 1400370912 ; 
   %let s3 = 2116198794 ; 
   %let s4 = 123535106 ; 
   %let s5 = 839362988 ; 
   %let s6 = 1555190870 ; 
   %let x1  = x1_sim1_mcg64_null_&s1 ; 
   %let x2  = x2_sim1_mcg64_null_&s2 ; 
   %let x3  = x3_sim1_mcg64_null_&s3 ; 
   %let x4  = x4_sim1_mcg64_fixed_&s1 ; 
   %let x5  = x5_sim1_mcg64_fixed_&s2 ; 
   %let x6  = x6_sim1_mcg64_fixed_&s3 ; 
   %let x7  = x7_sim1_mcg64_scaled_&s1 ; 
   %let x8  = x8_sim1_mcg64_scaled_&s2 ; 
   %let x9  = x9_sim1_mcg64_scaled_&s3 ; 
   %let x10 = x10_sim1_mcg64_unscaled_&s1 ; 
   %let x11 = x11_sim1_mcg64_unscaled_&s2 ; 
   %let x12 = x12_sim1_mcg64_unscaled_&s3 ; 
   %let x13 = x13_sim2_mcg64_null_&s4 ; 
   %let x14 = x14_sim2_mcg64_null_&s5 ; 
   %let x15 = x15_sim2_mcg64_null_&s6 ; 
   %let x16 = x16_sim2_mcg64_fixed_&s4 ; 
   %let x17 = x17_sim2_mcg64_fixed_&s5 ; 
   %let x18 = x18_sim2_mcg64_fixed_&s6 ; 
   %let x19 = x19_sim2_mcg64_scaled_&s4 ; 
   %let x20 = x20_sim2_mcg64_scaled_s5 ; 
   %let x21 = x21_sim2_mcg64_scaled_&s6 ; 
   %let x22 = x22_sim2_mcg64_unscaled_&s4 ; 
   %let x23 = x23_sim2_mcg64_unscaled_&s5 ; 
   %let x24 = x24_sim2_mcg64_unscaled_&s6 ; 
 
   %do i=&start %to &finish; 
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      %evaluate_seeds ( exp = x&i , 
                        dir = &dir , 
                        ext = &ext ) 
   %end ; 
 
%mend ; 
 
%main(start=1,finish=24,dir=c:\,ext=.txt) 
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Appendix C: SAS Program for Spacing Start Seeds 

/******************************************************************* 
Program:   SPACE_SEEDS                                       
                                                                
Parameters: 
 
 Nseeds – The number of seeds to be spaced. 
 
 Path – Specifies the directory holding the file (e.g., c:\)  
             to include file name and extension. 
 
 
Notes: None 
 
Author: 
 

Robert Grisham Stewart                                                              
Claudius G. Clemmer College of Education                                            
Dept. of Educational Leadership and Policy Analysis                                 
East Tennessee State University                                                     
phone: (423) 282-4124                                                               

       
                                                                                          
Released:  August 2007                                                                    
                                                                                          
Changes:   None     
 
References: None                                                  
/*******************************************************************/ 
 
%macro names(prefix=, n=) ;                                                               
   %local i ;                                                                             
   %do i=1 %to &n ;                                                                       
      &prefix&i                                                                          
   %end ;                                                                                 
%mend ;                                                                                   
                                                                                          
%macro enter_seeds ;                                                                      
   %window enter_seeds                                                                    
      #9  @10 "Count of Seed Sets........ &count"                                         
      #10 @10 "Number of Seeds per Set... &nseeds"                                        
      #12 @10 "INSTRUCTIONS:"                                                             
      #14 @10 "1. Press enter to activate the cursor."                                    
      #16 @10 "2. Select an option from below:"                                           
      #18 @13 "A. To create a set of equally spaced seeds, Type a 10 digit 
seed value."                                                  
      #19 @13 "B. To save the seed set(s) and exit the program type 0."                   
      #21 @10 "3. Press enter to accept value."                                          
      #24 @10 seed 10 ;                                                                   
%mend ;                                                                                  
                                                                                          
%window err_msg                                                                           
   #10 @10 "ERROR: Seed value cannot be greater tahn 8589934584."                         
   #12 @10 "Press enter to continue.";                                                    
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%macro space_seeds (nseeds=,path=) ;                                                      
   %local i j rc seed count ;                                                             
   %let count = 0;                                                                        
   %if (%sysfunc(exist(out_seeds))=1) %then                                               
   %do ;                                                                                  
      proc datasets ;                                                                     
         delete out_seeds ;                                                               
      run ;                                                                              
      quit ;                                                                              
   %end ;                                                                                 
   %enter_seeds                                                                           
   %display enter_seeds ;                                                                 
   %do %while (&seed^=0) ;                                                                
      data new_seeds (drop= rc nskips) ;                                                  
         seed1=%trim(%left(&seed)) ;                                                      
         if (seed1 <= 8589934584) then                                                    
         do ;                                                                             
            rc = 1 ;                                                                      
            do while (seed1>2147483646) ;                                                 
               seed1 = (seed1 - 2147483646) ;                                             
            end ;                                                                         
            nskips = 2147483646/&nseeds ;                                                 
            %do i=2 %to &nseeds ;                                                        
               %let j=%eval(&i-1) ;                                                       
               seed&i = seed&j + nskips ;                                                 
               if (seed&i > 2147483646) then                                              
                  seed&i=(seed&i-2147483646) ;                                            
            %end ;                                                                        
         end ;                                                                            
         else                                                                             
            rc = 0 ;                                                                      
         call symput('rc',trim(left(rc))) ;                                               
      run;                                                                                
      %if (&rc=1) %then                                                                   
         %do ;                                                                            
            proc append out = out_seeds                                                  
                        new = new_seeds ;                                                 
            run ;                                                                         
            %let count = %eval(&count+1) ;                                                
         %end ;                                                                           
      %else                                                                               
         %do ;                                                                            
            %let seed = _ ;                                                               
            %display err_msg ;                                                            
         %end ;                                                                           
      %enter_seeds                                                                        
      %display enter_seeds ;                                                              
   %end ;                                                                                 
   %if (%sysfunc(exist(out_seeds))=1) %then                                               
   %do ;                                                                                  
      data _null_ ;                                                                      
         set out_seeds ;                                                                  
         file "&path" ;                                                                   
         put %names(prefix=seed,n=&nseeds) ;                                              
      run ;                                                                               
   %end ;                                                                                 
%mend ;                                                                                   
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/*-------------------------------------------------------*/                                
                                                                                          
%space_seeds                                                                              
   ( nseeds = 3 ,                                                                         
     path = c:\equal_seeds.txt )                                                          
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Appendix D: SAS Program for the Intraclass Correlation Coefficient 

%macro icc (data=,classvar=,depvar=) ; 
   ods output overallanova=MS ; 
   proc anova data=&data ; 
      class &classvar ; 
      model &depvar = &classvar ; 
   run ; 
   ods output close ; 
   data msb ; 
      set ms (firstobs=1 obs=1) ; 
      msb = ms ; 
   run ; 
   data msw ; 
      set ms (firstobs=2 obs=2) ; 
      msw = ms ; 
   run ; 
   data icc ; 
      merge msb msw ; 
      m=6 ; 
      icc = (msb-msw) / (msb+(msw*(m-1))) ; 
      keep dependent icc  ; 
   run ; 
   proc print data = icc ; 
      var dependent icc ; 
   run ; 
%mend ; 
%icc (data=diss,classvar=alg,depvar=m_st) 
%icc (data=diss,classvar=alg,depvar=m_ru) 
%icc (data=diss,classvar=alg,depvar=m_bks) 
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Appendix E: SAS Dataset of Study p-Values 

data diss ; 
   input sim mcg seed alg $ m_st m_ru m_rd m_bks ; 
   m_st_bc = (m_st**1.3) ; 
   m_ru_bc = (m_ru**0.8) ; 
   m_bks_bc = (m_bks**0.75) ; 
   label m_st_bc  = 'Serial Correlation' 
         m_ru_bc  = 'Runs Up' 
         m_bks_bc = 'White Noise' ; 
cards ; 
1 64 68 1 0.5179 0.1397 0.4767 0.3052 
1 64 68 2 0.5542 0.3358 0.5568 0.8079 
1 64 68 3 0.5276 0.2848 0.8792 0.8692 
1 64 68 4 0.4698 0.4528 0.5123 0.2369 
1 64 14 1 0.5146 0.6239 0.7657 0.0481 
1 64 14 2 0.5200 0.0623 0.0132 0.9683 
1 64 14 3 0.4497 0.4971 0.3018 0.6828 
1 64 14 4 0.5167 0.8107 0.6228 0.0854 
1 64 21 1 0.4488 0.8130 0.8243 0.7354 
1 64 21 2 0.5283 0.2307 0.0603 0.8045 
1 64 21 3 0.5321 0.3583 0.9274 0.5135 
1 64 21 4 0.5204 0.9590 0.5678 0.3625 
2 64 12 1 0.5154 0.4423 0.3056 0.6418 
2 64 12 2 0.5059 0.9281 0.8522 0.6035 
2 64 12 3 0.5066 0.3351 0.1830 0.0645 
2 64 12 4 0.5329 0.8253 0.1178 0.5454 
2 64 83 1 0.4765 0.5866 0.3498 0.2887 
2 64 83 2 0.5612 0.6197 0.0531 0.9720 
2 64 83 3 0.4707 0.2734 0.3348 0.0351 
2 64 83 4 0.4840 0.1689 0.1985 0.0312 
2 64 15 1 0.5113 0.6879 0.4840 0.7808 
2 64 15 2 0.5160 0.0226 0.4592 0.9771 
2 64 15 3 0.5110 0.6270 0.4946 0.7253 
2 64 15 4 0.4733 0.8821 0.9720 0.1262 
run ; 
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