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ABSTRACT

Explorations in the Classification of

Vertices as Good or Bad

by

Eugenie Marie Jackson

For a graph G, a set S is a dominating set if every vertex in V − S has a neighbor

in S. A vertex contained in some minimum dominating set is called good; otherwise
it is bad. A graph G has g(G) good vertices and b(G) bad vertices. The relationship

between the order of G and g(G) assigns the graph to one of four classes.

Our results include a method of classifying caterpillars. Further, we develop realiz-
ability conditions for a graph G given a triple of nonnegative integers representing

γ(G), g(G), and b(G), respectively, and provide constructions of graphs meeting those
conditions. We define the goodness index of a vertex v in a graph G as the ratio of

distinct γ(G)-sets containing v to the total number of γ(G)-sets, and provide formulas

that yield the goodness index of any vertex in a given path.
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CHAPTER 1

INTRODUCTION

Many situations worthy of study may be modeled quite effectively by graphs.

Applications abound in areas such as management, the social sciences, and DNA

research, to name a few. In this thesis, we are inspired by questions raised by such

applications. We begin by presenting an elementary overview of graph theory with

some specialized definitions the reader will find useful.

G :

�

� �

�

❅
❅

❅
❅�

�
�
�

❅
❅

❅
❅

v1

v2 v3

v4

Figure 1: An example of a graph G.

A graph G is a set of objects, or vertices V (G), together with a subset of (V ×V ),

or edges E(G), each element of which represents a specified relation between two

vertices. In this thesis we assume that E(G) is symmetric but not reflexive. Usually

the vertices of a graph are illustrated as points and the edges as appropriately placed

line segments. Figure 1 shows a graph G with V (G) = {v1, v2, v3, v4} and E(G) =

{v1v2, v1v3, v2v3, v2v4}.
The number of vertices of a graph is its order, denoted n, and the number of edges

its size, denoted m. If a graph G has n = 1, then m = 0 and G is called the trivial

graph. For the most part we concern ourselves with nontrivial graphs.
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G : 〈H〉 :

�� � �

� � � �

� �
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c d c d

a b

�
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�
�

❆
❆
❆
❆

✁
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✁
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❅
❅

❅
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Figure 2: A graph G and an induced subgraph 〈H〉 where H = {c, d, g}.

If uv ∈ E(G) for some graph G, then we say u is adjacent to v, and vice versa.

The number of distinct vertices to which a vertex v is adjacent is its degree, denoted

deg(v). If deg(v) = 0, then v is called an isolate. If deg(v) = 1, then v is called an

endvertex. A vertex that is adjacent to at least one endvertex is a support vertex. In

particular we say that if a vertex is adjacent to exactly one endvertex, then it is a

weak support vertex; but if a vertex is adjacent to more than one endvertex, it is a

strong support vertex. In Figure 2 for the graph G, the vertex b is an isolate since

deg(b) = 0 and g is an endvertex since deg(g) = 1. Also in G, c is a strong support

vertex and d is a weak support vertex.

The set of all vertices to which a vertex v is adjacent is called the open neighborhood

of v, denoted N(v). The closed neighborhood of v is N(v)∪{v} = N [v]. Let S ⊆ V (G)

and v ∈ S. The private neighborhood of v with respect to S is the set of vertices in

the closed neighborhood of v that have no other neighbors in S. This set is denoted

pn[v, S] and is given by pn[v, S] = {u : N [u] ∩ S = {v}}. In Figure 2 for the graph

G, N(a) = {c, d} and N [a] = {a, c, d}. If S = {c, d, b}, then pn[c, S] = {e, f}.
Frequently it is necessary to examine an induced subgraph 〈H〉 of a graph G. This
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is defined as a set of vertices H ⊆ V (G) with u, v ∈ H adjacent if and only if u is

adjacent to v in G. In Figure 2, if H = {c, d, g}, then the graph 〈H〉 is as shown.

A type of graph in which we have a special interest here are paths. A path Pn has

V (Pn) = {v1, . . . , vn} where e ∈ E(Pn) if and only if e = vivi+1, for 1 ≤ i ≤ n − 1.

Note that m = n− 1. A path (u = v1, . . . , vn = v) is called a u-v path. We say that a

graph G is connected if for every pair of vertices u, v ∈ V (G) there exists a u-v path.

Note that in Figure 2, we have 〈H〉 = P3. Furthermore, G is not connected since, for

example, there is no b-a path in G.

T : K5 :

�
�

�
�

�
�

�

� �

�
�

✟✟✟✟

❍❍❍❍
✁

✁
✁
✁

❍❍❍❍
✟✟✟✟

❍❍❍❍
❇
❇
❇
❇
❇❇

✂
✂

✂
✂
✂✂

✟✟✟✟
✑

✑
✑

✑
✑✑

✁
✁

✁
✁◗

◗
◗

◗
◗◗

❆
❆

❆
❆

Figure 3: A tree T and the complete graph on five vertices K5.

Other types of graphs we must mention are trees and complete graphs. Trees are

connected graphs of order n and size m = n − 1. Paths are examples of trees. An

endvertex of a tree may be called a leaf. A complete graph on n vertices, or Kn, is a

graph in which all possible edges are present, that is, a graph G where vivj ∈ E(G)

for all vi, vj ∈ V (G) for i = j. See Figure 3 for examples of these graphs. A clique is

a maximal complete subgraph. In Figure 2 for the graph G, the subgraph 〈{a, c, d}〉
is a clique, as is the subgraph 〈{c, e}〉.

Now let us consider an application. Suppose the upperclass students at a college

are represented as vertices of a graph. For any two students having the same major,
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their corresponding vertices are adjacent. Assuming the unlikely case that there are

no double majors among the students, the resulting graph will be a union of disjoint

complete graphs, where each complete graph represents students in the same program.

But if we have a double major, then there is an edge between a vertex of a clique,

where the vertex represents the double major, and every vertex of another clique.

Obviously, there are quite a few possibilities regarding what this graph may look like.

Some questions this graph may help us answer are:

• If only people with the same major communicate, is it possible for a piece of

news given to one person to reach all students in the class? (Is the graph

connected?)

• If the graph is connected and we associate the same amount of time to each

edge, how quickly can we expect the news to spread? (What is the longest of

all shortest u-v paths?)

• Suppose a committee were to be formed requiring a representative from each

major. Are there reasons to choose one student over another inherent in the

graph?

Before we restate the last question in terms of our graph we must define a few

more concepts which are central to this thesis. A dominating set D ⊆ V (G) is a set

of vertices such that every vertex in V − D has a neighbor in D. We say that D

dominates G. The smallest such set in a graph G is called a γ(G)-set, or simply a

γ-set when G is clear from the context. The cardinality of a smallest dominating set

of G is the domination number of the graph G, denoted γ(G). We note that a graph
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G :

�� �

� �
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e f g

c d

a

�
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�

❆
❆
❆
❆

✁
✁

✁
✁

❅
❅

❅
❅

Figure 4: D = {e, f, d} is a dominating set of G but is not a γ(G)-set.

may have many γ-sets but only one domination number. For example, in Figure 4,

γ(G) = 2 where S1 = {c, d} and S2 = {c, g} are both γ(G)-sets. Also note that {c, a}
is not a γ(G)-set as N [g] ∩ {c, a} = ∅. We note that a dominating set is minimal if

and only if pn[v, S] = ∅ for each v ∈ S.

A vertex that is contained in some γ(G)-set is called a good vertex, otherwise it

is bad. We let g(G) denote the number of good vertices in a graph G. Similarly, the

number of bad vertices is denoted b(G). In Figure 4, g(G) = 3 and b(G) = 3, where

c, d, and g are good vertices and a, e, and f are bad vertices.

With these terms defined, we return to our last question and ask: Are there

committees that are preferable to others? If it were necessary to minimize the size

of the committee, we would be looking for a γ-set. How many γ-sets are there from

which to choose? What are other considerations that must be made when choosing

such a set? For example, do we also need to choose alternates? If there is to be

compensation for serving on the committee, should everyone receive the same pay?

Or perhaps those whose corresponding vertices are contained in only one γ-set should

be paid less than one whose corresponding vertex is contained in all γ-sets. If so, how
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much less?

It is these types of questions that fuel our interest in domination theory. Broadly

speaking, our problem considers the set of good vertices in a graph and attempts

to determine other characteristics not previously considered that may help us with

applications like the one described above. Throughout this thesis we emphasize the

quality of the vertex itself in relation to the graph as a whole. We hope to learn

something of the nature of domination on a local scale and its effect on the graph

globally.

We begin with a literature survey of some work that has either been done in this

area or has served as an catalyst for new ideas in this area. In Chapter 3 we determine

g(G) and b(G) for a family of trees known as caterpillars. In Chapter 4 we answer

the question of whether, given γ(G), there exists such a graph G with specified g(G)

and b(G). In Chapter 5 we define a number called the goodness index for each vertex

of a path, we look closely at the individual vertices of paths Pn, and we determine

the number of γ(Pn)-sets that contain each vertex. We close the thesis with a short

chapter listing some open questions that have arisen during the course of this study.



CHAPTER 2

LITERATURE SURVEY

In this thesis, our concern is with vertices that are contained in γ(G)-sets for a

graph G. Here we present a brief survey of literature that has led to this interest.

Gunther, Hartnell, Marcus, and Rall [4] study graphs with unique minimum dom-

inating sets. This is of special interest to us as such graphs have γ(G) = g(G). They

present the following result for trees.

Theorem 2.1 [4] Let T be a tree of order at least three. Then the following conditions

are equivalent:

1. T has a unique γ-set D.

2. T has a γ-set D for which every vertex x ∈ D has at least two private neighbors

other than itself.

3. T has a γ-set D for which every vertex x ∈ D has the property that γ(T − x) >

γ(T ).

In addition to this result, the authors present operations involving addition of

edges and/or vertices which may be performed on two connected graphs, each of

which has a unique minimum dominating set, to create a new connected graph with

a minimum dominating set.

Mynhardt [8] furthers their results by considering the class of all trees. Here she

identifies the vertices of a tree that are contained in every minimum dominating set

as well as those vertices that are contained in no minimum dominating set.

7
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An independent set of vertices is one in which no two vertices are adjacent. If

a dominating set of a graph G is independent it is called an i(G)-set, or just an i-

set, if G is clear from the context. The independent domination number of a graph,

denoted i(G), is the smallest cardinality of any maximal independent set of G. Since

any maximal independent set is a dominating set we can restste the definition of

the independent domination number as the smallest cardinality of any independent

dominating set.

Cockayne, Favaron, Mynhardt, and Puech, [2], characterize trees for which γ(T ) =

i(T ) in terms of the set of vertices of the tree which are contained in all its minimum

dominating and minimum independent dominating sets.

Exactly how many minimum dominating sets a graph has is a challenging question.

In [9], Slater provides some tools for counting dominating sets for graphs, paths in

particular. Although he does not formally ask how many γ(Pn)-sets exist for a path

Pn, the question seems to be implied. In Chapter 5 of this thesis, that question is

answered.

Finally, we come to the work that has been the biggest impetus for this thesis.

Fricke, Haynes, Hedetniemi, Hedetniemi, and Laskar [3] define a good vertex v ∈ V (G)

to be one which is contained in some γ(G)-set. Otherwise, the vertex is said to be

bad. They let g(G) denote the number of good vertices and b(G) denote the number

of bad vertices in G, and give the following classification scheme for graphs of order

n:

1. G is γ-excellent if g(G) = n and b(G) = 0.

2. G is γ-commendable if n
2
< g(G) < n and 0 < b(G) < n

2
.



9

3. G is γ-fair if g(G) = n
2

and b(G) = n
2
.

4. G is γ-poor if g(G) < n
2

and b(G) > n
2
.

They expand on the work of Mynhardt by concentrating on trees and consider

those trees for which every vertex v is contained in some γ-set; that is, trees which

are γ-excellent.

Two observations made by the authors which we will use throughout the thesis

are the following.

Observation 2.2 [3] For any connected graph G = K2, every support vertex is γ-

good and there exists a γ(G)-set containing all the support vertices of G.

Observation 2.3 [3] For any γ-excellent graph G, every endvertex is in some γ(G)-

set and no endvertex is in every γ(G)-set of G.

Note also that if a support vertex u is adjacent to two or more endvertices of G,

then u is in every γ(G)-set, and hence the endvertices in N(u) are not in any γ(G)-set.

Observation 2.4 [3] For any γ-excellent graph G, any support vertex is adjacent to

exactly one endvertex.

✈ ✈ ✈ ✈a a a a

✈ ✈ ✈ ✈ ✈
a ab b b b b b

✈ ✈ ✈✁
✁
✁
✁

✁
✁
✁
✁

❆
❆

❆
❆

❆
❆

❆
❆

Figure 5: A γ-fair graph. The good vertices are labeled a and the bad vertices b.
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Another result from the authors which is elementary to our arguments is the

following.

Proposition 2.5 [3] The path Pn is γ-excellent if and only if Pn = P2 or n ≡

1 (mod 3).

A graph G that is i-excellent is one in which every vertex v ∈ V (G) is contained

in some i-set. Fricke, et al. [3] relate γ-excellent and i-excellent trees as follows.

Theorem 2.6 [3] If T is a γ-excellent tree, then γ(T ) = i(T ) and T is an i-excellent

tree.

Haynes and Henning [7] give a constructive characterization for i-excellent trees.

Even though all γ-excellent trees are i-excellent, note that not all γ-sets of a γ-

excellent tree are independent as we see in the following lemma.

Lemma 2.7 [3] If T is a γ-excellent tree of order n ≥ 4, then there exists a γ(T )-set

S such that S is not independent.

Using Lemma 2.7 Fricke, et al. [3] give a construction for γ-excellent trees.

Construction A [3] To construct a γ-excellent tree T

(1) Let T1 and T2 be γ-excellent trees (each of order at least 4). By Lemma 2.7, we

can assume that S1 and S2 are γ-sets, but not i-sets of T1 and T2, respectively.

Further let u ∈ S1 and v ∈ S2 where u (respectively, v) is not an isolate in 〈S1〉

(respectively, 〈S2〉).
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(2) Let T = T1 ∪ T2 + uv.

These results and the questions they raise lead us to our problems. First, we want

to classify all trees as γ-excellent, γ-commendable, γ-fair, or γ-poor. We examine a

subclass of trees known as caterpillars in Chapter 3 and establish a method for their

classification.

Second, we ask if given any triple of nonnegative integers (x, y, z) with 1 ≤ x ≤ y

corresponding to γ(G), g(G), and b(G), respectively, does such a graph G exist? The

somewhat surprising answer is no. Conditions for realizability are given in Chapter

4, as well as constructions that validate the realizability.

Finally, we answer the question of how many distinct γ(Pn)-sets there are for a

given path on n vertices, and we answer the question of how many of these distinct

γ(Pn)-sets contain a particular vertex. These results are found in Chapter 5.



CHAPTER 3

CATERPILLARS

The problem of partitioning the set of all graphs into the classes γ-excellent, γ-

commendable, γ-fair, and γ-poor seems to be a very difficult one. In this chapter, we

will concentrate on a very simple class of trees known as caterpillars. A caterpillar

Tc is a nontrivial tree of order n > 2 for which the removal of all endvertices yields

a path Pk = {v1, v2, . . . , vk}, which is called the spine of the caterpillar. A spine

vertex is simply a vertex on the spine of a caterpillar. The code of a caterpillar Tc is

c(Tc) = (c1, c2, . . . , ck) where ci is the number of endvertices adjacent to the vertex

vi. Note that c1 = 0 and ck = 0. Also, by convention, c1 ≥ ck. For an example, see

Figure 6.

Tc :

� � � � � � � � � � � � �
� � � � � � � � � � � �

✁
✁
✁✁

✁
✁
✁✁

❆
❆

❆❆

❆
❆

❆❆

✄
✄
✄✄

✄
✄
✄✄

❈
❈
❈❈

❈
❈
❈❈

v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1

Figure 6: c(Tc) = (2, 1, 3, 0, 0, 0, 2, 1, 0, 0, 3, 1)

Much of the work in this thesis relies on the following.

Proposition 3.8 For any path Pn, γ(Pn) =
⌈

n
3

⌉
, and if n ≡ 0(mod 3), then Pn has

a unique γ-set consisting of vertices vi where i ≡ 2(mod 3).

12
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Observation 3.9 Every strong support vertex is in every γ(G)-set. Moreover, there

exists a γ(G)-set which includes every support vertex of G. We note that every vertex

vi with ci ≥ 2 is in every γ(Tc)-set, and there exists a γ(Tc)-set including every vertex

vi such that ci ≥ 1.

To aid in our discussion, we call a maximal sequence of zero entries in the code

c(Tc) a zero string, denoted Zp where p indicates the pth such string in a code. For

example, the caterpillar in Figure 6 has two zero strings, namely Z1 = (c4, c5, c6) and

Z2 = (c9, c10). We let zp denote the number of zeroes in the zero string. In the above

example, |Z1| = z1 = 3. Finally, for a zero string Zp, let g(Zp) denote the number of

good vertices vi such that ci ∈ Zp.

Determining the class of a given caterpillar relies in part on knowing the length

of each zero string. We first determine the number of good vertices corresponding to

codes in each zero string.

Lemma 3.10 For any zero string Zp,

g(Zp) =




⌊
zp

3

⌋
for zp ≡ 2(mod 3)

zp for zp ≡ 0(mod 3)

2
⌊

zp

3

⌋
for zp ≡ 1(mod 3).

Proof: Let Tc be a caterpillar with a zero string Zp = (ci, ci+1, . . . , cj−1, cj). Let S

be a γ(Tc)-set such that S includes all vertices vi with ci ≥ 1. The existence of such

a set S is guaranteed by Observation 3.9. Let S1 ⊆ S be the subset of vertices with

ci ≥ 1.
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We consider the cases where zp = 1 and zp = 2 separately.

Let 1 ≤ zp ≤ 2. Then, ci−1 ≥ 1 and cj+1 ≥ 1, and Observation 3.9 implies that

vi−1 and vj+1 are in S, and hence vi and vj (possibly vi = vj) are dominated by S1.

By the minimality of a γ(Tc)-set, vi and vj will never be in any γ(Tc)-set, so vi and vj

(possibly vi = vj) are bad. Hence, g(Zp) = 0 = 2
⌊

1
3

⌋
for zp = 1 and g(Zp) = 0 =

⌊
2
3

⌋

for zp = 2.

Thus we assume zp ≥ 3, and let l = zp − 2 ≥ 1. Since ci−1 > 0 and cj+1 > 0,

vertices vi and vj are dominated by S1, leaving the path Pl = 〈vi+1 . . . vj−1〉 to be

dominated by vertices corresponding to codes on Zp.

If zp ≡ 2(mod 3), then l ≡ 0(mod 3) and by Proposition 3.8, the path Pl has a

unique γ-set with γ(Pl) = l
3
. Note that neither vi+1 nor vj−1 is in the unique γ(Pl)-

set. If vi ∈ S, pn[vi, S] = ∅, contradicting the minimality of S. Therefore vi /∈ S, and

by symmetry, vj /∈ S. Since S is an arbitrary γ(Tc)-set, none of vi, vi+1, vj−1, and vj

are in any γ(Tc)-set. Hence if zp ≡ 2(mod 3), then g(Zp) = l
3

= zp−2
3

=
⌊

zp

3

⌋
.

If zp ≡ 0(mod 3), then l ≡ 1(mod 3) and by Proposition 2.5 every vertex in Pl is

good with γ(Pl) =
⌈

l
3

⌉
. Moreover, if vertex vi ∈ S, then vertices vi, vi+1, and vj are

dominated by S1∪vi, leaving a path Pl−1 to be dominated. This can be accomplished

by using exactly l−1
3

vertices. Note that
⌈

l
3

⌉
= 1 + l−1

3
when l ≡ 1(mod 3). Hence,

vi can be in S, that is, vi is good. Symmetry establishes the goodness of vj as well.

Hence if zp ≡ 0(mod 3), then g(Zp) = zp.

Finally, if zp ≡ 1(mod 3), then l ≡ 2(mod 3) and g(Pl) = 2
⌈

l
3

⌉
by Corollary
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5.27 with γ(Pl) =
⌈

l
3

⌉
. Note that the endvertices of Pl are good. Now, if vertex

vi ∈ S, then vertices vi, vi+1, and vj are dominated by S1 ∪ {vi}, leaving a path

Pl−1 to be dominated. This implies that at least
⌈

l−1
3

⌉
additional vertices are in S

to dominate the vertices of Zp. But notice that 1 +
⌈

l−1
3

⌉
= 1 + l+1

3
>

⌈
l
3

⌉
when

l ≡ 2(mod 3). Thus, vi /∈ S and by symmetry, vj /∈ S. Hence, if zp ≡ 1(mod 3), then

g(Zp) = 2
⌈

l
3

⌉
= 2

⌈
zp−2

3

⌉
= 2

⌊
zp

3

⌋
.

✷

Another consideration in determining the classification of a caterpillar is the rela-

tionship between the weak support vertices and zero strings Zp where zp ≡ 2(mod 3).

We will find the following lemma useful:

Lemma 3.11 Let vi be a spine vertex of a caterpillar Tc with ci = 1. Then vi is in

every γ(Tc)-set if and only if ci−1 or ci+1 is part of a zero string Zp with zp ≡ 2(mod 3).

Proof: Let vi be a spine vertex of a caterpillar Tc where ci = 1 and ui is the endvertex

adjacent to vi.

Suppose vi is in every γ(Tc)-set. Thus no γ(Tc)-set includes ui, implying that

at least one of vi−1 and vi+1 is in pn[vi, S], for any γ(Tc)-set S. Suppose that there

exist γ(Tc)-sets S ′ and S ′′ such that vi+1 ∈ pn[vi, S
′] and vi−1 /∈ pn[vi, S

′] and vi+1 /∈

pn[vi, S
′′] and vi−1 ∈ pn[vi, S

′′]. Then there exists a γ(Tc)-set S such that S =

(S ′ ∩ {v1, . . . , vi−1}) ∪ {ui} ∪ (S ′′ ∩ {vi+1, . . . , vk}), contradicting that vi is in every
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γ(Tc)-set. Hence, either vi+1 ∈ pn[vi, S] for all γ(Tc)-sets S, or vi−1 ∈ pn[vi, S] for all

γ(Tc)-sets S.

Without loss of generality, we assume that vi+1 ∈ pn[vi, S], for all γ(Tc)-sets S.

Then vi+1 and vi+2 are bad, and ci+1 and ci+2 are part of a zero string. From the

proof of Lemma 3.10, the only zero strings having the property that the vertices

corresponding to the first two elements in the string are not in any γ(Tc)-set are

those Zp with zp ≡ 2(mod 3).

Conversely, we may assume without loss of generality that ci+1 is part of a zero

string Zp with zp ≡ 2(mod 3). Let S be a γ(Tc)-set such that vi /∈ S. Then ui ∈ S

and either vi+1 ∈ S or vi+2 ∈ S to dominate vi+1. But by the proof of Lemma 3.10,

vi+1 /∈ S and vi+2 /∈ S. Hence, vi ∈ S and vi is in every γ(Tc)-set.

✷

Corollary 3.12 In a caterpillar Tc, an endvertex adjacent to a vertex vi with ci = 1

is bad if and only if ci−1 or ci+1 is part of a zero string Zp with zp ≡ 2(mod 3).

The above results allow us to establish formulas for finding g(Tc) and b(Tc) given

c(Tc) = (c1, c2, . . . , ck) for k ≥ 3. Let us first define the following.

A summation which counts the good vertices on the p zero strings of Tc:

gz =
p∑

i=1

g(Zi)

A function which assigns a one to each code element corresponding to a strong
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support vertex and a zero to all other code elements:

f1(ci) =

{
1 for ci ≥ 2
0 for ci ≤ 1

A summation that gives the total number of strong support vertices, all of which

are good:

gs =
k∑

i=1

f1(ci)

A set which contains the vertices of every zero string Zi, where zi ≡ 2(mod 3):

Z2 = ∪{Zi|zi ≡ 2(mod 3)}

A set function that returns the code for the entire set of spine vertices adjacent

to a given spine vertex vi, particularly v1 and vk:

Ri =




{ci+1} for i = 1
{ci−1, ci+1} for 1 < i < k
{ci−1} for i = k

A function that assigns to each code element ci corresponding to a weak support

vertex a one or a two, depending on whether the endvertex adjacent to vi is included

in any γ(Tc)-set:

f2(ci) =




0 for ci = 1
1 for ci = 1 and Ri ∩ Z2 = ∅
2 for ci = 1 and Ri ∩ Z2 = ∅

A summation that gives the total number of weak support vertices, each of which

is good, along with the total number of good endvertices adjacent to these:

gw =
k∑

i=1

f2(ci)



18

A summation that gives the total number of vertices in the caterpillar:

n = k +
k∑

i=1

ci

With the above defined for caterpillars with at least two spine vertices, the for-

mulas are given as follows:

g(Tc) = gz + gs + gw

b(Tc) = n− g(Tc)

Now we can easily classify the caterpillars Tc in the following manner.

Tc is γ-excellent if g(Tc) = gz + gs + gw = n and b(Tc) = 0.

Tc is γ-commendable if n
2
< g(Tc) = gz + gs + gw < n and 0 < b(Tc) < n

2
.

Tc is γ-fair if g(Tc) = gz + gs + gw = n
2

and b(Tc) = n
2
.

Tc is γ-poor if g(Tc) = gz + gs + gw < n
2

and b(Tc) >
n
2
.

As an example, we can return to the caterpillar shown in Figure 6. We calculate:

gz =
p∑

i=1

g(Zi) = 3

gs =
k∑

i=1

f1(ci) = 4

gw =
k∑

i=1

f2(ci) = 5

n = k +
k∑

i=1

ci = 12 + 13 = 25
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g(Tc) = gz + gs + gw = 3 + 4 + 5 = 12

b(Tc) = n− g(Tc) = 25 − 12 = 13

Hence, our caterpillar is γ-poor.



CHAPTER 4

REALIZABILITY

Our aim in this chapter is to determine for which triples (x, y, z) there exists a

graph G such that γ(G) = x, g(G) = y, and b(G) = z. We observe that no graph G

has γ(G) = g(G) = b(G).

Observation 4.13 No graph G has γ(G) = g(G) = b(G).

Proof. Suppose there exists a graph G of order n with γ(G) = g(G) = b(G) = n
2
.

However, it is established [3] that the only graphs G with γ(G) = n
2

are also γ-excellent

graphs. Thus, γ(G) = n
2
, b(G) = 0, and g(G) = n, contradicting our assumption that

such a graph exists.

✷

Note that g(G) ≥ γ(G) for all graphs G. Our next theorem establishes a bound

on γ(G) for a given g(G) and b(G).

Theorem 4.14 If G is a connected graph with g(G) = γ(G)+k and b(G) = γ(G)+j,

where j and k are nonnegative integers such that j + k ≥ 1, then γ(G) ≤ j + 2k.

Proof. Let G be a connected graph with g(G) = γ(G) + k and b(G) = γ(G) + j,

where j + k ≥ 1. Let S be a γ(G)-set.

To prove the theorem, we first show that every vertex of S, except possibly k of

them, has at least two private neighbors in V − S. Obviously, the γ(G) vertices of S

20
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are good vertices. Let Ak denote the set of k good vertices in V − S, and let A ⊆ S

such that for each vertex u ∈ A, u has at most one private neighbor in V − S. If

A = ∅, then we are finished, so assume that A = ∅.

If u ∈ A has no private neighbors in V − S, then u is an isolate in 〈S〉 by

the minimality of S. Since G is connected, u must have a neighbor x in V − S.

Furthermore, since S−{u}∪{x} is a γ(G)-set, it follows that x is a good vertex for all

x ∈ N(u). Thus, N(u) ⊆ Ak. Moreover, suppose v = u ∈ A has no private neighbor

in V − S. If u and v have a common neighbor, say x, in Ak, then S − {u, v} ∪ {x}

is a dominating set of G with cardinality less than γ(G), a contradiction. Hence, for

each pair of vertices u, v ∈ A with no private neighbors in V − S, N(u) ∩N(v) = ∅.

If, on the other hand, u ∈ A has exactly one private neighbor x in V − S, then

S − {u} ∪ {x} is a γ(G)-set, implying that x ∈ Ak.

We have just shown that for each vertex in A we can associate a unique vertex

in Ak. Thus, it follows that |A| ≤ |Ak| = k. (Note that these associated neighbors

cannot be private neighbors of the vertices of S −A.)

Let |A| = t. Since every vertex in S − A has at least two private neighbors in

V − S, it follows that

2(γ(G) − t) ≤ |V − S| − t

= b(G) + g(G)− γ(G) − t
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= γ(G) + j + k − t.

Thus, γ(G) ≤ j + k + t and since t ≤ k, we have

γ(G) ≤ j + 2k.

✷

Corollary 4.15 If G is a connected graph and g(G) = γ(G) + k, then b(G) ≥

2(γ(G) − k).

Proof. Let G be a connected graph with g(G) = γ(G) + k. Let S be a γ(G)-set

where t vertices of S have at most one private neighbor in V − S. Then from the

proof of Theorem 4.14, we have

2(γ(G) − t) ≤ |V − S| − t

= b(G) + k − t

implying b(G) ≥ 2γ(G) − t− k.

Since t ≤ k, we have

b(G) ≥ 2(γ(G) − k).

✷

Note that the bound in Corollary 4.15 is only meaningful for k < γ(G) since

b(G) ≥ 0 for any graph G. We also observe that if G is a nontrivial graph and k = 0,

then b(G) ≥ 2γ(G).
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4.1 Constructions

We have established that for a nontrivial connected graph G, the only possibilities

are

Property 1 g(G) = γ(G) + k, for 0 ≤ k < γ(G) and b(G) ≥ 2(γ(G)− k), and

Property 2 g(G) = γ(G) + k, for k ≥ γ(G) and b(G) ≥ 0.

We recall the following result.

Observation 4.16 If u is an endvertex of G, then either u or its support vertex is

in any γ(G)-set. A strong support vertex is in every γ(G)-set. Moreover, there exists

a γ(G)-set that contains all the support vertices of G.

Our first theorem shows that graphs with Property 1 are realizable.

G :

�
v1 vy−x

� � � � � � �

�u1 uy−x uy−x+1 ux� � � �

� � � � �✄
✄
✄
✄

✄
✄
✄
✄

❈
❈
❈
❈

❈
❈
❈
❈

✄
✄
✄
✄

❈
❈
❈
❈

☛✡ ✟✠
Vb

Figure 7: Construction of G as described in the proof of Theorem 4.17.

Theorem 4.17 For nonnegative integers (x, y, z) with x ≤ y < 2x and z ≥ 2(2x−y),

there exists a connected graph G such that γ(G) = x, g(G) = y and b(G) = z.
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Proof: Let (x, y, z) be nonnegative integers with x ≤ y < 2x and z ≥ 2(2x− y). We

construct a graph G as follows:

Begin with a path Px = u1, u2, . . . , ux. If y > x, then add a new vertex vi and

edge uivi for 1 ≤ i ≤ y − x. For each ui, y − x < i ≤ x, we add at least two new

vertices adjacent to ui while requiring that the total number of those new vertices is

z. Note that this construction is possible since x ≤ y < 2x and z ≥ 2(2x − y). In

Figure 7, this set of vertices is denoted Vb.

Then G is a caterpillar, and each ui, 1 ≤ i ≤ x, is a support vertex. Observation

4.16 implies that there is a γ(G)-set containing all the vertices of Px, so γ(G) ≥ x.

And since {ui | 1 ≤ i ≤ x} dominates G, we have γ(G) ≤ x. Thus, γ(G) = x as

desired. Also, it follows that the vertices of Px are good. From Observation 4.16, we

know that no leaf adjacent to a strong support vertex is in any γ(G)-set, implying

that the z endvertices adjacent to the strong support vertices ui, for y − x < i ≤ x,

are bad. Moreover, for 1 ≤ i ≤ y − x, each ui is adjacent to exactly one endvertex

vi, so Px − {ui} ∪ {vi} is a γ(G)-set. Therefore, {vi | 1 ≤ i ≤ y − x} is a set of good

vertices. Hence, g(G) = x + y − x = y, and b(G) = z as desired.

✷

Before showing that graphs with property 2 are realizable, we establish a lemma

and define two additional terms.

Lemma 4.18 If G is a connected graph and b(G) = 1, then γ(G) ≥ 2.
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Proof: Let G be a connected graph of order n with b(G) = 1. Then g(G) = n− 1.

Let v denote the bad vertex of G, and let ui for 1 ≤ i ≤ n − 1, denote the good

vertices of G. Suppose to the contrary that γ(G) = 1. Thus each ui is a γ(G)-set

because each ui is good. Therefore G is complete. But then v dominates G, so v is

good, a contradiction. Hence, γ(G) ≥ 2.

✷

The join operation on two graphs G and H , denoted G+H , creates a new graph

with E(G + H) = {eG | eG ∈ E(G)} ∪ {eH | eH ∈ E(H)} ∪ {uv | u ∈ V (G) and v ∈

V (H)}. The subdivision operation on an edge uv of a graph G introduces a new

vertex w such that E(G ∪ {w}) = E(G) − {uv} ∪ {uw,wv}.

G : z = 1

�
v1 v2 vx−1

� � � � �

�u1 u2 ux−1� �

� � � � � �☛✡ ✟✠

✛
✚

✘
✙

✁
✁
✁

✟✟✟✟✟✟

❆
❆

❆

✑
✑

✑
✑✑

❍❍❍❍❍❍

◗
◗

◗
◗◗

Ky−2x+2

Vb

G : z = 1

�
v1 v2 vx−1

� �

�u1 u2 ux−1� � �v

� � �

✛
✚

✘
✙Ky−2x+2

Figure 8: Construction of G as described in the proof of Theorem 4.19.

Theorem 4.19 For the triple (x, y, z) of nonnegative integers, where 2 ≤ 2x ≤ y and
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z = 1 only if x ≥ 2, there exists a connected graph G such that γ(G) = x, g(G) = y

and b(G) = z.

Proof: Let (x, y, z) be a triple of nonnegative integers where 2 ≤ 2x ≤ y and z = 1

only if x ≥ 2. We construct a graph G as follows:

Begin with a complete graph Ky−2x+2. If z = 1, let Vb be a set of isolates where

|Vb| = z and join Vb to Ky−2x+2. (Note that if z = 0, we have Vb = ∅.) Now, x ≥ 1 since

z = 1, by Lemma 4.18. If x = 1, then we may stop our construction here and note that

any one of the vertices in Ky−2x+2 dominates G = Ky−2x+2 +Vb. Thus, γ(G) = 1 = x

as desired. Further, no vertex in Vb dominates G, so g(G) = y−2x+2 = y−2(1)+2 = y

and b(G) = z.

Next, let x ≥ 2 with z = 1. Introduce a path Px−1 = u1, u2, . . . , ux−1 into the

graph constructed above with edge ux−1w, for some w ∈ V (Ky−2x+2). For each

vertex ui, 1 ≤ i ≤ x − 1, add a new vertex vi and edge uivi. Then each ui is

a support vertex. Observation 4.16 implies that there exists a γ(G)-set containing

all the support vertices, so γ(G) ≥ x − 1. Now, {ui | 1 ≤ i ≤ x − 1} does not

dominate G, so γ(G) ≥ x. And since {ui | 1 ≤ i ≤ x − 1} ∪ {w} dominates G,

for any vertex w ∈ Ky−2x+2, we have γ(G) ≤ x. Thus, γ(G) = x as desired. Also,

it follows that the vertices of Px−1 and Ky−2x+2 are good. Since no vertex in Vb

dominates Ky−2x+2 but every vertex of Ky−2x+2 dominates Ky−2x+2 + Vb, we have no

good vertices in Vb. Moreover, each ui ∈ Px−1 is adjacent to exactly one endvertex

vi. Letting S denote the γ(G)-set that contains all the support vertices ui, we also
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have S − {ui} ∪ {vi} a γ(G)-set. Hence, {vi | 1 ≤ i ≤ x− 1} is a set of good vertices.

Therefore, g(G) = 2(x− 1) + y − 2x + 2 = y and b(G) = z as desired.

Finally, we consider the case where z = 1. Then x ≥ 2 by Lemma 4.18. We

begin as before with the complete graph Ky−2x+2 and introduce a path Px−1 =

u1, u2, . . . , ux−1 with edge ux−1w, where w ∈ V (Ky−2x+2). Again, for each vertex

ui, add a new vertex vi and edge uivi. Now subdivide the edge ux−1w, labeling the

new vertex v. We show that v is the only bad vertex in G.

From Observation 4.16, we know that there exists a γ(G)-set containing all the

support vertices ui. Thus, γ(G) ≥ x− 1. But {ui | 1 ≤ i ≤ x− 1} does not dominate

G, so γ(G) ≥ x. Let S be a γ(G)-set that contains all the support vertices ui. Then

v is dominated by S. Further, any vertex w ∈ Ky−2x+2 will dominate the clique.

Henc,e γ(G) = x as desired. It follows then that all vertices ui ∈ Px−1 and all vertices

w ∈ Ky−2x+2 are good.

Now, let S ′ = {ui |1 ≤ i ≤ x−1}∪{w}. Then v is dominated by w, and therefore

S ′ − {ui} ∪ {vi} is also a γ(G)-set. Thus all vertices vi, 1 ≤ i ≤ x− 1, are good.

To show v is bad, suppose there exists S ′′, a γ(G)-set, such that v ∈ S ′′. Then

S ′′ dominates ux−1 and w1. But to dominate Px−2 ∪ {vi | 1 ≤ i ≤ x − 1} requires

x−1 more vertices and to dominate Ky−2x+2−{w1} requires one more vertex. Hence,

|S ′′| = 1 + (x − 1) + 1 = x + 1 > γ(G). Therefore, v is bad, and we have g(G) =

2(x− 1) + y − 2x + 1 = y and b(G) = 1 = z as desired.

✷



CHAPTER 5

THE GOODNESS INDEX

Every graph G has a finite number of γ(G)-sets. Slater [9] denotes the number

of distinct γ(G)-sets as #γ(G). We define the goodness index of a vertex v, denoted

g(v), to be the ratio of the number of distinct γ(G)-sets that contain v, denoted a(v),

to the total number of distinct γ(G)-sets, that is,

g(v) =
a(v)

#γ(G)
.

G: � � �
�

�
� �

� � �

�
v1

v2

v3

u1 u2 u3

u4

u5 u6

u7

u8

�
�

�
�

❅
❅

❅
❅

✁
✁
✁
✁

✂
✂
✂
✂
✂✂

❇
❇

❇
❇
❇❇

✟✟✟✟
❍❍❍❍

Figure 9: The graph G has a unique γ(G)-set = {v1, v2, v3}. Then g(vi) = 1, for

1 ≤ i ≤ 3, and g(ui) = 0, for 1 ≤ i ≤ 8.

Consider a graph G with a unique γ(G)-set S, in other words, #γ(G) = 1. Since

any vertex v ∈ S is in exactly one γ(G)-set, we have g(v) = 1 for all v ∈ S. Alter-

natively, if u ∈ V − S, then u is contained in no γ(G)-sets and g(u) = 0. In such

28
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cases, we say v is 1-good and u is 0-good. For an example of a graph G with a unique

γ(G)-set, see Figure 9.

P5 :
� � � � �
v1 v2 v3 v4 v5

Figure 10: The path P5 has γ(P5) = 2 with three distinct γ-sets.

An example of a graph that has more than one γ-set is P5, the path on five vertices,

illustrated in Figure 10. Note that γ(P5) = 2 and #γ(P5) = 3. Specifically, S1 =

{v1, v4}, S2 = {v2, v4}, and S3 = {v2, v5} are γ(P5)-sets. Thus, g(v1) = g(v5) = 1
3
,

g(v2) = g(v4) = 2
3
, and g(v3) = 0. We say that v1 is 1

3
-good, v2 is 2

3
-good, and so on.

Finally, let us emphasize the distinction between g(G), the number of good vertices

in a graph G, and g(v), the goodness index of a vertex v. Context will make the

distinction clear as well as the fact that g(G) is always an integer greater than or

equal to one, while g(v) is always a rational number between zero and one, inclusive.

Observation 5.20 For all vi ∈ V (G),

n∑
i=1

g(vi) = γ(G) for all vi ∈ V (G).
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5.1 Paths

Our goal in this section is to establish the goodness index for every vertex of a

path Pn. We introduce additional notation specific to our discussion and make some

observations, all of which will be useful to our arguments.

We label the vertices of a path Pn as v1, v2, . . . , vn where vi and vi+1 are adjacent

for all i ∈ {1, 2, . . . , n− 1}.

The symmetry of a path allows us to make the following observation.

Observation 5.21 For a path Pn, a(vi) = a(vn−i+1).

Since a leaf or its adjacent support vertex must be in every γ(G)-set, we observe

the following.

Observation 5.22 Each γ(Pn)-set contains exactly one of v1 and v2, and exactly

one of vn−1 and vn.

Our next observation follows directly from Proposition 3.8.

Proposition 5.23 For a path Pn where n ≡ 0(mod 3),

g(vi) =

{
1 for i ≡ 2(mod 3)
0 otherwise.

5.1.1 Paths Pn, n ≡ 2(mod 3)

In this section we determine g(vi) for each vi ∈ V (Pn) where n ≡ 2(mod 3).
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Table 1: Number of distinct γ(Pn)-sets containing vi, where n ≡ 2(mod 3) and 2 ≤

n ≤ 17.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n
2 1 1
5 1 2 0 2 1
8 1 3 0 2 2 0 3 1

11 1 4 0 2 3 0 3 2 0 4 1
14 1 5 0 2 4 0 3 3 0 4 2 0 5 1
17 1 6 0 2 5 0 3 4 0 4 3 0 5 2 0 6 1

Simple observation reveals the data shown in Table 1. We will now find the

goodness index of each vertex vi for a path Pn, n ≡ 2(mod 3).

Lemma 5.24 For the path Pn where n ≡ 2(mod 3), a vertex vi where i ≡ 0(mod 3)

is not in any γ(Pn)-set.

Proof: Let i ≡ 0(mod 3), n ≡ 2(mod 3), and assume that vi ∈ S, some γ(Pn)-

set S. Then vi dominates vi−1 and vi+1, leaving subpaths Pi−2 = 〈vi, . . . , vi−2〉 and

Pn−(i+1) = 〈vi+2, . . . , vn〉 to be dominated be S − {vi}. Since i ≡ 0(mod 3), it follows

that i−2 ≡ 1(mod 3) and n−(i+1) ≡ 1(mod 3). Thus S contains
⌈

i−2
3

⌉
+

⌈
n−(i+1)

3

⌉
=

i
3

+ n−i+1
3

= n+1
3

vertices in addition to vi. But 1 + n+1
3

= n+4
3

>
⌈

n
3

⌉
= γ(Pn), a

contradiction. Hence, vi /∈ S for any γ(Pn)-set S. ✷

Lemma 5.25 For the path Pn where n ≡ 2(mod 3), the number of γ(Pn)-sets is

#γ(Pn) = n+4
3

.
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Proof: We begin by noting that #γ(P2) = 2. Thus, let n ≥ 5. Assume v1 ∈ S, for

a γ(Pn)-set. Then, by Observation 5.22, v2 /∈ S. Thus S dominates {v3, . . . vn} with

exactly n−2
3

vertices since |{v3, . . . vn}| ≡ 0(mod 3). Further, since {v3, . . . vn} induces

a path with a unique γ-set, it follows that v1 is contained in exactly one γ(Pn)-set.

On the other hand, suppose v2 ∈ S. Then v2 dominates v1 and v3, leaving

{v4, . . . vn} to be dominated by S − {v2}. These vertices induce a path of order

n ≡ 2(mod 3), so v2 is contained in at least #γ(Pn−3) γ(Pn)-sets. But by Lemma

5.24, v3 /∈ S, for all γ(Pn)-sets S. Hence, v2 occurs in exactly #γ(Pn−3) γ(Pn)-sets.

Thus, the following recurrence relation occurs.

#γ(Pn) = 1 + #γ(Pn−3)

= 1 + 1 + #γ(Pn−6)

= 1 + 1 + 1 + #γ(Pn−9)

...

=
n− 2

3
+ #γ(Pn−(n−2))

=
n− 2

3
+ #γ(P2)

=
n− 2

3
+ 2

=
n + 4

3
.

✷
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Theorem 5.26 For a path Pn with n ≡ 2(mod 3) and vertex vi,

g(vi) =




0 for i ≡ 0(mod 3)
i+2
n+4

for i ≡ 1(mod 3)

n+3−i
n+4

for i ≡ 2(mod 3).

Proof: Let S be a γ(Pn)-set. From the proof of Lemma 5.25, we have that a(v1) = 1

and so by Observation 5.21, a(vn) = 1. This result along with Observation 5.22

implies that a(vn−1) = #γ(Pn) − 1.

Now suppose S is a γ(Pn)-set with vn−1 ∈ S. Then a subpath Pn−3 remains to

be dominated. By the argument in the preceding paragraph and since vn−4 and vn−3

are not both in a γ(Pn)-set S, it follows that a(vn−4) = #γ(Pn−3) − 1. In general, if

i = n− j, where j ≡ 1(mod 3), we have

a(vi) = a(vn−j)

= #γ(Pn−j+1) − 1

=
(n− j + 1) + 4

3
− 1

=
n− j + 2

3

=
i + 2

3

and g(vi) = i+2
3

÷ n+4
3

= i+2
n+4

, where i ≡ 1(mod 3).

Now, let i ≡ 2(mod 3). By Observation 5.21, g(vi) = g(vn−i+1), and note that

n − i + 1 ≡ 1(mod 3), since n ≡ 2(mod 3) . Thus, g(vi) = (n−i+1)+2
n+4

= n+3−i
n+4

, where

i ≡ 2(mod 3).
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Finally, Lemma 5.24 established that g(vi) = 0 for i ≡ 0(mod 3). ✷

Note that the numbers given in Table 1 divided by #γ(Pn) are confirmed in the

resulting equations.

Corollary 5.27 For a path Pn with n ≡ 2(mod 3), g(Pn) = 2
⌈

n
3

⌉
.

Proof: Let Pn be a path with n ≡ 2(mod 3). Then Pn contains
⌈

n
3

⌉
vertices vi with

i ≡ 1(mod 3) and
⌈

n
3

⌉
vertices vi with i ≡ 2(mod 3). Since g(vi) = 0 for i ≡ 1(mod 3)

and i ≡ 2(mod 3), and g(vi) = 0 for i ≡ 0(mod 3), we have g(Pn) = 2
⌈

n
3

⌉
where

n ≡ 2(mod 3). ✷

5.1.2 Paths Pn, n ≡ 1(mod 3)

In the final section of this chapter we determine g(vi) for each vi ∈ V (Pn) where

n ≡ 1(mod 3).

As in Table 1, Table 2 displays data that was gathered from studying the paths.

To aid in finding the goodness index of each vertex vi for a path Pn, n ≡ 1(mod 3),

we will use the following lemma.

Lemma 5.28 A nontrivial path Pn where n ≡ 1(mod 3) has a γ-set including adja-

cent vertices vi and vi+1 only if i ≡ 2(mod 3). A γ(Pn)-set may have no more than

one such pair of adjacent vertices and for every such pair of adjacent vertices in Pn

there exists a γ(Pn)-set that contains them.
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Table 2: Number of distinct γ(Pn)-sets containing vi, where n ≡ 1(mod 3) and 1 ≤

n ≤ 19.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n
1 1
4 2 2 2 2
7 3 5 2 4 2 5 3

10 4 9 2 6 5 5 6 2 9 4
13 5 14 2 8 9 5 9 5 9 8 2 14 5
16 6 20 2 10 14 5 12 9 9 12 5 14 10 2 20 6
19 7 27 2 12 20 5 15 14 9 16 9 14 15 5 20 12 2 27 7

Proof: Suppose that S is a γ(Pn)-set such that vertices vj and vj+1 are in S, where

j ≡ 1(mod 3). Then {vj, vj+1} dominates {vj−1, vj, vj+1, vj+2}, assuming these ver-

tices exist, leaving paths Pj−2 = 〈v1, . . . , vj−2〉 and Pn−(j+2) = 〈vj+3, . . . , vn〉 to be

dominated by S − {vj , vj+1}. Note that j − 2 ≡ 2(mod 3) and n − (j + 2) ≡

1(mod 3). Hence we require at least
⌈

j−2
3

⌉
+

⌈
n−(j+2)

3

⌉
to dominate Pj−2 ∪ Pn−(j+2).

But 2 +
⌈

j−2
3

⌉
+

⌈
n−(j+2)

3

⌉
= 2 + j−1

3
+ n−j

3
= n+5

3
>

⌈
n
3

⌉
= n+2

3
= γ(Pn), a contradic-

tion. Note that if j = 1, then we have only to dominate Pn−(j+2) = Pn−3 requiring at

least
⌈

n−3
3

⌉
vertices. But 2 +

⌈
n−3

3

⌉
= 2 + n−1

3
which, as we have just seen, leads to a

contradiction. Hence, no γ(Pn)-set contains vertices vj and vj+1 where j ≡ 1(mod 3).

Similarly, suppose S is a γ(Pn)-set such that vertices vj and vj+1 are in S, where

j ≡ 0(mod 3). Then again {vj , vj+1} dominates {vj−1, vj, vj+1, vj+2}, assuming these

vertices exist, leaving paths Pj−2 = 〈v1, . . . , vj−2〉 and Pn−(j+2) = 〈vj+3, . . . , vn〉 to be



36

dominated by S−{vj , vj+1}. Note that j−2 ≡ 1(mod 3) and n− (j+2) ≡ 2(mod 3).

Therefore we require at least
⌈

j−2
3

⌉
+

⌈
n−(j+2)

3

⌉
to dominate Pj−2 ∪ Pn−(j+2). But

2 +
⌈

j−2
3

⌉
+

⌈
n−(j+2)

3

⌉
= 2 + j

3
+ n−j−1

3
= n+5

3
>

⌈
n
3

⌉
= n+2

3
= γ(Pn), a contradiction.

Note that if j = n− 1 then we need only concern ourselves with dominating Pj−2 =

Pn−3. Thus, to dominate the graph would require 2 + n−1
3

= n+5
3

vertices, again

contradicting the minimality of S. Hence, no γ(Pn)-set contains vertices vj and vj+1

where j ≡ 0(mod 3).

Now we must show that such a γ(Pn)-set exists for adjacent vertices vi and vi+1

where i ≡ 2(mod 3). Let S be a γ(Pn)-set such that vertices vi and vi+1 are in S,

where i ≡ 2(mod 3). Then {vi, vi+1} dominates {vi−1, vi, vi+1, vi+2}, leaving paths

Pi−2 = 〈v1, . . . , vi−2〉 and Pn−(i+2) = 〈vi+3, . . . , vn〉, i− 2 ≥ 1 and/or n− (i + 2) ≥ 1.

Note that i − 2 ≡ 0(mod 3) and n − (i + 2) ≡ 0(mod 3). Therefore we require at

least
⌈

i−2
3

⌉
+

⌈
n−(i+2)

3

⌉
to dominate Pi−2 ∪Pn−(i+2). Note that 2+

⌈
i−2
3

⌉
+

⌈
n−(i+2)

3

⌉
=

2 + i−2
3

+ n−(i+2)
3

= n+2
3

=
⌈

n
3

⌉
= γ(Pn). Also note that if i = n− 2 or if i = 2 then

we have only to dominate Pn−(j+2) = Pn−4, which requires at least
⌈

n−4
3

⌉
vertices.

2 +
⌈

n−4
3

⌉
= 2 + n−4

3
= n+2

3
as desired. Hence, a path Pn has a γ-set including

adjacent vertices vi and vi+1 only if i ≡ 2(mod 3).

Finally, note that neither γ-set of the induced subpaths Pi−2 and Pn−(i+2) contains

adjacent vertices as their orders are both congruent to 0(mod 3). Hence the only

adjacent pair of vertices in S is vi and vi+1. ✷
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Lemma 5.29 For a path Pn where n ≡ 1(mod 3), a(vn) =
⌈

n
3

⌉
.

Proof: Let S be a γ(Pn)-set such that vn ∈ S. Then, vn−1 /∈ S by Observation

5.22 and a subpath Pn−2 is left to be dominated. Since n − 2 ≡ 2(mod 3), we have

#γ(Pn−2) = (n−2)+4
3

= n+2
3

=
⌈

n
3

⌉
, by Lemma 5.25. Thus, a =

⌈
n
3

⌉
.

✷

Lemma 5.30 For a path Pn where n ≡ 1(mod 3), a(vn−1) = #γ(Pn−3) + 1.

Proof: Let S be a γ(Pn)-set such that vn−1 ∈ S and vn, vn−2 /∈ S. Then we have

a path Pn−3 to dominate. Therefore, vn−1 is in #γ(Pn−3) γ(Pn)-sets which contain

neither vn nor vn−2. By Observation 5.22 we have that no γ(Pn)-set contains both

vn and vn−1, and by Lemma 5.28 exactly one γ(Pn)-set contains both vn−1 and vn−2,

since n− 2 ≡ 2(mod 3). Hence, a(vn−1) = #γ(Pn−3) + 1.

✷

Lemma 5.31 For a path Pn where n ≡ 1(mod 3),

#γ(Pn) =
n2 + 13n + 4

18
.

Proof: Note that if n = 1 the lemma holds. Hence we assume n = 3k + 1 ≥ 4.

Since either (but not both) of vn and vn−1 are in any γ(Pn)-set, (Observation 5.22),
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#γ(Pn) = #γ(Pn−3) + 1 +
⌈

n
3

⌉
, by Lemmas 5.29 and 5.30. Then

#γ(Pn) = #γ(Pn−3) + 1 +
⌈
n

3

⌉

=
(
#γ(Pn−6) + 1 +

⌈
n− 3

3

⌉)
+ 1 +

⌈
n

3

⌉

=
[(

#γ(Pn−9) + 1 +
⌈
n− 6

3

⌉)
+ 1 +

⌈
n− 3

3

⌉]
+ 1 +

⌈
n

3

⌉

...

= #γ(Pn−3k) + 1 +

⌈
n− (3k − 3)

3

⌉
+ 1 + · · ·+ 1 +

⌈
n

3

⌉

= #γ(P1) + k +
k∑

i=1

(i + 1) (since
⌈
n

3

⌉
=

3k + 3

3
= k + 1)

= 1 + k + k +
k(k + 1)

2

=
k2 + 5k + 2

2

=
n2 + 13n + 4

18
.

✷

Lemma 5.32 For a path Pn where n ≡ 1(mod 3), a(vn−2) = 2.

Proof: Let S be a γ(Pn)-set with vn−2 ∈ S. Then, since either vn−1 or vn is in S, we

have {vn−3, vn−2, vn−1, vn} dominated by S ∩ {vn−2, vn−1, vn}. This leaves a subpath

Pn−4 to be dominated. Since n−4 ≡ 0(mod 3), there is a unique γ-set that dominates

Pn−4. Hence, a(vn−2) = 2. ✷

Lemma 5.33 For a path Pn where n ≡ 1(mod 3), a(vn−1) = n2+7n−8
18

.



39

Proof: Recall that #γ(Pn) = n2+13n+4
18

, by Lemma 5.31. Also, from Lemma 5.30, we

have a(vn−1) = #γ(Pn−3) + 1. Thus,

a(vn−1) = #γ(Pn−3) + 1

=
(n− 3)2 + 13(n− 3) + 4

18
+ 1

=
n2 + 7n− 8

18
.

✷

We are finally ready to prove the main results for this section.

Theorem 5.34 For a path Pn where n ≡ 1(mod 3), if i ≡ 0(mod 3), then g(vi) =

i2−9i
n2+13n+4

.

Proof: Let Pn be a path on n vertices where n ≡ 1(mod 3) and choose a vertex vi

where i ≡ 0(mod 3). Let c = n− i−1. Note that c ≡ 0(mod 3) and i = n−c−1. Let

S be a γ(Pn)-set. If vi ∈ S, then vn−c is dominated by vi, leaving Pc = 〈vn−c+1, . . . , vn〉

to be dominated. Since c ≡ 0(mod 3), the vertices of the unique γ(Pc)-set are a subset

of S.

Thus, the number of γ(Pn)-sets containing vi is independent of how large c is.

Hence a(vi) = a(vn−c−1) = (n−c)2+7(n−c)−8
18

, by Lemma 5.33. Then

a(vi) =
(i + 1)2 + 7(i + 1) − 8

18
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=
i2 + 9i

18

and

g(vi) =
i2 + 9i

18
÷ n2 + 13n + 4

18

=
i2 + 9i

n2 + 13n + 4
.

✷

Corollary 5.35 For a path Pn where n ≡ 1(mod 3), if i ≡ 2(mod 3), then g(vi) =

(n−i+1)2+9(n−i+1)
n2+13n+4

.

Proof: Let Pn be a path on n vertices where n ≡ 1(mod 3) and choose a vertex vi

where i ≡ 2(mod 3). Note that a(vi) = a(vn−i+1) and n − i + 1 ≡ 0(mod 3). Then

by Theorem 5.34, a(vi) = a(vn−i+1) = (n−i+1)2+9(n−i+1)
18

. Hence

g(vi) =
(n− i + 1)2 + 9(n− i + 1)

18
÷ n2 + 13n + 4

18

=
(n− i + 1)2 + 9(n− i + 1)

n2 + 13n + 4
.

✷

Theorem 5.36 For a path Pn where n ≡ 1(mod 3), if i ≡ 1(mod 3), then g(vi) =

2(i+2)(n−i+3)
n2+13n+4

.

Proof: Let Pn be a path on n vertices where n ≡ 1(mod 3) and choose a vertex vi

where i ≡ 1(mod 3). Define Pi = 〈v1, . . . , vi〉 and Pn−i−1 = 〈vi+2, . . . , vn〉. Let S be a
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γ(Pn)-set. If vi ∈ S then vi+1 is dominated by vi, leaving Pn−i−1 to be dominated by

S−{vi}. Now, n−i−1 ≡ 2(mod 3), so by Lemma 5.25 #γ(Pn−i−1) = n−i−1+4
3

= n−i+3
3

.

Lemma 5.29 implies that vi is in
⌈

i
3

⌉
γ(Pi)-sets, and Lemma 5.28 implies that vi and

vi+1 are not in the same γ(Pn)-set. Hence,

an(vi) =
⌈
i

3

⌉
(n− i + 3)

3

=
(i + 2)

3

(n− i + 3)

3

=
(i + 2)(n− i + 3)

9

and

g(vi) =
(i + 2)(n− i + 3)

9
÷ n2 + 13n + 4

18

=
2(i + 2)(n− i + 3)

n2 + 13n + 4
.

✷

We conclude this section of Chapter 5 with a summary of the above results.

For a path Pn where n ≡ 1(mod 3) we have

g(vi) =




i2+9i
n2+13n+4

for i ≡ 0(mod 3)

2(i+2)(n+3−i)
n2+13n+4

for i ≡ 1(mod 3)

(n−i+1)2+9(n−i+1)
n2+13n+4

for i ≡ 2(mod 3).

Note that the numbers given in Table 2 divided by #γ(Pn) are confirmed in the

resulting equations.



CHAPTER 6

OPEN PROBLEMS

One of the most enjoyable aspects of working on this thesis was the abundance of

new questions that seemed to arise as some of the old questions were answered. We

list a few.

1. How many nonisomorphic graphs have the property g(G) = b(G) = γ(G) + 1

and what are they? This is work in progress and it is hoped that we may publish

the result soon as part of an upcoming paper.

2. The above question is easy to answer if the answer to the following is affirmative:

If e ∈ E(G) and g(G∪ {e}) > g(G), then is e a domination critical edge? That

is, if we introduce a new edge to an existing graph and the number of good

vertices decreases, does the domination number also decrease? Again, this is

work in progress, as it is intimately related to problem 1.

3. If a set of vertices of a graph is randomly chosen, what is the probability that

it is a dominating set? A γ-set? Does knowledge of the goodness index reduce

the randomness of the choice? Can this knowledge improve our chances? If so,

when and by how much?

4. Let S be a set of vertices of a graph G such that each vertex v ∈ S has goodness

index g(v) ≥ k, for a fixed k. If a subset of these vertices is randomly chosen,

42
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what is the probability that it is a dominating set? A γ-set?

5. Given the set of all dominating sets of a graph G, can G be reconstructed?

What are our limitations?

6. If all dominating sets of a graph can be randomly generated, does the ratio of

the number of times a particular vertex appears to the number of sets generated

converge to anything? If so, to what? The goodness index?

7. How small can g(v) be if v is a weak support vertex?

8. Given a sequence of rational numbers 〈 xi 〉ni=1, 0 ≤ xi ≤ 1, does a graph G of

order n, vi ∈ V (G) with g(vi) = xi exist?

9. Once more is known about the goodness index, what are some applications of

this concept?
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