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ABSTRACT 

Site Location Modeling and Prehistoric Rock Shelter Selection on the Upper Cumberland 

Plateau of Tennessee 

 

by 

Lucinda M. Langston 

 

Using data collected from 2 archaeological surveys of the Upper Cumberland Plateau (UCP), 

Pogue Creek Gorge and East Obey, a site location model was developed for prehistoric rock 

shelter occupation in the region. Further, the UCP model was used to explore factors related to 

differential site selection of rock shelters. Different from traditional approaches such as those 

that use (aspatial) logistic regression, the UCP model was developed using spatial logistic 

regression. However, models were also generated using other regression-based approaches in an 

effort to demonstrate the need for a spatial approach to archaeological site location modeling.  

Based on the UCP model, proximity to the vegetation zones of Southern Red Oak and Hickory 

were the most influential factors in prehistoric site selection of rock shelters on the UCP. 
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CHAPTER 1 

INTRODUCTION 

 

 Because of their ability to provide ready-made shelters, rock shelter and cave 

environments in both the Old World and the Americas have played an important role in 

contributing to the archaeological record and defining prehistoric sequences (Straus 1990: 255). 

Compared to open-air sites, these enclosed cavities are important repositories for cultural 

material and thus provide a perfect opportunity to study culture change (Watson 2001). 

Worldwide, people have occupied both caves and rock shelters on a short- and long-term basis, 

yet, they were not uniformly favored for residential occupation and certain attributes influenced 

differential selection of such sites (Straus 1990: 260). This idea of differential site selection has 

been the focus of prehistoric settlement studies in archaeology since the 1960s.    

In a region where thousands of rock shelters have formed and thus provided instant 

shelter, prehistoric hunter-gatherers could afford to be more selective in choosing where to locate 

residential sites. The Upper Cumberland Plateau of Tennessee—hereafter referred to as the 

UCP—is an example of such a unique landscape. Here, rock shelters are ubiquitous and are a 

part of both the natural and cultural landscape (Franklin 2002). Decades of archaeological survey 

conducted on the UCP have resulted in the documentation of more than 400 prehistoric rock 

shelter sites in the area (Franklin et al. 2013). In many cases shelters where no cultural material 

was recovered were recorded right next to or in close proximity to sites with cultural material 

(Franklin 2002; Langston and Franklin 2010; Langston et al. 2012). This raises questions about 

why certain rock shelters were selected for prehistoric occupation and others were not. The idea 

of differential selection of rock shelters on the UCP and adjacent regions is not a new concept. 
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Three studies addressing prehistoric rock shelter selection on or close to the UCP, led to the 

development of this thesis project (Figure 1). Each of these studies is briefly outlined.   

 

Figure 1: Locations of Three Prehistoric Rock Shelter Selection Studies on the Cumberland 

Plateau. The Cumberland Plateau is the most southern section of the Appalachian Plateaus 

Physiographic Province. This map shows the location of the project study area (the UCP) in 

relation to 2 other studies focusing on rock shelter selection—the Central Duck River Basin (Hall 

and Klippel 1988) and the Cumberland Escarpment and Plateau of Kentucky (Mickelson 2002). 
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In a study of rock shelters in the Central Duck River Basin, a lowland area proximal to 

the UCP, Hall and Klippel (1988) used a polythetic set of determinants including aspect, shelter 

size, and distance to water, to explain variation in shelter occupation. Using statistical tests and 

scores to evaluate each factor, Hall and Klippel (1988: 161) argued that shelter desirability was 

enhanced if the aspect provided protection from prevailing winter winds and/or it admitted 

abundant sun light; for the Southeastern United States,  this suggests more southerly and easterly 

facing shelters.  In addition, availability of water was expected to have affected suitability for 

prehistoric occupation (Hall and Klippel 1988: 161).  

After conducting statistical analysis of 143 rock shelter locations, Hall and Klippel (1988: 

168) concluded that shelters with cultural materials tended to have a more southerly orientation 

than those lacking cultural material. However, contra their assumptions, they found that shelters 

used prehistorically were further from water sources than those closer to water. A proposed 

explanation is that prehistoric peoples along the Duck River used shelters as protection from the 

threat of flooding, seemingly making them special purpose sites (Hall and Klippel 1988: 168). 

Closer to this thesis’s project area, Mickelson (2002) examined rock shelter distribution 

in the Cumberland Escarpment and Plateau region of eastern Kentucky; the study area is drained 

by the Red River, a tributary of the North Fork of the Kentucky River. Mickelson’s (2002: 1) 

approach is based on a hypothetico-deductive method where the null hypothesis states that 

“…shifts in land use patterns consequent to changes in subsistence practices are not observable”. 

An alternative hypothesis stated that observable fluctuations in space were temporally associated 

with changes in subsistence practices (Mickelson 2002: 2). In his study, Mickelson (2002: 23) 

looked at the distribution of rock shelter sites using 5 environmental coverages: elevation, aspect, 

slope, ecology, and distance to water. 
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Mickelson (2002: 81) argues that archaeologists often assume that  aspect values 

indicating a more southerly site orientation means that the location receives more solar radiation 

and is therefore more appealing for occupation. He suggests that in mountainous terrain, south 

facing shelters might be selected more in order to locate gardens or fields. After analyzing aspect 

for 319 shelters, although Mickelson (2002: 87) was unable to document trends that he could 

verify statistically, he states that “Throughout prehistory, there appears to be a trend towards 

selecting southerly oriented landforms.” In addition, he recognizes the problem that many seeps, 

springs, and small order streams escape being mapped, and therefore distance to water as a factor 

in shelter selection has not been addressed accurately (Mickelson 2002: 84).  

More recently, GIS was used to conduct a preliminary investigation of site selection 

factors of prehistoric rock shelters on the UCP of Tennessee; factors including depth aspect and 

straight-line distance to blue-line streams were considered (Langston and Franklin 2010). This 

study showed that depth aspect was not a factor for rock shelter selection, a finding that 

distinguishes it from the adjacent lowland Duck River Basin according to Hall and Klippel 

(1988). Similar to Mickelson (2002), Langston and Franklin (2010) found that straight-line 

distance to blue-line streams was not a significant factor. This again raises the issue of 

intermittent and unmapped water sources that GIS analysis alone cannot reveal—especially in 

karstic regions such as the UCP of Tennessee where many seeps and springs are ubiquitous.  

The above studies attempted to “model” or “quantify” patterns of human behavior by 

analyzing known settlement locations; when studying differential site selection, one is essentially 

analyzing behavioral practices. Though there are many ways to analyze and interpret prehistoric 

human behavior, one approach involves the development of site location models. Location, or 

predictive, models will be discussed further in Chapter 4; it is important to point out, however, 



21 

 

that predictive models are not only useful in the context of Cultural Resource Management 

(CRM) but also for developing and addressing research questions related to differential site 

selection. By asking questions about where sites are located and why, archaeologists and 

geoscientists can gain a better understanding of human-land relations as well as human-human 

interactions within specific environments. 

Research Objectives 

Although more than 20 years of archaeological survey have been conducted on the Upper 

Cumberland Plateau of Tennessee, large parts of this region remain to be systematically surveyed 

(Ferguson et al. 1986; Franklin 2002; Langston and Franklin 2010; Langston et al. 2012). The 

development of a regional site location model for the UCP would greatly contribute to ongoing 

and future archaeological surveys of the region by increasing the potential for locating 

archaeological sites and improving survey methods. Also, the model could be used to investigate 

environmental and cultural factors that may have been a part of the decision-making process for 

prehistoric hunter-gatherers in choosing residential locations. Even though a predictive model 

cannot indicate each and every possible site location, it can increase the chances for locating sites 

when following basic settlement pattern principles. The theoretical basis is 2-fold: 1) human 

settlement behavior is non-random and 2) the distribution of resources within a particular 

environment strongly influences location choices of humans (Verhagen 2007: 13). 

Data collected from 2 separate archaeological surveys are used to develop and evaluate a 

site location model for prehistoric rock shelter occupation on the Upper Cumberland Plateau of 

Tennessee (Figure 2). These 2 study areas are a good representation of the UCP as a whole 

because they include high and low altitude landforms at all aspects.  
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Figure 2: The Upper Cumberland Plateau of Tennessee. Data collected from archaeological 

surveys of the Pogue Creek State Natural Area and the East Obey are used to develop and test a 

site location model of prehistoric rock shelters in the region.  

 

East Obey 

Pogue Creek 
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This project not only has great utility for practical application (e.g. locating areas with 

potential to yield archaeological material) but also for addressing specific research questions 

related to differential site and mobility patterns across prehistory. Though these kinds of research 

questions have been addressed through excavations on the UCP (Pace and Hays 1991; Franklin 

et al. 2010; Franklin et al. 2012), this project looks at these questions from a geospatial 

perspective at the landscape scale.  

 This research represents an interdisciplinary approach that demonstrates the practical, 

theoretical, and methodological diversity of archaeological predictive modeling; specific 

research objectives have been developed to address each of these facets. From these 3 research 

objectives, this thesis seeks to establish a baseline from which to develop predictive models for 

future archaeological survey in a way that not only accounts for the practical application but also 

for the analysis and interpretation of spatial patterning of prehistoric rock shelter selection. The 

first research objective is to determine if site location data from Pogue Creek and the East Obey 

can be used to develop and test a predictive model for other areas of the UCP and surrounding 

region that have yet to be surveyed. However, the primary goal of this research is to learn about 

prehistoric human spatial behavior and human-land relationships. Thus, the second objective is 

to use the model variables as a basis for determining what factors may have contributed to 

differential site selection of rock shelters on the UCP. Because human behavior is not usually the 

result of random processes, the analysis of such should incorporate methods designed to account 

for the nature of non-random, spatial relationships. Pertaining to site location modeling, 

traditional approaches have not addressed the issue of spatial dependence that is present in most 

archaeological datasets. Therefore, the third and final research objective is to determine if spatial 
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logistic regression can be proposed as an alternative to modeling approaches using traditional 

(aspatial) statistical analysis.  

 This thesis focuses on the application of geospatial and statistical analysis in addressing 

specific archaeological research questions. Thus, the organization of this thesis reflects the 

interdisciplinary nature of archaeological site location modeling. First, the project area is 

discussed in terms of its environmental and cultural background. Chapter 2 focuses on the 

physiographic, topographic, and geologic setting of the UCP. In Chapter 3, summaries of the 4 

prehistoric periods of the Southeast are provided with the main emphasis on the UCP of 

Tennessee specifically.   

Following the environmental and cultural settings of the project area, Chapter 4 

introduces the background, concepts, and methodological development of archaeological site 

location modeling. This chapter is divided into 4 sections: (1) a brief history of geographic 

information systems (GISs) and its applications in archaeology; (2) the development of 

predictive modeling; (3) an introduction to regression models with the focus on determining the 

most appropriate modeling method; and (4) a brief discussion on possible site selection factors 

and common variables used in modeling.  

Chapter 5 outlines the methods used to generate the UCP site location model. The model 

variables (e.g. response and explanatory) are discussed in terms of data acquisition, compilation, 

and manipulation in a GIS environment. Also, the statistical process of building, running, and 

generating the model is detailed. All results of the preliminary and final statistical tests are 

provided in Chapter 6; this chapter also includes the graphical representation of the final UCP 

model. The final chapter, Chapter 7, includes a detailed discussion of each of the research 

objectives based on model results. Some general concluding remarks are also provided. 
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CHAPTER 2 

ENVIRONMENTAL SETTING 

 

Physiography 

 The Appalachian Plateaus is 1 of 7 physiographic provinces within the Appalachian 

Highlands physiographic region of the eastern United States as defined by Fenneman (1938). 

The Appalachian Plateaus province extends in an almost linear strip from New York to central 

Alabama and is further subdivided into 8 sections (Figure 3). Though all of these sections are 

geologically and topographically different they all consist of degrading plateaus (Fenneman 

1938). The project area is situated on the most southern section of the Appalachian Plateaus, the 

Cumberland Plateau. The Cumberland Plateau is approximately 600 kilometers long and extends 

from the Kentucky River Drainage in southern Kentucky to the northern boundary of the Gulf 

Coastal Plain physiographic province in Central Alabama. Further, the Cumberland Plateau is 

drained by the Tennessee and Kentucky River systems.  

For the purpose of this thesis, the Upper Cumberland Plateau of Tennessee corresponds 

to the parts of Fentress and Pickett Counties within the Mid and Northern sections of the 

Cumberland Plateau region, or as Hinkle (1989) refers to it, the Central Uplands of the 

Cumberland Plateau.  Here, the elevation can range from approximately 900 feet above mean sea 

level in the floodplain to more than 1700 feet above the rim of the gorge. This region is generally 

characterized by rugged topography with steep sideslopes, and narrow to moderately broad 

valleys (Smalley 1986). More specifically, the western escarpment of the plateau is highly 

irregular with many incisions cut by westward draining streams (Sasowsky 1992: 5). The 

irregular topography is mostly a result of erosion of the horizontal and slightly dipping strata. 
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Figure 3: Appalachian Plateaus Physiographic Province. The study area—the Upper Cumberland Plateau of Tennessee--falls within 

the Cumberland Plateau section (right) of the Appalachian Plateaus physiographic province (left). 
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Differential weathering and erosion of the caprock has led to the formation of thousands of rock 

shelters in and around the gorges and on the plateau surface. Further, the UCP has a complex 

hydrology with an active underground drainage system; over millions of years, groundwater has 

eroded the softer rock strata beneath the more resistant sandstone caprock creating complex 

subsurface conduits and cave passages (Sasowsky 1992: 4). 

Geology 

Rocks forming the Cumberland Plateau were formed during the Upper Paleozoic from 

the deposition of marine and continental sedimentary deposits; the bedrock geology of the region 

includes Mississippian, Pennsylvania, and Permian-aged units (Hunt 1967: 19). In the UCP of 

Tennessee, thick, nearly continuous Pennsylvanian units lie almost completely horizontal atop 

Mississippian limestone, dolomite, sandstone, and shale (Smalley 1986).  The caprock of the 

western escarpment on the UCP includes sandstones, shales, and conglomeratic units from the 

Crab Orchard Moutain and Gizzard Groups. The Mississippian limestone, dolomite, and shales 

form the less-resistant rock strata beneath the thick caprock. The oldest rocks exposed in the 

study area are within the Mississippian-aged Ft. Payne Formation which is composed of mixed 

shale, siltstone, and limestone. The Ft. Payne Formation is overlain by 200 meters of upper 

Mississippian formations that include the St. Louis Limestone & Warsaw Limestone, the 

Monteagle Limestone, the Bangor Limestone and Hartselle Formation, and the Pennington 

Formation.  

In the mid to upper slopes, sandstone rock shelters dominate the landscape. However, 

caves and rock shelters can be found in some lower slopes and valley bottoms where deeply 

incised streams have eroded away the sandstone caprock into the underlying Mississippian-aged 

limestone.   
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Climate and Vegetation 

The climate of the UCP is classified as a humid mesothermal though precipitation and 

temperature can vary locally based on topography (Thornthwaite 1948). Smalley (1986) 

describes the temperature of the region as long, moderately hot summers with short, mild to 

moderately cold winters. The region is generally humid with no distinct dry season and 

precipitation is well distributed throughout the year (Hart 2007: 35). However, the Cumberland 

Plateau is slightly wetter than the adjacent physiographic sections due to orographic 

precipitation. 

The vegetation of the Cumberland Plateau section falls with Hunt’s (1967) broad 

classification of a Central Hardwood Forest where mixed  Quercus (oak) and Castanea 

(chestnut) species and Liriodendron tulipifera (yellow poplar) are the dominant tree types (Hunt 

1967: 102). At a more regional scale, the UCP is characterized as a Mixed Mesophytic Forest 

region according to Braun’s (1950) forest classification system. Common canopy species 

identified by Braun (1950) include Quercus rubra (red oak), Quercus alba (white oak), Carya 

sp. (hickory), Tsuga canadensis (hemlock), Acer saccharum (sugar maple), Liriodendron 

tulipifera (yellow poplar), Tilia heterophylla (white basswood), Aesculus flava (sweet buckeye), 

and Castanea dentata (American chestnut). Because Braun’s (1950) forest classification system 

follows closely to Fenneman’s (1938) physiographic provinces, the classifications are regionally-

based and do not necessarily account for local variation. The topography of the Cumberland 

Plateau is highly variable; therefore, different forest communities exist within the region because 

forest composition is directly related to slope, aspect, and landform (Hinkle et al. 1993).  

Following Braun’s (1950) work, numerous vegetation studies were conducted on the 

Tennessee portion of the Cumberland Plateau in an effort to contribute to the knowledge and 
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understanding of forest communities in the region. One such example includes Hinkle’s (1989)  

summary of his dissertation work on the Cumberland Plateau (see Hinkle 1978) in which he 

classifies the vegetation of the region into 2 categories: the plateau uplands and the ravines and 

gorges. According to Hinkle (1989), the upland stands include (but are not limited to) Acer 

rubrum (red maple), Betula nigra (river birch), Ilex opaca (holly), Quercus alba (white oak), 

Nyssa sylvatica (black gum), and Pinus virginiana (Virginia Pine); slopes, however, are 

generally dominated by mixed Quercus species with White Oak being the most frequent (Hinkle 

1989: 124–125). In contrast, the ravines and gorges (more characteristic of the western 

escarpment) are dominated by mixed Quercus species (e.g. Q. alba, Q. prinus, Q. rubra, and Q. 

velutina) at all slopes but with Acer saccharum stands at middle and lower slopes; Tsuga 

canadensis is mainly restricted to headwaters and along bedrock streams (Hinkle 1989: 125).  

When comparing Hinkle’s (1989) vegetation communities to Braun’s (1950) 

classification, the ravines and gorges forest types were more representative of a Mixed 

Mesophytic Forest region than the upland communities. However, Hinkle (1989: 128) points out 

that many of the Mixed Mesophytic indicator species were secondary to oak and hickory species 

in the ravine and gorge areas. It is important to note here that the UCP has been subject to a long 

history of anthropogenic fires and exploitation of the landscape through mining and logging--

these activities have most definitely altered (and continue to do so today) the composition of 

forest communities in the region.  
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CHAPTER 3 

CULTURE HISTORY 

 

 This chapter provides a basic outline of the culture history of the UCP, though general 

trends for the Southeast as a whole are also included. Archaeological information and diagnostic 

artifacts recovered during archaeological survey and stratified excavations from rock shelter sites 

in the study area are used to discuss the 4 prehistoric cultural periods of the Southeast-- the 

Paleoindian, Archaic, Woodland, and Mississippian—although occupation of the UCP is best 

represented by the Archaic and Woodland cultures. All dates are presented using B.P. except for 

dates beginning Anno Domini (A.D.). However, when reporting specific dates from ceramics or 

other dated artifacts the date will be presented in B.C. or A.D. along with its error margin.  

Paleoindian 

Though there is still much debate about when the first Americans reached the Southeast, 

the most recent studies postulate that people arrived in the area sometime around or after the last 

glacial maximum at approximately  21,000 B.P. (Anderson and Sassaman 2012: 36). How these 

first peoples arrived—in both the Americas and the Southeast—has also been the focus of much 

debate over the years.  

The Paleoindian period, refers to cultures older than approximately 10,000 B.P., which 

marks the transition into the latter Archaic period. Generally speaking, Paleoindians are 

characterized as highly mobile bands that engaged in periodic multi-band aggregation important 

for forming and maintaining networks and reinforcing social ties (Anderson and Sassaman 2012: 

52).  Evidence for hunting of extinct species such as mastodon at Kimmswick, MO (Graham et 
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al. 1981) and Coates-Hines, TN (Breitburg et al. 1996) demonstrates that the earliest humans 

were initially big game hunters and gatherers.  

The first unequivocal evidence for settlement of the Southeast dates back about 13,000 

years ago and is marked by the appearance of a “readily identifiable diagnostic artifact category” 

(Anderson and Sassaman 2012: 47). Clovis points, commonly believed to be the earliest fluted 

projectile point type, are found all across the Southeast, though mostly as isolated finds not 

associated with other artifacts. Broad geographic trends and variation noted among Clovis points 

possibly represents either drifts in cultural transmission or temporal differences due to the 

movement and isolation of Clovis populations.  

  Around the onset of the Younger Dryas at approximately 12,800 B.P., new projectile 

point types appeared as the Clovis horizon comes to an end.  The Late Paleoindian, or post-

Clovis, saw broad changes in projectile point styles that occurred differentially in the Southeast. 

In Tennessee, examples of early fully fluted projectile points are Cumberland and Redstone. 

Later unfluted forms include Beaver Lake, Quad, and Dalton. As the Younger Dryas persisted, 

Dalton points and their subtypes (distinct geographic varieties) became quite common. It is 

possible that these changes in technology reflect the major changes in climate and biotic 

communities that occurred with the rapid cooling of the Younger Dryas (Anderson and 

Sassaman 2012: 58). As many large animals were becoming extinct, populations had to expand 

their diet to include more small game and plant foods. By the late Paleoindian, a wide-range of 

floral and faunal species was exploited and diverse subsistence strategies had been adopted. 

White-tailed deer, migratory birds, fish, and fruit and nut mast are some of the more common 

examples of the Late Paleoindian diet.  
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 Evidence of Paleoindian occupation on the UCP is quite sparse. During his survey of the 

East Obey on the UCP, Franklin (2002) recorded 7 Paleoindian sites, all of which were based on 

surface finds in rock shelters. Clovis points were recovered at 2 sites, indicating an Early 

Paleoindian occupation; the Late Paleoindian was also represented by the presence of Beaver 

Lake, Quad, and Dalton projectile points (Franklin 2002: 215). More recently, a Late Paleoindian 

projectile point base was recovered from Red Spear Rock Shelter during archaeological survey 

of the Pogue Creek State Natural Area (Langston and Franklin 2010). On other parts of the UCP, 

Late Paleoindian artifacts have only been recovered from unprovenienced locations (Des Jean 

and Benthall 1994).  So in total, at least 8 Paleoindian sites have been documented on the UCP of 

Tennessee. Franklin (2002: 215) suggests that comprehensive Paleoindian surveys similar to one 

conducted by Broster et al. (1996) would go a long way in helping to locate and document 

Paleoindian occupation in the region.  Similarly, Anderson and Sassaman (2012: 65) point out 

that more work is needed to refine, and in a lot of cases, define Paleoindian culture sequences in 

the Southeast as a whole. Ongoing (and new) excavations at sites with Paleoindian components 

as well as examinations and analysis of assemblages have and are continuing to generate 

information on settlement patterns, subsistence strategies, and technological variations of the 

earliest Americans.  

Archaic 

 Roughly coinciding with the Pleistocene/Holocene boundary, the Archaic (ca. 10,000-

3000 B.P.) is the longest prehistoric period. Similar to their predecessors, Archaic peoples are 

generally defined as mobile groups of hunter-gatherers living in small bands that often 

aggregated throughout the year. Archaic diets consisted mainly of wild plant and animal foods. 

Also, some plant resources that were later domesticated were being intensively collected at this 
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time (Anderson 2001: 157). Although populations were fairly high, evidence for residential 

structures is very limited. However, cultural features containing hearths, rock clusters, grinding 

slabs, and shallow pits have been discovered. These features were mainly used for either food 

preparation or cache pits. This may suggest that people lived in lightly constructed shelters rather 

than larger dwellings or that these settlements were smaller seasonal camps. Also, the first 

extensive use of cave and rock shelter sites is noted during this time, signifying changes in land 

use (Anderson and Sassaman 2012: 71). On the UCP specifically, evidence of Archaic Period 

cultures has been discovered in thousands of rock shelters possibly representing more seasonal 

occupation (Des Jean and Benthall 1994: 120).  

The Archaic Period is commonly divided into 3 sub-periods: the Early Archaic (10,000-

7500 B.P.), the Middle Archaic (7500-5000 B.P.), and the Late Archaic (5000-3000 B.P.). The 

divisions of the Archaic are as much based on climatic and environmental changes as on shifts in 

subsistence and technology.  

Early Archaic 

 The beginning of the Archaic and thus the Early Archaic is marked by a sharp increase in 

global temperatures brought on by the onset of the Holocene Era. The early Holocene was 

warmer than the Pleistocene, though temperatures were still cooler and the overall climate still 

more humid than today. Many of the megafauna extinctions are believed to occurred during this 

time, possibly due to the warming climate or over-hunting by Paleoindians. Also, oak and 

hickory forests were gradually replacing grasslands and savannahs in the Southeast, causing 

major adaptations by prehistoric peoples (Delcourt and Delcourt 1987). Despite dramatic 

changes in the environment, much of the chipped stone tool assemblage of the Early Archaic was 

similar to that of Paleoindian times with some differences, however.  Successive side- and 
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corner-notched and bifurcate-based hafted bifaces characterize Early Archaic occupations 

(Anderson and Sassaman 2012: 72). Side-notched points including Big Sandy, Cache River, and 

Hardaway possibly extended from earlier Dalton forms. Following next was a sequence of 

corner-notched points (e.g. Kirk and Charleston) and bifurcate based points (e.g. St. Albans and 

LeCroy). The most obvious shift in tool technologies between the late Paleoindian and Early 

Archaic was the “gradual replacement of trianguloid endscrapers with a more varied (and less 

standardized) set of scraper forms” (Steponaitis 1986: 370–371). Other stone tools made during 

this time were mullers, grinding slabs, pitted cobbles, and polished slate celts. The formal toolkit 

of elaborately made scraping, cutting, and piercing stone tools was gradually replaced by a more 

expedient toolkit as lower quality raw materials were increasing used for manufacture (Anderson 

2001: 157)   

Through archaeological surveys on the UCP, the Early Archaic has been documented at 

at least 39 sites, almost all of which are rock shelters (Ferguson et al. 1986; Franklin 2002; 

Langston and Franklin 2010). This period is well-represented by the presence of side-notched 

(e.g. Big Sandy I), corner-notched (e.g. Kirk, Lost Lake, and Pine Tree), bifurcates (e.g. 

MacCorkle, St. Albans, and Lecroy), and (later) stemmed (e.g. Kirk Stemmed/Serrated) varieties 

(Franklin 2002: 216).  The low numbers of the stemmed varieties possibly indicates the 

movement of peoples out and away from the UCP around the beginning of the Middle Archaic 

(Franklin 2002: 216–217)(Franklin 2002: 216).  

The Early Archaic of the UCP has also been documented in stratigraphic context. 

Excavations at Early Times Rock Shelter revealed stratified Early and Late Archaic deposits. A 

late Paleoindian Quad biface was also recovered during general surface collection (Dye, 

Franklin, and Hays 2011).Two Early Archaic bifaces, a Lecroy and a MacCorkle Stemmed, were 
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recovered in good stratigraphic context and an Early Archaic Kirk Stemmed biface was 

recovered during general surface collection (Dye, Franklin, and Hays 2011). Use-wear analysis 

revealed that both the late Paleoindian Quad biface and the Early Archaic MacCorkle Stemmed 

biface bore evidence of wood working (Dye et al. 2011:8). Further analysis of the tool 

assemblage and lithic material indicated that Early Times Rock Shelter served as a short-term 

situational camp for small task groups of Archaic hunter-gatherers (Dye et al. 2011). Both 

stratified excavations and survey data corroborate the occupation of the UCP during the Early 

Archaic. Though open-air ridge-top and terrace sites are not completely uncommon on the UCP, 

Early Archaic peoples seem to have favored rock shelter environments (Des Jean and Benthall 

1994: 120; Franklin 2002: 217).  

Middle Archaic 

The Middle Archaic is marked by the beginning of the Hypsithermal, a Mid-Holocene 

climatic interval, when seasonal extremes in precipitation and temperature were greater than 

today (Anderson 2001: 158; Anderson and Sassaman 2012: 73). In the Midsouth, the Mid-

Holocene climate was hotter and dryer than present conditions leading to reduced vegetation in 

upland environments. Delcourt and Delcourt (1987) also suggest a replacement of oak by the re-

expanding pine forests. It has been postulated that the subsequent warming and drying trends 

made riverine and coastal areas more favorable for human occupation while the upland areas 

became less favorable (Brown and Vierra 1983; Brown 1985; Dye 1996). Whether a result of the 

changing climate or some other factors, the number of Middle Archaic sites is believed to be 

generally lower than in the Early Archaic. However, the distribution of Middle Archaic sites 

significantly varies throughout the Southeast and not all areas have a lower site density.  
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Middle Archaic subsistence patterns are similar to those of the Early Archaic with 2 

notable additions: (1) the accumulation of shell middens dating to the Middle Archaic reflects an 

intensive exploitation of fresh water riverine resources (Griffin 1967: 178); and (2) curcurbit 

remains recovered at the Anderson Site (Dowd 1989) indicate the beginnings of plant 

domestication and horticulture in the Middle Archaic.  

Overall, the Middle Archaic tool assemblage is characterized by the introduction of a 

stemmed biface technology believed to be derived from Early Archaic traditions (Anderson and 

Sassaman 2012: 73). In their study, Des Jean and Benthall (1994: 127) recognize Middle Archaic 

occupation of the UCP based on the recovery of lithics from Stanly, Big Sandy II, Morrow 

Mountain, and Guilford phases. In other parts of the UCP around the Obey River Drainage, 

Franklin (2002: 205) recovered Middle Archaic artifacts from 7 sites with tools representative of 

the Sykes/White Springs, Stanley Stemmed, and Eva clusters. However, in a more recent survey 

conducted on the UCP, no obvious Middle Archaic sites were recorded (Langston and Franklin 

2010).  

On the Cumberland Plateau, Des Jean and Benthall (1994: 123) note a decline in 

prehistoric population during the Middle Archaic based on the paucity of diagnostic materials. 

Franklin (2002: 212) also notes the lack of diagnostic Middle Archaic artifacts recovered from 

the region. However, based on radiocarbon assays attained from the UCP there appears to be a 

spike in Middle Archaic occupation around 5000 B.P. (Franklin 2002: 212). This does not 

support a general abandonment of the region during the Middle Archaic as is commonly 

believed. Langston and Franklin (2010) posit that the discrepancy between the artifactual and 

radiocarbon data highlights the dangers of interpreting prehistoric cultural components based on 

surface collections and so-called diagnostic artifacts; artifacts recovered from surficial and 
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disturbed contexts may have been misidentified in certain cases. Franklin (2002: 218–219) 

suggests that more stratified excavations are needed to sort out and understand Middle Archaic 

occupation of the UCP. 

Late Archaic 

Around 5000 B.P. at the apex of the Hypsithermal, the climate began to stabilize and by 

4000 B.P. conditions closely resembled those of today; the more stable environment provided 

support for large-scale, sustained occupation (Sassaman 2010: 23). Steponaitis (1986: 373) lists 4 

trends that characterize the Late Archaic of the Southeastern United States: (1) the addition of 

cultivated plants to the diet; (2) the intensification of long-distance exchange networks; (3) the 

appearance of large, dense middens; and (4) the first use of containers and storage pits.  

The increased importance of gathering wild and native plant foods led to an increase in 

sedentism in many areas during the Late Archaic; these shifts in subsistence and settlement 

patterns further facilitated the development and use of containers (Smith 1986). Some of the 

earliest container/vessel forms were made from modified gourds or carved out of steatite 

(soapstone) quarries. The earliest (clay) pottery vessels were tempered with vegetable (fiber) 

matter and made into bowls or pans (Steponaitis 1986: 373–374). More than likely, these early 

containers were used for processing, cooking, and/or storage purposes.  

By the Late Archaic, a significant population increase and use of the UCP is evidenced 

by the increasing numbers of recorded components when compared to previous periods (Franklin 

2002: 219; Langston and Franklin 2010). The tool assemblage of the Late Archaic on the UCP is 

quite diverse with numerous artifact types well-represented in the area (Franklin 2002: 219). The 

most commonly recovered Late Archaic artifact types are assymetrical/undifferentiated stemmed 

bifaces (e.g. Ledbetter and Iddins); Other Late Archaic biface types identified on the UCP 
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include Damron, Perkiomen, Merom, and Saratoga (Franklin 2002: 219–220). Though more 

typical of the Middle-to-Late Archaic in the Kentucky, Ohio, and Illinois valleys, Matanzas 

bifaces are also a prevalent artifact type recovered on the UCP of Tennessee. Franklin (2002: 

220) states that this “suggests frequent cultural interactions between the UCP of Tennessee and 

regions to the north.”   

The very Late Archaic is represented on the UCP based on the high numbers of recovered 

Wade bifaces. Other very Late Archaic types include Adena Stemmed, Motley, Little Bear 

Creek, Brewerton, and Turkey-tail (Franklin 2002: 220–221). Some instances of exotic chert use 

(e.g. Burlington Chert from eastern Missouri and western Illinois) further supports Franklin’s 

(2002: 220) assertion of interaction between the UCP of Tennessee and cultures to the north.  

The Late Archaic culture has also been identified through controlled stratigraphic 

excavations at rock shelters sites on the UCP of Tennessee. The previously discussed 

excavations at Early Times Rock Shelter also revealed a Late Archaic occupation; this is 

represented by the recovery of 2 diagnostic bifaces made from different chert types—a Table 

Rock or Cotaco Creek Cluster biface made from St. Louis chert and 1 asymmetrical stemmed 

type made from Monteagle chert (Dye et al. 2011). The entire lithic assemblage of Early Times 

Rock Shelter was analyzed in an effort to identify what types of activities were conducted on site. 

According to Magne’s (1989) approach, a lithic assemblage can indicate 4 different types of 

sites: a high number and greater diversity of tools but with low percentages of late stage debitage 

indicates a residential location; fewer tools, lower diversity, and low late stage flaking debris 

indicates a manufacturing site; a situational “emergency” camp  is represented by fewer tools, 

low diversity, and higher late stage flaking debris; and a large number of tools with relatively 

high diversity and higher percentages of late stage flaking debris indicates a repeated logistical 
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camp (Magne 1989; Dye et al. 2011). According to the lithic analysis at Early Times Rock 

Shelter, this site was a situational camp that was used as a temporary special purpose site where 

locally procured nodules of chert were reduced and occasionally, tools were produced and 

resharpened (Dye et al. 2011).  

Within a few to several kilometers of Early Times Rock Shelter is 3
rd

 Unnamed Cave, a 

primary Monteagle Chert source location that was exploited by Late Archaic peoples (Franklin 

1999, 2001; Franklin and Simek 2008; Simek et al., 1998). Only 2 stone tools were recovered 

from this site and late stage debitage made up less than 2% of the lithic assemblage—this 

coupled with the underground chert source strongly suggests that 3
rd

 Unnamed Cave was a 

quarry and manufacturing location. This clearly indicates that Late Archaic peoples were 

logistically mobile and exploiting their local resources (Franklin 1999, 2001; Franklin and Simek 

2008; Simek et al. 1998). 

During the Late Archaic, rock shelters were not only used as short-term, special purpose 

sites, but also as long-term repeated camps sites. Preliminary interpretations of archaeological 

testing at Sachsen Cave Shelter indicate repeated use of the site as a “residential base camp for 

small family groups over a long period of time” (Franklin et al. 2010: 447). Several lines of 

analysis (e.g. technological, use-wear, faunal, and archaeobotanical) indicate that multiple 

activities such as butchering, cooking, processing hides, nut processing, and wood working were 

conducted on site throughout the year.  

Residential occupation of rock shelters on the UCP during the Late Archaic is evident 

from 4 summer excavations at Eagle Drink Bluff Shelter. Diagnostic artifacts recovered from the 

site along with radiometric age measures indicates an intermittent occupation of Eagle Drink 

Bluff Shelter from the Middle Archaic to the late Middle Woodland; the Late to Terminal 
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Archaic, however, appears to represent the most intensive occupation (Franklin 2008: 93; 

Franklin et al. 2012). Terminal Archaic Wade bifaces, Adena Bifaces, and steatite vessel 

fragments were recovered during excavation and sometimes in the same context as fabric-

marked and cord-marked ceramics (Franklin et al. 2013). These associations demonstrate the 

difficulty in differentiating between the Late and Terminal Archaic and Early Woodland based 

on the presence of pottery alone.  

Archaeological survey data coupled with recent excavations have provided a baseline 

from which the Late Archaic occupation/use of the UCP can be better understood. It is clear, 

however, that by the Late Archaic, hunters and gathered were intensely occupying the UCP. 

Further, Franklin (2002; 2006) and Dye et al. (2011) have hypothesized that by the Late Archaic, 

prehistoric peoples were using and occupying the UCP year round though shelters were possibly 

used for different purposes ranging from residential to logistical to situational.  This is different 

from earlier periods where occupation of the UCP may have been more seasonally based. The 

recovery of steatite vessel sherds from Sachsen Cave Shelter and Eagle Drink Bluff Shelter 

indicates the existence of extensive trade networks—something that continues on into the Early 

Woodland (Franklin 2008; Franklin et al. 2010). Also, although pottery becomes a wholesale 

addition in the Early Woodland, recognizable Early Woodland pottery types have revealed dates 

coinciding with the Late and Terminal Archaic. One example is a sooted cross-mended Early 

Woodland Swannanoa vessel recovered from a rock shelter in Scott County that was dated to 

almost 3,000 B.P. (Franklin 2008: 95–96; Franklin et al. 2013).  Lastly, Late Archaic peoples 

were both logistically and residentially mobile and were not constrained by the rugged terrain of 

the UCP, but instead were taking full advantage of its natural resources (Franklin 1991, 2001; 

Franklin and Simek 2008; Simek et al. 1998; Franklin et al. 2010; Dye et al. 2011). 
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Woodland 

The Woodland Period (ca. 3000 B.P. – A.D. 900) is seen as a time of gradual change and 

an era of regionalism building on trends that first emerged in the Late Archaic (Steponaitis 1986: 

378; Anderson and Sassaman 2012: 112). Distinct traditions evolved differentially throughout 

the Southeast during the Woodland Period though some broad trends have been proposed for the 

Southeast as a whole. Four major trends identified for the Woodland include the increasing 

importance of seeds for dietary purposes, increased sedentism, more elaborate mortuary rituals 

and burial mound complexes, and the widespread manufacture and use of pottery (Smith 1986; 

Steponaitis 1986; Jefferies 2004).  Similar trends have been proposed by Chapman (1985) with 

the additions of bow and arrow technology and the rise of social stratification. The Woodland is 

typically divided into Early, Middle, and Late sub-periods. 

Woodland peoples were broad-based hunter-gatherers who exploited the rich habitat 

diversity of coastal zones along the southern Atlantic and interior river valleys of the Southeast. 

Along the coast, these peoples represented a harvesting adaptation to marsh and swamp 

ecosystems with the addition of garden plots of squash and gourd (Smith 1986: 37–38). Small 

and medium sized semi-permanent to permanent villages occupied the interior riverine 

Southeast. Smith (1986: 39–41) notes that around these regions there was substantial house 

construction and simple “down-the-line” exchange networks.  Also, the numerous cylindrical 

storage pits discovered indicate a more heavy reliance on nuts such as acorn, hickory, chestnut, 

and walnut (Smith 1986: 42). 

 Although ceramic technology had its origin in the Archaic, it was during the Woodland 

Period that pottery became a wholesale addition. Plant fibers as tempering agents were replaced 

with new tempering inclusions such as quartz, sand, grit, and limestone. In addition, twine and 
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wooden paddles were used to decorate the clay-fired vessels. Common surface treatments 

include cord- and fabric-marked impressions. Because ceramics are both regionally and 

chronologically sensitive, archaeologists commonly use ceramic “phases” to identify and 

delineate cultural groups from the Early Woodland on instead of using projectile point types. 

However, the issue of delineating between Woodland ceramic phases has been a re-occurring 

theme in Southeastern archaeology (Faulkner 1968; Schroedl and Boyd, Jr 1991) and more 

specifically, on the UCP (Franklin and Bow 2008; Franklin et al. 2013).  Because of this, the 

Upper Cumberland Plateau Archaeological Luminescence Dating Project was initiated in 2007 

under the auspice that ceramics found in rock shelter contexts could be directly dated when there 

is no associated archaeological carbon (Franklin 2008a, Franklin and Bow 2008, 2009; Bow and 

Franklin 2009). This method is referred to as blue light optically stimulated luminescence 

(BOSL) dating and has been used to date pottery sherds collected during archaeological survey 

and stratigraphic excavations on the UCP (Wall 2013). Luminescence dates from controlled 

stratigraphic excavations are used to frame the ones recovered during archaeological surveys; 

thus far, results from stratigraphic and survey contexts have been consistent (Franklin 2008a; 

Franklin and Bow 2009).  Twenty-two BOSL dates have been returned on pottery sherds 

recovered during the archaeological survey of the Pogue Creek State Natural Area (Franklin et 

al. 2013). Some of these dates are used to discuss Woodland occupation of the UCP below. 

During the Pogue Creek Archaeological survey, 48% of sites where diagnostic artifacts 

were recovered indicated a Woodland occupation--clearly, Woodland peoples maintained a 

significant presence in the Pogue Creek area (Langston and Franklin 2010). This is similar to 

Franklin’s (2002:204) findings where the “Woodland Period appears to have been the time of 

most intensive use of the UCP”. However, the Early Woodland appears to be slightly less 
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represented than the Middle and Late Woodland in Pogue Creek and other portions of the UCP 

as compared to the Big South Fork Area where occupation appears to drop off after the Early 

Woodland (Ferguson et al. 1986:93; Franklin 2002:204-207; Langston and Franklin 2010).  

Early Woodland  

The Early Woodland (ca. 2700 B.P. – A.D. 200) is represented on the UCP by diagnostic 

artifacts—ceramics and tools—recovered from archaeological survey and excavations. Early 

Woodland ceramics recovered on the UCP are generally typical of Early Woodland pottery 

(Franklin 2002; Franklin et al. 2013).  The Early Woodland of the UCP includes largely grit 

and/or quartz tempered vessels that are either cord-marked or plain with limestone-tempered 

fabric-marked varieties increasing in number towards the eastern portion of the UCP (Franklin 

2002: 223–226). Cord-marking appears to be the preferred method of surface treatment for the 

Early Woodland of the UCP, though fabric-marked and plain varieties have been recovered 

(Franklin 2002; Wall 2013). On the UCP, tools diagnostic of the Early Woodland include 

varieties of stemless triangular bifaces such as Greeneville (Lewis and Kneberg 1957) and 

McFarland (Faulkner 1988) types.  Interregional interaction on the UCP during the Early 

Woodland is evidenced by the presence of the aforementioned Swannanoa vessel from nearby 

Scott County (Franklin 2008a: 95–96; Franklin et al. 2013) and by the recovery of 6 deeply cord-

marked and incised limestone tempered body sherds from Tevepaugh Rock Shelter that are 

reminiscent of types from southern Illinois (Franklin 2002:42, 230; Franklin et al. 2013).  

Several radiometric age determinations from sites such as Eagle Drink Bluff Shelter, 3
rd

 

Unnamed Cave, Pemberton Rock Shelter, and Calf Rock Cave have indicated an intermittent but 

continuous occupation of the UCP during the Early Woodland Period (Franklin 2008a). Also, 

BOSL dates from Early Woodland ceramics have provided a wide temporal range for the period 
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from circa 3150 B.P. to A.D. 600 (Franklin et al.  2013); these dates reveal overlap between the 

Early and Middle Woodland periods and further support Schroedl and Boyd’s (1991:77-78, 85) 

assertion of the continuity of material culture between A.D. 400 and 900. A very early BOSL 

date of 1234 ± 339 B.C. (so possibly predating most of the other Early Woodland sherds that 

have been dated) was returned for a limestone tempered fabric-marked sherd from Red Velvet 

Spider Rock Shelter; this sherd is almost identical to one from Eagle Drink Bluff Shelter which 

returned a BOSL date of B.C. 1218 ± 115 (Franklin 2007; Franklin et al. 2013).  Two other 

limestone tempered fabric marked sherds, recovered from Gwinn Cove Rock Shelter and No 

Quarter Rock Shelter, returned BOSL dates of A.D. 79 ± 209 (Wall 2013) and A.D. 648 ± 134 

(Franklin et al. 2013), respectively. All of these dates combined demonstrate the persistence of 

this specific ceramic type for over a thousand years. Lastly, a quartz tempered fabric marked 

sherd, a ceramic type that usually precedes limestone tempered fabric marked wares in the 

adjacent Ridge and Valley, was recovered during excavation at Hemlock Falls Rock House 

returned a BOSL date of A.D. 552 ± 132 (Franklin et al. 2013). 

Middle Woodland 

 During the Middle Woodland (ca. A.D 200-800), cord-marking continues to be the most 

common surface treatment found in UCP ceramic assemblages. Limestone tempered cord-

marked wares account for almost 75% of the Middle Woodland assemblages on the UCP with 

limestone tempered plain wares accounting for almost all of the remaining 25% (Franklin 2006). 

Some simple stamped and check stamped varieties have also been recovered on the UCP 

(Franklin 2002: 229). For stone tools, McFarland bifaces (Faulkner 1988) continue into the 

Middle Woodland from the earlier period with the addition of types belonging to the Lowe 

Cluster (Justice 1987) of expanding stemmed bifaces and Copena types (Franklin 2002; Franklin 
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and Bow 2009; Franklin et al. 2013). Intensive occupation of the UCP during the Middle 

Woodland is evident from excavations conducted at York Palace (Langston et al. 2010), 

Hemlock Falls Rock House (Dye et al. 2010), and Indian Rock House (Franklin et al. 2013).  

The ceramic assemblage of York Palace includes mostly limestone tempered wares 

where cord marking is seemingly the most common surface treatment; 2 BOSL dates of A.D. 

562 ± 84 and A.D. 498 ± 50 place this type in the Middle Woodland (Langston et al. 2010; 

Franklin et al. 2013). Some limestone tempered check-stamped wares were also recovered and 

are believed to be mostly from the same vessel; 1 sherd was BOSL dated and returned a date of 

A.D. 720 ±35 (Franklin et al. 2013). In addition to cord marking and check stamping, other 

surface treatments of limestone tempered wares recovered during excavation at York Palace 

include plain and simple-stamped. Though limestone tempering accounts for a majority of the 

York Palace assemblage, quartz and chalcedony are common tempering agents as well (Langston 

et al. 2010).  

Similar to the York Palace ceramic assemblage, a majority of ceramics recovered from 

Hemlock Falls Rock House are limestone tempered cord-marked (Dye et al. 2010). One 

limestone tempered cord marked sherd returned a BOSL date of A.D. 678 ± 37 (Franklin et al. 

2013). Though the limestone tempered cord-marked sherds account for 63% of the total 

assemblage, limestone tempered plain (8.4%) and siliceous stone tempered (5%) wares are also 

present but constitute a much smaller portion of the overall assemblage (Dye et al. 2010).  

Consistent with York Palace and Hemlock Falls Rock House, the ceramic assemblage of 

Indian Rock House is dominated by limestone tempered cord marked wares. The remaining 

portion of the ceramic assemblage includes a variety of limestone tempered wares (plain, check 

stamped, and brushed), quartz tempered plain, and grit tempered cord marked. Two sherds were 
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selected for BOSL dating, a grit tempered cord marked sherd and a limestone tempered check 

stamped sherd, and yielded dates of A.D. 680 and A.D. 584, respectively, firmly placing them in 

the Middle Woodland (Franklin et al. 2013).  

Late Woodland 

During the Late Woodland (ca. A.D. 800-1200) there was a continuation of hunting, 

gathering, and gardening economies. Settlements were still relatively small and dispersed, and 

sedentism increased in most areas of the Southeast. The diversity of foods that were hunted and 

gathered continued to increase as Late Woodland populations grew (Steponaitis 1986: 384). 

Other defining characteristics of this cultural period include a significant decrease in regional 

interaction in many locations, increased evidence for warfare, and the first unequivocal evidence 

for the bow and arrow (Anderson 2001: 163).  

Late Woodland occupation of the UCP is represented by the presence of limestone 

tempered cord-marked (including smoothed-over cord-marked) and plain pottery (Franklin and 

Bow 2009: 148). Dates returned for limestone tempered cord marked types come from Bobcat 

Arch (A.D. 803 ± 40), Mending Hole Rock Shelter (A.D. 838 ± 101), Hemlock Falls Rock House 

(A.D. 877 ± 97), and Abri Sous Massif Rock Shelter (A.D. 887 ± 95) (Franklin et al. 2013). 

Similarly, BOSL dates were returned on 5 limestone tempered plain sherds from York Palace 

(A.D. 971 ± 97), Mesa Gap Rock Shelter (A.D. 1009 ± 34), Simple Stamped Rock Shelter (A.D. 

1150 ± 92 and A.D. 1189 ± 81), and Mending Hole Rock Shelter (A.D. 1385 ± 97) demonstrating 

that ceramic types indicative of the Late Woodland continued to persist well into the later 

Mississippian period. Common biface types for the Late Woodland include Hamilton, Madison, 

and Jack’s Reef varieties (Franklin 2002: 236).  
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 Though cord-marked and plain varieties are still the most prevalent, scraped, and knot-

roughened varieties—all almost entirely limestone tempered--have been identified as well 

(Franklin 2002:238; Franklin 2006). Late Woodland ceramic assemblages from the Ridge and 

Valley and the UCP share a similar dominance of limestone tempered cord-marking (Franklin 

2002: 240). In the Eastern Highland Rim, limestone tempering is minor in the Late Woodland 

compared to quartz and/or chert tempered wares. Also, knot-roughened and net impressed 

varieties are more present here than on the UCP (Franklin 2002: 238–239).  

Stratified excavations at Far View Gap Bluff Shelter revealed a multi-component site 

with occupation ranging from the Late Paleoindian to the Late Woodland. The most intensive 

occupation, however, seems to have occurred during the Late Woodland as evidenced from a 

stratified midden deposit (Franklin 2008a: 91). Radiocarbon and luminescence dates of both 

limestone tempered plain and smoothed over cord-marked varieties (and a charcoal sooted sherd 

used for radiocarbon dating) provided a terminal Late Woodland age range for the midden 

(Franklin 2008a: 92). The recovery of Hamilton and Madison points in good stratigraphic 

context also corroborate the Late Woodland designation (Franklin 2008a: 91). 

When comparing Archaic and Woodland use of the UCP, some differences in occupation 

and mobility strategies are noted. In other studies conducted on the UCP by Ferguson (1988) 

and, later, Pace and Hays (1991), different raw material procurement strategies and thus mobility 

patterns were suggested between Archaic and Woodland groups. Ferguson (1988: 21-32,166-

172) proposed different strategies for the Archaic and Woodland on the UCP. Because lithic 

resources were comparatively scarce in the region, it is expected that most strategies were 

curated. Archaic hunter-gatherers are thought to have practiced curated technologies while 

Woodland groups seem to be more expedient.  
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 Based on their work at Station Camp, Pace and Hays (1991) suggest that the differences 

between Archaic and Woodland patterns are due to under-representation of bifaces at Woodland 

sites. However, if flake tools are included in the technology, tool to flaking debris ratios for 

Woodland are comparable to the Archaic (Pace and Hays 1991:130). Pace and Hays (1991) also 

suggest that raw material use varied less during the Woodland on the UCP. Although Monteagle 

Chert is the most ubiquitous tool stone in the region other varieties of Mississippian-aged chert 

including Fort Payne and St. Louis are also available. Pace and Hays (1991: 132, 142) identified 

Archaic groups as using a wider array of raw materials whereas Woodland groups almost 

exclusively used local Monteagle Chert.   

Franklin et al. (2013) used the previous studies conducted by Ferguson (1988) and Pace 

and Hays (1991) to frame their work and discussion of lithic technology and mobility within the 

Woodland on the UCP through excavations at sites such as Hemlock Falls Rock Shelter, York 

Palace, and Eagle Drink Rock Shelter. Of note here, are 2 important points. First, the sites where 

the most work has been conducted are all located on the western escarpment of the UCP where 

access to raw materials is not limited, and second, lithic use-wear analyses are included in these 

studies (Franklin et al. 2013). Lithic analyses from the above excavations revealed that the 

exploitation of different raw materials was no less variable in the Woodland than in the Archaic--

likely meaning that mobility was high and far-ranging in both periods contra Ferguson (1988) 

and Pace and Hays (1991). Further, lithic use-wear analyses of stone tools recovered from 3 

Woodland sites on the UCP indicate a variety of foraging activities were conducted on site. So, 

based on the lithic assemblages of Woodland sites on the western escarpment portion of the 

UCP, Woodland peoples appear to have practiced residential mobility strategies in contrast to the 

logistically organization seen during the Archaic period (Franklin et al. 2013). Also different 
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from the Archaic period, Woodland people were exploiting dark-zone cave environments not just 

for chert but also for mineral resources such as gypsum (Franklin 2002, 2008b).  

Faunal material recovered during excavations on the UCP of Tennessee reveal a broad 

subsistence range for the Woodland period that mainly included white-tailed deer and wild 

turkey though small-to-medium sized mammals such as squirrel, beaver, and fox were important 

resources as well (Franklin et al. 2013). In addition, variation in seasonal occupation and use of 

rock shelters on the UCP is evident from the recovery of fish, shellfish, and reptilian species—

this coupled with the recovery of charred acorns and hickory nuts, suggests both warm and cold 

weather occupations.  

Using multiple lines of evidence (analysis of lithic, faunal, and archaeobotanical 

material), Franklin et al. (2013) suggest that Woodland sites are not all simply special-purpose 

camps as was suggested by Pace and Hays (1991). A variety of activities were noted at several of 

the sites discussed above suggesting seasonal movement with the UCP by family groups. Unlike 

the Late Archaic, however, Woodland peoples were mainly residentially mobile hunter-gatherers 

that used rock shelters and caves for residential occupation, shelter, mineral extraction, burial, 

and artwork (Franklin et al. 2013).  

Mississippian 

Broadly speaking, the Mississippian Period (ca. A.D. 1200-1700) was a time of great 

changes in technology, subsistence, settlement patterns, sociopolitical integration, and ideology 

that in turn, produced societies far different than that of their predecessors. Some defining 

characteristics of the Mississippian Period include the construction of platform mounds that 

housed important religious or political structures, the arrangement of mounds or houses around 

central open plazas, dramatic population increases, the development of organized chiefdoms, 
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increased conflict and warfare, the introduction of shell-tempered pottery, and the emergence of 

an elaborate ceremonial complex (Chapman 1985: 74; Steponaitis 1986: 387–388).  More 

recently, however, Anderson and Sassaman (2012: 152-153) point out that the there is great 

variation in what “defines” the Mississippian period throughout the Southeast. This suggests that 

the traditional defining characteristics like those listed above are not enough to truly capture the 

geographical, temporal, and cultural variation seen during the Mississippian period.  

Although there is little evidence of Mississippian peoples living in permanent nucleated 

villages, recovered artifacts, radiocarbon dates, and the presence of classic SECC iconography 

demonstrates their strong presence in the region (Franklin 2002: 244). Also, some mounds have 

been identified in the area though it is not clear yet whether these represent Woodland or 

Mississippian occupation (Franklin 2002; Franklin et al. 2013). Thus far, approximately 30 

Mississippian components have been identified during archaeological surveys of the UCP of 

Tennessee (Franklin 2002; Langston and Franklin 2010). The high number of Mississippian 

Period sites on the UCP compared to adjacent regions (see Ferguson et al. 1986; Sussenbach 

1990) is possibly explained by the inclusion of material and dates from dark zone cave 

environments in Franklin’s (2002) survey. It is clear that Mississippian peoples were at least 

occupying and or traversing the UCP based on BOSL dates from shell-tempered and limestone 

tempered plain ceramics (Franklin et al. 2013). One example includes a shell tempered plain 

sherd recovered during excavations at Hemlock Falls Rock House which was dated to A.D. 1497 

± 41.  

The decline of the Mississippian culture began with the onset of the Little Ice Age (A.D. 

1300) around the end of the Medieval Warm Period. During this time, Mississippian populations 

appear to have experienced times of increased warfare, settlement nucleation, and decreased long 
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distance exchange (Anderson 2001: 166).  European contact further facilitated the decline of the 

Mississippian culture complex. Disease and warfare brought on by the Europeans coupled with 

internal conflicts within chiefdoms eventually led to the ultimate demise of the Mississippian 

culture (Steponaitis 1986: 393).  
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CHAPTER 4 

ARCHAEOLOGICAL SITE LOCATION MODELING 

 

 This chapter introduces the background and concepts of archaeological site location 

modeling, more commonly referred to as predictive modeling. In order to understand the 

methods detailed in the following chapter, a brief introduction to GIS and predictive modeling in 

archaeology is provided. Next, regression-based approaches used in modeling are reviewed with 

the goal demonstrating the need for the spatial logistic regression approach used in this thesis. 

Finally, factors believed to influence site selection are discussed with emphasis on determining 

model variables.   

GIS and Archaeology 

Archaeology deals with spatial data on a routine basis. In fact, almost all data recovered 

by archaeologists are spatial in nature (i.e. locations of sites, locations of artifacts within a site 

boundary, settlement and mobility patterns, distribution of cultural traits, etc.).  As Wheatley and 

Gillings (2002: 3) state 

Artefacts, features, structures, and sites, whether monument complexes, chance 

finds or individual objects, scatters of ploughsoil material or rigorously excavated 

structural and artefactual, are all found somewhere. As well as the position of the 

feature or artifact itself there may also be a series of relationships between the 

locations of features and artefacts, revealed by significant patterns and 

arrangements relative to other features and things [emphasis in original]. 
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The “other features and things” refer to either features of the environment, other archaeological 

features, or some cosmological phenomena. The underlying idea is that understanding spatial 

relationships is critical in constructing frameworks for studying and interpreting the 

archaeological past. Because archaeology is concerned with the interpretation of spatially 

(geographically) referenced material, spatial technologies can better facilitate archaeological 

research. Some examples of spatially-related technologies useful in archaeological analysis 

include Remote Sensing, Global Positioning Systems (GPS), and Geographical Information 

Systems (GIS)—the last of which is of interest here and will be discussed further. 

Geographical Information Systems (GISs), broadly speaking, are computer-based 

applications concerning the acquisition, storage, or manipulation of spatial information.  The 

spatial information can be modeled as either vector or raster data. Vector data (i.e., points, lines, 

and polygons) have discrete boundaries and are spatially independent. Examples of vector data 

used in archaeology include the location and boundary of a site, roads, water resources, and 

locations of technological resources. On the other hand, a raster (continuous surface made up of 

individual grid cells) represents data best visualized as a surface without discrete boundaries 

such as elevation, slope, aspect, temperature, or precipitation. The GIS interface provides 

archaeologists a way to combine and manage both vector and raster data, perform 

computationally intense calculations, and explore new avenues of analysis with unconventional 

data types (Kvamme 1989). 

Development of GIS 

Before the development of GIS, the spatial component of archaeological data was studied 

by simply viewing hand-plotted, flat maps for similarities or differences (Wheatley and Gillings 

2002: 4–5). Around the early 1960s, the quantitative revolution and New (Processual) 
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Archaeology brought about major changes in how the spatial relationship of material culture was 

interpreted; previous practices were believed to be too subjective and descriptive without 

actually explaining spatial patterns (Wheatley and Gillings 2002: 5). During this time, 

archaeologists saw prehistoric behavior as identifiable and measurable patterns in space that 

could reveal the prime causal factors for changes in behavior. The shift to the Processual 

Archaeology school-of-thought was further facilitated by the application of new spatial analytic 

techniques and methods such as computer-aided cartography and GIS.  

Though some cartographic computer programs are said to date as early as 1950, it was 

during the 1960s and 1970s that several computer programs were created for the sole purpose of 

making geographic maps from digital data (Coppock and Rhind 1991; Wheatley and Gillings 

2002: 12). Similarly, the first recognizable GIS, the Canadian Geographic Information System 

(CGIS), was implemented in 1966 for managing and monitoring the country’s natural resources; 

however, it took almost 3 years and over 566 technicians to overlay all of the Canada Land 

Inventory maps (Tomlinson 1988).  The computational difficulties with the CGIS encouraged 

computer scientists to develop more efficient and automated approaches (Coppock and Rhind 

1991: 23).  

The significant developments in automated computer technology during the late 1960s 

and early 1970s are perhaps most attributable to activities within government departments and 

agencies. Some examples of systems implemented by federal and state agencies include the 

United States Geological Survey’s (USGS) Geographical Information Retrieval and Analysis 

System (GIRAS) developed in 1973  and the Minnesota Land Management Information System 

(MLMIS) in 1976 (Coppock and Rhind 1991: 31). Around this time, there was also a shift in 

computer-automated cartography from the use and development only within government 
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agencies to the commercial sector; the Environmental Systems Research Institute (ESRI) began 

selling its first vector-based GIS program in the early 1970s (Coppock and Rhind 1991; 

Wheatley and Gillings 2002: 14).  

The USGS continued to play an important role in the development of gathering, 

analyzing, and displaying cartographic data; this began with the digitization of topographic maps 

and the collection of other digital land resource data in the mid to late 1970s. Then, in 1987, the 

USGS created and distributed one of the most widely-used types of spatial data—the digital 

elevation model, or DEM (Starr and Anderson 1991). By this time, GIS was on its way to 

becoming widely accepted as the number of programs, classes, facilities, and projects grew 

exponentially (Coppock and Rhind 1991: 33).  

Archaeological Applications of GIS 

Perhaps the first mention of GIS in the archaeological literature was by H.J. Pomerantz in 

1981, though software for cartographic and spatial analysis had been in use for archaeological 

analyses since the 1970s (Kvamme 1998; Wheatley and Gillings 2002: 15).  Although the 

beginnings of GIS in archaeology are not completely clear, by the late 1990s, GIS had become a 

wide-spread addition to the discipline of archaeology (for examples see K. L. Kvamme 1990; 

Gaffney and Stančič 1991; Lock and Moffett 1992; Andresen, Madsen, and Scollar 1993; Lock 

and Stančič 1995; Maschner 1996; Fisher et al. 1997). Kvamme (1998: 1) gives 3 main reasons 

for the growth of GIS in the field: the demand for state-mandated databases of cultural resources 

on government lands, the requirement of archaeological distribution models by CRM agencies, 

and the examination of sites with environmental data using computer technology.   

Applications of GIS in archaeology have varied throughout the years with 3 typical 

applications: visualization, management, and predictive modeling (Church et al. 2000: 144). 
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Wheatley and Gillings (2002: 207) more broadly categorize current GIS applications in 

archaeology as either Management or Research. Under the Management category is Database 

Management and Cultural Resource Management (CRM); this category focuses on the storage, 

maintenance, and analysis of archaeological databases for the management and protection of 

archaeological (cultural) resources.  The Research category is further subdivided into 

applications focusing on the regional landscape and intra-site spatial analysis—with landscape-

based studies being the most common application of GIS in archaeology (Wheatley and Gillings 

2002: 209). Regional landscape studies attempt to explain how prehistoric people interacted with 

their environment using the spatial statistical relationships between material culture, human 

alteration of the environment, and the natural environment. The application of landscape-based 

approaches in archaeology inevitably includes the development and application of predictive 

models.  

Predictive Modeling 

Background 

As far back as Herodotus’s Histories written in the fifth century BC, questions have been 

raised about the role of the environment in creating human diversity--this has been a reoccurring 

theme in both anthropology and geography over the centuries (Hodgen 1964). Throughout the 

development of the field of anthropology (and thus archaeology), several theories have focused 

on the environment and how it affects and influences culture and cultural change. Alfred 

Kroeber’s (1939) work on the environmental relationships between native North American 

cultures and their culture areas (Wissler 1927) had a major influence on the study of environment 

and culture. Another prominent figure in anthropology at the time, Leslie White, also believed 

that humankind, and therefore culture, is dependent upon adjustment to the natural environment 
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(White 1949: 365). Following the work of Kroeber (1939) and White (1949) was the 

development of the concept of culture ecology by Julian Steward (1955); this concept focused on 

how the relationship between environmental resources, the tools and knowledge needed to 

exploit them, and the organization of work had a determinant effect on social practices. Further, 

Steward’s (1955) work emphasized the interaction (and opposition) of humans with the 

environment. The study of archaeological settlement patterns developed mainly as a result of 

Julian Steward’s work (Kohler 1988:30).  

Following Julian Steward, Gordon Willey’s (1953) work in the Viru Valley defined a 

new field of inquiry and pioneered the way for future settlement studies. Willey (1953: 1) 

defined the term “settlement pattern” as the “…way in which man disposed himself over the 

landscape in which he lived.” Further, though he was more interested in social interaction and 

control and their effect on community patterns, Willey discussed the role of environmental, 

technological and demographic change on settlement patterns. Following his Viru Valley work, 

Willey (1956) put together an edited volume on prehistoric settlement patterns where authors 

investigated environmental, social, and political factors as determinants in the distribution of 

human populations. The study of archaeological settlement patterns continued for another decade 

as new determinants of site location (i.e., availability of natural resources, defense factors) were 

investigated (Trigger 1968).  

During the 1970s, 2 major advances changed the nature of settlement pattern studies 

(Kohler 1988:31). First, a new analytical method for investigating determinants of site location 

was developed. Site catchment analysis, as it was termed, emphasized the importance of 

economic resources (the availability, abundance, spacing, and seasonality) in determining site 

location (Vita-Finzi and Higgs 1970; Roper 1979). The second important advance of the 1970s 
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relates to the broader changes that were occurring in archaeology at the time. Much of the early 

settlement pattern studies follow what Kohler (1988:31) calls “an anecdotal form” because each 

mirrored Steward’s (1955) approach without any sense of progression.  Then, with the shift to 

more quantitative methods in archaeology, formal statistical techniques were incorporated into 

settlement pattern analysis. This led to the development of statistical models used to predict site 

densities in areas yet to be surveyed by archaeologists (Verhagen and Whitley 2012: 51). This 

practice, termed “predictive modeling” became increasingly widespread throughout the 1970s.  

The earliest works such as those by Plog and Hill (1971) and Green (1973) incorporated 

statistical procedures for predicting site locations. Green’s (1973) work in Belize was the first to 

apply multivariate statistics (e.g. multiple linear regression) to archaeological predictive 

modeling. However, some researchers did not support the application of predictive models to 

examine and explain prehistoric behaviors and proposed that they only be constructed for CRM 

purposes (Sullivan and Schiffer 1978). But even within a CRM context, some believed that 

predictive models did not provide reliable, hard data and there could be absolutely no 

substitution for intensive ground reconnaissance of the entire area of potential effect (Kohler 

1988:34).  

Still, the application of predictive models increased dramatically by the late 1970s and 

early 1980s in response to federal legislation such as the National Historic Preservation Act of 

1966 (amended in 1976, 1980, and 1992) that required the identification of historical and 

archaeological resources. Because of the time required to complete comprehensive surveys of 

federal and state lands, agencies such as the Bureau of Land Management, Army Corps of 

Engineers, and the United States Forest Service began to fund archaeological surveys 

encouraging the creation and use of predictive models. Though many predictive models were 
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produced at this time, Kohler (1988:35) states that “… (judging by the variability in techniques 

and products) no one was sure how prediction might be best accomplished.”  

As discussed previously, the archaeological applications of GIS soared during the 1990s 

with advancements in spatial technologies and computer programming.  However, as GIS in 

archaeology was achieving heightened popularity and success, so was Post-Processual 

Archaeology. The processual approach to settlement studies focused more on the environmental 

factors that influenced the site selection process. In contrast, post-processualism emphasized the 

subjective nature of archaeology and argued that the use of GIS and predictive modeling 

encouraged ideas of environmental determinism (Gaffney and van Leusen 1995; Wheatley 1996; 

Wansleeben and Verhart 1997). Today, both sides continue to be argued and Processual and 

Post-Processual approaches to archaeological site location modeling are still employed.  

Inductive vs. Deductive Models 

Because the development of predictive modeling has both a theoretical (i.e., cultural 

ecology and settlement pattern analysis) and a quantitative (i.e., introduction of statistical 

techniques) background, 2 separate approaches to modeling emerged during the 1970s and 

1980s. Though the approaches significantly differ in their underlying frameworks, they can often 

overlap and should not be considered mutually exclusive (Kamermans and Wansleeben 1999; 

Verhagen and Whitley 2012: 52). Early models developed by those such as Jochim (1976) and 

Bettinger (1980) were largely theoretical and did not include spatially quantitative evaluations. 

This type of theory-driven model, later called the “deductive” approach, is constructed using a 

priori knowledge of the archaeological record for a specific area; the model is then evaluated 

using known site locations (Kamermans and Wansleeben 1999: 225).  
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In contrast, an “inductive” model is constructed using correlations between known sites 

and their attributes (mostly environmental). This information is then used to predict potential site 

locations using some form of statistical analysis. Some of the earliest examples of the 

“inductive”, or data driven, approach include Kvamme’s (1984) model of prehistoric site 

location in Pinyon Canyon and Parker’s (1985) multivariate logistic approach to prehistoric 

settlements in the Sparta region of Arkansas. The data driven approach has been the most 

commonly applied method in the United States as evidenced by applications found in Judge and 

Sebastian (1988), Wescott and Brandon (2000), and Mehrer and Westcott (2006).  

The Upper Cumberland Plateau model (developed herein) is a result of inductive and 

deductive approaches. Though the model was developed and tested using statistical techniques, 

the model variables were selected using what was already known about the region 

(geographically and archaeologically) and on theories of prehistoric hunter-gatherer behavior. 

The statistical and theoretical approaches to the Upper Cumberland Plateau model are the focus 

of the following sections.  

Statistical Prediction Models 

In inductive archaeological predictive modeling, several different statistical techniques 

have been used, both parametric and nonparametric. Both techniques are robust, with parametric 

models assuming a particular type of statistical distribution (i.e., multivariate normality) and 

nonparametric models making no assumptions about distributional form (Kvamme 1988: 364; 

K.L. Kvamme 1990).  In practice, normality is a difficult condition to satisfy, especially with 

complex relationships involving human behavior and the environment. For this reason, 

nonparametric methods have been considered more appropriate for modeling complex, non-

linear relationships (Parker 1985; Espa et al. 2006; Zhang et al. 2010). Whether a parametric or 
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nonparametric method is employed, the chosen technique should be appropriate for addressing 

the model objectives and handling the type of data used.   

Regression-based models are some of the most commonly used approaches in 

archaeological predictive modeling. The basic goal of regression analysis is to analyze the 

relationship between the dependent or response variable and one or more independent or 

explanatory variables. In general, site presence is the response variable, with a variety of 

environmental variables (e.g. distance to water, elevation, slope) used as explanatory variables. 

There are several types of regression analyses, each with associated strengths and weaknesses in 

producing archaeological predictive models (Wheatley and Gillings 2002: 152).  Some of the 

more common types of regression analyses are outlined below with a focus on evaluating the 

appropriateness of each method for modeling the probability of a binary response variable (site 

presence vs. site absence) given a set of explanatory variables.  

Linear Regression 

Linear regression models the relationship between a scalar (continuous) response variable 

and one or more explanatory variables by fitting straight line to the set of observed data. The 

interpretation and analysis of linear regression is concerned with the effect of the explanatory 

variables on the response variable and the nature of the fit of the line (Rogerson 2010: 201). 

Simple regression involves a single explanatory variable, whereas multiple regression involves 2 

or more explanatory variables. Linear regression, like other linear models, assumes there is a 

linear relationship between the response and explanatory variable(s) and the relationship is 

modeled through the error term, or residuals. The (multiple) linear regression model takes the 

form 
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                        Equation 1 

  Where: 

   y= response variable 

   x= explanatory variables 

   α=intercept 

   β=regression coefficients 

   ε =residuals or error term 

 

Linear models such as this require the unknown model parameters (β) to be estimated from the 

data in order to find the best-fitting straight line. Though there are many estimation techniques 

for linear regression, the most common method is ordinary least squares (OLS). This method fits 

a line to the data by minimizing the sum of the squared residuals. This is different from other 

methods which minimize the sum of the residuals and therefore cause the negative values to 

cancel out the positive values (Kahane 2008: 18–19).  

Standard linear regression models make several assumptions about the relationship 

between the response and explanatory variables; if the assumptions are satisfied, then the 

estimated regression line represents the best possible fit (Kahane 2008: 31–33). The more formal 

assumptions include randomness, independence among the response variable, and normality.  All 

of these assumptions (and others) apply to simple linear regression models. In the case of 

multiple linear regression, an additional assumption is required in that there should not exist any 

perfect linear relationship, or multicollinearity, between explanatory variables. Multicollinearity 

causes problems in a model because it does not allow for the subtle effects of 2 correlated 
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variables to be clearly distinguished—the unique explanatory ability of one explanatory variable 

would be lost (Kahane 2008: 120).   

 In archaeological predictive modeling, linear regression methods are useful for predicting 

things such as artifact densities or site dimensions (K.L. Kvamme 1990: 270; Wheatley and 

Gillings 2002: 154). However, when the response variable is categorical—site or no site--

methods such as OLS are not appropriate. In addition, if linear regression is used to predict the 

probability of a dichotomous outcome, the predicted values are not necessarily restricted to the 0 

to 1 interval; this will severely complicate model interpretation and analysis (Parker 1985: 176). 

For these reasons, standard linear regression and OLS are not suitable methods for predicting 

archaeological site locations in the form of “site presence” or “site absence”.  

Logistic Regression 

Unlike standard linear regression models, logistic regression can properly handle a 

categorical response variable and does not assume that the explanatory variables are normally 

distributed. Similarly, given a set of values for the explanatory variables, logistic regression 

predicts the probability of a positive response variable (Parker 1985: 176). There are 2 types of 

logistic regression: binomial (or binary) and multinomial. In binomial logistic regression, only 2 

possible outcomes are modeled (e.g. “yes” vs. “no”, “site presence” vs. “site absence”); the 

codes “0” and “1” are generally used for this method. Multinomial logistic regression is applied 

to cases where 3 or more possible categorical outcomes (i.e., artifact classes, site types, or time 

periods) are modeled.   

Logistic regression uses the logit transform to convert the standard regression equation 

into a probability of a case by restricting the output between 0 and 1. The probability of the event 

occurring increases as the predicted value gets closer to 1. In the case of binomial logistic 
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regression, the resulting equation (Eq. 2) yields the probability of a positive response for each 

unit of analysis (Parker 1985: 177).  

 ( )     (             )   Equation 2 

  Where:  

   p(Y) = the probability of the event occurring 

z = α β
1
 1 β2 2…. β

n
 n 

α= constant, or intercept 

β= regression coefficients  

x=explanatory variables 

 

From this equation, the probability of occurrence is modeled from a binary response where, in 

the case of archaeological predictive modeling, “1”can represent site presence and site absence 

equals “0”. The results can then be interpreted as the probability of archaeological site presence 

given a set of values for the independent variables. 

Because it can handle different data types and operates under fewer assumptions about 

the form of the independent variables, logistic regression has become increasingly popular in 

archaeological modeling (Kvamme 1990: 275). However, one main issue related to logistic 

regression (and many other traditional statistical approaches) is the assumption of spatial 

independence of the response variable without considering its spatial nature (Espa et al. 2006: 

148). According to Tobler’s (1970) first law in geography, everything is related to everything 

else; that is, phenomena distributed in space are related by their proximity to each other. This 

concept, spatial autocorrelation, “means a dependency e ists between values of a variable in 

neighboring or proximal locations, or a systematic pattern in values of a variable across the 
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locations on a map due to underlying common factors” (Griffith 2009: 1). Traditional logistic 

regression assumes the data are spatially independent and the output can be misleading if the 

data are, in fact, spatially autocorrelated. Spatial statistical tests, though based on conventional 

statistics, incorporate the spatial aspect of data and can provide more robust findings (Schwarz 

and Mount 2006: 155).  One way to address the issue of spatially autocorrelated data is to use a 

spatial model in lieu of traditional methods such as logistic regression.  

Spatial Dependence Models 

A traditional logistic regression model is not appropriate for handling spatial data when 

spatial autocorrelation is present in a dataset. When a value of a variable at one location depends 

on its value at neighboring locations, there is spatial dependence, or spatial autocorrelation. 

Positive spatial autocorrelation exists when values tend to be more similar the closer they are 

together (e.g. high values near high, low values near low); this type of spatial autocorrelation is 

common in many environmental datasets such as elevation, temperature, and rainfall (Conolly 

and Lake 2006: 158). Conversely, when dissimilar values are located closer together (e.g. high 

values near low values), negative spatial autocorrelation is present. For a dataset with significant 

positive or negative spatial autocorrelation, a spatial statistical model should be employed; if 

spatial dependence is ignored, the real variance in a dataset can be underestimated. There are 2 

types of spatial dependence models that can handle spatially autocorrelated data: spatial lag and 

spatial error. These are alternative ways of running a linear regression but with a spatial 

component—this is the reason for their discussion here. Both models operate under the same 

assumptions: 1) normality in the dependent variable; 2) spatial autocorrelation; and 3) a linear 

relationship between inputs and outputs. The difference between the 2 models is how spatial 

autocorrelation is handled—as either substance or nuisance (Ward and Gleditsch 2007: 30).   
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Spatial Lag Model. A spatial lag model accounts for spatial autocorrelation in the 

response variable that can be explained by the explanatory variables. This model considers 

spatial association an important feature that can reveal something about the relationship between 

the response and explanatory variables. The spatial lag model is represented by 

                      Equation 3 

Where:  

   constant, or intercept 

   = regression coefficients  

  = explanatory variables 

   spatial autoregressive parameter 

W = Spatial Weights Matrix 

  = lagged predictions at nearby points 

   random error term 

 

Spatial Error Model. In contrast to a spatial lag model, a spatial error model captures 

spatial autocorrelation in the error term. This model is primarily used when it is believed that 

there is some spatial pattern that will be reflected in the error terms but no assumptions can be 

made about the origin of the error (Ward and Gleditsch 2007: 59). This means that the 

explanatory variables do not fully capture (or explain) the spatial dependence and therefore, it is 

mostly ignored. The spatial error model is represented by   

                      Equation 4 

Where:  

    y-intercept 
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   = explanatory variables 

     coefficient of explanatory variables 

   coefficient of lagged autoregressive errors 

W = Spatial Weights Matrix 

   error term associated with nearby points 

    random error term 

 

Simply put, a spatial lag model assumes that “neighboring values of the response variable 

e ert a direct effect on the value of the response variable itself”, while a spatial error model 

assumes that the errors of a model are spatially correlated and “disregards the possibility that the 

observed correlation may reflect something meaningful about the data generation process” 

(Ward and Gleditsch 2007: 55). Though both of these models can account for spatial dependence 

in a dataset, they are parametric methods with strict statistical assumptions and model continuous 

response variables; these are not suitable for this project because the response variable is 

dichotomous and normality cannot be assumed. A statistical method that is spatial and can 

handle a categorical response variable is ideal for this study. 

Spatial Logistic Regression  

Though traditional (e.g. aspatial) logistic regression has been one of the preferred 

statistical techniques in archaeological predictive modeling, it does not account for the spatial 

nature of many archaeological phenomena. In recent years, the incorporation of spatial statistical 

methods in archaeological predictive modeling has been strongly encouraged in order to generate 

more accurate and valid models (Schwarz and Mount 2006: 172). Spatial logistic regression is 
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preferred over traditional logistic regression in archaeological modeling because it has a built-in 

spatial function and does not ignore spatial autocorrelation.  

Geographic Information System (GIS) programs have facilitated the application of 

archaeological predictive models as new visual and analytical tools have been developed. Using 

a combination of GIS and statistical programs, spatial logistic regression can be applied to a 

study area divided into evenly-spaced grid cells (or pixels). Each cell represents either site 

presence or absence, according to a database of archaeological sites. Spatial logistic regression 

can then be used to predict the presence of a site based on values of the explanatory variables at 

the known “site presence” locations.  This method is referred to as pi el-based spatial logistic 

regression and has been equated to a Poisson point process model for the original data points 

(Baddeley et al. 2010: 1155). The spatial logistic regression formula (Equation 5) takes a similar 

form as traditional logistic regression, but with an offset term equal to the log of pixel area 

(Baddeley et al. 2010: 1173). 

 

 ( )    (     (      )   Equation 5 

  Where:  

    (  )=the probability of a case for a given cell or pixel 

z =             

α= pi el area 

  = regression coefficients for corresponding explanatory variable 

  = values for each explanatory variable associated with a pixel 
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The concept of spatial logistic regression was originally developed in geology to predict 

potential metallic deposits for mineral exploration in Western Australia (Agterberg 1974).  This 

study demonstrated that the predicted probabilities of a traditional logistic regression are 

significantly influenced by the size of the spatial unit (i.e., grid cell or pixel) under consideration 

(Baddeley et al. 2010: 1156). Most spatial datasets are aggregated into zones (i.e. arbitrary 

boundaries for a study area or site); the placement and geographic scale of a zone can influence 

the interpretation of statistical analysis where different zoning systems can produce different 

results. This concept is known as the “modifiable area unit problem” (Rogerson 2010: 16). 

Spatial logistic regression attempts to minimize this problem by incorporating the size of a 

“zone” as a new model term.  

With the exception of a few studies (Agterberg 1974; Scholtz 1981; Hasenstab 1983; 

Kvamme 1995), there seems to be very little literature addressing spatial logistic regression 

directly. Not only is the method more complex than traditional logistic regression, but it is not an 

option in most commonly used spatial statistic software packages. Spatial programs such as 

GeoDa (Anselin et al. 2006) and ArcGIS (ESRI 2011) have the capabilities to perform different 

types of linear regression such as OLS and Geographically Weighted Regression (GWR) but not 

logistic regression. Also, traditional statistical packages like SPSS (IBM Corp 2011) can be used 

to perform logistic regression but treat the data as if they are non-spatial. The statistical and 

graphical R environment (R Core Team 2012) is seemingly one of very few statistical systems 

that has the capability of performing a spatial logistic regression.  

Spatial logistic regression is the most statistically robust approach to archaeological 

predictive modeling and therefore merits heavy consideration as a methodological approach. 

Because it is the only method that satisfies the requirements of a binary response variable and 
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accounts for spatial autocorrelation within a dataset, spatial logistic regression is used to generate 

the Upper Cumberland Plateau predictive model.  

Site Selection Factors 

 Besides choosing a modeling approach, it is necessary to identify what factors might have 

influenced site selection in order to generate relevant model variables. The choice of model 

variables largely depends on the availability of data. In this case, the availability of existing 

spatial data has a major impact on what can be used to generate a predictive model using GIS. 

This is a common and often criticized problem in predictive modeling. Though the specific 

variables used to generate the UCP model will be discussed in the following chapters, this 

section provides some background on prehistoric site selection and the types of variables 

commonly used in archaeological predictive modeling. 

 In one of the earlier works on predictive modeling, Jochim (1976) developed a model 

specifically addressing hunter-gatherer settlement and subsistence patterns and how hunter-

gatherer settlement locations can be viewed as the result of the decision-making process. From 

Jochim’s (1976: 50) seminal work, 3 primary goals guiding hunter-gatherer settlement placement 

have been used in predictive modeling studies as a basis for analyzing and interpreting the 

location of prehistoric hunter-gatherer settlements: the proximity of economic resources, shelter, 

and view. Though Jochim (1976) believed that subsistence-related activities were the primary 

factors influencing settlement locations, critics point out that models should also incorporate 

variables that describe social factors as well.   

Common Variables 

  Environmental variables such as elevation, slope, aspect, and measures of topographic 

relief are some of the most common variables used in archaeological modeling (Kohler and 
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Parker 1986; Warren and Asch 2000; Altschul et al. 2004; Ridges 2006). Similarly, modeling 

studies often employ variables related to geologic and geomorphic changes within an area; some 

examples include different measures of terrain roughness, topographic position, geology, 

vegetation, soil series, and soil-related properties such as drainage class or erosion (Kvamme 

1988; Duncan and Beckman 2000; Warren and Asch 2000; Altschul et al. 2004; Lock and Harris 

2006; Mink II et al. 2006; Ridges 2006; Veljanovski and Stančič 2006; Finke et al. 2008). 

Measures of solar radiation  and viewshed have also appeared in modeling studies, though they 

are much less common than other environmental variables (Duncan and Beckman 2000; Krist Jr. 

2006; Madry et al. 2006; Veljanovski and Stančič 2006). Lastly, the availability or proximity to 

water resources is a common variable used in archaeological predictive modeling. Though most 

basic models include straight-line distance to water sources, variables incorporating cost-distance 

analysis are becoming more popular (Madry et al. 2006; Ridges 2006). All of these variables are 

useful in archaeological site location modeling because they are related to fundamental utilitarian 

needs of humans.  

The correlation of the natural environment and the distribution of hunter-gatherer 

settlements was a well-established concept by the early 1980s (Jochim 1981; Ebert and Kohler 

1988). However, environmental variables are not entirely sufficient to explain the variation in 

settlement patterns (Gaffney and van Leusen 1995). Factors beyond those that are strictly related 

to the environment must be considered in order to understand the full range of prehistoric site 

location variability. Rock shelters pose a problem in that they are fixed places on the landscape 

and dictated purely by environmental variables. The presence of a prehistoric rock shelter site, 

however, is a combination of environmental restrictions and selection by prehistoric peoples. 

Variables that introduce some degree of decision-making by prehistoric peoples in the site 
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selection process can also be used to generate a site location model of prehistoric rock shelters. 

Though such variables (e.g. proximity to resources, solar radiation, and viewshed) are directly 

related to the environment, they can be used to investigate human behavior and associated land-

use patterns. So although it is impossible to completely understand the adopted beliefs and 

strategies of prehistoric peoples, modeling attempts should incorporate variables that most 

accurately reflect the environmental setting and the archaeological record of the area under 

study. With this in mind, the UCP model was developed using explanatory variables that 

incorporate factors related to the physical environment and human behavior.  
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CHAPTER 5 

MODEL DEVELOPMENT 

 

 This chapter details the methods used to develop and test the UCP site location model. 

Data required for building the model include known rock shelter locations and model variables 

generated by GIS data layers. These 2 sets of data will hereafter be referred to as the response 

and explanatory variables respectively. ArcGIS 10.0 (ESRI 2011) was used to create, process, 

and store all GIS data layers for the UCP model and the statistical and graphical R environment 

(R Core Team 2012), hereafter referred to as R, was used to run the spatial logistic regression 

model. All GIS data were projected using the North American Datum 1983 State Plane of 

Tennessee.  

Response Variable 

 In terms of a statistical model, the response variable is predicted from a set of explanatory 

variables. The known locations of prehistoric rock shelter sites are used as the initial response 

variable to identify the unique characteristics that identify them and to find where other not-yet-

discovered rock shelters are likely to exist. Data collected from 2 archaeological surveys, the 

East Obey and Pogue Creek State Natural Area, are used to develop and analyze the UCP site 

location model (Figure 4).  

The first long-term, systematic archaeological survey on the UCP of Tennessee focused 

on the southern portion of the Western Escarpment (Franklin 2002). The overall purpose of the 

survey was to identify archaeological sites that could define the cultural history of the region. 

One hundred forty-five new sites were identified—77 of which were selected for this study 

(Franklin 2002: 245,249).   
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Figure 4: Pseudo-3D Renderings of the Pogue Creek and East Obey Survey Areas. The renderings have been rotated in a way that best 

demonstrates the topographic locations of the known prehistoric rock shelter sites used to develop and test the site location model.
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In the summer of 2006, Franklin entered into a long-term Memorandum of 

Understanding with Tennessee State Parks to conduct archaeological survey of the newly 

acquired Pogue Creek State Natural Area (Langston and Franklin 2010). The land was purchased 

by the Tennessee Chapter of Nature Conservancy to protect it from development and the State of 

Tennessee subsequently purchased the property. The Pogue Creek State Natural Area 

archaeological survey was completed in 2010; 135 archaeological sites were recorded over the 

course of 4 short winter survey seasons, of which 127 were prehistoric rock shelters sites 

(Langston and Franklin 2010).   

Two rock shelter databases were created for the Pogue Creek and East Obey survey 

areas. The databases included both geographic location and archaeological information recorded 

during survey. Point shapefiles were generated for each database in ArcMap 10.0 (ESRI 2011). 

After eliminating spatial outliers, 125 known rock shelter locations in the Pogue Creek State 

Natural Area were used to develop the UCP site location model. Because the East Obey rock 

shelter sites (n=77) are relatively close to Pogue Creek and the topography of the Western 

Escarpment of the UCP is very similar, the East Obey dataset was used to test the model.  

Explanatory Variables 

The explanatory variables in a statistical model are the inputs used to predict an event or 

response. The explanatory variables used in the UCP model attempt to address both the 

environmental restrictions of rock shelter locations and other factors that may have influenced 

site selection by prehistoric hunter-gatherers. Explanatory variables were chosen in an effort to 

isolate and satisfy the above conditions for locating a prehistoric rock shelter site. Two separate 

models were developed and then combined to generate the final UCP model; the explanatory 

variables were assigned to 1 of the 2 models. The following section introduces the 2 different 
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types of models used to create the final model. Then, the explanatory variables are discussed in 

terms of creation and incorporation within their respective model groups. 

Data Acquisition 

 A GIS was developed for the UCP using several sources of geospatial data in ArcMap 

10.0 (ESRI 2011). Table 1 is a list of the original data sources used in this study.  

 

Table 1: Sources of Geospatial Data for the UCP Model. Four geospatial datasets were used to 

generate the UCP site location model. The scale, download source, and original source are listed 

for each of the 4 datasets needed for this project. 

 

Data Type & Scale Data  Download Source Original Source 

Elevation  

(10 m horizontal 

resolution) 

Tennessee Data Spatial Server, 

Data Collections, Digital Elevation 

Models (DEM) 

http://www.tngis.org/ 

United States Geological Survey, National 

Elevation Dataset 

http://ned.usgs.gov/ 

Soil  

(1:24,000) 

United States Department of 

Agriculture, Natural Resources 

Conservation Science, Soil Data 

Mart 

http://SoilDataMart.nrcs.usda.gov/ 

Soil Survey of Fentress and Pickett 

Counties Area, Tennessee, 1995; Soil 

Survey of Big South Fork National River 

and Recreation Area, Kentucky and 

Tennessee, 2008 

 

Geology  

(1:250,000) 

 

Tennessee Data Spatial Server, 

Data Collections, Geology of 

Tennessee 

http://www.tngis.org/ 

Hardeman, W.D. (1966). Geologic map of 

Tennessee: State of Tennessee Department 

of Conservation, Division of Geology, 4 

sheets, scale 1:250,000.Digitized in 2000 

by the U.S. Geological Survey Water 

Resources Office in Tennessee. 

Hydrography  

(1:24,000) 

 

United States Department of 

Agriculture, Natural Resources 

Conservation Science, Geospatial 

Data Gateway 

http://datagateway.nrcs.usda.gov/ 

United States Geological Survey, National 

Hydrography Dataset 

http://nhd.usgs.gov/ 

 

  

http://www.tngis.org/
http://ned.usgs.gov/
http://soildatamart.nrcs.usda.gov/
http://www.tngis.org/
http://datagateway.nrcs.usda.gov/
http://nhd.usgs.gov/
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Static and Dynamic Variables  

Two factors dictate the location of prehistoric rock shelter sites: 1, where rock shelters 

are located based on where they naturally form and, 2, selection by prehistoric people based on 

some set of preferential conditions. In order to capture both conditions, the preliminary 

explanatory variables were divided into 2 groups using static and dynamic factors  (Zhang, 

Zhang, and Zhou 2010: 389). The 2 groups of variables were used to generate separate models. 

The static (P1) and dynamic (P2) models were then combined (by multiplication) to generate the 

final UCP model. The first group (P1) represents the physical attributes of the landscape more 

likely to produce a rock shelter location and thus the static factors. Theoretically, the P1 model 

could be used by itself to identify areas with the potential to yield any rock shelter—site or non-

site. Thus the second group (P2) includes dynamic factors that may have been important to 

prehistoric peoples for selecting residential sites. Explanatory variables are discussed within the 

context of these 2 model groups.  

Preliminary Explanatory Variables 

 A total of 27 preliminary explanatory variables were generated for the UCP model (Table 

2). Because the model was run in the statistical and graphical R environment (R Core Team 

2012) using the spatial logistic regression model (slrm) function (Baddeley et al. 2010), all 

explanatory variables had to be scalar, or continuous image files (e.g. TIFFs). Each variable is 

discussed in terms of its relevance in developing the UCP site location model. Also, a brief 

summary of each explanatory variable is provided along with a graphic illustration of its raster 

surface (for descriptive statistics see Appendix A). Raster surfaces for 3 of the explanatory 

variables (Curvature, Northness, and Eastness) are not provided because they are not visually 

useful.   
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Table 2: Preliminary Explanatory Variables for the UCP Model. Twenty-seven preliminary 

explanatory variables were identified for this study. The 27 preliminary variables are listed under 

their respective model groups; measurement units are also provided along with abbreviations that 

will be used frequently throughout this thesis.    

P1( Static) Model Variables Abbreviation Measurement Unit 

Elevation ELE Meters 

Slope Slope Degrees (0-90°) 

Earth Curvature Curv 1/100
th

 of a Degree 

Percent of Bangor Limestone & Hartselle Formation PerMbh Percentage (0-100%) 

Percent of Monteagle Limestone PerMm Percentage (0-100%) 

Percent of Pennington Formation PerMp Percentage (0-100%) 

Percent of Fentress Formation PerPf Percentage (0-100%) 

Percent of Rockcastle Conglomerate PerPf Percentage (0-100%) 

Soil Thickness SoilThick Inches 

Soil Erosion Erosion t ha h ha
-1

 MJ
-1

 mm
-1

 

P2 (Dynamic) Model  Variables Abbreviation Measurement Unit 

Average Potential Volume of Wood Fiber VolWood ft
3
/ac 

Annual Solar Radiation Solar Wh/m
2
 

Direct Duration of Solar Radiation DirDur hrs/yr 

Eastness East Unitless (range from -1 to1) 

Northness North Unitless (range from -1 to1) 

Shelter Index at 100meters SI100 m
3
 

Shelter Index at 300meters SI300 m
3
 

Shelter Index at 1000meters SI1000 m
3
 

Terrain Texture TerTex m
2
 

Cost Distance to Chestnut Oak CDChest Minutes 

Cost Distance to Northern Red Oak CDNred Minutes 

Cost Distance to Southern Red Oak CDSred Minutes 

Cost Distance to Scarlett Oak CDScar Minutes 

Cost Distance to White Oak CDWhite Minutes 

Cost Distance to Hickory CDHick Minutes 

Cost Distance to Walnut CDWalnut Minutes 

Cost Distance to Water CDWater Minutes 
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Elevation. Elevation was included as a preliminary P1 model variable because rock 

shelters on the UCP of Tennessee are commonly found within the same elevation ranges. The 

study area lies within 9 topographic quadrangles of Fentress and Pickett counties, Tennessee: 

Burrville, Grimsley, Jamestown, Moody, Pall Mall, Riverton, Sharp Place, Stockton, and Wilder. 

Ten meter Digital Elevation Models (DEMs) were downloaded for each quadrangle and 

mosaicked together to make a single continuous elevation surface (Figure 6).  

Slope and Curvature. Two other P2 model variables include slope and curvature. These 

variables were included because the locations of rock shelters exhibit specific characteristics of 

the landscape. Gorge shelters (instead of upland shelters) like the ones in this study are 

commonly found in areas with a higher degree of slope than the rest of the landscape. Further, it 

is possible that a specific type of landform curvature (convex vs. concave surfaces) would help 

identify where rock shelters naturally form. Slope and Curvature tools available in ArcMap 10 

(ESRI 2011) were used to generate raster surfaces from the mosaicked DEMs. Both tools 

calculate values on a cell-by-cell basis using the 8 surrounding cells (a 9-by-9 rectangle 

neighborhood). The Slope tool calculates the rate of change in elevation values for a given 

surface, either in degrees or percent rise (Figure 7). Curvature is calculated by taking the second 

derivative of the surface, or the slope-of-the-slope. A positive value indicates an upwardly 

convex surface (e.g. a hill or mound), and a negative value indicates an upwardly concave 

surface (e.g. a depression).  The curvature units are expressed as one hundredth (1/100) of the 

corresponding z-unit—in this case, the z-unit is a degree.  
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Figure 5: Raster Surface of the Elevation P1 Model Variable. A mosaicked elevation surface for the study area using digital elevation 

models from 9 topographic quadrangles in Fentress and Pickett Counties, Tennessee—tilted and rotated with a vertical exaggeration of 

3 applied to show relief. The study area is approximately 34km wide and 41km long (see Figure 4 for scale).  
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Figure 6: Raster Surface of the Slope P1 Model Variable. The mosaicked elevation surface (see Figure 5) was used to generate a slope 

surface for the study area. The areas with the highest degree of slope (in red) are where the plateau surface drops off into the deep 

gorges and ravines; this is characteristic of the western escarpment portion of the UCP and where a majority of rock shelters are 

found. 

 

° 
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Geology. Five of the preliminary P2 model variables relate to the geology of the UCP of 

Tennessee. Rock shelters generally occur in specific geologic units and these variables will most 

likely be powerful predictors in isolating where rock shelters (site or non-site) might be located. 

Geologic formations on the UCP range from sandstone conglomerates to shale to limestone 

(Table 3). Most of the rock shelters in the study area occur in the sandstone conglomerate types, 

though some are found in shale and limestone. The relationship between rock shelter occurrence 

and geologic formation is of interest here.  

The Tennessee geology polygon layer was clipped in order to isolate only the study area. 

Then the polygon layer was converted to a raster using the formation name as the ID for each 

cell. This categorical layer would normally be included in a predictive model as is since it 

represents classes or categories of a specific geologic formation (Figure 7). However, the spatial 

logistic regression function in R (R Core Team 2012) is unable to handle categorical rasters. To 

convert categorical rasters into usable variables, percentage rasters were created for each class. 

Using the Reclassify tool, a Boolean raster was made for each geologic formation where 1 

equaled the formation of interest and 0 equaled the other formations. The raster was then 

multiplied by 100 so that each raster would represent a percentage. The Focal Statistics tool was 

used to calculate the mean of a 3-by-3 rectangle neighborhood around each cell. The resulting 

raster represented the percent of a specific geologic formation found in each cell using a 3-by-3 

neighborhood (Figure 8). This method best represents the original vector data and uses the same 

cell resolution as the other data sets.  
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Table 3: Descriptions of the Common Geologic Units present on the UCP. The descriptions were 

taken from the East-Central sheet of the geologic map of Tennessee ((Hardeman, Miller, and 

Swingle 1966). Additional information specific to the project area was added from (Wilson, Jr., 

Jewell, and Luther 1956). 

 

 

Formation Name Brief Description 

Rockcastle Conglomerate (Pr)  Conglomeratic sandstone and sandstone, gray to brown, fine-coarse-

grained. Thin coal bearing shale locally present near middle. 

Thickness 150-220 feet.  

Fentress Formation (Pf) Mostly dark-gray to light-brown shale, with minor siltstone and 

sandstone. Wilder Coal near middle. Laterally equivalent to entire 

Gizzard Group and all of Crab Orchard Mountains Group below 

Rockcastle Conglomerate. Thickness as much as 340 feet. The name 

“Fentress Formation” is used only where the Sewanee Conglomerate 

and other recognizable constituent formations are not mappable—for 

the UCP, this means the northwestern portion of the study area.  

Sewanee Conglomerate (Pco) Conglomeratic sandstone and sandstone, gray to brown, fine- to 

coarse-grained. Thickness as much as 200 feet, average about 100 

feet. One of the most consistent units of the Fentress Formation on 

the Cumberland Plateau (except in the northwest where it is almost 

completely absent).  

 

Pennington Formation (Mp) Reddish and greenish shale and siltstone; fine-grained dolomite; 

dark-gray limestone; and thin-bedded sandstone. Persistent dolomite 

bed at base. Thickness 150-400 feet. 

Bangor Limestone & Hartselle 

Formation (Mbh) 

Bangor Limestone: Dark brownish-gray limestone, thick-bedded. 

Thickness 70-400 feet. 

 

Hartselle Formation: Thin-bedded, fine-grained sandstone 

interbedded with gray shale; with oolitic and coarse-grained 

limestone beds locally. Thickness 0-80 feet. 

Monteagle Limestone (Mm) Mainly fragmental and oolitic, light-gray limestone; blocky 

bryozoan chert weathers from base. Thickness 180-300 feet. 

St. Louis Limestone &  

Warsaw Limestone (Msw) 

St. Louis Limestone: Fine-grained, brownish-gray limestone, 

dolomitic and cherty. Thickness 80-160 feet. 

 

Warsaw Limestone: Mainly medium- to coarse-grained, gray 

limestone, crossbedded. Includes much calcareous sandstone and 

shale to the north. Thickness 100-130 feet. 

Fort Payne Formation (Mfp) Calcareous and dolomitic silicastone; contains bedded chert, cherty 

limestone, and shale: scattered crinoidal limestone lenses. Thin green 

shale (Maury) at base. Thickness 100-275 feet. 
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Figure 7:  Geology of the UCP of Tennessee. The information in this map is based solely on the 

GIS data. Rock shelters mainly occur in the Rockcastle Conglomerate and Fentress Formation 

though the Sewanee Conglomerate is somewhat exposed in the southern portion of the study area 

(modified after Hardeman, Miller, and Swingle 1966).  
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0 0 0 0 1  0 0 0 0 100     

0 0 0 1 1  0 0 0 100 100  0% 22% 55% 

0 0 0 1 1  0 0 0 100 100  33% 55% 77% 

1 1 1 1 1  100 100 100 100 100  66% 77% 88% 

1 1 1 1 1  100 100 100 100 100     

A  B  C 

Figure 8: Converting Boolean Rasters into Percentage Surfaces Using Geologic Formations. The 

geologic variables could not be included in the model as categorical variables and were thus 

converted to percentage rasters. This process involves 3 main steps. First, a binary raster was 

created for each geologic formation where 1 equaled the formation of interest and 0 equaled the 

other formations (A). Then the raster was multiplied by 100 using the Raster Calculator (B). 

Finally, the Focal Statistics tool was used to calculate the mean of a 3-by-3 rectangle 

neighborhood around each cell creating a raster that represents the percent of a specific geologic 

formation found in each cell (C). In a percentage raster such as this, most cells equal either 100% 

or 0%. However, the boundaries of each formation are captured by increasing and decreasing 

percentage values as see in C.  

 

This process was executed for each geologic formation. Most of the cells in each raster 

equaled either 0% or 100% (indicating complete absence or complete coverage). However, the 

formation boundaries were captured by decreasing and increasing percentages. A total of 5 

variables were created using the process outlined above: Percent of Bangor Limestone and 

Hartselle Formation (Mbh), Percent of Monteagle Limestone (Mm), Percent of Pennington 

Formation (Mp), Percent of Fentress Formation (Pf), and Percent of Rockcastle Conglomerate 

(Pr).Figure 9 shows the raster surfaces for all 5 geologic variables; although each looks binary, 

they are continuous surfaces as demonstrated by Figure 8. 
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Figure 9: Raster Surfaces of the Five Geologic P1 Model Variables. (A) Bangor Limestone & Hartselle Formation; (B) Monteagle 

Limestone; (C) Pennington Formation; (D) Fentress Formation; and (E) Rockcastle Conglomerate. Though these surfaces are not 

binary, they can be viewed as such—the white represents where the formation is present and the black represents the presence of other 

geologic units.  

 

A B 

E D 

C 

20 Km  
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Soil. Two soil surveys have been conducted in the study area and information from these 

were acquired from Soil Survey Geographic (SSURGO) Databases (Soil Survey Staff 2009, 

2011). Both spatial and tabular data were downloaded: the soil survey polygon layers and the 

accompanying National Soil Information System relational databases. The 2 soil polygon layers 

were first merged to create 1 shapefile, creating a GIS layer with 6,848 polygons representing 74 

different soils series. The accompanying databases provided information on the mapped soil 

series and their various properties. For this project, soil data were used as a proxy for generating 

model variables that might be important for isolating where rock shelters naturally form and for 

identifying resources that might have been important in prehistoric rock shelter selection. Tables 

for physical soil properties and forestland productivity were used to generate 2 P1 model 

variables, Average Soil Thickness and Potential for Soil Erosion, and 1 P2 model variable, 

Average Potential Volume of Wood Fiber.  

The physical soil properties table includes measurements of soil depth and erosion. Soil 

depth is indicated by the upper (surface of the layer) and lower (restrictive layer or bedrock) 

boundaries of each soil series. The thickness of a soil series may indicate where rock shelters 

would be located because a thinner series indicates near-surface or exposed bedrock. The erosion 

factor Kw indicates the erodibility of the soil; the estimated Kw values range from 0.02 to 0.69 

where the higher values indicate increased vulnerability to erosion by water (Soil Survey Staff 

2009, 2011). This indicates that rock shelters might tend to occur in areas with less potential for 

soil erosion because of the absence of floodplains or terraces. 

The Forestland Productivity table is meant to aid forestland owners and managers by 

reporting the estimated potential productivity of each soil for wood crops (Soil Survey Staff 

2009, 2011).The potential volume of wood fiber for each soil is based on the “important” tree 
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species present and is expressed as cubic feet per acre per year. Because the number of tree 

species varies by soil, the average volume of wood fiber was estimated. The potential for wood 

fiber in an area might have been important to prehistoric peoples as a resource for gathering 

wood. 

New fields for soil thickness, soil erosion (Kw factor), and average potential volume of 

wood fiber were added to the attribute table of the soil polygon layer; values for each were added 

by soil series. A raster surface was created for each of the 3 new fields using the Polygon to 

Raster tool. Thus 3 more variables were created: Soil Thickness (Figure 10), Soil Erosion, 

(Figure 11), and Average Potential Volume of Wood Fiber (Figure 12).  
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Figure 10: Raster Surface of the Average Soil Thickness P1 Model Variable.This raster surface 

represents the average soil thickness of 74 different soil series on the UCP of Tennesse. The 

thickness series are located in the bottom of the ravines/gorges close to river terraces (though the 

rivers appear blue in this raster surface because water has a average thickness of 0). The thinnest 

series then are located on the top of the plateau where bedrock may be near surface or exposed. 

 



90 

 

 

Figure 11: Raster Surface of the Potential for Soil Erosion P1 Model Variable. The potential for 

soil erosion is highest in floodplain/river terrraces such as those found in the bottom of the gorge 

and on the upper portions of plateau. Areas around the bluff lines in the gorges have the lowest 

potential for soil erosion. Areas of “no data” are displayed in white.  
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Figure 12: Raster Surface of the Average Potential Volume of Wood Fiber P2 Model Variable. 

The highest potential volume of wood fiber occurs in and around the top of the gorges and on the 

top of the plateau. Areas along the bottom of the gorge (though not the river terraces) have the 

lowest potential. Areas of “no data” are displayed in white. 
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Solar Radiation. As discussed in the introduction of this thesis, the amount of solar 

radiation a location receives has been suggested as a possible factor contributing to differential 

site selection. Therefore, it is important to incorporate variables reflecting solar radiation into the 

model. The Solar Radiation toolset provides tools for performing solar radiation analysis over a 

geographic area for specified time periods or increments. The Area Solar Radiation tool produces 

insolation maps for a geographic area by calculating the insolation across an entire elevation 

surface (ESRI 2011). Several time configuration options are available (i.e., within a day, multiple 

days in a year, whole year). Also, additional surfaces can be generated such as a Direct Duration 

raster surface; this raster represents the total duration, in hours, of direct incoming solar 

radiation.  Two variables were created using the Area Solar Radiation tool: Annual Solar 

Radiation and Direct Duration of Incoming Solar Radiation.  

The Annual Solar Radiation variable was generated using the Area Solar Radiation tool 

in ArcMap 10.0 (ESRI 2011). This tool uses the DEM surface (e.g. the elevation raster surface 

shown in Figure 5) to calculate the amount of solar radiation a location receives based on 

geographic location (latitude).The resulting raster surface represents the amount of solar 

radiation a location receives within a year. The Solar Radiation toolset was also used to generate 

another raster surface representing the total hours per year that a location receives direct 

incoming solar radiation and thus the Direct Duration of Incoming Solar Radiation variable. This 

variable was generated in the same way and using the same input data as the Annual Solar 

Radiation variable. These variables reflect 2 ways in which solar radiation can be measured—in 

energy or time. Both variables were initially included in the model in order to see which might 

be significant in the P2 model.  The rasters surfaces for both solar radiation variables are shown 

in Figure 13. 



93 

 

 

  
 

Figure 13: Raster Surfaces of the Solar Radiation P2 Model Variables. The Annual Solar Radiation (left) and Direct Duration of 

Incoming Solar Radiation (right) variables both measure the amount of solar radiation a location receives based on its elevation and 

geographic location (latitude). 
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Aspect. Another common variable used in archaeological site location modeling is 

aspect; this variable has also been explored in other studies of prehistoric rock shelter selection 

(Hall and Klippel 1988; Mickelson 2002; Langston and Franklin 2010). Aspect is the compass 

direction of the slope and is considered circular data because large values are next to low values 

(i.e., 359 degrees and 1 degree both represent approximately north). For this reason, aspect 

values need to be transformed to a linear scale. Aspect can be transformed to an aspect value 

using trigonometric functions (Hartung and Lloyd 1969: 180; Roberts 1986: 125). Using the 

elevation surface of the project area, an aspect map was generated using the Aspect tool in the 

Surface toolset (ESRI 2011). Two aspect value variables were created to measure the amount of 

“northness” (Equation 6) and the amount of “eastness” (Equation 7) of each location in the 

project area.  

   Northness = cos (aspect angle) Equation 6 

   Eastness = sin (aspect angle)  Equation 7 

For “northness”, values close to 1 represent aspects generally northward, values close to -1 

represent southward aspects, and values close to 0 represent either east or west. “Eastness” is 

very similar with values close to 1 indicating more east-facing slopes, values close to -1 

indicating more west-facing slopes, and values close to 0 represent either north or south.  The 

Raster Calculator was used to take the cosine and the sine of the aspect surface in order to create 

2 new rasters for the variables of Northness and Eastness.  

Shelter. In an effort to identify cliff dwellings in the southwestern region of the US, 

Kvamme (1984: 354; 1988: 335–337) developed an index to measure the shelter or exposure of a 

location. The index (known as the rim, exposure, or shelter index) is generated by passing an 

imaginary cylinder over an elevation surface, where the height is set at 20 meters above the 
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ground surface and the radius depends on the study area (Kvamme 1988: 335–337).  The 

computed volume of the cylinder provides an index for measuring shelter (Figure 14). For 

example, a site located on an exposed ridge (Figure 14B) would increase the height and therefore 

the volume of the cylinder. On the other hand, a site located in a horseshoe-shaped canyon (like 

those found on the UCP) or a valley (Figure 14A) would decrease the height and volume of the 

cylinder.  

 

 

 

 

 

 

 

 

         

  

Figure 14: Measuring the Amount of “Shelter” using an Imaginary Cylinder. This figure is an 

example of how the amount of shelter varies for different topographic positions: (A) an 

archaeological site located in a valley; (B) an archaeological site located on a hilltop; and (C) an 

archaeological site located in a flat, open area. The amount of shelter/exposure of these locations 

is measured by first calculating the volume of an imaginary cylinder over each of the locations. 

Then, using a digital elevation model (DEM), the volume of the DEM within the cylinder (the 

green area) is calculated. Because the cylinder is set at a constant height above each of the 

locations, the amount of shelter/exposure (the blue area) is calculated by subtracting the volume 

of the DEM within the cylinder (the green area) from the volume of the entire cylinder. (A) 

Sheltered; (B) Intermediate; and (C) Exposed.  

 

DEM Surface 

Imaginary Cylinder 

A B C 

Archaeological Site 
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For the Pogue Creek Model, 3 shelter indices were created using 100, 300, and 1000 

meter radii to explore the effects of a range of scales from local to regional. Figure 15 outlines 

the steps executed using the Raster Calculator and Focal Statistics tool to generate the 3 shelter 

indices: Shelter Index at 100m, 300m, and 1000m (Figure 16). 

 

 

 

 

Raster Calculator: Subtract the volume of te DEM from the volume of the cylinder 

Expression: CylVol-DEMvol Output = 100mShelter 

Focal Statistics: Calculate DEM volume within a 100 meter radius 

Input = DEM Neighborhood: 100m; Statistic Type: SUM Output = DEMvol 

Raster Calculator: Compute cylinder volume by multiplying the area of the circle by the DEM+20 meters (cylinder height) 

Expression: ("DEM" + 20) * "100mCircle" Output = CylVol 

Focal Statistics: Calculate the area of a circle with a radius of 100 meters for  

Input = All_One  Neighborhood: 100m Circle; Statistic Type: SUM  Output = 100mCircle 

Raster Calculator: Create a raster (same extent as DEM surface) with all values equal to 1 

Expression: ("DEM" * 0) + 1 Output = All_One 

Figure 15: Flowchart for Generating a Shelter Index at 100 meters. This flowchart details the 

workflow process for generating a Shelter Index with a 100m radius in ArcMap 10 (ESRI 2011). 

This process was modified after Campbell (2006: 55). 
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Figure 16: Raster Surfaces of the Three Shelter P2 Model Variables. Three raster surfaces were generated that indicate whether a 

location is sheltered/exposed when compared to other locations within a given radius. Generating shelter indices using different radii 

demonstrates the difference in assessing shelter/exposure of a location on a local, intermediate, or regional scale.    

Shelter Index at 100m Shelter Index at 300m Shelter Index at 1000m 
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Terrain Texture. The variance (  ) of elevation within a specified neighborhood can 

suggest whether a terrain is variable and dissected or if it is more smooth and level (Kvamme 

1988: 333–334). High values indicate more variation in the terrain roughness while low values 

indicate more smooth terrain.  Using the study area DEM surface, the Focal Statistics tool was 

used to calculate the standard deviation of elevation values within a 3-by-3 rectangle 

neighborhood. The Raster Calculator was then used to square the standard deviation raster and 

produce an elevation variance surface. The final elevation variance surface represents a measure 

of terrain texture for every cell in the study area. The raster surface for the Terrain Texture 

variable is shown in Figure 17. 

Cost Surface Calculation. Several model variables were generated to represent the “cost” 

of travelling from one location to another on foot. On the UCP, one of the main factors affecting 

mobility across the landscape is slope. Prehistoric hunter-gatherers would have needed to 

traverse the gorges and plateaus on a daily basis and may have chosen where to live based on 

ease of access to available resources (e.g. water, food, trails leading out of the gorges). Modeling 

the effect of slope using cost functions provides a more accurate analysis of the time/distance 

traveled from one location to another than using Euclidean (straight line) distance alone. The 

Cost Distance tool calls for a cost raster and source feature layer. The source feature layer is the 

resource (such as a streams polyline layer) for which the accumulated cost distance is calculated. 

The cost raster represents the cell-by-cell cost of moving through or past that cell. 

  



99 

 

 

Figure 17: Raster Surface of the Terrain Texture P2 Model Variable. This raster represents the 

variation in terrain roughness on the UCP based on elevation and extreme changes in relief. 

While a majority of the study area is indicative of a more smooth terrain, “rough” areas e ist 

around the top of gorge and the edges of the steep escarpment as well as along some of the 

stream/river channels and drainages.  
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The slope raster previously created was converted to a cost raster using Gorenflo and 

Gale’s (1990) equation for modeling the effect of slope on the speed of walking (Equation 8).  

v= 6 exp {-3.5 abs |S + 0.05|}  Equation 8 

  Where: 

   v= walking speed in km/hr 

   S= slope (in degrees) 

According to Tobler (1993), the estimated average walking velocity for on-path travel is 5km/hr. 

Off-path travel is calculated by multiplying the walking velocity by   ⁄  (= 0.6). The Raster 

Calculator was used to insert the slope raster into the above equation. The Raster Calculator was 

used again to multiply the walking velocity raster by 0.06 which is the conversion rate for 

kilometers per hour to minutes per meter (1 m/min = .06 km/hr). This was done so that the final 

cost distance variables would represent the amount of time in minutes required for travel to the 

source features. The initial slope cost raster  however, indicates the walking velocity associated 

with travelling through that cell (location) given the effect of slope in mountainous terrain; this 

raster was used to generate cost surfaces for 8 model variables (see Table 2, page 66) 

Proximity to Vegetation Zones. Tables listing tree and plant species commonly found in a 

given soil class were also available in the National Soil Information Databases (Soil Survey Staff 

2009, 2011). Modern soil surveys can be used as a proxy for determining food sources that might 

have been present in prehistoric times. Of relevance to this project are nut and fruit-bearing 

trees/plants that would have served as food resources for humans and/or animals alike. 

Depending on their properties and features, different soils can support different tree and plant 

species. Three genera were identified as potentially significant food resources: Quercus (oak), 

Carya (hickory), and Juglans (walnut). Five Quercus species were present in the study area: 
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Chestnut Oak, Northern Red Oak, Southern Red Oak, White Oak, and Scarlett Oak. Two species 

of Juglans, Juglans nigra (Black walnut) and Juglans cinerea (Butternut) occur in the area, 

though they are not widespread. Lastly, Carya was mainly identified at the genus level. 

“Supporting zones” were determined for the different vegetation types by creating polygon 

layers for each of the 5 individual Quercus species, 1 for Juglans species, and 1 for Carya 

species using the soil classes where they commonly occur as a proxy. After creating the polygon 

layers, cost distance surfaces were generated using the previously discussed slope cost raster. 

The final cost distance rasters represent the time required to access supporting zones of different 

species of oak, walnut, and hickory. These zones have the potential to represent a direct (i.e., 

gathering nuts for human consumption) or indirect (i.e., to hunt game) food resource for 

prehistoric hunter-gatherers.  Thus, 7 more variables were added: Cost Distance to Supporting 

Zones of Chestnut Oak (Figure 19), Northern Red Oak (Figure 20), Southern Red Oak (Figure 

21), White Oak (Figure 22), Scarlett Oak (Figure 23), Walnut (Figure 24), and Hickory (Figure 

25). 
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Figure 18: Raster Surface of the Cost Distance to Chestnut Oak P2 Model Variable. This raster 

surface represents the amount of time it takes to reach a “supporting zone” of Chestnut Oak. The 

dark blue areas are where the original “supporting zones” are located; as the color ramp 

progresses from dark blue to yellow to red, the time (and thus cost distance) to reach the 

boundaries of the “supporting zones” increases.    
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Figure 19: Raster Surface of the Cost Distance to Northern Red Oak P2 Model Variable. This 

raster surface represents the amount of time it takes to reach a “supporting zone” of Northern 

Red Oak. The dark blue areas are where the original “supporting zones” are located; as the color 

ramp progresses from dark blue to yellow to red, the time (and thus cost distance) to reach the 

boundaries of the “supporting zones” increases.   As the raster surface indicates, Northern Red 

Oak is widespread in the study area. 
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Figure 20: Raster Surface of the Cost Distance to Southern Red Oak P2 Model Variable. This 

raster surface represents the amount of time it takes to reach a “supporting zone” of Southern 

Red Oak. The dark blue areas are where the original “supporting zones” are located; as the color 

ramp progresses from dark blue to yellow to red, the time (and thus cost distance) to reach the 

boundaries of the “supporting zones” increases.   Based on this raster surface, Southern Red Oak 

appears to be limited to the gorge/ravine bottoms and some portions of the upper plateau area. 
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Figure 21: Raster Surface of the Cost Distance to White Oak P2 Model Variable. This raster 

surface represents the amount of time it takes to reach a “supporting zone” of White Oak. The 

dark blue areas are where the original “supporting zones” are located; as the color ramp 

progresses from dark blue to yellow to red, the time (and thus cost distance) to reach the 

boundaries of the “supporting zones” increases. White Oak is perhaps the most common and 

widespread Oak species found in the study area, as evident from this raster surface.    
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Figure 22: Raster Surface of the Cost Distance to Scarlett Oak P2 Model Variable. This raster 

surface represents the amount of time it takes to reach a “supporting zone” of Scarlett Oak. The 

dark blue areas are where the original “supporting zones” are located; as the color ramp 

progresses from dark blue to yellow to red, the time (and thus cost distance) to reach the 

boundaries of the “supporting zones” increases. Scarlett Oak appears to be restricted to the 

eastern portion of the study area in the highest elevations. 
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Figure 23: Raster Surface of the Cost Distance to Walnut P2 Model Variable. This raster surface 

represents the amount of time it takes to reach a “supporting zone” of Walnut. The dark blue 

areas are where the original “supporting zones” are located; as the color ramp progresses from 

dark blue to yellow to red, the time (and thus cost distance) to reach the boundaries of the 

“supporting zones” increases. Walnut is widespread in the western portion of the study area 

around the Cumberland Escarpment. 
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Figure 24: Raster Surface of the Cost Distance to Hickory P2 Model Variable. This raster surface 

represents the amount of time it takes to reach a “supporting zone” of Hickory. The dark blue 

areas are where the original “supporting zones” are located; as the color ramp progresses from 

dark blue to yellow to red, the time (and thus cost distance) to reach the boundaries of the 

“supporting zones” increases. Hickory is common in the Escarpment portion of the UCP and it 

does not appear to occur in some of the eastern portion of the uplands. 
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Proximity to Water Sources. The availability of water was and continues to be an 

important resource for humans. Using the slope cost raster and hydrography data, a cost distance 

raster was created to indicate the amount of time in minutes it would take to reach a viable (in 

this case, perennial stream) water source (Figure 26). However, the resulting calculations are not 

completely accurate due to the many unmapped seeps, springs, waterfalls, and intermittent 

(seasonal) streams in the region.  

 

Figure 25: Raster Surface of the Cost Distance to Water P2 Model Variable. The dark blue lines 

represent the actual blue-line streams. As the color ramp progresses from dark blue to yellow to 

red, the time (and thus cost distance) to reach a water resource increases.   
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Raster Extraction 

 Each of the 27 raster surfaces generated as explanatory variables covered all 9 

topographic quadrangles of the UCP. Because the model will be developed using the Pogue 

Creek data and tested using the East Obey data, rasters for each variable were extracted for each 

survey area. Two vector data layers were created to represent the survey boundaries of Pogue 

Creek and the East Obey (see Figure 4, page 74). The Pogue Creek survey boundary layer was 

created by digitizing the general outline of the proposed Pogue Creek State Natural Area 

(Langston and Franklin 2010). For the East Obey, there was no pre-defined survey area so an 

arbitrary survey boundary was assigned for the Wilder and Grimsley quadrangles (Franklin 

2002). The 2 boundaries were used as masks to extract only the raster values for the 

corresponding survey area. Altogether there are 3 datasets representing the 28 preliminary model 

variables for a total of 84 raster surfaces: the UCP, Pogue Creek, and East Obey. 

Data Standardization 

 All rasters for each dataset (the UCP, Pogue Creek, and the East Obey) were individually 

standardized on a scale of 0 to 1 using the Raster Calculator. With 27 possible model variables, 

there are many different measurement units and all on different numerical scales (see Table 2, 

page 78); standardizing the rasters made them unitless and all on the same scale. More 

importantly, standardizing the rasters allowed a direct comparison of regression coefficients for 

an individual study area. This was important for discussing the possible significance of variables 

in relationship to the site selection by prehistoric peoples. However, the standardized rasters and 

regression coefficients cannot be directly compared for the 2 separate study areas. 
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Preliminary Statistical Analysis  

 After the raster surfaces were created for the explanatory variables, some preliminary 

statistical analyses were performed to determine the final candidate variables for running the 

spatial logistic regression. The Pogue Creek data (rasters and point data) were used to conduct 

the preliminary statistical analysis and to develop the UCP model, while the East Obey data were 

used to evaluate model performance. 

Goodness-of-fit 

A goodness-of-fit test establishes whether or not an observed distribution differs from a 

theoretical distribution. The Kolmogorov-Smirnov test is one example of a goodness-of-fit test 

with a null hypothesis that samples are drawn from the same distributions. Tests such as this are 

appropriate for determining whether a variable should be a candidate for a model because an 

explanatory variable with similar distributions for sites and non-sites would not be a good 

predictor of potential site locations. Similar to traditional statistical programs, the Kolmogorov-

Smirnov test is available in R (R Core Team 2012), though as a pixel-based function (Berman 

1986; Baddeley et al. 2005). The kstest.ppm function is executed using 4 (internal) steps:  

(1) the original data points (e.g., sites) are extracted from the model and the observed distribution 

is determined by collecting the values of the covariate at those points; (2) the predicted 

distribution is computed by evaluating the values of the covariate at all locations and putting 

them together in a cumulative distribution function; (3) the observed distribution is transformed 

on a scale of 0 to 1 using the cumulative distribution function; (4) the null hypothesis is rejected 

if the transformed numbers are not independent and identically distributed (i.i.d.) uniform 

random numbers (Baddeley and Turner 2005; Baddeley and Turner 2012: 416). The code used to 

execute the kstest.ppm function is shown below 
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>kstest(X, covariate) 

>plot(kstest(X, covariate) 

where “X” is a point pattern file (i.e., site presence data) and the “covariate” is a spatially-

referenced pixel image (i.e., rasters representing the explanatory variables). The first command 

returns the basic results of the test such as the p-value while the second command plots the 

observed and predicted distributions (Baddeley and Turner 2005; Baddeley and Turner 2012). 

The kstest.ppm (and many other functions in R) requires that the explanatory variables (or 

covariates) be converted into an image file. The raster surfaces for the candidate explanatory 

variables were converted to TIFFs in ArcMap 10.0 (ESRI 2011); those were subsequently added 

to the workspace in R (R Core Team 2012) and converted to image files. Following conversion, 

all 27 preliminary explanatory variables were tested using the kstest.ppm function; p-values 

and plots were generated for each.   

Multicollinearity 

Following the goodness-of-fit tests, the remaining explanatory variables were tested for 

multicollinearity. When two or more variables are exact or near exact linear functions of each 

other, multicollinearity is present in the dataset. Multicollinearity in a regression equation can 

produce inaccurate regression coefficients because highly correlated variables cause redundancy 

in the model. Explanatory variables were checked for correlation within each model group (P1 

and P2) using the Band Collection Statistics tool in ArcMap 10.0 (ESRI 2011). 

Candidate Variables 

 After performing goodness-of-fit tests and checking for multicollinearity, the remaining 

variables are considered candidate variables for the spatial logistic regression model. To assess 
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model stability and consistency, traditional logistic regression and spatial dependence models 

were developed and compared to the spatial logistic regression model.   

Site Absence Data 

Both site (presence) and non-site (absence) data are needed to conduct the final steps of 

preliminary statistical analysis. The site presence data, the 125 Pogue Creek rock shelters, were 

discussed at the beginning of this chapter. Ideally, site absence data would include recorded rock 

shelter locations where no cultural material was identified. However, sterile shelters were not 

recorded on a routine or systematic basis during the Pogue Creek survey; shelters recorded as 

non-sites were not always shovel-tested to see if cultural materials lay beneath the surface. 

Because these data could not be verified with any certainty, site absence data (n=125 points) 

were generated using a random point generator. The site presence and absence layers were 

merged together to make a single shapefile. The values of the 27 standardized raster surfaces (the 

preliminary explanatory variables) for Pogue Creek were extracted to the site presence and 

absence point locations. The attribute tables for the site presence/absence data were exported 

from ArcMap 10.0 (ESRI 2011) and used to test for spatial autocorrelation. They were later used 

to run a logistic regression in SPSS (IBM Corp 2011) and a spatial error model in GeoDa 

(Anselin et al. 2006) as a means of comparison with spatial logistic regression. 

Spatial Autocorrelation 

  In the previous chapter, some common types of regression-based approaches used in site 

location modeling were discussed with emphasis on determining an appropriate model for the 

UCP dataset. It was determined that a spatial logistic regression model would be the best 

approach because of the categorical response variable (site presence vs. site absence) and 

because it would capture the underlying spatial dependence present in most archaeological 
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datasets. The presence of spatial dependence was determined by testing the Pogue Creek data for 

spatial autocorrelation; this is usually the first step in choosing whether or not a spatial model is 

needed in place of an aspatial model such as traditional logistic regression. Spatial 

autocorrelation, in this case, would mean that the location of a known rock shelter site is 

dependent on the location of other nearby sites—the observations (sites) are not spatially 

independent of each other. If a dataset is spatially autocorrelated, the regression assumption of 

independence of observations is violated; an aspatial regression approach could then lead to 

inaccurate coefficients and unreliable results. A common way to test for spatial autocorrelation is 

to examine the residuals of a linear regression such as OLS (Ward and Gleditsch 2008).  The 

Pogue Creek site presence and absence data were tested for spatial autocorrelation using both 

ArcMap 10.0 (ESRI 2011) and the open source program GeoDa (Anselin et al. 2006). The local 

Moran’s I value of 0.0349 was significant at p-value = 0.003. Even though this indicates a low 

degree of spatial autocorrelation, it is still significant. After determining that the Pogue Creek 

data were spatially autocorrelated, a spatial approach was adopted and the model development 

process was modified accordingly.  

Spatial Logistic Regression Model 

 Because the Pogue Creek data were spatially autocorrelated and the response variable is 

categorical, neither traditional logistic regression nor spatial dependence models were 

appropriate for generating the UCP model. Therefore, spatial logistic regression was used to 

develop and test the UCP site location model using the slrm.ppm function (Baddeley et al. 

2010) in the statistical program R (R Core Team 2012). The slrm.ppm function requires 2 

types of inputs: the geographic locations of the site presence data and image files for each 
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explanatory variable. Three functions were used to run the spatial logistic regression model 

(SLRM) and generate the regression coefficients and significance values: 

1.  >slrm(PresData ~1 + Variable1 + Variable2 + …) 

2.  >print(P1Model) 

3.  >anova(P1Model, test=”Chi”) 

The first function uses the site presence data and the image files for each explanatory variable to 

run a binary logistic regression. The second function prints the regression coefficients and the 

third function generates the significance values for each explanatory value. The P1 and P2 

models were run separately; regression coefficients and significance values were generated for 

each model. The explanatory variables and corresponding SLRM coefficients were entered into 

the Raster Calculator using the spatial logistic regression equation (see Equation 5, page 68). 

Three potential surfaces were generated for the UCP: the P1 static model, the P2 dynamic model, 

and finally, the P3 cumulative model. The geometric interval classification method (ESRI 2011) 

was then used to classify the raster values into 5 categories of archaeological potential: very low, 

low, moderate, high, and very high.  

Comparing Model Approaches 

 Though spatial logistic regression was used to generate the UCP model, it is important to 

empirically demonstrate the advantages of using spatial logistic regression over more traditional 

approaches. The candidate variables were used to run a logistic regression in SPSS (IBM Corp 

2011) and a spatial error model in GeoDa (Anselin et al. 2006) so that regression coefficients and 

significance values could be compared for all 3 approaches.  
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CHAPTER 6 

RESULTS 

 

 This chapter provides the results of both the preliminary statistical analysis and the 

models produced in R (R Core Team 2012), SPSS (IBM Corp 2011), and GeoDa (Anselin et al. 

2006).  The graphic representation (map) of the UCP site location model is also provided. Model 

results will be discussed in the following chapter; only basic results are presented here.  

Preliminary Statistical Analysis 

Goodness-of-fit 

 The Kolmogorov-Smirnov goodness-of-fit tests were run in R (R Core Team 2012) using 

the kstest.ppm function (Berman 1986; Baddeley et al. 2005).  Graphs comparing the observed 

and predicted distributions were generated for all 27 variables (Appendix B).  Five explanatory 

variables were removed from the model because the observed and predicted distributions were 

not significantly different: Percent of Monteagle Limestone (Mm), Soil Thickness, Cost Distance 

to Chestnut Oak, Cost Distance to Scarlett Oak, and Shelter Index at 300m.  

Multicollinearity 

 The variables were tested for correlation within each model group. If 2 or more variables 

were positively or negatively correlated above 0.6, at least 1 variable was removed. The p-values 

of the Kolmogorov-Smirnov tests were used to help decide which variables would be eliminated 

in the event of high correlation. Correlation matrices were generated using the Band Collection 

Statistics tool (Appendix C). Table 4 shows correlations above a 0.6 for both P1 and P2 model 

groups. 
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Table 4: Correlation in the P1 and P2 Models. The Band Collection Statistics tool in ArcMap 10 

(ESRI 2011) was used to check the raster surfaces of the explanatory variables for correlation. 

Correlations above a 0.6 that indicate cases of high correlation are listed.  

 

Correlation of Model Variables 

P1 Variables 

Elevation & Percent of Rockcastle Conglomerate (Pr) 0.82 

P2 Variables 

Solar Radiation & Direct Duration 0.71 

(Cost Distance) Walnut & Southern Red Oak 0.89 

(Cost Distance) Hickory & Walnut 0.87 

 

For the P1 Model, the variables Elevation and Percent of Rockcastle Formation (Pr) were 

correlated at a 0.82. Because the variable Elevation had a lower Kolmogorov-Smirnov p-value 

AND because other geologic formations were retained as candidate variables, the Percent of 

Rockcastle Formation (Pr) variable was removed from the P1 model. For the P2 model group, 

there were several cases of high correlation between variables. The Direct Duration of Solar 

Radiation variable had a more significant Kolmogorov-Smirnov p-value than Annual Solar 

Radiation, so the latter was removed from the model. Also, because Cost Distance to Walnut is 

correlated with 2 other variables, it was removed from the model.   

Candidate Variables 

 After removing variables based on preliminary statistical tests, 19 variables were 

considered candidate variables for inclusion in the UCP model (Table 5). 
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Table 5: Candidate Variables for the UCP Model. After preliminary statistical testing, 7 P1 

variables and 12 P2 variables remain as candidate variables for the UCP model. 

 

P1 Static Variables P2 Dynamic Variables 

Elevation Direct Duration 

Earth Curvature Eastness 

Slope Northness 

Soil Erosion Cost Distance to Northern Red Oak 

Percent of Bangor Limestone & Hartselle Formation (Mbh)  Cost Distance to Southern Red Oak 

Percent of Pennington Formation (Mp) Cost Distance to White Oak 

Percent of the Fentress Formation (Pf) Cost Distance to Hickory 

 Cost Distance to Water 

 Potential Volume of Wood Fiber 

 100m Shelter Index 

 1000m Shelter Index 

 Terrain Texture 

 

Spatial Logistic Regression 

 The slrm.ppm function (Baddeley et al. 2010) was used to run a spatial logistic 

regression in R (R Core Team 2012). The codes used to run the P1 and P2 models are provided 

in Appendix D.  

SLRM Results 

 The results of the spatial logistic regression are divided into sections showing the 

significance values and regression coefficients for the final variables. Seven explanatory 

variables were used to generate the P1, or static, model. By itself (without the dynamic model) 

this model represents the best attempt to identify where any rock shelter (not necessarily a 

prehistoric site) could be located. The P2, or dynamic, model represents factors that might have 

influenced the site selection process by prehistoric peoples. For the P1 model, the variable 
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Percent of Fentress Formation was not captured as significant in predicting site 

presence/absence. Also, for the P2 model, the Eastness and Northness variables were not 

significant and were therefore removed from the dynamic model. Table 6 lists the significance 

values for the final P1 and P2 variables. 

 

Table 6: SLRM Significance Values for P1 and P2 Variables. The significance values of the final 

explanatory variables are listed by model group.   

 

P1 Variables  Significance 

(p-value) 

P2 Variables Significance 

(p-value) 

Elevation 0.004093 Direct Duration <2.2e-16 

Curvature 1.494e-09 CD Northern Red Oak 4.525e-14 

Slope <2.2e-16 CD Southern Red Oak 0.0028734 

Soil Erosion 0.010503 CD White Oak 9.621e-06 

PerMbh 0.007311 CD Hickory 0.0397648 

PerMp 7.051e-06 CD Water 3.696e-05 

  Potential Vol. Wood 3.703e-06 

  100 m Shelter Index 0.0398552 

  1000m Shelter Index 0.0002019 

  Terrain Texture 0.0042453 

 

In archaeological site location modeling (and many other applications of predictive 

modeling), the regression coefficients for each explanatory variable are used to generate the 

graphic, or visual model. Also, because the explanatory variables were standardized on a scale of 

0 to 1, their regression coefficients can be compared to discuss possible links to differential site 
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selection of rock shelters on the UCP. Positive regression coefficients mean that both the 

explanatory and response variable change in value in the same direction, whereas negative 

coefficients represent a change in opposite directions. Similarly, the absolute values of the 

regression coefficients (for the standardized variables only) can be used to directly compare the 

contribution of each variable to the prediction of site presence; high absolute values indicate a 

stronger relationship and vice versa. Table 7 shows the SLRM coefficients for the P1 and P2 

variables. 

 

Table 7: SLRM Coefficients for P1 and P2 Variables. The regression coefficients of the final 

explanatory variables are listed by model group. The P1 and P2 Equation columns indicate how 

each variable is included in the (multiple) regression equation used to generate the UCP model. 

 

P1  

Variables  

Regression 

Coefficient 

P1 

Equation 

P2 

Variables 

Regression 

Coefficient 

P2 

Equation 

Elevation 0.4430579    Direct Duration -3.5815320    

Curvature -4.4996610    CD Northern Red Oak 0.7000523    

Slope 5.0355586    CD Southern Red Oak 2.0731965    

Soil Erosion -2.5550436    CD White Oak 9.1120472    

PerMbh -97.4354671    CD Hickory -7.0056506    

PerMp -3.2240448    CD Water 0.5960222    

   Potential Vol. Wood -3.9423587    

   100m Shelter Index -4.9597100    

   1000m Shelter Index 4.1100522    

   Terrain Texture 3.3754449     
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Archaeological Potential Surfaces 

 The SLRM regression coefficients and the raster surfaces for each of the P1 and P2 

explanatory variables were entered in the Raster Calculator to produce 3 probability surfaces 

(Table 8). After generating the initial model surfaces, the geometric interval classification 

method was used to re-classify the probability surfaces into archaeological “potential” surfaces. 

Altogether, 3 archaeological potential surfaces were generated for the UCP model: the P1 static 

model (Figure 26), the P2 dynamic model (Figure 27), and finally, the P3 cumulative model 

(Figure 28).  

 

Table 8: Equations for Generating Archaeological Potential Surfaces. This table shows how the 

explanatory variables and their spatial logistic regression coefficients were used to generate the 

raster surfaces for the UCP model. The equations were executed using the Raster Calculator in 

ArcMap 10 (ESRI 2011).  

 

P1 (Static) Model Equation 

 1  

 1 + Exp -( log(100) + (Elevation *   ) + (Curvature *   ) + (Slope *   ) + (Potential Soil 

Erosion *   ) + (Percent of Mbh *   ) + (Percent of Mp *   )) 

 

P2 (Dynamic) Model Equation 

 1  

 1 + Exp -(log(100) + (Direct Duration *   ) + (CD Northern Red Oak *   ) + (CD 

Southern Red Oak *   ) + (CD White Oak *   ) + (CD Hickory *   ) + (CD Water *   ) 

+ (Potential Volume Wood *   ) + (100m Shelter Index *   )  + (1000m Shelter Index * 

  ) + (Terrain Texture *    )) 

 

P3 (Cumulative) Model Equation 

P1 * P2 
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Figure 26: P1 (Static) Model of Archaeological Potential for the UCP. This raster surface was 

generated using the final P1 static variables and represents the potential for locating any rock 

shelter, site or non-site. It is important to point out here that only gorge rock shelter locations 

were modeled, and this surface does not indicate where upland shelters (e.g. on top of the 

plateau) would be located. 
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Figure 27: P2 (Dynamic) Model of Archaeological Potential of the UCP. This raster surface was 

generated using the final P2 dynamic variables and represents areas with the potential of finding 

archaeological sites based on factors that may have been important to prehistoric peoples for 

locating residential sites. 
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Figure 28: P3 (Cumulative) Model of Archaeological Potential on the UCP. This raster surface 

was generated by multiplying the raster surfaces of the P1 and P2 models and represents the 

potential for locating prehistoric (gorge) rock shelter sites. This model only applies to rock 

shelters that are located in gorges and along bluff lines but not on the upland portion of the UCP.  
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Model Performance 

 After generating the archaeological potential maps for the UCP, the locations of the 

Pogue Creek and East Obey rock shelters were used evaluate the models performance based on 

the “potential” categories. Also, the percent of total land area within each “potential” category 

was calculated.  Ideally, the high or extremely high categories should cover a relatively small 

portion of the study area. Table 9 is a summary of the UCP model performance for Pogue Creek 

and the East Obey. The Pogue Creek data were used to construct the model and the East Obey 

data were used to test model performance. Eighty-three percent of the East Obey sites were 

correctly classified as falling in the high and very high potential areas which cover 35% of the 

total land area of the UCP. This indicates a model with high performance. Figure 29 shows the 

locations of the Pogue Creek and East Obey rock shelter sites in the potential categories. 

 

Table 9: UCP Model Performance. This table shows the number of known prehistoric rock 

shelter sites from 2 archaeological surveys that fell within each of the archaeological potential 

categories of the UCP site location model  

 

Archaeological 

Potential 

# of Pogue Creek 

Rock Shelters 

(n=125) 

# of East Obey 

Rock Shelters  

(n=77) 

Percentage of total 

known sites 

(n=202) 

Percentage of 

total area 

(UCP) 

Very Low  1 3 2% 48% 

Low  0 0 0% 1% 

Moderate 0 10 5% 16% 

High  49 30 39% 32% 

Very High 75 34 54% 3% 
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Figure 29: Terrain Surfaces of the Pogue Creek and East Obey Survey Areas in the P3 Model. The known prehistoric rock shelter sites 

in the Pogue Creek and East Obey survey areas are shown based on the archaeological potential categories of the final P3 site location 

model.  

 

N 

N East Obey 

Pogue Creek 
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Other Model Approaches 

In addition to the spatial logistic regression model, a binary logistic regression was run in 

SPSS (IBM Corp 2011) and a spatial error model was used to run an OLS regression in GeoDa 

(Anselin, Syabri, and Kho 2006). The significance values and regression coefficients for each 

explanatory variable were compared for the spatial logistic regression (SLRM), traditional 

logistic regression (TLR), and spatial error model (SEM). Full reports of the logistic regression 

and spatial error models are provided in Appendix E and F, respectively.  

Significance Values 

 The significance levels of the final 17 explanatory values used to generate the UCP 

model are provided in Table 10 for comparison purposes; significance values for each model 

approach are in Appendix G. Eight of the 16 explanatory variables were not significant at p = 

0.05 when the traditional logistic regression (TLR) approach was used: Elevation, Percent of 

Bangor Limestone and Hartselle Formation, Direct Duration of Incoming Solar Radiation, Cost 

Distance to Northern Red Oak, Cost Distance to White Oak, Cost Distance to Hickory, Cost 

Distance to Water, and Terrain Texture.  Similarly, the spatial error model (SEM) did not find 8 

variables as significant when compared to the spatial logistic regression model (SLRM):  

Elevation, Curvature, Cost Distance to Northern Red Oak, Cost Distance to White Oak, Cost 

Distance to Hickory, Cost Distance to Water, Average Potential Volume of Wood Fiber, and 

Terrain Texture. Except with 4 variables—Direct Duration of Incoming Solar Radiation, 

Curvature, Percent of Bangor Limestone and Hartselle Formation, Potential Volume of Wood 

Fiber--the TLR and SEM approaches agreed on the significance (or insignificance in this case) 

of the model variables. These results will be discussed further in the next chapter.  
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Table 10: Comparison of Significance Levels by Model Approach. The significance level of each 

explanatory variable within the traditional logistic regression model (TLR), spatial error model 

(SEM), and the spatial logistic regression model (SLRM) is denoted by the number of asterisks: 

1 asterisk indicates that the variable was significant at p=0.05; 2 asterisks indicates significance 

at p=0.01; and 3 asterisks indicates significance at p=0.001.  

 

P1 Variables TLR SEM SLRM 
Elevation - - ** 

Curvature * - *** 

Slope *** *** *** 

Soil Erosion *** *** ** 

PerMbh - * ** 

PerMp ** ** *** 

    

P2 Variables TLR SEM SLRM 

Direct Duration - *** *** 

CD Northern Red Oak - - *** 

CD Southern Red Oak ** * ** 

CD White Oak - - *** 

CD Hickory - - * 

CD Water - - *** 

Potential Vol. Wood ** - *** 

100 m Shelter Index * ** * 

1000m Shelter Index * ** *** 

Terrain Texture - - ** 

    
“-“ p value > 0.05   *p = 0.05     **p = 0.01    ***p=0.001 

 

Regression Coefficients 

 When comparing regression coefficients, 2 things should be considered: the sign (positive 

or negative) and the absolute value. The sign of a regression coefficient corresponds to the 

relationship between the explanatory and response variable and whether or not their values 

increase or decrease together. Comparisons can also be made based on the absolute value of 

regression coefficients—as the absolute value of the coefficient increases, so does the strength of 

the relationship between the explanatory and response variable (and vice versa). Though the 

absolute value of regression coefficients can change with model approach (and are better for 
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comparisons within a model instead of between approaches), the signs should be consistent. The 

regression coefficients for the 3 model approaches are compared in Table 11. 

 

Table 11: Comparison of Regression Coefficients by Model Approach. This table lists the 

regression coefficients from the traditional logistic regression model (TLR), spatial error model 

(SEM), and the spatial logistic regression model (SLRM). The reason for this comparison is to 

look for differences in the coefficient sign (+ or -) between the 3 approaches. Only 1 difference 

was noted and this was for the Cost Distance to Water variable. Parentheses indicate that a 

variable was not significant (at p <0.05).  

 

P1 Variables TLR SEM SLRM 

Elevation (2.508) (0.2262229) 0.4430579 

Curvature -8.473 (-0.7701032) -4.4996610 

Slope 9.212 1.391825 5.0355586 

Soil Erosion -6.513 -0.7874126 -2.5550436 

PerMbh (-49.645) -0.5639221 -97.4354671 

PerMp -3.286 -0.3743277 -3.2240448 

    

P2 Variables TLR SEM SLRM 

Direct Duration (-4.915) -0.9321794 -3.5815320 

CD N. Red Oak (1.802) (0.3230226) 0.7000523 

CD S. Red Oak 4.348 0.374139 2.0731965 

CD White Oak (16.203) (1.783052) 9.1120472 

CD Hickory (-11.512) (-1.102964) -7.0056506 

CD Water ±  (-3.65) (-0.04108933) 0.5960222 

Pot. Vol. Wood -4.450 (-0.655538) -3.9423587 

100 m SI -6.882 -0.6138773 -4.9597100 

1000m SI 5.423 0.7538912 4.1100522 

Terrain Texture (41.356) (0.6904599) 3.3754449 

    

± difference in sign between model approaches 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

 

 In the introductory chapter, 3 research objectives specific to this project were identified: 

1. To determine if the Pogue Creek and East Obey survey data could be used to develop 

and test a predictive model for unsurveyed areas of the UCP; 

2. To determine the possible factors contributing to prehistoric rock shelter selection on 

the UCP; and  

3. To determine whether spatial logistic regression can be proposed as a better 

alternative than traditional statistical models for developing archaeological predictive 

models 

This chapter re-visits each of the 3 research objectives by reviewing the results presented in the 

previous chapter. The discussion of model results focuses on the practical, theoretical, and 

methodological facets of the Upper Cumberland Plateau site location model. First, the different 

“potential” categories (very high, high, moderate, low, and very low) of the UCP model will be 

described using the model variables. In the second section, a few model variables are used to 

discuss site selection factors of the Pogue Creek and East Obey rock shelters. Finally, a 

comparison of the different model approaches is offered along with a discussion on the 

advantages of using spatial logistic regression.  

Practical  

 The graphic representation of the UCP model was presented in the previous chapter (see 

Figure 28, page 124). Now, the different categories of archaeological potential will be discussed 

in terms of the explanatory variables within each model group (P1 and P2); a brief summary of 
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each category is also provided. This discussion focuses on the range and/or average values of the 

explanatory variables in each category (Appendix G). This model “narrative” will offer further 

insight into differential site selection which will be covered in the following section.  

Model Description 

Very High Potential. The “very high potential (VHP)” area of the UCP comprises 

approximately 2.2% of the total overall area. Out of the 202 known rock shelters sites in the 

Pogue Creek and East Obey survey areas, 109 (54%) fall in the VHP areas. This category is 

characterized by an average elevation of 455 meters, though it can range from 198-550 meters. 

The curvature of the landforms are both negative (concave) and positive (convex), though 

concave areas are more common; this is most likely due to topographic depressions associated 

with rock shelter formation. This category has the highest average slope (29°), though there are 

known prehistoric rock shelters in areas with 74° slopes in this category. Overall, the potential 

for soil erosion is lower here than in any of the other categories—this is probably because there 

is very little soil in these areas to begin with. The Bangor Limestone and Hartselle Formation 

(MBH) is not present in this category, and the Pennington Formation (Mp) appears in less than 

1% of the total area inside the VHP category. The main geologic formations present in the VHP 

areas are the Fentress Formation (Pf) and the Rockcastle Conglomerate (Pr), accounting for 50% 

and 49% of the total area, respectively. 

 The VHP areas receive fewer hours of sunlight per year on average (3,225 hours) than 

any of the other categories. In relation to travel time to supporting zones of different oak species, 

the VHP potential areas are further, on average, from Northern Red Oak, Southern Red Oak, and 

White Oak than in the other “potential” areas. In contrast, supporting zones of Hickory are closer 

and take less time to access. Travel time to water sources from VHP areas is greater than in the 
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other categories with an average of 46 minutes. The average volume of wood fiber in the VHP 

areas is 57 ft3/acre—the lowest of the 5 “potential” categories. Lastly, the VHP areas are 

extremely sheltered locally, though when compared to areas within a kilometer, they are 

regionally exposed surfaces.  

 In summary, the VHP area coincide with the bluff lines-- the upper slopes of the gorge. 

These areas occur in the highest slopes (up to 74°) at varying elevations between approximately 

198-550 meters above sea level (masl). These areas are extremely rugged, with minimal soil 

erosion, and lightly forested. Also, these areas are very sheltered within 100 meters—this 

coupled with the high slopes means the least amount of average direct incoming solar radiation 

per year (3,225 hours). As far as geology, the VHP areas mainly occur in the Fentress Formation 

and Rockcastle Conglomerate. Lastly, it takes more time to reach sources of water and zones of 

oak species from the VHP areas than the other 4 categories.   

High Potential. Seventy-nine, or 39%, of the known prehistoric rock shelter sites from 

Pogue Creek and East Obey fall within the “high potential (HP)” area. This category covers 

31.8% of the total study area and has a lower average elevation (442 masl) than the VHP 

category (457 masl). Concave (negative curvature) landforms are still more common than 

convex (positive curvature) areas. There is little difference in measures of soil erosion between 

the VHP and HP categories. However, the average slope decreases from 28° to 16° in the HP 

category. Geologically, the high and very high potential areas are similar except that the presence 

of the Fentress Formation decreases significantly as the Rockcastle Conglomerate becomes more 

prevalent.  

 On average, the HP areas receive more direct insolation (3,808 hours) than the VHP 

potential areas. Also, from the HP areas, less travel time is required to access the supporting 
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zones of each of the 5 tree species. However, there is little difference between the VHP and HP 

areas for access to zones of Southern Red Oak and Hickory. Water sources are closer as well, 

with an average access time of 31.7 minutes. For potential volume of wood fiber, the HP areas 

average about 73.5 cubic feet per acre compared to the 57 cubic feet per acre in the VHP areas. 

Most definitely, the increasing potential volume of food fiber is related to the closer proximity of 

vegetation zones of oak species. In addition, the HP areas are much less exposed on a regional 

scale than the VHP areas, though similar to the VHP areas, they are still rather sheltered locally; 

the HP areas have the greatest range in both local and regional shelter compared to the rest of the 

potential categories.  Finally, there was a significant decrease in Terrain Texture from the VHP 

category indicating that the terrain of the HP areas is less rugged. 

To summarize, the HP category is characterized by slopes up to 70° within the mid-

elevation ranges below the VHP areas—so the mid-to upper slopes of the gorge. The geology is 

still predominantly sandstone or sandstone conglomerates though there is less of the Fentress 

Formation and more Rockcastle Conglomerate. The travel time to water sources and zones of 

oak species is less than in VHP areas. These areas are not as sheltered as the previous category 

and they are significantly smoother and more level.  

Moderate Potential. The “moderate potential (MP)” area comprises approximately 16.8% 

of the total project area and has a slightly higher average elevation than the HP category--though 

lower than in VHP areas. Out of the 202 known archaeological sites in Pogue Creek and East 

Obey, 10 sites (5%) are in the MP areas. It is in this category that convex landforms become 

more widespread than convex surfaces representing a shift towards flatter surfaces such as the 

top of the plateau instead of the concave slopes. Measures of soil erosion are similar to VHP and 

HP areas. Similarly, the Bangor Limestone and Hartselle Formation (Mbh) is absent. However, 
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percentages of the Pennington Formation (Mp) have increased as the presence of the Fentress 

Formation (Pf) and Rockcastle Conglomerate (Pr) continue to decrease; this category captures 

the transition from Pennsylvanian-aged sandstone, shale, and siltstone to outcrops of 

Mississippian-aged carbonates. 

 As the potential for archaeological sites decreases, increases are noted in the total number 

of hours of direct incoming solar insolation (4041 hours in MP areas vs. 3808 hours in the HP 

areas). Also while access times for zones of Northern Red Oak, Southern Red Oak, and White 

Oak are less, the time required to access zones of Hickory is greater than for the VHP and HP 

areas. This inverse relationship demonstrates the importance of hickory zones in predicting site 

presence. MP areas are closer to water sources (average access time of 20.8mins) and have 

higher potential wood fiber volumes (average of 79 cubic feet per meter) than the previous 

categories. Additionally, the MP areas are more exposed than any other areas on a local scale. 

The terrain texture continues to decrease with archaeological potential.  

 The MP areas can be summarized as having considerably lower slope angles but higher 

elevations than the VHP and HP areas. Potential for soil erosion is consistent with previous 

categories though MP areas are more forested. These areas generally overlap supporting zones of 

Northern Red Oak and White Oak, though they are further away from zones of Hickory. For 

geology, the Pennington Formation (Mp) is slightly more common than in the HP areas, and the 

Rockcastle Conglomerate (Pr) remains dominant with some areas in the Fentress Formation (Pf). 

Lastly, these areas are the most locally exposed. 

Low Potential. The “low potential (LP)” category has the highest average elevation of 

458 meters and slightly higher potential for soil erosion than the previous categories. This 

category accounts for the smallest portion of the study area at only 1.5% and none of the Pogue 



135 

 

Creek of East Obey sites fall within this category. Though the average curvature is slightly lower 

(so slightly more concave) than the MP category, this is the lowest range of curvature values. 

This possibly indicates a trend towards flatter surfaces and fewer extremes (either extremely 

convex or concave). The average slope is about 8° with a maximum of 58°. The same geologic 

trends are visible in the LP category as with the MP areas: average of 3.8% of the Pennington 

Formation (Mp) and 9.8% for the Fentress Formation (Pf). A variety of other geologic 

formations, ranging from sandstone conglomerates to limestone, account for the remaining 

percentages.  

 The LP areas receive the most hours of direct insolation and are closer (in time and 

distance) to all 3 zones of oak species and to water sources than any other category. The potential 

volume of wood fiber is relatively high compared to the VHP, HP, and MP areas. However, the 

LP areas are more sheltered than MP and HP areas, though less so than the VHP areas. In this 

area, there is little degree of terrain roughness and the LP areas are the smoothest.    

 In summary, the LP areas have the highest average elevation and the flattest surfaces with 

an average slope of about 8°—these areas occur on the top of the plateau with some areas at the 

bottom of the gorges. The Rockcastle Conglomerate is the dominant geologic rock unit with 

some occurrences of the Fentress Formation and the Pennington Formation. These areas receive 

the highest average solar insolation per year—they are very exposed areas surrounded by White 

and Northern Red Oak. Also, these areas are the closest to streams that appear on USGS 

topographic maps. 

Very Low Potential. Areas classified as “very low potential (VLP)” cover 48% of the 

total survey area; 4 rock shelter sites (2% of total sites) from the Pogue Creek and East Obey 

survey areas fall within this category. These areas have the overall lowest average elevation at 



136 

 

414 meters but with the overall largest range (because they cover almost half of the study area). 

Most of the areas in this category are flat or convex surfaces with the highest potential for soil 

erosion. The slope is the lowest in this category with an average of 7.94°. Only in this category 

does the Bangor Limestone and Hartselle Formation appear and with an average of 11.9%. The 

Pennington Formation is present at similar percentages with an average of 11.7%. The Fentress 

Formation is much less prevalent (average of 3.2%) as with the Rockcastle Conglomerate.  

The VLP areas, second to the LP category, receive an average of 4041 hours of direct 

solar insolation yearly. Zones of Northern Red Oak and White Oak co-occur in both the LP and 

VLP areas, so access times are minimal. However, zones of Hickory are found closer to VHP 

areas, so access time to supporting zones of Hickory species from VLP areas average 27 

minutes—this is still minimal compared to the average time it takes to access Southern Red Oak 

(98 minutes). Little difference is noted in proximity to water, potential volume of wood fiber, 

and local measures of shelter between the VLP and LP areas. One notable exception is a 

significant increase in shelter on a regional scale; the VLP areas are the most sheltered 

regionally.  

 To summarize, the VLP areas are the only areas where the Bangor Limestone and 

Hartselle Formation is present. Other limestone and sandstone formations are also present, 

though less so in any other category. In addition, these areas are very flat and have the lowest 

degree slopes with the highest potential for soil erosion. White Oak and Northern Red Oak occur 

in these areas though the presence of Hickory is rare. The defining characteristics of the VLP 

category significantly vary across the UCP because this category covers the highest percentage 

of land in the study area.  
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Conclusions 

The UCP site location model was developed using the Pogue Creek survey data (n=125 

sites) and tested using the East Obey survey data (n=77), all of which are rock shelter sites with 

some prehistoric component. The model performed extremely well on the Pogue Creek data—

not surprising because the model was developed using this dataset. Only 1 Pogue Creek site fell 

in the VLP category. This shelter is located at a lower elevation than all of the other shelters and 

occurs in the Pennington Formation (Mississippian-aged) instead of a Pennsylvanian formation. 

For the East Obey data, 3 of the East Obey sites were classified as VLP sites. For these shelters, 

their low potential is the result of differences in the P1 and P2 models from the Pogue Creek 

shelters. Even for study areas within the same county, there can be significant differences in 

geologic units, soil conditions, vegetation, etc. This means that models have to be developed for 

individual study areas based on the environmental conditions and archaeological resources 

unique to that area. In this case, a model developed using the Pogue Creek data would need to be 

adjusted and refined to fit other survey areas. The concept of a single Upper Cumberland Plateau 

model is not necessarily realistic if the ultimate goal is to have a model that most accurately 

reflects the relationship between the archaeological record and the environmental setting.  

However, if based solely on the model’s performance on the East Obey dataset where 83% of the 

known prehistoric rock shelter sites fell within the high and very high potential areas, the UCP 

model developed herein can be described as highly successful. This is one of the first 

archaeological site location modes that focuses on modeling rock shelter locations and sites. For 

this reason, this model is extremely unique and has great implications in both upland 

archaeology and geospatial analysis. This model demonstrates the usefulness and application of 

GIS studies in archaeology, especially in a CRM context.  
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Theoretical  

 Now that a model has been generated for the UCP of Tennessee and the “potential” 

categories described in terms of model variables, the significant variables can be used to discuss 

possible factors contributing to differential site selection. Using the 3 primary goals proposed by 

Jochim (1976: 50) as guiding hunter-gatherer settlement practices, variables relating to the 

proximity of resources, shelter, and view will be discussed  

Proximity to Resources 

 Five variables used to generate the UCP model are related to resources that may have 

been important to prehistoric hunter-gatherers: Cost Distance to Northern Red Oak, Cost 

Distance to Southern Red Oak, Cost Distance to Hickory, and Cost Distance to Water. Oak and 

Hickory species are both important sources of food for humans and wildlife so it is foreseeable 

that prehistoric hunter-gatherers would have situated themselves close to areas where food 

sources (both for gathering nuts and hunting wildlife) were plentiful. Of the oak species, White 

Oak is the most widespread on the UCP occurring on upper and lower slopes and at almost every 

elevation. The Pogue Creek and East Obey shelters are, on average, farther from supporting 

zones of White Oak than other areas but only by about 3 minutes—this is not a big enough 

difference to consider access to supporting zones of White Oak as a site selection factor.  

However, the Cost Distance to Northern Red Oak variable was the second most significant 

variable in the P2 model. On average, the Pogue Creek and East Obey rock shelters are about 10 

to 20 minutes away from areas likely to support Northern Red Oak. This is similar to the UCP as 

a whole. However, rock shelter sites are closer to areas of Southern Red Oak than the rest of the 

UCP. This indicates a trend towards locating sites closer to areas that support Southern Red Oak.  

Interestingly, sites are also situated closer to supporting zones of Hickory than any other 
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vegetation type used in this study. It can be inferred then that Hickory was a more important 

resource than the oak species for prehistoric hunter-gatherers. Out of the 4 vegetation types, it is 

possible that the proximity of a rock shelter to Southern Red Oak and Hickory influenced site 

selection choices.  

 According to the UCP model, prehistoric rock shelter sites are, on average, farther (in 

both time and distance) away from water sources than non-sites. However, this variable does not 

take into account unmapped seeps and springs that are myriad on the UCP. Water was and 

continues to be a very important resource, and access to such a resource is critical to the 

maintenance and development of human populations. Most likely, access to water resources was 

an important factor influencing choices made by prehistoric hunter-gatherers in locating 

residential sites. However, this variable does not accurately reflect the availability of water 

sources on the UCP. Instead of using blue-line streams or even flow accumulation rasters, the 

locations of intermittent streams, seeps, springs, and waterfalls need to be better documented in 

archaeological surveys. This is not to say that variables using cost distance or even straight-line 

(Euclidean) distance to water sources cannot be used to develop reliable predictive models; 

variables such as this can be very useful (especially in arid landscapes) only if the discrepancies 

between the (real) environment and the mappable data that represent the environment are 

understood.  It is therefore possible that a majority of rock shelters on the UCP are much closer 

to water sources than this variable is able to reflect.  

Shelter and View 

 Though the rock shelters provide shelter in the sense that they are ready-made structures 

there are varying degrees of exposure related to the surrounding landscape.  The Pogue Creek 

and East Obey sites are located in extremely sheltered local areas (within a 100 meter radius) 
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relative to the UCP as a whole. These areas would have provided protection from winter winds, 

abundant solar insolation, and rain/snow.  However, at a 1000 meter radius (regional scale), the 

rock shelter locations are very exposed. This is not a contradiction and instead indicates that 

though the sites are sheltered locally, when compared to the rest of the plateau, they are situated 

higher and offer better views of the overall landscape. So whereas the steep gorges offer some 

protection from the natural elements (at least more so than being on top of the plateau), those 

locations also offer prime viewing locations—similar to vantage points. However, it is important 

to point out that some of the most sheltered sites are in horseshoe-shaped gorges and do not 

provide wide views of the landscape. Because view and shelter are not always related, variables 

should be incorporated to address both characteristics individually. A variable relating to view 

was not used in the UCP model and therefore view cannot be addressed independently. It 

appears, however, that the amount of shelter a location provides (beyond the rock shelter itself) 

was a contributing factor in rock shelter selection on the UCP.  

Though it does not specifically relate to the 3 goals proposed by Jochim (1976: 50), the 

Direct Duration of Solar Radiation variable was the most significant variable in the dynamic 

model, meaning that it was the best overall predictor of site presence. However, the regression 

coefficient was negative, indicating that sites receive less solar insolation than non-site areas. 

The amount of solar insolation a location receives is generally related to the location’s aspect, 

and for the Southeastern United States, southerly and easterly facing landforms potentially 

receive more direct sunlight than northerly and westerly facing landforms. The variables of 

Eastness and Northness were removed from the final model because neither were statistically 

significant in predicting site presence. So in contrast to the findings of Hall and Klippel (1988) 

and Mickelson (2002) who propose aspect as a “trend” for prehistoric site selection, in this study, 
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insolation was negatively correlated to site presence and aspect was not a significant factor. 

These results agree more closely with the conclusions of Langston and Franklin (2010). The 

significance of the Direct Duration of Solar Radiation variable in predicting site presence does 

not necessarily indicate that prehistoric peoples chose locations that received less sunlight. It is 

more likely that this variable helped to narrow down locations where rock shelters naturally form 

and perhaps belonged in the P1 static model. Rock shelters crop-out in eroded bluff lines around 

steep slopes; many occur in horseshoe-shaped canyons that do not receive a lot of sunlight. 

Another issue to consider is that this variable measured the amount of yearly sunlight locations 

receive. It is possible that many of these shelters were occupied on a seasonal basis or seasonal 

rounds were made between shelters, and  the amount of solar insolation a location receives varies 

with sun angle throughout the year—especially in a landscape characterized by steep gorges and 

high plateaus. Perhaps a better way to investigate the relationship between solar insolation and 

site selection is to examine seasonal variability in solar insolation at locations where sites have 

been documented.  By doing this, it might be possible to determine which shelters may have 

been used in warmer months and which ones might have been used for winter occupation.   

Conclusions 

As has been pointed out in this thesis, archaeological site location modeling can be 

extremely useful in the context of CRM. However, this thesis also demonstrates the application 

of archaeological site location modeling in exploring patterns of human behavior as related to 

differential site selection. It is impossible to definitely know why prehistoric hunter-gatherers 

choose to live in certain rock shelters and why others remained unoccupied for over 10,000 

years. However, the variables that were significant in predicting known prehistoric rock shelter 

locations can be used to develop hypotheses about factors relevant to differential site selection on 
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the UCP. From the model developed herein, the close proximity to Southern Red Oak and 

Hickory appear to have been important to prehistoric peoples. Also, sheltered areas were chosen 

for protection from the natural elements. Most likely, the availability of water was not a factor--

only because there is no shortage of intermittent streams, springs, and seeps (sometimes coming 

out of the back of the rock shelter itself) on the UCP. Finally, the amount of sunlight cannot be 

identified as a contributing factor to site selection based on the model results; however, as 

pointed out previously, this may be due to a disconnect between the temporal scale of study and 

variable importance.   

Methodological  

 The explanatory variables used to generate the UCP model were also used to run a 

traditional logistic regression (TLR) and a spatial error model (SEM); the 2 approaches are 

compared to the spatial logistic regression model (SLRM) using the significance values and 

regression coefficients of the final model variables.  

Significance Values 

 For the UCP model, the 3 most significant variables in predicting site presence are Slope, 

Direct Duration of Incoming Solar Radiation, and Cost Distance to Northern Red Oak. Though 

both the TLR and SEM approaches captured Slope as significant (and the most significant 

variable), Cost Distance to Northern Red Oak was not significant (p-value > 0.1) in the TLR 

model. However, both Direct Duration of Incoming Solar Radiation and Cost Distance to 

Northern Red Oak were significant (p-value < 0.1) in the SEM approach. This means that for the 

Cost Distance to Northern Red Oak variable, there may be an important underlying spatial 

process that the TLR model was unable to capture because it assumes independence of the 

explanatory variables. Similarly, the SEM and SLRM capture the Percent of Bangor Limestone 
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and Hartselle Formation variable significant in predicting site presence while the (non-spatial) 

TLR model did not. Except for Cost Distance to Southern Red Oak, neither the SEM nor TLR 

approaches found the vegetation variables as significant. This is interesting because these are 

some of the most significant variables in the UCP model when the SRLM approach was used. It 

is not surprising that the Percent of Fentress Formation variable was not significant in the SEM 

or TLR approaches because it was the least significant variable in the SLRM. Similarly, Cost 

Distance to Hickory was also one of the lesser significant variables in the SLRM and was not 

significant in both the TLR and SEM approaches. However, the second least significant variable 

in the SLRM, the Shelter Index at 100m, was more significant in the other 2 approaches; 

different from the Cost Distance to Northern Red Oak variable, the SLRM and SEM approaches 

revealed that the Shelter Index at 100m variable is not as significant because of its spatial 

relationship with the site presence data.  

 There are 2 possible explanations for why some variables were not captured as significant 

in the TLR and SEM approaches. The first is an issue of spatial dependence or spatial 

autocorrelation in the dataset. Most likely, a majority of these variables are the result of 

underlying spatial processes or relationships that have to be accounted for, or handled properly, 

in order to produce an accurate and reliable model. Traditional logistic regression does not have 

a spatial component and is not equipped to appropriately handle spatially autocorrelated data. 

However, the spatial error model does account for spatial dependence. The assumption then is 

that the SEM approach would have captured the spatial dependence and the same variables 

would have been significant as in the SLRM approach. However, a spatial error model is a linear 

regression and thus, its assumptions are violated because of the categorical response variable and 

because it assumes the relationship between the response and explanatory variables is linear. So 
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just because several variables did not emerge as significant in the SEM approach, this does not 

mean that there are not important underlying spatial processes that need to be captured in order 

to produce an accurate model. Though it has the “spatial” component, the spatial error model is 

still not appropriate for modeling site presence/absence data. Thus, significance values and 

regression coefficients of the SEM approach can only be loosely interpreted.  

 The second possible explanation for discrepancies between the different approaches 

relates to the way in which the models are run. For the TLR and SEM approaches, a random 

sample of points representing site absence data was generated so that there would be equal 

numbers of site presence and absence data (n=125 points each). The SLRM model, which is a 

pixel-based approach, requires site presence data only--the locations of which are compared to 

every other location in the study area and not just 125 other absence locations as with the TLR 

and SEM approaches. Even though a random sample of points was used for site absence data in 

the TLR and SEM approaches, it is likely that not all of the variation in the explanatory variables 

was captured by the randomly sampled absence data. The pixel-based SLRM approach includes 

values of the explanatory variables throughout the study area and compares those to the values at 

each known site. This is one major advantage of using pixel-based approaches for modeling site 

locations.  

Regression Coefficients 

 Only one major difference was noted when the regression coefficients for the 3 different 

model approaches were compared. One variable, Cost Distance to Water, had a different sign for 

the TLR and SEM approaches than for the SLRM. It is interesting that the TLR and SEM 

approaches had a negative coefficient for this variable, because this indicates that as the cost 

distance (time) to water sources decreased, the likelihood of site presence increased—so sites 



145 

 

should be closer to water. However, as noted by Langston and Franklin (2010) in a previous GIS 

analysis of the Pogue Creek rock shelters, sites were seemingly farther away from water sources. 

As pointed out in the previous comparisons of significance values, the TLR and SEM approaches 

used randomly sampled data; this means that the randomly generated site absence data points had 

lower values (meaning less access time to water sources) for the Cost Distance to Water variable 

than the site presence data. This was not the case in the SLRM approach where the site presence 

locations (pixels) had higher values of Cost Distance to Water compared to all the other 

locations or pixels in the Pogue Creek study area. The SLRM approach more accurately reflects 

the relationship between the site presence data and the Cost Distance to Water variable because 

it includes absence data from throughout the entire study area.  

Conclusions 

Traditional logistic regression is the most common modeling approach used in 

archaeological predictive modeling today. More than likely, spatial autocorrelation is present in 

most datasets used to generate site location models. Though it may be common practice to use an 

aspatial approach to analyze what are essentially spatial patterns of behavior, it is possible that 

important information regarding prehistoric settlement patterns is being overlooked or masked. 

For the UCP site location model, the spatial logistic regression model was able to capture 

important spatial relationships between the response and explanatory variables that would have 

been missed if a traditional logistic regression was used. The methodological considerations that 

go into developing archaeological models are just as important as the theoretical basis for 

developing them in the first place. If the goal is to analyze and interpret patterns of prehistoric 

hunter-gatherer behavior, then the methodology should accurately reflect the spatial relationships 

inherent to human behavior.  
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Final Thoughts 

The UCP site location model  can be considered successful based on its validation using 

the East Obey survey data. Though it performed well with the test set, its efficiency and 

performance as a “working” model will be evaluated during ongoing and future archaeological 

surveys on the Upper Cumberland Plateau. In a Cultural Resources Management (CRM) context, 

archaeological predictive models can help facilitate decisions about identifying, evaluating, and 

monitoring archaeological resources. For models to be sufficient and successful in this endeavor 

there has to be a better understanding of how prehistoric peoples were using and occupying the 

landscape and how that can be conceptualized in a GIS environment. Also, models have to be 

refined and updated as new information is gathered and/or as better methods are developed. The 

model developed herein is no exception as there are things that can already be improved upon. 

However, this does not refute the validity of the UCP site location model in having the potential 

to predict archaeological (rock shelter) sites. The real test of model performance can only take 

place in the field and the opportunity to do so is rare, to say the least. Prehistoric occupation and 

use of the Upper Cumberland Plateau of Tennessee is only beginning to be understood. This is a 

landscape that is both culturally and naturally unique and archaeological investigations of the 

region have only scratched the surface. Ongoing and future archaeological surveys will go a long 

way in not only protecting archaeological resources but in better understanding prehistoric 

lifeways in the region. 
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APPENDICES 

Appendix A 

Descriptive Statistics for Preliminary Explanatory Variables 

Variable 

(Abb.) Unit Minimum Maximum Mean 

Standard 

Deviation 

Solar Wh/   205,373.94 1,552,976.5 1,356,525.53 113,592.83 

Eastness unitless -1 1 -0.0036 0.71 

Northness unitless -1 1 0.0054 0.71 

CDChest min 0 184.03 19.58 23.6 

CDNred min 0 121.23 5.32 9.94 

CDSred min 0 483.26 115.39 87.87 

CDScar min 0 998.73 373.67 250.64 

CDWhite min 0 79.69 2.23 5.33 

CDHick min 0 184.03 18.21 24.01 

CDWalnut min 0 449.83 91.66 95.48 

CDWater min 0 175.62 24.17 23.11 

Curv 1/100
th

 ° -87.1 84.9 -0.33 1.63 

DirDur hrs/yr 175.84 4,366.25 9,948.87 337.01 

ELE m 198.4 567.7 429.1 87.63 

PerMbh % 0 100 5.04 21.26 

PerMm % 0 100 8.7 27.76 

PerMp % 0 100 5.7 22.33 

PerPf % 0 100 11.06 30.75 

PerPr % 0 00 42.35 48.97 

VolWood         0 114 77.8 11.31 

SI100    -7,310.09 25,832.11 6,260.72 1,491.02 

SI300    -140,798 331,900.75 55,114.86 35,892.58 

SI1000    -4,705,172 5,580,292 595,394 944,090.89 

Slope ° 0 75.0 10.81 8.55 

Erosion --- 0 0.43 0.29 0.07 

SoilThick in 0 140 62.01 19.47 

TerTex    0 903.56 3.49 9.28 
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Appendix B 

Kolmogorov-Smirnov Graphs Generated in R  

Below are the graphical results of the Kolmogorov-Smirnov (K-S) test for each explanatory 

variable that were generated in R (R Core Team 2012). The K-S test graphs show the predicted 

and observed (site presence) distributions. The predicted distribution is the smooth, dark line and 

the observed distribution is the lighter, jagged line. The distributions are significantly different at 

p-value < 0.05.   
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Appendix C 

Correlation Matrices Generated from Band Collection Statistics 

P1 Model 

 

Slope PerMP PerMBH Curv Erosion Elevation PerPF PerPr 

Slope 1.00 0.04 -0.05 0.03 0.03 -0.20 0.36 -0.28 

PerMP 0.04 1.00 -0.07 -0.01 -0.29 -0.53 -0.17 -0.50 

PerMBH -0.05 -0.07 1.00 -0.01 -0.29 -0.50 -0.14 -0.33 

Curv 0.03 -0.01 -0.01 1.00 0.00 0.10 0.00 0.01 

Erosion 0.03 -0.29 -0.29 0.00 1.00 0.38 0.16 0.26 

Elevation -0.20 -0.53 -0.50 0.10 0.38 1.00 -0.21 0.82 

PerPF 0.36 -0.17 -0.14 0.00 0.16 -0.21 1.00 -0.59 

PerPr -0.28 -0.50 -0.33 0.01 0.26 0.82 -0.59 1.00 

P2 Model 

 
SolarRad Eastness Northness CDHick CDWalnut CDWater DirDur VolWood SI100m SI1000m TerTex CDWhite CDNred CDSred 

Solar Rad 1.00 -0.01 -0.01 -0.03 0.25 -0.06 0.71 0.10 0.18 0.16 -0.43 -0.12 -0.10 0.23 

Eastness -0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Northness -0.01 0.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

CDHick -0.03 0.00 0.01 1.00 0.10 0.22 0.05 0.15 0.13 0.32 0.02 0.87 0.11 0.12 

CDWalnut 0.25 0.00 0.00 0.10 1.00 -0.12 0.41 -0.08 0.15 0.41 -0.14 -0.03 0.21 0.89 

CDWater -0.06 0.00 0.00 0.22 -0.12 1.00 0.00 -0.18 0.26 0.62 0.15 0.30 0.34 -0.05 

DirDur 0.71 0.00 0.00 0.05 0.41 0.00 1.00 0.17 0.56 0.38 -0.42 -0.08 -0.13 0.33 

VolWood 0.10 0.00 0.00 0.15 -0.08 -0.18 0.17 1.00 -0.04 -0.16 -0.24 0.04 -0.47 -0.23 

SI100m 0.18 0.00 0.00 0.13 0.15 0.26 0.56 -0.04 1.00 0.47 0.04 0.10 0.10 0.14 

SI1000m 0.16 0.00 0.00 0.32 0.41 0.62 0.38 -0.16 0.47 1.00 0.02 0.26 0.32 0.49 

TerTex -0.43 0.00 0.00 0.02 -0.14 0.15 -0.42 -0.24 0.04 0.02 1.00 0.08 0.21 -0.07 

CDWhite -0.12 0.00 0.01 0.87 -0.03 0.30 -0.08 0.04 0.10 0.26 0.08 1.00 0.24 -0.01 

CDNred -0.10 0.00 0.00 0.11 0.21 0.34 -0.13 -0.47 0.10 0.32 0.21 0.24 1.00 0.27 

CDSred 0.23 0.00 0.00 0.12 0.89 -0.05 0.33 -0.23 0.14 0.49 -0.07 -0.01 0.27 1.00 
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Appendix D 

R Code for Running SLRM Function  

Red Text = Input and Blue Text = Output 

P1 Model 

> P1run1 <-slrm(PresData ~ 1 + ELEim + Curvim + Slopeim + Eroim 

+ MBHim + MPim + PFim) 

 

> print(P1run1) 

Fitted spatial logistic regression model 

Formula: PresData ~ 1 + ELEim + Curvim + Slopeim + Eroim + MBHim 

+ MPim + PFim 

 

Fitted coefficients: 

(Intercept) ELEim     Curvim     Slopeim    Eroim     MBHim  

-9.6875546 0.4430579 -4.4996610 5.0355586 -2.5550436 -97.4354671  

   MPim        PFim  

 -3.2240448 -0.4171968 

 

> anova(P1run1, test="Chi") 

Analysis of Deviance Table 

Model: binomial, link: logit 

Response: PresData 

Terms added sequentially (first to last) 

 

        Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     

NULL                   173927     2059.4               

ELEim    1    8.242    173926     2051.2  0.004093 **  

Curvim   1   36.542    173925     2014.7 1.494e-09 *** 

Slopeim  1  118.378    173924     1896.3 < 2.2e-16 *** 

Eroim    1    6.548    173923     1889.7  0.010503 *   

MBHim    1    7.195    173922     1882.5  0.007311 **  

MPim     1   20.179    173921     1862.3 7.051e-06 *** 

PFim     1    3.246    173920     1859.1  0.071580 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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P2 Model 

> P2run2 <-slrm(PresData ~ 1 + Directim + Nredim + Sredim + 

Whiteim + Hickim + Waterim + Woodim + SI100im + SI1000im + 

Texim) 

 

> print(P2run2)  

Fitted spatial logistic regression model 

Formula: PresData ~ 1 + Directim + Nredim + Sredim + Whiteim + 

Hickim + Waterim + Woodim + SI100im + SI1000im + Texim 

 

Fitted coefficients: 

(Intercept) Directim    Nredim    Sredim     Whiteim     Hickim  

-8.8224012 -3.5815320  0.7000523 2.0731965 9.1120472  -7.0056506  

Waterim      Woodim     SI100im    SI1000im       Texim  

0.5960222  -3.9423587  -4.9597100   4.1100522   3.3754449 

 

> anova(P2run2, test="Chi") 

Analysis of Deviance Table 

Model: binomial, link: logit 

Response: PresData 

Terms added sequentially (first to last) 

 

         Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     

NULL                    173927     2059.4               

Directim  1  114.068    173926     1945.4 < 2.2e-16 *** 

Nredim    1   56.926    173925     1888.4 4.525e-14 *** 

Sredim    1    8.886    173924     1879.5 0.0028734 **  

Whiteim   1   19.585    173923     1860.0 9.621e-06 *** 

Hickim    1    4.228    173922     1855.7 0.0397648 *   

Waterim   1   17.022    173921     1838.7 3.696e-05 *** 

Woodim    1   21.413    173920     1817.3 3.703e-06 *** 

SI100im   1    4.224    173919     1813.1 0.0398552 *   

SI1000im  1   13.813    173918     1799.3 0.0002019 *** 

Texim     1    8.176    173917     1791.1 0.0042453 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix E 

Logistic Regression Output from SPSS 

P1 Model 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 250 100.0 

Missing Cases 0 .0 

Total 250 100.0 

Unselected Cases 0 .0 

Total 250 100.0 

 

a. If weight is in effect, see classification table for the total number of 

cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

0 0 

1 1 

 

Block 0: Beginning Block 

Classification Table
a,b

 

 Observed Predicted 

PresAb Percentage 

Correct 0 1 

Step 0 

PresAb 
0 0 125 .0 

1 0 125 100.0 

Overall Percentage 
  

50.0 

a. Constant is included in the model. 

b. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant .000 .126 .000 1 1.000 1.000 
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Variables not in the Equation 

 Score df Sig. 

Step 0 
Variables 

PC_EleSTD 2.840 1 .092 

PC_CurvSTD 5.843 1 .016 

PC_SlopeST 63.484 1 .000 

PC_EroSTD 10.977 1 .001 

PC_MbhSTD 4.481 1 .034 

PC_MpSTD 11.172 1 .001 

PC_PfSTD 1.120 1 .290 

Overall Statistics 91.934 7 .000 

 

Block 1: Method = Enter 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 121.856 7 .000 

Block 121.856 7 .000 

Model 121.856 7 .000 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 224.717
a
 .386 .514 

 

a. Estimation terminated at iteration number 20 because 

maximum iterations has been reached. Final solution cannot be 

found. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 7.812 8 .452 

 

Contingency Table for Hosmer and Lemeshow Test 

 PresAb = 0 PresAb = 1 Total 
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Observed Expected Observed Expected 

Step 1 

1 24 24.289 1 .711 25 

2 23 21.809 2 3.191 25 

3 23 19.641 2 5.359 25 

4 14 17.174 11 7.826 25 

5 14 14.689 11 10.311 25 

6 11 11.701 14 13.299 25 

7 7 7.998 18 17.002 25 

8 7 5.054 18 19.946 25 

9 1 2.184 24 22.816 25 

10 1 .460 24 24.540 25 

Classification Table
a
 

 Observed Predicted 

PresAb Percentage 

Correct 0 1 

Step 1 

PresAb 
0 102 23 81.6 

1 30 95 76.0 

Overall Percentage 
  

78.8 

 

a. The cut value is .500 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

PC_EleSTD 2.508 1.800 1.941 1 .164 12.275 

PC_CurvSTD -8.473 4.088 4.296 1 .038 .000 

PC_SlopeST 9.212 1.434 41.264 1 .000 10020.148 

PC_EroSTD -6.513 1.699 14.685 1 .000 .001 

PC_MbhSTD -49.645 24196.751 .000 1 .998 .000 

PC_MpSTD -3.286 1.560 4.440 1 .035 .037 

PC_PfSTD -.299 .511 .342 1 .558 .741 

Constant 3.904 2.457 2.524 1 .112 49.601 

 

a. Variable(s) entered on step 1: PC_EleSTD, PC_CurvSTD, PC_SlopeST, PC_EroSTD, PC_MbhSTD, 

PC_MpSTD, PC_PfSTD. 
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P2 Model 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 250 100.0 

Missing Cases 0 .0 

Total 250 100.0 

Unselected Cases 0 .0 

Total 250 100.0 

a. If weight is in effect, see classification table for the total number of 

cases. 

Dependent Variable Encoding 

Original Value Internal Value 

0 0 

1 1 

Block 0: Beginning Block 

Classification Table
a,b

 

 Observed Predicted 

PresAb Percentage 

Correct 0 1 

Step 0 

PresAb 
0 0 125 .0 

1 0 125 100.0 

Overall Percentage 
  

50.0 

a. Constant is included in the model. 

b. The cut value is .500 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant .000 .126 .000 1 1.000 1.000 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables 

PC_DirSTD 49.609 1 .000 

EastSTD .161 1 .689 

NorthSTD .341 1 .559 

PC_NredSTD 63.509 1 .000 

PC_SredSTD 2.809 1 .094 
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PC_WhiteST 17.219 1 .000 

PC_HickSTD 13.504 1 .000 

PC_WaterST 14.967 1 .000 

PC_WoodSTD 36.430 1 .000 

PC_100siST 14.117 1 .000 

PC_1000siS 7.299 1 .007 

PC_TexSTD 22.036 1 .000 

Overall Statistics 113.874 12 .000 

Block 1: Method = Enter 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 163.668 12 .000 

Block 163.668 12 .000 

Model 163.668 12 .000 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 182.906
a
 .480 .641 

 

a. Estimation terminated at iteration number 7 because 

parameter estimates changed by less than .001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 44.222 8 .000 

 

Contingency Table for Hosmer and Lemeshow Test 

 PresAb = 0 PresAb = 1 Total 

Observed Expected Observed Expected 

Step 1 

1 25 24.685 0 .315 25 

2 24 23.824 1 1.176 25 

3 23 21.810 2 3.190 25 

4 18 18.310 7 6.690 25 

5 18 15.269 7 9.731 25 
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6 9 10.839 16 14.161 25 

7 3 6.167 22 18.833 25 

8 2 2.852 23 22.148 25 

9 1 1.152 24 23.848 25 

10 2 .093 23 24.907 25 

Classification Table
a
 

 Observed Predicted 

PresAb Percentage 

Correct 0 1 

Step 1 

PresAb 
0 109 16 87.2 

1 20 105 84.0 

Overall Percentage 
  

85.6 

a. The cut value is .500 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

PC_DirSTD -4.915 2.652 3.434 1 .064 .007 

EastSTD -.475 .551 .743 1 .389 .622 

NorthSTD -.811 .542 2.240 1 .134 .445 

PC_NredSTD 1.802 1.238 2.118 1 .146 6.062 

PC_SredSTD 4.348 1.502 8.378 1 .004 77.349 

PC_WhiteST 16.203 10.915 2.204 1 .138 10881401.319 

PC_HickSTD -11.512 11.018 1.092 1 .296 .000 

PC_WaterST -.365 1.371 .071 1 .790 .694 

PC_WoodSTD -4.450 1.648 7.293 1 .007 .012 

PC_100siST -6.882 3.445 3.991 1 .046 .001 

PC_1000siS 5.423 2.517 4.643 1 .031 226.603 

PC_TexSTD 41.356 12.884 10.303 1 .001 
9133373061835

30620.000 

Constant 3.073 1.719 3.195 1 .074 21.600 

 

a. Variable(s) entered on step 1: PC_DirSTD, EastSTD, NorthSTD, PC_NredSTD, PC_SredSTD, PC_WhiteST, 

PC_HickSTD, PC_WaterST, PC_WoodSTD, PC_100siST, PC_1000siS, PC_TexSTD. 
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Appendix F 

Spatial Error Model Output from GeoDa 

A distance-based spatial weights matrix was used to run an OLS regression in GeoDa (Anselin, 

Syabri, and Kho 2006)—a distance of 1410 meters was chosen after examination of a 

semivariogramThe Lagrange Multiplier (LM) is used to indicate whether a spatial error or spatial 

lag model is needed. Based on the output of the OLS, the LM was significant for both the lag and 

error terms. In this type of scenario, the value of the LM can be used to choose which spatial 

dependence model is best to use. Because the value of the LM error was the lowest, a spatial 

error model was used.  

 

P1 Model 

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD 

ESTIMATION  

Data set            : PC_PresAb  

Spatial Weight      : 1410weights.gwt  

Dependent Variable  :      PRESAB   Number of Observations:  250 

Mean dependent var  :    0.500000  Number of Variables   :    8 

S.D. dependent var  :    0.500000  Degrees of Freedom    :  242 

Lag coeff. (Lambda) :    0.108393  

  

R-squared           :    0.368035  R-squared (BUSE)      : -  

Sq. Correlation     : -            Log likelihood        : -124.105182 

Sigma-square        :    0.157991  Akaike info criterion :      264.21 

S.E of regression   :    0.397481  Schwarz criterion     :     292.382 

----------------------------------------------------------------------- 

    Variable    Coefficient     Std.Error    z-value      Probability  

----------------------------------------------------------------------- 
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    CONSTANT    0.8305167      0.3303648       2.513938    0.0119392 

   PC_ELESTD    0.2262229      0.2511118      0.9008853    0.3676492 

  PC_CURVSTD   -0.7701032      0.5326202      -1.445877    0.1482119 

  PC_SLOPEST     1.391825      0.1519199       9.161573    0.0000000 

   PC_EROSTD   -0.7874126      0.1854922      -4.244989    0.0000219 

   PC_MBHSTD   -0.5639221      0.2573206      -2.191516    0.0284144 

    PC_MPSTD   -0.3743277      0.1503449      -2.489794    0.0127818 

    PC_PFSTD   -0.1053578     0.07536567      -1.397955    0.1621266 

      LAMBDA    0.1083928      0.3355448      0.3230352    0.7466687 

----------------------------------------------------------------------- 

REGRESSION DIAGNOSTICS  

DIAGNOSTICS FOR HETEROSKEDASTICITY  

RANDOM COEFFICIENTS 

TEST                                     DF     VALUE         PROB  

Breusch-Pagan test                       7       7.615032     0.3677598 

   

DIAGNOSTICS FOR SPATIAL DEPENDENCE  

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : 1410weights.gwt  

TEST                                     DF      VALUE        PROB  

Likelihood Ratio Test                    1     0.07381001     0.7858681 

========================= END OF REPORT  
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P2 Model 

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD 

ESTIMATION  

Data set            : PC_PresAb  

Spatial Weight      : 1410weights.gwt  

Dependent Variable  :      PRESAB   Number of Observations:  250 

Mean dependent var  :    0.500000  Number of Variables   :   13 

S.D. dependent var  :    0.500000  Degrees of Freedom    :  237 

Lag coeff. (Lambda) :   -0.530098  

   

R-squared           :    0.458494  R-squared (BUSE)      : -  

Sq. Correlation     : -            Log likelihood        : -105.185539 

Sigma-square        :    0.135377  Akaike info criterion :     236.371 

S.E of regression   :    0.367936  Schwarz criterion     :      282.15 

----------------------------------------------------------------------- 

    Variable    Coefficient     Std.Error    z-value      Probability  

----------------------------------------------------------------------- 

    CONSTANT     1.158673      0.1840727       6.294652    0.0000000 

   PC_DIRSTD   -0.9321794      0.2530409      -3.683909    0.0002297 

     EASTSTD   -0.04683539     0.06982069     -0.6707953    0.5023508 

    NORTHSTD   -0.09782797     0.06620999      -1.477541    0.1395307 

  PC_NREDSTD    0.3230226      0.1709217       1.889886    0.0587731 

  PC_SREDSTD     0.374139      0.1746226       2.142558    0.0321485 
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  PC_WHITEST     1.783052       1.129268       1.578946    0.1143485 

  PC_HICKSTD    -1.102964       1.164162     -0.9474317    0.3434188 

  PC_WATERST   -0.04108933      0.1711472     -0.2400818    0.8102670 

  PC_WOODSTD    -0.655538      0.2116072        -3.0979    0.0019491 

  PC_100SIST   -0.6138773      0.3849613      -1.594647    0.1107912 

  PC_1000SIS    0.7538912       0.290461       2.595499    0.0094454 

   PC_TEXSTD    0.6904599       0.393624        1.75411    0.0794116 

      LAMBDA   -0.5300982       0.488859      -1.084358    0.2782061 

----------------------------------------------------------------------- 

REGRESSION DIAGNOSTICS  

DIAGNOSTICS FOR HETEROSKEDASTICITY  

RANDOM COEFFICIENTS 

TEST                                     DF     VALUE         PROB  

Breusch-Pagan test                      12       8.760904     0.7232054 

DIAGNOSTICS FOR SPATIAL DEPENDENCE  

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : 1410weights.gwt  

TEST                                     DF      VALUE        PROB  

Likelihood Ratio Test                    1       0.553799     0.4567696 

========================= END OF REPORT  
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Appendix G 

Comparison of Significance Values by Model Approach 

P1 Variables TLR SEM SLRM 
Elevation .164 0.3676492 0.004093 

Curvature .038 0.1482119 1.494e-09 

Slope .000 .000 <2.2e-16 

Soil Erosion .000 0.0000219 0.010503 

PerMbh .998 0.0284144 0.007311 

PerMp .035 0.0127818 7.051e-06 

    

P2 Variables TLR SEM SLRM 
Direct Duration .064 0.0002297 <2.2e-16 

CD Northern Red Oak .146 0.0587731 4.525e-14 

CD Southern Red Oak .004 0.0321485 0.0028734 

CD White Oak .138 0.1143485 9.621e-06 

CD Hickory .296 0.3434188 0.0397648 

CD Water .79 0.8102670 3.696e-05 

Potential Vol. Wood .007 0.1107912 3.703e-06 

100 m Shelter Index .046 0.0094454 0.0398552 

1000m Shelter Index .031 0.0094454 0.0002019 

Terrain Texture .074 0.0794116 0.0042453 

    

p value > 0.05 (not significant) 
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Appendix H 

Zonal Statistics for Cumulative UCP Model 

Elevation 

(m) 

Potential MIN MAX RANGE MEAN STD 

Very Low 198.4 567.7 369.3 413.2979 93.58974 

Low 198.4 567.1 368.7 458.1239 83.12529 

Moderate 198.4 567.2 368.8 452.4184 80.94522 

High 198.4 563.9 365.5 442.2866 75.34406 

Very High 198.4 551.5 353.1 457.437 56.26306 

       

Earth 

Curvature 

Potential MIN MAX RANGE MEAN STD 

Very Low -59.1 51.10001 110.2 0.068434 1.038539 

Low -13.7 32.49997 46.19995 0.077809 1.164348 

Moderate -21.4001 64.29996 85.70001 0.131055 1.250927 

High -51.2999 84.89996 136.1999 -0.05093 2.008461 

Very High -87.1 72 159.1 -1.42765 4.733228 

       

Slope (°) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 63.12169 63.12169 7.89603 6.718626 

Low 0 57.99117 57.99117 7.740254 6.336202 

Moderate 0 64.89958 64.89958 8.922302 6.590149 

High 0 70.22811 70.22811 15.68087 8.110688 

Very High 0 75.0257 75.0257 28.11991 10.74406 

       

Kw Factor 

for Potential 

Soil Erosion 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 0.43 0.43 0.303169 0.078175 

Low 0.05 0.43 0.379999 0.28364 0.054306 

Moderate 0.05 0.43 0.379999 0.272435 0.058212 

High 0 0.43 0.43 0.272712 0.058515 

Very High 0 0.43 0.43 0.269997 0.050841 

       

Percent of 

Bangor 

Limestone 

& Hartselle 

Formation 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 100 100 12.02074 31.59688 

Low 0 0 0 0 0 

Moderate 0 0 0 0 0 

High 0 0 0 0 0 

Very High 0 0 0 0 0 
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Percent of 

Pennington 

Formation 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 100 100 11.75483 31.25431 

Low 0 100 100 3.856592 18.48858 

Moderate 0 100 100 2.647881 15.17728 

High 0 100 100 1.236625 9.833561 

Very High 0 100 100 0.785245 6.724248 

  
     

Direct 

Duration of 

Incoming 

Solar 

Radiation 

(hrs/yr) 

Potential MIN MAX RANGE MEAN STD 

Very Low 1103.865 4366.245 3262.38 4042.093 279.4386 

Low 2072.047 4366.245 2294.198 4078.83 254.6976 

Moderate 1642.032 4366.245 2724.213 4041.543 267.8388 

High 1049.788 4366.245 3316.457 3808.853 329.5793 

Very High 175.8363 4352.755 4176.919 3225.272 482.3553 

       
Cost 

Distance to 

Supporting 

Zones of 

Northern 

Red Oak 

(min) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 113.2907 113.2907 2.378269 5.238659 

Low 0 103.2941 103.2941 2.873141 6.160607 

Moderate 0 120.6932 120.6932 3.508843 7.179666 

High 0 121.2794 121.2794 9.779979 12.88304 

Very High 0 121.1599 121.1599 22.90339 15.98167 

       
Cost 

Distance to 

Supporting 

Zones of 

Southern 

Red Oak 

(min) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 485.1584 485.1584 96.96442 78.7146 

Low 0 472.3633 472.3633 135.4598 78.73288 

Moderate 0 481.0388 481.0388 134.2686 86.68871 

High 0 475.6359 475.6359 134.3481 95.7395 

Very High 0 419.4442 419.4442 132.1754 87.68176 

  
     

Cost 

Distance to 

Supporting 

Zones of 

White Oak 

(min) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 72.39667 72.39667 1.847887 4.148276 

Low 0 72.89396 72.89396 2.2017 4.903661 

Moderate 0 78.49101 78.49101 2.230272 5.008158 

High 0 80.00523 80.00523 2.654863 6.367507 

Very High 0 76.54548 76.54548 5.664675 9.807933 

       

Cost 

Distance to 

Supporting 

Zones of 

Hickory 

(min) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 184.0318 184.0318 27.28857 27.70941 

Low 0 154.0818 154.0818 22.57851 19.76546 

Moderate 0 165.9545 165.9545 15.7714 18.51354 

High 0 160.1159 160.1159 7.193517 14.4102 

Very High 0 141.5042 141.5042 7.139106 12.70974 
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Cost 

Distance to 

Nearest 

Water 

Source 

(min) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 154.4588 154.4588 20.74524 21.27078 

Low 0 152.3128 152.3128 17.18684 17.20014 

Moderate 0 162.6823 162.6823 20.01039 17.64831 

High 0 166.5214 166.5214 31.30694 24.76869 

Very High 0 175.6186 175.6186 46.71612 33.85068 

       

Average 

Potential 

Volume of 

Wood Fiber 

(       ) 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 114 114 81.46689 9.959917 

Low 0 114 114 80.39365 7.112513 

Moderate 0 114 114 78.99126 7.639501 

High 0 114 114 73.87251 9.839685 

Very High 0 114 114 57.67532 26.49762 

       

100m 

Shelter 

Index 

Potential MIN MAX RANGE MEAN STD 

Very Low -2974.3 25603.52 28577.81 6434.688 1137.058 

Low -2510.8 20248.61 22759.41 6494.506 1253.519 

Moderate -3376.49 25218.89 28595.38 6592.334 1374.113 

High -4614.69 25832.11 30446.8 6194.252 1840.936 

Very High -7310.09 21087.2 28397.3 4997.708 2442.179 

       

1000m 

Shelter 

Index 

Potential MIN MAX RANGE MEAN STD 

Very Low -4075172 5252821 9327993 494832.1 894974.6 

Low -3711468 5113608 8825076 660271.7 783922.8 

Moderate -3974394 5187558 9161952 641442.3 896419.9 

High -3987755 5580292 9568047 778984 1062584 

Very High -3228353 5482441 8710794 1095411 1289830 

       

Terrain 

Texture 

Potential MIN MAX RANGE MEAN STD 

Very Low 0 289.3893 289.3893 2.455691 4.352556 

Low 0 192.4216 192.4216 2.345312 4.62612 

Moderate 0 321.9063 321.9063 2.881358 5.131256 

High 0 611.2885 611.2885 7.576442 9.836127 

Very High 0 903.56 903.56 27.72758 34.86284 
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