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ABSTRACT

Locating and Total Dominating Sets in Trees

by

Jamie Marie Howard

A set S of vertices in a graph G = (V, E) is a total dominating set of G if every vertex
of V is adjacent to some vertex in S. In this thesis, we consider total dominating sets
of minimum cardinality which have the additional property that distinct vertices of
V are totally dominated by distinct subsets of the total dominating set.
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1 Introduction

1.1 Domination and Total Domination

The concept of domination in graphs began in the 1850s with the game of chess.

The goal of the problem was to use certain chess pieces to dominate the squares of a

chessboard. Knowing that a queen can move horizontally, vertically, or diagonally, de

Jaenish, in 1862, considered the problem of finding the minimum number of queens

that can be placed on a chessboard such that every square is either occupied by a

queen or can be occupied by a queen in a single move. It turns out that the minimum

number of queens needed is five, and this became known as the Five Queens Problem

[4, 7].

The connection between the Five Queens problem and domination can be seen if

we let each vertex of a graph represent a square of the 64 squares of a chessboard.

Then, two vertices are adjacent in G if each corresponding square can be reached

by a queen on the other square in a single move. This graph is referred to as the

Queen’s graph. Hence, the minimum number of queens that can dominate the entire

chessboard forms a dominating set in G [7]. We now consider the formal definitions

and concepts of domination.

A set S of vertices of a graph G = (V, E) is a dominating set of G if every vertex in

V −S is adjacent to some vertex of S. The domination number γ(G) is the minimum

cardinality of a dominating set of G. Consider the example of a P6 shown in Figure 1.

1



eue e u eP6:

Figure 1: Domination of a Path

Notice that if we let our set S be the two darkened vertices, then each of the

remaining vertices is adjacent to a vertex in S. Hence γ(P6) ≤ 2. Since no single

vertex can dominate all of the remaining vertices, we have γ(P6) ≥ 2. Therefore, it

follows that γ(P6) = 2.

Considering a different example, suppose we have the following graph shown in

Figure 2.

u
e e
e u
�

�
��

@
@

@@

a

b

cd

eH:

Figure 2: Domination Example

Then the set S = {a, c} forms a dominating set of H, and since this set is of

minimum cardinality, we have γ(H) = 2.

A vertex u is said to be connected to a vertex v in a graph G if there exists a u−v

path in G. A graph G is connected if every pair of its vertices is connected. A tree

T is a connected graph with no cycles. In a tree, a vertex of degree one is referred

to as a leaf and a vertex which is adjacent to a leaf is a support vertex. If a support
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vertex is adjacent to two or more leaves, it is called a strong support vertex. In many

cases, we look at instances of domination dealing with trees. For example, consider

the tree shown in Figure 3. u
e e e

u u u u u
e e e e e e e

�
�

�
�

�

Q
Q

Q
Q

Q
�

�
��

A
A
AA

�
�

��

A
A
AA

�
�

��

A
A
AA

�
�

��

A
A
AA

T :

Figure 3: Domination of a Tree

Notice that, in this case, γ(T ) = 6 since we must include at least the number of

support vertices to dominate the leaves as well as an additional vertex to dominate

the root of the tree.

In order for a set of vertices, S to be dominating, every vertex not in the set

must be adjacent to at least one vertex in the set. If we tighten the condition and

require every vertex of a graph G to be adjacent to some vertex in S, then we have

a total dominating set of G. Formally, a set S of vertices of a graph G = (V, E) is a

total dominating set of G if every vertex in V is adjacent to some vertex in S. The

minimum cardinality of a total dominating set of G is the total domination number

γt(G). Note that γt(G) is defined only for graphs with no isolated vertices. Since

every total dominating set is a dominating set, we have γ(G) ≤ γt(G) for all graphs

G with no isolated vertices.

Consider again the path P6 shown in Figure 1. The darkened vertices form a

dominating set S of P6, but, these two vertices are not adjacent to a vertex in S. A
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total dominating set S ′ of P6 is illustrated in Figure 4.

uue u u eP6:

Figure 4: Total Domination of a Path

Letting S ′ represent the darkened vertices, notice that every vertex of P6 is now

adjacent to a vertex of S ′. Hence, γt(P6) ≤ 4. Since no three vertices forming a P3

dominates P6, γt(P6) ≥ 4. Therefore, we conclude that γt(G) = 4. In general, the

total domination number for paths is γt(Pn) = bn
2
c+ dn

4
e − bn

4
c.

Consider again the graph shown in Figure 2. The set S = {a, c} forms a dominat-

ing set of H and we have γ(H) = 2. Since these two vertices are not also adjacent to

each other, S is not a total dominating set of H. However, the set S ′ = {b, c} forms

a total dominating set of H shown in Figure 5 below.

e
e u
e u
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��

@
@

@@

a

b

cd

eH:

Figure 5: Total Domination Example

Therefore, γt(H) ≤ 2. Since 2 = γ(H) ≤ γt(H), we have γt(H) = 2. Notice this

is an example of a graph for which the domination and total domination numbers are

equal.
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Finally, consider again the tree shown in Figure 3. The support vertices as well

as the root of the tree are a dominating set of T . However, since the root and the

support vertices are not adjacent, this cannot also be a total dominating set of T . A

total dominating set of T is shown below by the set of darkened vertices and it can

be shown that γt(T ) = 8. e
u u u

u u u u u
e e e e e e e
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�
�

��

A
A
AA

�
�

��

A
A
AA

T :

Figure 6: Total Domination of a Tree

In general, we follow the terminology of [4]. A more extensive study of domination

in graphs can be found in [4, 5].
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1.2 Locating-Dominating and Differentiating Dominating Sets

Consider the floor plan of a building as modelled by a graph where a vertex represents

a room in the building and two vertices are adjacent if the corresponding rooms are

adjacent. Suppose we wish to install expensive sensors in the building which will

transmit a signal at the detection of an intruder (fire, burglar, etc.). Since the sensors

are expensive we wish to optimize their usage. This safeguards facility analysis of

the corresponding graph motivated the concept of locating sets and further the idea

of locating-dominating sets, which in turn gave rise to the problem considered in this

thesis.

Before presenting the work of this thesis, we first discuss these motivating con-

cepts. Let S = {v1, v2, ..., vk} be a set of vertices in a connected graph G = (V, E)

and let v ∈ V . The k-vector (ordered k-tuple) cs(v), of v with respect to S is defined

by

cs(v) = (d(v, v1), d(v, v2), ..., d(v, vk))

where d(v, vi) is the distance between v and vi (1 ≤ i ≤ k). The set S is called a

locating set if the k-vectors cs(v), for all vertices v ∈ V , are distinct. This concept is

studied in [9, 10].

For example, suppose we have the graph H given in Figure 7.

In order for the set S = {b, e} to be a locating set of H, the 2-vectors cs(v) must

be distinct for all v ∈ V . Notice

cs(a) = {1, 1}

cs(b) = {0, 1}

cs(c) = {1, 2}
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eH:

Figure 7: Locating Set Example

cs(d) = {2, 1}

cs(e) = {1, 0}

Since all of the 2-vectors are distinct, we conclude that S is a locating set of H.

Slater [10, 11] defined a locating-dominating set in a connected graph G to be a

dominating set S of G such that for every two vertices u and v in V (G)− S,

N(u)∩ S 6= N(v)∩ S. The minimum cardinality of a locating-dominating set of G is

the location-domination number γL(G). Notice that the location-domination number

is defined for every connected graph G since V is such a set. This concept is studied in

[1, 2, 8, 10, 11, 12] and elsewhere. To illustrate, suppose we have G = K4, a complete

graph on four vertices, as shown in Figure 8 below.

Notice that to dominate this graph, we need only one vertex, say vertex a, since

all edges are present between any pair of vertices. Therefore γ(K4) = 1. However,

the dominating set S = {a} cannot be a locating-dominating set since the remaining

vertices are all adjacent to a, and hence N(b)∩S = {a}, N(c)∩S = {a}, N(d)∩S =

{a}. In fact, any locating-dominating set of a complete graph must include all the

vertices, except one. For instance S ′ = {a, b, c} is a locating-dominating set of K4 as

illustrated in Figure 9.
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Figure 8: Complete Graph, K4
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Figure 9: Locating-Dominating Set

Hence γL(K4) ≤ 3. Notice that since K4 is a complete graph, any locating-

dominating set must include all the vertices except one, and so γL(G) ≥ 3. Therefore,

γL(G) = 3. In general, for all complete graphs Kn, γL(Kn) = n− 1.

In order for a set S to be a locating set, every vertex in V (G) − S must be

distinguished in terms of its open neighborhood intersecting S. If we require all of

the vertices of G to be distinguished, then we have a differentiating set of G. Gimbel

et al. [3] defined a set S to be a differentiating dominating set if S is a dominating set

and for every pair of vertices u and v in V , N [u] ∩ S 6= N [v] ∩ S. The differentiating

8



domination number γD(G), is the minimum cardinality of a differentiating dominating

set of G. Since every differentiating dominating set is a dominating set, we have

γ(G) ≤ γD(G). Consider the path P8 shown in Figure 10

e u e u e e u ea b c d e f g h
P8:

Figure 10: Path on Eight Vertices

Notice that the set S = {b, d, g} forms a dominating set of P8, and it can be

shown that γ(P8) = 3. However, notice that N [a]∩ S = {b} and N [b]∩ S = {b}, and

so S is not differentiating. Suppose we include the vertex c in our set S. That is,

S = {b, c, d, g}. So, we have

e u u u e e u ea b c d e f g h
P8:

Now, the set of vertices {a, b, c, d, e} are all differentiated in terms of their closed

neighborhoods intersecting S. However, N [f ]∩ S = {g}, N [g]∩ S = {g}, and N [h]∩

S = {g}. Therefore S is not a differentiating dominating set of P8. Suppose we add

the vertex f to our set S, that is, S = {b, c, d, f, g}.

e u u u e u u ea b c d e f g h
P8:

Notice that the addition of vertex f to our set S still does not make S differen-

tiating since N [f ] ∩ S = {f, g} and N [g] ∩ S = {f, g}. Therefore, we must include

9



vertex h to our set S. That is, S = {b, c, d, f, g, h}, and we have

e u u u e u u ua b c d e f g h
P8:

Now any pair of distinct vertices u and v in V can be differentiated and so γD(P8) ≤

6. Since no five vertices forming a P5 is a differentiating dominating set for P8,

γD(P8) ≥ 6. Therefore, γD(P8) = 6.
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1.3 Locating-Total Dominating and Differentiating Total Dom-

inating Sets

The location of monitoring devices, such as surveillance cameras or fire alarms, to

safeguard a system also serves as a motivation for my thesis work. Specifically, I am

focusing on the problem of placing monitoring devices in a system in such a way that

every site in the system (including the monitors) is adjacent to a monitor site. This

problem can be modelled using total domination in graphs. As before, we let the

floor plan of a building be modelled by a graph G = (V, E) where a vertex represents

a room in the building and two vertices are adjacent if the corresponding rooms

are adjacent. If we find a total dominating set S for the graph, then we can place

monitoring devices in each of the rooms corresponding to the vertices of S. Since S is

a total dominating set, if a monitor goes down, the adjacent monitor can still protect

the room. For example, suppose we have the following floor plan of a building as

modelled by the graph shown in Figure 11, where L, P, W, MO, V P, M represent the

Lounge, President’s office, Women’s restroom, Main Office, Vice President’s office,

and Men’s restroom, respectively.

u
u

u
u

u
u

L P W

MO V P M

G:

Figure 11: Floor Plan Model
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Notice that if we place monitoring devices in the President’s office and the Vice

President’s office, then all of the rooms are adjacent to a monitor site, including the

President’s and Vice President’s office, and the building is guarded, that is, these two

vertices form a total dominating set for the graph.

e
e

u
u

e
e

L P W

MO V P M

G:

Suppose there is a ”problem” at one of the facilities in the building such as a

fire, burglar, or any other intruder. Then we want to be able to uniquely identify

the location of the ”problem” by a set of monitors. This concept serves as further

motivation for my thesis work, as it combines the two concepts, total domination

and location in graphs. In my thesis, I merge the concepts of a locating set and a

total dominating set by defining two new sets, namely a locating-total dominating set

and a differentiating total dominating set. In addition, I establish bounds on these

parameters in a tree and investigate the ratio of these parameters in trees.

A locating-total dominating set (LTDS) S of a graph G is a total dominating set

S of G such that for every two vertices u and v in V − S, N(u) ∩ S 6= N(v) ∩ S.

The locating-total domination number γL
t (G) is the minimum cardinality of a LTDS

of G. A LTDS of cardinality γL
t (G) we call a γL

t (G)-set. Note that the location total-

domination number is defined for every graph G with no isolated vertex, since V is

such a set. Consider again the graph of the floor plan of the building in Figure 11.

12



e
e

u
u

e
e

L P W

MO V P M

G:

The set S = {P, V P} is a total dominating set of G. To determine if this set

is a LTDS of G, we must consider the vertices in V − S or {L, MO, W, M}. Notice

that N(W ) ∩ S = {P} and N(L) ∩ S = {P}. Therefore, if a ”problem” exists in

either of these two rooms, then only the monitor in the President’s office will sound,

and we will not know exactly where the problem is located. Suppose we place an

additional monitor in the main office, and our set becomes S = {P, V P,MO} as

shown in Figure 12.

e
u

u
u

e
e

L P W

MO V P M

G:

Figure 12: Locating-Total Dominating Set

For the remaining vertices in V − S we have

N(L) ∩ S = {P, MO}

N(W ) ∩ S = {P}

N(M) ∩ S = {V P}

Since all of these sets are different, we conclude that S is a LTDS of G and

γL
t (G) ≤ 3. Since the vertices W and M have degree 1, we must include the vertices

13



P and V P in our LTDS. As shown above, these vertices alone do not form a LTDS of

G and so we have γL
t (G) ≥ 3. Hence, it follows that γL

t (G) = 3 and S = {P, V P,MO}

is a γL
t (G)-set.

A set S of vertices of a graph G is called a differentiating total dominating set

(DTDS) of G if S is a total dominating set and for every pair of distinct vertices

u and v in V , N [u] ∩ S 6= N [v] ∩ S. The differentiating total domination number

γD
t (G) is the minimum cardinality of a DTDS of G. A DTDS of minimum cardinality

γD
t (G) is called a γD

t (G)-set. Notice that every DTDS is a LTDS and so it follows

that γL
t (G) ≤ γD

t (G) for every graph G without isolated vertices.

Let’s revisit the floor plan of the building one last time.

e
e

u
u

e
e

L P W

MO V P M

G:

If our set S = {P, V P}, then N [P ]∩S = {P, V P} and N [V P ]∩S = {P, V P} and

so a ”problem” in either of these two rooms would not be uniquely located. However,

including the Main office in S as before yields the graph of Figure 13.

e
u

u
u

e
e

L P W

MO V P M

G:

Figure 13: Differentiating Total Dominating Set
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From this graph, we have

N [L] ∩ S = {P, MO}

N [MO] ∩ S = {MO, V P}

N [P ] ∩ S = {P, V P}

N [V P ] ∩ S = {MO, V P, P}

N [M ] ∩ S = {V P}

N [W ] ∩ S = {P}

Since all of these sets are different, we conclude that the set S = {MO, P, V P} is

a DTDS of G and so γD
t (G) ≤ 3. Since γL

t (G) ≤ γD
t (G), we have γD

t (G) ≥ 3. Hence,

it follows that γD
t (G) = 3 and S = {P, V P,MO} is a γD

t (G)-set.

In many cases, the locating-total domination number is smaller than the differenti-

ating total domination number since every vertex in the graph must be differentiated,

but only the vertices in V − S must be located. Consider the graph H shown below

in Figure 14 examined earlier.

e
u u
e e
�

�
��

@
@

@@

a

b

cd

eH:

Figure 14: Locating-Total Domination Example

Notice that the set S = {b, e} forms a locating-total dominating set of H, and it

follows that γL
t (H) = 2. However, S is not a differentiating total dominating set of H
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since vertices b and e cannot be differentiated in terms of their closed neighborhoods

intersected with S. Furthermore, no other pair of vertices form a differentiating total

dominating set. Hence, γD
t (H) ≥ 3.

e
e u
u u
�

�
��

@
@

@@

a

b

cd

eH:

Figure 15: Locating-Total Domination Example

Notice that S = {b, c, d} is a differentiating total dominating set of H since all

of the vertices of H have different closed neighborhoods intersected with the set S.

Hence, it follows that γD
t (H) = 3. Therefore, for this example, we have γL

t (H) <

γD
t (H). In general, no two adjacent vertices are differentiating. Thus, γD

t (G) ≥ 3 for

all graphs G.

We note that the differentiating total domination number is not defined for every

graph. Consider the complete graph K5 in Figure 16.

u
u u
u u
�

�
��

@
@

@@

�
�
�
�
�
��

A
A

A
A

A
AA
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��

HH
HHH

HH

Figure 16: Complete graph, K5
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Since all edges between any two vertices u and v exist in this graph, N [u] ∩ S =

N [v] ∩ S for all u, v ∈ V . Therefore, no DTDS exists. In general, for any complete

graph Kn, there does not exist a DTDS.

17



2 New Results-Locating-Total Domination

In this chapter, I will present the new results we have obtained for locating-total

domination for trees. We know that every locating-total dominating set of a graph

is also a total-dominating set of the graph, and so it follows that γL
t (G) ≥ γt(G) for

every graph G.

Note that a special kind of tree is a path. In the case when G is a path, every

total-dominating set of G is also a locating-total dominating set of G. Thus, the

locating-total domination number of a path is precisely its total domination number

and we have the following theorem.

Theorem 1 For n ≥ 2, γL
t (Pn) = γt(Pn) = bn

2
c+ dn

4
e − bn

4
c.

To illustrate, consider the following path P12 shown below.

ccccccc c c c c ca b c d e f g h i j k l

From every four vertices in the path, if we put the middle two vertices in the set,

we will form a locating-total dominating set of P12 as shown in Figure 17.

ssccssc c c s s ca b c d e f g h i j k l

Figure 17: Locating-total domination number of a path

Hence, we have γL
t (P12) = b12

2
c+ d12

4
e − b12

4
c = 6 + 3− 3 = 6 and the theorem holds.

Next consider the path P9 shown below.
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eeeee e e e ea b c d e f g h i

Following the pattern, our locating-total dominating set would include the dark-

ened vertices below.

eeuue u u e ea b c d e f g h i

However, notice that vertex i is not dominated, and so we must include vertex h in

the set in order to totally dominate vertex i. Therefore, a locating-total dominating

set of P9 is shown below.

eeuue u u u ea b c d e f g h i

Hence, we have γL
t (P9) = b9

2
c+ d9

4
e − b9

4
c = 4 + 3− 2 = 5 and the theorem holds.

The next result presents a lower bound on the locating-total domination number

of a tree in terms of its order and characterizes those trees T for which equality is

achieved. Let T 1 be the family of trees that can be obtained from k disjoint copies

of P4 by first adding k − 1 edges in such a manner that they are incident only with

support vertices and the resulting graph is connected. Then subdivide each new edge

exactly once.

Theorem 2 If T is a tree of order n ≥ 2, then

γL
t (T ) ≥ 2

5
(n + 1),

with equality if and only if T ∈ T1.
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Proof. Let T be a tree of order n, and let S be a γL
t (T )-set. Let T1, T2, ..., Tk be

the components of T [S]. Notice that every component of T [S] contains at least two

vertices in S. Thus, we have |S| ≥ 2k, and so k ≤ |S|/2.

Let P be the set of all external private neighbors of vertices in S. Thus, if v ∈ P ,

then |N(v)∩S| = 1. Since each vertex of S has at most one external private neighbor,

|P | ≤ |S|. Let R = V −S−P and let |R| = r. Note that each vertex in R is adjacent

to at least two vertices in S.

Let each component T1, T2, ..., Tk of T [S] be represented by a single vertex u1, u2, ..., uk,

and let K = {u1, u2, ..., uk}. Let F be a forest of order k + r with V (F ) = K ∪ R.

Then, a vertex u ∈ K is adjacent to a vertex v ∈ R in F if and only if the vertex

v is adjacent in T to a vertex in the component of T [S] corresponding to the vertex

u. Then, |E(F )| ≥ 2|R| = 2r, and so, k + r = |V (F )| ≥ |E(F )| + 1 ≥ 2r + 1. Thus,

r ≤ k − 1. Hence, n− |S| = |V − S| = |P |+ |R| ≤ |S|+ (k − 1) ≤ 3|S|/2− 1, and so

n ≤ 5|S|/2− 1. Consequently, γD
t (T ) = |S| ≥ 2(n + 1)/5.

This bound is sharp if and only if equality is achieved in each of the above in-

equalities. In particular, k = |S|/2 implying that each component of T [S] is a K2.

Also, V − S − P = R and r = k − 1. It follows that T [R ∪ S] is a tree in which each

vertex in R has degree two. Moreover, |P | = |S|, and so, since T [R ∪ S] is a tree,

T [P ∪ S] is the union of k disjoint paths P4 where each vertex of P is a leaf of T .

Hence, T ∈ T1. 2

To illustrate the sharpness of this bound, we look at a tree T ∈ T1. Consider the

case where k = 4, that is, the tree T consists of 4 disjoint copies of a P4 as shown

below.
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e e e e e e e e
e e e e e e e e

We will now add r = k − 1 = 3 new vertices and join them with the support

vertices of each P4 to make the resulting graph connected as shown in Figure 18. We

note that there are other ways to connect the P4’s and hence T is not unique.

u u u u u u u u
e e e e e e e e

e e e
�

�
��

S
S

SS

�
�

��

S
S

SS

�
�

��

S
S

SST:

Figure 18: Locating-total dominating set for T ∈ T1

Notice that the darkened vertices form a locating-total dominating set for T and

so, we have γL
t (T ) = 2

5
(19 + 1) = 8 and the theorem holds.

The final result establishes a lower bound on the locating-total domination number

of a tree in terms of its order and its number of leaves and support vertices. Let T2

be the family of trees T that can be obtained from any tree T ′ by attaching at least

two leaves to each vertex of T ′ and, if T ′ is nontrivial, subdividing each edge of T ′

exactly once.

Theorem 3 If T is a tree of order n ≥ 3 with l leaves and s support vertices, then

γL
t (T ) ≥ n + 2(l − s) + 1

3
,

with equality if and only if T ∈ T2.
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Proof. Let T be a tree of order n. If n = 3, then γL
t (T ) = 2 = (n+2(l−s)+1)/3 and

T ∈ T2. If n = 4, then either T = K1,3, in which case γL
t (T ) = 3 = (n+2(l−s)+1)/3

and T ∈ T2, or T = P4, in which case γL
t (T ) = 2 > (n+2(l− s)+1)/3. Suppose then

that n ≥ 5.

Let S be a γL
t (T )-set that contains a minimum number of leaves. At most one

leaf neighbor of every support vertex is not in S. Assume that for some support

vertex v, every leaf neighbor of v is in S. If v has a non-leaf neighbor x such that

N [x] ∩ S = {v}, then adding x to the set S and removing a leaf neighbor of v from

S produces a new γL
t (T )-set containing fewer leaves that does S, a contradiction.

Hence, every neighbor of v in V − S has another neighbor in S. If v has two or more

neighbors in S, then removing a leaf neighbor of v from S produces a locating-total

dominating set with cardinality less than γL
t (T ), a contradiction. Hence, v has exactly

one leaf neighbor u and N [v] ∩ S = {u, v} ⊂ S. Then (S − {u}) ∪ {x}, where x is

a non-leaf neighbor of v, is a new γL
t (T )-set containing fewer leaves than does S, a

contradiction. Hence, for every support vertex v, exactly one leaf neighbor of v is not

in S.

Let T1, T2, ..., Tk be the components of T [S]. Notice that any support vertex and

its leaves that are in S are in the same component of T [S]. Hence the number of

components of T [S] is bounded above by the number of vertices in S that are not

leaves of T . Thus our choice of S implies that k ≤ |S| − l + s.

Let P be the set of all external private neighbors of vertices in S. Thus, if w ∈ P ,

then |N(w)∩S| = 1. Since no leaf of T in the set S has any external private neighbors,

and since each vertex of S has at most one external private neighbor, |P | ≤ |S|− l+s.
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Let R = V − S − P and let |R| = r. Note that each vertex in R is adjacent

to at least two vertices in S. Let K be a set of k vertices corresponding to the k

components of T [S]. Let F be the forest of order k + r as defined in the proof of

Theorem 2. Then, as before, |E(F )| ≥ 2|R| = 2r and r ≤ k − 1 ≤ |S| − l + s − 1.

Hence, n − |S| = |V − S| = |P | + |R| ≤ (|S| − l + s) + (|S| − l + s − 1), and so

n ≤ 3|S| − 2(l − s)− 1. Consequently, γL
t (T ) = |S| ≥ (n + 2(l − s) + 1)/3.

This bound is sharp if and only if equality is achieved in each of the above in-

equalities. In particular, k = |S| − l + s implying that each component of T [S] is a

star of order at least 2. Also, V − S − P = R and r = k − 1. It follows that every

vertex in R has degree exactly 2. Hence T ∈ T2. 2

To illustrate the sharpness of this bound, we look at a tree T ∈ T2. We start with

any tree T ′ such as the one shown below.
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T ′ :

To each vertex of T ′, we attach at least two leaves and subdivide each edge of T ′

once to produce the tree T shown below.
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To form a locating-total dominating set of T , we must include all of the vertices

of the original tree T ′ as well as all but one leaf attached to each vertex of T ′. The

darkened vertices in Figure 19 below represent the locating-total dominating set S of

T .
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Figure 19: Locating-total dominating set for T ∈ T2

Notice that each component of T [S] is a star of order 2 and the number of compo-

nents is k = |S|−l+s = 12−12+6 = 6. Furthermore, R = V −S−P = 23−6−12 = 5

implying r = k − 1 = 6 − 1 = 5. Therefore, every vertex of R has degree 2, and we

have γL
t (T ) = n+2(l−s)+1

3
= 23+2(12−6)+1

3
= 36

3
= 12, and so the theorem holds.
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3 New Results-Differentiating Total Domination

in Trees

Recall that a differentiating total dominating set is a set S of minimum cardinality

satisfying two properties

(1) S is a total dominating set.

(2) For all distinct vertices u and v, S ∩N [u] 6= S ∩N [v].

Since every differentiating total dominating set is a locating total dominating set,

we have γL
t (G) ≤ γD

t (G).

Gimbel et. al. [3] defined two vertices u and v to be redundant if N [u] = N [v].

Furthermore, they define a graph to be distinguishable if the differentiating number

is defined. They showed that a graph with no isolated vertex is distinguishable

if and only if it contains no pair of redundant vertices. In addition, they showed

that almost every graph is distinguishable and all trees of order at least three are

distinguishable. For our research on differentiating total domination, we investigated

the differentiating total domination number in trees. We begin with the simplest of

trees, namely paths.

Theorem 4 For n ≥ 3,

γd
t (Pn) =

{
d3n

5
e if n 6≡ 3(mod 5)

d3n
5
e+ 1 if n ≡ 3(mod 5)

Proof. We proceed by induction on n. Clearly, the result can be verified for small

values of n, 3 ≤ n ≤ 7. Let n ≥ 8 and suppose the result holds for all paths of order

n′ where 3 ≤ n′ < n. Let T : v1, v2, ..., vn be a path of order n. Let S be a γD
t (T )-set.
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Notice we can choose S so that v1 /∈ S. For if v1 ∈ S, let vj be the vertex of smallest

subscript that is not in S, and replace v1 in S by vj to get a new γD
t (T )-set. Since

v1 /∈ S, it follows that {v2, v3, v4} ⊂ S. Similarly, we can choose v5 /∈ S. For if

v5 ∈ S, we can replace v5 with vk in S, where vk is the vertex of smallest subscript

such that k > 5 and vk /∈ S, to form a new γD
t (T )-set. Let T ′ = T −{v1, v2, v3, v4, v5}.

Then T ′ is a path of order n′ = n − 5 ≥ 3 and S − {v2, v3, v4} is a differentiating

total dominating set of T ′. Thus, γD
t (T ′) ≤ |S| − 3 = γD

t (T ) − 3, or, equivalently,

γD
t (T ) ≥ γD

t (T ′) + 3. Let

D =

bn−4
5

c⋃
i=0

{v5i+2, v5i+3, v5i+4}.

We consider two cases.

Case 1. n ≡ 3(mod 5). Then n′ ≡ 3(mod 5). Applying the inductive hypothesis

to T ′, γD
t (T ′) = d3n′

5
e + 1 = d3n

5
e - 2. Hence, γD

t (T ) ≥ γD
t (T ′) + 3 = d3n

5
e + 1. On

the other hand the set S = D ∪ {vn−2, vn−1, vn} is a differentiating total dominating

set of T , and so γD
t (T ) ≤ |S| = d3n

5
e + 1. Consequently, γD

t (T ) = d3n
5
e + 1.

Case 2. n 6≡ 3(mod 5). Then n′ 6≡ 3(mod 5). Applying the inductive hypothesis

to T ′, γD
t (T ′) = d3n′

5
e = d3n

5
e - 3. Hence, γD

t (T ) ≥ γD
t (T ′) + 3 = d3n

5
e. If n ≡ 0 or

4(mod 5), set S = D. If n ≡ 1(mod 5), let S = D ∪ {vn−1}. If n ≡ 2(mod 5), let

S = D ∪ {vn−2, vn−1}. Then, S is a differentiating total dominating set of T , and so

γD
t (T ) ≤ |S| = d3n

5
e. Consequently, γD

t (T ) = d3n
5
e. 2
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To illustrate, consider the path P5 shown below.

u u euev1 v2 v3 v4 v5
P5:

Notice that the darkened vertices form a differentiating total dominating set for

the P5. The proof follows that we can take a path of any length, divide it into smaller

paths as shown above, and choose the middle three vertices to be in our differentiating

total dominating set, S. If five does not evenly divide the length of the entire path,

then we may have to add additional vertices to our set S. This fact is taken care of

in the two cases within the proof.

For example, consider the path P11 shown below.

e e e e e eeeeeev1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Notice that 11 6≡ 3(mod 5). According to the proof, a differentiating total

dominating set will consist of the vertices v2, v3, v4 and v7, v8, v9. By Case 2, since

n ≡ 1(mod 5), we must also include vertex v11−1, that is, v10. This differentiating

total dominating set is shown by the darkened vertices in Figure 20.
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e u u u u eeuuuev1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 20: A differentiating total dominating set for P11.

Hence, γD
t (Pn) = d3(11)

5
e = 7 and the theorem holds.

For a set S ⊂ V , the set S is a packing if the vertices in S are pairwise at distance

at least 3 apart in G.

Consider the tree shown below.
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T :

Figure 21: A packing in a tree T

Notice that the darkened vertices form a packing of T , since any two of the dark-

ened vertices are at distance 4 apart.

Using the idea of a packing as well as the differentiating total domination number

of a path from the previous theorem, we have the following result which provides an

upper bound on the differentiating total domination number of a tree in terms of its

order and number of support vertices.
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Theorem 5 If T 6= P4 is a tree of order n ≥ 4 with s support vertices, then

γD
t (T ) ≤ n− s.

Proof. Let S be a packing in T consisting of precisely s leaves. Since T 6= P4 and

n ≥ 4, T [V − S] is a tree of order at least 3. It follows that V − S is a differentiating

total dominating set of T , and so γD
t (T ) ≤ |V − S| = n− s. 2

To illustrate, consider the tree T shown in Figure 21. Notice that there are 3

support vertices, and so, s = 3. Therefore, we will let S be the set of darkened

vertices, which form a packing in T . Now, we consider T [V − S], illustrated by the

white vertices. Notice that these vertices form a differentiating total dominating set

of T , and so it follows that γD
t (T ) ≤ |V − S| = n − s = 9 − 3 = 6, and the theorem

holds.

As an immediate consequence of Theorem 7, we have the following result.

Corollary 6 If T is a tree of order n ≥ 4, then γD
t (T ) ≤ n− 1 with equality if and

only if T = P4, or T is a star.

For k ≥ 1, the k-corona of a graph H is the graph of order (k +1)|V (H)| obtained

from H by attaching a path of length k to each vertex of H so that the resulting

paths are vertex disjoint. In particular, the 1-corona of H, also called the corona of

H and denoted by H ◦ K1, is obtained from H by adding a pendant edge to each

vertex of H. For example, let H = P5 as shown below.

u u uuuH :
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To form the 2-corona of H, denoted H ◦K2, we will attach a path of length 2 to

each vertex of H.

u u uuuH :

e e e e e
e e e e e

Next, we present a lower bound on the differentiating total domination number

of a tree in terms of its order and characterize those trees T for which equality is

achieved. Let T 3 be the family of trees which can be obtained from k disjoint copies

of a P3 ◦K1 by first adding k − 1 edges in such a manner that they are incident only

with support vertices and the resulting graph is connected, and then subdividing each

new edge with a single vertex. Since γD
t (G) ≥ γD(G) for all distinguishable graphs

with no isolated vertex, our next result is an immediate consequence of a theorem in

Gimbel et al. [3] However, we include a proof here for completeness.

Theorem 7 If T is a tree of order n ≥ 3, then

γD
t (T ) ≥ 3

7
(n + 1),

with equality if and only if T ∈ T 3.

Proof. Let T be a tree of order n, and let S be a γD
t (T )-set. Let T [S] be the subgraph

of T induced by S, and let T1, T2, ..., Tk be the components of T [S]. Then |S| ≥ 3k,

and so we have, k ≤ |S|/3.

Let P be the set of all external private neighbors of vertices in S. Thus, if v ∈ P ,

then |N(v)∩S| = 1. Since each vertex of S has at most one external private neighbor,

30



|P | ≤ |S|. Let R = V − S − P , and |R| = r. Notice, each vertex in R is adjacent to

at least two vertices in S.

Let each component T1, T2, ..., Tk of T [S] be represented by a single vertex u1, u2, ...uk

and let K = {u1, u2, ..., uk}. Let F be a forest of order k + r with V (F ) = {K ∪ R}.

Then, a vertex u ∈ K is adjacent to a vertex v ∈ R in F if and only if the vertex v

is adjacent in T to a vertex in the component of T [S] corresponding to the vertex u.

Then, |E(F )| ≥ 2|R| = 2r, and so, k + r = |V (F )| ≥ |E(F )| + 1 ≥ 2r + 1. Thus,

r ≤ k − 1. Hence, n − |S| = |V − S| = |P | + |R| ≤ |S| + (k − 1) ≤ 4|S|/3 − 1, and

so, n ≤ 7|S|/3− 1. Consequently, γD
t (T ) = |S| ≥ 3(n + 1)/7.

This bound is sharp if and only if equality is achieved in each of the above in-

equalities. In particular, k = |S|/3 implying that each component T [S] is a P3. Also,

V −S −P = R and r = k− 1. It follows that T [R∪S] is a tree in which each vertex

in R has degree 2. Moreover, |P | = |S|, and so, since T [R ∪ S] is a tree, T [P ∪ S] is

the union of k disjoint copies of P3 ◦K1, where each vertex of P is a leaf of T . Hence,

T ∈ T 3. 2

To illustrate the sharpness of this bound, we look at a tree T ∈ T3. Consider the

case where k = 3, that is, the tree T consists of 3 disjoint copies of a P3 ◦K1 as shown

below.

e e e e e e e e e
e e e e e e e e e

We will now add r = k − 1 = 2 new vertices and join them with the support

vertices of each P3 ◦K1 to make the resulting graph connected as shown in Figure 22.
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Figure 22: Differentiating-total dominating set for T ∈ T3

Notice that the darkened vertices form a differentiating-total dominating set for

T and so, we have γD
t (T ) = 3

7
(20 + 1) = 9 and the theorem holds.

Our final result shows that the ratio γD
t (T )/γL

t (T ) is bounded below by 1 and

above by 3/2 when T is a tree.

Theorem 8 For any tree T ,

γL
t (T ) ≤ γD

t (T ) ≤ 3

2
γL

t (T )

and these bounds are sharp.

Proof. Since every differentiating total dominating set is a locating-total dominating

set, we have γL
t (T ) ≤ γD

t (T ) for all trees T . This establishes the lower bound. To

establish the upper bound on γD
t (T ), let S be a γL

t (T )-set. Suppose T [S] has k

components. Since every component of T [S] has at least two vertices, |S| ≥ 2k, and

so k ≤ |S|/2. For each 2-component of T [S], add to the set S a vertex in V −S that is

adjacent to a vertex in that component. Then the resulting set S ′ is a differentiating

total dominating set of T , and so, we have γD
t (T ) ≤ |S ′| ≤ |S| + k ≤ 3|S|/2 =

3γL
t (T )/2.

Equality is achieved in the lower bound by taking, for example, T to be the corona

of a tree of order at least 3, while equality is achieved in the upper bound by taking,
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for example, T to be the 3-corona of any tree. 2

To illustrate the sharpness of the lower bound, consider the tree T shown below.
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T :

We form the corona of T by attaching a path of length 1 to every vertex in T .
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T :

e

e e

e
Figure 23: A tree T for which γL

t (T ) = γD
t (T )

Notice that the darkened vertices form a locating-total dominating set as well as

a differentiating total dominating set of T . Hence, γL
t (T ) = γD

t (T ) = 4.

To illustrate the sharpness in the upper bound, consider the tree T as above.
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We now form the 3-corona of T by attaching a path of length 3 to all of the vertices

in T .

e e
e e�
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T :

uu
e

uu
e

uue
uue

Notice that the darkened vertices form a locating-total dominating set of T . How-

ever, they do not form a differentiating total dominating set of T because the darkened

vertices cannot be distinguished. In fact, in order to form a differentiating total dom-

inating set of T , we must include at least 3 vertices from each ”leg” as shown in

Figure 24.
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Figure 24: A tree T for which γD
t (T ) = 3

2
γL

t (T )

Therefore, we have, γL
t (T ) = 8 and γD

t (T ) = 12, and so it follows that γD
t (T ) =

3
2
γL

t (T ).
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It would be very interesting in the future to try to characterize those trees for

which γD
t (T ) = 3

2
γL

t (T ). For now, we conclude only that the bound is sharp.

There is still much more research to be done on this topic of locating-total domi-

nating sets and differentiating total dominating sets. For this thesis, we only consid-

ered the parameters as applied to trees. Further research will consider the parameters

applied to other families of graphs. In [6], the concepts of a locating set and a domi-

nating set are merged by defining the metric-locating-dominating set in a connected

graph G to be a set of vertices of G that is both a dominating set and a locating set in

G. This topic could be extended to similarly define a metric-locating-total dominating

set in a graph G and this new parameter could also be explored. In relation to the

work in this thesis, additional research may include finding trees for which there is

a unique locating-total dominating set and a unique differentiating total dominating

set. Hopefully, we will investigate these and other topics related to locating-total

dominating and differentiating total dominating sets in the future.
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