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ABSTRACT 

 

Characterization of the Group II Intron Gs.Int1 from the Thermophilic Bacterium 

Geobacillus stearothermophilus 

by 

Huijing Sun 

 

Group II Introns are small segments of DNA that reside in the chromosome of bacteria or 

the organelles of primitive eukaryotes. These elements have some very interesting 

properties. First, they are retrotransposons that can move from one location to a new 

location in DNA via a reverse transcription mechanism. Second, they form a large 

ribozyme that mediates self-splicing of the intron from pre-mRNA. A Group II Intron 

type protein with similarity to reverse transcriptase was discovered in the thermophilic 

bacterium Geobacillus stearothermophilus strain 10 (Vellore et al., 2004, Appl. Environ. 

Microbiol. 70: 7140-7147). Numerous copies of the intron, designated Gs. Int1, are 

present in the chromosome of strain 10 but absent from a related strain ATCC 12980. 

Experiments to detect the in vivo splicing of intron Gs.Int1 from G. stearothermophilus 

cells did not work. Plasmids to that will over-express the Gs. Int1 intron to detest splicing 

in vivo in Escherichia coli have been constructed.  
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CHAPTER 1 

INTRODUCTION 

 

This thesis describes the characterization of a group II intron from the 

thermophilic bacterium Geobacillus stearothermophilus. Group II introns are small 

segments of DNA that code for a catalytic RNA enzyme (ribozyme) and also code for a 

protein with reverse transcriptase (RT) activity. These products provide group II introns 

with some interesting properties. First, group II introns can self-splice; that is, they can 

excise themselves out of a pre-mRNA transcript without requiring a protein product 

(Lambowitz and Zimmerly 2004; Toro et al. 2007). Self-splicing group II introns of 

bacteria are considered as the evolutionary progenitors of eukaryotic spliceosomal introns 

because they use a similar mechanism for splicing out the intron from pre-mRNA. 

Second, group II introns are also mobile DNAs (called retro-transposons) that can move 

from one location to a new location in a DNA molecule. This mobility requires the intron 

encoded RT (Lambowitz and Zimmerly 2004). Bacterial group II introns are also of 

considerable interest because they have potential practical uses. Some characteristics of 

group II introns can be exploited for use in genetic engineering in biotechnology and for 

possible gene therapy (Toro et al. 2007). For example, derivatives of the group II intron 

LI.LtrB from Lactococcal lactis have been used to produce targeted gene disruption in 

some gram-positive and gram-negative bacteria. This results in a desired mutant strain 

(Toro et al. 2007). Group II introns can be engineered to insert efficiently into virtually 

any target DNA and retain activity in human cells (Guo et al. 2000). The group II intron 

from the thermophile G. stearothermophilus is a new class of introns and its adaptation to 
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function at hot temperatures may provide new insights into how these interesting genetic 

elements work. 

 

The Genus Bacillus 

The Bacillus genus includes bacteria that are aerobic and facultatively anaerobic, 

rod-shaped, Gram positive to Gram variable, and form endospores (Nazina et al. 2001). 

Different species can grow in different environments. They are divided into thermophilic, 

psychrophilic, acidophilic, alkalophilic, halophilic, and freshwater bacteria (Nazina et al. 

2001). They can use a wide range of carbon sources to grow. 

According to 16S rRNA gene sequence analysis, the genus Bacillus contains 5 

genetic subgroups (group 1-5). A phylogenetic tree, based on 16S rRNA, of the genus 

Bacillus and related genera is shown in Figure 1 (Zeigler 2001).  

 

 

 

 

 

 

 

 

 

Figure 1  Phylogenetic Tree of the Genus Bacillus and Related Genera 

 (Adapted from Zeigler 2001) 
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For the genus Bacillus, based on their 16S rRNA sequence, the majority of the 

thermophilic species are divided into group 1 and group 5 (Nazina et al. 2001). Group 5 

is a thermophilic bacilli group that has very high similarity among their 16S rRNA 

sequences (98.5-99.2%) (Nazina et al. 2001). According to physiological characteristics, 

the results of fatty acid analysis, DNA-DNA hybridization studies and 16S rRNA gene 

sequences analysis, a new genus was proposed: Geobacillus gen. nov., (Nazina et al. 

2001). Nazina T.N. and other researchers proposed the transfer of the following species 

of group 5, B. stearothermophilus, B. thermoleovorans, B. thermocatenulatus, B. 

kaustophilus, B. thermoglucosidasius, and B. thermodenitrificans into this new genus 

Geobacillus (Nazina et al. 2001). Thus, Geobacillus stearothermophilus was reclassified 

from Bacillus stearothermophilus.  

 

The Genus Geobacillus 

The genus Geobacillus includes a diverse group of bacteria that are found in soil. 

Geo- means soil or earth and bacillus means small rod-shape. So, the Geobacillus means 

earth or soil bacillus. There are currently 9 established species within this genus (Zeigler 

2001). 

For morphology, they are rod-shaped cells, occurring either singly or in short 

chains and motile by means of peritrichous flagella. They are Gram-positive bacteria, but 

the Gram stain reaction may vary between positive and negative. One ellipsoidal or 

cylindrical endospore occurs per cell and is located terminally or subterminally in slightly 

swollen or non-swollen sporangia. They have variable shape and size and pigments may 

be produced on certain media (Nazina et al. 2001; Zeigler 2001). They are obligately 
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thermophilic aerobic or facultatively anaerobic bacteria. The growth temperature range is 

37°C -75°C with an optimum at 55°C-65°C. Growth occurs in a pH range of 6.0 -8.5 

with an optimum at pH 6.2-7.5 (Nazina et al. 2001; Zeigler 2001).  

Thermophilic bacilli, including Geobacillus, are widely distributed and have been 

isolated from all continents where geothermal areas are found (McMullan et al. 2004). 

Geobacilli are also isolated from shallow marine hot springs, deep-sea hydrothermal 

vents, and artificial hot environments such as hot water pipelines, heat exchangers, waste 

treatment plants, burning coal refuse piles, and bioremediation biopiles (McMullan et al. 

2004). Most work has concentrated on the isolation from natural and artificial high-

temperature “biotopes”. 

The genome sequences of some numbers of Bacillus species have been 

completed, such as B. subtilis, B. halodurans, and B. anthracis (McMullan et al. 2004). 

Recently the complete genomic sequence of Geobacillus kaustophilus HTA426 has been 

determined. It was the first complete genome sequence for a thermophilic Bacillus related 

species that is composed of one circular 3.54 million base pairs chromosome and one 

47.9 kilo base pairs plasmid. About 839 genes found in the genome may contribute to 

thermophilic ability and 91 genes were found to encode putative transposases. These 

enzymes, encoded by DNA transposons, allow transposons to be cut from genomic DNA 

and be inserted at another location (Takami et al. 2004).  

Geobacillus species have a lot of potential applications in biotechnological 

processes, for example, as sources of various thermostable enzymes, such as proteases 

from G. stearothermophilus strain TLS33 (Sookkheo et al. 2000), amylases from G. 

thermoleovorans (Uma et al. 2003), and lipases and pullanases (McMullan et al. 2004). 
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Also, Geobacillus species can generate particular products for industrial uses such as 

exo-polysaccharides. Some species, such as G. caldoxylosilyticus T20, can be used in 

agricultural biotechnology for metabolizing herbicides because they can metabolize a 

range of organophosphonates including the herbicide glyphosate. In addition, two strains 

of G. thermoleovorans can produce large bacteriocins that exhibit lytic activity on other 

strains of G. thermoleovorans and a range of bacteria including Salmonella typhimurium 

(McMullan et al. 2004).  

 

Geobacillus stearothermophilus 

Species name: stearo (fat) + thermo (heat) + philus (loving) =fat- and heat- loving 

bacterium (Zeigler 2001). For G. stearothermophilus, there are several strains: G. 

stearothermophilus strain 10, G. stearothermophilus strain ATCC 12980, G. 

stearothermophilus strain B-4419, G. stearothermophilus strain XL-65-6, and G. 

stearothermophilus strain NUB36 (Zeigler 2001).  

G. stearothermophilus strain 10 and G. stearothermophilus strain ATCC 12980 

were used in this project. G. stearothermophilus strain 10 was isolated from a hot spring 

in Yellowstone National Park (Zeigler 2001). This species was the subject of some early 

studies to characterize the differences between mesophilic and thermophilic Bacillus 

species in DNA polymerase properties and DNA base composition (Stenesh and Roe 

1972). Currently, the G. stearothermophilus strain 10 genomic sequence is being 

determined at the University of Oklahoma, Norman Campus’s Advanced Center for 

Genome Technology. 
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G. stearothermophilus strain 26 is from the collection of the National Canning 

Association. This organism is also called G. stearothermophilus ATCC 12980. Cells are 

motile, 0.6-1.0 µm long, and 2.0-3.5 µm wide with “ellipsoidal endospores” (Zeigler 

2001). The growth temperature is from 37°C to 65°C. This strain has several functions. 

First, it is the source of DNA restriction endonuclease BstP; second, it is used in paper 

strips as a biological indicator for steam sterilization and it is also a source for 

thermostable enzymes for industrial applications, for example, aspartate transaminase 

that can be used to produce herbicide (Bartsch et al. 1996; Zeigler 2001).  

 

Group II Introns 

Group II introns have three characteristics: first, they are introns; second, they are 

ribozymes; and third, they are transposons. 

 

What is an Intron? 

An intron is a non-coding segment of DNA that is initially copied into RNA but is 

cut out from the final RNA transcript. Introns are common in eukaryotic RNAs of all 

types, but they can be also found in some prokaryotic organisms. The regions of a gene 

that remain in spliced mRNA are called exons. The number and length of introns varies 

widely among species and among genes within the same species. The discovery of 

introns led to the Nobel Prize in Physiology or Medicine in 1993 for Phillip A. Sharp and 

Richard J. Roberts. The term intron was introduced by American biochemist Walter 

Gilbert in 1978 (Gilbert 1978).  
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Four classes of intron are known to exist: Group I Introns, Group II Introns, 

Group III Introns, and Nuclear Introns. Group I, Group II, and Group III introns are self-

splicing introns. They can catalyze their own splicing out of the primary RNA transcript. 

Some Group III introns are also identified as Group II introns because of their similarity 

in structure and function. Group III introns are smaller and more streamlined but the 

splice site consensus sequences are not as well conserved. Group I introns are the only 

class of introns whose splicing require a guanine nucleoside. They possess a secondary 

structure different from that of group II and group III introns. Group I introns are often 

found in bacteria and protozoa. Nuclear or spliceosomal introns are spliced by the 

spliceosome, which is a series of small nuclear RNAs (snRNAs) plus proteins.  There are 

certain splice signals (or consensus sequences) that “abet” the splicing (or identification) 

of these introns by the spliceosome (Roy and Gilbert 2006). 

A group II intron is a small genetic element found in the chromosome of bacteria 

and some eukaryotic organelles, such as mitochondria and chloroplasts. Because any 

intron is a non-coding part of a gene, it has to be removed from mRNA before the RNA 

can be translated.  

 

What is a Ribozyme? 

A ribozyme is an enzyme that is composed totally of RNA rather than protein. It 

is also called an RNA enzyme or catalytic RNA because it can catalyze a chemical 

reaction.  

The first ribozyme was discovered in the 1980s by Thomas R. Cech, who was 

studying RNA splicing in the ciliated protozoan Tetrahymena thermophila and also 
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Sidney Altman, who was working on the bacterial RNase P complex .They won the 

Nobel Prize in chemistry for the discovery of catalytic RNAs (Lehmann and Schmidt 

2003). Seven types of ribozymes have been identified based on their different structures, 

but this may not be the final number (Lehmann and Schmidt 2003). Due to their 

difference in size and reaction mechanisms, the seven types of ribozymes are divided into 

two different groups, the small ribozymes and the large ribozymes (Lehmann and 

Schmidt 2003).  

Group II introns belong to the large ribozyme group. They perform splicing 

similar to the spliceosome without requiring any protein (see splicing reaction below). 

This similarity suggests that group II introns may be evolutionarily related to the 

spliceosome.  

 

What is a Transposon? 

 Transposons are also called jumping genes or mobile genetic elements. They can 

move from one location to another location in a DNA molecule. There are several 

reasons to account for why transposons are very important. a) They can carry antibiotic 

resistant genes; b) they can carry virulence properties; c) they can act as vehicles for gene 

exchange; d) they can generate insertional mutations; and e) they can promote evolution. 

There are two types of transposons: DNA transposons and Retro-transposons. The 

difference between them is the mechanism they use to move from a donor DNA to a 

recipient DNA.  DNA transposons include insertion sequences, class I composite 

transposons, class II non-composite transposons, class III transposing bacteriophages, 

integrons, mobilizable transposons, and conjugative transposons. Among them, insertion 
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sequences (IS elements)  are the simplest type of DNA transposons and those other DNA 

transposons are more complex in structure and often carry antibiotic resistance genes, 

catabolic genes, vitamin synthesis genes, nitrogen fixation genes, and heavy metal 

resistance genes, so  they are very important in bacteria (Whittle and Salyers 2002). 

Retro-transposons include group II introns. They need an RNA intermediate to transpose 

(see description of retro-transposition below). 

 

The Structure of a Group II Intron 

The structure of a group II intron is shown in Figure 2. 
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Figure 2  Structure of a Group II Intron  
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 The RNA Molecule 

The DNA segment containing the intron (thin black line, Figure 2) is transcribed 

into mRNA, and then the intron RNA sequence (red line, Figure 2) folds into a conserved 

secondary structure consisting of six domains (labeled I-VI, Figure 2). This folded RNA 

structure forms the intron ribozyme. The whole secondary structure can excise (self-

splice) out from mRNA and form a typical lariat form (red loop structure, Figure 2). The 

two exons can join together to form a functional gene (black bar segments, Figure 2). 

Also, the intron RNA sequence can be translated into an intron protein which has reverse 

transcriptase activity (open black bar, Figure 2). 

       Therefore, a group II intron codes for two functional molecules: The first 

functional molecule is a ribozyme that comes from mRNA. Like nuclear spliceosomal 

introns, group II introns are spliced by two sequential transesterification reactions that 

produce ligated exons and an excised intron lariat with a 2’-5’ phosphodiester bond 

(Lambowitz and Zimmerly 2004). The splicing reaction of group II introns is typically 

characterized by two transesterification steps (Figure 3). The first step is initiated by the 

attack of an unpaired intron-internal adenosine (A, Figure 3), located close to the 3’ end 

of the intron, on the 5’ splicing site, resulting in a free 5’ exon and a branched intron-3’ 

exon intermediate. In the second step, the 5’ exon attacks the 3’ splicing site, leading to 

the ligation of the exons and the release of the intron to a lariat form, this process is also 

called branch-point splicing (Lehmann and Schmidt 2003; Toro et al. 2007). In the case 

of a group II intron, the splicing reactions are catalyzed by the intron itself.  
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Figure 3  Group II Intron RNA Splicing Reaction Mechanism 

 (Adapted from Toro et al. 2007) 

 

      In human cells when an intron is spliced out by the spliceosomal complex, it 

also forms the lariat structure suggesting some evolutionary conservation. The 

spliceosomal complex is an assembly of RNA and protein molecules within the nucleus 

that performs splicing of mRNA in eukaryotes. 

 

The Intron Protein 

     The second functional molecule is the intron-encoded protein (IEP). The intron 

RNA sequence is translated into a protein that has reverse transcriptase activity. The 

protein usually contains four domains: Reverse transcriptase (RT), maturase (X), DNA 

binding (D), and DNA endonuclease (En) (Lehmann and Schmidt 2003; Lambowitz and 
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Zimmerly 2004).  The typical open reading frame (ORF) of a group II intron is located in 

intron domain IV. The N-terminal part of ORF contains the RT domain which contains 

conserved amino acid sequence blocks RT-1 to 7. The RT domain contributes to retro-

transposition of group II introns. Domain X, downstream of the RT domain, contains a 

poorly conserved sequence region. The so called maturase activity is found in this region 

of the protein and can help the intron splice. So far, the maturase domain is present in all 

known IEPs of group II introns. This provides a very important function of domain X in 

RNA splicing. The RT and X domains bind the intron RNA together to initiate RNA 

splicing and as a template for reverse transcription (Lambowitz and Zimmerly 2004). At 

the C-terminal end of the IEP are DNA binding (D) and endonuclease (En) domains. 

They are not necessary for RNA splicing but important in intron mobility. The D domain 

is poorly conserved in sequence and the same region also includes a conserved DNA En 

domain that helps the intron insert into a specific location in a DNA molecule 

(Lambowitz and Zimmerly 2004). But more than half of the bacterial group II intron IEPs 

lack the En domain and the D domain (Toro et al. 2007).  

 

Retrotransposons 

        Group II introns are also transposons that can move from one location to a new 

location by two different mechanisms. First, they are retrotransposons that can “reverse 

splice” and insert back into a specific DNA site within an allele that lacks the 

corresponding intron in a process called homing (Figure 4). Second, on some occasions, 

group II introns can also insert into nonhomologous sites in DNA in a process called 
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retrotranspositon; this occurs at low frequency (typically 10-4 or 10-5) (Lambowitz and 

Zimmerly 2004).  

 

       Figure 4  Introns are Mobile DNAs 

 

Intron RNA sequence (red line, Figure 4) can self-splice out from mRNA to form 

a typical lariat shape (red loop, Figure 4) and use a branching splicing mechanism as 

described before. Then the spliced intron uses an intriguing mobility mechanism, known 

as target-primed reverse transcription (TPRT) for retrohoming (Dai and Zimmerly 2002b; 

Lambowitz and Zimmerly 2004). A specific target sequence is required for retro-homing 

and occurs at ~30 bp from target site. Also, flanking exon sequences that are located 

downstream of the intron for a short distance and upstream of the intron for a longer 

variable distance are needed for retro-homing (Dai and Zimmerly 2002b; Lambowitz and 

Zimmerly 2004). The IEP binds to the intron to form an active ribonucleoprotein particle 

(RNP) that recognizes specific sequences in the DNA target site and the intron lariat 

recognizes some nucleotides in the target DNA near the intron insertion site and other 
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nucleotides in the homing site are recognized by the IEP (Dai and Zimmerly 2002b). The 

sense strand cleavage is catalyzed by the intron RNA reverse splicing reaction and the 

antisense strand of DNA was cleaved by the endonuclease domain of the IEP (Dai and 

Zimmerly 2002b; Lambowitz and Zimmerly 2004). The intron RNA is inserted into the 

cleaved sense strand and acts as a template for reverse transcription and the 3’-OH of the 

cleaved antisense strand of the DNA can serve as a primer for reverse transcription of the 

inserted intron by TPRT mechanism (Dai and Zimmerly 2002b; Lambowitz and 

Zimmerly 2004). As mentioned previously, many bacterial group II intron IEPs lack the 

En domain. For En- introns, the retrohoming process requires an alternate mechanism to 

prime reverse transcription. The mechanism involved in retrohoming is not understood. 

To some extent, nascent lagging strands will be used as primers (Zhang and Lambowitz 

2003; Lambowitz and Zimmerly 2004).   

 

Types of Group II Introns 

Group II introns are classified as IIA, IIB, and IIC based on their RNA secondary 

structures; also IIA and IIB are further divided into A1, A2, B1, and B2 (Toor et al. 2001; 

Toor et al. 2006). These three classes have the same general secondary structure    

elements but there are significant differences in structure and function (Toor et al. 2006). 

The secondary structure of a group IIC intron is shown in Figure 5.  
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Figure 5  Postulated Secondary Structure of Group IIC Intron Ribozyme of Intron 

Gs. Int1 

 

Group IIA and IIB introns share a common mechanism for 5’ exon definition but 

differ in 3’ exon definition. Group IIC introns, which are a newly recognized subclass, 

differ dramatically from IIA and IIB secondary structures. Group IIC introns are 

abbreviated in size and its distal stem domain IV (Figure 5) is 2 base pair shorter than for 

IIA and IIB introns, and its basal stem domain IV has a CGC in place of the highly 

conserved AGC triad (Toor et al. 2006). Group IIC introns have highly distinct target 

specificity, and they are only found in bacteria. Also, their IEPs lack an En 

(endonuclease) domain (Lambowitz and Zimmerly 2004; Toor et al. 2006). Group IIA 

and IIB introns include IBS1-EBS1 (intron binding site1 and exon binding site 2) and 

IBS2-EBS2 (intron binding site 2 and exon binding site2); however, group IIC intron 

only includes IBS1-EBS1. Based on the secondary structure of its ribozyme, G. 
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stearothermophilus strain 10 group II intron Gs. Int1 belongs to IIC type introns (Figure 

5).  

Intron Insertion Sites 

DNA target sites can be recognized by Group II intron ribonucleoprotein particle 

(RNP) that is composed by intron RNA lariat and the IEP. Group II intron RNPs  

recognize specific sequences in the DNA target site by using both the IEP  and base 

pairing of the intron RNA, and the base pairing of the intron RNA contributes most of the 

recognition of  the DNA target site (Lambowitz and Zimmerly 2004). Group IIC introns 

typically insert downstream of palindromic rho-independent transcription terminators; 

also, group IIC introns are often found inserted at multiple target sites having little 

sequence similarity but share the palindromic terminator motif (Lambowitz and 

Zimmerly 2004). So far, group II introns are found widely distributed in bacteria and 

discovered in increasing numbers in bacterial genomes (Dai and Zimmerly 2002a). 

Because group II introns have splicing ability at the RNA level and they often insert after 

transcription terminators, they generally avoid interrupting genes that can lead to host 

damage (Dai and Zimmerly 2002a). Many group II introns are located outside of genes, 

so a selection mechanism may exist against insertion into genes.  

Because group II introns have this ability to recognize DNA target sites mainly by 

base pairing of the intron RNA, they can serve as gene-targeting vectors for gene therapy. 

For example, group II introns were designed and inserted into the HIV 1 provirus and the 

human gene encoding CCR5, an important target site in anti-HIV therapy (Lambowitz 

and Zimmerly 2004).  

 



 25

Prior Investigations 

 

Group II Intron Gs. Int1 

A group II intron (Gs. Int1) was previously discovered in the thermophilic 

bacterium G. stearothermophilus strain 10 (Vellore et al. 2004). Based on a BLAST 

search of bacterial genomes, the G. stearothermophilus intron protein was compared with 

three other intron proteins from Bacillus halodurans, Clostridium acetobutylicum, and 

Pseudomonas alcaligenes (Vellore et al. 2004). Seven highly conserved amino acid 

domains were found. These conserved blocks of amino acids are found in all reverse 

transcriptases including the group II intron proteins. Also, a block of amino acids called 

domain X was found that is associated with the maturase function. This domain X is only 

found in group II intron-encoded proteins.  The intron sequence was cloned into a 

plasmid vector for expression in Escherichia coli. The purified protein retains its RT 

activity even after exposure to 75°C (Vellore et al. 2004). 

 

Group II Intron Gk. Int1 

Another group II intron (Gk. Int1) was discovered in a related bacterium G. 

kaustophilus (Chee and Takami 2005). A housekeeping gene recA was interrupted by this 

intron. Based on the BLAST search, the G. kaustophilus intron protein was compared 

with other different proteins from bacteria and found partially similar to other bacterial 

group II introns.  

RT-PCR was used to amplify the cDNA copy of the group II intron from total 

RNA extracted from G. kaustophilus. The size of the amplified cDNA was shorter than 
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that of the unspliced mRNA. So, it demonstrates that the intron Gk. Int1 can splice in 

vivo. Splicing in vitro was confirmed from a plasmid that contains the group II intron. 

After RT-PCR amplification, the size of the product was found to be equal to that of the 

in vivo splicing with total RNA from G. kaustophilus (Chee and Takami 2005). 
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Hypotheses 

 

Group II introns are very interesting elements. First, they can code for a catalytic 

RNA enzyme (ribozyme) and also code for a protein product that is a type of reverse 

transcriptase. These properties provide group II introns to excise themselves out of an 

mRNA transcript without requiring a protein product. Second, group II introns are mobile 

DNAs. They can move from one location to a new location in a DNA molecule. This 

mobility requires the intron encoded RT. The group II intron from the thermophilic 

bacterium G. stearothermophilus is a new class of group II introns and its adaptation to 

function at hot temperatures may provide new insights into how these interesting genetic 

elements work. 

Based on the prior investigations, there are some scientific problems I want to 

resolve. First, study the characteristics of the group II intron Gs.Int1 from the 

thermophilic bacterium G.  stearothermophilus strain 10. Second, determine if this intron 

can self-splice. Third, determine if the intron can splice at hot temperatures. Finally, for 

the importance of this investigation, I want to find out more about this new type of group 

II intron, learn how proteins and especially how a ribozyme can function at hot 

temperatures, and learn more potential practical uses of thermostable enzymes. 

I proposed the following hypotheses: 

1. There maybe more than one copy of this intron in the genome of G.   

stearothermophilus strain 10. 

2. This intron can be found in other related strains of G. stearothermophilus. 

3. The intron is functional and will splice in vivo. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

Bacterial Strains, Plasmids and Growth Conditions 

Escherichia coli strains (DH5α, JM109) were grown by standard methods 

(Sambrook and Russell 2001). They were inoculated in Luria-Bertani (LB) broth (10 g 

tryptone, 5g yeast extract, and 5g sodium chloride per liter of distilled water) and grown 

overnight in a 37°C incubator with shaking. Solid culture media were made by addition 

of 7.5g agar to the LB broth for per liter and E. coli strains were grown on agar in a 37°C 

incubator overnight. 

 G. stearothermophilus strains were inoculated in LB broth or LB solid media as 

above. G. stearothermophilus were cultivated at 60 °C overnight, with shaking in the 

case of liquid cultures.  

Antibiotics and other supplements were added into media at the following 

concentrations: Ampicillin 50 or 100 micrograms/milliliter (µg/ml); Kanamycin 50 

microliter/milliliter (µg/ml); Chloramphenicol 30 micrograms/milliliter (µg/ml); and 

isopropyl-β-D-thiogalactopyranoside (IPTG) final concentration 1mM. 

 

Isolation of Plasmid DNA and Genomic DNA 

Many methods have been used to isolate plasmid DNA. All of them involve three 

basic steps: growth of bacteria and amplification of the plasmid; harvesting and lysis of 

the bacteria; and purification of the plasmid DNA.  
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In this study, the isolation of plasmid DNA was using the alkaline lysis method of 

DNA isolation as described in Sambrook and Russell (2001). Escherichia coli strains 

containing the plasmid wanted were grown overnight in selective medium containing 

appropriate antibiotics. Preparations of G. stearothermophilus chromosome from strain 

10 and ATCC 12980 were carried out using a protocol described in this section. 

 

Isolation of Plasmid DNA from E. coli cells 

The method used was the same as that described by Moretz (2003). 

 

Isolation of Genomic DNA from G. stearothermophilus Cells 

Genomic DNA was isolated by first growing G. stearothermophilus on a LB agar 

plate at 55 °C. Individual colonies were scraped from the LB plate with a loop and 

transferred to a sterile microcentrifuge tube containing 500 µl 50 mM Tris-HCL, pH 8.0 

until the buffer was very turbid with cells. The cell suspension was centrifuged at 14,000 

rpm for 45 seconds, and the supernatant was discarded. The cell pellet was re-suspended 

in 350 µl TES buffer (50 mM Tris-HCL, 1 mM EDTA and 25 mM sucrose, pH 7.4). 50 

µl of freshly made lysozyme solution (100 mg/ml in TES) was added to partially degrade 

the cell wall. The mixture solution was incubated at 37 °C for 30 minutes in a water bath 

with vortexing every 10 minutes. After the initial incubation, 20 µl of 20% SDS and 

7.5µl of proteinase K (20 mg/ml in H2O) were added to completely lyse the cell. The 

mixture was incubated at 37 °C for 30 minutes in a water bath with gentle mixing every 

10 minutes. 400 µl TE saturated phenol (pH 8.0) was added to the above mixture that was 

extracted once (mix them thoroughly with hands but not too rough). It was centrifuged at 
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14,000 rpm for 5 minutes and the aqueous layer was removed to a new sterile 

microcentrifuge tube. Chloroform: isoamyl alcohol (24:1) 400 µl was added to extract 

twice. The chromosome was then precipitated from the remaining aqueous phase by 

adding 1 ml cold 100% ethanol. The genomic DNA was then spooled out using a pipette 

tip to a new sterile microcentrifuge tube with 400 µl of 70% ethanol. It was rinsed by 

inverting gently and spun at 14,000 rpm for 25 seconds to remove all liquid. The genomic 

DNA was air dried briefly and then re-dissolved in 100µl of 0.1X TE buffer containing 

RNase (20mg/ml). 

 

Preparation of Competent Cells and Transformation Conditions 

 

Calcium Chloride (CaCl2) Competent Cells 

Preparation of competent cells for E. coli strain JM109 or DH5α was started by a 

seed culture. A single colony was inoculated to 2 ml of LB broth then grown at 37°C 

with shaking overnight. Next day, 1 ml of the seed culture was transfered to 40 ml of LB 

broth in a side-armed flask to grow to early log phase. The Klett is about 20 and the OD 

600nm to 0.4. The culture was chilled on ice for 5 minutes. Then the culture was 

transfered to a sterile oakridge tube and centrifuged at 5,000 rpm for 5 minutes at 4°C. 

The supernatant was discarded and the cell pellet was re-suspended in 20 ml of cold 10 

mM MgSO4. The mixture was placed on ice for 15 minutes. The cells were then 

centrifuged at 5, 000 rpm for 5 minutes at 4°C. The supernatant was discarded and the 

cell pellet was re-suspended in 20 ml of cold 50 mM CaCl2- 10 mM Tris, pH 8.0. The 

cell mixture was placed on ice for 15 minutes. Next, the cells were centrifuged and the 
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cell pellet was re-suspended in 2 ml of sterile cold 50 mM CaCl2- 10 mM Tris (pH 8.0) + 

20% glycerol. At last, about 110µl of solution in small tubes (0.5 ml) were frozen at -

80°C. 

 

Transformation Conditions 

CaCl2 Competent cells were removed from -80°C to ice to thaw. After the 

competent cells thawed, 50 µl of competent cells were mixed with a 2 µl of plasmid 

DNA and 10 µl of sterile distilled water in a sterile 5 ml Falcon ® plastic tube and 

allowed to place on ice for 15-30 minutes. The mixture was heat shocked at 42 °C for 45 

seconds and then placed at room temperature for 5 minutes. 0.5 ml of LB broth was 

added to the heat shocked mixture in the tube and then incubated at 37 °C for 1 hour with 

shaking. Then undiluted, 10-1, 10-2, and 10 -3 dilutions of transformed cells were spread in 

50 µl aliquots on LB agar containing the appropriate antibiotic and incubated at 37°C 

overnight. 

 

Total RNA Extraction from G. stearothermophilus 

 

RNA Extraction Method 1 

Total RNAs were extracted from G. stearothermophilus strain 10 and strain 

ATCC 12980 by the methods Chee and Takami (2005) and Igo and Losick (1986). 

RNA extraction was started by inoculating a single colony into a 2 ml LB broth 

and then the culture was grown in a 60 °C water bath with shaking at 200 rpm overnight. 

The next day, 0.5 ml of the seed culture was transferred to a 30 ml LB broth in a sterile 
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side-armed flask and then grown in a 60 °C water bath with shaking at 200 rpm until the 

OD 600nm reached 1.0 and the klett to 55.The culture was quickly cooled in an ice bath 

and then the cells were harvested by centrifuging the culture at 6,000 rpm at 4°C for 5 

minutes. The cells were washed in 10 mM Tris buffer (pH 7.4). After the cells were 

washed, several components were added to lyse the cells: 1 ml of baked  0.45-0.5 mm (in 

diameter) glass beads (225°C, overnight), 2 ml of LETS buffer (100 mM LiCl, 10 mM 

EDTA, 10 mM Tris-HCl (pH 7.4), 1% w/v SDS, and 2 ml of phenol: chloroform: 

isoamyl alcohol (25: 24: 1). The mixture was then vortexed completely for 4 minutes and 

then centrifuged at 6,000 rpm at 4 °C for 5 minutes. Three layers appeared. The bottom 

layer was glass beads and the middle layer was some protein stuff and a top aqueous 

layer. The top liquid phase was removed carefully by pipette tip to a new tube and then 

1.8 ml phenol: chloroform: isoamyl alcohol (25: 24: 1) was added to re-extract the RNA. 

The mixture was vortexed completely and centrifuged at 6,000 rpm at 4 °C for 5 minutes. 

The top liquid layer was removed to a new microcentrifuge tube. The total RNA was 

precipitated by adding 1/10 volume 2 M of LiCl solution plus 2.5 volume of ethanol. The 

microcentrifuge tube was then put at -20°C overnight. 

 

RNA Extraction Method 2 

Cells from a 50 ml culture (in LB broth at OD 600nm 0.6~0.7) were washed in 50 

mM Tris pH 8.0, then aliquoted into 1.5 ml microcentrifuge tubes (about 2.5 ml of 

culture per microcentrufuge tube), and then the cell pellet was frozen at -80°C. 100 µl 

lysozyme soln (20% sucrose, 150mM NaCl, 1mM EDTA, 0.4mg/ml fresh lysozyme) was 

added to the frozen cell pellet. The mixture was vortexed and incubated at 37°C for 15 
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minutes. The following components were pre-warmed in a 65°C water bath and added 

one by one. After pre-warmed, 200 µl 4M Guanidine Soln (4M guanidine throcyanate, 50 

mM Tris, pH 7.5, 4% sarkosyl Soln, 1% Beta-Mercaptoethanol); 100 µl Buffer I (100 

mM NaOAc, 10 mM Tris, pH 7.5, 1 mM EDTA);  200 µl Acid Phenol (phenol 

equilibrated with 50 mM NaOAc pH 4.0);  400 µl Chloroform: isoamyl alcohol 24:1 

were added. The microcentrifuge tube was vortexed and put on ice for 10 minutes. It was 

then centrifuged at 14,000 rpm for 5 minutes and the aqueous phase was collected to a 

new sterile microcentrifuge tube. 200 µl Phenol and 200 µl Chloroform were added to 

extract the aqueous twice followed by 400 µl Chloroform: isoamyl alcohol 24:1 to extract 

twice. Then 2 volumes EtOH was added and stored at -80°C overnight. It was centrifuged 

at 14,000 rpm for 20 minutes and the pellet was re-dissolved in 20 ~30 µl RNase-free 

H2O (DEPC treated).  

 

RNA Gel Electrophoresis 

The RNA sample was precipitated overnight and centrifuged at 14,000 rpm for 20 

minutes at 4°C. The supernatant was discarded and the pellet was re-suspended in 25 µl  

RNase-free water (DEPC treated) plus 0.25 µl of RNasin (RNasin 40 U/ µl). The RNA 

marker was removed from ultra freezer (-80°C) to ice to thaw. Following re-suspension, 

5 µl RNA sample, 10 µl RNA sample buffer,  and 2 µl RNA loading buffer were mixed 

to one new sterile microcentrifuge tube. Also, 1 µl RNA maker, 10 µl RNA sample 

buffer, and 2 µl RNA loading buffer were mixed to another new sterile microcentrifuge 

tube. The two tubes were placed into 65°C water bath to heat for 7 minutes, and then they 

were put on ice for 2 minutes followed by centrifuge for 10 seconds. The RNA samples 
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were separated by electrophoresis in a 1.3% agarose gel in autoclaved 1 X TAE buffer 

(40 mM Tris, 20 mM Acetic acid, 1 mM EDTA, pH 7.6). The gel was run at 100-125 

volts for 60 minutes in 1 X TAE buffer (autoclaved), and then RNA bands were checked 

directly on UV trans-illuminator. 

RNA Sample Buffer:  

10 mls Formamide 

3.5 mls Formaldehyde (37%) 

2.0 mls 5x MOPS buffer (0.2 M MOPS, pH 7.0, 50 mM NaOAc, 5 mM EDTA)  

RNA Loading Buffer: 

50% glycerol  

1mM EDTA 

1mg/ml EtBr 

 

Preparation of cDNA from total RNA of G. stearothermophilus 

Total purified RNA 10 µg from G. stearothermophilus was treated with RNase-

free DNase I. At first the microcentrifuge tubes with RNA were centrifuged at 14,000 

rpm for 5 minutes and the liquid was aspirated completely. The pellet was dissolved in 22 

µl H2O (DEPC treated), and then 3 µl 10 X DNase I buffer and 5 µl RNase-free DNAse I 

(1 unit/ µl) were added to the microcentrifuge tube. The microcentrifuge tube was 

vortexed to mix the mixture completely, and then the mixture was incubated in a 37 °C 

water bath for 15 minutes. Following the incubation, 1 µl stop solution was added to the 

mixture, and then the mixture was incubated at 65 °C for 10 minutes, followed by the 

mixture was put on ice. The treated RNA was mixed with RT primer 12B43D2233  
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(5’-TGCCCGAGCTCGACGATTACGCTCAA-3’) or 8A6D2350 

 (5’-TTGGATCCAGCGACATCCAAACCGAT-3’). For each microcentrifuge tube, 

treated RNA 15 µl, H2O (DEPC) 15 µl, Primer 1.5 µl (20µM Soln), 3 M NaOAc (DEPC 

treated) 3 µl and Ethanol (for RNA) 86 µl were added. The mixture was mixed 

completely and then these microcentrifuge tubes were put at -20°C for 1 hour. The 

Microcentrifuge tubes were centrifuged at 14,000 rpm for 20 minutes and then the pellets 

were rinsed in 200 µl 70%-75% Ethanol. These microcentrifuge tubes were spun again at 

14,000 rpm for 5 minutes and the solution was aspirated out. Then the pellet (RNA + 

Primer) was re-dissolved in 15 µl H2O (DEPC). Following the re-dissolution, 15 µl 

RNA+Primer, 10 µl extension mix and 2 µl MMLV-RT (400 units) were mixed and then 

incubated at 42 °C for 90 minutes followed by addition of 1 µl EDTA (0.25M). Then 0.5 

µl RNase A (10mg/ml) was then added and the mixture was incubated at 37 °C for 15 

minutes to remove any remaining RNA template. Following the incubation, 100 µl 7.5 M 

ammonium acetate was added and the mixture was vortexed completely. And then 125 µl 

of phenol-chloroform (1:1) was added to the mixture to extract. Following the extraction, 

100 µl of aqueous phase cDNA was recovered and precipitated by adding 300 µl Ethanol. 

It was stored at -20°C for 1 hour or overnight. The tube was centrifuged at 14,000 rpm 

for 20 minutes and the pellet was rinsed in 500 µl 75% Ethanol followed by a spin for 5 

minutes at 14,000 rpm and air dry the pellet briefly. The pellet was re-dissolved in 30 µl 

of H2O (DEPC) and then it was frozen at -20 °C.  
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PCR of cDNA Preparation 

Specific amplification of cDNA copy of intron RNA was prepared by PCR 

technique. In preparation for PCR, 38.5 µl PCR H2O, 5 µl 10X Taq buffer (w/MgCl2), 

1µl PCR nucleotide mix (10 mM dNTPs), 1.25 µl upstream primer (20 µM), 1.25 µl 

downstream primer (20 µM), 0.5 µl Taq DNA Polymerase (5U/µl) and 2.5 µl cDNA (10-

4) were added to PCR microcentrifuge tubes and the intron was amplified in PCR 

thermocycler. Upstream primer 12B43U92  

(5’-TACACTGCAGACGGTTTTCCTTGCAC-3’) and downstream primer 12B43D2233 

(5’-TGCCCGAGCTCGACGATTACGCTCAA-3’) were used. Another upstream primer 

8A6U45 (5’- AACTGCAGATGGAAAACATCTCGCAA-3’) and downstream primer 

8A6D2350 (5’-TTGGATCCAGCGACATCCAAACCGAT-3’) were also be used in this 

experiment. 

 At the same time, a negative control for PCR of cDNA was set up without 

upstream primer. 

The PCR program Bert STD1 was used:  

1. 95°C 2 minutes 

2. 95°C 1 minutes 

3. 56°C 2 minutes 

4. 72°C 3 minutes 

5. Go to 2, repeat 29 cycles 

6. hold 4°C  

After the program was finished, the PCR microcentrifuge tubes were stored at - 20°C. 

 



 37

DNA Electrophoresis 

The DNA samples were separated by electrophoresis in 0.75% agrose gels in 

this study. After the DNA samples with loading dye were loaded into the gel wells, the 

gel was run in 1X TBE buffer (50 mM Tris, 1 mM EDTA, 45 mM boric acid, pH 8.3) 

at 125 volts for 1 hour. For Southern blots, chromosomal DNA digested with restriction 

endonucleases was loaded into the gel wells as above and was run in 1X TBE buffer at 

13 volts for a minimum of 16 hours to ensure proper separation of DNA fragments. 

Gels were stained in 15 µg/ml ethidium bromide for 15 minutes then UV light was used 

to check the DNA bands. The gels were washed with water with shaking for 20 minutes 

then the gels pictures were taken.  

For smaller size of DNA molecules, 5% polyacrylamide gels were used in 1X 

TBE buffer. In preparation for this, 8.6 ml H2O, 1.2 ml 10 X TBE, 2.0 ml 29:1 

Acrylamide: Bis and 100 µl 10% ammonium persulfate were added to a smaller 

vacuum flask to degas, then 8 µl TEMED was added to start polymerization. The 

solution was poured between two plates to solidify for 1 hour, and then 100 bp DNA 

maker and 10 µl of appropriate samples with loading dye were loaded to gel wells. The 

gel was run in 1X TBE buffer at 120 volts for 1 hour. Gels were stained and washed as 

above. 

 

Electro-Elution of DNA 

              The method used was the same as that described by Moretz (2003). 
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Southern Blotting 

 The method used was the same as that described by Moretz (2003). 

 

Random-Primed Labeling of Probe DNA with Digoxygenin-II dUTP (DIG) 

The method used was similar to that described by Moretz (2003). 

 

Determination of  Yield of Probe DTG Labeled DNA 

The Protocol used was the same as that described by the manufacturer (Rhoche). 

 

Hybridization 

The method used was the same as that described by Moretz (2003). 
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CHAPTER 3 

RESULTS 

 

How many copies of the Intron are found in the chromosome? 

A Southern hybridization experiment was done to detect the approximate number 

of copies of the intron Gs. Int1 in the chromosome of G. stearothermophilus strain 10 and 

a related ATCC 12980 strain. Genomic DNA from each strain was digested to 

completion with restriction endonuclease EcoRI or HindIII. The resulting DNA 

fragments were separated by electrophoresis in a 0.75% agarose gel (Figure 6). The DNA 

fragments from the gel were transferred to a nitrocellulose membrane via Southern 

blotting.  

 

 

 

 

 

 

 

 

 

Figure 6  Agarose Gel Electrophoresis of Digested Genomic DNA from  

               G. stearothermophilus 
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In Figure 6, lane 6 is a pBluescript plasmid containing the intron Gs. Int1 as 

positive control. 

To detect the presence of the Gs. Int1 intron in these DNA fragments, a probe 

DNA containing part of the intron DNA was hybridized to the Southern blot. The probe 

DNA was produced by cutting out an internal EcoRI fragment from the intron (Figure 7) 

and then labeling this probe DNA by incorporation of a DIG labeled nucleotide 

(methods). 

 

 

 

 

 

                                    Figure 7  Design of a Probe 

 

After the labeled DNA probe hybridized with the fragments of genomic DNA on 

the Southern nitrocellulose membrane, the hybridization result is shown in Figure 8. 

Based on this Southern hybridization result, the probe DNA hybridizes with many 
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DNA fragments which have the same size. After hybridized with the DIG labeled probe, 

one strong band appeared.  

 

 

 

 

 

 

 

 

 

         Figure 8  Southern Hybridization of an Intron Probe DNA Against Genomic DNA 

         from G. stearothermophilus 

 

Splicing in vivo in G.  stearothermophilus 

To detect splicing in vivo, total RNA was extracted from G. stearothermophilus 

strain 10 and ATCC 12980 bacterial cells grown in LB broth medium at 60°C in a water 

bath with shaking. RNA was isolated when the optical density of bacterial cells reached 

1.0 at 600 nm (Figure 9). 
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Figure 9  Agarose Gel Electrophoreses of RNAs Extracted from Strain 10 (A) and ATCC 

12980 (B) 

 

From this total RNA, a specific primer (Green arrow in Figure 10) was used to 

copy the intron containing mRNA into a cDNA copy by reverse transcription (Figure 10).   

 

 

 

 

 

 

 

 

 

 

Figure 10  Method to Detect in vivo Splicing in G. stearothermophilus 
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PCR is then used to amplify the cDNA copy that is more stable than RNA. PCR 

primers are located such that they will amplify the intron sequence plus flanking exons 

from the cDNA copy. The PCR primers were designed based on the DNA sequence 

recovered from a plasmid clone (p12B43 or p8A6) of the intron from the chromosome of 

G. stearothermophilus. 

Upstream primer: 5’-TACACTGCAGACGGTTTTCCTTGCAC-3’ (12B43U92) 

and Downstream primer: 5’-TGCCCGAGCTCGACGATTACGCTCAA-3’ 

(12B43D2233); or 

Upstream primer: 5’-AACTGCAGATGGAAAACATCTCGCAA-3’ (8A6U45) 

and downstream primer: 5’-TTGGATCCAGCGACATCCAAACCGAT-3’ (8A6D2350).   

There are two possible kinds of amplified DNA that could appear. One still 

contains the intron RNA sequence that didn’t splice out (2,200bp) and the other just 

contains the two exons joined together (350 bp). During PCR, a sample that has no 

primer or no template is included as PCR negative controls. Gel electrophoresis was run 

to check the cDNA amplified by PCR. Two different kinds of gels were used, agarose gel 

and acrylamide gel. Acrylamide gel has higher resolution ability for smaller sized DNAs 

than agarose gel. The results after gel electrophoresis of the DNA are shown in Figure 11. 
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Figure 11  Detection of in vivo Splicing Reactions 
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strain ATCC 12980 RNA (lanes 3 and 4, Figure 11) is about 550 base pairs in size and is 
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genome of strain ATCC 12980. Thus, this amplified DNA appears to be unrelated to any 

intron DNA.  

Agarose Gel of cDNA

KbA

23-

4.3-
2.3-
2.0-

1 2 3 4 5 6

λ/H
indIII B

Acrylamide Gel of cDNA

bp

500-

300-

100-

1,000-

1 2 3 4 5 6

100bp M

1. Strain 10 (12B43 Primers)

2. Strain 10 (8A6 Primers)

3. ATCC 12980 (12B43 Primers)

4. ATCC 12980 (8A6 Primers)

5. Strain 10 Chromosome (8A6 Primers)

6. (-) Control Chromosome

Agarose Gel of cDNA

KbA

23-

4.3-
2.3-
2.0-

1 2 3 4 5 6

λ/H
indIII B

Acrylamide Gel of cDNA

bp

500-

300-

100-

1,000-

1 2 3 4 5 6

100bp M

Agarose Gel of cDNA

KbA

23-

4.3-
2.3-
2.0-

1 2 3 4 5 6

λ/H
indIII

Agarose Gel of cDNA

KbA

23-

4.3-
2.3-
2.0-

1 2 3 4 5 6

λ/H
indIII 1 2 3 4 5 6

λ/H
indIII B

Acrylamide Gel of cDNA

bp

500-

300-

100-

1,000-

1 2 3 4 5 6

100bp M

B

Acrylamide Gel of cDNA

bp

500-

300-

100-

1,000-

1 2 3 4 5 6

100bp M 1 2 3 4 5 6

100bp M

1. Strain 10 (12B43 Primers)

2. Strain 10 (8A6 Primers)

3. ATCC 12980 (12B43 Primers)

4. ATCC 12980 (8A6 Primers)

5. Strain 10 Chromosome (8A6 Primers)

6. (-) Control Chromosome

1. Strain 10 (12B43 Primers)

2. Strain 10 (8A6 Primers)

3. ATCC 12980 (12B43 Primers)

4. ATCC 12980 (8A6 Primers)

5. Strain 10 Chromosome (8A6 Primers)

6. (-) Control Chromosome



 45

Constructed Plasmids for Expression of Gs. Int1 in Escherichia coli 

The intron Gs. Int1 plus flanking exons was cloned from G. stearothermophilus 

strain 10, and then the cloned DNA was inserted into an expression plasmid pET21 (+) 

(Figure 12). This plasmid has a T7 promoter, so isopropyl- β-D-thiogalactopyranoside 

(IPTG) can be used to induce the expression of the T7 RNA polymerase. Transcription of 

all genes started with the binding of the T7 RNA polymerase to the T7 promoter in the 

expression plasmid. IPTG acts as an inducer and binds to the repressor to induce the 

expression of the cloned gene. The constructed plasmids allow the intron to be over-

expressed in E. coli cells to detect splicing in vivo in E. coli.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12  Restriction Map of Expression Vector pET-21(+) 
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Constructed plasmids for intron Gs. Int1 in vivo splicing in E. coli were set up as 

shown in Figure 13.  

 

 

 

 

 

 

 

 

 

 

Figure 13  Constructed Plasmids for Intron Gs. Int1 Splicing in vivo in E. coli. Plasmid 

pET21 DNA is the thin line in drawing. Inserted intron (green) plus exons (blue) DNA is 

colored bars. Restriction enzyme sites are as follows: E is EcoRI, H is HindIII, N is NotI, 

S is SacI, and X is XhoI.  
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Otherwise, if the direction is opposite to the T7 promoter, then the constructed plasmid 

can not be expressed in E. coli cells (number 2, Figure 13). So, this kind of plasmid can 

be used as a negative control in this experiment. These plasmid constructions were 

digested with the endonuclease SacI to confirm the orientation of the intron next to the 

T7 promoter (S sites, Figure 13). The distance between the two SacI sites is different 

depending on the orientation of the intron DNA in the expression plasmid. For example, 

if the intron ORF is in the same direction (orientation) as the T7 promoter then digestion 

of this plasmid with SacI will produce two restriction fragments of 5.4 kb (the pET21 

vector) and 2.2 kb (the intron DNA). This is shown in Figure 14A, lanes 1, 4, 7, and 8.  
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Figure 14  Agarose Gel Electrophoresis of pET-21+12B43 cut with Sac I (A) and 
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An inserted region of the intron DNA, which codes for most of the ORF, was 

removed by digestion of the plasmid with EcoRI followed by re-ligation of the 

plasmid. This plasmid was named P12B43∆Eco (plasmid number 3, Figure 13) and 

the intron plus exon is about 1.2 kb. This deleted intron DNA was also ligated into the 

pET21 expression vector using the HindIII site. Again, the correct orientation of the 

inserted intron DNA was confirmed by digestion with SacI. For example, if the 

deleted ORF DNA 12B43∆Eco is in the same orientation of the T7 promoter then 

digested with SacI will give fragments of 5.4 kb (vector) and 1.2 kb (intron DNA). 

This is shown in Figure 14B, lanes 4, 6, and 8. 

In this experiment, I planed to use recA[int1+] group II intron as a positive 

control because this intron has been previously shown to have splicing ability in vivo 

in G. kaustophilus which also is a thermophilic bacterium (Chee and Takami 2005). 

pUCrecA[int1+] was donated by Dr. Chee Gab-Joo. According to the sequences of 

intron and flanking exons, primers were designed.  

Upstream primer: 

5’-CGGGATCCTTGGCAATGGCCGCAAAAC-3’ (ICUP-Bam)  

 And downstream primers: 

5’-CCCAAGCTTAGGCTTATCGCTCTCCTTGGCA-3’ (ICDOWN-Hind) 

5’-CGGGATCCAGGCTTATCGCTCTCCTTGGCA-3’ (ICDOWN-Bam) 

After PCR amplification and DNA electrophoresis, the intron recA[int+] is 

shown the size about 4,000 base pairs. The PCR program Bert STD1 was used. 

Electro-eluted intron recA[int+] was digested by BamH1, then was  ligated to pET21 

that was digested by BamH1 first then treated with CTP. Also, recA[int+] was 



 49

digested by HindIII and BamH1 double enzymes first, then was ligated to pET21 

which was digested by HindIII and BamH1 first then treated with CIP.  
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CHAPTER 4 

DISCUSSION 

 

Group II introns are very interesting elements. First, group II introns code for a 

catalytic RNA enzyme (ribozyme), which is a unique non-protein enzyme. It can enable 

the group II introns to excise themselves out of a pre-mRNA transcript without requiring 

protein products; this process is also called self-splicing. Second, group II introns can 

code for a multifunctional protein that has RT activity. RT is a very important enzyme in 

biotechnology and medical research. For example, it can be used in making cDNA 

libraries and RT-PCR (reverse transcription- polymerase chain reaction).  RT-PCR is a 

very sensitive technique for mRNA detection and quantification. Finally, group II introns 

are retro-transposons that can move from one location to new locations in a DNA 

molecule which contributes to gene mutations in bacteria. 

Intron Gs. Int1 from G. stearothermophilus strain 10 is a new type of group II 

intron that has not been studied well. Based on the intron encoded protein and conserved 

intron RNA secondary structures, group II introns have been divided into three main 

phylogenetic subclasses IIA, IIB, and IIC (Toro et al. 2007). Gs.Int1 belongs to group IIC 

introns that may have new properties that are different from other group IIA and group 

IIB introns. And all these new properties may have important applications in 

biotechnology.  Bacterial group IIC introns appear to be inserted downstream of the stem-

loop structure of rho-independent transcription terminators or other inverted repeats in 

bacterial genomes (Dai and Zimmerly 2002b; Toor et al. 2006).   
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Gs. Int1 intron was found in G. stearothermophilus and this intron was the first 

discovered in a thermophilic bacterium. There are some questions I want to know, such 

as how do bacteria adapt to live at hot temperatures?  How do enzymes and proteins work 

at hot temperatures? And how does intron Gs. Int1 function at hot temperatures?  

Based on the Southern hybridization experiment the intron probe DNA hybridized 

with multiple fragments of the G. stearothermophilus stain 10 chromosome. So, there are 

numerous copies of this intron located at different sites in the strain 10 chromosome. But 

there is no copy of this intron in the related ATCC 12980 strain genome. Other bacteria 

have also been shown to contain numerous copies of the same intron in their genome. For 

example, five full-length and three fragmented copies of intron B.h.I1 were found in the 

genome of Bacillus halodurans (Dai and Zimmerly 2002b); five group II introns were 

found in E. coli populations (Dai and Zimmerly 2002a).  

Splicing of the intron Gs. Int1 from pre-mRNA of G. stearothermophilus was 

tested in vivo. Based on the splicing experiment, the intron Gs. Int1 did not appear to 

work. There are some possible reasons that can explain why the in vivo splicing did not 

work. For example, maybe RNA was lost during the experiment because RNA molecules 

are so vulnerable that they can be degraded very easily. In addition, the intron Gs. Int1 

splicing could be so rare that it can not be detected. Also, I only looked at one copy of 

this intron and maybe this copy was defective, so the splicing reaction can not be 

detected. 

For in vivo splicing in E. coli, the cloned intron with flanking exons was inserted 

into the expression plasmid pET21. The reason this expression system was chosen is the 

presence in this plasmid of a T7 promoter. Thus, the intron Gs. Int1 in the constructed 
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plasmid can be induced by IPTG to over express in E. coli. This will result in a lot of 

copies of mRNA of this intron. After cDNA is amplified by PCR, it will be easier to 

detect the splicing reaction. In this experiment, various controls will be used. For 

example, the constructed plasmid (number 2, Figure 13) in which the T7 promoter is in 

the opposite direction to the inserted intron ORF that can not be expressed in E. coli, so it 

can act as a negative control. The second control will be pET21-recA[int+] which has not 

been completely constructed yet. The reason to choose pET21-recA[int+] as a positive 

control in this experiment is because this plasmid contains the intron Gk. Int1 from G. 

kaustophilus. Both in vivo and in vitro experiments have shown this intron will splice 

(Chee and Takami 2005). To detect if the intron Gs. Int1 has self splice ability, the 

constructed plasmid (number 3, Figure 13) was set up. The region of the intron DNA that 

codes for most of the ORF was removed followed by re-ligation of the plasmid.  

However, an over-expression system of intron Gs. Int1 for detection of in vivo 

splicing in E. coli still has some problems. For example, maybe the copy of this intron is 

defective so that the splicing reaction can not be detected in E. coli either. Also, the 

temperatures for bacterial growth are different. G. stearothermophilus is a themophilic 

bacterium with optimum growth at 60 °C. For E. coli, the optimum temperature for 

growth is 37 °C. The intron Gs. Int1 was cloned from G. stearothermophilus, so it should 

be adapted to the thermophilic bacterium environment to retain its splicing ability. It will 

be interesting to determine if this intron can splice at hot temperatures but this will 

require an in vitro experimental system.  

For in vivo splicing, to my knowledge only a few of bacterial group II introns 

have been shown to have the autocatalytic activity in vivo, such as LI. LtrB from 
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Lactococcal lactis (Mills et al. 1996; Shearman et al. 1996); A intron from Clostridium 

difficile (Roberts et al. 2001); RmInt1 from Sinorhizobium meliloti (Martinez-Abarca et 

al. 1998); B.a.I2 from Bacillus anthracis (Robart et al. 2004); RIR-3 intron from 

Trichodesmium erythraeum (Meng et al. 2005); and Gk.Int1 from Geobacillus 

kaustophilus (Chee and Takami 2005). All these introns have shown in vivo splicing 

ability. It is very challenging to prove that group II introns have splicing capability in 

vivo.  
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