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ABSTRACT 

 

Theoretical Study on the Mechanism of  

Removing Nitrogen Oxides Using Isocyanic Acid  

 

Taraneh Nowroozi-Isfahani 

 

 

The mechanism of RAPRENOx reactions - RAPid REduction of Nitrogen Oxides using 

Isocyanic acid – proposed by Robert A. Perry1 in an attempt to help control the emission of 

nitrogen oxides pollutant into the atmosphere, has been re-investigated theoretically. The 

study of reaction mechanisms was carried out using Chemist software2. All mathematically 

possible elementary steps have been evaluated and the chemically reasonable ones have been 

considered to propose new sets of reaction mechanisms. Density Functional Theory  

(B3LYP/6-31 G**) calculations using Gaussian 98 3 were made in order to study the relative 

energies of all species and to predict the energy barrier of each elementary step. As a 

consequence of our study, there are two more sets of reaction mechanisms (in addition to 

Perry’s mechanism ) that could be possible for the propagation step of RAPRENOx process. 
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CHAPTER 1 

INTRODUCTION 

 

 

Oxides of Nitrogen 

Nitrogen oxides (NOx) are among the top pollutant species in the atmosphere. The 

generic term of nitrogen oxides covers various oxides of nitrogen; however, it is mainly used to 

refer to the principal species of nitric oxide (NO) and nitrogen dioxide (NO2) in the current 

literature. 

Nitrogen oxides (NOx) are well recognized by their harmful effect on human health and 

the environment. The hazards may be caused both from direct emission of NOx to the 

environment and from their role in the formation of secondary compounds. 

In the presence of sunshine, NOx can react with hydrocarbons to make ground-level 

ozone. The effect called photochemical smog can cause serious respiratory problems for humans 

while it damages vegetation. In addition, NOx together with sulfur dioxide react with other 

substances in the air such as water to form acid rain. The impact of acid rain is damaging forests 

and water ecosystems as well as contributing to the deterioration of cars and buildings. 

 

Sources of NOx Emission  

The global emission of NOx into the atmosphere has been increasing over the past 50 

years. Just in the U.S.A., NOx emission increased by 300% , from 7 million to 21 million tons, 

during the years 1940 through 1970 4. This significant increase is mainly attributed to human 

activities, particularly motor vehicles, utilities, industrial/commercial/residential, and all other 

sources as described in Figure 1-15. Meanwhile according to the EPA record on 1995, about 7% 

of the total NOx emission in 1990 was attributed to natural sources, of those lightning and soil are 

the two important ones. 
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Figure 1-1: Sources of NOx Emission to the Atmosphere 
 
 

Formation Mechanisms of Nitric Oxide 

Nitric oxide is the primary nitrogen oxide emitted from most combustion sources. 

Therefore, the first approach to control NOx emission is to reduce the initial production of nitric 

oxide. Scientists believe that there are three major sources of NO formation during combustion 

process6. 

 

1) Thermal NO Mechanisms 

This term is related to the system when the original fuel contains no nitrogen 

atom. Nitric oxide formation from atmospheric nitrogen occurs at high temperature  

(about 2100 K). The equilibrium equation is given as below: 

N2 + O2  � 2 NO 

The kinetic route is explained by formation of oxygen atoms from the H2-O2 

radical pool or possibly from the dissociation of O2. The next step is the attack of an 

oxygen atom to a nitrogen molecule to start a chain reaction postulated by Zeldovich as 

indicated below: 

O + N2 � NO + N 

N + O2 � NO + O 
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2) Prompt NO Mechanisms 

Proposed by Fenimore, prompt NO forms in the flame zone when a hydrocarbon 

species and atmospheric nitrogen are present. The reaction equations are as below: 

CH + N2 � HCN + N 

C2   + N2 � 2CN  

The nitrogen atom then forms nitric oxide through a thermal NO mechanism. In 

the meantime CN would yield NO by the attack of oxygen atom. 

 

3) Fuel-bound Nitrogen NO Mechanisms 

The NO formed during the combustion of fuels containing one or more nitrogen 

atoms is known as an important source of nitric oxide. The mechanism is described by 

noting that prior to entering the combustion zone, the nitrogen compounds in fuel 

decompose to low molecular weight nitrogen containing compounds or radicals such as 

NH3, NH2, NH, CN, etc. This will further facilitate oxidation of fuel-bound nitrogen 

compound to form nitric oxide rapidly. 

 

Furthermore, a comparison of bond dissociation energies for N-N bond (225 Kcal/mol) 

with N-C bond (60-150 Kcal/mole) confirms that the NO formation from oxidation of N-C is 

predominant while using nitrogen-containing fuel7. 

 

Methods to Control NOx Emission 

It is believed that NO are the most difficult to control pollutants. This is due to the 

complexity of the chemistry of the members of NOx  family and their ease of interchangeable 

reactions. The other important issue in controlling NOx  is that these pollutant species can be 

transported over long distances and impact areas far from the original sources. 

Due to the great emphasis on environmental concerns, EPA has made a serious effort to 

control NOx emission since 1970. The efforts did ban the extra increase of NOx although it did  

 



 12

 

 

 

not greatly reduce the annual emission of NOx. Yet, only in the U.S.A., over 23 million tons5 of 

nitrogen oxides were emitted into the air in 1997.  

During the past 30 years, a wide variety of methods have been proposed and applied to 

decrease NOx emission and its polluting consequences to the atmosphere. These methods are 

classified into two major techniques consisting of combustion process modification and post-

combustion flue gas treatment (FGT)8. Even though many methods characterized as combustion 

process modification are useful, scientists have been working on FGT methods for more 

effective and economical techniques to reduce NOx emission. 

FGT processes include different groups of reduction techniques. One important group is 

Selective Non-Catalytic Reduction technique (SNCR) such as injecting Ammonia or Urea into 

high temperature post combustion gas. These processes are called Thermal DeNOx and 

NOxOUT respectively8. 

In the most recent and successful SNCR technique, the possibility of using Cyanuric Acid 

(HOCN)3 for the reduction of NOx has been proposed. The mechanism of this reaction is our 

concern in this research. 

 

RAPRENOx Technique 

In 1986, RAPRENOx for RAPid REduction of NOx was proposed by Robert A. Perry as a 

simple, effective, relatively inexpensive, and non-polluting method for removing nitric oxide 

from gas stream1. The method is based on the addition of gaseous Isocyanic acid (HNCO) to the 

exhaust gas stream containing NO. Isocyanic acid is formed from decomposition of Cyanuric 

acid in temperatures higher than 330°C.  

(HOCN)3 → 3 HNCO 

Ever since the invention of the RAPRENOx method, many experiments have been carried 

out by different groups of experts in order to study the exact function of Isocyanic acid in 

reducing NOx under different experimental conditions. One of the early experiments done by 

Perry and Sieber9 indicated that when HNCO mixed with an exhaust gas stream at temperatures 

higher than 400°C, HNCO and NO are consumed while carbon dioxide, carbon monoxide, water, 
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and nitrogen gas are produced. The process was studied using a long-pass optical cell with 

Forrier Transform Infra Red (FTIR) detection. The obtained data proved a molar ratio of 1:1 for  

the reaction of HNCO and NO. Meanwhile a possible reaction mechanism was proposed as 

below: 

(1)   HNCO  →  NH + CO 

(2)   NH + NO  →  H + N2O 

(3)   H + HNCO  →  NH2 + CO 

(4)   NH2 + NO  →  N2H + OH 

(5)   NH2 + NO  →  N2 + H2O 

(6)   N2H  →  N2 + H 

(7)   OH + CO  →  H + CO2 

According to the suggested scheme, the speed and high efficiency of the system for nitric 

oxide removal has been related to the chain characteristic of the reaction. The chain is initiated 

by hydrogen free radicals, which are generated in the presence of a surface catalyst. While 

reaction number (6) is considered as the reaction to regenerate hydrogen free radicals, further 

experiments done by Perry10 indicated the effect of carbon monoxide presence to improve chain 

branching through reaction number (7). In the meantime, the mechanism was mis-interpreted by 

Corio11, where he considered this mechanism a non-chain reaction and suggested that the 

mechanism must consist of eight elementary steps. 
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CHAPTER 2 

THEORETICAL CALCULATION 

 

 

Reaction Mechanism Analysis 

Investigating the mechanism of chemical reactions is one of the major concerns of  a 

physical chemist. However, understanding the actual procedure of chemical reactions will be 

beneficial for scientists in all areas of chemistry.  

Reaction mechanism analysis is the study of the individual steps responsible for 

conversion of reactants into products in a chemical reaction. These individual steps called 

elementary steps introduce intermediate species, which are produced and consumed during the 

reaction. Elementary steps are generally unimolecular or bimolecular; however, termolecular 

steps may occur between atoms and small molecules in the gas phase 12. 

Although there are numerous elementary steps that can be proposed as possible steps for 

the mechanism of a specific reaction, the number of actual elementary steps are limited 

depending on the total numbers (K) of reactant, product, and intermediate of that reaction. This is 

in accord with the principles of mass and charge conservations and can be explained as below11: 

K = ρ + π + ι = η + ν 

where ρ is the number of reactants, π is the number of products, ι is the number of intermediates, 

η is the number of independent elementary steps, and ν is the number of mass and charge 

conservations.  

Nevertheless, for a complete mechanism, the linear combination of all elementary steps 

must generate the observed stoichiometry of the reaction, which automatically eliminates all the 

intermediates involved. 

The reaction coordinate diagram for each elementary step represents the free energy 

surface connecting reactants to products12 . The imaginary species at the free energy maximum is 

called transition state, and the standard free energy difference between reactant and transition  
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state is defined as the free energy of activation ∆G‡. Free energy of activation is considered to be 

an important factor in determining reaction mechanism, keeping in mind that the paths with the 

lowest activation energy are generally favored. 

 

The Advantage of Using Chemist Software 

A proper investigation for a reaction mechanism requires that the expert predict all the 

possible elementary steps and reaction channels of the reaction for further evaluation. It is also 

necessary to recognize those sets of steps that all together could give the stoichiometry of the 

reaction. Though the prediction of all possible steps may sometime be difficult, computer 

programs can add to the convenience and accuracy of the investigation. 

Chemist is a software that allows the investigator to input an unbalanced chemical 

equation and proposed intermediates2. It translates the chemical equation to a language of vector 

spaces and applies certain chemistry rules so as to provide new formulas and algorithms to 

perform matrix calculations. These rules include the basic laws of conservation of mass and 

conservation of charge and the law of definite proportions. The calculated results are further 

translated to the chemical equations to present a balanced equation, all mathematically possible 

reaction channels, elementary steps, and reaction mechanisms. 

 

Ab initio Calculating Methods 

 The quantum mechanical approach to determine electronic energy and other physical 

properties of a molecule is to solve the Schrodinger equation: 

 HΨ=EΨ 

where the wave function Ψ is the eigenfunction and energy E is the eigenvalue of the 

Hamiltonian operator H. The Hamiltonian operator is the quantum mechanical corresponding 

term for the classical mechanical Hamiltonian function, which is composed of kinetic and 

potential energies of the system.  

One of the basic methods to solve the Schrodinger equation is the Ab initio method. Ab 

initio, which means “from the scratch”13, is a calculation based on the fundamental principles of  
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quantum mechanics and physical constants such as speed of light, electron mass and charge, and  

Plank’s constant. It does not apply any experimental data to the Schrodinger equation. 

 

Model Chemistry 

It is practical to solve the Schrodinger equation for a small atom like hydrogen. However, 

when it comes to large systems with a complex Hamiltonian term, the equation is only solvable 

by applying different mathematical approximations called model chemistry. 

The first approximation to solve the Schrodinger equation is to eliminate kinetic energy 

of the nuclei from the Hamiltonian term. This approximation named after Born-Opppenheimer is 

based on the assumption that nuclei are much heavier than electrons and, therefore, can be 

considered as constant objects comparing to electrons. There are three other contributions to the 

energy for many electron atom as listed below14: 

- kinetic energy of each electron  

- mutual potential energy of nucleus and each electron 

- mutual potential energy of each pair of electrons. 

The potential energy of electron-electron interaction provides multi-variable terms to the 

Schrodinger equation, which hinders the separation of variables and, consequently, the solution 

to the differential equation. While electron-electron interaction cannot be ignored, model 

chemistries need to be applied. 

Hartree-Fock Consistent Self Field (HF-SCF) theory introduces the average potential of 

electron-electron interaction to the Schrodinger equation. This approximation appears to be 

reasonable for different applications such as computing equilibrium molecular geometries and 

frequencies of stable molecules. But it dramatically fails for chemical processes like bond 

dissociation where electron effects predominate15. 

A more reliable approach to calculate molecular properties is using the most recent model 

chemistry of Density Functional Theory (DFT), introducing electron correlation to the electronic 

Schrodinger equation. DFT computes molecular electron probability density ρ instead of 

molecular wave function computed in Ab initio methods. This was following the Hohenberg- 



 17

 

 

Kohn theorem, which confirms that the electron density of a ground state determines uniquely 

the energy of that electronic state.  

Further work by Kohn and Sham, in an attempt to find a practical method of calculating 

the electron density, led to the current DFT method, which introduces electronic energy as 

below15: 

E= ET+ Ev+Ej +Exc 

where ET is the kinetic energy of electrons, Ev includes terms describing the potential energy of 

the nuclear electron attraction and of the repulsion between pairs of nuclei, Ej is the electron- 

electron repulsion term, and Exc is the exchange-correlation term and includes the remaining part 

of the electron-electron interactions. 

The best known of the DFT is Beck’s three parameter exchange functional and the Lee-

Young-Parr correlation functional, which is available in Guassian 98 3 via B3LYP keyword. 

 

Basis Set 

 In order to solve the Schrodinger equation for many electron molecules, it is also required 

to make molecular orbitals based on the Linear Combination of Atomic Orbitals, that is LCAO 

approximation. In this method, different sets of pre-defined functions known as basis sets may be 

applied to represent each Atomic Orbital (AO). Slater-Type Orbitals (STO) and Gaussian-Type 

Orbitals (GTO) are the two commonly used basis orbitals. Although STO provides more accurate 

results, GTO is more favored due to the ease of the calculation process. 

For instance, the minimal basis set, shorthanded by STO-3G, includes the least number of 

basis functions required for each atom, that is, one STO for each inner-shell and valence-shell 

AO of each atom16. The extended basis sets introduce more accuracy to the LCAO 

approximiation by increasing the number of basis functions per atom (split valence basis sets) 

and applying higher-level orbitals (polarized basis sets) to the approximation15. 

The 6-31G** basis set was primarily used in this research. It represents a fixed linear 

combination of six primitive Gaussians for non-valence atomic orbital, a fixed linear  

combination of three primitives for the inner part of valence AO, and an additional primitive for  

the outer part of AO. It also added a polarization factor for hydrogen and heavy atoms17. 
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Equilibrium Geometry 

The equilibrium geometry is defined by the nuclear arrangement at which the molecular 

electronic energy, including internuclear repulsion, is minimized. This can be mathematically 

expressed as when the gradient (first derivative) of the energy with respect to the coordinates is 

zero, and the force constant (second derivative) is positive. 

The potential energy diagram is a method for explaining the electronic energy of  a 

molecule as a function of its coordinates. For the simplest molecule consisting of two atoms, the 

potential energy is only a function of one variable, which is the internuclear distance. In such 

case, there is only a single minimum geometry appearing in the potential energy curve. 

When it comes to non-linear polyatomic molecules, there are 3N-6 normal modes of 

vibration where each has corresponding normal coordinates. Consequently the potential energy 

diagram is complicated with very many minima called local minima. The one with the lowest 

energy is named the global minimum, which corresponds to the best-minimized energy geometry 

(see Figure 2-1). 

The aim for geometry optimization is, therefore, to find the global minimum if possible. 

Today, the calculation for geometry optimization is practical using computer software such as 

Gaussian. It is required to input the initial structure as Cartesian coordinates or internal 

coordinates (z-matrix) and to specify the model chemistry and the particular basis set for the 

calculation. The program computes the energy and its gradient until it finds a stationary point. 

After each calculation cycle with an unsuccessful result, the program will change the geometry 

based on the size of the gradient and repeat the calculation until it reaches convergence. 

Meanwhile the sign of the gradient indicates the direction of potential energy change and, when 

negative, it shows the direction toward a local potential energy minimum. 

 

Transition State 

Transition state refers to the molecular structure at the maximum of the potential energy 

connecting two minima of reactants and products. It is described mathematically as a first order  

saddle point, being maximum in one direction and minimum in the others. (See Figure 2-2) 
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Like other stationary points, the gradient for a saddle point is zero. However, the second 

derivative of the energy with respect to the coordinates has a negative value. The second 

derivatives are in fact the force constants, which are numbered to 3N-6 for non-linear polyatomic 

molecules with N atoms. The force constants can be found as eigenvalues of the Hessian matrix 

from which vibrational spectra may be calculated. Therefore, it can be concluded that transition 

state structure has one single imaginary (negative) vibrational frequency.  

Due to the saddle point characteristic of transition state, it is not possible to locate a 

transition state with a simple minimization procedure and a further calculation of vibrational 

frequencies on the optimized geometry is required. The calculation must be carried out at the 

same level of theory to be valid. One single imaginary frequency indicates a transition state 

structure. However, it is necessary to animate the imaginary frequency to make sure that the 

motion does indeed connect reactants and products. 

For saving computation time, it is often suggested to locate the specific transition state 

desired at the lower level of theory and then proceed to the desired level.  
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Figure 2-1: Minima and Maxima in Potential Energy Surface 

 

 
Figure 2-2: Saddle Point in Potential Energy Surface  
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

 

Reaction Mechanism 

A complete set of mechanisms must generate the observed stoichiometry of the reaction 

by algebraic elimination of the intermediates. For RAPRENOx reaction, there are many species 

involved in the reaction that can introduce various intermediate species. This leads to numerous 

possible elementary steps and reaction mechanisms. Because the study of all the possibilities 

were beyond the scope of this thesis, we confined our attention to the propagation step proposed 

by Perry. Assuming the same initiation steps for hydrogen production and the same intermediate 

species of H, OH, NH2, and N2H involved in the propagation steps, we studied additional 

possible elementary steps and reaction mechanisms. 

Nevertheless, the investigation of all possible elementary steps, reaction channels, and 

reaction mechanisms could be a time demanding procedure. Chemist software provides a 

convenient environment to predict all the possibilities mathematically. Obviously, some of them 

may not be chemically plausible. Therefore, we performed reaction mechanism analysis by 

selecting those elementary steps that might be chemically possible. For a broader investigation, 

we repeated the analysis for several trials, each time considering some different selection of 

elementary steps. Reviewing the obtained results, there are various chain initiators introduced to 

the analyses. Yet, based on our first assumption, only those with a hydrogen chain initiator are 

suitable for our interests. 

A sample procedure for reaction mechanism analysis using Chemist has been provided in 

appendix A. 

 

Possible Propagation Schemes 

 Following several trials of reaction mechanism analysis, it is noticeable that there are  
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five schemes (besides Perry’s mechanism) that may describe the propagation step for  

RAPRENOx reaction. One of the schemes (scheme A) includes four elementary steps while 

others include five steps for the propagation chain. Conforming to the principles of mass and 

charge conservation (Corio’s rule), it is obviously necessary to append one extra initiation step 

for scheme A. The possible propagation schemes are presented as below: 

 

Scheme A: 

HNCO + H →  CO + NH2   A1 

NO + NH2 → N2 + H + OH  A2 

HNCO + OH → CO2 + NH2  A3 

NO + NH2 →  H2O + N2   A4 

 

 This scheme introduces a four-step propagation. As it shows, hydrogen radical is 

consumed and generated in steps A1 and A2 respectively. There are two different pathways that 

have been suggested for the reaction of NO and NH2 as it shows in steps A2 and A4. Step A2 is 

of major importance in that one propagating intermediate is converted into two. This branching 

reaction increases the rate of reaction. At the same time step A4 competes with A2 to give two 

products, thus reducing the branching reaction.  

It can be concluded that as long as step A2 dominates step A4, the reaction is self-

sustaining through formation of H and OH radicals where each of them can react with Isocyanic 

acid as described in this scheme. Experimental data18 for the reaction pathway of NO and NH2 

show inconsistency, even though the majority favor the existence of a radical channel. 

 

Scheme B: 

HNCO + H →  CO + NH2   B1 

NO + NH2 → N2H + OH  B2 

N2H  → N2  + H   B3 
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HNCO + OH → CO2 + NH2  B4 

NO + NH2 →  H2O + N2   B5 

 

The above scheme is very similar to scheme A. It only suggests that step A2 can be 

considered as two independent steps of B2 and B3; hence introduces a five-step propagation 

scheme.  

 

Scheme C: 

HNCO + H →  CO + NH2   C1 

NO + NH2 → N2H + OH  C2 

HNCO + OH → CO2 + NH2  C3 

NO + NH2 → N2 + H + OH  C4 

OH + N2H → H2O + N2  C5 

 

Scheme C, another five-step propagation mechanism, introduces the possibility of 

reaction between N2H and OH (C5). Here the competition is between step C2 and C4. 

Considering the experimental data on a very short lifetime of N2H 19, the difference between 

these two steps should be minor. 

 

Scheme D: 

HNCO + H →  CO + NH2   D1 

NO + NH2 → N2H + OH  D2 

HNCO + N2H →  N2+ CO + NH2 D3 

NO + NH2 →  H2O + N2   D4 

OH + CO →  CO2 + H  D5 

 

The above scheme shows the possibility of reaction between HNCO and N2H (D3) to 

give three different species of N2 , CO, and NH2 as products. It also introduces a new elementary  
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step (D5) for hydrogen reproduction. As mentioned in chapter one, the effect of this step for 

chain-branching improvement has been experimentally displayed by Perry. 

 

Scheme E: 

HNCO + H →  CO + NH2   E1 

2 NO + 2 NH2 → 2 N2H + 2 OH E2 

2 N2H  → 2 N2  + 2 H   E3 

HNCO + OH → CO2 + NH2  E4 

H + OH →  H2O   E5 

 

In this mechanism, only one pathway (E2) has been considered for the reaction of NO 

and NH2 that leads to the production of two intermediates. Reproduction of hydrogen is through 

step E3. This is while the OH resulted from E2 leads to more chain branching through reaction 

with Isocyanic acid. The formation of water (E5) has been added to satisfy the stoichiometry of 

the overall reaction by linear combination of elementary steps. 

 

Scheme F: (Perry’s mechanism) 

2 HNCO + 2 H →  2 CO + 2 NH2  F1 

NO + NH2 → N2H + OH  F2 

NO + NH2 →  H2O + N2   F3 

N2H  → N2  + H   F4 

OH + CO →  CO2 + H  F5 

 

We also noticed that the propagation chain proposed by Perry needs a modification to 

satisfy the stoichiometry of the reaction. This has been done by multiplication of step F1 by 2. 

The complete set of possible schemes has been displayed as above. 
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Proposed Elementary Steps 

So far we have considered six schemes (including Perry’s mechanism) as possible  

reaction mechanisms for RAPRENOx reaction. The total number of 10 elementary steps 

involved in all described schemes are presented as below: 

 

  1. HNCO + H →  CO + NH2  (TS1 &  TS2 in Schemes 3-1 & 3-2)  

  2. HNCO + OH → CO2 + NH2  (TS3 in Scheme 3-3) 

  3. HNCO + N2H →  N2+ CO + NH2    - 

  4. NO + NH2 → N2 + H + OH     -  

  5. NO + NH2 →  H2O + N2    (TS4 in Scheme3-4) 

  6. NO + NH2 → N2H + OH   (TS5 & TS6 in Scheme 3-5) 

  7. N2H  → N2  + H    (TS7 in Scheme 3-6) 

  8. OH + N2H → H2O + N2   (TS8 in Scheme 3-7) 

  9. OH + CO →  CO2 + H   (TS9 in Scheme 3-8) 

10. H + OH →  H2O    (TS10 in Scheme 3-9) 

 

The profound understanding of the actual reaction mechanism requires the study of 

potential energy surface for each individual step. Therefore, the next step is to calculate the  

electronic energy of all species involved in the above-mentioned steps and to make a comparison 

of energy barriers for each elementary step. 

 

Computational Details for Ab initio Calculation 

All the calculations were carried out using Gaussian 98 program software in an IBM 

6000 workstation. In order to perform Ab initio calculation, it is required to specify the geometry 

of molecule in an input file. As earlier described, this would be possible by guessing the 

Cartesian structure or internal coordinates (Z-matrix) of the molecule.  

In this research, we used PC-Spartan20 to obtain the Cartesian structure on a Gateway 

2000 PC. Spartan provides an easy way of constructing the desired molecules using the standard  
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bond lengths and bond angles. It is also possible to adjust dihedral angles to build a specific 

conformation.  

Having made each structure and performed simple geometry optimization, AM1, we  

obtained the Cartesian structures for all species involved in the listed elementary steps. The 

resulting molecular geometries for reactants, intermediates, and products were then applied to an  

input file for further optimization at Density Functional Theory B3LYP/6-31G** using Gaussian 

98. We also carried out vibrational frequency calculations for the optimized geometries at the 

same level of theory in order to identify the local minima. All vibrational frequencies for a true 

minimum must be real. The optimized geometries of all minima are presented in Figure 3-1 

(reactants & products) and Figure 3-2 (intermediates). 

In the meantime, we also needed to determine the electronic energies of transition states 

for all the elementary steps. Doing so, we guessed a transition state structure - which should have 

structured approximately between reactants and products’ geometries- and obtained the related 

Cartesian structure using Spatran. We further carried out geometry optimization for transition 

state structure while using addredundant option to Opt keyword (normal optimization). 

Addredundant option allows one to predict values for the bond lengths and bond angles of 

interest and to make sure that these predicted values are included in the optimization output15. 

This option will help find the closest structure to the desired transition state. However a further 

geometry optimization, with option keywords  “ts” and “nofreeze” (to remove all redundant 

values) is required to be made on the produced geometry to find out the true transition state.  

All transition state calculations were carried out using the same method with  

B3LYP/6-31G** basis set. The first order saddle point characteristic of transition state requires 

one single imaginary vibrational frequency. For each elementary step, the nature of the 

imaginary frequency has been checked using GaussView ( a visualization package for Gaussian) 

to make sure that the transition state structure would certainly connect the reactants and the 

products. The optimized geometries of Transition States are presented in Figure 3-3. 

Sample input and output files for geometry optimization, including vibrational frequency 

calculations and for transition state calculations, have been displayed in Appendix B. 
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CO2      N2H 
 

    

 
H2O    N2    NO 

 

Figure 3-1. The Geometry of Equilibrium Structures 
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H2NCO – INT1     H2NCO2 – INT2 
 

 

 H2N2O – INT3     cis-cis HN2OH – INT4 

 

 

trans-trans HN2OH – INT5    trans-cis HN2OH – INT6  

 
   Figure 3-2. The Geometry of Intermediate Structures 
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cis-trans HN2OH – INT7     N2HOH – INT8 

  

 

 

 

OCOH – INT9 

 
 
 
 
 
 
 
 

 

Figure 3-2 (Cont’d).  The Geometry of Intermediate Structures 
Bond lengths in Å and bond angles in degree 
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 H2NCO – TS1      H2NCO – TS2 

 
 

 

H2NCO2–TS3       H2N2O – TS4 

  

H2N2O – TS5 
 

Figure 3-3. The Geometry of Transition State Structures 
Bond lengths in Å and bond angles in degree 
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H2N2O – TS6      N2H – TS7 
  

  

 

 N2HOH – TS8     HOCO – TS9 
 

 

     

    H2O – TS10 

 

 

     

Figure 3-3 (Cont’d). The Geometry of Transition State Structures 
Bond lengths in Å and bond angles in degree 
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Potential Energy Diagrams 

Electronic energies computed for all reactants, products, intermediates, and transition 

states have been provided in Table 3-1. Zero point vibrational energies were taken into account 

for calculating the relative energies of the species. The potential energy diagrams for possible 

reaction schemes (scheme 3-1 to 3-9) were made respectively. 
 

Table 3-1: Electronic Energies of Reactants, Products, Intermediates and Transition State Structures 

   All energies are given in Hartree 

Structure Electronic Energy (EE) Zero Point Energy (ZPE) EE + ZPE 
H -0.500272784 0.000000 -0.500272784 

HNCO -168.681499342 0.021318 -168.660181342 
CO -113.309454336 0.005032 -113.304422336 
NH2 -55.878980501 0.018967 -55.860013501 
OH -75.728482297 0.008421 -75.720061297 
CO2 -188.580940224 0.011593 -188.569347224 
N2H   -110.032726159 0.013248 -110.019478159 
H2O -76.419736621 0.021370 -76.398366621 
N2 -109.524129072 0.005599 -109.518530072 
NO -129.888156193 0.004537 -129.883619193 

INT1 -169.238908112 0.032939 -169.205969112 
INT2 -244.423905039 0.036876 -244.387029039 
INT3 -185.850169440 0.032236 -185.817933440 
INT4 -185.836590247 0.032297 -185.804293247 
INT5 -185.844311255 0.033534 -185.810777255 
INT6 -185.847449553 0.033523 -185.813926553 
INT7 -185.846535242 0.032865 -185.813670242 
INT8 -185.816082673 0.032023 -185.784059673 
INT9 -189.093405752 0.020650 -189.072755752 
TS1 -169.176438450 0.023086 -169.153352450 
TS2 -169.190864933 0.027473 -169.163391933 
TS3 -244.445896543 0.034714 -244.411182543 
TS4 -185.630946598 0.025624 -185.605322598 
TS5 -185.797592275 0.028289 -185.769303275 
TS6 -185.800693810 0.026163 -185.774530810 
TS7 -110.013307113 0.006594 -110.006713113 
TS8 -185.790545469 0.027130 -185.763415469 
TS9 -189.018707023 0.015556 -189.003151023 
TS10 -76.366850867 0.019729 -76.347121867 
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Energy Calculation for the Reaction of HNCO and H 

 According to our calculation at B3LYP/6-31G** level, there are two possible pathways 

for the reaction of hydrogen radical with Isocyanic acid that lead to the production of NH2 and 

CO. The relevant energies of the species involved have been provided in schemes 3-1 and 3-2.  

In scheme 3-1, the reaction goes through a second-order transition state TS1. While 

hydrogen radical is attacking the nitrogen, the N-C bond breaks. The energy barrier for this 

thermoneutral reaction (∆E= -2.5 Kcal/mol) is predicted to be 4.45 Kcal/mol.  

Scheme 3-2 displays the absence of any barrier energy for the association of HNCO and 

H to form a stable intermediate INT1. The bond energy produced due to the formation of INT1 

further makes adequate energy to overcome the energy barrier of 26.72 Kcal/mol for N-C bond 

cleavage. The dissociation of INT1 goes through transition state TS2 that lies 1.84 Kcal/mol 

below the reactants.  

As there is no high-energy barrier involved in the above two schemes, we predicted that 

both pathways are likely to happen. 

 

Energy Calculation for the Reaction of HNCO and OH  

 The relative energy calculation, scheme 3-3, shows that the reaction of OH radical with 

Isocyanic acid is exothermic by –30.82 Kcal/mol. We were able to locate one intermediate INT2 

and one transition state TS3 on the potential energy surface of this reaction. INT2 shows a 

structure resulted from the simultaneous attachment of oxygen atom of OH radical to C atom of 

HNCO. We expected that the formation of INT2 would go through a cyclic transition state but 

our extensive calculations failed to locate the designated transition state.  

In the meantime, based on the first order saddle point characteristic of transition state, we 

also predicted that TS3 was a preceding species of a more stable intermediate structure. 

However, our careful search was not successful in finding the expected intermediate. 

 

Energy Calculation for the Reaction of HNCO and N2H 

 Our investigation to locate any transition state or intermediate species for a SN2 reaction 

of HNCO and N2H was not successful. Because the two molecules are relatively large, it is  
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expected that the reaction is collision sensitive. Meanwhile, based on the experimental data19, as 

well as theoretical calculation done in this research, N2H is a very unstable species. Hence, it is 

more likely that it dissociates to N2 and H before colliding with HNCO or reacts with much 

smaller molecules such as OH. 

 

Energy Calculation for the Reaction of NH2 and NO 

The reaction of NH2 and NO is of major importance in RAPRENOx process. In 

agreement with numerous experimental investigations18, our study of reaction mechanism 

analysis indicated three different pathways for this bimolecular reaction as indicated below: 

 

NO + NH2 → N2H + OH (1) 

NO + NH2 →  H2O + N2  (2) 

NO + NH2 → N2 + H + OH (3) 

 

The total electronic energies of the reactants and products for each pathway calculated at 

B3LYP/6-31G** shows that reactions number (1) and (3) are thermoneutral (∆E1 = +2.57 

Kcal/mol and ∆E2 = +2.99 kcal/mol) while reaction number (2) is exothermic by –108.723 

Kcal/mol. 

The potential energy diagrams for reactions (1) and (2) have been displayed in schemes 

3-4 and 3-5. Scheme 3-4 shows the reaction of NH2 and NO radicals to give N2H and OH as 

products. This reaction goes through a four-member ring transition state TS4. The relative 

energy calculation, while ZPE has been taken into account, indicates a rather high-energy barrier 

of 86.79 Kcal/mol.  

On the other hand, scheme 3-5 shows the association of NH2 and NO without any energy 

barrier to produce a stable intermediate INT3. The bond energy is predicted to be -46.63 

Kcal/mol. The resulted intermediate can further undergo 1,3 H migration going through a four-

member ring transition state TS5 to give different conformers of hydroxydiimide intermediate.  
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The possibility for production of four isomers of cis-cis (INT4), trans-trans (INT5), trans-cis 

(INT5), and cis-trans (INT7) - discussed in reference No.21- have been considered in this  

research. Based on the results obtained from energy comparison, trans-cis hydroxydiimide is the 

most stable conformer. cis-trans is the next stable one with a negligible energy difference of 0.16 

Kcal/mol with respect to trans-cis. This is not completely in agreement with the results provided 

by Abou Rashid21 which shows cis-trans as the most favorable conformer. 

However, after transition state calculation, we noticed that cis-trans isomer is the 

conformer which can go through a cyclic transition state TS6 and ultimately produce H2O and 

N2. The possibility for the formation of N2H and OH from cis-trans isomer has also been 

considered. Nevertheless, we failed to find the designated transition state. 

Meanwhile, we did numerous calculations on transition state structures of tran-cis, trans-

trans, and cis-cis isomers to predict a direct pathway to give one of the product sets of N2H + 

OH, H2O + N2 or N2 + H + OH. The attempts were not satisfactory. The only possibility that 

could be considered is through the conversion of above-mentioned isomers into cis-trans isomer, 

which eventually leads to H2O and N2. 

Based on our calculation, it seems unlikely that reaction (3) takes place in one single step. 

To explain reaction (3), it is more reasonable to consider the dissociation of N2H following its 

production via reaction (1). Another alternative could be the breakup of  the H2O molecule after 

passing through the activated complex for the elimination of water in reaction (2). This is only 

possible under conditions in which the H2O molecule contains excess energy22. 

 

Energy Calculation for the Dissociation of  N2H 

The potential energy diagram for the dissociation of N2H is shown in scheme 3-6. Based 

on the results of our calculation at B3LYP/6-31G** level, ∆E and the energy barrier for this 

reaction are predicted as 0.42 Kcal/mol and 8.01 Kcal/mol, respectively. The low energy barrier 

indicates that N2H species has a short lifetime and consequently bears minor importance as an 

intermediate in RAPRENOx process.  
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Energy Calculation for the Reaction of OH and N2H 

Potential energy scheme 3-7 shows that the reaction of OH and N2H is exothermic by         

–111.29 Kcal/mol. It is likely that the reaction between these radicals goes to a rather stable  

intermediate INT8 without any activation energy. The reaction will further go through a three- 

member ring transition state TS8 which leads to H migration from nitrogen atom to oxygen. TS8 

lies 14.98 Kcal/mol below the reactants. The energy barrier for INT8 → TS8 is calculated to be 

12.96 Kcal/mol, which can be provided by the bond energy of –27.94 Kcal/mol resulting from 

the formation of INT8. 

  

Energy Calculation for the Reaction of OH and CO 

 Relative energies of the species involved in this step are presented in scheme 3-8. It is 

predicted that the reaction of OH and CO goes to a very stable intermediate INT9 in the absence 

of any activation energy. The bond energy for INT9 formation is calculated to be –30.29 

Kcal/mol. The INT9 further rearrange to a cyclic transition state structure TS9 with a high-

energy barrier of 43.67 Kcal/mol. TS9 lies 13.38 Kcal/mol above the reactant level.  

 

Energy Calculation for the Reaction of OH and H 

 The potential energy diagram for the formation of water is shown in scheme 3-9. 

According to the results of our calculation at B3LYP/6-31G** level, the reaction is exothermic 

by –111.72 Kcal/mol. It also seems that the reaction goes through a transition state ST10 which 

lies 79.56 Kcal/mol below the reactants. 
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Scheme 3-1 Relevant Energies given in Kcal/mol for the Reaction of HNCO & H 

Scheme 3-2 Relevant Energies given in Kcal/mol for the Reaction of HNCO & H 
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Scheme 3-3 Relevant Energies given in Kcal/mol for the Reaction of HNCO & OH 
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 Scheme 3-4 Relevant Energies given in Kcal/mol for the Reaction of NH2 & NO 
 

 Scheme 3-5 Relevant Energies given in Kcal/mol for the Reaction of NH2 & NO 
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Scheme 3-6 Relevant Energies given in Kcal/mol for the Dissociation of  N2H 
 

 Scheme 3-7 Relevant Energies given in Kcal/mol for the Reaction of  N2H & OH 
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  Scheme 3-8 Relevant Energies given in Kcal/mol for the Reaction of  OH & CO 
 

   Scheme 3-9 Relevant Energies given in Kcal/mol for the Reaction of OH & H 
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Concluding Remarks 

Energy calculations based on Density Functional Theory and the study of potential 

energy diagrams for the proposed elementary steps (page 25) indicated that all elementary steps 

except No.3 and No.4 could be possible. The unsatisfactory results on locating any transition 

state for these two steps led us to conclude that they may be unlikely to happen in one single step 

and therefore none can be considered as an independent step in the reaction mechanism. As a 

consequence the proposed reaction schemes of A, C, and D, which include one of these steps, 

must be disregarded at the present time. Further experimental study could be useful for more 

certain clarification. 

Moreover, the energy barrier comparisons made for the possible schemes of B, E, and F 

indicated that the highest activation energy for all three mechanisms is related to a single 

elementary step provided below. Therefore, it is reasonable to conclude that each of the schemes 

could be the actual reaction mechanism for RAPRENOx process, while it is also probable that all 

the schemes happen at the same time. 

 

NO + NH2 → N2H + OH Energy barrier : 86.79 Kcal/mol 

 

In the meantime, it is noticeable that the energy barrier for this rate-determining reaction 

step is rather high. We expect it to happen in combustion processes at high temperature. 

Nevertheless, because there is another pathway for the reaction of NH2 and NO with lower 

energy level (NO + NH2 →  H2O + N2), more efforts are needed to understand the branching 

ratio between these two pathways.  

Further attempts to find direct reaction pathways through other conformers of 

hydroxydiimide (Cis-Cis, Trans-Trans, Trans-Cis) could be helpful in finding a lower energy 

pathway for NO + NH2 → N2H + OH. 
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APPENDIX A 

 
 
 

Sample Procedure for Reaction Mechanism Analysis Using Chemist 

After initiating Chemist, we selected “Enter unbalanced equation” from the menu and 

input the unbalanced equation of HNCO + NO → CO2 + H2O + N2 + CO from the keyboard. 

Processing the unbalanced reaction, Chemist provided us with the balanced equation and 

reaction channels as below: 

 
 
unbalanced equation: 
 
    HNCO+NO->CO2+H2O+N2+CO 
 
 
 
balanced equation: 
 
    2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
 
Press ENTER . . . 
 
 
reaction channel(s): 
 
    4HNCO + 6NO ->  4CO2 + 2H2O + 5N2 
    4HNCO + 2NO ->  2H2O + 3N2 + 4CO 
 
 
Press ENTER . . . 
 

 

Having selected “Enter intermediates” from the menu , we suggested  H, OH, NH2 and 

N2H as the intermediates to be analyzed in the reaction mechanism. All mathematically possible 

elementary steps were produced and a complete list was displayed as below: 
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Elementary steps: (HNCO+NO->CO2+H2O+N2+CO) 
 
    N2H + CO2 ->  HNCO + NO 
    HNCO + NO ->  CO2 + N2H 
    H + N2 ->  N2H 
    HNCO + H ->  CO + NH2 
    OH + NH2 ->  NO + 3H 
    OH + N2H ->  NO + NH2 
    HNCO + OH ->  CO2 + NH2 
    HNCO + OH ->  NO + CO + 2H 
    NH2 + CO2 ->  HNCO + OH 
    NO + NH2 ->  H2O + N2 
    NH2 + H2O ->  NO + 4H 
    2NH2 ->  N2 + 4H 
    NH2 + CO ->  HNCO + H 
    2NH2 ->  3H + N2H 
    NO + NH2 ->  OH + N2H 
    N2H ->  N2 + H 
    HNCO + NO ->  CO2 + N2 + H 
    HNCO + CO2 ->  NO + 2CO + H 
    H2O + N2 ->  NO + NH2 
    HNCO + H2O ->  NO + CO + 3H 
 
Press any key to continue . . . 
 
    H2O ->  H + OH 
    2HNCO ->  N2 + 2CO + 2H 
    HNCO + NO ->  N2 + CO + OH 
    2HNCO ->  2CO + H + N2H 
    H + OH ->  H2O 
    H + CO2 ->  CO + OH 
    OH + N2H ->  H2O + N2 
    OH + CO ->  CO2 + H 
    H2O + CO ->  CO2 + 2H 
    CO2 + H2O ->  CO + 2OH 
    HNCO + H2O ->  CO2 + H + NH2 
    HNCO + H2O ->  CO + OH + NH2 
    NH2 + CO2 ->  NO + CO + 2H 
    N2H + CO2 ->  N2 + CO + OH 
    N2H + H2O ->  NO + H + NH2 
    HNCO + NH2 ->  CO + 2H + N2H 
    H2O + N2 ->  OH + N2H 
    HNCO + NH2 ->  N2 + CO + 3H 
    HNCO + N2H ->  N2 + CO + NH2 
    NO + NH2 ->  N2 + H + OH 
 
 
Press any key to continue . . . 
 
    N2H + H2O ->  N2 + 2H + OH 
 
 
Press ENTER . . . 
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Once the elementary steps were produced, we carried out “Reaction mechanism analysis” 

by highlighting those elementary steps that might be chemically possible. The highlighted 

elementary steps and the respective results for one of our trials are presented below. 
 
     N2H + CO2 ->  HNCO + NO 
     HNCO + NO ->  CO2 + N2H 
     H + N2 ->  N2H 
  * HNCO + H ->  CO + NH2 
  * OH + NH2 ->  NO + 3H 
  * OH + N2H ->  NO + NH2 
  * HNCO + OH ->  CO2 + NH2 
  * HNCO + OH ->  NO + CO + 2H 
     NH2 + CO2 ->  HNCO + OH 
  * NO + NH2 ->  H2O + N2 
  * NH2 + H2O ->  NO + 4H 
  * 2NH2 ->  N2 + 4H 
     NH2 + CO ->  HNCO + H 
  * 2NH2 ->  3H + N2H 
   NO + NH2 ->  OH + N2H 
* N2H ->  N2 + H 
* HNCO + NO ->  CO2 + N2 + H 
* HNCO + CO2 ->  NO + 2CO + H 
* H2O + N2 ->  NO + NH2 
   HNCO + H2O ->  NO + CO + 3H 
* H2O ->  H + OH 
* 2HNCO ->  N2 + 2CO + 2H 
* HNCO + NO ->  N2 + CO + OH 
* 2HNCO ->  2CO + H + N2H 
* H + OH ->  H2O 
* H + CO2 ->  CO + OH 
* OH + N2H ->  H2O + N2 
* OH + CO ->  CO2 + H 
* H2O + CO ->  CO2 + 2H 
* CO2 + H2O ->  CO + 2OH 
* H2O + CO ->  CO2 + 2H 
* CO2 + H2O ->  CO + 2OH 
* HNCO + H2O ->  CO2 + H + NH2 
* HNCO + H2O ->  CO + OH + NH2 
   NH2 + CO2 ->  NO + CO + 2H 
* N2H + CO2 ->  N2 + CO + OH 
   N2H + H2O ->  NO + H + NH2 
* HNCO + NH2 ->  CO + 2H + N2H 
* H2O + N2 ->  OH + N2H 
* HNCO + NH2 ->  N2 + CO + 3H 
* HNCO + N2H ->  N2 + CO + NH2 
* NO + NH2 ->  N2 + H + OH 
   N2H + H2O ->  N2 + 2H + OH 
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    Maximum number of elementary steps:   6 
 
2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
 
 
                             analysis #: 1 
 
CHAIN 
 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  HNCO + OH ->  CO2 + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 2 
 
CHAIN 
 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 3 
 
CHAIN 
 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
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                             analysis #: 4 
 
CHAIN 
 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 5 
 
CHAIN 
 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  NO + NH2 ->  H2O + N2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . . 
 
 
                             analysis #: 6 
 
CHAIN 
 
    1  NO + NH2 ->  OH + N2H 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  H2O + N2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . . 
 
 
                             analysis #: 7 
 
CHAIN 
 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
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  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 8 
 
CHAIN 
 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  HNCO + N2H ->  N2 + CO + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . . . . . . . . . 
 . . . . . . . . . . . . . . . . . . . . 5 
 
 
                             analysis #: 9 
 
CHAIN 
 
    1  N2H ->  N2 + H 
    1  HNCO + H ->  CO + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                            analysis #: 10 
 
CHAIN 
 
   1  NO + NH2 ->  OH + N2H 
   1  N2H ->  N2 + H 
   1  HNCO + H ->  CO + NH2 
   1  HNCO + OH ->  CO2 + NH2 
   1  NO + NH2 ->  H2O + N2 
 
 
 2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
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                             analysis #: 11 
 
CHAIN 
 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  N2H ->  N2 + H 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 12 
 
CHAIN 
 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  N2H ->  N2 + H 
    1  HNCO + H ->  CO + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 13 
 
CHAIN 
 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  N2H ->  N2 + H 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 14 
 
CHAIN 
 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
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    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  OH + N2H ->  H2O + N2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 15 
 
CHAIN 
 
    1  OH + N2H ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 16 
 
CHAIN 
 
    1  NO + NH2 ->  OH + N2H 
    1  OH + N2H ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 17 
 
CHAIN 
 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  OH + N2H ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + H ->  CO + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
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Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 18 
 
CHAIN 
 
    1  HNCO + H ->  CO + NH2 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  OH + N2H ->  H2O + N2 
    1  NO + NH2 ->  N2 + H + OH 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 19 
 
CHAIN 
 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + H ->  CO + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  NO + NH2 ->  H2O + N2 
    1  OH + CO ->  CO2 + H 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 20 
 
CHAIN 
 
    1  OH + CO ->  CO2 + H 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + H ->  CO + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
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                             analysis #: 21 
 
CHAIN 
 
    1  NO + NH2 ->  OH + N2H 
    1  OH + CO ->  CO2 + H 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + H ->  CO + NH2 
    1  NO + NH2 ->  H2O + N2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 22 
 
CHAIN 
 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  OH + CO ->  CO2 + H 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  HNCO + H ->  CO + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 23 
 
CHAIN 
 
    1  HNCO + H ->  CO + NH2 
    1  NO + NH2 ->  H2O + N2 
    1  NO + NH2 ->  OH + N2H 
    1  OH + CO ->  CO2 + H 
    1  HNCO + N2H ->  N2 + CO + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 24 
 
CHAIN 
 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + OH ->  CO2 + NH2 
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    1  NO + NH2 ->  OH + N2H 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  H + OH ->  H2O 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 25 
 
CHAIN 
 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  H + OH ->  H2O 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 26 
 
CHAIN 
 
    1  H + OH ->  H2O 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 
 
                             analysis #: 27 
 
CHAIN 
 
    1  NO + NH2 ->  OH + N2H 
    1  H + OH ->  H2O 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  NO + NH2 ->  N2 + H + OH 
    1  HNCO + OH ->  CO2 + NH2 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
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Press I for initialization step or any other key to continue . . .  
 
                             analysis #: 28 
 
 
CHAIN 
 
    1  HNCO + OH ->  CO2 + NH2 
    1  NO + NH2 ->  OH + N2H 
    1  H + OH ->  H2O 
    1  HNCO + N2H ->  N2 + CO + NH2 
    1  NO + NH2 ->  N2 + H + OH 
 
 
  2HNCO + 2NO ->  CO2 + H2O + 2N2 + CO 
 
Press I for initialization step or any other key to continue . . .  
 

 

To check out more possibilities, we repeated this last procedure for several trials, each 

time selecting some different elementary steps. 
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APPENDIX B 

 
 

Sample Input & Output Files for Electronic Energy Calculation Using Gaussian 98 

Sample input files for geometry optimization and transition state calculation are 

presented below. Input files were created using the Gaussian 98 manual as well as reference 

No.15. The command “runG98 filename.dat>&out&” was used in order to submit the input file 

for computation.  
 

 

 

Input file for Geometry Optimization: 

%mem=3000000
%chk=HNCO.chk
#B3LYP/6-31G** opt

Isocyanic Acid

0 1
O 0 -0.0343730 0.0000000 1.2690168
N 0 0.1117557 0.0000000 -1.2331228
C 0 0.0371888 0.0000000 0.0444393
H 0 -0.7304384 0.0000000 -1.7869106

--link1--
%mem=3000000
%chk=HNCO.chk
#B3LYP/6-31G** freq geom=check guess=read

Isocyanic Acid

0 1
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Input file for Transition State: 

 

 
%mem=3000000
%chk=n2h-ts.chk
# B3LYP/6-31G** opt=(addredund, maxcycle=150)

N2H - Transition State

0 2
H 0 -0.5293903 0.0000000 -1.2504522
N 0 0.1241563 0.0000000 -0.4800863
N 0 -0.0485291 0.0000000 0.6587223

1 2 1.43 f

--link1--
%mem=3000000
%chk=n2h-ts.chk
# B3LYP/6-31G** freq geom=check

N2H - Transition State

0 2

--link1--
%mem=3000000
%chk=n2h-ts.chk
# B3LYP/6-31G** opt=(ts,readfc,noeigentest,nofreeze,maxcycle=150) geom=check

N2H - Transition State

0 2

--link1--
%mem=3000000
%chk=n2h-ts.chk
# B3LYP/6-31G** freq geom=check

N2H - Transition State

0 2

Collected parts of sample output files for geometry optimization and transition state calculation 

have also been provided as follows: 
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Output file for Geometry Optimization: 

Entering Gaussian System, Link 0=g98
Input=test.dat
Output=test.log
Initial command:
/work1/g98/l1.exe /work1/Gau-14466.inp -scrdir=/work1/
Entering Link 1 = /work1/g98/l1.exe PID= 13700.

.

.

.

**********************************************
Gaussian 98: IBM-RS6000-G98RevA.7 11-Apr-1999

11-May-2001
**********************************************
%mem=3000000
%chk=HNCO.chk
-------------------------
#T B3LYP/6-31G** opt freq
-------------------------
--------------
Isocyanic Acid
--------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
O 0 -0.03437 0. 1.26902
N 0 0.11176 0. -1.23312
C 0 0.03719 0. 0.04444
H 0 -0.73044 0. -1.78691

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !

------------------------ -------------------------
! Name Definition Value Derivative Info. !
-----------------------------------------------------------------------------
! R1 R(1,3) 1.2267 estimate D2E/DX2 !
! R2 R(2,3) 1.2797 estimate D2E/DX2 !
! R3 R(2,4) 1.008 estimate D2E/DX2 !
! A1 A(3,2,4) 119.9867 estimate D2E/DX2 !
! A2 L(1,3,2,4,-1) 179.9959 estimate D2E/DX2 !
! A3 L(1,3,2,4,-2) 180. estimate D2E/DX2 !
-----------------------------------------------------------------------------
Number of steps in this run= 20 maximum allowed number of steps= 100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
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.

.

Distance matrix (angstroms):
1 2 3 4

1 O .000000
2 N 2.387134 .000000
3 C 1.174421 1.218322 .000000
4 H 3.116566 1.007754 1.974339 .000000

Framework group CS[SG(CHNO)]

Deg. of freedom 5
Standard orientation:

---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------

1 8 0 -.622657 1.046243 .000000
2 7 0 .498812 -1.061057 .000000
3 6 0 .000000 .050471 .000000
4 1 0 1.489569 -1.245368 .000000

---------------------------------------------------------------------
Rotational constants (GHZ): 862.2749714 10.9585439 10.8210209
Isotopes: O-16,N-14,C-12,H-1

50 basis functions 91 primitive gaussians
11 alpha electrons 11 beta electrons

nuclear repulsion energy 58.9270592082 Hartrees.
Initial guess read from the read-write file:
Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A") (A') (A')
(A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")
(A') (A') (A') (A") (A') (A') (A') (A") (A') (A")
(A') (A") (A') (A') (A') (A") (A") (A') (A') (A")
(A') (A') (A") (A') (A') (A') (A') (A') (A')

SCF Done: E(RB+HF-LYP) = -168.681499342 A.U. after 9 cycles
Convg = .3628D-08 -V/T = 2.0092
S**2 = .0000

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Internal Forces: Max .000241002 RMS .000115736
Step number 6 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Trust test= 1.04D+00 RLast= 1.01D-02 DXMaxT set to 4.24D-01

Eigenvalues --- .06042 .17041 .25000 .46231 .84295
Eigenvalues --- 1.06336

Quartic linear search produced a step of .13995.
Iteration 1 RMS(Cart)= .00060416 RMS(Int)= .00000039
Iteration 2 RMS(Cart)= .00000042 RMS(Int)= .00000000
Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)
R1 2.21933 -.00013 .00010 -.00017 -.00007 2.21926
R2 2.30229 -.00006 -.00029 .00009 -.00020 2.30209
R3 1.90438 .00000 -.00016 .00011 -.00005 1.90433
A1 2.17655 .00000 .00125 -.00084 .00042 2.17697
A2 3.27858 -.00024 -.00054 -.00092 -.00145 3.27713
A3 3.14159 .00000 .00000 .00000 .00000 3.14159
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Item Value Threshold Converged?
Maximum Force .000241 .000450 YES
RMS Force .000116 .000300 YES
Maximum Displacement .001197 .001800 YES
RMS Displacement .000604 .001200 YES
Optimization completed.

-- Stationary point found.

----------------------------------------------------
#T Geom=AllCheck Guess=TCheck RB3LYP/6-31G(d,p) Freq
----------------------------------------------------
--------------
Isocyanic Acid
--------------
Redundant internal coordinates taken from checkpointfile:
HNCO.chk
Charge = 0 Multiplicity = 1
O,0,0.0270319227,0.,1.2172082679
N,0,0.0880633308,0.,-1.1691456581
C,0,-0.0248423708,0.,0.0439334699
H,0,-0.6836444728,0.,-1.8172473556
Recover connectivity data from disk.

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Initialization pass.

.

.

.

Full mass-weighted force constant matrix:
Low frequencies --- -16.9370 .0011 .0012 .0014 7.4234

16.6200
Low frequencies --- 559.1840 610.4572 791.1691
Harmonic frequencies (cm**-1), IR intensities (KM/Mole),
Raman scattering activities (A**4/AMU), Raman depolarization ratios,
reduced masses (AMU), force constants (mDyne/A) and normal coordinates:

1 2 3
A' A" A'

Frequencies -- 559.1839 610.4528 791.1691
Red. masses -- 2.3791 6.2667 1.8195
Frc consts -- .4383 1.3759 .6710
IR Inten -- 72.8357 2.9112 222.1789
Raman Activ -- .0000 .0000 .0000
Depolar -- .0000 .0000 .0000
Atom AN X Y Z X Y Z X Y Z

1 8 .12 .08 .00 .00 .00 .24 .03 .04 .00
2 7 .07 -.02 .00 .00 .00 .18 .11 .11 .00
3 6 -.26 -.15 .00 .00 .00 -.60 -.17 -.11 .00
4 1 .27 .90 .00 .00 .00 .74 -.14 -.96 .00
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4 5 6
A' A' A'

Frequencies -- 1338.9560 2356.2663 3701.5178
Red. masses -- 10.0716 10.3685 1.0849
Frc consts -- 10.6386 33.9168 8.7580
IR Inten -- .3776 595.5261 135.9011
Raman Activ -- .0000 .0000 .0000
Depolar -- .0000 .0000 .0000
Atom AN X Y Z X Y Z X Y Z

1 8 .28 -.47 .00 .17 -.27 .00 .00 .00 .00
2 7 -.27 .53 .00 .14 -.25 .00 .07 -.02 .00
3 6 -.03 -.04 .00 -.41 .67 .00 .00 .01 .00
4 1 -.37 .46 .00 .24 -.38 .00 -.97 .21 .00

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Zero-point correction= .021318 (Hartree/Particle)
Thermal correction to Energy= .024579
Thermal correction to Enthalpy= .025524
Thermal correction to Gibbs Free Energy= -.001602
Sum of electronic and zero-point Energies= -168.660181
Sum of electronic and thermal Energies= -168.656920
Sum of electronic and thermal Enthalpies= -168.655976
Sum of electronic and thermal Free Energies= -168.683101

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Job cpu time: 0 days 0 hours 5 minutes 38.7 seconds.
File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 3 Scr= 1
Normal termination of Gaussian 98.
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Output file for Transition State: 

Entering Gaussian System, Link 0=g98
Input=test1.dat
Output=test1.log
Initial command:
/work1/g98/l1.exe /work1/Gau-14788.inp -scrdir=/work1/
Entering Link 1 = /work1/g98/l1.exe PID= 14534.

**********************************************
Gaussian 98: IBM-RS6000-G98RevA.7 11-Apr-1999

11-May-2001
**********************************************
%mem=3000000
%chk=n2h-ts.chk
----------------------------------------------
#T B3LYP/6-31G** opt=(addredund, maxcycle=150)
----------------------------------------------
----------------------
N2H - Transition State
----------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 2
H 0 -0.52939 0. -1.25045
N 0 0.12416 0. -0.48009
N 0 -0.04853 0. 0.65872
The following ModRedundant input section has been read:
B 1 2 1.4300 F
Iteration 1 RMS(Cart)= .09128958 RMS(Int)= .34250815
Iteration 2 RMS(Cart)= .09177750 RMS(Int)= .22703773
Iteration 3 RMS(Cart)= .09201478 RMS(Int)= .11156762
Iteration 4 RMS(Cart)= .08909842 RMS(Int)= .00047249
Iteration 5 RMS(Cart)= .00051780 RMS(Int)= .00000016
Iteration 6 RMS(Cart)= .00000016 RMS(Int)= .00000000
Iteration 1 RMS(Cart)= .00000000 RMS(Int)= .00000000

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Initialization pass.

.

.

.
Full mass-weighted force constant matrix:
Low frequencies ----1109.4890 -9.7846 -7.7562 .0014 .0014

.0017
Low frequencies --- 23.1428 647.7564 2246.7541
****** 1 imaginary frequencies (negative Signs) ******
Harmonic frequencies (cm**-1), IR intensities (KM/Mole),
Raman scattering activities (A**4/AMU), Raman depolarization ratios,
reduced masses (AMU), force constants (mDyne/A) and normal coordinates:
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1 2 3
A' A' A'

Frequencies -- -1109.4890 647.7564 2246.7541
Red. masses -- 1.0928 1.3764 10.0225
Frc consts -- .7926 .3403 29.8084
IR Inten -- 268.4140 2.2104 75.7614
Raman Activ -- .0000 .0000 .0000
Depolar -- .0000 .0000 .0000
Atom AN X Y Z X Y Z X Y Z

1 1 .85 -.52 .00 .44 .88 .00 -.46 .31 .00
2 7 -.06 .05 .00 -.13 -.03 .00 .03 .58 .00
3 7 .00 -.02 .00 .10 -.03 .00 .00 -.60 .00

.

.

.

Job cpu time: 0 days 0 hours 4 minutes 3.6 seconds.
File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 3 Scr= 1
Normal termination of Gaussian 98.
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