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ABSTRACT

Paired and Total domination on the Queen’s graph

by

Paul Asa Burchett

The Queen’s domination problem has a long and rich history. The problem can be

simply stated as: What is the minimum number of queens that can be placed on a

chessboard so that all squares are attacked or occupied by a queen? The problem has

been expanded to include not only the standard 8x8 board, but any rectangular m×n

sized board. In this thesis, we consider both paired and total domination versions of

this renowned problem.
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1 INTRODUCTION

1.1 Queen’s Domination

The Five Queen’s Problem can be simply stated as the following: What is the

minimum number of queens that can be placed on a chessboard so that every square

is attacked or occupied? The problem has been generalized to include not only the

standard 8 × 8 board, but also any square, n×n sized board. This more general

problem is known as the Queen’s domination problem. The Queen’s domination

problem has been generalized even further to include rectangular, m×n sized boards.

Much work has been done on rectangular boards for this problem, however, in this

thesis we will only consider square boards.

It is often helpful in studying this problem to conceptualize the Queen’s domina-

tion problem in terms of graph theory. The board itself can be represented as a set

of vertices (or squares). Edges are added between any two vertices if it is possible

to move from one of the corresponding squares to the other by a single move of the

queen. Recall a queen can move any distance vertically, horizontally, or diagonally.

Hence a pair of vertices have an edge between them if their corresponding squares

share a common row, column, or diagonal. An n×n board can be represented by

a graph having exactly n2 vertices, with edges added using the above rule. This

corresponding graph is called the Queen’s graph, and is denoted Qn.

On any graph, two vertices are said to be adjacent if they are joined by an edge.

By definition, a given vertex is said to dominate itself and any adjacent vertices. A
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graph G is said to be dominated by a subset of vertices, say D, if any vertex in G is

dominated by a vertex in D.

Applying the above to the Queen’s graph, a board is dominated by a set of queens

if every square on the board is either occupied or attacked by a queen. The minimum

number of queens needed to dominate a given n×n board, denoted γ(Qn), is known

as the domination number of the Queen’s graph. For the standard, 8×8 chessboard,

it has been proven that γ(Q8) = 5. In 1964, Yaglom and Yaglom [25] showed that

there are exactly 4860 unique placements of five dominating queens on the standard

8×8 chessboard. One of these solutions is given below.

q qqqq
Figure 1: A Dominating Set for n = 8

The Queen’s domination problem was formally proposed by de Jaenisch in 1862

[17]. The problem’s significance lies partly in the fact that it was the first known
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problem which considered domination. When the mathematical concept of domina-

tion was formalized in 1958 with Berg and Ore [15], the problem itself was already

95 years old. With its rich history many have turned their attention to the problem

and, as mentioned by Cockayne [8], it helped facilitate a “revival” in the study of

domination type problems in the 1970’s.

Since the inception of the Queen’s domination problem, much progress has been

made. In 1892, Rouse Ball [3] provided minimum dominating sets of Qn for n ≤ 8.

Ahrens [1] followed this in 1910 by providing minimum dominating sets of Qn for

9 ≤ n ≤ 13 and n = 17. Many of the proofs that these were actually minimum

dominating sets came more recently when work began on lower bounds. Beginning

with Spencer [8] in 1990, work on lower bounds followed from Burger, Mynhardt,

Cockayne, Weakley, Gibbons, Webb, and Kearse [3, 4, 5, 6, 11, 18, 24]. Spencer’s

lower bound is especially important to the contents of this thesis and will be considered

further.

The necessity of lower bounds for the Queen’s domination problem should be

noted. In 1964, Yaglom and Yaglom [25], as mentioned above, showed there are

exactly 4860 placements of five queens on the standard 8×8 chessboard that dominate

the board. Their method was exhaustive and is simply not plausible for large values of

n. With the Queen’s domination problem classified as NP-complete, even computer

searches are limited for large board sizes. Thus, lower bounds for γ(Qn) are necessary

for large values of n to show a given dominating set is minimum.

Work on upper bounds has also seen recent progress. In 1990, L. Welsh [22]

provided a formation of queens that showed for n divisible by 3, γ(Qn) ≥
2n

3
. Welsh’s
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construction is also of significant importance here and will be considered in detail.

The necessity of upper bounds should, likewise, be discussed. Finding minimum

dominating sets, even for relatively small board sizes, can be quite difficult. With

an exhaustive method not feasible for larger values of n, constructions are given for

specified board sizes. In this way, these constructions are done ”in bulk”, yielding

upper bounds on γ(Qn). An example of this is Welch’s construction. The specified

board size is for n ≡ 0 (mod 3). Constructions have followed for board sizes of n ≡ 3

(mod 24) and n ≡ 26 (mod 46) [10, 12]. It should be noted that more recent upper

bounds have been given by considering specific types of coverings, the Parallelogram

Law, and an algorithm developed by Knuth as cited in [20]. Though similar types of

work may prove to be fruitful for both paired and total domination on the Queen’s

graph, for now they are left for future work.

The dominating set illustrated in Figure 1 has two interesting characteristics.

First, it is a minimum dominating set of queens. Second, the queens have all been

placed along one of the main diagonals of the board. This leads to an obvious question:

Can one always find a minimum dominating set of queens that are all placed along

one of the main diagonals of the board? Clearly one can dominate the n×n board

by placing queens in every square along the main diagonal. However, limiting the

placement of queens to the main diagonal may not allow for a minimum dominating

set of queens. It should be noted that although not possible in general, it is possible

for many small values of n to find a minimum dominating set using a placement of

queens along the main diagonal. To study precisely when a minimum dominating

set can be constructed by placing queens along the main diagonal of the board, the
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diagonal number has been introduced.

The diagonal number is defined as the minimum number of queens placed along

the main diagonal of the board so that the board is dominated. For a given n×n

board, this number is denoted as γdiag(Qn). For any n×n board, with n ≥ 3, a

diagonally dominating set may be constructed by n − 2 queens. To see this, simply

form a 3×3 subboard in one of the corners of the board. Place queens in all squares

on the main diagonal not on this 3×3 subboard. A queen is then placed in the center

square of the 3×3 subboard. These n − 2 queens form a diagonally dominating set

as can be seen in Figure 2. It follows that γdiag(Qn) ≤ n − 2 for any n ≥ 3.

qq qqqq
Figure 2: Constructing a Diagonally Dominating Set with n − 2 Queens for n ≥ 3

The diagonal number has been reduced by Cockayne and Hedetniemi [9] to a

well studied, number-theoretic function. Also important for both paired and total
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domination on the Queen’s graph, the diagonal number will be explored more in the

next section.

1.2 Paired and Total Domination

Since work began on combinatorial chessboard problems, interest in many different

domination parameters has been expressed. In 1910, Ahrens [1] posed two differ-

ent questions in addition to the standard queen’s domination problem. These two

problems can be stated as:

1. What is the minimum number of queens that can be placed on a board so that

every square is attacked or occupied and no two queens attack one another?

2. What is the minimum number of queens that can be placed on a board so that

every square is attacked and not simply occupied?

The first question has been studied alongside the standard Queen’s domination

problem and much progress has been made on it. It deals with the domination para-

meter known as independent domination. A set of vertices is defined as independent

if no two vertices in the set are adjacent. A set D of vertices is said to independently

dominate a graph G if D dominates G and D is an independent set. The minimum

cardinality among all independent dominating sets for a graph G is known as the

independent domination number of G. On the Queen’s graph this number is denoted

i(Qn). Because any independent dominating set must also be a dominating set, it

follows that γ(Qn) ≤ i(Qn).
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Further relating this parameter to the standard domination parameter on the

Queen’s graph, upper bounds for γ(Qn) have been improved, in part, by reducing the

size (number of edges) of the subgraph induced by the dominating set. Since the size

of the subgraph induced by any independently dominating set is zero, it would seem

i(Qn) would provide a very good upper bound for γ(Qn). In fact, it has been recently

shown that lim
n→∞

γ(Qn) − i(Qn)

n
< 0.031 [20].

The second question deals with the domination parameter known as total domi-

nation. A set D of vertices is said to totally dominate G if D dominates G and every

vertex in D is adjacent to another vertex in D. The minimum cardinality among all

total dominating sets for a graph G is known as the total domination number of G,

denoted as γt(G). For the Queen’s graph this is denoted as γt(Qn). Note that γt(G)

exists only for graphs without isolated vertices. On the Queen’s graph, a value for

γt(Q1) doesn’t exist since the graph for Q1 is one vertex. Results for γt(Qn) have not

been produced since 1910 when Ahrens [1] provided γt(Qn) values for n ≤ 9.

Similar to the way in which γ(Qn) and i(Qn) are studied side by side, we introduce

the study of paired domination on the Queen’s graph alongside of total domination.

For any graph G, the set of vertices D is defined as a paired dominating set if D

is a dominating set and the subgraph induced by D has a perfect matching. The

minimum cardinality among all paired dominating sets, for a graph G, is known as

the paired domination number of G. For the Queen’s graph, we say there exists a

perfect matching among a set of queens if they can be placed on the board, two at a

time, in attacking pairs. The paired domination number for a n×n board is denoted

γpr(Qn). The existence of a perfect matching implies γpr(G) must be even for any
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graph G. It should be noted that, like the total domination parameter, γpr(G) exists

only for graphs without isolated vertices. Hence a value for γpr(Q1) does not exist.

Paired domination was introduced in 1998 by Haynes and Slater [13]. Work has

followed on paired domination, including, a close look at the relationship between

total domination and paired domination parameters [13, 14, 21]. Note that any

paired dominating set of a graph G is also a total dominating set. Thus γ(G) ≤

γt(G) ≤ γpr(G) for any graph G without isolates. It also follows that since no vertex

can be adjacent to itself, any total dominating set must have at least two vertices.

Thus 2 ≤ γt(G) ≤ γpr(G).

There is also a relationship between paired and total domination that might prove

to be of particular interest on the Queen’s graph. When γt(G) is even, the subgraph

induced by the total dominating set has a minimum size of γt(G)/2. Similarly, the

subgraph induced by any paired dominating set has a minimum size of γpr(G)/2. As

noted previously, upper bounds for γ(Qn) have been improved, in part, by reducing

the size of the subgraph induced by the dominating set. Similar to the way in which

i(Qn) has provided a good upper bound for γ(Qn), γpr(Qn) may provide a good upper

bound for γt(Qn).

As mentioned previously, there are relationships that exist between both paired

and total domination numbers with the diagonal number. Recall the diagonal number

is defined as the minimum number of queens placed along the main diagonal of the

board so that the board is dominated. Note if there is more than one queen placed

along the main diagonal, then all queens along the main diagonal are attacked. Thus

any diagonally dominating set of at least two queens is also a total dominating set of

14



queens. Hence if γdiag(Qn) > 1, then γt(Qn) ≤ γdiag(Qn).

Similarly, consider a placement of an even number of queens along the main di-

agonal. A perfect matching among these squares occupied by queens can be defined

in obvious fashion. It follows that a diagonally dominating set of even cardinality is

a paired dominating set. Thus if γdiag(Qn) is even, then γpr(Qn) ≤ γdiag(Qn).

Now consider a placement of an odd number of queens along the main diago-

nal. Note first that for n = 1, γpr(Qn) doesn’t exist. Note also that for n ≥ 2,

γdiag(Qn) ≤ n−1. It follows that, for n ≥ 2, there is at least one empty square on the

main diagonal. Adding another queen to the main diagonal would provide a set of

diagonally dominate queens whose corresponding squares could be perfectly matched.

Hence if γdiag(Qn) is odd and n 6= 1, then γpr(Qn) ≤ γdiag(Qn) + 1.

15



2 UPPER BOUNDS

Much of the recent work on the Queen’s domination problem has focused on improving

existing upper bounds. This has been done, in part, by finding particular formations

of queens that dominate various board sizes. One such formation in particular has

implications for both paired and total domination. In 1990 Welsch [22] provided a

formation of queens that produced the theorem below.

Theorem 1 Welsch [22]: Let n = 3q + r where 0 ≤ r < 3. Then γ(Qn) ≤ 2q + r.

To see the general idea behind the proof, suppose n ≡ 0 (mod 3). Begin by

splitting the board into 9 regions of equal size. Label the bottom regions of the

board I-III from left to right, the middle regions IV-VI, and the top regions of the

board VII-IX. Queens are then placed in the bottom-left corner of region I, along the

diagonal to the immediate right of the main diagonal in region I, and along the main

diagonal of region IX. In this formation, it can be seen there is exactly one queen in

each column and row of regions I and IX. It follows there are exactly 2
3
n queens in

this placement. Figure 3 illustrates Welsch’s formation for a 12×12 chessboard.

16



qqqq
qqqq

Figure 3: Welsch’s Formation for n = 12

This set of queens has been shown to dominate the board for any n, where n ≡ 0

(mod 3). To see this, one can simply note that the squares in region I-III and regions

VII-IX are all dominated row-wise by the queens in regions I and IX respectively.

Regions IV and VI are dominated column-wise by the queens in regions I and IX

respectively. This leaves region V which is diagonally dominated by the queens in

regions I and IX. A slight modification of this formation will yield a dominating

set for other values of n. In these cases, use Welsch’s formation to dominate a

m×m subboard, where m is the largest value for which m ≡ 0 (mod 3) and m ≤ n.

Depending upon whether n ≡ 1 (mod 3) or n ≡ 2 (mod 3), there are either one or

two rows and columns not entirely dominated. Queens are then added to the board

at the intersection of these remaining rows and columns, as illustrated for n = 13 and

n = 14 in Figures 4 and 5 respectively.

17



qqqq
qqqq

q
Figure 4: Welsch’s Formation for n = 13

qqqq
qqqq

qq
Figure 5: Welsch’s Formation for n = 14

We are now ready to state our first result.

Theorem 2 Let n=3q + r where 0 ≤ r < 3 and q ≥ 1. Then γt(Qn) ≤ 2q + r.

Proof: To show this, we use the same formation as in Welsch’s. Recall that for

a set of queens to be a total dominating set, the squares occupied by queens must

also be attacked. Since Welsh’s formation is a dominating set, the only squares to

consider are those that are occupied by queens in this formation.

First, suppose n ≡ 0 (mod 3).

Define A as a set consisting of the square occupied by the queen in the lower-left

hand corner of the board. Define B as the set of squares to the immediate right of

the main diagonal in Region I. Note if n = 3, set B is empty. Define C as the set of

squares along the main diagonal of region IX.

18



The constructions for n = 3 and n = 6 are provided for these two trivial cases in

figure 6. It is straightforward to see from these constructions that the sets of queens

are total dominating sets.

q q
qq

qq
Figure 6: Welsch’s Formation for n = 3 and n = 6

Suppose n ≥ 9. It follows that there are at least two queens placed on squares in

each of the sets B and C. Since the squares in B and C lie along two diagonals, then

any squares occupied by these queens are attacked. For this case, we are only left to

consider the square in set A.

Suppose now n is odd. Set up an x-y coordinate system with the origin placed

at the center of the middle square. As is standard, define the coordinates of a given

square as the coordinates at the center of that square. A given square with coordinates

(x,y) is defined as having a positive diagonal value of y − x. This value corresponds

to the y-intercept of a line with slope 1 passing through (x,y). Similarly, define the

negative diagonal value of a square (x,y) as the sum x+y. Likewise, this corresponds

19



to the y-intercept of a line with slope −1 passing through (x,y). It can be easily seen

that any two squares with the same diagonal number, whether a positive or negative

diagonal number, lie on a common diagonal.

The coordinates of the squares in set C can be defined as the set of coordinates

{(n−1
2

− i, n+3
6

+ i) | i ∈ Z and 0 ≤ i ≤ n−3
3
}. Note that if n is odd and n ≡ 0 (mod 3),

then n−3
6

is an integer. Also for n ≥ 0, n−3
6

≤ n−3
3

. Thus, taking i = n−3
6

, we can see

that (n
3
,n
3
) is in the above set. Moreover, the square in set A has coordinates (1−n

2
,

1−n
2

). It can be seen that both these coordinates lie on the positive diagonal with

value zero. Thus, the square in set A is attacked by the indicated queen in set C. For

an illustrated example see figure 7.

q qqqq
qqqqq

Figure 7: Welsch’s Formation for n = 15

Suppose n is even. Again, using a coordinate system, let the origin be placed in

the middle of the square in set A. The coordinates of the squares in set B can be

defined as the set of coordinates {(n
3
− 1 − i, 1 + i) | i ∈ Z and 0 ≤ i ≤ n−6

3
}. It

follows that if n is even and n ≡ 0 (mod 3), then n−6
6

is an integer. Also for n ≥ 0,

20



n−6
6

≤ n−6
3

. Thus, taking i = n−6
6

, we can see that the square with coordinates (n
6
, n

6
)

is in set B. Note that the square in set A has coordinates (0,0). It can be seen that

both these coordinates lie on the positive diagonal with value zero. Thus, the square

in set A is attacked by the indicated queen in set B. An illustrated example can be

see in figure 8.

qqqq
qqqq

Figure 8: Welsch’s Formation for n = 12

Next, consider the cases for n ≡ 1 (mod 3) and n ≡ 2 (mod 3). Use the same

placement of queens for these values as in Welsch’s formation. Since these formations

are dominating sets, all that is left to consider are the squares that have queens placed

on them. In a similar fashion, consider an m×m subboard, where m is the largest

value for which m ≡ 0 (mod 3) and m ≤ n. The above proof for the case of n ≡ 0

(mod 3) also shows that all squares on the m×m subboard are totally dominated.

For the case of n ≡ 1 (mod 3), it is easy to see the added queen is attacked by the

queen occupying the square in set A. For the case of n ≡ 2 (mod 3), it is easy to see
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the additional queen is attacked by the queen added for the case of n ≡ 1 (mod 3).

For illustrations see figures 9 and 10.

QED

q qqqq
qqqqq

q
Figure 9: Welsch’s Formation for n = 16
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q qqqq
qqqqq

qq
Figure 10: Welsch’s Formation for n = 17

Corollary 3 For the Queen’s graph, Qn,

lim
n→∞

γt(Qn)

n
≤

2

3

.

Theorem 4 Let n = 3q + r where 0 ≤ r < 3 and q ≥ 1. If r = 0 or r = 2, then

γpr(Qn) ≤ 2q + r. If r = 1, then γpr(Qn) ≤ 2q + 2.

Proof: Because Welsch’s formation is a dominating set, then all that needs to be

shown is the existence of a perfect matching. To show this, we use the same formation
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as in Welsch’s, except when n ≡ 1 (mod 3). For this case, a queen is added to the

formation to form a perfect matching.

Assume first n ≡ 0 (mod 3).

Suppose n is even. Since n is even, the cardinality of set C is even. A perfect

matching among these squares easily can be seen. Since n is even, the cardinality of

set B is odd. Note, however, the queen with coordinates (n
6
, n

6
) is in set B. As shown

previously, this square is attacked by the queen on the square in set A. Hence, this

square can be paired with the square in set A. This leaves an even number of squares

remaining in set B. Since the squares of B are on a common diagonal, the remaining

squares in set B can be matched.

Suppose n is odd. This case is similar to the above, except for the fact that set

B is of even cardinality and set C is of odd cardinality. However, for this case the

square in set A is adjacent to a square in set C, as previously shown. Hence, we can

use the same argument as the case where n is even.

Next, we must consider the cases for which n ≡ 1 (mod 3) and n ≡ 2 (mod 3).

For the case where n ≡ 2 (mod 3), Welsch’s formation has, using the previous ar-

gument for n ≡ 0 (mod 3), a perfect matching defined on a m×m subboard (where

m = n − 2). The two remaining queens are on a common diagonal. Hence, their

squares can be paired. Since all squares can be paired using the above matching,

then a perfect matching has been defined for n ≡ 2 (mod 3).

The case for n ≡ 1 (mod 3) is similar to the above case. On the m×m subboard

(where m = n−1) part of a perfect matching has been defined. There is one remaining

square in the dominating set not part of the perfect matching. This square is occupied
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by the queen not on the m×m subboard. For this case, place a queen adjacent to the

occupied square not on the subboard. This would form a set of occupied squares on

which a perfect matching could be defined. An example is illustrated in Figure 11.

QED

q qqqq
qqqqq

qq
Figure 11: Welsch’s Formation for n = 17, Modified for Paired Domination

Corollary 5 For the Queen’s graph, Qn,

lim
n→∞

γpr(Qn)

n
≤

2

3
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3 LOWER BOUNDS

Recently many of the values for the standard domination problem were established,

in part, by new lower bounds. The first of these lower bounds was given by Spencer

in 1990 [22]. This lower bound is as follows:

Theorem 6 For the Queen’s graph, Qn,

γ(Qn) ≥
(n − 1)

2
.

We give lower bounds for both paired and total domination on the Queen’s graph.

Theorem 7 For the Queen’s graph, Qn,

γt(Qn) ≥
4(n − 1)

7
.

Proof: The trivial cases for n = 2 and n = 3 are straightforward because 2 ≤

γt(Qn) ≤ γpr(Qn) for all n.

Let n ≥ 4, and S be a γt(Qn)-set. We construct a graph G having vertex set S and

edges as follows. Two vertices are adjacent if and only if the queens on these squares

can attack one another by moving only on vacant squares (squares unoccupied by

queens) of the n×n board. Note that G is not necessarily the same as the subgraph

induced by S in Qn. For example, if there are three queens in a single column, the

topmost queen cannot attack the bottommost queen via unoccupied squares. Hence

their corresponding vertices would not be adjacent in G. On the other hand, both

these vertices are adjacent to the vertex representing the queen in the middle. Note

that a subset of vertices that are on the same column (or, respectively, row or diagonal)

induces a path in G, whereas the same subset of vertices induces a complete subgraph

in Qn.
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If two vertices are adjacent in G because they can attack along unoccupied squares

of a column, we say they are column adjacent. Row and diagonal adjacent are defined

as expected. To aid in our proof , we count the edges of G. Let c, r, and d, represent

the number of edges among the vertices that are column, row, and diagonal adjacent,

respectively. Then, |E(G)| = c + r + d. Note that since S is a total dominating set of

Qn, G has no isolated vertices. Thus, c + r + d ≥ |S|/2 = γt(Qn)/2.

We say a column (or, respectively, row or diagonal) is unoccupied if there is no

queen in it. Let a1 denote the leftmost unoccupied column, a2 the rightmost unoc-

cupied column, b1 the bottommost unoccupied row, and b2 the top-most unoccupied

row. These rows and columns exist for n ≥ 4, since 2 ≤ γt(Qn) ≤ γdiag(Qn) ≤ n − 2.

Hence for any γt(Qn)-set with n ≥ 4, there are at least two unoccupied rows and two

unoccupied columns.

In a1 and a2, there are 2(n− γt(Qn)+ r) squares that do not share a common row

or column with a queen in S. Likewise, in b1 and b2 there are 2(n−γt(Qn)+c) squares

that do not share a common row or column with a queen in S. Note there are four

squares which are counted more than once. The four corners where the outtermost,

unoccupied rows meet the outtermost, unoccupied columns overlap. Hence, these

squares are included in exactly two of the above counts. Thus, the total number

of squares that do not share a common row or column with a queen in S can be

expressed as:

2(n − γt(Qn) + r) + 2(n − γt(Qn) + c) − 4.

Note also any one diagonal, whether a positive or negative diagonal, dominates at

most two of the squares in all of a1, a2, b1, and b2. Also the total number of diagonals
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occupied by queens is 2γt(Qn) - d. Because any of the squares in this ”outer rim” of

squares must be diagonally dominated, it follows that:

2(n − γt(Qn) + r) + 2(n − γt(Qn) + c) − 4 ≤ 2(2γt(Qn) − d)

or 4n − 4 + 2(c + r + d) ≤ 8γt(Qn).

But since c + r + d ≥ γt(Qn)
2

, we have

4(n − 1) + 2(γt(Qn)/2) ≤ 8γt(Qn) or

4(n − 1)/7 ≤ γt(Qn).

QED

q
q

q q qq
qq

Figure 12: A Minimum Total Dominating Set for n = 12

Figure 12 illustrates a minimum total dominating set for Q12 of 7 queens. Note

here c = 1, r = 1, and d = 3. In this case, the subgraph induced by S is isomorphic to

G because there are no more than two queens in any single row, column, or diagonal.
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Corollary 8 For the Queen’s graph, Qn,

4(n−1)
7

≤ γpr(Qn).

Corollary 9 For the Queen’s graph, Qn,

4

7
≤ lim

n→∞

γt(Qn)

n
≤ lim

n→∞

γpr(Qn)

n
≤

2

3
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4 γt(Qn) AND γpr(Qn) VALUES

Before giving some γt(Qn) and γpr values, a summary of all that is known about

bounds on γt(Qn) and γpr(Qn) will be given.

The total domination number has the following lower bounds:

γt(Qn) ≥ 2

γt(Qn) ≥ γ(Qn)

γt(Qn) ≥ 4(n−1)
7

as indicated in column labeled L.B. for γt. This number has been

rounded up.

The total domination number has the following upper bounds:

γt(Qn) ≤ γpr(Qn)

If γdiag ≥ 2, then γt(Qn) ≤ γdiag(Qn)

Let n = 3q + r and q ≥ 0. Then γt(Qn) ≤ 2q + r. This is indicated in the column

labeled U.B. for γt.

The paired domination number has the following lower bounds:

γpr(Qn) ≥ 2

γpr(Qn) ≥ γ(Qn)

γpr(Qn) ≥ 4(n−1)
7

as indicated in column labeled L.B. for γpr. This value has been

rounded up to the closest even integer.

γpr(Qn) ≥ γt(Qn)

The paired domination number has the following upper bounds:

Let n = 3q + r and q ≥ 0. If r = 0 or r = 2, then γpr(Qn) ≤ 2q + r. If r = 1 then

γpr(Qn) ≤ 2q + 2. This upper bound is indicated in the column U.B. for γpr(Qn).

If γdiag(Qn) is even, then γpr(Qn) ≤ γdiag(Qn).
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If γdiag(Qn) is odd and n 6= 1, then γpr(Qn) ≤ γdiag(Qn) + 1

Note also that γpr(Qn) must be an even integer.

The following chart has been compiled with the above bounds and the construc-

tions that follow. Some of the identified γpr(Qn) and γt(Qn) values have letters

superscripted. These refer to the constructions that follow. The values for γ(Qn)

that were used are found in [20]. The diagonal numbers were verified via computer

search by Steve Lane, an ETSU graduate student in mathematics.

Table 1

Some Values for γt(Qn) and γpr(Qn)

N γ(Qn) LB γt γt(Qn) UB γt LB γpr γpr(Qn) UB γpr γdiag(Qn)

2 1 1 2 - 2 2 - 1

3 1 2 2 2 2 2 2 1

4 2 2 2 3 2 2 4 2

5 3 3 3 4 4 4 4 3

6 3 3 4see a) 4 4 4 4 4

7 4 4 4 5 4 4 6 4

8 5 4 5 6 4 6 6 5

9 5 5 5 6 6 6 6 5

10 5 6 6 7 6 6 8 6

11 5 6 6v7 8 6 6v8 8 7

12 6 7 7see b) 8 8 8 8 8

13 7 7 7v8 9 8 8see c) 10 9

14 8 8 8v9see d) 10 8 8v10 10 10

15 9 8 9v10 10 8 10 10 11

16 9 9 9v10 11 10 10see e) 12 12

17 9 10 10v11see f) 12 10 10v12 12 12

18 9 10 10-12 12 10 10v12 12 13

19 10 11 11v12 13 12 12see g) 14 14

20 10v11 11 11-13see h) 14 12 12v14 14

21 11 12 12v13see i) 14 12 12v14 14

22 11v12 12 12-14see j) 15 12 12v14v16 16

23 12 13 13-15see k) 16 14 14v16 16

24 12v13 14 14-16 16 14 14v16 16

25 13 14 14-17 17 14 14v16v18 18
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a) Verified by Steve Lane via computer search. Also provided by Ahrens in [1].

q
qq q qq

qq
Figure 13: b) A Total Dominating Set for n = 12 of 7 Queens

qqqq qq qq
Figure 14: c) A Paired Dominating Set for n = 13 of 8 Queens
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qqqq qq qq
q

Figure 15: d) A Total Dominating Set for n = 14 of 9 Queens

qq qqqq
qq qq

Figure 16: e) A Paired Dominating Set for n = 16 of 10 Queens
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qq qqqq
qq qq

q

Figure 17: f) A Total Dominating Set for n = 17 of 11 Queens

qqqqq qqqq
q q

q
Figure 18: g) A Paired Dominating Set for n = 19 of 12 Queens
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q qqqq q q qq
q q

q

q

Figure 19: h) A Total Dominating Set for n = 20 of 13 Queens

qqqqqq qq q q q
qq

Figure 20: i) A Total Dominating Set for n = 21 of 13 Queens
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qq

q

Figure 21: j) A Total Dominating Set for n = 22 of 14 Queens

qqqqqq qq q q q
qq

q q

Figure 22: k) A Total Dominating Set for n = 23 of 15 Queens
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