Social Media in Higher Education: Building Mutually Beneficial Student and Institutional Relationships through Social Media.

Megan L. Fuller
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Communication Technology and New Media Commons, Computer Sciences Commons, and the Education Commons

Recommended Citation

Fuller, Megan L., "Social Media in Higher Education: Building Mutually Beneficial Student and Institutional Relationships through Social Media." (2011). Electronic Theses and Dissertations. Paper 1275. https://dc.etsu.edu/etd/1275

Social Media in Higher Education: Building Mutually Beneficial Student and Institutional Relationships through Social Media

A thesis presented to the faculty of the Department of Computer \& Information Sciences East Tennessee State University
In partial fulfillment of the requirements for the degree Master of Science in Computer Science

by
Megan Fuller
May 2011

Dr. Tony Pittarese, Chair
Mrs. Jessica Keup
Dr. Sally Lee
Dr. Edith Seier

Keywords: Social Media, Higher Education, Student Teacher Relationships

Abstract

Social Media in Higher Education: Building Mutually Beneficial Student and Institutional Relationships through Social Media by Megan Fuller

Social applications such as Facebook, YouTube, and Twitter have driven the public growth of Web 2.0. Universities and colleges are using social media to reach student prospects, keep contact with current students and alumni, and provide a mechanism for group collaboration and interaction in the classroom. Higher education institutions are influenced by current social media trends, and figuring out how to effectively interact with various constituencies within the social media environment can be challenging.

In this study, a group of higher education students were surveyed about their social media practices and preferences with a focus on education-related activities. The goal of the research was to determine what aspects of social media use were most effective in reaching the student constituency based on social media usage patterns. The results led to significant observations that aid in the development of social media tactics to reach university and college students.

CONTENTS

Page

ABSTRACT 2
LIST OF TABLES 13
LIST OF FIGURES 28
LIST OF CHARTS 29
Chapter

1. INTRODUCTION 37
Web 2.0 Defined 39
2. ENTERPRISE SOCIAL MEDIA 42
Visibility and Feedback 42
Positive Financial Performance with Engagement 43
Industry Social Media Marketing 46
3. HIGHER EDUCATION SOCIAL MEDIA. 49
Marketing and Communicating 49
Classroom Collaboration Using Wikis 52
4. FUTURE OF SOCIAL MEDIA 55
5. RESEARCH PLAN 57
Research Purpose 57
Methodology 57
Target Audience 58
Participants 59
Class Classification 60
Chapter Page
Gender 61
Program of Study 62
Survey Collection, Coding, and Analysis 65
6. ANALYSIS OF SOCIAL MEDIA SURVEY 66
General Overview 67
Current Social Media Tool Accounts 67
Ranking of Current Social Media Tools 68
Method of Joining a Social Media Site 69
Facebook Questions 70
Q1: Post on Friends' Walls/Statuses/Comments 70
Class Classification 71
Gender 73
Program of Study 74
Summary 76
Q2: Post on Fan Pages' Walls/Statuses/Comments 76
Class Classification 78
Gender 79
Program of Study. 81
Summary 83
Q3: Like Friends' Walls/Statuses/Comments 83
Class Classification. 84
Gender 86
Program of Study. 88
Chapter Page
Summary 89
Q4: Like Fan Pages' Posts/Statuses/Comments 89
Class Classification 91
Gender 92
Program of Study 94
Summary 95
Q5: Post Pictures 95
Class Classification 96
Gender 98
Program of Study 99
Summary 101
Q6: Create Events 101
Class Classification 102
Gender 104
Program of Study 105
Summary 107
Q7: Send Messages through the Inbox 107
Class Classification 108
Gender 110
Program of Study 111
Summary 112
Q8: Sell/Buy Items on Marketplace 113
Class Classification 114
Chapter Page
Gender 115
Program of Study 117
Summary 118
Q9: Play Games (Farmville, Mob Wars, Scrabble, etc.) 118
Class Classification 120
Gender 121
Program of Study 123
Summary 124
Q10: Use Applications (Bumper Stickers, Graffiti, etc.) 124
Class Classification 125
Gender 127
Program of Study 128
Summary 129
Q11: Search for People 130
Class Classification 131
Gender 132
Program of Study 134
Summary 135
Q12: Search for Companies/Organizations 135
Class Classification 137
Gender 138
Program of Study 140
Summary 141
Future Social Media Development Specific to a Department/Major Questions: 141
Q1: View Tips Posted by Instructors on Course Work 142
Class Classification 143
Gender 145
Program of Study. 146
Summary 148
Q2: Upload and View Group Project Documents/Files 148
Class Classification. 149
Gender. 151
Program of Study 153
Summary 154
Q3: Communicate with Group Project Members via Real-Time Chat 154
Class Classification 156
Gender 157
Program of Study 159
Summary 160
Q4: Communicate with Instructors and Ask Questions 160
Class Classification 162
Gender 163
Program of Study 165
Summary 166
Q5: Communicate with Classmates and Ask Questions 166
Class Classification 168
Chapter Page
Gender 169
Program of Study 171
Summary 172
Q6: Meet New Incoming Students within Major 172
Class Classification 174
Gender 175
Program of Study 177
Summary 178
Q7: Communicate with Department Graduates 178
Class Classification 180
Gender 181
Program of Study 183
Summary 184
Q8: Sell Books Online Between Students in Department 184
Class Classification 185
Gender 187
Program of Study 189
Summary 190
Q9: Learn about Elective or Special Courses within Your Major 190
Class Classification 192
Gender 193
Program of Study 195
Summary 196
Chapter Page
Q10: Learn About Courses Offered from Instructors 196
Class Classification. 198
Gender 199
Program of Study 201
Summary 202
Q11: Learn About Courses Offered from Previous Students 202
Class Classification 204
Gender 205
Program of Study 207
Summary 208
Q12: Anonymously Post Feedback on the Course 208
Class Classification 210
Gender 211
Program of Study 213
Summary 214
Q13: Learn of Special Campus Speakers or Activities within Your Major 214
Class Classification 216
Gender 217
Program of Study 219
Summary 220
Q14: Find Out What Social Activities Your Classmates Are Doing 220
Class Classification 222
Gender 223
Chapter Page
Program of Study 225
Summary 226
Q15: Find Information on Academic Organizations within Your Department 226
Class Classification 228
Gender 229
Program of Study 231
Summary 232
Q16: Find an Internship/Job with Your Expected Degree 232
Class Classification. 234
Gender 235
Program of Study. 237
Summary 238
Future Social Media Development Specific to a University Questions: 239
Q1: Get Information of College Events/Workshops/Career Fairs 239
Gender 242
Program of Study. 244
Summary 245
Q2: Receive Free Merchandise from the College 245
Class Classification 247
Gender 248
Program of Study. 250
Summary 251
Chapter Page
Q3: Interact with College or University Administrators (Deans, Vice Presidents,etc.).251
Class Classification 253
Gender 254
Program of Study 256
Summary 257
Q4: Find Information about Student Organizations 257
Class Classification 259
Gender 260
Program of Study 262
Summary 263
Q5: Find Scholarships Offered by the College 263
Class Classification 265
Gender 266
Program of Study 268
Summary 269
7. CONCLUSIONS And Analysis 270
Recommended University Social Media Structure 273
Recommended Anonymous Feedback 274
Recommended Classroom Communication 274
Recommended Faculty and Staff Involvement 275
Recommended Textbook Exchange 276
Recommended Advertising 277
Chapter Page
Recommended Demographic-Based Advertising 277
Recommended Social Media Features 278
8. FUTURE WORK 281
9. WORKS CITED 282
10. APPENDICES 284
Appendix A: Social Media Survey 284
Appendix B: Preliminary Research. 286
Appendix C: Preliminary Facebook Research 289
Appendix D: Preliminary Twitter Research 293
Appendix E: Preliminary YouTube Research 297
11. VITA 304

LIST OF TABLES

Table Page

1. Class Classification Frequencies. 60
2. Gender Frequencies 61
3. Primary Program Frequencies 63
4. Social Media Tool Frequencies 67
5. First Rank Frequencies 68
6. Ranking of Social Media Tools 69
7. Method of Joining a Social Media Site 69
8. Post on Friends' Walls/Statuses/Comments 70
9. Class Classification and Post on Friends' Walls/Statuses/Comments Crosstabulation 71
10. Class Classification and Post on Friends' Walls/Statuses/Comments Chi-Square Test 72
11. Gender and Post on Friends' Walls/Statuses/Comments Crosstabulation 73
12. Gender and Post on Friends' Walls/Statuses/Comments Chi-Square Test 74
13. Program of Study and Post on Friends' Walls/Statuses/Comments Crosstabulation. 75
14. Program of study and Post on Friends' Walls/Statuses/Comments Chi-Square Test 76
15. Post on Fan Pages' Walls/Statuses/Comments 77
16. Class Classification and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation 78
17. Class Classification and Post on Fan Pages' Walls/Statuses/Comments Chi-Square Test 79
18. Gender and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation 79
19. Gender and Post on Fan Pages' Walls/Statuses/Comments Chi-Square Test 80
20. Program of Study and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation 81
21. Program of Study and Post on Fan Pages’ Walls/Statuses/Comments Chi-Square Test 82
Table Page
22. Like Friends' Walls/Statuses/Comments 83
23. Class Classification and Like Friends' Walls/Statuses/Comments Crosstabulation 85
24. Class Classification and Like Friends’ Walls/Statuses/Comments Chi-Square Test 86
25. Gender and Like Friends’ Walls/Statuses/Comments Crosstabulation 86
26. Gender and Like Friends' Walls/Statuses/Comments Chi-Square Test 87
27. Program of Study and Like Friends' Walls/Statuses/Comments Crosstabulation. 88
28. Program of Study and Like Friends' Walls/Statuses/Comments Chi-Square Test. 89
29. Like Fan Pages' Posts/Statuses/Comments 90
30. Class Classification and Like Fan Pages' Posts/Statuses/Comments Crosstabulation 91
31. Class Classification and Like Fan Pages' Posts/Statuses/Comments Chi-Square Test 92
32. Gender and Like Fan Pages' Posts/Statuses/Comments Crosstabulation 92
33. Gender and Like Fan Pages' Posts/Statuses/Comments Chi-Square Test. 93
34. Program of Study and Like Fan Pages' Posts/Statuses/Comments Crosstabulation 94
35. Program of Study and Like Fan Pages' Posts/Statuses/Comments Chi-Square Test 95
36. Post Pictures 95
37. Class Classification and Post Pictures Crosstabulation 96
38. Class Classification and Post Pictures Chi-Square Test 97
39. Gender and Post Pictures Crosstabulation 98
40. Gender and Post Pictures Chi-Square Test 99
41. Program of Study and Post Pictures Crosstabulation 99
42. Program of Study and Post Pictures Chi-Square Test 100
43. Create Events 101
44. Class Classification and Create Events Crosstabulation 102
Table Page
45. Class Classification and Create Events Chi-Square Test 103
46. Gender and Create Events Crosstabulation 104
47. Gender and Create Events Chi-Square Test. 105
48. Program of Study and Create Events Crosstabulation 105
49. Program of Study and Create Events Chi-Square Test 106
50. Send Messages through the Inbox 107
51. Class Classification and Send Messages through the Inbox Crosstabulation 108
52. Class Classification and Send Messages through the Inbox Chi-Square Test. 109
53. Gender and Send Messages through the Inbox Crosstabulation 110
54. Gender and Send Messages through the Inbox Chi-Square Test 111
55. Program of Study and Send Messages through the Inbox Crosstabulation 111
56. Program of Study and Send Messages through the Inbox Chi-Square Test 112
57. Sell/Buy Items on Marketplace 113
58. Class Classification and Sell/Buy Items on Marketplace Crosstabulation 114
59. Class Classification and Sell/Buy Items on Marketplace Chi-Square Test 115
60. Gender and Sell/Buy Items on Marketplace Crosstabulation 115
61. Gender and Sell/Buy Items on Marketplace Chi-Square Test 116
62. Program of Study and Sell/Buy Items on Marketplace Crosstabulation 117
63. Program of Study and Sell/Buy Items on Marketplace Chi-Square Test 118
64. Play Games (Farmville, Mob Wars, Scrabble, etc.) 119
65. Class Classification and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation 120
Table
66. Class Classification and Play Games (Farmville, Mob Wars, Scrabble, etc.) Chi-Square Test 121
67. Gender and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation 121
68. Gender and Play Games (Farmville, Mob Wars, Scrabble, etc.) Chi-Square Test 122
69. Program of Study and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation 123
70. Program of Study and Play Games (Farmville, Mob Wars, Scrabble, etc.) Chi-Square Test. 124
71. Use Applications (Bumper Stickers, Graffiti, etc.) 124
72. Class Classification and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation 125
73. Class Classification and Use Applications (Bumper Stickers, Graffiti, etc.) Chi-Square 126
74. Gender and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation 127
75. Gender and Use Applications (Bumper Stickers, Graffiti, etc.) Chi-Square Test 128
76. Program of Study and Use Applications (Bumper Stickers, Graffiti, etc.)
Crosstabulation 128
77. Program of Study and Use Applications (Bumper Stickers, Graffiti, etc.) Chi-Square 129
78. Search for People 130
79. Class Classification and Search for People Crosstabulation. 131
80. Class Classification and Search for People Chi-Square 132
81. Gender and Search for People Crosstabulation 132
82. Gender and Search for People Chi-Square Test 133
Table Page
83. Program of Study and Search for People Crosstabulation 134
84. Program of Study and Search for People Chi-Square Test. 135
85. Search for Companies/Organizations 136
86. Class Classification and Search for Companies/Organizations Crosstabulation 137
87. Class Classification and Search for Companies/Organizations Chi-Square Test 138
88. Gender and Search for Companies/Organizations Crosstabulation 138
89. Gender and Search for Companies/Organizations Chi-Square Test 139
90. Program of Study and Search for Companies/Organizations Crosstabulation 140
91. Program of Study and Search for Companies/Organizations Chi-Square Test 141
92. View Tips Posted by Instructors on Course Work 142
93. Class Classification and View Tips Posted by Instructors on Course Work Crosstabulation 143
94. Class Classification and View Tips Posted by Instructors on Course Work Chi-Square Test 144
95. Gender and View Tips Posted by Instructors on Course Work Crosstabulation 145
96. Gender and View Tips Posted by Instructors on Course Work Chi-Square Test 146
97. Program of Study and View Tips Posted by Instructors on Course Work Crosstabulation 146
98. Program of Study and View Tips Posted by Instructors on Course Work Chi-Square Test. 147
99. Upload and View Group Project Documents/Files 148
Table Page
100. Class Classification and Upload and View Group Project Documents/Files Crosstabulation 150
101. Class Classification and Upload and View Group Project Documents/Files Chi-Square Test
... 151
102. Gender and Upload and View Group Project Documents/Files Crosstabulation 151
103. Gender and Upload and View Group Project Documents/Files Chi-Square 152
104. Program of Study and Upload and View Group Project Documents/Files
Crosstabulation 153
105. Program of Study and Upload and View Group Project Documents/Files Chi-Square
Test 154
106. Communicate with Group Project Members via Real-Time Chat 155
107. Class Classification and Communicate with Group Project Members via Real-Time Chat Crosstabulation 156
108. Class Classification and Communicate with Group Project Members via Real-Time Chat Chi-Square Test 157
109. Gender and Communicate with Group Project Members via Real-Time Chat Crosstabulation 157
110. Gender and Communicate with Group Project Members via Real-Time Chat Chi-Square Test 158
111. Program of Study and Communicate with Group Project Members via Real-Time Chat
Crosstabulation 159
Table Page
112. Program of Study and Communicate with Group Project Members via Real-Time Chat Chi-Square Test 160
113. Communicate with Instructors and Ask Questions 161
114. Class Classification and Communicate with Instructors and Ask Questions Crosstabulation 162
115. Class Classification and Communicate with Instructors and Ask Questions Chi-Square Test 163
116. Gender and Communicate with Instructors and Ask Questions Crosstabulation 163
117. Gender and Communicate with Instructors and Ask Questions Chi-Square Test 164
118. Program of Study and Communicate with Instructors and Ask Questions
Crosstabulation 165
119. Program of Study and Communicate with Instructors and Ask Questions Chi-Square Test 166
120. Communicate with Classmates and Ask Questions 167
121. Class Classification and Communicate with Classmates and Ask Questions Crosstabulation 168
122. Class Classification and Communicate with Classmates and Ask Questions Chi-Square
Test 169
123. Gender and Communicate with Classmates and Ask Questions Crosstabulation 169
124. Gender and Communicate with Classmates and Ask Questions Chi-Square Test. 170
125. Program of Study and Communicate with Classmates and Ask Questions
Crosstabulation 171
Table Page
126. Program of Study and Communicate with Classmates and Ask Questions Chi-Square Test 172
127. Meet New Incoming Students within Major 173
128. Class Classification and Meet New Incoming Students within Major Crosstabulation 174
129. Class Classification and Meet New Incoming Students within Major Chi-Square Test. 175
130. Gender and Meet New Incoming Students within Major Crosstabulation 175
131. Gender and Meet New Incoming Students within Major Chi-Square Test 176
132. Program of Study and Meet New Incoming Students within Major Crosstabulation 177
133. Program of Study and Meet New Incoming Students within Major Chi-Square Test 178
134. Communicate with Department Graduates 179
135. Class Classification and Communicate with Department Graduates Crosstabulation 180
136. Class Classification and Communicate with Department Graduates Chi-Square Test 181
137. Gender and Communicate with Department Graduates Crosstabulation 181
138. Gender and Communicate with Department Graduates Chi-Square Test 182
139. Program of Study and Communicate with Department Graduates Crosstabulation 183
140. Program of Study and Communicate with Department Graduates Chi-Square Test 184
141. Sell Books Online Between Students in Department 184
142. Class Classification and Sell Books Online Between Students in Department Crosstabulation 186
143. Class Classification and Sell Books Online Between Students in Department Chi-Square Test 187
144. Gender and Sell Books Online Between Students in Department Crosstabulation 187
145. Gender and Sell Books Online Between Students in Department Chi-Square Test 188
Table Page
146. Program of Study and Sell Books Online Between Students in Department Crosstabulation 189
147. Program of Study and Sell Books Online Between Students in Department Chi-Square Test 190
148. Learn about Elective or Special Courses within Your Major 191
149. Class Classification and Learn about Elective or Special Courses within Your Major Crosstabulation 192
150. Class Classification and Learn about Elective or Special Courses within Your Major Chi-Square Test 193
151. Gender and Learn about Elective or Special Courses within Your Major Crosstabulation 193
152. Gender and Learn about Elective or Special Courses within Your Major Chi-Square Test 194
153. Program of Study and Learn about Elective or Special Courses within Your Major Crosstabulation 195
154. Program of Study and Learn about Elective or Special Courses within Your Major Chi-Square Test 196
155. Learn About Courses Offered from Instructors 197
156. Class Classification and Learn About Courses Offered from Instructors Crosstabulation 198
157. Class Classification and Learn About Courses Offered from Instructors Chi-Square
Test 199
Table Page
158. Gender and Learn About Courses Offered from Instructors Crosstabulation 199
159. Gender and Learn About Courses Offered from Instructors Chi-Square Test 200
160. Program of Study and Learn About Courses Offered from Instructors Crosstabulation 201
161. Program of Study and Learn About Courses Offered from Instructors Chi-Square Test 202
162. Learn About Courses Offered From Previous Students 203
163. Class Classification and Learn About Courses Offered From Previous Students
Crosstabulation 204
164. Class Classification and Learn About Courses Offered From Previous Students Chi-Square Test 205
165. Gender and Learn About Courses Offered From Previous Students Crosstabulation 205
166. Gender and Learn About Courses Offered From Previous Students Chi-Square Test 206
167. Program of Study and Learn About Courses Offered From Previous Students Crosstabulation 207
168. Program of Study and Learn About Courses Offered From Previous Students Chi-Square Test 208
169. Anonymously Post Feedback on the Course 209
170. Class Classification and Anonymously Post Feedback on the Course Crosstabulation 210
171. Class Classification and Anonymously Post Feedback on the Course Chi-Square Test 211
172. Gender and Anonymously Post Feedback on the Course Crosstabulation 211
173. Gender and Anonymously Post Feedback on the Course Chi-Square Test 212
174. Program of Study and Anonymously Post Feedback on the Course Crosstabulation. 213
175. Program of Study and Anonymously Post Feedback on the Course Chi-Square Test. 214
Table Page
176. Learn of Special Campus Speakers or Activities within Your Major 215
177. Class Classification and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation 216
178. Class Classification and Learn of Special Campus Speakers or Activities within Your Major Chi-Square Test 217
179. Gender and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation 217
180. Gender and Learn of Special Campus Speakers or Activities within Your Major Chi-Square Test 218
181. Program of Study and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation 219
182. Program of Study and Learn of Special Campus Speakers or Activities within Your Major Chi-Square Test 220
183. Find Out What Social Activities Your Classmates Are Doing 221
184. Class Classification and Find Out What Social Activities Your Classmates Are Doing Crosstabulation 222
185. Class Classification and Find Out What Social Activities Your Classmates Are Doing Chi-Square Test 223
186. Gender and Find Out What Social Activities Your Classmates Are Doing
Crosstabulation 223
187. Gender and Find Out What Social Activities Your Classmates Are Doing Chi-Square
Test 224
Table Page
188. Program of Study and Find Out What Social Activities Your Classmates Are Doing Crosstabulation 225
189. Program of Study and Find Out What Social Activities Your Classmates Are Doing Chi-Square Test 226
190. Find Information on Academic Organizations within Your Department 227
191. Class Classification and Find Information on Academic Organizations within Your
Department Crosstabulation 228
192. Class Classification and Find Information on Academic Organizations within Your Department Chi-Square Test 229
193. Gender and Find Information on Academic Organizations within Your Department Crosstabulation 229
194. Gender and Find Information on Academic Organizations within Your Department Chi-Square Test 230
195. Program of Study and Find Information on Academic Organizations within Your Department Crosstabulation 231
196. Program of Study and Find Information on Academic Organizations within Your Department Chi-Square Test 232
197. Find an Internship/Job with Your Expected Degree 233
198. Class Classification and Find an Internship/Job with Your Expected Degree Crosstabulation 234
199. Class Classification and Find an Internship/Job with Your Expected Degree Chi-Square
Test235
Table Page
200. Gender and Find an Internship/Job with Your Expected Degree Crosstabulation 235
201. Gender and Find an Internship/Job with Your Expected Degree Chi-Square Test 236
202. Program of Study and Find an Internship/Job with Your Expected Degree Crosstabulation 237
203. Program of Study and Find an Internship/Job with Your Expected Degree Chi-Square Test 238
204. Get Information of College Events/Workshops/Career Fairs 239
205. Class Classification and Get Information of College Events/Workshops/Career Fairs
Crosstabulation 241
206. Class Classification and Get Information of College Events/Workshops/Career Fairs
Chi-Square Test 242
207. Gender and Get Information of College Events/Workshops/Career Fairs Crosstabulation 242
208. Gender and Get Information of College Events/Workshops/Career Fairs Chi-Square
Test 243
209. Program of Study and Get Information of College Events/Workshops/Career Fairs
Crosstabulation 244
210. Program of Study and Get Information of College Events/Workshops/Career Fairs Chi-Square Test 245
211. Receive Free Merchandise from the College 246
212. Class Classification and Receive Free Merchandise from the College Crosstabulation. 247
213. Class Classification and Receive Free Merchandise from the College Chi-Square Test 248
Table Page
214. Gender and Receive Free Merchandise from the College Crosstabulation 248
215. Gender and Receive Free Merchandise from the College Chi-Square Test. 249
216. Program of Study and Receive Free Merchandise from the College Crosstabulation 250
217. Program of Study and Receive Free Merchandise from the College Chi-Square Test 251
218. Interact with College or University Administrators (Deans, Vice Presidents, etc.) 252
219. Class Classification and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation 253
220. Class Classification and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Chi-Square Test 254
221. Gender and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation 254
222. Gender and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Chi-Square Test 255
223. Program of Study and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation 256
224. Program of Study and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Chi-Square Test 257
225. Find Information about Student Organizations 258
226. Class Classification and Find Information about Student Organizations Crosstabulation 259
227. Class Classification and Find Information about Student Organizations Chi-Square
Test 260
Table
228. Gender and Find Information about Student Organizations Crosstabulation 260
229. Gender and Find Information about Student Organizations Chi-Square Test 261
230. Program of Study and Find Information about Student Organizations Crosstabulation 262
231. Program of Study and Find Information about Student Organizations Chi-Square Test. 263
232. Find Scholarships Offered by the College 264
233. Class Classification and Find Scholarships Offered by the College Crosstabulation 265
234. Class Classification and Find Scholarships Offered by the College Chi-Square Test 266
235. Gender and Find Scholarships Offered by the College Crosstabulation 266
236. Gender and Find Scholarships Offered by the College Chi-Square Test 267
237. Program of Study and Find Scholarships Offered by the College Crosstabulation 268
238. Program of Study and Find Scholarships Offered by the College Chi-Square Test 269

LIST OF FIGURES

Figure
Page

1. Model of Categories of Web 2.0 Business ... 40
2. The Conversation Prism from Reuben 2008.. 52

LIST OF CHARTS

Chart Page

1. Class Classification Frequencies 60
2. Gender Frequencies 61
3. Primary Program Frequencies 64
4. Program of Study Frequencies 64
5. Post on Friends' Walls/Statuses/Comments 71
6. Class Classification and Post on Friends' Walls/Statuses/Comments Crosstabulation 72
7. Gender and Post on Friends' Walls/Statuses/Comments Crosstabulation 73
8. Program of Study and Post on Friends' Walls/Statuses/Comments Crosstabulation 75
9. Post on Fan Pages' Walls/Statuses/Comments. 77
10. Class Classification and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation 78
11. Gender and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation 80
12. Program of Study and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation 82
13. Like Friends' Posts/Statuses/Comments 84
14. Class Classification and Like Friends' Walls/Statuses/Comments Crosstabulation 85
15. Gender and Like Friends’ Walls/Statuses/Comments Crosstabulation 87
16. Program of Study and Like Friends' Walls/Statuses/Comments Crosstabulation 88
17. Like Fan Pages' Posts/Statuses/Comments 90
18. Class Classification and Like Fan Pages' Posts/Statuses/Comments Crosstabulation 91
19. Gender and Like Fan Pages' Posts/Statuses/Comments Crosstabulation 93
20. Program of Study and Like Fan Pages' Posts/Statuses/Comments Crosstabulation 94
21. Post Pictures 96
Chart Page
22. Class Classification and Post Pictures Crosstabulation 97
23. Gender and Post Pictures Crosstabulation 98
24. Program of Study and Post Pictures Crosstabulation 100
25. Create Events 102
26. Class Classification and Create Events Crosstabulation 103
27. Gender and Create Events Crosstabulation 104
28. Program of Study and Create Events Crosstabulation 106
29. Send Messages through the Inbox 108
30. Class Classification and Send Messages through the Inbox Crosstabulation 109
31. Gender and Send Messages through the Inbox Crosstabulation 110
32. Program of Study and Send Messages through the Inbox Crosstabulation 112
33. Sell/Buy Items on Marketplace 113
34. Class Classification Sell/Buy Items on Marketplace Crosstabulation 114
35. Gender and Sell/Buy Items on Marketplace Crosstabulation 116
36. Program of Study and Sell/Buy Items on Marketplace Crosstabulation 117
37. Play Games (Farmville, Mob Wars, Scrabble, etc.) 119
38. Class Classification and Play Games (Farmville, Mob Wars, Scrabble, etc.)
Crosstabulation 120
39. Gender and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation 122
40. Program of Study and Play Games (Farmville, Mob Wars, Scrabble, etc.)
Crosstabulation 123
41. Use Applications (Bumper Stickers, Graffiti, etc.) 125
Chart Page
42. Class Classification and Use Applications (Bumper Stickers, Graffiti, etc.)
Crosstabulation 126
43. Gender and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation 127
44. Program of Study and Use Applications (Bumper Stickers, Graffiti, etc.)
Crosstabulation 129
45. Search for People 130
46. Class Classification and Search for People Crosstabulation. 131
47. Gender and Search for People Crosstabulation 133
48. Program of Study and Search for People Crosstabulation 134
49. Search for Companies/Organizations 136
50. Class Classification and Search for Companies/Organizations Crosstabulation 137
51. Gender and Search for Companies/Organizations Crosstabulation 139
52. Program of Study and Search for Companies/Organizations Crosstabulation 140
53. View Tips Posted by Instructors on Course Work. 143
54. Class Classification and View Tips Posted by Instructors on Course Work Crosstabulation 144
55. Gender and View Tips Posted by Instructors on Course Work Crosstabulation 145
56. Program of Study and View Tips Posted by Instructors on Course Work
Crosstabulation 147
57. Upload and View Group Project Documents/Files 149
58. Class Classification and Upload and View Group Project Documents/Files Crosstabulation 150
Chart Page
59. Gender and Upload and View Group Project Documents/Files Crosstabulation 152
60. Program of Study and Upload and View Group Project Documents/Files Crosstabulation 153
61. Communicate with Group Project Members via Real-Time Chat 155
62. Class Classification and Communicate with Group Project Members via Real-Time Chat Crosstabulation 156
63. Gender and Communicate with Group Project Members via Real-Time Chat
Crosstabulation 158
64. Program of Study and Communicate with Group Project Members via Real-Time Chat Crosstabulation 159
65. Communicate with Instructors and Ask Questions 161
66. Class Classification and Communicate with Instructors and Ask Questions Crosstabulation 162
67. Gender and Communicate with Instructors and Ask Questions Crosstabulation 164
68. Program of Study and Communicate with Instructors and Ask Questions
Crosstabulation 165
69. Communicate with Classmates and Ask Questions 167
70. Class Classification and Communicate with Classmates and Ask Questions Crosstabulation 168
71. Gender and Communicate with Classmates and Ask Questions Crosstabulation 170
72. Program of Study and Communicate with Classmates and Ask Questions
Crosstabulation 171
Chart Page
73. Meet New Incoming Students within Major 173
74. Class Classification and Meet New Incoming Students within Major Crosstabulation 174
75. Gender and Meet New Incoming Students within Major Crosstabulation 176
76. Program of Study and Meet New Incoming Students within Major Crosstabulation 177
77. Communicate with Department Graduates 179
78. Class Classification and Communicate with Department Graduates Crosstabulation 180
79. Gender and Communicate with Department Graduates Crosstabulation 182
80. Program of Study and Communicate with Department Graduates Crosstabulation 183
81. Sell Books Online Between Students in Department 185
82. Class Classification and Sell Books Online Between Students in Department Crosstabulation 186
83. Gender and Sell Books Online Between Students in Department Crosstabulation 188
84. Program of Study and Sell Books Online Between Students in Department
Crosstabulation 189
85. Learn about Elective or Special Courses within Your Major 191
86. Class Classification and Learn about Elective or Special Courses within Your Major Crosstabulation 192
87. Gender and Learn about Elective or Special Courses within Your Major Crosstabulation 194
88. Program of Study and Learn about Elective or Special Courses within Your Major Crosstabulation 195
89. Learn About Courses Offered from Instructors 197
90. Class Classification and Learn About Courses Offered from Instructors Crosstabulation 198
Chart Page
91. Gender and Learn About Courses Offered from Instructors Crosstabulation 200
92. Program of Study and Learn About Courses Offered from Instructors Crosstabulation 201
93. Learn About Courses Offered From Previous Students 203
94. Class Classification and Learn About Courses Offered From Previous Students Crosstabulation 204
95. Gender and Learn About Courses Offered From Previous Students Crosstabulation 206
96. Program of Study and Learn About Courses Offered From Previous Students
Crosstabulation 207
97. Anonymously Post Feedback on the Course 209
98. Class Classification and Anonymously Post Feedback on the Course Crosstabulation 210
99. Gender and Anonymously Post Feedback on the Course Crosstabulation 212
100. Program of Study and Anonymously Post Feedback on the Course Crosstabulation 213
101. Learn of Special Campus Speakers or Activities within Your Major 215
102. Class Classification and Learn of Special Campus Speakers or Activities within Your Major
Crosstabulation 216
103. Gender and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation 218
104. Program of Study and Learn of Special Campus Speakers or Activities within Your Major
Crosstabulation 219
105. Find Out What Social Activities Your Classmates Are Doing 221
106. Class Classification and Find Out What Social Activities Your Classmates Are Doing
Crosstabulation 222
Chart Page
107. Gender and Find Out What Social Activities Your Classmates Are Doing
Crosstabulation 224
108. Program of Study and Find Out What Social Activities Your Classmates Are Doing Crosstabulation 225
109. Find Information on Academic Organizations within Your Department. 227
110. Class Classification and Find Information on Academic Organizations within Your Department 228
111. Gender and Find Information on Academic Organizations within Your Department Crosstabulation 230
112. Program of Study and Find Information on Academic Organizations within Your Department 231
113. Find an Internship/Job with Your Expected Degree 233
114. Class Classification and Find an Internship/Job with Your Expected Degree Crosstabulation 234
115. Gender and Find an Internship/Job with Your Expected Degree Crosstabulation. 236
116. Program of Study and Find an Internship/Job with Your Expected Degree
Crosstabulation 237
117. Get Information of College Events/Workshops/Career Fairs Class Classification. 240
118. Class Classification and Get Information of College Events/Workshops/Career Fairs Crosstabulation 241
119. Gender and Get Information of College Events/Workshops/Career Fairs
Crosstabulation 243
Chart Page
120. Program of Study and Get Information of College Events/Workshops/Career Fairs Crosstabulation 244
121. Receive Free Merchandise from the College 246
122. Class Classification and Receive Free Merchandise from the College Crosstabulation 247
123. Gender and Receive Free Merchandise from the College Crosstabulation 249
124. Program of Study and Receive Free Merchandise from the College Crosstabulation 250
125. Interact with College or University Administrators (Deans, Vice Presidents, etc.) 252
126. Class classification and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation 253
127. Gender and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation 255
128. Program of Study and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation 256
129. Find Information about Student Organizations 258
130. Class Classification and Find Information about Student Organizations Crosstabulation 259
131. Gender and Find Information about Student Organizations Crosstabulation 261
132. Program of Study and Find Information about Student Organizations Crosstabulation 262
133. Find Scholarships Offered by the College 264
134. Class Classification and Find Scholarships Offered by the College Crosstabulation 265
135. Gender and Find Scholarships Offered by the College Crosstabulation 267
136. Program of Study and Find Scholarships Offered by the College Crosstabulation 268

CHAPTER 1

INTRODUCTION

The popularity of the Internet among members of the Millennial Generation-those with birth dates from the late 1970s to the late 1990s-has produced an emphasis on social media networks as tools for marketing and promoting communication. In 2008, the Pew Research Center for the People and the Press reported, "Two-thirds of Americans age 18-29 say they use social networking sites. Nearly one-in-ten of people under age 30 say that they have signed up as a 'friend' of one of the [presidential] candidates on a [Web] site" (Kohut et al. 2008). More than 40% of respondents ages 18 to 29 reported getting campaign information from the Internet, the highest of any news source with Facebook and MySpace being the most used sites. This figure was more than doubled from the January 2004 results (Kohut et al. 2008). Some of the most popular of the current social networking tools are blogs, wikis, and mashups.

Blogs allow users to share interests, ideas, thoughts, and comments on various topics, including a business's products and services, as witnessed by the use of company-sponsored blogs to engage in discussions with customers and the general public (O'Reilly 2005). Blogs can be linked to other blogs and websites, creating a social media network. As a part of social networking, blogs commonly provide summaries and update notices to subscribers using really simple syndication (RSS) feeds. O'Reilly described RSS as "being used to push not just notices of new blog entries, but also all kinds of data updates, including stock quotes, weather data, and photo availability" (O'Reilly 2005).

Wikis, as defined by Murugesan, are "simple yet powerful Web-based collaborative authoring (or content management) system[s] for creating and editing content" (Murugesan 2007). One well-known example of a wiki is Wikipedia, a free user-generated online encyclopedia that anyone can edit. Wikis feature simple interfaces, support for multiple users,
built-in search forms, and simple read/write mark-up languages. They offer centralized content, higher communication efficiency, version tracking, and diverse collaboration (Murugesan 2007).

Mashups are a grouping of content and functionalities from various sites brought together to create a new technology or application. Murugesan describes a mashup as "a Web page or Web site that combines information and services from multiple sources on the Web. It's easier and quicker to create a mashup than to code an application from scratch in a traditional way" (Murugesan 2007). Examples of mashup-based social media networks include Facebook, Flickr, and Twitter.

Mashups are generated using specially tailored application programming interfaces (APIs). APIs for mashups are designed to promote interactive data exchange between programs in ways that allow non-programmers to develop applications and Web sites. Enterprises and higher education institutions are using mashups to customize Web applications to fit their employees' and consumers' needs. Murugesan mentions the use of mashups by enterprises "to collect information from different sources and combine it in intelligent ways to help people make smarter decisions" (Murugesan 2007).

Facebook, created by Harvard student Mark Zuckerberg in 2004, is an online network that allows people to stay in contact with other people. It was originally created for college student interaction, and later opened to anyone over thirteen. Flickr, an online photo site, allows users to upload photos and organize them into collections and albums. Twitter, a micro-blogging messaging site, started March of 2006 (Reuben 2008). Twitter is unique as respondents are allowed to publish updates of 140 characters or less (Tweets) which are broadcasted to all of their followers.

Web 2.0 Defined

Tools that promote Internet-based user collaboration, social interaction, and rich user interface engagement are a major element of what various authors refer to as Web 2.0. Web 2.0 is described by San Murugesan, journalist for IT Professional, as "the wisdom Web, peoplecentric Web, participative Web, and read/write Web. It's a collection of technologies, business strategies, and social trends" (Murugesan 2007). Social applications like Blogger, Wikipedia, Facebook, YouTube, and Flickr have driven the growth of Web 2.0. At the end of September 2009, almost ninety million citations appeared in a Google search for the term "Web 2.0." That was an eighty million jump from Tim O'Reilly's 2005 article, "What is Web 2.0" (O'Reilly 2005). During the 2008 presidential elections, PEW Research reported that " 42% of those ages 18-29 say they regularly learn about the campaign from the Internet, the highest percentage for any news source." This number was more than twice of that from the January 2004 report (Kohut, et al. 2008).

In Web 2.0, blogging has expanded beyond online journaling to include videos, links, photos, color themes, and audio files. Murugesan defines a blog as "a powerful two-way Webbased communication tool" (Murugesan 2007).

Wikis allow users to collaborate and edit content in a simple Web-based system. Concerns like copyrights, privacy, and security issues limit corporate use of wikis. However, the use of wikis is increasing in higher education learning environments. As Mathieu Plourde, Instructional Designer, in Wikis in Higher Education, states, "in order to promote deeper student learning and leverage technology for teaching and learning, it is now more than ever time to start rolling out read/write web technologies (also called web 2.0)" (Plourde 2008).

A 2008 study by Shang et al., characterized how Web 2.0 Web sites use applications to support service delivery (Shang, Wu and Hou 2009). Shang et al. identified 17 services offered by 1042 sites, including chatting, e-mailing, bookmarking, blogging, social networking, and working with wikis. These applications were classified as exchangers, aggregators, organizers, liberators, and collaborators based on user involvement, promotion of knowledge management, production costs, ongoing improvements, and profits (see Figure 1).

Figure 1: Model of Categories of Web 2.0 Business

Exchanger services support information exchange between users via peer-to-peer online communication. These services include social networks such as Facebook and chatting technologies like MSN Messenger. Businesses wanting to increase user population are encouraged to adopt an exchanger business model (Shang, Wu, and Hou 2009).

Aggregator services "share information and knowledge in a single space that is easily accessible over the Internet" (Shang, Wu, and Hou 2009). Blogger, Twitter, and iTunes can be categorized as aggregators. Aggregator sites create more user interaction with the ability to upload any information.

Organizer services organize information in ways that make that information easier to understand. Sites like Wikipedia and Answer.com are examples of organizer services. Organizer services allow users to post questions and replies. They organize and store this information often large amounts of data-and usually support searches of content. Wikis also support indicators of the information's reliability and accountability (Shang, Wu, and Hou 2009).

Liberator services (e.g. Linux and WordPress) are open-source communities that are customizable to meet user needs. Liberator sites allow users to share their experiences with various applications. Revised versions of applications as well as new applications can be uploaded through the open-source community. Information technology knowledge is necessary with liberator users because of the work with application revisions (Shang, Wu, and Hou 2009).

Collaborator services join applications into one Web site. Yahoo Widget is an example of a collaborator service. Sharing, adopting, and creating new collaborator applications also require some expertise in information technology. Standardizing collaborator services' frameworks to share with other applications differentiates these services from liberators (Shang, Wu, and Hou 2009).

CHAPTER 2

ENTERPRISE SOCIAL MEDIA

Visibility and Feedback

In "Effects of Feedback and Peer Pressure on Contributions to Enterprise Social Media," Brzozowski, Sandholm, and Hogg describe an experiment that assesses how visibility and feedback affect employee contributions to social media (Brzozowski, Sandholm, and Hogg 2009). The experiment, which was conducted at Hewlett-Packard Laboratories between February 2006 and December 2008, was designed to test two hypotheses: "1) Visible feedback encourages employees to continue contributing to social media. 2) Visible activity from managers and coworkers motivates employees' contributions to social media" (Brzozowski, Sandholm, and Hogg 2009).

The authors divided social media services into venues, according to the type of content shared and effort required to affect a post. Interviews and observations were used to determine employees' participation in these venues. Time series analyses were then used to determine factors that affected participation and to elicit suggestions for future social software design.

The authors tested their first hypothesis by assessing how hidden and visible impact factors affect employee contributions to social media. Hidden factors include a post's hit count (total readership) and the origins of that post's hits (clicks). Visible factors include a post's comments and authors. Brzozowski and his colleagues tabulated clicks and comments by author and document, identifying and authenticating users by comparing unique employee IDs, locations, and organization units to the employee database. The researchers found that "comments have a greater effect than clicks when determining future document contribution, which was confirmed both on a micro and on a macro scale" (Brzozowski, Sandholm, and Hogg
2009). This finding supports the first hypothesis, that visible feedback encourages employees to continue contributing to social media.

Brzozowski and his colleagues tested the second hypothesis by correlating managerial and coworker activity with employee contributions to social media. Activity was defined as posting within the previous 30 days of the current date. The authors found a positive correlation between managerial and employee activity. Managers with low activity have more inactive employees. Regular managerial feedback to employees encourages participation. The authors conclude that, "organizations seeking to reap the benefits of widespread social media usage should encourage managers to 'lead by example' or at least support the practice" (Brzozowski, Sandholm, and Hogg 2009).

Positive Financial Performance with Engagement

A July 2009 report by the Wetpaint Corporation, a Seattle company that designs and hosts social websites, and the Altimeter Group, a consulting firm for emerging technologies, measured the effectiveness of social media tactics by a company's involvement with social media channels (Wetpaint and Altimeter Group 2009). Wetpaint/Altimeter evaluated the depth of involvement in social media channels of the Top 100 brands, as identified by Business Week's "Best Global Brands 2008" publication. The study determined that a company's engagement rate, as determined by the count of Internet-based social media sites a company maintains and participates, positively affects a company's financial performance (Wetpaint and Altimeter Group 2009).

The Wetpaint/Altimeter report determined corporate financial performance by analyzing revenues, gross margins, and net margins from public information services such as Marketwatch and Yahoo! Finance. Businesses were compared against similar businesses in their industry. For
instance, Starbucks and Panera Bread were categorized as leisure businesses, while Dell, Microsoft, and BlackBerry were categorized as technology firms. The count of Internet-based social media sites a company creates and maintains a presence in determined that company's total score of involvement. Engagement rates were scored based on a company's number of posts and replies to consumers' comments and submitted posts on Internet-based social media sites. The report assigned higher engagement points to companies who monitor and converse with users than to those that used social tools created and maintained by third party affiliates or consumers. Engagement scores ranked from one hundred and twenty-seven points to one point.

The report also examined the social media strategies used by three of the study's top performers: Starbucks, SAP, and Toyota. The highest site count, 11 Internet-based social media sites, and the highest engagement scores based on posts and replies to customer posts were earned by Starbucks. According to Alexander Wheeler, Director of Digital Strategy, Starbucks focuses on, "the relationships we form with the customers, not marketing. We need to build our social strategy up with integrity so that we are not compromising the relationships with the customers" (Wetpaint and Altimeter Group 2009).

Starbucks varies its strategy for audience communication, according to a network's users and purpose. A Starbucks-maintained network, MyStarbucksIdea.com, allows consumers to submit, comment, and vote on their favorite ideas for Starbucks to implement. One innovation that emerged from MyStarbucksIdea.com was a mini-Starbucks card. Chuck Davidson, a corporate employee, developed the product after a customer suggested it in August 2008.

Starbucks also maintains a presence on Twitter and Facebook. Starbucks' Twitter pages offer a question and answer site that provides personalized customer attention. Starbucks' Facebook pages encourage the sharing of experiences from customers. Starbucks administers and
maintains these pages on behalf of these pages' third-party creators, in order to create consistent appearance and content for all Starbucks-related Facebook fan pages. Within a year, the Starbucks pages grew from 200,000 to 3.5 million fans (Wetpaint and Altimeter Group 2009).

According to Mark Yolton, Senior VP of the SAP Community Network (SCN), SAP's social media strategy, "reflect[s] an attitude of the company that values the opinions and viewpoints of the many different voices of customers and suppliers. If we can make our customers more successful, then they will buy more products and services" (Wetpaint and Altimeter Group 2009). SAP uses 35 employees to operate the SCN , which has 1.7 million users and features blogs, discussion forums, and wikis. Yolton comments, "Five thousand people have the keys to the blogging system on SCN. That's one way to scale-by involving the community very actively" (Wetpaint and Altimeter Group 2009).

SAP interacts with the enterprise community through a recognition program. Users earn points by maintaining blogs, responding to discussion questions, and adding content to wiki pages. SCN allows users to share comments, product information, and new ideas without the feeling of corporate control. SAP also supports the use of Twitter by its employees to listen and respond to customers' thoughts, thereby communicating the idea that SAP is a friendly company.

Toyota uses social channels to engage audiences interested in Toyota products.
According to Wetpaint/Altimeter, "Distinct target audiences can influence the appropriate level of social media engagement even within specified industries" (Wetpaint and Altimeter Group 2009). Instead of focusing solely on the Toyota company name, the company promoted the use of its products as the primary foci for social media sites. For instance, Toyota's Prius, a hybrid electric car, has a Priuschat.com website and YouTube, Twitter, and Facebook accounts to reach consumers interested in the Prius or hybrid cars. These social media sites are monitored by

Toyota corporate and target an audience interested specifically in hybrids. Priuschat.com is an independent blogging site that offers access, information, and support on Priuses.

Three members of Toyota's social networking team upload videos to YouTube, manage Toyota's Twitter account, and interact with consumers on Facebook's Prius and Lexus pages. Team members relay questions and comments from social media sites to the appropriate department for responses. Denise Morrissey, Online Community Manager, explains, "Together with our agency, we put together guidelines and best practices on customer engagement, then communicated and shared the responsibilities with the functional groups who could respond to, for example, environmental news" (Wetpaint and Altimeter Group 2009).

Wetpaint/Altimeter note that the Starbucks, SAP, and Toyota social networking teams engage their audiences by updating content, replying to comments, building a user network, and participating in discussion forums. Implementing these tactics across the organization increases a company's financial performance and productivity.

Industry Social Media Marketing

In "Social Media Marketing Industry Report," Stelzner presents the results of a January 2009 survey on businesses' use of social media sites (Stelzner 2009). The survey included questions about businesses' social media marketing time commitments, benefits derived from social media, and commonly used social media tools. It was announced with a Twitter "tweet" and e-mailed to 2500 marketers. After ten days, the survey closed with 880 responses with most being small business, female owners between the ages of 30 and 59 (Stelzner 2009).

Stelzner presented survey-takers with an open-ended question: "What question about marketing with social media do you most want answered?" (Stelzner 2009). Responses were categorized using criteria that were not made clear and questions were ranked, presumably,
based on the number of responses per question. "What are the best tactics to use?" was ranked as the number one question (Stelzner 2009). Marketers, Stelzner notes, want to know what social media methods are most successful, how to stand out from other companies in the same industry, and how social media can help build a brand and reinforce a company's creditability. The second ranked question, "How do I measure the effectiveness of social media?" focused on measuring success and return on investments (Stelzner 2009). "Where do I start?" the third ranked question, focused on how to incorporate social media into marketing efforts and which application to start with first (Stelzner 2009).

From the survey, Stelzner found " 64% of marketers are using social media for 5 hours or more each week and 39% for 10 or more hours weekly" (Stelzner 2009). Results suggested that businesses that use social media applications longer commit more time to online marketing. Businesses using social media marketing for a few months or longer logged 10-20+ hours a week on marketing compared to two hours per week for those just beginning. Perhaps surprisingly, "people ages 30 to 39 are most likely to be using social media marketing" (Stelzner 2009).

The survey concluded that the top reason, at 81 percent, to market in social media applications is to increase business exposure (Stelzner 2009). Increasing traffic to a site, establishing new business partnerships, increasing search rankings, and reducing overall marketing expenses were also named as benefits. Stelzner concluded that businesses heavily involved with social media marketing "report it generates exposure for their business and a significant 64.86% strongly agree" (Stelzner 2009). Businesses increasing exposure on social media sites also increased traffic to their business site. Overall marketing expenses were found to be minimal or none with time invested in social media marketing calculating the only financial
cost. "At least 2 in 3 respondents found that increased traffic occurred with as little as 6 hours a week invested" (Stelzner 2009).

The survey identified Twitter, Blogs, LinkedIn, and Facebook as the most commonly used social media tools. Other tools such as YouTube, social bookmarking, and forums fell far behind in comparison with only 41% of respondents using them compared to $77-86 \%$ of respondents for fourth-ranked Facebook (Stelzner 2009). Small businesses just getting started in social media ranked Twitter as the number one social media tool. Businesses involved with social media marketing for a few months to years also ranked Twitter as the number one tool followed by Facebook, Blogs, and LinkedIn. Ninety-nine percent of businesses spending more than twenty hours a week on social media marketing use Twitter. Stelzner found from this survey that businesses want to learn more about social bookmarking sites to invest with their current social media marketing (Stelzner 2009).

CHAPTER 3

HIGHER EDUCATION SOCIAL MEDIA

Marketing and Communicating

In "The Use of Social Media in Higher Education for Marketing and Communications: A Guide for Professionals in Higher Education," (2008) Rachel Reuben, Director of Web Communication and Strategic Projects at the State University of New York at New Paltz, describes common uses of social media in higher education. She based her analysis on a survey of 148 colleges and universities regarding their use of social media to reach target audiences. Reuben verified Facebook, YouTube, Flickr, and blogs as common social media tools used by higher education institutions (Reuben 2008).

In November 2007, Facebook initiated a fan page feature that allowed universities and companies to post material under their official business names on Facebook. Fan pages are similar to user profile pages except that they usually allow anyone to view the page. Profile pages feature wall posts, discussion boards, photo and video uploads, and status updates. By January 2008, 420 universities were using the fan page feature. More than half of the respondents in Reuben's survey maintained a Facebook page for their college or university with " 85% of students at four-year universities" having a Facebook profile (Reuben 2008). When someone becomes a site's fan, this shows on his or her personal profile as a link to that site's page. The subsequent displaying of these links to a user's Facebook friends acts as a viral marketing tool. Facebook, moreover, is free to colleges and universities and allows organizations to target specific networks or age groups. Reuben ranked Ohio State University's (OSU) Facebook site as one that exemplifies best practices for social media marketing (Reuben 2008).

OSU created its Facebook fan page in November 2007. In October 2009, this page had 47,460 fans ${ }^{1}$.

YouTube provides colleges and universities a free mechanism for sharing recruiting videos. First-year student prospects can be reached through YouTube videos. The need for burning DVDs and shipping costs are eliminated with the free video hosting provided by YouTube. Over half of Reuben's survey respondents reported an official presence on YouTube. The University of California, Berkeley, was described by Reuben as "one of the most wellknown channels and volume of subscribers on YouTube in higher education" (Reuben 2008). In August 2008, Reuben reported that the UC Berkeley channel had almost 2 million views. On October 20, 2009 this number had reached 2,570,028 channel views ${ }^{2}$. UC Berkeley also maintains YouTube profiles for events, campus life, and athletics with 147,919 views, 72,343 views, and 31,168 views respectively ${ }^{3}$.

Flickr allows colleges and universities to share photos of the campus atmosphere, classroom interactions, and student organizations. Anyone from students to staff can share photos on Flickr. The University of New Mexico (UNM) created a "'Flickr pool' where they encourage community members to create a Flickr account and to share their photos of their campus" (Reuben 2008). More than 90 members belong to the UNM Flickr group with 762 items posted ${ }^{4}$, more than double the 335 images reported by Reuben in 2008.

Blogs are used by colleges' and universities' current students. More than 60% of the survey's respondents reported some use of blogs on their site. Students use blogs to discuss their lives on campus. Admissions officers use student blogs and administrator created blogs as

[^0]recruiting tools. Butler University's blogs and forums generate $30-40 \%$ of their external Web site traffic in one month (Reuben 2008). Butler started with 10 bloggers in 2007-2008; as of October 2009 there are twelve. Eight of these twelve are student bloggers, one is a guest blogger, another is the school mascot, and two are admission counselors.

Colleges and universities use Twitter as a chat service with potential and current students. Twitter is used to increase awareness of campus events and provide feedback to student questions. In Reuben's research, OSU had not yet implemented a Twitter profile (Reuben 2008). A search for Ohio State University resulted in a Twitter "OhioState" profile with more than 2,100 followers and 523 tweets 5.

Delicious.com is a social bookmarking tool used by colleges and universities to share bookmarks with other users and friends online. Tags are used to organize bookmarks into groups. Colleges and universities use social bookmarking to "bookmark news articles about their university throughout the Web to share with their audiences" (Reuben 2008). Searching Ohio State University resulted in 1,843 bookmarks on delicious.com ${ }^{6}$.

[^1]

Figure 2: The Conversation Prism (Reuben 2008)
Reuben's analysis relies, in part, on Solis's "Conversation Prism" (above in Figure 2).
This prism is a visual representation of many social media tools and categories for organizing them. Reuben (2008) uses this tool to describe how social networking communities are being used by colleges and universities.

Classroom Collaboration Using Wikis

In "Wikis in Higher Education," Mathieu Plourde (2008) discusses uses of wikis in higher education. According to Plourde, wikis can provide ways for groups to brainstorm, share documents and links online, and support meetings and collective writing.

Wikis can be valuable tools for collaborating traditional classrooms with the Internet. Some students currently use sites such as Wikipedia as a starting point for research. Most students use Wikipedia as a guide for collecting verified resources since Wikipedia content is written in an open-source community. Open textbooks like Curriki.org offer textbooks to reduce costs. Wikibooks offers a collection of children books. The California Open Source Textbook Project collaborates with Wikibooks to offer open source K-12 textbooks. The Global Text Project wiki focuses on providing access to textbooks for universities in developing countries. Eportfolios create a venue for students to post work online for viewing by students and instructors.

Plourde (2008) recommends David Foord's STOLEN (Specific, Timing, Ownership, Localized, Engagement, and Navigation) principle as a best practice for developing educational wikis. Developers should use wikis to address a specific objective that can be understood by all users; determine a lifetime for the wiki as a function of a learning exercise; make each user feel like an owner; create a localized structure and editable starting points for what is expected for the class wiki; set engagement rules from the beginning to identify editors and acceptable use; and provide navigation for the wiki.

Plourde (2008) surveyed users of the University of Delaware's open-source wiki service, Sakai, to determine how they used wikis in teaching. A communication instructor used the tool to familiarize students with working in groups to prepare them for the real world. A computer and information sciences instructor used Sakai to demonstrate ethical issues in computer science and allow students to create their own glossary of terms and student handbook. Language departments used the tool to enhance group work for preparing presentations, creating textbooks, and collaborating research documents. A mathematics instructor used the wiki to provide an area outside the classroom to work on problems. An accounting and MIS instructor used Sakai to
support debates and question and answer discussions from clients. By providing a wiki environment, the instructor can be involved to keep track of group and individual process. Plourde wrote that "wikis are transparent; not only do they show the final product, they reveal the entire creative process" (Plourde 2008).

Using wikis for instructional purposes can fail if there is no thought process behind the wiki. There is no "best practice" for wikis in general. The use of wikis in higher education will differ depending on an instructor's teaching style and course objectives. The most important issues to address before using a wiki in teaching are permission and copyright issues. To address permission issues, Plourde (2008) suggested determining whether a public, web-wiki or private, login-protected wiki would best suit an instructor's purpose. A public wiki will be available to anyone on the web. Copyright issues can be addressed by having students sign a contract that states that they are aware that content is protected by copyright rules that limit its reuse. Creating wiki templates and charters (course syllabus) before users begin using the tool can enhance the use of wikis.

CHAPTER 4

FUTURE OF SOCIAL MEDIA

With more than 200 million users on Facebook and a 3,000 percent increase of users on Twitter, people with a technical perspective are speculating about a possible social media crash (Chartier 2009). Others in the communications industry may envision new strategies for structuring social media.

David Chartier (2009) compared social media now to American Online (AOL) when it "exploded." He wrote that consumers joined AOL because it was new but then eventually quit using it because the excitement faded. Chartier sees a need to create social media networks that allow for sharing activities across multiple services, like Facebook Connect. Facebook Connect is a set of APIs that increases consumer social engagement by connecting specific content to users and their friends on Facebook. Leo Laporte, distinguished social media researcher, stated, "People are pouring all this content and value into individual sites, but they aren't going to want to keep dealing with Facebook, Twitter, and FriendFeed or whatever is next" (Chartier 2009).

Jason Falls, president of the Social Media Club Louisville, predicts that government policies will change regarding the gathering of real-time data and input on bills, policies, and collective intelligence (Falls 2008). Falls suggests that all technologies will become mobile, in that smart phones will become hard drives and computers will no longer be distinct devices. Falls also predicts a social media backlash: "There will be a day when people all around the world look up from their smart phones, their laptops and their Twitters and realize it's been weeks since they've spoken to another human being, live and in person" (Falls 2008). Falls also predicts a decline in quality of the education system. Young people will be more connected but there will be a lack in communication skills (Falls 2008).

Mike Laurie, Digital Planner for the United Kingdom Integrated Agency, predicted that in ten years the Web will be smarter through the use of artificial intelligence, OpenID, and Radio Frequency Identification (RFID) tags (Falls 2008). Laurie defines OpenID as "an open authentication protocol that lets users use a single set of login credentials for every site they visit" (Laurie 2009). Biometric Face Recognition (BFR) is another technology defined by Laurie that would fit into Falls' prediction of a smarter Web. BFR is a way to identify people and connect their faces to social networks or online databases (Laurie 2009).

Other technologies that Laurie predicts will change social media are Natural Language Processing (NLP) and mind reading techniques. NLP programs like Firefox's Ubiquity use natural language commands to analyze web activity and suggest items for a user to partake. Mind reading technologies will shape future media by reading thoughts and putting them onto social media networks (Laurie 2009).

CHAPTER 5

RESEARCH PLAN

Research Purpose

Universities and colleges are creating social media profiles to reach new prospects and to stay in contact with current students and alumni. A survey on current social media tactics and their perceived effectiveness was conducted to find what content and practices motivate university students to join and participate in social networking.

As a preliminary part of this study, two universities/colleges were chosen from each state in the U.S. Each school's website was searched for links from its home page and its prospective student page to any social media site presence operated by the university. Those social media links were visited and the number of accounts (i.e. university administration, university housing, university athletics, etc.) connected to each social media tool were tallied and compared to other schools. Additionally, the different types of social media tactics (i.e. using custom applications in Facebook, offering free merchandise through Twitter, and etc.) were noted (Appendices B-E). This information was used as background to assist in the development of questions to be asked of university students with the purpose of finding out how college students are currently using social media tools and what can be learned from their use of social media.

Methodology

A printed survey was developed to be given to members of the target audience. This Social Media Survey (Appendix A) asks research respondents about their use of features in social media networking websites. This survey consists of a variety of social media questions and could be given to any member of the target audience.

The Social Media Survey contains forty-one questions about the respondents' current social media uses and preferences for future social media developments. Three questions pertain to what social media tools respondents currently have an account with, what would persuade them to join a social media site, and what is their level of usage. Twelve questions ask the frequency of usage of features in the social media network Facebook. Participants are asked about their potential use of features if made available in a new social media tool for higher education.

Target Audience

College students were selected as the target audience for this research with the main concentration on first-year undergraduate students. Social media networks have become influential factors in how students communicate, with 94 percent spending time on social networking websites in a typical week (Higher Education Research Institute 2007). First-year (freshmen) level students were chosen as the main target audience because of their easy access and position to offer unique, relevant insight into the research. The research was to be conducted at East Tennessee State University, and twenty-eight percent of the undergraduate population at ETSU is first-year students (East Tennessee State University 2009).

Social media websites were selected for study since the number of teens and adults using social networking websites have grown rapidly over the last several years (Lenhart et al. 2010). In the last decade, young adults have remained the most likely to go online. Facebook is the most common used social media website used regardless of age and gender (Lenhart et al. 2010). To draw comparisons, Facebook was chosen to represent all social media networks because of its multiple tools that could be successful in an environment specifically for higher education.

Participants

Twelve courses from East Tennessee State University were invited to participate in this research project in the fall of 2010. Courses offered in the fall that were easily accessible based on the researcher's schedule and instructors' willingness to take a few minutes out of class for the survey were selected. These courses included a freshmen-level computer skills course required of all students, upper-level courses in the computer and information sciences department, and an advertising course. Additionally, the survey was administered to students attending a non-academic student organization meeting.

Specifically, five computer skills courses were chosen. These courses primarily enroll freshmen students. Most of these courses had thirty students enrolled. Computer science courses were easily accessible due to the researcher's program of study. Six upper level courses were chosen to gather data from upperclassmen. A course was chosen in the mass communication department to offer a variety of responses, note any differences based upon program of study, and to offer a range in data based on gender as the computer science courses were expected to be highly populated with male students. This course enrolled approximately 100 students. The Student Government Association, with about forty students was also surveyed because of their easy accessibility and representation of all student classifications and program of studies.

In the event the same student was enrolled in more than one studied class, all students were asked to complete just one survey form. Survey forms were anonymous. A copy of the survey form can be seen in Appendix A.

Class Classification

The Social Media Survey form was completed by 366 undergraduate and 28 graduate college students with six survey respondents opting out of answering the class classification demographic section.

Table 1: Class Classification Frequencies

Table 1: Class Classification Frequencies						
					Cumulative Percent	
Valid	Freshman	116	29.0	29.4	29.4	
	Sophomore	63	15.8	16.0	45.4	
	Junior	73	18.3	18.5	64.0	
	Senior	114	28.5	28.9	92.9	
	Masters	28	7.0	7.1	100.0	
	Total	394	98.5	100.0		
Missing	No response	6	1.5			
Total	400	100.0				

Chart 1: Class Classification Frequencies

As noted in Table 1, graduate master students represent 7 percent of the study audience. Graduate master students represent approximately 10 percent of the current ETSU student body (East Tennessee State University 2009). The figure represented in the data has 3 percent fewer graduate master students than the student body population.

Gender

As noted previously, courses outside of the Computer Science department were chosen to offer a comparison of males and females (as the Computer Science department was observed to have a high predominantly male population).

Table 2: Gender Frequencies

				Cumulative Percent	
Valid	Female	161	40.3	40.6	40.6
	Male	236	59.0	59.4	100.0
	Total	397	99.3	100.0	
Missing	No response	3	.8		
Total		400	100.0		

Gender

Chart 2: Gender Frequencies

As noted in Table 2, female students represent 40 percent of the study audience. As female students represent about 56 percent of the ETSU student body (East Tennessee State University 2009), this figure is lower than the overall student body population.

Program of Study

Table 3 and Chart 4 lists the programs of study specified by the respondents. In the data analysis these programs will be reduced to three groupings: CSCI, Communications, and Other.

As noted in Table 3, Computer Science students represent 35 percent of the study audience. As computer science students represent about 2.60 percent of the ETSU student body (East Tennessee State University 2009), this figure is considerably higher than the representative of the student body population. Communication students represented about 19 percent of the study audience which is higher than the 3.31 percent of the student body population. Chart 4 , shows the frequency of the three newly formed groups for data analysis.

Table 3: Primary Program Frequencies

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	CSCI	140	35.0	36.2	36.2
	Communications	75	18.8	19.4	55.6
	History	9	2.3	2.3	57.9
	English	6	1.5	1.6	59.4
	Nursing	14	3.5	3.6	63.0
	Criminal Justice	5	1.3	1.3	64.3
	Philosophy	3	. 8	. 8	65.1
	Digital Media	8	2.0	2.1	67.2
	Political Science	8	2.0	2.1	69.3
	Chemistry	3	. 8	. 8	70.0
	Anthropology	2	. 5	. 5	70.5
	Marketing \& Management	13	3.3	3.4	73.9
	Art	4	1.0	1.0	74.9
	Biology	14	3.5	3.6	78.6
	Social Work	7	1.8	1.8	80.4
	Psychology	8	2.0	2.1	82.4
	Education	7	1.8	1.8	84.2
	Public Health	8	2.0	2.1	86.3
	Exercise Science	9	2.3	2.3	88.6
	Music	5	1.3	1.3	89.9
	Pre-Med	3	. 8	. 8	90.7
	Surveying and Mapping	4	1.0	1.0	91.7
	Math	1	. 3	. 3	92.0
	Geology	1	. 3	. 3	92.2
	Engineering	3	. 8	. 8	93.0
	Military Science	1	. 3	. 3	93.3
	Foreign Language	1	. 3	. 3	93.5
	Interdisciplinary Studies	5	1.3	1.3	94.8
	Undecided	20	5.0	5.2	100.0
	Total	387	96.8	100.0	
Missing	No response	13	3.3		
Total		400	100.0		

Chart 3: Primary Program Frequencies

Chart 4: Program of Study Frequencies

Survey Collection, Coding, and Analysis

There were no survey administration problems nor were there any significant questions raised during or after that time. Survey forms were given to respondents and collected by the researcher. All submitted surveys were examined for completeness. Each survey was checked to see if there would be any reason to question the validity of the responses provided. Surveys with nonsensical responses, multiple responses marked where not warranted, or other survey completion problems would result in the survey being considered suspect. No returned survey forms were deemed suspect. Thirty-eight survey participants were unable to answer questions regarding Facebook because they did not have a Facebook account and were not calculated into the data analysis. Also, some survey questions were left unanswered and were calculated as "System Missing" in the data analysis software. These two issues are noted where necessary in the survey results section.

Survey response data was coded into SPSS Statistics 17.0 for data analysis and reporting. The results of the data analysis are presented in the following sections.

CHAPTER 6

ANALYSIS OF SOCIAL MEDIA SURVEY

The presentation of the analysis of the Social Media Survey will consist of four sections for each question followed by a discussion of the overall observations of the analysis at the end. The responses to each of the questions on the survey will be presented in the first section of the analysis. Where relevant, comparisons between answers for Facebook and a future social media development will be discussed, with an emphasis on determining if any significant difference between responses can be established statistically. In the event a statistical difference can be established, further examination of the difference between responses in the two environments will be explored in more detail.

In the second section of the analysis, a study of the relationship among class classifications (freshmen, sophomore, juniors, and seniors) will be explored. Statistical techniques will be used to determine which factors, if any, have a demonstrable relationship with the level of usage for social media networks.

In the third section of the analysis, a study of the relationship between male and female students will be explored. Again, statistical techniques will be used to determine which factors, if any, have a demonstrable relationship with the level of usage for social media networks.

In the fourth section of the analysis, a study of the relationship between computer science, advertising, and other concentrations will be explored. Please note that other concentrations were combined from the survey results for analysis. Statistical techniques will be used to determine which factors, if any, have a demonstrable relationship with the level of usage for social media networks.

Following these sections, a summary of the results and any implications noted will be discussed. Focus will be placed on items learned from the research that have applicability in social media design.

General Overview

Current Social Media Tool Accounts

The Pew Research Center survey on Generation Millennial found that three-quarters of its respondents had created a profile on a social networking site (Lenhart, et al. 2010). The first question of the survey asks respondents to select the social media tools they currently have an account with and rank their top five based on the level of usage with 1 being the most used. Of the 400 survey respondents, 90.5% currently have an account on Facebook. The second highest response was YouTube with 61.5% of survey respondents having an account. MySpace followed with 45.5% and Twitter at 27.5%. The frequency of responses is shown in Table 4.

Table 4: Social Media Tool Frequencies

		Responses	
	Yes	No	
Used Social Media Tools	Blog	58	342
	Facebook	362	38
	Google Buzz	27	373
	LinkedIn	33	367
	MySpace	182	218
	Podcasts	26	374
	Twitter	110	290
	YouTube	246	154
	Wikis	24	376
	Other	42	358
	None of these	22	378

Ranking of Current Social Media Tools

Based on the previous results, Facebook is the number one used social media tool among this population. Following are YouTube, MySpace, and Twitter. An overwhelming majority ranked Facebook as the number one most used social media tool out of the social media tools they currently have an account with. The frequency of responses is shown in Table 5.

Table 5: First Rank Frequencies

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Blog	2	. 5	. 5	. 5
	Facebook	314	78.5	78.5	79.0
	Google Buzz	1	. 3	. 3	79.3
	LinkedIn	3	. 8	. 8	80.0
	MySpace	10	2.5	2.5	82.5
	Podcasts	2	. 5	. 5	83.0
	Twitter	6	1.5	1.5	84.5
	YouTube	31	7.8	7.8	92.3
	Wikis	3	. 8	. 8	93.0
	Other	5	1.3	1.3	94.3
	Not Applicable	23	5.8	5.8	100.0
	Total	400	100.0	100.0	

Instead of submitted second rank, third rank, fourth rank, and fifth rank, the results were combined to show the number of responses and percent of cases. Note that Facebook is listed as the highest ranking. Following next is YouTube, then MySpace, and Twitter (see Table 6). Interestingly, the second through fifth ranked social media tools are not close to the rankings of Facebook.

Table 6: Ranking of Social Media Tools

		Responses		Percent of Cases
		Number	Percent	
Ranking of Social Media Usage	Blog	51	4.7\%	13.5\%
	Facebook	362	33.4\%	96.0\%
	Google Buzz	22	2.0\%	5.8\%
	LinkedIn	33	3.0\%	8.8\%
	MySpace	176	16.2\%	46.7\%
	Podcasts	22	2.0\%	5.8\%
	Twitter	110	10.1\%	29.2\%
	YouTube	244	22.5\%	64.7\%
	Wikis	22	2.0\%	5.8\%
	Other	42	3.9\%	11.1\%
Total		1084	100.0\%	287.5\%

Method of Joining a Social Media Site

What would lead a student to join a social media site sponsored by a university? If a university wishes to increase membership of its social media networks, then university officials in charge of maintaining social media outlets need to know the best way to advertise its presence in social media to students. In the Social Media Survey, respondents were asked to select the options they would use to join a social media site that is approved by their University (see Table 7). Survey respondents unexpectedly rated the option of their likelihood of joining a social media site from advisor, professor, and student invites the highest.

Table 7: Method of Joining a Social Media Site

		Responses	
	Yes	No	
Method of Joining a	Invite from a department advisor/professor	215	185
Social Media Site	Invite from a fellow student	285	115
	School homepage (www.etsu.edu)	122	278
	Department page (www.cs.etsu.edu)	99	301
	Posters, signs, orientation booklets	102	298
	Other	14	386

Facebook Questions

The following questions asked the respondents to rate their frequency of use of commonly known Facebook features. Facebook was chosen as the main comparison to a new social media tool because it is currently the most commonly-used online social network (Lenhart et al. 2010). What features in Facebook could be used in a new social media tool for higher education and how do class classification, age, gender, and program of study factor into the surveyors' responses?

Q1: Post on Friends' Walls/Statuses/Comments

Participants were asked to rate their frequency of interaction on their friends' walls, statuses, and comments by postings using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "frequently posting on a friend's wall, status, or comments." Of the 400 survey respondents, 80.9% are interacting with friends' walls, statuses, and comments by posting to them. Only 9.5% responded to rarely or never posting to a friend's wall, status, or comment. The frequency of responses is shown below in Table 8 and illustrated in Chart 5 .

Table 8: Post on Friends' Walls/Statuses/Comments

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	141	35.3	35.3	35.3
	Often	83	20.8	20.8	56.1
	Sometimes	99	24.8	24.8	81.0
	Rarely	32	8.0	8.0	89.0
	Never	6	1.5	1.5	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	399	99.8	100.0	
Missing	No response	1	. 3		
Total		400	100.0		

Chart 5: Post on Friends' Walls/Statuses/Comments

Class Classification. Based on survey responses, are the responses for how frequently a student posts on a friend's wall, statuses, or comments statistically different based on class classification? The null hypothesis is that how often a student posts with friends is independent of class classification. The level of frequency with posting and class classification are independent variables. A table of results for a cross analysis is shown in Table 9 and illustrated in Chart 6.

Table 9: Class Classification and Post on Friends' Walls/Statuses/Comments Crosstabulation

		Post on friends' walls/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable*	
Class classification	Freshman	46	20	30	9	1	10	116
	Sophomore	23	18	12	2	1	7	63
	Junior	29	18	15	6	2	3	73
	Senior	31	24	34	10	1	13	113
	Masters	10	3	7	4	1	3	28
Total		139	83	98	31	6	36	393**

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and one did not answer the Facebook question.

Chart 6: Class Classification and Post on Friends' Walls/Statuses/Comments Crosstabulation
Table 10: Class Classification and Post on Friends' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.549^{a}		12
N of Valid Cases	332^{*}		

a. 5 cells (25.0%) have expected count less than 5 . The minimum expected count is .84 .
*For purposes of data analysis, "not applicable" was taken out for the Chi-Square test

A $\chi 2$ value of 21.03 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 10, $\chi 2(12, \mathrm{n}=332)=$ 11.549, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she posts on a friend's wall, statuses, or comments.

Gender. Based on survey responses, does a student's gender have a significant relationship with his or her evaluation of how often he or she posts on friends' walls, statuses, and comments? The null hypothesis is that how often a student posts with friends is independent of gender. The level of frequency with posting and gender are independent variables. It is interesting to note the differences in responses between female and males. The numbers of rarely posting are higher in the male category than the female category. A table of results for a cross analysis is shown in Table 11 and illustrated in Chart 7.

Table 11: Gender and Post on Friends' Walls/Statuses/Comments Crosstabulation

		Post on friends' walls/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	*Not applicable	
Gender	Female	74	35	33	6	1	12	161
	Male	66	48	65	26	5	25	235
Total		140	83	98	32	6	37	**396

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 7: Gender and Post on Friends' Walls/Statuses/Comments Crosstabulation

Table 12: Gender and Post on Friends' Walls/Statuses/Comments Chi-Square Test

Table 12: Gender and Post on Friends' Walls/Statuses/Comments Chi-Square Test			
Pearson Chi-Square	Value	df	Asymp. Sig. (2-sided)
N of Valid Cases	$18.272^{\text {a }}$		4

a. 2 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.49
b. For purposes of data analysis, "not applicable" were removed for the Chi-Square test.

A $\chi 2$ value of 7.81 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $12, \chi 2(3, n=359)=$ 18.272, the chi-square results are statistically significant. The null hypothesis is not rejected. A student's gender does affect how frequently he or she posts on a friend's wall, statuses, or comments with female students posting more frequently.

Program of Study. Based on survey responses, does a student's program of study have a significant relationship with his or her evaluation of how often he or she post and like on friends' walls, statuses, and comments? The null hypothesis is that how often a student posts with friends is independent of program of study. The level of frequency with posting and program of study are independent variables. The data for this question appears to be interestingly significant. Note that students that often use computers for their courses, CSCI majors, have a higher rate of rarely posting on a friend's wall, statuses, or comments. A table of results for a cross analysis is shown in Table 13 and illustrated in Chart 8.

Table 13: Program of Study and Post on Friends' Walls/Statuses/Comments Crosstabulation

		Post on friends' walls/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	*Not applicable	
Program of	Computer Science	47	21	37	18	4	13	140
Study	Communications	26	22	18	4	2	3	75
	Other	65	39	40	8	0	19	171
Total		138	82	95	30	6	35	**386

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the program of study question and one did not answer the Facebook question.

Bar Chart

Chart 8: Program of Study and Post on Friends' Walls/Statuses/Comments Crosstabulation

82Table 14: Program of study and Post on Friends' Walls/Statuses/Comments Chi-Square

Test						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	17.632^{a}		8			
N of Valid Cases	351					

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.23
b. For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 12.59 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 14, $\chi 2(6, n=351)=$ 17.632 , the chi-square results are statistically significant. The null hypothesis is not rejected. A student's program of study does affect how frequently he or she post on a friend's wall, statuses, or comments with those in other programs predominating.

Summary. A student's gender and program of study has an impact on how often he or she posts on friends' walls, statuses, and comments. Females interact more with friends on Facebook through their postings versus males. Students in computer science have a lower rate of interaction through posts on Facebook than students in other programs. Class classification did not have a significant impact on the respondent's activities.

Q2: Post on Fan Pages' Walls/Statuses/Comments

Participants were asked to rate their frequency of interaction on Fan Pages' walls, statuses, and comments by postings using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "rarely or never posting on a Fan Pages' wall, status, or comments." Of the 400 survey respondents, 63.2% are rarely or never posting to Fan Pages' walls, statuses, or comments. Only 9.8\% responded to often or frequently posting to Fan Pages' walls, statuses, or comments. The frequency of responses is shown below in Table 15 and illustrated in Chart 9.

Table 15: Post on Fan Pages' Walls/Statuses/Comments

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	18	4.5	4.5	4.5
	Often	21	5.3	5.3	9.8
	Sometimes	69	17.3	17.4	27.2
	Rarely	114	28.5	28.7	55.9
	Never	137	34.3	34.5	90.4
	Not applicable	38	9.5	9.6	100.0
	Total	397	99.3	100.0	
Missing	No response	3	. 8		
Total		400	100.0		

Chart 9: Post on Fan Pages' Walls/Statuses/Comments

Class Classification. Based on survey responses, are the responses for how frequently a student posts on a Fan Page's wall, statuses, or comments statistically different based on class classification? The null hypothesis is that how often a student posts with friends is independent of class classification. The level of frequency with posting and class classification are independent variables. A table of results for a cross analysis is shown in Table 16 and illustrated in Chart 10.

Table 16: Class Classification and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation

		Post on Fan Pages' walls/statuses/comments					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	8	3	19	32	43	105
	Sophomore	4	6	12	15	18	55
	Junior	2	7	11	23	27	70
	Senior	3	5	23	34	35	100
	Masters	1	0	4	8	12	25
Total		18	21	69	112	135	355**

** There is a discrepancy in totals because six surveyors did not answer the class classification question, three did not answer the Facebook question, and thirty-eight did not have a Facebook account.

Chart 10: Class Classification and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation

Table 17: Class Classification and Post on Fan Pages' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	11.549^{2}		12	
N of Valid Cases	332^{*}			

a. 5 cells (25.0%) have expected count less than 5 . The minimum expected count is .84 .
b. *For purposes of data analysis, "not applicable" were taken out for the Chi-Square test

A $\chi 2$ value of 21.03 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 17, $\chi 2(12, \mathrm{n}=332)=$ 11.549, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she posts on a friend's wall, statuses, or comments.

Gender. Based on survey responses, does a student's gender have a significant relationship with his or her evaluation of how often he or she posts on friends' walls, statuses, and comments? The null hypothesis is that how often a student posts with Fan Pages is independent of gender. The level of frequency with posting and gender are independent variables. It is interesting to note the differences in responses between female and males. The numbers of rarely posting are higher in the male category than the female category as was seen previously with posting on Friends' walls, statuses, and comments. A table of results for a cross analysis is shown in Table 18 and illustrated in Chart 11.

Table 18: Gender and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation

		Post on Fan Pages' walls/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	*Not applicable	
Gender	Female	10	6	30	44	57	12	159
	Male	8	15	39	69	79	25	235
Total		18	21	69	113	136	37	**394

[^2]
Bar Chart

Chart 11: Gender and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation

Table 19: Gender and Post on Fan Pages' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.329^{a}		4
N of Valid Cases	357		.504

a. $\quad 0$ cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.41 .
b. For purposes of data analysis, "not applicable" were removed for the Chi-Square test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 19, $\chi 2(4, n=357)=$ 3.329 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she posts on a Fan Page's wall, statuses, or comments.

Program of Study. Based on survey responses, does a student's program of study have a significant relationship with his or her evaluation of how often he or she posts on Fan Pages' walls, statuses, and comments? The null hypothesis is that how often a student posts with friends is independent of program of study. The level of frequency with posting and program of study are independent variables. Note that students that often use computers for their courses, CSCI majors, have a higher rate of rarely posting on a friend's wall, statuses, or comments. A table of results for a cross analysis is shown in Table 20 and illustrated in Chart 12.

Table 20: Program of Study and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation

		Post on Fan Pages' walls/statuses/comments						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	5	5	23	47	47	13	140
Study	Communications	3	3	24	19	22	3	74
	Other	10	12	20	45	64	19	170
Total		18	20	67	111	133	35	384

[^3]

Chart 12: Program of Study and Post on Fan Pages' Walls/Statuses/Comments Crosstabulation

Table 21: Program of Study and Post on Fan Pages' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	17.707^{a}		8	
N of Valid Cases	349			

a. 2 cells (13.3%) have expected count less than 5 . The minimum expected count is 3.66.
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 21, $\chi 2(8, n=349)=$ 17.707, the chi-square results are not statistically significant. The null hypothesis is not rejected.

A student's program of study does not affect how frequently he or she posts on a Fan Page's wall, statuses, or comments.

Summary. From this question, we learn that a student's gender has an impact on his or her answer for how often he or she posts on Fan Page walls, statuses, and comments. Females are interacting more with Fan Pages on Facebook through their postings versus males. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q3: Like Friends' Walls/Statuses/Comments

Participants were asked to rate their frequency of interaction by "liking" friends' walls, statuses, and comments using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "frequently or often liking friends' wall posts, statuses, or comments." Of the 400 survey respondents, 32.4% frequently like friends' walls, statuses, or comments. Only 4.5% responded to never "liking" friends' walls, statuses, or comments. The frequency of responses is shown below in Table 22 and illustrated in Chart 13.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	129	32.3	32.4	32.4
	Often	93	23.3	23.4	55.8
	Sometimes	69	17.3	17.3	73.1
	Rarely	51	12.8	12.8	85.9
	Never	18	4.5	4.5	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	398	99.5	100.0	
Missing	No response	2	. 5		
Total		400	100.0		

Like friends' posts/statuses/comments

Chart 13: Like Friends' Posts/Statuses/Comments

Class Classification. Based on survey responses, are the responses for how frequently a student likes a friend's wall, statuses, or comments statistically different based on class classification? The null hypothesis is that how often a student interacts with friends by "liking" wall posts, statues, or comments is independent of class classification. The level of frequency with "liking" and class classification are independent variables. A table of results for a cross analysis is shown in Table 23 and illustrated in Chart 14.

Table 23: Class Classification and Like Friends' Walls/Statuses/Comments Crosstabulation

		Like friends' posts/statuses/comments						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable*	Total
Class classification	Freshman	41	28	22	12	3	10	116
	Sophomore	22	17	7	5	4	7	62
	Junior	27	21	10	8	4	3	73
	Senior	32	23	21	19	5	13	113
	Masters	7	3	7	6	2	3	28
Total		129	92	67	50	18	36	392**

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and two did not answer the Facebook question.

Bar Chart

Chart 14: Class Classification and Like Friends' Walls/Statuses/Comments Crosstabulation

Table 24: Class Classification and Like Friends' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.522^{2}		16
N of Valid Cases	356		

a. 5 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.26 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $24, \chi 2(16, \mathrm{n}=356)=$ 15.522, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she likes a friend's wall, statuses, or comments.

Gender. Based on survey responses, does a student's gender have a significant relationship with his or her evaluation of how often he or she likes friends' walls, statuses, and comments? The null hypothesis is that how often a student interacts with friends by "liking" wall posts, statuses, and comments is independent of gender. The level of frequency with "liking" and gender are independent variables. It is interesting to note the differences in responses between female and males. The numbers of sometimes and rarely posting are higher in the male categories than the female categories. A table of results for a cross analysis is shown in Table 25 and illustrated in Chart 15.

Table 25: Gender and Like Friends' Walls/Statuses/Comments Crosstabulation

		Like friends' posts/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	72	40	18	15	4	12	161
	Male	57	52	50	36	14	25	234
Total		129	92	68	51	18	37	395

[^4]

Chart 15: Gender and Like Friends' Walls/Statuses/Comments Crosstabulation

Table 26: Gender and Like Friends' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	23.166^{a}		4
N of Valid Cases	358		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.49 .
b. *For purposes of data analysis, "not applicable" were removed for the Chi-Square test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 26, $\chi 2(4, n=358)=$ 23.166, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she likes a friend's wall, statuses, or comments.

Program of Study. Based on survey responses, does a student's program of study have a significant relationship with his or her evaluation of how often he or she likes a friend's walls, statuses, and comments? The null hypothesis is that how often a student interacts with friends by "liking" wall posts, statuses, and comments is independent of program of study. The data for this question appears to be interestingly significant. Note that other students have a higher rate of frequently "liking" a friend's wall, statuses, or comments. A table of results for a cross analysis is shown in Table 27 and illustrated in Chart 16.

Table 27: Program of Study and Like Friends' Walls/Statuses/Comments Crosstabulation

		Like friends' posts/statuses/comments						
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total	
Program of	Computer Science	39	28	29	23	8	13	140
Study	Communications	26	22	14	5	4	3	74
		61	42	22	21	6	19	171
Total	126	92	65	49	18	35	385	

[^5]

Chart 16: Program of Study and Like Friends' Walls/Statuses/Comments Crosstabulation

Table 28: Program of Study and Like Friends' Walls/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.730^{a}		8
N of Valid Cases	350		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 3.65 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 28, $\chi 2(8, n=350)=$ 10.730 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she likes a friend's wall posts, statuses, or comments.

Summary. From this question, we learn that a student's gender has an impact on his or her answer for how often he or she like friends' wall posts, statuses, and comments. Females are interacting more with friends' on Facebook through "liking" versus males. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q4: Like Fan Pages' Posts/Statuses/Comments

Participants were asked to rate their frequency of interaction by "liking" a Fan Page's wall posts, statuses, and comments using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "rarely or never liking Fan Pages' wall posts, statuses, or comments." Of the 400 survey respondents, 49.6% rarely or never like Fan Pages' walls posts, statuses, or comments. Only 10.6% responded to frequently "liking" Fan Pages' walls posts, statuses, or comments. The frequency of responses is shown below in Table 29 and illustrated in Chart 19.

Table 29: Like Fan Pages' Posts/Statuses/Comments

					Cumulative Percent
Valid	Frequently	Frequency	Percent	Valid Percent	
	Often	42	10.5	10.6	10.6
	Sometimes	42	10.5	10.6	21.2
	Rarely	78	19.5	19.6	40.8
	Never	99	24.8	24.9	65.7
	Not applicable	38	24.5	24.7	90.4
	Total	397	9.5	9.6	100.0
Missing	No response	3	.8	100.0	
Total	400	100.0			

Like Fan Pages' posts/statuses/comments

Chart 17: Like Fan Pages' Posts/Statuses/Comments

Class Classification. Based on survey responses, are the responses for how frequently a student likes a Fan Page's wall posts, statuses, or comments statistically different based on class classification? The null hypothesis is that how often a student interacts with Fan Pages by "liking" posts, statuses, or comments is independent of class classification. The level of frequency with "liking" and class classification are independent variables. A table of results for a cross analysis is shown in Table 30 and illustrated in Chart 18.

Table 30: Class Classification and Like Fan Pages' Posts/Statuses/Comments Crosstabulation

		Like Fan Pages' posts/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Class classification	Freshman	11	11	16	35	32	10	115
	Sophomore	11	7	14	13	11	7	63
	Junior	8	11	18	17	16	3	73
	Senior	10	11	25	27	26	13	112
	Masters	2	1	5	7	10	3	28
Total		42	41	78	99	95	36	391

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and three did not answer the Facebook question.

Chart 18: Class Classification and Like Fan Pages' Posts/Statuses/Comments Crosstabulation

Table 31: Class Classification and Like Fan Pages' Posts/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	14.989^{a}		16
N of Valid Cases	355		

a. 2 cells (8.0%) have expected count less than 5 . The minimum expected count is 2.89 .

A χ^{2} value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 31, $\chi 2(16, \mathrm{n}=355)=$ 14.989, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she likes a Fan Page's wall posts, statuses, or comments.

Gender. Based on survey responses, does a student's gender have a significant relationship with his or her evaluation of how often he or she likes Fan Page wall posts, statuses, and comments? The null hypothesis is that how often a student interacts with Fan Pages by "liking" wall posts, statuses, or comments is independent of gender. The level of frequency with "liking" and gender are independent variables. It is interesting to note the likeliness in responses between female and males. The numbers of rarely "liking" are about the same for both male and female categories. A table of results for a cross analysis is shown in Table 32 and illustrated in Chart 19.

Table 32: Gender and Like Fan Pages' Posts/Statuses/Comments Crosstabulation

		Like Fan Pages' posts/statuses/comments						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	20	17	26	43	42	12	160
	Male	22	24	52	56	55	25	234
Total		42	41	78	99	97	37	394

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and two did not answer the Facebook question.

Chart 19: Gender and Like Fan Pages' Posts/Statuses/Comments Crosstabulation

Table 33: Gender and Like Fan Pages' Posts/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.073^{a}		4
N of Valid Cases	357		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 17.00 .
b. *For purposes of data analysis, "not applicable" were removed for the Chi-Square test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $33, \chi 2(4, n=357)=$ 3.073, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she like a Fan Page's wall posts, statuses, or comments.

Program of Study. Based on survey responses, does a student's program of study have a significant relationship with his or her evaluation of how often he or she likes Fan Pages' wall posts, statuses, or comments? The null hypothesis is that how often a student interacts with Fan Pages by "liking" wall posts, statuses, or comments is independent of program of study. The level of frequency with "liking" and program of study are independent variables. At first glance, the data for this question interesting in that all program of studies have high responses in rarely or never "liking" Fan Pages' wall posts, statuses, or comments. A table of results for a cross analysis is shown in Table 34 and illustrated in Chart 20.

Table 34: Program of Study and Like Fan Pages' Posts/Statuses/Comments Crosstabulation

		Like Fan Pages' posts/statuses/comments						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	12	12	31	35	36	13	139
Study	Communications	10	11	16	21	14	3	75
	Other	19	18	27	42	45	19	170
Total		41	41	74	98	95	35	384

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and three did not answer the Facebook question.

Chart 20: Program of Study and Like Fan Pages' Posts/Statuses/Comments Crosstabulation

Table 35: Program of Study and Like Fan Pages' Posts/Statuses/Comments Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.799^{a}		8
N of Valid Cases	349		.670

a. $\quad 0$ cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 8.46 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 35, $\chi 2(8, \mathrm{n}=349)=$ 5.799 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she likes a Fan Page's wall posts, statuses, or comments.

Summary. From this question, we learn that all students are rarely or never interacting with Fan Page wall posts, statuses, or comments with the "like" feature provided by Facebook.

Q5: Post Pictures

Participants were asked to rate their frequency of posting pictures to Facebook using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 31.8% sometimes post pictures. Only 5.5% responded to never posting pictures on Facebook. The frequency of responses is shown below in Table 36 and illustrated in Chart 21.

Table 36: Post Pictures

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	57	14.2	14.3	14.3
	Often	86	21.5	21.6	35.8
	Sometimes	127	31.8	31.8	67.7
	Rarely	69	17.3	17.3	85.0
	Never	22	5.5	5.5	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	399	99.8	100.0	
Missing	No response	1	. 3		
Total		400	100.0		

Chart 21: Post Pictures

Class Classification. Based on survey responses, are the responses for how frequently a student posts pictures on Facebook statistically different based on class classification? The null hypothesis is that how often a student posts pictures is independent of class classification. The level of frequency with posting pictures and class classification are independent variables. A table of results for a cross analysis is shown in Table 37 and illustrated in Chart 22.

Table 37: Class Classification and Post Pictures Crosstabulation

		Post pictures						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Class	Freshman	21	34	29	17	5	10	116
classification	Sophomore	13	11	16	14	2	7	63
	Junior	8	18	30	8	6	3	73
	Senior	9	20	44	21	6	13	113
	Masters	5	2	8	7	3	3	28
		56	85	127	67	22	36	393

[^6]

Chart 22: Class Classification and Post Pictures Crosstabulation

Table 38: Class Classification and Post Pictures Chi-Square Test

			Asymp. Sig. (2- sided)	
Pearson Chi-Square	27.837^{a}		16	
N of Valid Cases	357		.033	

a. 5 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.54 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $38, \chi 2(16, \mathrm{n}=357)=$ 27.837, the chi-square results are statistically significant. The null hypothesis is rejected. A student's class classification does affect how frequently he or she post pictures on Facebook. The results show that freshmen students are frequently posting pictures to Facebook whereas the older students are only sometimes or even rarely posting pictures.

Gender. Based on survey responses, does a student's gender have a significant relationship with his or her evaluation of how often he or she post pictures on Facebook? The null hypothesis is that how often a student posts pictures is independent of gender. The level of frequency with posting pictures and gender are independent variables. It is interesting to note the differences in responses between female and males. The numbers of rarely posting are significantly higher in the male category than the female category. A table of results for a cross analysis is shown in Table 39 and illustrated in Chart 23.

Table 39: Gender and Post Pictures Crosstabulation

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 23: Gender and Post Pictures Crosstabulation

Table 40: Gender and Post Pictures Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	67.671^{a}		4
N of Valid Cases	359		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 9.13 .
b. *For purposes of data analysis, "not applicable" were removed for the ChiSquare test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 40, $\chi 2(4, n=359)=$ 67.671, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she posts pictures.

Program of Study. Based on survey responses, does a student's program of study have a significant relationship with his or her evaluation of how often he or she post pictures on Facebook? The null hypothesis is that how often a student posts pictures is independent of his or her program of study. The level of frequency with posting pictures and program of study are independent variables. The data for this question appears to be interestingly significant. Note that students that often use computers for their courses, CSCI majors, have a higher rate of sometimes to rarely posting pictures on Facebook. A table of results for a cross analysis is shown in Table 41 and illustrated in Chart 24.

Table 41: Program of Study and Post Pictures Crosstabulation

		Post pictures						
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total	
Program of	Computer Science	13	21	50	32	11	13	140
Study	Communications	10	22	22	14	4	3	75
	Other	33	40	52	20	7	19	171
Total		56	83	124	66	22	35	386

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 24: Program of Study and Post Pictures Crosstabulation

Table 42: Program of Study and Post Pictures Chi-Square Test

			Asymp. Sig. (2- sided)
Vearson Chi-Square	18.927^{a}		8
N of Valid Cases	351		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 4.51 .
b. *For purposes of data analysis, "not applicable" was removed for the ChiSquare test.

A χ^{2} value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 42, $\chi 2(8, \mathrm{n}=351)=$ 18.927, the chi-square results are statistically significant. The null hypothesis is rejected. A student's program of study does affect how frequently he or she post pictures on Facebook.

Summary. From this question, we learn that a student's class classification, gender, and program of study have an impact on his or her answer for how often he or she posts pictures on Facebook. Freshmen are seen to post pictures more frequently than other class levels. Older students reported high in posting pictures only sometimes to never. Females are interacting more through Facebook by posting pictures versus males. Students in computer science have a higher rate of rarely interacting on Facebook through picture postings than students in other programs.

Q6: Create Events

Participants were asked to rate their frequency of interaction on Facebook by creating events using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "rarely or never creating events." Of the 400 survey respondents, 43.2% never create events. Only 1.5% responded to frequently creating events on Facebook. The frequency of responses is shown below in Table 43 and illustrated in Chart 25.

Table 43: Create Events

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	6	1.5	1.5	1.5
	Often	18	4.5	4.5	6.0
	Sometimes	64	16.0	16.1	22.1
	Rarely	100	25.0	25.1	47.2
	Never	172	43.0	43.2	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	398	99.5	100.0	
Missing	No response	2	. 5		
Total		400	100.0		

Create events

Chart 25: Create Events

Class Classification. Based on survey responses, are the responses for how frequently a student creates events on Facebook statistically different based on class classification? The null hypothesis is that how often a student creates events is independent of class classification. The level of frequency with creating events and class classification are independent variables. A table of results for a cross analysis is shown in Table 44 and illustrated in Chart 26.

Table 44: Class Classification and Create Events Crosstabulation

	Create events						Total
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Class classification Freshman	1	4	9	35	56	10	115
Sophomore	2	4	11	12	27	7	63
Junior	2	5	16	14	33	3	73
Senior	1	4	25	36	34	13	113
Masters	0	1	2	3	19	3	28
Total	6	18	63	100	169	36	392

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and two did not answer the Facebook question.

Chart 26: Class Classification and Create Events Crosstabulation

Table 45: Class Classification and Create Events Chi-Square Test

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$31.879^{\text {a }}$	16	. 010
N of Valid Cases	356		

a. 9 cells (36.0%) have expected count less than 5 . The minimum expected count is .42 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 45, $\chi 2(16, \mathrm{n}=356)=$ 31.879, the chi-square results are statistically significant. The null hypothesis is rejected. A student's class classification does affect how frequently he or she creates events on Facebook. Seniors appear to be the only class that reported a wide range of responses for how frequently they create events on Facebook.

Gender. Based on survey responses, are the responses for how frequently a student creates events on Facebook statistically different based on gender? The null hypothesis is that how often a student creates events is independent of gender. The level of frequency with creating events and gender are independent variables. It is interesting to note the similarities in responses for the female and male categories. A table of results for a cross analysis is shown in Table 46 and illustrated in Chart 27.

Table 46: Gender and Create Events Crosstabulation

		Create events						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	2	10	29	38	69	12	160
	Male	4	8	34	62	102	25	235
Total		6	18	63	100	171	37	395

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and two did not answer the Facebook question.

Chart 27: Gender and Create Events Crosstabulation

Table 47: Gender and Create Events Chi-Square Test

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$2.759^{\text {a }}$	4	. 599
N of Valid Cases	358		

a. 2 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.48 .
b. *For purposes of data analysis, "not applicable" were removed for the ChiSquare test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 47, $\chi 2(4, n=358)=$ 2.759, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she creates events on Facebook.

Program of Study. Based on survey responses, are the responses for how frequently a student creates events on Facebook statistically different based on program of study? The null hypothesis is that how often a student creates events is independent of program of study. The level of frequency with creating events and program of study are independent variables. The data for this question appears to be interestingly significant. Note that none of the Computer Science and Communications students reported to frequently creating events. A table of results for a cross analysis is shown in Table 48 and illustrated in Chart 28.

Table 48: Program of Study and Create Events Crosstabulation

		Create events						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Program of	Computer Science	0	8	15	36	68	13	140
Study	Communications	0	3	17	19	33	3	75
	Other	6	7	29	43	66	19	170
Total		6	18	61	98	167	35	385

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and two did not answer the Facebook question.

Chart 28: Program of Study and Create Events Crosstabulation

Table 49: Program of Study and Create Events Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	14.148^{a}		8
df of Valid Cases	350		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is 1.23 .
b. *For purposes of data analysis, "not applicable" was removed for the ChiSquare test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 49, $\chi 2(8, \mathrm{n}=3510)=$ 14.148, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she creates events on Facebook.

Summary. From this question, we learn that a student's class classification has an impact on his or her answer for how often he or she creates events on Facebook. Senior students are closest in range of responses for sometimes, rarely, or never. Freshmen students reported the highest percentage of never creating events on Facebook. Gender and program of study did not have a significant impact on the respondent's answer choice.

Q7: Send Messages through the Inbox
Participants were asked to rate their frequency of interaction on Facebook by sending messages through the inbox using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "sometimes send messages through the Inbox." Of the 400 survey respondents, 33.2% sometimes send message through inbox provided by Facebook. Only 4.5% responded to never sending a message through the inbox. The frequency of responses is shown below in Table 50 and illustrated in Chart 29.

Table 50: Send Messages through the Inbox

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	59	14.8	14.8	14.8
	Often	90	22.5	22.6	37.4
	Sometimes	132	33.0	33.2	70.6
	Rarely	61	15.3	15.3	85.9
	Never	18	4.5	4.5	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	398	99.5	100.0	
Missing	No response	2	. 5		
Total		400	100.0		

Chart 29: Send Messages through the Inbox
Class Classification. Based on survey responses, are the responses for how frequently a student sends messages through the Facebook inbox statistically different based on class classification? The null hypothesis is that how often a student sends messages is independent of class classification. The level of frequency with sending messages and class classification are independent variables. A table of results for a cross analysis is shown in Table 51 and illustrated in Chart 30.

Table 51: Class Classification and Send Messages through the Inbox Crosstabulation

	Send messages through the Inbox						Total
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Class classification Freshman	17	28	38	16	6	10	115
Sophomore	9	14	18	10	5	7	63
Junior	12	17	28	9	4	3	73
Senior	17	25	37	18	3	13	113
Masters	4	5	9	7	0	3	28
Total	59	89	130	60	18	36	392

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and two did not answer the Facebook question.

Chart 30: Class Classification and Send Messages through the Inbox Crosstabulation

Table 52: Class Classification and Send Messages through the Inbox Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.657^{a}		16

a. 5 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.26 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 52, $\chi 2(16, \mathrm{n}=356)=$ 7.657, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she sends messages through the inbox.

Gender. Based on survey responses, are the responses for how frequently a student sends messages through the Facebook inbox statistically different based on gender? The null hypothesis is that how often a student sends messages is independent of gender. The level of frequency with sending messages and gender are independent variables. It is interesting to note the significant amount of responses to sometimes sending messages through the inbox for the male category. A table of results for a cross analysis is shown in Table 53 and illustrated in Chart 31.

Table 53: Gender and Send Messages through the Inbox Crosstabulation

		Send messages through the Inbox						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Gender	Female	29	45	46	21	7	12	160
	Male	30	44	86	39	11	25	235
Total		59	89	132	60	18	37	395

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and two did not answer the Facebook question.

Chart 31: Gender and Send Messages through the Inbox Crosstabulation

Table 54: Gender and Send Messages through the Inbox Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	7.939^{a}		4
N of Valid Cases	358		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.44.
b. *For purposes of data analysis, "not applicable" were removed for the ChiSquare test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 54, $\chi 2(4, n=359)=$ 7.939, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she sends a message through the inbox.

Program of Study. Based on survey responses, are the responses for how frequently a student sends messages through the Facebook inbox statistically different based on program of study? The null hypothesis is that how often a student sends messages is independent of program of study. The level of frequency with sending messages and program of study are independent variables. The data for this question appears to be interestingly significant. Note that other have a high rate of often sending messages through the inbox. A table of results for a cross analysis is shown in Table 55 and illustrated in Chart 32.

Table 55: Program of Study and Send Messages through the Inbox Crosstabulation

		Send messages through the Inbox						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	16	25	57	25	4	13	140
Study	Communications	12	21	24	11	4	3	75
	Other	29	41	48	24	9	19	170
Total		57	87	129	60	17	385	

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and two did not answer the Facebook question

Chart 32: Program of Study and Send Messages through the Inbox Crosstabulation

Table 56: Program of Study and Send Messages through the Inbox Chi-Square Test

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$9.571^{\text {a }}$	8	. 296
N of Valid Cases	350		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 3.50 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 56, $\chi 2(68, \mathrm{n}=350)=$ 9.571, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she sends a message through the inbox.

Summary. From this question, we learn that all students are sometimes interacting with sending messages through inbox feature provided by Facebook.

Q8: Sell/Buy Items on Marketplace

Participants were asked to rate their frequency of interaction on Facebook's Marketplace by selling or buying items using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "never selling or buying items on Marketplace." Of the 400 survey respondents, 78.8% never use Facebook's

Marketplace to sell or buy items. Only 1.3% responded to frequently using Marketplace. The frequency of responses is shown below in Table 57 and illustrated in Chart 33.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	5	1.3	1.3	1.3
	Often	3	. 8	. 8	2.0
	Sometimes	10	2.5	2.5	4.5
	Rarely	28	7.0	7.1	11.6
	Never	312	78.0	78.8	90.4
	Not applicable	38	9.5	9.6	100.0
	Total	396	99.0	100.0	
Missing	No response	4	1.0		
Total		400	100.0		

Chart 33: Sell/Buy Items on Marketplace

Class Classification. Are the responses for how frequently a student sells or buys items on Facebook's Marketplace statistically different based on class classification? The null hypothesis is that how often a student uses Marketplace with friends is independent of class classification. The level of frequency with selling and buying items on Marketplace and class classification are independent variables. A table of results for a cross analysis is shown in Table 58 and illustrated in Chart 34.

Table 58: Class Classification and Sell/Buy Items on Marketplace Crosstabulation

	Sell/buy items on Marketplace						Total
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Class classification Freshman	1	1	1	7	93	10	113
Sophomore	1	0	2	3	50	7	63
Junior	1	1	3	7	58	3	73
Senior	2	1	3	10	84	13	113
Masters	0	0	1	1	23	3	28
Total	5	3	10	28	308	36	390

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and four did not answer the Facebook question.

Chart 34: Class Classification Sell/Buy Items on Marketplace Crosstabulation

Table 59: Class Classification and Sell/Buy Items on Marketplace Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.352^{a}		16

a. 17 cells (68.0%) have expected count less than 5 . The minimum expected count is .21 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 59, $\chi 2(16, \mathrm{n}=354)=$ 6.352, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she sell or buy items on

Marketplace.

Gender. Are the responses for how frequently a student sells or buys items on Facebook's Marketplace statistically different based on gender? The null hypothesis is that how often a student uses Marketplace with friends is independent of gender. The level of frequency with selling and buying items on Marketplace and gender are independent variables. It is interesting to note the similarities between males and females in response. The numbers of never using Marketplace are high in both female and male categories. A table of results for a cross analysis is shown in Table 60 and illustrated in Chart 35.

Table 60: Gender and Sell/Buy Items on Marketplace Crosstabulation

		Sell/buy items on Marketplace						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	2	0	4	7	135	12	160
	Male	3	3	6	21	175	25	233
Total		5	3	10	28	310	37	393

[^7]

Chart 35: Gender and Sell/Buy Items on Marketplace Crosstabulation

Table 61: Gender and Sell/Buy Items on Marketplace Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	5.814^{a}		4
N of Valid Cases	356		

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is 1.25 .
b. *For purposes of data analysis, "not applicable" were removed for the ChiSquare test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 61, $\chi 2(4, n=356)=$ 5.814 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she sell or buy items on Facebook Marketplace.

Program of Study. Are the responses for how frequently a student sells or buys items on Facebook's Marketplace statistically different based on program of study? The null hypothesis is that how often a student uses Marketplace with friends is independent of program of study. The level of frequency with selling and buying items on Marketplace and program of study are independent variables. The data for this question appears to be interestingly significant. Note that all students reported highly to never selling or buying items on Marketplace. A table of results for a cross analysis is shown in Table 62 and illustrated in Chart 36.

Table 62: Program of Study and Sell/Buy Items on Marketplace Crosstabulation

		Sell/buy items on Marketplace						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	1	2	5	12	106	13	139
Study	Communications	0	0	2	3	66	3	74
	Other	4	1	3	12	131	19	170
Total		5	3	10	27	303	35	383

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and four did not answer the Facebook question.

Chart 36: Program of Study and Sell/Buy Items on Marketplace Crosstabulation

Table 63: Program of Study and Sell/Buy Items on Marketplace Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.383^{a}		8

a. 9 cells (60.0%) have expected count less than 5 . The minimum expected count is .61 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 63, $\chi 2(8, n=348)=$ 7.383, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she sell or buy items on Marketplace.

Summary. From this question, we learn that all students are rarely or never selling or buying items with Facebook's Marketplace feature.

Q9: Play Games (Farmville, Mob Wars, Scrabble, etc.)

Participants were asked to rate their frequency of interaction playing games like Farmville, Mob Wars, and Scrabble using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "never playing games." Of the 400 survey respondents, 58.6% never play games on Facebook. Only 4.3\% responded to frequently playing games. The frequency of responses is shown below in Table 64 and illustrated in Chart 37.

Table 64: Play Games (Farmville, Mob Wars, Scrabble, etc.)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	17	4.3	4.3	4.3
	Often	11	2.8	2.8	7.0
	Sometimes	37	9.3	9.3	16.3
	Rarely	62	15.5	15.5	31.8
	Never	234	58.5	58.6	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	399	99.8	100.0	
Missing	No response	1	. 3		
Total		400	100.0		

Play games (Farmville, Mob Wars, Scrabble, etc.)

Play games (Farmville, Mob Wars, Scrabble, etc.)
Chart 37: Play Games (Farmville, Mob Wars, Scrabble, etc.)

Class Classification. Based on survey responses, are the responses for how frequently a student plays games on Facebook statistically different based on class classification? The null hypothesis is that how often a student plays games is independent of class classification. The level of frequency with playing games and class classification are independent variables. A table of results for a cross analysis is shown in Table 65 and illustrated in Chart 38.

Table 65: Class Classification and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and one did not answer the Facebook question.

Chart 38: Class Classification and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation

Table 66: Class Classification and Play Games (Farmville, Mob Wars, Scrabble, etc.) Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.936^{a}	16	
N of Valid Cases	357		

a. 11 cells (44.0\%) have expected count less than 5. The minimum expected count is .77 .

A χ^{2} value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 66, $\chi 2(16, \mathrm{n}=332)=$ 16.936, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she plays games on Facebook.

Gender. Based on survey responses, are the responses for how frequently a student plays games on Facebook statistically different based on gender? The null hypothesis is that how often a student plays games is independent of gender. The level of frequency with playing games and gender are independent variables. A table of results for a cross analysis is shown in Table 67 and illustrated in Chart 39.

Table 67: Gender and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation

		Play games (Farmville, Mob Wars, Scrabble, etc.)						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	9	5	18	23	94	12	161
	Male	8	6	19	38	139	25	235
Total		17	11	37	61	233	37	396

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 39: Gender and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation

Table 68: Gender and Play Games (Farmville, Mob Wars, Scrabble, etc.) Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.257^{a}		4
N of Valid Cases	359		

a. $\quad 1$ cell (10.0%) has expected count less than 5 . The minimum expected count is 4.57 .
b. *For purposes of data analysis, "not applicable" were removed for the Chi-Square test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 68, $\chi 2(4, n=359)=$ 2.257, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she plays games on Facebook.

Program of Study. Based on survey responses, are the responses for how frequently a student plays games on Facebook statistically different based on program of study? The null hypothesis is that how often a student plays games is independent of program of study. The level of frequency with playing games and program of study are independent variables. Looking at the results, it is noticeable that there are more responses in sometimes playing games than in other breakdowns with gender and class classification. A table of results for a cross analysis is shown in Table 69 and illustrated in Chart 40.

Table 69: Program of Study and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation

		Play games (Farmville, Mob Wars, Scrabble, etc.)						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	7	4	11	23	82	13	140
Study	Communications	2	1	9	10	50	3	75
	Other	8	6	17	25	96	19	171
Total		17	11	37	58	228	35	386

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 40: Program of Study and Play Games (Farmville, Mob Wars, Scrabble, etc.) Crosstabulation

Table 70: Program of Study and Play Games (Farmville, Mob Wars, Scrabble, etc.) Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.373^{a}		8
N of Valid Cases	351		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is 2.26 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 70, $\chi 2(8, n=351)=$ 3.373, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she plays games on Facebook.

Summary. From this question, we learn that students are rarely or never playing games like Mob Wars and Scrabble on Facebook.

Q10: Use Applications (Bumper Stickers, Graffiti, etc.)

Participants were asked to rate their frequency of interaction with Facebook by using applications like Bumper Stickers and Graffiti using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "rarely or never using applications." Of the 400 survey respondents, 54.9% never use Facebook applications. Only 2.3% responded to frequently using applications such as Bumper Stickers. The frequency of responses is shown below in Table 71 and illustrated in Chart 41.

Table 71: Use Applications (Bumper Stickers, Graffiti, etc.)

				Cumulative Percent	
Valid	Frequently	Frequency	Percent	Valid Percent	2.3
	Often	9	2.3	2.3	4.8
	Sometimes	31	2.5	2.5	12.6
	Rarely	91	22.8	7.8	35.5
	Never	218	54.5	22.9	90.4
	Not applicable	38	9.5	9.6	100.0
	Total	397	99.3	100.0	
Missing	No response	3	.8		
Total		400	100.0		

Chart 41: Use Applications (Bumper Stickers, Graffiti, etc.)
Class Classification. Based on survey responses, are the responses for how frequently a student uses applications like Bumper Stickers and Graffiti statistically different based on class classification? The null hypothesis is that how often a student uses Facebook applications is independent of class classification. The level of frequency with using applications and class classification are independent variables. A table of results for a cross analysis is shown in Table 72 and illustrated in Chart 42.

Table 72: Class Classification and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation

		Use applications (Bumper Stickers, Graffiti, etc.)						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Class classification	Freshman	3	3	8	27	64	10	115
	Sophomore	2	1	3	16	33	7	62
	Junior	0	1	9	20	40	3	73
	Senior	3	5	10	23	59	13	113
	Masters	1	0	1	5	18	3	28
Total	9	10	31	91	214	36	391	

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and three did not answer the Facebook question.

Chart 42: Class Classification and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation

Table 73: Class Classification and Use Applications (Bumper Stickers, Graffiti, etc.) Chi-Square

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.255^{a}		16
N of Valid Cases	355		

a. 12 cells (48.0%) have expected count less than 5 . The minimum expected count is .63 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 73, $\chi 2(16, \mathrm{n}=355)=$ 10.255, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she uses Facebook applications like Bumper Stickers and Graffiti.

Gender. Based on survey responses, are the responses for how frequently a student uses applications like Bumper Stickers and Graffiti statistically different based on gender? The null hypothesis is that how often a student uses Facebook applications is independent of gender. The level of frequency with using applications and gender are independent variables. A table of results for a cross analysis is shown in Table 74 and illustrated in Chart 43.

Table 74: Gender and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation

		Use applications (Bumper Stickers, Graffiti, etc.)						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	6	5	17	41	79	12	160
	Male	3	5	14	50	137	25	234
Total		9	10	31	91	216	37	394

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and three did not answer the Facebook question.

Chart 43: Gender and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation

Table 75: Gender and Use Applications (Bumper Stickers, Graffiti, etc.) Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.552^{a}		4
N of Valid Cases	357		.109

a. 2 cells (20.0%) have expected count less than 5 . The minimum expected count is 3.73 .
b. *For purposes of data analysis, "not applicable" were removed for the Chi-Square test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $75, \chi 2(4, n=357)=$ 7.522, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she uses Facebook applications like Bumper Stickers and Graffiti.

Program of Study. Based on survey responses, are the responses for how frequently a student uses applications such as Bumper Stickers and Graffiti statistically different based on program of study? The null hypothesis is that how often a student uses Facebook applications is independent of his or her program of study. The level of frequency with using applications and program of study are independent variables. A table of results for a cross analysis is shown in Table 76 and illustrated in Chart 44.

Table 76: Program of Study and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation

		Use applications (Bumper Stickers, Graffiti, etc.)						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	3	3	11	31	79	13	140
Study	Communications	0	2	5	23	42	3	75
	Other	6	5	15	36	88	19	169
Total		9	10	31	90	209	35	384

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and three did not answer the Facebook question.

Chart 44: Program of Study and Use Applications (Bumper Stickers, Graffiti, etc.) Crosstabulation

Table 77: Program of Study and Use Applications (Bumper Stickers, Graffiti, etc.) Chi-Square

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.324^{a}		8
N of Valid Cases	349		

a. $\quad 6$ cells (40.0%) have expected count less than 5 . The minimum expected count is 1.86 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 77, $\chi 2(8, n=349)=$ 5.324, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she uses Facebook applications.

Summary. From this question, we learn that students are not using Facebook applications like Bumper Stickers and Graffiti and that their program of study, gender, and class classification has no effect on their answer choices.

Q11: Search for People

Participants were asked to rate their frequency of searching for people on Facebook using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "often or sometimes searching for people." Of the 400 survey respondents, 34.8% sometimes search for people on Facebook. Only 2.5% responded to never searching for people via Facebook. The frequency of responses is shown below in Table 78 and illustrated in Chart 48.

Table 78: Search for People

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	66	16.5	16.5	16.5
	Often	93	23.3	23.3	39.8
	Sometimes	139	34.8	34.8	74.7
	Rarely	53	13.3	13.3	88.0
	Never	10	2.5	2.5	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	399	99.8	100.0	
Missing	No response	1	. 3		
Total		400	100.0		

Search for people
Chart 45: Search for People

Class Classification. Based on survey responses, are the responses for how frequently a student uses Facebook to search for people statistically different based on class classification? The null hypothesis is that how often a student searches for others is independent of class classification. The levels of frequency with searching and class classification are independent variables. A table of results for a cross analysis is shown in Table 79 and illustrated in Chart 46.

Table 79: Class Classification and Search for People Crosstabulation

		Search for people						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Class classification	Freshman	21	26	44	13	2	10	116
	Sophomore	11	18	19	7	1	7	63
	Junior	14	18	24	11	3	3	73
	Senior	16	26	41	15	2	13	113
	Masters	4	5	9	5	2	3	28
Total	66	93	137	51	10	36	393	

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and one did not answer the Facebook question.

Chart 46: Class Classification and Search for People Crosstabulation

Table 80: Class Classification and Search for People Chi-Square

	Value	Asymp. Sig. (2- sided)	
Pearson Chi-Square	7.824^{a}		16
N of Valid Cases	357		.954

a. 7 cells (28.0%) have expected count less than 5 . The minimum expected count is .70 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 80, $\chi 2(16, \mathrm{n}=357)=$ 7.824, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she searches for people on Facebook.

Gender. Based on survey responses, are the responses for how frequently a student uses Facebook to search for people statistically different based on gender? The null hypothesis is that how often a student searches for others is independent of gender. The levels of frequency with searching and gender are independent variables. It is interesting to note the similarities in responses between female and males. The numbers of never searching for people are relatively low for both genders; however, females tend to use the search feature more than males. A table of results for a cross analysis is shown in Table 81 and illustrated in Chart 47.

		Search for people						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	36	45	52	13	3	12	161
	Male	30	48	86	39	7	25	235
Total		66	93	138	52	10	37	396

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 47: Gender and Search for People Crosstabulation

Table 82: Gender and Search for People Chi-Square Test

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	13.648^{a}		4
N of Valid Cases	359		

a. 1 cell (10.0%) has expected count less than 5 . The minimum expected count is 4.15 .
b. *For purposes of data analysis, "not applicable" were removed for the ChiSquare test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 82, $\chi 2(4, \mathrm{n}=359)=$ 13.648, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she searches for people via Facebook.

Program of Study. Based on survey responses, are the responses for how frequently a student uses Facebook to search for people statistically different based on program of study? The null hypothesis is that how often a student searches for others is independent of program of study. The levels of frequency with searching and program of study are independent variables. The data for this question appears to be interestingly significant. Note that students in the Computer Science program of study tend to sometimes search for people more frequently than the other programs of study. A table of results for a cross analysis is shown in Table 83 and illustrated in Chart 48.

Table 83: Program of Study and Search for People Crosstabulation

		Search for people						
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total	
Program of	Computer Science	18	24	62	18	5	13	140
Study	Communications	13	25	22	11	1	3	75
	Other	34	42	52	20	4	19	171
Total		65	91	136	49	10	35	386

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and one did not answer the Facebook question.

Chart 48: Program of Study and Search for People Crosstabulation

Table 84: Program of Study and Search for People Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	13.894^{a}		8
N of Valid Cases	351		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.05 .
b. *For purposes of data analysis, "not applicable" was removed for the ChiSquare test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $84, \chi 2(8, n=351)=$ 13.894, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she searches for people via Facebook.

Summary. From this question, we learn that students are using Facebook to search for others, and females seem to be using the feature more than males.

Q12: Search for Companies/Organizations

Participants were asked to rate their frequency searching for companies and organizations using the choices frequently, often, sometimes, rarely, and never. There was a low rate of frequency for those responding to "frequently searching for companies and/or organizations." Of the 400 survey respondents, 6.8% frequently search for companies. Forty-six percent responded to rarely or never searching for companies and organizations. The frequency of responses is shown below in Table 85 and illustrated in Chart 49.

Table 85: Search for Companies/Organizations

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	27	6.8	6.8	6.8
	Often	40	10.0	10.1	16.8
	Sometimes	107	26.8	26.9	43.7
	Rarely	103	25.8	25.9	69.6
	Never	83	20.8	20.9	90.5
	Not applicable	38	9.5	9.5	100.0
	Total	398	99.5	100.0	
Missing	No response	2	. 5		
Total		400	100.0		

Chart 49: Search for Companies/Organizations

Class Classification. Based on survey responses, are the responses for how frequently a student searches for a company or organization statistically different based on class classification? The null hypothesis is that how often a student searches for companies is independent of class classification. The levels of frequency with searching and class classification are independent variables. A table of results for a cross analysis is shown in Table 86 and illustrated in Chart 50.

Table 86: Class Classification and Search for Companies/Organizations Crosstabulation

	Search for companies/organizations						Total
	Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Class classification Freshman	6	7	33	31	28	10	115
Sophomore	5	9	14	14	14	7	63
Junior	7	11	23	15	14	3	73
Senior	8	10	30	35	17	13	113
Masters	1	2	7	8	7	3	28
Total	27	39	107	103	80	36	392

*Survey respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because six surveyors did not answer the class classification question and two did not answer the Facebook question.

Chart 50: Class Classification and Search for Companies/Organizations Crosstabulation

Table 87: Class Classification and Search for Companies/Organizations Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.065^{a}		16
N of Valid Cases	356		

a. 3 cells (12.0%) have expected count less than 5 . The minimum expected count is 1.90 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $87, \chi 2(16, \mathrm{n}=356)=$ 13.065, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she searches for companies and organizations.

Gender. Based on survey responses, are the responses for how frequently a student searches for a company or organization statistically different based on gender? The null hypothesis is that how often a student searches for companies is independent of gender. The levels of frequency with searching and gender are independent variables. It is interesting to note the differences in responses between female and males. The percentage of females searching for companies appears to be higher than the males. A table of results for a cross analysis is shown in Table 88 and illustrated in Chart 51.

Table 88: Gender and Search for Companies/Organizations Crosstabulation

		Search for companies/organizations						Total
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	
Gender	Female	15	21	39	41	32	12	160
	Male	12	18	68	62	50	25	235
Total		27	39	107	103	82	37	395

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because three surveyors did not answer the gender question and two did not answer the Facebook question.

Chart 51: Gender and Search for Companies/Organizations Crosstabulation

Table 89: Gender and Search for Companies/Organizations Chi-Square Test

			Asymp. Sig. (2- sided)
Value	df	192	
Pearson Chi-Square	6.102^{a}		4

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 11.16 .
b. *For purposes of data analysis, "not applicable" were removed for the ChiSquare test.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $89, \chi 2(4, n=358)=$ 6.102, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she searches for companies or organizations.

Program of Study. Based on survey responses, are the responses for how frequently a student searches for a company or organization statistically different based on program of study? The null hypothesis is that how often a student searches for companies is independent of program of study. The levels of frequency with searching and program of study are independent variables. Note that students designated as having an "other" program of study have a higher rate of sometimes searching for companies and organizations. A table of results for a cross analysis is shown in Table 90 and illustrated in Chart 52.

Table 90: Program of Study and Search for Companies/Organizations Crosstabulation

		Search for companies/organizations						
		Frequently	Often	Sometimes	Rarely	Never	Not applicable	Total
Program of	Computer Science	4	8	43	45	27	13	140
Study	Communications	6	11	21	18	16	3	75
	Other	17	19	41	36	38	19	170
Total		27	38	105	99	81	35	385

*These respondents did not have a Facebook account, so the question was not applicable.
** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and two did not answer the Facebook question.

Chart 52: Program of Study and Search for Companies/Organizations Crosstabulation

Table 91: Program of Study and Search for Companies/Organizations Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$15.231^{\text {a }}$		8
N of Valid Cases	350		

a. $\quad 0$ cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.55 .
b. *For purposes of data analysis, "not applicable" was removed for the Chi-Square test.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 91, $\chi 2(8, \mathrm{n}=350)=$ 15.231, the chi-square results are not statistically significant. The null hypothesis is not rejected by a marginal amount. A student's program of study does not affect how frequently he or she searches for companies or organizations.

Summary. From this question, we learn that regardless of class classification, gender, and program of study all students are rarely or never using Facebook to search for companies and/or organizations.

Future Social Media Development Specific to a Department/Major Questions:

The following questions asked the respondents to rate their frequency of use of features and tools specific to university relations. What features from Facebook could be used in a new social media tool for higher education specifically relating to department or major relations, and how do class classification, age, gender, and program of study factor into the surveyors’ responses?

Q1: View Tips Posted by Instructors on Course Work

Participants were asked to rate their expected frequency of viewing course work tips posted by instructors using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "frequently or often viewing tips posted by instructors on course work." Of the 400 survey respondents, 77% would interact with instructors by viewing tips posted on course work. Only 2.5% responded never. The frequency of responses is shown below in Table 92 and illustrated in Chart 53.

Table 92: View Tips Posted by Instructors on Course Work

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	153	38.3	38.5	38.5
	Often	153	38.3	38.5	77.1
	Sometimes	67	16.8	16.9	94.0
	Rarely	14	3.5	3.5	97.5
	Never	10	2.5	2.5	100.0
	Total	397	99.3	100.0	
Missing	No response	3	. 8		
Total		400	100.0		

Chart 53: View Tips Posted by Instructors on Course Work

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to view tips posted by an instructor on course work statistically different based on class classification? The null hypothesis is that how often a student would view tips is independent of class classification. The level of frequency with viewing tips and class classification are independent variables. A table of results for a cross analysis is shown in Table 93 and illustrated in Chart 54.

Table 93: Class Classification and View Tips Posted by Instructors on Course Work Crosstabulation

		View tips posted by instructors on course work?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	46	47	17	3	1	114
	Sophomore	25	22	11	4	0	62
	Junior	31	30	9	0	3	73
	Senior	40	45	18	6	5	114
	Masters	8	7	11	1	1	28
Total		150	151	66	14	10	391

Chart 54: Class Classification and View Tips Posted by Instructors on Course Work Crosstabulation

Table 94: Class Classification and View Tips Posted by Instructors on Course Work Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	23.315^{a}	16	.106
N of Valid Cases	391		

a. 11 cells (44.0%) have expected count less than 5 . The minimum expected count is .72 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 94, $\chi 2(16, \mathrm{n}=391)=$ 23.315, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media to view tips posted by an instructor on course work.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to view tips posted by an instructor on course work statistically different based on gender? The null hypothesis is that how often a student would view tips is independent of gender. The level of frequency with viewing tips and gender are independent variables. A table of results for a cross analysis is shown in Table 95 and illustrated in Chart 55.

Table 95: Gender and View Tips Posted by Instructors on Course Work Crosstabulation

		View tips posted by instructors on course work?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	79	55	19	3	4	160
	Male	73	97	47	11	6	234
Total		152	152	66	14	10	394

Bar Chart

Chart 55: Gender and View Tips Posted by Instructors on Course Work Crosstabulation

Table 96: Gender and View Tips Posted by Instructors on Course Work Chi-Square Test

			Asymp. Sig. (2- sided)	
Vearson Chi-Square	df	$15.335^{\text {a }}$		
N of Valid Cases	394			.004

a. 1 cell (10.0%) has expected count less than 5 . The minimum expected count is 4.06 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 96, $\chi 2(4, \mathrm{n}=394)=$ 15.335, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a tool to view tips posted by an instructor. Note that females are more likely to use this feature than males.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to view tips posted by an instructor on course work statistically different based on program of study? The null hypothesis is that how often a student would view tips is independent of program of study. The level of frequency with viewing tips and program of study are independent variables. A table of results for a cross analysis is shown in Table 97 and illustrated in Chart 56.

Table 97: Program of Study and View Tips Posted by Instructors on Course Work Crosstabulation

		View tips posted by instructors on course work?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	46	57	25	7	4	139
	Communications	31	26	14	2	2	75
	Other	72	65	25	4	4	170
Total		149	148	64	13	10	384

Chart 56: Program of Study and View Tips Posted by Instructors on Course Work Crosstabulation

Table 98: Program of Study and View Tips Posted by Instructors on Course Work Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.927^{a}		8
N of Valid Cases	384		

a. 5 cells (33.3%) have expected count less than 5 . The minimum expected count is 1.95 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $98, \chi 2(8, n=384)=$ 4.927, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to view tips posted by an instructor on course work.

Summary. A student's gender has an impact on his or her answer for how often he or she would use a social media tool to view tips posted by an instructor on course work. Females used the tool more than males. Males had a high rate for often and sometimes using this feature, however, their rate of frequency for rarely and never were also high. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q2: Upload and View Group Project Documents/Files

Participants were asked to rate their expected frequency of uploading and viewing group documents and/or files using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 39.5% would interact often with a feature offering the capabilities to upload and view group documents and/or files. Only 3.0% responded never. The frequency of responses is shown below in Table 99 and illustrated in Chart 57.

Table 99: Upload and View Group Project Documents/Files

					Cumulative Percent
Valid	Frequently	108	27.0	27.2	27.2
	Often	157	39.3	39.5	66.8
	Sometimes	99	24.8	24.9	91.7
	Rarely	21	5.3	5.3	97.0
	Never	12	3.0	3.0	100.0
	Total	397	99.3	100.0	
Missing	No response	3	8		
Total		100.0			

Upload and view group documents/files?

Chart 57: Upload and View Group Project Documents/Files
Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to upload and view group documents and/or files statistically different based on class classification? The null hypothesis is that how often a student would upload and view documents/files is independent of class classification. The level of frequency with uploading/viewing files and class classification are independent variables. A table of results for a cross analysis is shown in Table 100 and illustrated in Chart 58.

Table 100: Class Classification and Upload and View Group Project Documents/Files Crosstabulation

		Upload and view group documents/files?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	26	49	32	6	1	114
	Sophomore	21	19	18	4	1	63
	Junior	22	30	16	3	2	73
	Senior	34	42	25	7	6	114
	Masters	4	16	6	0	2	28
Total		107	156	97	20	12	392

Chart 58: Class Classification and Upload and View Group Project Documents/Files Crosstabulation

Table 101: Class Classification and Upload and View Group Project Documents/Files Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	$17.255^{\text {a }}$		16	
N of Valid Cases	392			.369

a. 8 cells (32.0%) have expected count less than 5 . The minimum expected count is .86 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 101, $\chi 2(16, n=392)=$ 17.255, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to upload and view group documents and/or files.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to view tips posted by an instructor on course work statistically different based on gender? The null hypothesis is that how often a student would view tips is independent of gender. The level of frequency with viewing tips and gender are independent variables. A table of results for a cross analysis is shown in Table 102 and illustrated in Chart 59.

Table 102: Gender and Upload and View Group Project Documents/Files Crosstabulation

		Upload and view group documents/files?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	58	61	36	3	2	160
	Male	50	96	62	17	10	235
Total		108	157	98	20	12	395

Chart 59: Gender and Upload and View Group Project Documents/Files Crosstabulation

Table 103: Gender and Upload and View Group Project Documents/Files Chi-Square

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.791^{a}		4

a. 1 cell (10.0%) has expected count less than 5 . The minimum expected count is 4.86 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 103, $\chi 2(4, \mathrm{n}=395)=$ 16.791, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a social media tool to upload and view group documents and/or files. Note males would use this feature more than females.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to view tips posted by an instructor on course work statistically different based on program of study? The null hypothesis is that how often a student would view tips is independent of program of study. The level of frequency with viewing tips and program of study are independent variables. A table of results for a cross analysis is shown in Table 104 and illustrated in Chart 60.

Table 104: Program of Study and Upload and View Group Project Documents/Files Crosstabulation

		Upload and view group documents/files?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	32	67	29	6	6	140
	Communications	23	30	17	2	3	75
	Other	52	56	47	12	3	170
Total		107	153	93	20	12	385

Chart 60: Program of Study and Upload and View Group Project Documents/Files Crosstabulation

Table 105: Program of Study and Upload and View Group Project Documents/Files Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.922^{a}		8
			.155
N of Valid Cases	385		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.34 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 105, $\chi 2(8, \mathrm{n}=385)=$ 11.922, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to upload and view group documents and/or files.

Summary. From this question, we learn that a student's gender has an impact on his or her answer for how often he or she would use a social media tool to upload and view group documents and/or files. Males would use this feature more than females. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q3: Communicate with Group Project Members via Real-Time Chat

Participants were asked to rate their expected frequency of communicating with group members via real-time chat using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "frequently or often communicating with group members via real-time chat." Of the 400 survey respondents, 54.4% would frequently or often interact with group members via real-time chat posted about coursework. Only 7.1% responded never. The frequency of responses is shown below in Table 106 and illustrated in Chart 61.

Table 106: Communicate with Group Project Members via Real-Time Chat

				Cumulative Percent	
Valid	Frequently	106	26.5	26.7	26.7
	Often	110	27.5	27.7	54.4
	Sometimes	98	24.5	24.7	79.1
	Rarely	55	13.8	13.9	92.9
	Never	28	7.0	7.1	100.0
	Total	397	99.3	100.0	
Missing	No response	300	.8		
Total		100.0			

Chart 61: Communicate with Group Project Members via Real-Time Chat

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with group members via real-time chat statistically different based on class classification? The null hypothesis is that how often a student would use a real-time chat is independent of class classification. The levels of frequency with chatting and class classification are independent variables. A table of results for a cross analysis is shown in Table 107 and illustrated in Chart 62.

Table 107: Class Classification and Communicate with Group Project Members via Real-Time Chat Crosstabulation

Chart 62: Class Classification and Communicate with Group Project Members via Real-Time Chat Crosstabulation

Table 108: Class Classification and Communicate with Group Project Members via Real-Time Chat Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.985^{a}		16
N of Valid Cases	391		

a. 3 cells (12.0%) have expected count less than 5 . The minimum expected count is 1.93 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 108, $\chi 2(16, n=391)=$ 15.985, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to communicate with classmates via real-time chat.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with group members via real-time chat statistically different based on gender? The null hypothesis is that how often a student would use a real-time chat is independent of gender. The level of frequency with chatting and gender are independent variables. A table of results for a cross analysis is shown in Table 109 and illustrated in Chart 63.

		Communicate with group member via real-time chat?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	50	41	39	20	9	159
	Male	56	68	58	35	18	235
Total		106	109	97	55	27	394

Chart 63: Gender and Communicate with Group Project Members via Real-Time Chat Crosstabulation

Table 110: Gender and Communicate with Group Project Members via Real-Time Chat Chi-Square Test

Chi-Square Test					
	Value	df	Asymp. Sig. (2-sided)		
Pearson Chi-Square	3.303^{a}		4		
N of Valid Cases	394				

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 10.90 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 110, $\chi 2(4, \mathrm{n}=394)=$ 3.303, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does affect how frequently he or she would use a social media tool to communicate with classmates via real-time chat.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with group members via real-time chat statistically different based on program of study? The null hypothesis is that how often a student would use a real-time chat is independent of program of study. The level of frequency with chatting and program of study are independent variables. A table of results for a cross analysis is shown in Table 111 and illustrated in Chart 64.

Table 111: Program of Study and Communicate with Group Project Members via Real-Time Chat Crosstabulation

		Communicate with group member via real-time chat?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	42	49	28	15	6	140
	Communications	19	21	19	9	6	74
	Other	42	39	44	30	15	170
Total		103	109	91	54	27	384

Chart 64: Program of Study and Communicate with Group Project Members via Real-Time Chat Crosstabulation

Table 112: Program of Study and Communicate with Group Project Members via Real-Time Chat Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	11.312^{a}		8	
N of Valid Cases	384			.185

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.20.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 112, $\chi 2(8, \mathrm{n}=384)=$ 4.927, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to communicate with classmates via real-time chat.

Summary. From this question, we learn that students would use a social media tool often or sometimes to communicate with classmates via real-time chat regardless of class classification, gender, or program of study.

Q4: Communicate with Instructors and Ask Questions

Participants were asked to rate their expected frequency of communicating with instructors and asking questions using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 62.9% would interact frequently or often with instructors by communicating and asking questions. Only 4.0% responded never. The frequency of responses is shown below in Table 113 and illustrated in Chart 65.

Table 113: Communicate with Instructors and Ask Questions

					Cumulative Percent
Valid	Frequently	105	26.3	26.4	26.4
	Often	141	35.3	35.5	62.0
	Sometimes	110	27.5	27.7	89.7
	Rarely	25	6.3	6.3	96.0
	Never	16	4.0	4.0	100.0
	Total	397	99.3	100.0	
Missing	No response	3	.8		
Total		400	100.0		

Communicate with instructors and ask questions?

Chart 65: Communicate with Instructors and Ask Questions

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with instructors and ask questions statistically different based on class classification? The null hypothesis is that how often a student would communicate with instructors and ask questions is independent of class classification. The level of frequency with communication with instructors and class classification are independent variables. A table of results for a cross analysis is shown in Table 114 and illustrated in Chart 66.

Table 114: Class Classification and Communicate with Instructors and Ask Questions Crosstabulation

		Communicate with instructors and ask questions?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	26	43	36	7	2	114
	Sophomore	21	20	15	5	1	62
	Junior	20	25	23	2	3	73
	Senior	29	41	28	8	8	114
	Masters	7	9	8	2	2	28
Total		103	138	110	24	16	391

Chart 66: Class Classification and Communicate with Instructors and Ask Questions Crosstabulation

Table 115: Class Classification and Communicate with Instructors and Ask Questions Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.478^{a}		16
	391		
N of Valid Cases			

a. 8 cells (32.0%) have expected count less than 5 . The minimum expected count is 1.15 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 115, $\chi 2(16, n=391)=$ 11.478, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to communicate with instructors and ask questions.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with instructors and ask questions statistically different based on gender? The null hypothesis is that how often a student would communicate with instructors and ask questions is independent of gender. The level of frequency with communication with instructors and gender are independent variables. A table of results for a cross analysis is shown in Table 116 and illustrated in Chart 67.

Table 116: Gender and Communicate with Instructors and Ask Questions Crosstabulation

		Communicate with instructors and ask questions?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	48	61	40	9	2	160
	Male	56	79	70	15	14	234
Total		104	140	110	24	16	394

Chart 67: Gender and Communicate with Instructors and Ask Questions Crosstabulation

Table 117: Gender and Communicate with Instructors and Ask Questions Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.995^{a}		4
N of Valid Cases	394		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.50 .

A χ^{2} value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 117, $\chi 2(4, \mathrm{n}=394)=$ 7.995, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to communicate with instructors and ask questions.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with instructors and ask questions statistically different based on program of study? The null hypothesis is that how often a student would communicate with instructors and ask questions is independent of program of study. The level of frequency with communication with instructors and program of study are independent variables. A table of results for a cross analysis is shown in Table 118 and illustrated in Chart 68.

Table 118: Program of Study and Communicate with Instructors and Ask Questions Crosstabulation

		Communicate with instructors and ask questions?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	33	51	44	5	7	140
	Communications	18	29	19	6	3	75
	Other	50	56	44	13	6	169
Total		101	136	107	24	16	384

Bar Chart

Chart 68: Program of Study and Communicate with Instructors and Ask Questions Crosstabulation

Table 119: Program of Study and Communicate with Instructors and Ask Questions Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.696^{a}		8
N of Valid Cases	384		

a. 2 cells (13.3%) have expected count less than 5 . The minimum expected count is 3.13 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 119, $\chi 2(8, \mathrm{n}=384)=$ 5.696, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to communicate with instructors and ask questions.

Summary. From this question, we learn that students would use a social media to communicate with instructors and ask questions regardless of class classification, age, or program of study.

Q5: Communicate with Classmates and Ask Questions

Participants were asked to rate their expected frequency of communicating with classmates and asking questions using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 58.4% would interact frequently or often with classmates by asking questions and communicating. Only 3.0% responded never. The frequency of responses is shown below in Table 120 and illustrated in Chart 69.

Table 120: Communicate with Classmates and Ask Questions

				Cumulative Percent	
Valid	Frequently	102	25.5	25.7	25.7
	Often	130	32.5	32.7	58.4
	Sometimes	114	28.5	28.7	87.2
	Rarely	39	9.8	9.8	97.0
	Never	12	3.0	3.0	100.0
	Total	397	99.3	100.0	
Missing	No response	3	.8		
Total		100.0			

Communicate with classmates and ask questions?

Chart 69: Communicate with Classmates and Ask Questions

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with classmates and ask questions statistically different based on class classification? The null hypothesis is that how often a student would communicate with classmates and ask questions is independent of class classification. The level of frequency with communication with classmates and class classification are independent variables. A table of results for a cross analysis is shown in Table 121 and illustrated in Chart 70.

Table 121: Class Classification and Communicate with Classmates and Ask Questions Crosstabulation

Chart 70: Class Classification and Communicate with Classmates and Ask Questions Crosstabulation

Table 122: Class Classification and Communicate with Classmates and Ask Questions Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.920^{a}		16
N of Valid Cases	391		

a. 6 cells (24.0%) have expected count less than 5 . The minimum expected count is .86 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 122, $\chi 2(16, n=391)=$ 13.920, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to communicate with classmates and ask questions.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with classmates and ask questions statistically different based on gender? The null hypothesis is that how often a student would communicate with classmates and ask questions is independent of gender. The level of frequency with communication with classmates and gender are independent variables. A table of results for a cross analysis is shown in Table 123 and illustrated in Chart 71.

Table 123: Gender and Communicate with Classmates and Ask Questions Crosstabulation

		Communicate with classmates and ask questions?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	49	52	41	15	2	159
	Male	52	77	72	24	10	235
Total		101	129	113	39	12	394

Chart 71: Gender and Communicate with Classmates and Ask Questions Crosstabulation

Table 124: Gender and Communicate with Classmates and Ask Questions Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.428^{a}		4

a. 1 cell (10.0%) has expected count less than 5 . The minimum expected count is 4.84 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 124, $\chi 2(4, \mathrm{n}=394)=$ 6.428, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to communicate with classmates and ask questions.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with classmates and ask questions statistically different based on program of study? The null hypothesis is that how often a student would communicate with classmates and ask questions is independent of program of study. The level of frequency with communication with classmates and program of study are independent variables. A table of results for a cross analysis is shown in Table 125 and illustrated in Chart 72.

Table 125: Program of Study and Communicate with Classmates and Ask Questions Crosstabulation

	Communicate with classmates and ask questions?					
	Frequently	Often	Sometimes	Rarely	Never	Total
	30	55	40	9	6	140
	21	22	22	9	1	75
Communications	47	49	49	19	5	169
Other	98	126	111	37	12	384

Chart 72: Program of Study and Communicate with Classmates and Ask Questions Crosstabulation

Table 126: Program of Study and Communicate with Classmates and Ask Questions Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.044^{a}		8
N of Valid Cases	384		

a. 2 cells (13.3%) have expected count less than 5 . The minimum expected count is 2.34 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 126, $\chi 2(8, \mathrm{n}=384)=$ 8.044, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to communicate with classmates and ask questions.

Summary. From this question, we learn that students would use a social media to communicate with classmates and ask questions regardless of class classification, age, or program of study.

Q6: Meet New Incoming Students within Major

Participants were asked to rate their expected frequency of using social media for meeting new incoming students within their major using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "rarely or never meeting new incoming students within major." Of the 400 survey respondents, 35.1% would not use a social media tool to meet new incoming students within a major. Only 12.6% responded frequently. The frequency of responses is shown below in Table 127 and illustrated in Chart 73.

Table 127: Meet New Incoming Students within Major

				Cumulative Percent	
Valid	Frequently	50	12.5	12.6	12.6
	Often	87	21.8	22.0	34.6
	Sometimes	120	30.0	30.3	64.9
	Rarely	102	25.5	25.8	90.7
	Never	37	9.3	9.3	100.0
	Total	396	99.0	100.0	
Missing	No response	4	1.0		
Total		400	100.0		

Meet new incoming students within major?

Chart 73: Meet New Incoming Students within Major

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to meet new incoming students within his or her major statistically different based on class classification? The null hypothesis is that how often a student would meet new incoming students is independent of class classification. The level of frequency with meeting new incoming students and class classification are independent variables. A table of results for a cross analysis is shown in Table 128 and illustrated in Chart 74.

Table 128: Class Classification and Meet New Incoming Students within Major Crosstabulation

		Meet new incoming students within major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	15	31	34	27	6	113
	Sophomore	8	21	13	17	4	63
	Junior	9	14	27	19	4	73
	Senior	12	17	38	28	18	113
	Masters	5	3	6	9	5	28
Total		49	86	118	100	37	390

Chart 74: Class Classification and Meet New Incoming Students within Major Crosstabulation

Table 129: Class Classification and Meet New Incoming Students within Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	26.380^{a}		16
N of Valid Cases	390		

a. 2 cells (8.0%) have expected count less than 5 . The minimum expected count is 2.66 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 129, $\chi 2(16, n=390)=$ 26.380, the chi-square results are statistically significant. The null hypothesis is rejected. A student's class classification does affect how frequently he or she would use a social media tool to meet new incoming students within his or her major.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to meet new incoming students within his or her major statistically different based on gender? The null hypothesis is that how often a student would meet new incoming students is independent of gender. The level of frequency with meeting new incoming students and gender are independent variables. A table of results for a cross analysis is shown in Table 130 and illustrated in Chart 75.

Table 130: Gender and Meet New Incoming Students within Major Crosstabulation

		Meet new incoming students within major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	28	39	47	35	10	159
	Male	21	47	73	66	27	234
Total		49	86	120	101	37	393

Chart 75: Gender and Meet New Incoming Students within Major Crosstabulation

Table 131: Gender and Meet New Incoming Students within Major Chi-Square Test

			Asymp. Sig. (2- sided)		
Vearson Chi-Square	10.783^{a}		4		
N of Valid Cases	393				

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 14.97 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 131, $\chi 2(4, \mathrm{n}=393)=$ 10.783, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a social media tool to meet new incoming students within his or her major.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to meet new incoming students within his or her major statistically different based on program of study? The null hypothesis is that how often a student would meet new incoming students is independent of program of study. The level of frequency with meeting new incoming students and program of study are independent variables. A table of results for a cross analysis is shown in Table 132 and illustrated in Chart 76.

Table 132: Program of Study and Meet New Incoming Students within Major Crosstabulation

		Meet new incoming students within major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	10	26	45	43	16	140
	Communications	12	21	22	16	4	75
	Other	25	36	50	40	17	168
Total		47	83	117	99	37	383

Chart 76: Program of Study and Meet New Incoming Students within Major Crosstabulation

Table 133: Program of Study and Meet New Incoming Students within Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.068^{a}		8
N of Valid Cases	383		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.25 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 133, $\chi 2(8, n=383)=$ 11.068 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to meet new incoming students within his or her major.

Summary. From this question, we learn that a student's class classification and gender have an impact on his or her answer for how often he or she would use a social media tool to meet new incoming students within his or her major. Freshmen level students would use a feature to meet new incoming students within their major more than any other class level. Females have a higher rate of frequency to use this type of feature more than males who mainly responded to rarely or never. Program of study did not have a significant impact on the respondent's answer choice.

Q7: Communicate with Department Graduates

Participants were asked to rate their expected frequency of using social media for communicating with department graduates using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "rarely or never communicating with department graduates." Of the 400 survey respondents, 40.8% would not interact with department graduates. Only 9.9% responded frequently. The frequency of responses is shown below in Table 134 and illustrated in Chart 77.

Table 134: Communicate with Department Graduates

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	39	9.8	9.9	9.9
	Often	60	15.0	15.2	25.1
	Sometimes	135	33.8	34.2	59.2
	Rarely	120	30.0	30.4	89.6
	Never	41	10.3	10.4	100.0
	Total	395	98.8	100.0	
Missing	No response	5	1.3		
Total		400	100.0		

Communicate with department graduates?

Chart 77: Communicate with Department Graduates

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with department graduates statistically different based on class classification? The null hypothesis is that how often a student would communicate with department graduates is independent of class classification. The level of frequency with communicating with department graduates and class classification are independent variables. A table of results for a cross analysis is shown in Table 135 and illustrated in Chart 78.

Table 135: Class Classification and Communicate with Department Graduates Crosstabulation

		Communicate with department graduates?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	9	18	48	29	9	113
	Sophomore	5	14	16	23	5	63
	Junior	9	9	27	21	7	73
	Senior	10	16	37	34	16	113
	Masters	5	3	6	10	3	27
Total		38	60	134	117	40	389

Chart 78: Class Classification and Communicate with Department Graduates Crosstabulation

Table 136: Class Classification and Communicate with Department Graduates Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.822^{a}		16
N of Valid Cases	389		

a. 3 cells (12.0%) have expected count less than 5 . The minimum expected count is 2.64 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 136, $\chi 2(16, n=389)=$ 15.822 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to communicate with department graduates.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with department graduates statistically different based on gender? The null hypothesis is that how often a student would communicate with department graduates is independent of gender. The level of frequency with communicating with department graduates and gender are independent variables. A table of results for a cross analysis is shown in Table 137 and illustrated in Chart 79.

Table 137: Gender and Communicate with Department Graduates Crosstabulation

		Communicate with department graduates?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	19	27	57	44	12	159
	Male	19	33	77	75	29	233
Total		38	60	134	119	41	392

Chart 79: Gender and Communicate with Department Graduates Crosstabulation

Table 138: Gender and Communicate with Department Graduates Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	4.915^{a}		4
N of Valid Cases	392		.296

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.41 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 138, $\chi 2(4, \mathrm{n}=392)=$ 4.915, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to communicate with department graduates.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to communicate with department graduates statistically different based on program of study? The null hypothesis is that how often a student would communicate with department graduates is independent of program of study. The level of frequency with communicating with department graduates and program of study are independent variables. A table of results for a cross analysis is shown in Table 139 and illustrated in Chart 80.

Table 139: Program of Study and Communicate with Department Graduates Crosstabulation

		Communicate with department graduates?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	10	21	50	42	16	139
	Communications	12	11	19	25	8	75
	Other	15	25	63	48	17	168
Total		37	57	132	115	41	382

Bar Chart

Chart 80: Program of Study and Communicate with Department Graduates Crosstabulation

Table 140: Program of Study and Communicate with Department Graduates Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.961^{a}		8
N of Valid Cases	382		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.26 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 140, $\chi 2(8, \mathrm{n}=382)=$ 6.961, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to communicate with department graduates.

Summary. From this question, we learn that students are not extremely interested or concerned with communicating with department graduates.

Q8: Sell Books Online Between Students in Department

Participants were asked to rate their expected frequency of selling books online between students in their department using the choices frequently, often, sometimes, rarely, and never. It is interesting to note not one category stood out more than the others. The results are spaced out among the answer choices. The frequency of responses is shown below in Table 141 and illustrated in Chart 81.

Table 141: Sell Books Online Between Students in Department

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	74	18.5	18.7	18.7
	Often	89	22.3	22.5	41.3
	Sometimes	97	24.3	24.6	65.8
	Rarely	63	15.8	15.9	81.8
	Never	72	18.0	18.2	100.0
	Total	395	98.8	100.0	
Missing	No response	5	1.3		
Total		400	100.0		

Chart 81: Sell Books Online Between Students in Department
Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to sell books online between students in his or her department statistically different based on class classification? The null hypothesis is that how often a student would sell books with students within the department is independent of class classification. The level of frequency with selling books and class classification are independent variables. A table of results for a cross analysis is shown in Table 142 and illustrated in Chart 82.

Table 142: Class Classification and Sell Books Online Between Students in Department Crosstabulation

	Sell books online between students in department?						
		Frequently	Often	Sometimes	Rarely		Total
	Freshman	12	27	33	26	15	113
	Sophomore	15	12	17	10	9	63
	Junior	16	18	12	10	17	73
	Senior	25	29	27	11	21	113
	Masters	5	3	7	5	8	28
		73	89	96	62	70	390

Chart 82: Class Classification and Sell Books Online Between Students in Department Crosstabulation

Table 143: Class Classification and Sell Books Online Between Students in Department Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	23.193^{a}		16
	390		
N of Valid Cases			

a. 1 cell (4.0%) has expected count less than 5 . The minimum expected count is 4.45 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 143, $\chi 2(16, n=390)=$ 23.193, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool sell books online between students in his or her department.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to sell books online between students in his or her department statistically different based on gender? The null hypothesis is that how often a student would sell books with students within the department is independent of gender. The level of frequency with selling books and gender are independent variables. A table of results for a cross analysis is shown in Table 144 and illustrated in Chart 83.

Table 144: Gender and Sell Books Online Between Students in Department Crosstabulation

		Sell books online between students in department?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	36	42	35	27	19	159
	Male	37	47	62	36	52	234
Total		73	89	97	63	71	393

Chart 83: Gender and Sell Books Online Between Students in Department Crosstabulation

Table 145: Gender and Sell Books Online Between Students in Department Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.503^{a}		4
N of Valid Cases	393		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 25.49.

A χ^{2} value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 145, $\chi 2(4, \mathrm{n}=393)=$ 10.503 , the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a social media tool sell books online between students in his or her department.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to sell books online between students in his or her department statistically different based on program of study? The null hypothesis is that how often a student would sell books with students within the department is independent of program of study. The level of frequency with selling books and program of study are independent variables. A table of results for a cross analysis is shown in Table 146 and illustrated in Chart 84.

Table 146: Program of Study and Sell Books Online Between Students in Department Crosstabulation

		Sell books online between students in department?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	21	32	40	22	25	140
	Communications	15	20	22	6	12	75
	Other	36	36	33	32	31	168
Total		72	88	95	60	68	383

Bar Chart

Chart 84: Program of Study and Sell Books Online Between Students in Department Crosstabulation

Table 147: Program of Study and Sell Books Online Between Students in Department Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.813^{a}		8
N of Valid Cases	383		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 11.75 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 147, $\chi 2(8, \mathrm{n}=383)=$ 9.813 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool sell books online between students in his or her department.

Summary. From this question, we learn that a student's gender has an impact on his or her answer for how often he or she would use a social media tool sell books online between students in his or her department. Interestingly, females would use the social media tool more than males. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q9: Learn about Elective or Special Courses within Your Major

Participants were asked to rate their expected frequency of learning about elective or special courses within a major using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency in the middle ranges of options. Of the 400 survey respondents, 34.3% would often use a social media feature to learn about elective or special courses within their major. Only 5.6% responded never. The frequency of responses is shown below in Table 148 and illustrated in Chart 85.

Table 148: Learn about Elective or Special Courses within Your Major

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	70	17.5	17.8	17.8
	Often	135	33.8	34.3	52.0
	Sometimes	116	29.0	29.4	81.5
	Rarely	51	12.8	12.9	94.4
	Never	22	5.5	5.6	100.0
	Total	394	98.5	100.0	
Missing	No response	6	1.5		
Total		400	100.0		

Chart 85: Learn about Elective or Special Courses within Your Major

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about elective or special courses within his or her major statistically different based on class classification? The null hypothesis is that how often a student would use a feature to learn about elective or special courses is independent of class classification. The level of frequency with learning about elective or special courses and class classification are independent variables. A table of results for a cross analysis is shown in Table 149 and illustrated in Chart 85.

Table 149: Class Classification and Learn about Elective or Special Courses within Your Major Crosstabulation

Bar Chart

Chart 86: Class Classification and Learn about Elective or Special Courses within Your Major Crosstabulation

Table 150: Class Classification and Learn about Elective or Special Courses within Your Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	18.812^{a}	16	.279
N of Valid Cases	389		

a. 5 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.47 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 150, $\chi 2(16, n=389)=$ 18.812, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to learn about elective or special courses within his or her major.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about elective or special courses within his or her major statistically different based on gender? The null hypothesis is that how often a student would use a feature to learn about elective or special courses is independent of gender. The level of frequency with learning about elective or special courses and gender are independent variables. A table of results for a cross analysis is shown in Table 151 and illustrated in Chart 87.

Table 151: Gender and Learn about Elective or Special Courses within Your Major Crosstabulation

		Learn about elective or special courses within your major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	34	58	45	17	6	160
	Male	36	77	69	34	16	232
Total		70	135	114	51	22	392

Chart 87: Gender and Learn about Elective or Special Courses within Your Major Crosstabulation

Table 152: Gender and Learn about Elective or Special Courses within Your Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.938^{a}		4
	392		
N of Valid Cases	394		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 8.98 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 152, $\chi 2(4, \mathrm{n}=392)=$ 4.938, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to learn about elective or special courses within his or her major.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about elective or special courses within his or her major statistically different based on program of study? The null hypothesis is that how often a student would use a feature to learn about elective or special courses is independent of program of study. The level of frequency with learning about elective or special courses and program of study are independent variables. A table of results for a cross analysis is shown in Table 153 and illustrated in Chart 88.

Table 153: Program of Study and Learn about Elective or Special Courses within Your Major Crosstabulation

		Learn about elective or special courses within your major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	20	51	39	21	7	138
	Communications	18	27	19	8	3	75
	Other	32	52	51	22	12	169
Total		70	130	109	51	22	382

Chart 88: Program of Study and Learn about Elective or Special Courses within Your Major Crosstabulation

Table 154: Program of Study and Learn about Elective or Special Courses within Your Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.675^{a}		8
N of Valid Cases	382		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 4.32.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 154, $\chi 2(8, \mathrm{n}=382)=$ 5.675, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to learn about elective or special courses within his or her major.

Summary. From this question, we learn that students will often or sometimes use a social media to learn about elective or special courses within their major regardless of class classification, gender, or program of study.

Q10: Learn About Courses Offered from Instructors

Participants were asked to rate their expected frequency of learning about courses offered from instructors using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "often or sometimes learn about courses offered from instructors." Of the 400 survey respondents, 65.3% would interact often with a tool to learn about courses offered from instructors. Only 4.3% responded never. The frequency of responses is shown below in Table 155 and illustrated in Chart 89.

Table 155: Learn About Courses Offered from Instructors

				Cumulative Percent	
Valid	Frequently	76	19.0	19.4	19.4
	Often	138	34.5	35.2	54.6
	Sometimes	118	29.5	30.1	84.7
	Rarely	43	10.8	11.0	95.7
	Never	17	4.3	4.3	100.0
	Total	392	98.0	100.0	
Missing	No response	8	2.0		
Total		400	100.0		

Learn about courses offered from instructors?

Chart 89: Learn About Courses Offered from Instructors

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about courses offered from instructors statistically different based on class classification? The null hypothesis is that how often a student would use a feature to learn about courses from instructors is independent of class classification. The level of frequency with learning about courses from instructors and class classification are independent variables. A table of results for a cross analysis is shown in Table 156 and illustrated in Chart 90.

Table 156: Class Classification and Learn About Courses Offered from Instructors Crosstabulation

		Learn about courses offered from instructors?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	18	36	44	10	3	111
	Sophomore	10	29	15	8	1	63
	Junior	17	23	21	7	4	72
	Senior	28	40	24	15	6	113
	Masters	2	9	11	3	3	28
Total		75	137	115	43	17	387

Chart 90: Class Classification and Learn About Courses Offered from Instructors Crosstabulation

Table 157: Class Classification and Learn About Courses Offered from Instructors Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22.162^{2}		16
			.138
N of Valid Cases	387		

a. 6 cells (24.0%) have expected count less than 5 . The minimum expected count is 1.23 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 157, $\chi 2(16, n=387)=$ 22.162, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to learn about courses offered from instructors.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about courses offered from instructors statistically different based on gender? The null hypothesis is that how often a student would use a feature to learn about courses from instructors is independent of gender. The level of frequency with learning about courses from instructors and gender are independent variables. A table of results for a cross analysis is shown in Table 158 and illustrated in Chart 91.

Table 158: Gender and Learn About Courses Offered from Instructors Crosstabulation

		Learn about courses offered from instructors?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	35	55	49	14	4	157
	Male	41	82	68	29	13	233
Total		76	137	117	43	17	390

Chart 91: Gender and Learn About Courses Offered from Instructors Crosstabulation

Table 159: Gender and Learn About Courses Offered from Instructors Chi-Square Test

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square N of Valid Cases	$\begin{array}{r} 4.228^{\mathrm{a}} \\ 390 \\ \hline \end{array}$	4	. 376

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.84 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $159, \chi 2(4, \mathrm{n}=390)=$ 4.228, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to learn about courses offered from instructors.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about courses offered from instructors statistically different based on program of study? The null hypothesis is that how often a student would use a feature to learn about courses from instructors is independent of program of study. The level of frequency with learning about courses from instructors and program of study are independent variables. A table of results for a cross analysis is shown in Table 160 and illustrated in Chart 92.

Table 160: Program of Study and Learn About Courses Offered from Instructors Crosstabulation

		Learn about courses offered from instructors?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	21	56	40	17	6	140
	Communications	15	25	24	6	4	74
	Other	38	52	50	19	7	166
Total		74	133	114	42	17	380

Chart 92: Program of Study and Learn About Courses Offered from Instructors Crosstabulation
Table 161: Program of Study and Learn About Courses Offered from Instructors Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.306^{a}		8
N of Valid Cases	380		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 3.31 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 161, $\chi 2(8, \mathrm{n}=380)=$ 5.306, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to learn about courses offered from instructors.

Summary. From this question, we learn that students will often or sometimes use a social media to learn about courses offered from instructors regardless of class classification, gender, or program of study.

Q11: Learn About Courses Offered from Previous Students

Participants were asked to rate their expected frequency of learning about courses offered from previous students using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "sometimes learning about course offered from previous students." Of the 400 survey respondents, 33.8% would sometimes interact with previous students to learn about courses offered. Only 8.4% responded never. The frequency of responses is shown below in Table 162 and illustrated in Chart 93.

Table 162: Learn About Courses Offered From Previous Students

				Cumulative Percent	
Valid	Frequently	54	13.5	13.7	13.7
	Often	95	23.8	24.1	37.8
	Sometimes	133	33.3	33.8	71.6
	Rarely	79	19.8	20.1	91.6
	Never	33	8.3	8.4	100.0
	Total	394	98.5	100.0	
Missing	No response	6	1.5		
Total		100			

Learn about courses offered from previous students?

Chart 93: Learn About Courses Offered From Previous Students

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about courses offered from previous students statistically different based on class classification? The null hypothesis is that how often a student would use a feature to learn about courses from previous students is independent of class classification. The level of frequency with learning about courses from previous students and class classification are independent variables. A table of results for a cross analysis is shown in Table 163 and illustrated in Chart 94.

Table 163: Class Classification and Learn About Courses Offered From Previous Students Crosstabulation

		Learn about courses offered from previous students?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	9	29	46	22	6	112
	Sophomore	7	16	22	14	3	62
	Junior	14	18	18	18	5	73
	Senior	22	26	33	20	13	114
	Masters	2	5	11	5	5	28
Total		54	94	130	79	32	389

Chart 94: Class Classification and Learn About Courses Offered From Previous Students Crosstabulation

Table 164: Class Classification and Learn About Courses Offered From Previous Students Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	21.393^{a}		16
N of Valid Cases	389		

a. 2 cells (8.0%) have expected count less than 5 . The minimum expected count is 2.30 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 164, $\chi 2(16, n=389)=$ 21.393, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to learn about courses offered from previous students.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about courses offered from previous students statistically different based on gender? The null hypothesis is that how often a student would use a feature to learn about courses from previous students is independent of gender. The level of frequency with learning about courses from previous students and gender are independent variables. A table of results for a cross analysis is shown in Table 165and illustrated in Chart 95.

Table 165: Gender and Learn About Courses Offered From Previous Students Crosstabulation

Chart 95: Gender and Learn About Courses Offered From Previous Students Crosstabulation

Table 166: Gender and Learn About Courses Offered From Previous Students Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.621^{a}		4
N of Valid Cases	392		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 12.82 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 166, $\chi 2(4, \mathrm{n}=392)=$ 3.621, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to learn about courses offered from previous students.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about courses offered from previous students statistically different based on program of study? The null hypothesis is that how often a student would use a feature to learn about courses from previous students is independent of program of study. The level of frequency with learning about courses from previous students and program of study are independent variables. A table of results for a cross analysis is shown in Table 167 and illustrated in Chart 96.

Table 167: Program of Study and Learn About Courses Offered From Previous Students Crosstabulation

		Learn about courses offered from previous students?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	18	36	48	22	16	140
	Communications	12	19	19	19	6	75
	Other	23	38	59	37	10	167
Total		53	93	126	78	32	382

Chart 96: Program of Study and Learn About Courses Offered From Previous Students Crosstabulation

Table 168: Program of Study and Learn About Courses Offered From Previous Students Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	7.701^{a}		8	
N of Valid Cases	382			

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.28 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 168, $\chi 2(8, \mathrm{n}=382)=$ 7.701, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to learn about courses offered from previous students.

Summary. From this question, we learn that students will sometimes use a social media to learn about courses offered from previous students regardless of class classification, gender, or program of study.

Q12: Anonymously Post Feedback on the Course

Participants were asked to rate their expected frequency of anonymously posting feedback on a course using the choices frequently, often, sometimes, rarely, and never. There was a higher rate of frequency for those responding to "frequently and often anonymously posting feedback on a course." Of the 400 survey respondents, 46.1% would interact frequently or often with a tool to anonymously post feedback on a course. Only 9.4% responded never. The frequency of responses is shown below in Table 169 and illustrated in Chart 97.

Table 169: Anonymously Post Feedback on the Course

					Cumulative Percent
Valid	Frequently	84	21.0	21.3	21.3
	Often	98	24.5	24.8	46.1
	Sometimes	100	25.0	25.3	71.4
	Rarely	76	19.0	19.2	90.6
	Never	37	9.3	9.4	100.0
	Total	395	98.8	100.0	
Missing	No response	5	1.3		
Total		100.0			

Anonymously post feedback on a course?

Chart 97: Anonymously Post Feedback on the Course

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to anonymously post feedback on a course statistically different based on class classification? The null hypothesis is that how often a student would use a feature to anonymously post feedback is independent of class classification. The level of frequency with anonymously posting feedback and class classification are independent variables. A table of results for a cross analysis is shown in Table 170 and illustrated in Chart 98.

Table 170: Class Classification and Anonymously Post Feedback on the Course Crosstabulation

		Anonymously post feedback on a course?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	12	24	35	30	11	112
	Sophomore	15	20	8	16	4	63
	Junior	17	18	23	9	6	73
	Senior	35	25	27	15	12	114
	Masters	4	10	5	5	4	28
Total		83	97	98	75	37	390

Chart 98: Class Classification and Anonymously Post Feedback on the Course Crosstabulation

Table 171: Class Classification and Anonymously Post Feedback on the Course Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$32.655^{\text {a }}$	16	.008
N of Valid Cases	390		

a. 1 cell (4.0%) has expected count less than 5 . The minimum expected count is 2.66 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 171, $\chi 2(16, n=390)=$ 32.655, the chi-square results are statistically significant. The null hypothesis is rejected. A student's class classification does affect how frequently he or she would use a social media tool to anonymously post feedback on a course.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to anonymously post feedback on a course statistically different based on gender? The null hypothesis is that how often a student would use a feature to anonymously post feedback is independent of gender. The level of frequency with anonymously posting feedback and gender are independent variables. A table of results for a cross analysis is shown in Table 172 and illustrated in Chart 99.

Table 172: Gender and Anonymously Post Feedback on the Course Crosstabulation

		Anonymously post feedback on a course?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	36	34	42	36	10	158
	Male	47	64	58	39	27	235
Total		83	98	100	75	37	393

Chart 99: Gender and Anonymously Post Feedback on the Course Crosstabulation

Table 173: Gender and Anonymously Post Feedback on the Course Chi-Square Test

			Asymp. Sig. (2- sided)
Pearson Chi-Square	6.287^{a}		4
N of Valid Cases	393		.179

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 14.88 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 173, $\chi 2(4, \mathrm{n}=393)=$ 6.287, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to anonymously post feedback on a course.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to anonymously post feedback on a course statistically different based on program of study? The null hypothesis is that how often a student would use a feature to anonymously post feedback is independent of program of study. The level of frequency with anonymously posting feedback and program of study are independent variables.

A table of results for a cross analysis is shown in Table 174 and illustrated in Chart 100.

Table 174: Program of Study and Anonymously Post Feedback on the Course Crosstabulation

		Anonymously post feedback on a course?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	27	45	35	21	12	140
	Communications	10	21	21	13	10	75
	Other	44	31	41	37	15	168
Total		81	97	97	71	37	383

Chart 100: Program of Study and Anonymously Post Feedback on the Course Crosstabulation
Table 175: Program of Study and Anonymously Post Feedback on the Course Chi-Square Test

		Value	df
Asymp. Sig. (2-sided)			
Pearson Chi-Square	14.021^{a}		8

N of Valid Cases
a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.25 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 175, $\chi 2(8, \mathrm{n}=383)=$ 14.021, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to anonymously post feedback on a course.

Summary. From this question, we learn that a student's class classification has an impact on his or her answer for how often he or she would use a social media tool to anonymously post feedback on a course. Interestingly, the more "experience" in the college environment the more likelihood a student would use a feature to post anonymous feedback. Gender and program of study did not have a significant impact on the respondent's answer choice.

Q13: Learn of Special Campus Speakers or Activities within Your Major

Participants were asked to rate their expected frequency of learning about special campus speaker or activities within their major using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 30.7% would interact sometimes with a social media tool to learn about special campus speakers or activities within their major. Only 8.4% responded never. The frequency of responses is shown below in Table 176 and illustrated in Chart 101.

Table 176: Learn of Special Campus Speakers or Activities within Your Major

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	76	19.0	19.3	19.3
	Often	103	25.8	26.1	45.4
	Sometimes	121	30.3	30.7	76.1
	Rarely	61	15.3	15.5	91.6
	Never	33	8.3	8.4	100.0
	Total	394	98.5	100.0	
Missing	No response	6	1.5		
Total		400	100.0		

Learn of special campus speakers or activities within your major?

Chart 101: Learn of Special Campus Speakers or Activities within Your Major

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about special campus speakers or activities within the major statistically different based on class classification? The null hypothesis is that how often a student would use a feature to learn about special campus speakers or activities within the major is independent of class classification. The level of frequency with learning about speakers or activities and class classification are independent variables. A table of results for a cross analysis is shown in Table 177 and illustrated in Chart 102.

Table 177: Class Classification and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation

		Learn of special campus speakers or activities within your major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	21	28	33	20	11	113
	Sophomore	16	14	16	12	5	63
	Junior	15	18	27	8	4	72
	Senior	21	37	31	14	11	114
	Masters	2	6	11	6	2	27
Total		75	103	118	60	33	389

Chart 102: Class Classification and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation

Table 178: Class Classification and Learn of Special Campus Speakers or Activities within Your Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.304^{a}	16	
N of Valid Cases	389		

a. 2 cells (8.0%) have expected count less than 5 . The minimum expected count is 2.29 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 178, $\chi 2(16, n=389)=$ 13.304, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to learn about special campus speakers or activities within the major.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about special campus speakers or activities within the major statistically different based on gender? The null hypothesis is that how often a student would use a feature to learn about special campus speakers or activities within the major is independent of gender. The level of frequency with learning about speakers or activities and gender are independent variables. A table of results for a cross analysis is shown in Table 179 and illustrated in Chart 103.

Table 179: Gender and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation

		Learn of special campus speakers or activities within your major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	44	42	40	23	9	158
	Male	31	61	80	38	24	234
Total		75	103	120	61	33	392

Chart 103: Gender and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation

Table 180: Gender and Learn of Special Campus Speakers or Activities within Your Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.444^{a}		4
N of Valid Cases	392		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 13.30.

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 108, $\chi 2(4, \mathrm{n}=392)=$ 15.444 , the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a social media tool to learn about special campus speakers or activities within the major.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to learn about special campus speakers or activities within the major statistically different based on program of study? The null hypothesis is that how often a student would use a feature to learn about special campus speakers or activities within the major is independent of program of study. The level of frequency with learning about speakers or activities and program of study are independent variables. A table of results for a cross analysis is shown in Table 181 and illustrated in Chart 104.

Table 181: Program of Study and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation

		Learn of special campus speakers or activities within your major?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	14	39	48	27	11	139
	Communications	17	20	21	8	9	75
	Other	43	44	44	24	13	168
Total		74	103	113	59	33	382

Chart 104: Program of Study and Learn of Special Campus Speakers or Activities within Your Major Crosstabulation

Table 182: Program of Study and Learn of Special Campus Speakers or Activities within Your Major Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.858^{a}		8
N of Valid Cases	382		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.48 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 182, $\chi 2(8, \mathrm{n}=382)=$ 15.858 , the chi-square results are statistically significant. The null hypothesis is rejected. A student's program of study does affect how frequently he or she would use a social media tool to learn about special campus speakers or activities within the major.

Summary. From this question, we learn that a student's gender and program of study has an impact on his or her answer for how often he or she would use a social media tool to learn about special campus speakers or activities within the major. Females would frequently use this feature versus males who would only sometimes or rarely use this feature. Students in computer science and other majors have a high rate of often or sometimes using a tool like this whereas communication students might use this tool. Class classification did not have a significant impact on the respondent's answer choice.

Q14: Find Out What Social Activities Your Classmates Are Doing

Participants were asked to rate their expected frequency of finding out what social activities classmates are participating in using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 51.2% would interact often or sometimes with a feature to find out what social activities classmates are doing. Only 9.7% responded never. The frequency of responses is shown below in Table 183 and illustrated in Chart 105.

Table 183: Find Out What Social Activities Your Classmates Are Doing

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	55	13.8	14.0	14.0
	Often	95	23.8	24.2	38.2
	Sometimes	106	26.5	27.0	65.1
	Rarely	99	24.8	25.2	90.3
	Never	38	9.5	9.7	100.0
	Total	393	98.3	100.0	
Missing	No response	7	1.8		
Total		400	100.0		

Find out what social activities your classmates are doing?

Find out what social activities your classmates are doing?
Chart 105: Find Out What Social Activities Your Classmates Are Doing

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to find out what social activities your classmates are doing within the major statistically different based on class classification? The null hypothesis is that how often a student would use a feature to find out what other classmates are doing is independent of class classification. The levels of frequency with finding out social activities classmates are involved in and class classification are independent variables. A table of results for a cross analysis is shown in Table 184 and illustrated in Chart 106.

Table 184: Class Classification and Find Out What Social Activities Your Classmates Are Doing Crosstabulation

		Find out what social activities your classmates are doing?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	17	40	27	25	5	114
	Sophomore	16	13	14	13	6	62
	Junior	7	22	18	18	8	73
	Senior	13	15	37	33	14	112
	Masters	2	5	8	8	4	27
Total		55	95	104	97	37	388

Chart 106: Class Classification and Find Out What Social Activities Your Classmates Are Doing Crosstabulation

Table 185: Class Classification and Find Out What Social Activities Your Classmates Are Doing Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	30.722^{a}	16	
N of Valid Cases	388		

a. 2 cells (8.0%) have expected count less than 5 . The minimum expected count is 2.57 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 185, $\chi 2(16, n=388)=$ 30.722 , the chi-square results are statistically significant. The null hypothesis is rejected. A student's class classification does affect how frequently he or she would use a social media tool to find out what social activities your classmates are doing within the major.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to find out what social activities your classmates are doing within the major statistically different based on gender? The null hypothesis is that how often a student would use a feature to find out what other classmates are doing is independent of gender. The level of frequency with finding out social activities classmates are involved in and gender are independent variables. A table of results for a cross analysis is shown in Table 186 and illustrated in Chart 107.

Table 186: Gender and Find Out What Social Activities Your Classmates Are Doing Crosstabulation

		Find out what social activities your classmates are doing?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	29	37	41	39	13	159
	Male	26	58	64	59	25	232
Total		55	95	105	98	38	391

Chart 107: Gender and Find Out What Social Activities Your Classmates Are Doing Crosstabulation

Table 187: Gender and Find Out What Social Activities Your Classmates Are Doing Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.233^{a}		4
N of Valid Cases	391		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.45 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 187, $\chi 2(4, \mathrm{n}=391)=$ 4.233 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would use a social media tool to find out what social activities your classmates are doing within the major.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to find out what social activities your classmates are doing within the major statistically different based on program of study? The null hypothesis is that how often a student would use a feature to find out what other classmates are doing is independent of program of study. The level of frequency with finding out social activities classmates are involved in and program of study are independent variables. A table of results for a cross analysis is shown in Table 188 and illustrated in Chart 108.

Table 188: Program of Study and Find Out What Social Activities Your Classmates Are Doing Crosstabulation

	Find out what social activities your classmates are doing?						
	Frequently	Often	Sometimes	Rarely	Never	Total	
	Computer Science	16	27	44	38	14	139
	Communications	11	20	19	17	8	75
	Other	27	47	39	41	14	168
Total	54	94	102	96	36	382	

Chart 108: Program of Study and Find Out What Social Activities Your Classmates Are Doing Crosstabulation

Table 189: Program of Study and Find Out What Social Activities Your Classmates Are Doing Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.537^{a}		8
N of Valid Cases	382		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.07.

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 189, $\chi 2(8, \mathrm{n}=382)=$ 6.537, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to find out what social activities your classmates are doing within the major.

Summary. From this question, we learn that a student's class classification has an impact on his or her answer for how often he or she posts would use a social media tool to find out what social activities your classmates are doing within the major. Freshmen will use a social media tool to find out what social activities other classmates are participating in. It is interesting to notice the decline in frequency from freshmen level to graduate level. Gender and program of study did not have a significant impact on the respondent's answer choice.

Q15: Find Information on Academic Organizations within Your Department

Participants were asked to rate their expected frequency of finding information on academic organizations within their department using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "often or sometimes finding information on academic organizations within your department." Of the 400 survey respondents, 58.9% would interact with a social media tool to find information on academic organizations within their department. Only 6.1% responded never. The frequency of responses is shown below in Table 190 and illustrated in Chart 109.

Table 190: Find Information on Academic Organizations within Your Department					
					Cumulative Percent
Valid	Frequently	66	16.5	16.8	16.8
	Often	119	29.8	30.2	47.0
	Sometimes	113	28.2	28.7	75.6
	Rarely	72	18.0	18.3	93.9
	Never	24	6.0	6.1	100.0
	Total	394	98.5	100.0	
Missing	No response	6	1.5		
Total		100			

Find information on academic organizations within your department?

Find information on academic organizations within your department?
Chart 109: Find Information on Academic Organizations within Your Department

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to find information about academic organization with the department statistically different based on class classification? The null hypothesis is that how often a student would use a feature to find information on academic organizations within the department is independent of class classification. The levels of frequency with finding academic organization information and class classification are independent variables. A table of results for a cross analysis is shown in Table 191 and illustrated in Chart 110.

Table 191: Class Classification and Find Information on Academic Organizations within Your Department Crosstabulation

		Find information on academic organizations within your department?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	19	34	34	21	5	113
	Sophomore	13	16	22	10	2	63
	Junior	12	25	22	10	4	73
	Senior	20	38	23	21	11	113
	Masters	2	6	8	9	2	27
Total		66	119	109	71	24	389

Chart 110: Class Classification and Find Information on Academic Organizations within Your Department Crosstabulation

Table 192: Class Classification and Find Information on Academic Organizations within Your Department Chi-Square Test

Chi-Square Test					
	Value	df	Asymp. Sig. (2-sided)		
Pearson Chi-Square	$15.928^{\text {a }}$		16		
N of Valid Cases	389				

a. 5 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.67 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 192, $\chi 2(16, n=389)=$ 15.928 , the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to find information about academic organization with the department.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to find information about academic organization with the department statistically different based on gender? The null hypothesis is that how often a student would use a feature to find information on academic organizations within the department is independent of gender. The levels of frequency with finding academic organization information and gender are independent variables. A table of results for a cross analysis is shown in Table 193 and illustrated in Chart 111.

Table 193: Gender and Find Information on Academic Organizations within Your Department Crosstabulation

		Find information on academic organizations within your department?					
		Frequently		Often	Sometimes	Rarely	Never
Total							
Gender	Female	38	49	41	24	7	159
	Male	28	70	70	48	17	233
Total		66	119	111	72	24	392

Bar Chart

Chart 111: Gender and Find Information on Academic Organizations within Your Department Crosstabulation

Table 194: Gender and Find Information on Academic Organizations within Your Department Chi-Square

Test			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.401^{a}		4
	392		
N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 9.73 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 194, $\chi 2(4, \mathrm{n}=392)=$ 11.401, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a social media tool to find information about academic organization with the department.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to find information about academic organization with the department statistically different based on program of study? The null hypothesis is that how often a student would use a feature to find information on academic organizations within the department is independent of program of study. The levels of frequency with finding academic organization information and program of study are independent variables. A table of results for a cross analysis is shown in Table 195 and illustrated in Chart 112.

Table 195: Program of Study and Find Information on Academic Organizations within Your Department
Crosstabulation

		Find information on academic organizations within your department?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	15	44	40	31	8	138
	Communications	14	23	20	13	5	75
	Other	36	50	47	25	11	169
Total		65	117	107	69	24	382

Bar Chart

Chart 112: Program of Study and Find Information on Academic Organizations within Your Department Crosstabulation

Table 196: Program of Study and Find Information on Academic Organizations within Your Department

	Chi-Square Test		
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.822^{a}		8
N of Valid Cases	382		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 4.71 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 196, $\chi 2(8, \mathrm{n}=382)=$ 7.822, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to find information about academic organization with the department.

Summary. From this question, we learn that a student's gender has an impact on his or her answer for how often he or she would use a social media tool to find information about academic organization with the department. Females will frequently use this tool more than males. Males, however, will often or sometimes use this feature if offered. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q16: Find an Internship/Job with Your Expected Degree

Participants were asked to rate their expected frequency of using social media for finding an internship and/or job with their expected degree using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "frequently or often finding an internship/job with your expected degree." Of the 400 survey respondents, 71.4% would use a social media feature to find an internship/job with their expected degree. Only 6.6% responded never. The frequency of responses is shown below in Table 197 and illustrated in Chart 113.

Table 197: Find an Internship/Job with Your Expected Degree

				Cumulative Percent	
Valid	Frequently	163	40.8	41.3	41.3
	Often	119	29.8	30.1	71.4
	Sometimes	65	16.3	16.5	87.8
	Rarely	22	5.5	5.6	93.4
	Never	26	6.5	6.6	100.0
	Total	395	98.8	100.0	
Missing	No response	5	1.3		
Total		100.0			

Find an internshipljob with your expected degree?

Find an internship/job with your expected degree?
Chart 113: Find an Internship/Job with Your Expected Degree

Class Classification. Based on survey responses, are the responses for how frequently a student would use a social media tool to find an internship and/or job with his or her expected degree statistically different based on class classification? The null hypothesis is that how often a student would use a feature to find an internship and/or job with his or her expected degree is independent of class classification. The levels of frequency with finding internships or jobs and class classification are independent variables. A table of results for a cross analysis is shown in Table 198 and illustrated in Chart 114.

Table 198: Class Classification and Find an Internship/Job with Your Expected Degree Crosstabulation

		Find an internship/job with your expected degree?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	48	34	19	5	8	114
	Sophomore	29	18	11	3	2	63
	Junior	31	21	12	7	2	73
	Senior	49	37	14	4	9	113
	Masters	6	5	9	3	4	27
Total		163	115	65	22	25	390

Chart 114: Class Classification and Find an Internship/Job with Your Expected Degree Crosstabulation

Table 199: Class Classification and Find an Internship/Job with Your Expected Degree Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	20.900^{a}		16	
N of Valid Cases	390			

a. 7 cells (28.0%) have expected count less than 5 . The minimum expected count is 1.52 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 199, $\chi 2(16, n=390)=$ 20.900, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would use a social media tool to find an internship and/or job with his or her expected degree.

Gender. Based on survey responses, are the responses for how frequently a student would use a social media tool to find an internship and/or job with his or her expected degree statistically different based on gender? The null hypothesis is that how often a student would use a feature to find an internship and/or job with his or her expected degree is independent of gender. The levels of frequency with finding internships or jobs and gender are independent variables. A table of results for a cross analysis is shown in Table 200 and illustrated in Chart 115.

Table 200: Gender and Find an Internship/Job with Your Expected Degree Crosstabulation

		Find an internship/job with your expected degree?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	86	39	22	7	6	160
	Male	77	78	43	15	20	233
Total		163	117	65	22	26	393

Chart 115: Gender and Find an Internship/Job with Your Expected Degree Crosstabulation

Table 201: Gender and Find an Internship/Job with Your Expected Degree Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.783^{a}		4
N of Valid Cases	393		.001

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 8.96 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 201, $\chi 2(4, \mathrm{n}=393)=$ 17.783, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would use a social media tool to find an internship and/or job with his or her expected degree.

Program of Study. Based on survey responses, are the responses for how frequently a student would use a social media tool to find an internship and/or job with his or her expected degree statistically different based on program of study? The null hypothesis is that how often a student would use a feature to find an internship and/or job with his or her expected degree is independent of program of study. The levels of frequency with finding internships or jobs and program of study are independent variables. A table of results for a cross analysis is shown in Table 202 and illustrated in Chart 116.

Table 202: Program of Study and Find an Internship/Job with Your Expected Degree Crosstabulation

Chart 116: Program of Study and Find an Internship/Job with Your Expected Degree Crosstabulation

Table 203: Program of Study and Find an Internship/Job with Your Expected Degree Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.963^{a}		8
N of Valid Cases	383		

a. 2 cells (13.3%) have expected count less than 5 . The minimum expected count is 4.31 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 203, $\chi 2(8, \mathrm{n}=383)=$ 3.963, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would use a social media tool to find an internship and/or job with his or her expected degree.

Summary. From this question, we learn that a student's gender has an impact on his or her answer for how often he or she would use a social media tool to find an internship and/or job with his or her expected degree. Females would use this feature quite frequently whereas the males are split between using the tool frequently and often. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Future Social Media Development Specific to a University Questions:

The following questions asked the respondents to rate their frequency of use of features and tools specific to university relations. What features from Facebook could be used in a new social media tool for higher education specific to the university as a whole, and how do class classification, age, gender, and program of study factor into the surveyors' responses?

Q1: Get Information of College Events/Workshops/Career Fairs

Participants were asked to rate their expected frequency of using a university-specific social media tool to get information about workshops, career fairs, and college events using the choices frequently, often, sometimes, rarely, and never. There was a high rate of frequency for those responding to "often and sometimes getting information about college events/workshops/career fairs." Of the 400 survey respondents, 66.4% would often or sometimes use a university-specific social media tool to find out more information for career advantages. Only 3.1% responded never. The frequency of responses is shown below in Table 204 and illustrated in Chart 117.

Table 204: Get Information of College Events/Workshops/Career Fairs

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Frequently	83	20.8	21.1	21.1
	Often	122	30.5	31.0	52.2
	Sometimes	139	34.8	35.4	87.5
	Rarely	37	9.3	9.4	96.9
	Never	12	3.0	3.1	100.0
	Total	393	98.3	100.0	
Missing	No response	7	1.8		
Total		400	100.0		

Chart 117: Get Information of College Events/Workshops/Career Fairs Class Classification.
Based on survey responses, are the responses for how frequently a student would use a University specific social media tool to get information about career events and workshops statistically different based on class classification? The null hypothesis is that how often a student would search for college events/workshops/and career fairs is independent of class classification. The level of frequency with searching for information and class classification are independent variables. A table of results for a cross analysis is shown in Table 205 and illustrated in Chart 118.

Table 205: Class Classification and Get Information of College Events/Workshops/Career Fairs Crosstabulation

		Get information of college events/workshops/career fairs?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	26	35	40	12	3	116
	Sophomore	17	16	20	8	1	62
	Junior	14	26	26	6	0	72
	Senior	23	35	40	7	6	111
	Masters	3	8	12	2	2	27
Total		83	120	138	35	12	388

Bar Chart

Chart 118: Class Classification and Get Information of College Events/Workshops/Career Fairs Crosstabulation

Table 206: Class Classification and Get Information of College Events/Workshops/Career Fairs Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	$13.226^{\text {a }}$		16	
N of Valid Cases	388			.656

a. 6 cells (24.0%) have expected count less than 5 . The minimum expected count is .84 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 206, $\chi 2(16, n=388)=$ 13.266, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would search for information on college events, career fairs, and workshops.

Gender. Based on survey responses, does a student's gender have a significant relationship with his or her evaluation of how frequently he or she would use a universityspecific social media tool to get information about career events and workshops? The null hypothesis is that how often a student searches for information about career events and workshops is independent of gender. The level of frequency with searching for information and gender are independent variables. It is interesting to note the differences in responses between female and males. The numbers of rarely and never posting are both relatively low in each male and female category; however, the responses differ in correspondence to frequently through sometimes. A table of results for a cross analysis is shown in Table 207 and illustrated in Chart 119.

Table 207: Gender and Get Information of College Events/Workshops/Career Fairs Crosstabulation

		Get information of college events/workshops/career fairs?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	48	57	45	10	1	161
	Male	35	65	93	26	11	230
Total		83	122	138	36	12	391

Bar Chart

Chart 119: Gender and Get Information of College Events/Workshops/Career Fairs Crosstabulation

Table 208: Gender and Get Information of College Events/Workshops/Career Fairs Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	23.248^{a}		4
N of Valid Cases	391		

a. 1 cell (10.0%) has expected count less than 5 . The minimum expected count is 4.94 .

A χ^{2} value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 208, $\chi 2(4, \mathrm{n}=391)=$ 23.248 , the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would search for events, workshops, and career fairs specific to his or her University.

Program of Study. Based on survey responses, does a student's program of study have a significant relationship with his or her evaluation of how frequently he or she would use a university-specific social media tool to get information about career events and workshops? The null hypothesis is that how often a student searches for information about career events and workshops is independent of program of study. The level of frequency with searching for information and program of study are independent variables. The data for this question appears to be interestingly significant. A table of results for a cross analysis is shown in Table 209 and illustrated in Chart 120.

Table 209: Program of Study and Get Information of College Events/Workshops/Career Fairs Crosstabulation

	Get information of college events/workshops/career fairs?					Total
	Frequently	Often	Sometimes	Rarely	Never	
Program of Study Computer Science	23	45	52	11	6	137
Communications	21	19	28	7	0	75
Other	38	57	53	15	6	169
Total	82	121	133	33	12	381

Chart 120: Program of Study and Get Information of College Events/Workshops/Career Fairs Crosstabulation

Table 210: Program of Study and Get Information of College Events/Workshops/Career Fairs Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.512^{a}		8
N of Valid Cases	381		

a. 2 cells (13.3%) have expected count less than 5 . The minimum expected count is 2.36 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 210, $\chi 2(8, \mathrm{n}=381)=$ 8.512, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently would get information on college events, workshops, and career fairs specific to a university.

Summary. A student's gender has an impact on his or her evaluation of how frequently he or she would use a university-specific social media tool to get information about career events and workshops. Females would frequently use this feature more versus males. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q2: Receive Free Merchandise from the College

Participants were asked to rate their expected frequency of using a university-specific social media tool to receive free merchandise from the college using the choices frequently, often, sometimes, rarely, and never. Of the 400 survey respondents, 39.8% would interact with a university-specific tool to receive free merchandise from the college. Only 4.1% responded never. The frequency of responses is shown below in Table 211 and illustrated in Chart 121.

Table 211: Receive Free Merchandise from the College

					Cumulative Percent
Valid	Frequently	157	39.3	39.8	39.8
	Often	111	27.8	28.2	68.0
	Sometimes	79	19.8	20.1	88.1
	Rarely	31	7.8	7.9	95.9
	Never	16	4.0	4.1	100.0
	Total	694	98.5	100.0	
Missing	No response	600	1.5		
Total		100.0			

Receive free merchandise from the college?

Receive free merchandise from the college?
Chart 121: Receive Free Merchandise from the College

Class Classification. Based on survey responses, are the responses for how frequently a student would interact with a University specific social media tool to receive free merchandise statistically different based on class classification? The null hypothesis is that how often a student would interact is independent of class classification. The level of frequency with interaction and class classification are independent variables. A table of results for a cross analysis is shown in Table 212 and illustrated in Chart 122.

Table 212: Class Classification and Receive Free Merchandise from the College Crosstabulation

		Receive free merchandise from the college?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	48	38	22	6	2	116
	Sophomore	30	14	14	3	1	62
	Junior	27	21	15	6	3	72
	Senior	41	34	19	11	7	112
	Masters	9	4	7	4	3	27
Total		155	111	77	30	16	389

Chart 122: Class Classification and Receive Free Merchandise from the College Crosstabulation

Table 213: Class Classification and Receive Free Merchandise from the College Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.684^{a}		16
	389		
N of Valid Cases			

a. 7 cells (28.0%) have expected count less than 5 . The minimum expected count is 1.11 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 213, $\chi 2(16, n=389)=$ 17.684, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would interact with a university-specific social media tool to receive free college merchandise.

Gender. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to receive free merchandise statistically different based on gender? The null hypothesis is that how often a student would interact is independent of gender. The level of frequency with interaction and gender are independent variables. There is a higher than expected rate of both genders responding to rarely and never interacting to receive free merchandise. A table of results for a cross analysis is shown in Table 214 and illustrated in Chart 123.

Table 214: Gender and Receive Free Merchandise from the College Crosstabulation

		Receive free merchandise from the college?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	75	46	26	10	4	161
	Male	81	65	52	21	12	231
Total		156	111	78	31	16	392

Chart 123: Gender and Receive Free Merchandise from the College Crosstabulation

Table 215: Gender and Receive Free Merchandise from the College Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.802^{a}		4
N of Valid Cases	392		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.57 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 215, $\chi 2(4, \mathrm{n}=392)=$ 7.802, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's gender does not affect how frequently he or she would interact with a universityspecific social media tool to receive free college merchandise.

Program of Study. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to receive free merchandise statistically different based on program of study? The null hypothesis is that how often a student would interact is independent of program of study. The level of frequency with interaction and program of study are independent variables. A table of results for a cross analysis is shown in Table 216 and illustrated in Chart 124.

Table 216: Program of Study and Receive Free Merchandise from the College Crosstabulation

		Receive free merchandise from the college?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	51	42	24	13	7	137
	Communications	32	20	17	4	2	75
	Other	71	46	34	12	7	170
Total		154	108	75	29	16	382

Chart 124: Program of Study and Receive Free Merchandise from the College Crosstabulation

Table 217: Program of Study and Receive Free Merchandise from the College Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.535^{a}		8
N of Valid Cases	382		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 3.14 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table $217, \chi 2(8, \mathrm{n}=382)=$ 3.535, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would interact with a university-specific social media tool to receive free college merchandise.

Summary. From this question, we learn that a student's class classification, gender, and program of study does not affect the response to how frequently he or she would interact with a university-specific social media tool to receive free college merchandise. From the results, it would appear that the prospect of receiving free college merchandise would not enhance a student's reason for interacting with a university-specific social media tool.

Q3: Interact with College or University Administrators (Deans, Vice Presidents, etc.)

Participants were asked to rate their expected frequency of using a university-specific social media tool to interact with college or university administrators by using the choices frequently, often, sometimes, rarely, and never. Interestingly, the results were spread across the board. Of the 400 survey respondents, 34.4% would sometimes use this feature to interact with college or university administrators. Seven percent responded never. The frequency of responses is shown below in Table 218 and illustrated in Chart 125.

Table 218: Interact with College or University Administrators (Deans, Vice Presidents, etc.)

				Cumulative Percent	
Valid	Frequently	50	12.5	12.7	12.7
	Often	90	22.5	22.9	35.6
	Sometimes	135	33.8	34.4	70.0
	Rarely	90	22.5	22.9	92.9
	Never	28	7.0	7.1	100.0
	Total	793	98.3	100.0	
Missing	No response	700	1.8		
Total		100.0			

Interact with college or university administrators (Deans, Vice Presidents, etc.)?

Chart 125: Interact with College or University Administrators (Deans, Vice Presidents, etc.)

Class Classification. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to interact with college or university administrators statistically different based on class classification? The null hypothesis is that how often a student would interact is independent of class classification. The level of frequency with interaction and class classification are independent variables. A table of results for a cross analysis is shown in Table 219 and illustrated in Chart 126.

Table 219: Class Classification and Interact with College or University Administrators (Deans, Vice Presidents, etc.)

Chart 126: Class classification and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation

Table 220: Class Classification and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.473^{a}	16	
N of Valid Cases	388		

a. 3 cells (12.0%) have expected count less than 5 . The minimum expected count is 1.95 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 220, $\chi 2(16, n=388)=$ 15.473, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would interact with a university-specific social media tool to interact with college or university administrators.

Gender. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to interact with college or university administrators statistically different based on gender? The null hypothesis is that how often a student would interact is independent of gender. The level of frequency with interaction and gender are independent variables. It is interesting to note the similarities in responses between female and males. A table of results for a cross analysis is shown in Table 221 and illustrated in Chart 127.

Table 221: Gender and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation

		Interact with college or university administrators (Deans, Vice Presidents, etc.)?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	26	44	57	28	5	160
	Male	24	46	77	61	23	231
Total		50	90	134	89	28	391

Chart 127: Gender and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation

Table 222: Gender and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	14.503^{a}		4
N of Valid Cases	391		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 11.46 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 222, $\chi 2(4, \mathrm{n}=391)=$ 14.503, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would interact with a university-specific social media tool to interact with college or university administrators. Females are more likely to interact with administrators versus males.

Program of Study. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to interact with college or university administrators statistically different based on program of study? The null hypothesis is that how often a student would interact is independent of program of study. The level of frequency with interaction and program of study are independent variables. The data for this question appears to be interestingly significant. Note that students mostly responded to sometimes and rarely. A table of results for a cross analysis is shown in Table 223 and illustrated in Chart 128.

Table 223: Program of Study and Interact with College or University Administrators (Deans, Vice Presidents, etc.) Crosstabulation

		Interact with college or university administrators (Deans, Vice Presidents, etc.)?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of	Computer Science	11	28	47	37	14	137
Study	Communications	11	16	29	13	5	74
	Other	27	45	54	35	9	170
Total		49	89	130	85	28	381

Bar Chart

[^8] Crosstabulation

Table 224: Program of Study and Interact with College or University Administrators (Deans, Vice Presidents, etc.)

	Chi-Square Test			
	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	10.935^{a}		8	
N of Valid Cases	381			.205

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.44 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 224, $\chi 2(8, \mathrm{n}=381)=$ 10.935, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would interact with a university-specific social media tool to interact with college or university administrators.

Summary. From this question, we learn that a student's gender has an impact on how frequently he or she would interact with a university-specific social media tool to interact with college or university administrators. Females would interact more versus males. Class classification and program of study did not have a significant impact on the respondent's answer choice.

Q4: Find Information about Student Organizations

Participants were asked to rate their expected frequency of using a university-specific social media tool to find information about student organizations using the choices frequently, often, sometimes, rarely, and never. There was a higher rate of frequency for those responding to "sometimes using a university-specific social media tool to find information about student organizations." Of the 400 survey respondents, 35.1% would sometimes find information about student organizations. Only 4.8% responded never. The frequency of responses is shown below in Table 225 and illustrated in Chart 129.

Table 225: Find Information about Student Organizations

				Cumulative Percent	
Valid	Frequently	76	19.0	19.3	19.3
	Often	112	28.0	28.5	47.8
	Sometimes	138	34.5	35.1	83.0
	Rarely	48	12.0	12.2	95.2
	Never	19	4.8	4.8	100.0
	Total	393	98.3	100.0	
Missing	No response	7	1.8		
Total		400	100.0		

Find information about student organizations?

Chart 129: Find Information about Student Organizations

Class Classification. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to find information about student organizations statistically different based on class classification? The null hypothesis is that how often a student would find information is independent of class classification. The level of frequency with finding information and class classification are independent variables. A table of results for a cross analysis is shown in Table 226 and illustrated in Chart 130.

Table 226: Class Classification and Find Information about Student Organizations Crosstabulation

Chart 130: Class Classification and Find Information about Student Organizations Crosstabulation

Table 227: Class Classification and Find Information about Student Organizations Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	20.738^{a}		16
N of Valid Cases	388		

a. 4 cells (16.0%) have expected count less than 5 . The minimum expected count is 1.25 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 227, $\chi 2(16, n=388)=$ 20.738, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's class classification does not affect how frequently he or she would interact with a university-specific social media tool to find information about student organizations.

Gender. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to find information about student organizations statistically different based on gender? The null hypothesis is that how often a student would find information is independent of gender. The level of frequency with finding information and gender are independent variables. A table of results for a cross analysis is shown in Table 228 and illustrated in Chart 131.

Table 228: Gender and Find Information about Student Organizations Crosstabulation

		Find information about student organizations?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	45	50	49	12	4	160
	Male	31	62	87	36	15	231
Total		76	112	136	48	19	391

Chart 131: Gender and Find Information about Student Organizations Crosstabulation

Table 229: Gender and Find Information about Student Organizations Chi-Square Test

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$20.639^{\text {a }}$	4	. 000
N of Valid Cases	391		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.77 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 229, $\chi 2(4, \mathrm{n}=391)=$ 20.639, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would interact with a university-specific social media tool to find information about student organizations.

Program of Study. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to find information about student organizations statistically different based on program of study? The null hypothesis is that how often a student would find information is independent of program of study. The level of frequency with finding information and program of study are independent variables. Note that most students would only sometimes use this feature if it were available. A table of results for a cross analysis is shown in Table 230 and illustrated in Chart 132.

Table 230: Program of Study and Find Information about Student Organizations Crosstabulation

		Find information about student organizations?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	15	37	55	20	10	137
	Communications	18	22	22	11	1	74
	Other	42	52	53	16	7	170
Total		75	111	130	47	18	381

Chart 132: Program of Study and Find Information about Student Organizations Crosstabulation

Table 231: Program of Study and Find Information about Student Organizations Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.918^{a}	8	.031
N of Valid Cases	381		

a. 1 cell (6.7%) has expected count less than 5 . The minimum expected count is 3.50 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 231, $\chi 2(8, \mathrm{n}=381)=$ 16.918, the chi-square results are statistically significant. The null hypothesis is rejected. A student's program of study does affect how frequently he or she would interact with a universityspecific social media tool to find information about student organizations.

Summary. From this question, we learn that a student's gender and program of study has an impact on his or her answer for how often he or she would use a university-specific feature to find information about student organizations. Females would use this feature more than males. Students in programs other than mass communications and computer science have a higher frequency of frequently to sometimes using a feature to find information about student organizations. Class classification did not have a significant impact on the respondent's answer choice.

Q5: Find Scholarships Offered by the College

Participants were asked to rate their expected frequency of using a specific university social media tool to find scholarships offered by the college using the choices frequently, often, sometimes, rarely, and never. As expected, there was a high rate of frequency for those responding to "frequently or often find scholarships offered by the college." Of the 400 survey respondents, 44.7% would frequently use this feature to find scholarships offered by the college. Only 4.1% responded never. The frequency of responses is shown below in Table 232 and illustrated in Chart 133.

Table 232: Find Scholarships Offered by the College

				Cumulative Percent	
Valid	Frequently	176	44.0	44.7	44.7
	Often	108	27.0	27.4	72.1
	Sometimes	73	18.3	18.5	90.6
	Rarely	21	5.3	5.3	95.9
	Never	16	4.0	4.1	100.0
	Total	394	98.5	100.0	
Missing	No response	6	1.5		
Total		100			

Find scholarships offered by the college?

Chart 133: Find Scholarships Offered by the College

Class Classification. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to find scholarships offered by the college statistically different based on class classification? The null hypothesis is that how often a student would search for scholarships is independent of class classification. The level of frequency with searching for scholarships and class classification are independent variables. A table of results for a cross analysis is shown in Table 233 and illustrated in Chart 134.

Table 233: Class Classification and Find Scholarships Offered by the College Crosstabulation

		Find scholarships offered by the college?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Class classification	Freshman	57	35	19	2	3	116
	Sophomore	36	15	9	2	0	62
	Junior	30	21	15	5	1	72
	Senior	46	33	17	7	9	112
	Masters	7	3	12	4	1	27
Total		176	107	72	20	14	389

Chart 134: Class Classification and Find Scholarships Offered by the College Crosstabulation

Table 234: Class Classification and Find Scholarships Offered by the College Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	38.809^{a}		16
N of Valid Cases	389		

a. 9 cells (36.0%) have expected count less than 5 . The minimum expected count is .97 .

A $\chi 2$ value of 26.296 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 234, $\chi 2(16, n=389)=$ 38.809, the chi-square results are statistically significant. The null hypothesis is rejected. A student's class classification does affect how frequently he or she would interact with a university-specific social media tool to find scholarships offered by the college.

Gender. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to find scholarships offered by the college statistically different based on gender? The null hypothesis is that how often a student would search for scholarships is independent of gender. The level of frequency with searching for scholarships and gender are independent variables. It is interesting to note the similarities in responses between female and males. A table of results for a cross analysis is shown in Table 235 and illustrated in Chart 135.

Table 235: Gender and Find Scholarships Offered by the College Crosstabulation

		Find scholarships offered by the college?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Gender	Female	85	45	21	6	4	161
	Male	91	62	51	15	12	231
Total		176	107	72	21	16	392

Chart 135: Gender and Find Scholarships Offered by the College Crosstabulation

Table 236: Gender and Find Scholarships Offered by the College Chi-Square Test

			Asymp. Sig. (2- sided)	
Pearson Chi-Square	11.117^{a}		4	
N of Valid Cases	392		.025	

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.57 .

A $\chi 2$ value of 9.488 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 236, $\chi 2(4, \mathrm{n}=392)=$ 11.117, the chi-square results are statistically significant. The null hypothesis is rejected. A student's gender does affect how frequently he or she would interact with a university-specific social media tool to scholarships offered by the college.

Program of Study. Based on survey responses, are the responses for how frequently a student would interact with a university-specific social media tool to find scholarships offered by the college statistically different based on program of study? The null hypothesis is that how often a student would search for scholarships is independent of program of study. The level of frequency with searching for scholarships and program of study are independent variables. A table of results for a cross analysis is shown in Table 237 and illustrated in Chart 136.

Table 237: Program of Study and Find Scholarships Offered by the College Crosstabulation

		Find scholarships offered by the college?					Total
		Frequently	Often	Sometimes	Rarely	Never	
Program of Study	Computer Science	51	38	30	11	7	137
	Communications	38	18	13	3	3	75
	Other	84	48	27	6	5	170
Total		173	104	70	20	15	382

Bar Chart

Chart 136: Program of Study and Find Scholarships Offered by the College Crosstabulation

Table 238: Program of Study and Find Scholarships Offered by the College Chi-Square Test

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.111^{a}		8
N of Valid Cases	382		

a. 2 cells (13.3%) have expected count less than 5 . The minimum expected count is 2.95 .

A $\chi 2$ value of 15.507 or greater would be needed to reject the null hypothesis at a 95% confidence level (i.e. a 0.05 significance level). Since as shown in Table 238, $\chi 2(8, \mathrm{n}=382)=$ 9.111, the chi-square results are not statistically significant. The null hypothesis is not rejected. A student's program of study does not affect how frequently he or she would interact with a university-specific social media tool to find scholarships offered by the college.

Summary. From this question, we learn that a student's gender and class classification has an impact on his or her answer for how often he or she would use a university-specific social media tool to find scholarships offered by the college. Males had a more positive reaction to this question than the females. Freshmen have a higher rate of response to frequently and often using a social media feature to find scholarships offered by the college. Program of study did not have a significant impact on the respondent's answer choice.

CHAPTER 7

CONCLUSIONS AND ANALYSIS

Based on the statistical analysis presented in the last chapter, the following are statistically significant observations gained from the survey conducted:

A student's class classification does affect how frequently he or she would:

1) post pictures on Facebook. The results show that freshmen students are frequently posting pictures to Facebook whereas the older students are only sometimes or even rarely posting pictures.
2) create events on Facebook. Seniors appear to be the only class that reported a wide range of responses for how frequently they create events on Facebook.
3) use a social media tool to meet new incoming students within his or her major. Freshmen students are more likely to use this feature more than other class levels.
4) use a social media tool to find out what social activities his or her classmates are doing within in his or her major.
5) use a social media tool to anonymously post feedback on a course with seniors predominating.
6) interact with a university-specific social media tool to find scholarships offered by the college with freshmen students predominating.

A student's gender does affect how frequently he or she would:

1) post on a friend's wall, statuses, or comments with female students posting more frequently.
2) like a friend's wall, statuses, or comments with females frequently using this feature more than males.
3) post pictures with females posting pictures more frequently than males.
4) search for people via Facebook with females searching more frequently than males.
5) use a tool to view tips posted by an instructor. Females are more likely to use this feature than males.
6) use a social media tool to upload and view group documents and/or files. Males would use this feature more than females.
7) use a social media tool to meet new incoming students within his or her major with females predominating.
8) use a social media tool sell books online between students in his or her department with females using it more than males.
9) use a social media tool to learn about special campus speakers or activities within the major with females using the feature more frequently than males.
10) use a social media tool to find information about academic organizations within the department with females predominating.
11) use a social media tool to find an internship and/or job with his or her expected degree with females frequently using this feature more than males. Males, however, will use this feature but not at the frequency rate of females.
12) search for events, workshops, and career fairs specific to his or her university with females using the feature frequently and males only sometimes.
13) interact with a university-specific social media tool to interact with college or university administrators. Females are more likely to use social media to interact with administrators versus males.
14) interact with a university-specific social media tool to find information about student organizations with females frequently and often using the tool and males only sometimes.
15) interact with a university-specific social media tool to find scholarships offered by the college with females predominating. Note, however, that males will use the tool but not at the same frequency of females.

A student's program of study does affect how frequently he or she would:

1) post on a friend's wall, statuses, or comments with those in other programs predominating.
2) post pictures on Facebook with those in other programs predominating.
3) use a social media tool to learn about special campus speakers or activities within the major with those in other programs predominating.
4) interact with a University specific social media tool to find information about student organizations with those in other programs predominating.

With the growth of Web 2.0 media, higher education institutions have identified social media networking as an immediate strategic priority. The following strategies for managing social media are devised from the results of the Social Media Survey conducted to determine how students presently use social media. Learning about the types of content that students see as valuable aided in the creation of social media features and tools needed by higher education institutions to interact with its constituents. There are interesting aspects that both designers and developers should keep in mind for creating and implementing a new social media tool.

Recommended University Social Media Structure

University related social media tools should be focused and maintained in the following structure: 1) an overall university presence, 2) colleges (e.g. College of Arts and Sciences), and 3) departments (e.g. Computer Science \& Information Technology). From the survey analysis, questions were asked regarding features being implemented and specific to departments of a university. Each question was analyzed to see if respondents' responses were dependent on their programs of study. The only features of a new social media tool that would be dependent on a student's program of study are: 1) picture posting related, 2) searching for companies, 3) learning about campus speakers or events, and 4) finding information out about student organizations university-wide. Since only four questions out of thirty-three questions are dependent on a student's specific program of study, it would be wise for a University to focus more on college or department level social media tools. There should still be a main University/College presence, but narrowing it down to a department level will increase student interaction and participation with university-sponsored social media.

Within an overall university presence there should be information for clubs, social activities, and university-sponsored events. If colleges and departments of a university create a social media presence, then links to those presences should be listed on the main university site. Extracurricular club information (e.g. Student Government Association, Greek Life, or Christian groups) pertaining to the university as a whole, should also be linked to in the overall universitymaintained social medium. Most student organizations have their personal social media tool to maintain, so students mainly responded to only sometimes using a university-run social media tool to find information about student organizations. Overall, students will frequently use a university-maintained social media tool to find scholarships offered and get free merchandise.

Recommended Anonymous Feedback

For departments, offer students a way to anonymously post feedback on a course that other students can view. With implementing a three-tiered architecture for social media implementation, an outline of what content goes with each tier needs to be created. For departments, features need to be available in regards to the coursework involved. For example, respondents are favorable towards a feature involving anonymously posting feedback on a specific course. For instance, think about the site Rate My Professor. Instead of allowing students to comment on the instructor, allow them to comment on the class as a whole. What will a future student will learn? Are there any requirements for the course? Is there anything that would be helpful to know before taking the course (i.e. knowing a type of programming language before taking the course)? These are the types of questions that should be seen in an anonymous feedback feature of a social media tool implemented by a university. From the survey responses, freshmen rated the frequency of use of this feature the least. Since most freshmen are unsure of their major of choice, it is understandable as to why this feature would be rated "rarely" rather than "frequently" like the senior status respondents. Seniors, having spent more time in department courses than general education courses, would use this feature more frequently as they would know what specific courses to review before registering in them.

Recommended Classroom Communication

Students will use a social media tool more frequently if it provides a way to communicate with classmates and instructors. Students are using technology and social media tools to communicate with friends on the Internet. If a new social media tool included features such as Facebook's internal chat or Google's Talk chat system, then more students will use a universityadministered social media tool. From the Facebook question, Q7: Send messages through the

Inbox, only 4.5% of the survey respondents responded to never using the Facebook Inbox feature. From the future social media development question, respondents responded to frequently or often using a department or major administered social media tool to communicate with group members and instructors. Most respondents would use the tool more often to communicate with instructors to ask assignment related questions versus to communicate with other classmates and ask questions.

Providing a social media feature at the department level would allow instructors to interact more with their students outside the classroom. Students could use social media to communicate with an instructor versus e-mail or actually going to an instructor's office hours. Allowing students to ask questions to an instructor through social media could grow into a discussion board-like feature. The instructor or other classmates could respond to the question and allow others to view the conversation, however, the main focus would be for the instructor to respond.

Recommended Faculty and Staff Involvement

Instructors, faculty, and staff need to become more involved with social media in order to interact successfully with students. Students will use a social media tool to ask instructors questions about course work, future courses being taught, and general department questions. Instructors can be more involved with student group work by providing feedback through a social media tool that all members can view. Students would be more willing to submit questions to an instructor, faculty, or staff member though social media. Over half of the respondents responded to frequently communicating with instructors and asking questions about courses offered through a social media tool.

Fifty-nine percent of the respondents responded to frequently using a social media feature to find information on academic organizations within the department. Departments can set advisors up on the social media tool to inform students about upcoming courses, student organizations, and career fairs pertaining to the department. A list of scholarships offered by the department should also be maintained at this level of social media versus college wide. Scholarship searches can become cumbersome. Universities can gain a better understanding of students' needs by maintaining department level scholarships and university-wide scholarships separately in social media.

Recommended Textbook Exchange

In addition to the campus bookstores, offer a feature in the college and department administered social media tools. Interestingly enough, respondents responded most to never using the Marketplace feature on Facebook. Seventy-eight percent responded never out of the 396 respondents who have Facebook. Then why offer a feature to sell and/or exchange textbooks for students? In the future social media development questions (specific to a respondents department or major), respondents responded more favorably than to the Facebook question. Although there was not one frequency that was greater than the other, there was a steady response among frequently, often, and sometimes using a social media feature to sell books online between students in the department. Offering this feature in the college-administered tool will allow all students to exchange and/or sell books for general education courses.

Females would tend to use this feature more; however, if this feature was advertised by instructors and departments then it would grow exponentially and might decrease complaints regarding the price of textbooks. It would also get students to interact more with each other and
the college and/or department. If the tool is implemented correctly, then students will spread word-of-mouth advertising about the textbook feature.

Recommended Advertising

The previous conclusion brings up the next topic of saving money for the university, college, and/or department in regards to advertising a social media presence. Participants were asked to specify what would lead them to join a social media site approved by the university. Again, if a university wishes to increase membership of its social media networks, then those in charge of maintaining the social media tools need to know the best ways to advertise its presence. It was expected that respondents would respond more favorably of finding social media sites approved by the university through the school, college, or department homepages. Signs, posters, and orientation booklets was another choice that had unexpected low responses.

To advertise a university-approved social media tool, use e-mail or word-of-mouth from department advisors, professors, and staff to invite students to a social media tool. Once these invites get started and spread throughout the students, then other students will join that site from invites from fellow students. Again, invites from department advisors, professors, staff, and fellow students had the biggest influence for a participant to join a social media site. Having links posted on the school homepage came in a distant third, and was followed by posters, signs, and orientation booklets.

Recommended Demographic-Based Advertising

From the survey results, females tend to use social media more than males. If a school is predominately males, alter the features of the social media provided to fit the males' needs and wants. Males will interact with social media that integrates group work into one tool, provides a
way to communicate with instructors, and offers a way to get them ahead in the workforce (i.e. internships and/or jobs).

Females will use social media to communicate with other students and instructors. They want a way to keep in touch with those that see on a day-to-day basis in the classroom. Females will also use a social media tool to exchange and/or sell books to other students in their department. Females also want a way to get ahead in the professional world by finding internships and jobs pertaining to their degree of study.

There are also differences between freshmen and senior students. Senior students are more interested in getting ahead in the professional environment since they will be graduating in the near future. Freshmen students are more concerned with meeting students in their department, learning about the courses available to them, and finding scholarships to help them financially through the rest of their college career. Senior students are also more concerned with providing feedback on professors that other students can view. Once students reach the senior level, they want to do what they can to help "advise" the younger students.

Recommended Social Media Features

Since this will be a tool for higher education purposes, development needs to focus on functionality specific to coursework, group collaboration, real-time capabilities, and student/teacher interactions. From the general social media questions, 90.5% of the respondents responded to having a Facebook account. The most used social media was as expected, Facebook. Why not base a new social media tool off of features that are already familiar to the target audience?

Features from Facebook such as group chat, posting items (discussion starters), and the ability to comment on posted items should be implemented into a tool for higher education.

Students could have the ability to "post" a question that would be viewable to all their classmates and instructor who could "comment" back on that post. Group chats are available in Facebook, where a single person can create a group and add members. Then a person can start a chat with that group and any members currently online can write back in the chat window.

Features from Google Documents and Groups should also be implemented into a new tool for higher education. Participants were asked to rate their expected frequency of uploading and viewing group documents and/or files. Ninety-two percent responded to frequently, often, or sometimes using a feature to upload and view group documents and/or files. Google Documents and Groups allow users to set up groups through e-mail to view files and documents. Google Documents allows group members to work on a document in real-time. A user is able to view who is reviewing the document, or who is also making changes to the document. The ability to use a feature like this in the classrooms could be beneficial to all parties involved, including the instructor who could provide feedback on the Google Document or Group discussion board.

Features from Desire to Learn, Blackboard, or any eLearning software used by universities can be used to enhance the group features and instructor interaction with students. From the future social media development questions, respondents were asked to select their level of frequency to learn about courses offered from instructors and special upcoming elective courses. Of the 400 survey respondents, 81.5% responded to frequently, often, or sometimes using a social media feature to learn about upcoming elective or special courses within their major. Eighty-five percent responded to frequently, often, or sometimes using a social media feature to learn about courses offered from instructors. Instead of listing just the courses that students are taking, information on current and future courses offered by that instructor should be
available as well for students to view. The ability to ask instructors about that course through a link would increase the interaction with students.

CHAPTER 8

FUTURE WORK

The research presented in this thesis can be used as a design guideline for programming and implementing a new social media tool specifically for higher educations. Using the data gathered from the Social Media Survey, a wireframe can be created and tested in focus groups for usability and likeability among undergraduate students. A wireframe will be lower in cost than a full-on implementation. Once the wireframe interface has been accepted by focus groups, programming the functionality can begin. Before implementing the product, focus groups should take place among students and staff and faculty groups.

If users are accepting of the tool, are able to use the tool easily, and like the user interface, then an implementation plan needs to be created. How will universities implement this tool into their colleges and departments? Will it be easy for all users to learn or will training sessions need to take place? How is the university going to advertise the new social media tool? These are all questions that will have to be answered once the new social media tool is ready for deployment.

WORKS CITED

Brzozowski, Michael J, Thomas Sandholm, and Tad Hogg. "Effects of feedback and peer pressure on contributions to enterprise social media." Proceedings of the ACM 2009 international Conference on Supporting Group Work. Sanibel Island: ACM, 2009. 61-70.

Chartier, David. "Future of Social Media: The Walls Come Crumbling Down." Wired. June 02, 2009. http://www.wired.com/dualperspectives/article/news/2009/06/dp_social_media_ars (accessed November 15, 2009).

East Tennessee State University. Common Data Set 2008-2009. Johnson City, TN, April 30, 2009. http://www.etsu.edu/opa/documents/CDS2008_2009.pdf (accessed January 6, 2011).

Falls, Jason. "Predicting the Future of Social Media." Social Media Explorer. December 3, 2008. http://www.socialmediaexplorer.com/2008/12/03/predicting-the-future-of-social-media/ (accessed November 15, 2009).

Higher Education Research Institute. "College Freshmen and Online Social Networking Sites." Los Angeles, CA, September 2007.

Kohut, Andrew, Scott Keeter, Carroll Doherty, and Michael Dimock. Internet's Broader Role in Campaign 2008. Washington D.C.: Pew Research Center for the People and the Press, 2008.

Laurie, Mike. "7 Technologies Shaping the Future of Social Media." Mashable: The Social Media Guide. June 1, 2009. http://mashable.com/2009/06/01/social-media-future-tech/ (accessed November 15, 2009).

Lenhart, Amanda, Kristen Purcell, Aaron Smith, and Kathryn Zickuhr. Social Media \& Mobile Internet Use Among Teens and Young Adults. Washington, D.C.: Pew Internet \& American Life Project, 2010.

Murugesan, San. "Understandig Web 2.0." IT Professional 9, no. 4 (July 2007): 34-41.
O'Reilly, Tim. "What is Web 2.0?" O'Reilly. September 30, 2005. http://oreilly.com/lpt/a/6228 (accessed October 5, 2009).

Plourde, Mathieu. Wikis in Higher Education. IT-User Services, Delaware: University of Delaware, 2008.

Reuben, Rachel. "The Use of Social Media in Higher Education for Marketing and Communications: A Guide for Professionals in Higher Education." .eduGuru. August 19, 2008. http://doteduguru.com/id423-social-media-uses-higher-education-marketingcommunication.html (accessed October 19, 2009).

Shang, Shari S.C., Ya-Ling Wu, and Oliver C. Hou. "An Analysis of Business Models of Web 2.0 Application." Proceedings of the 2009 Sixth international Conference on information Technology: New Generations - Volume 00. Washingo, DC: IEEE Computer Society, 2009. 314-319.

Stelzner, Michael A. "Social Media Marketing." White Paper Source. March 2009. http://www.whitepapersource.com/socialmediamarketing/report/ (accessed September 22, 2009).

Wetpaint and Altimeter Group. "www.ENGAGEMENTdb.com." www.ENGAGEMENTdb.com/report. July 20, 2009. http://www.engagementdb.com/downloads/ENGAGEMENTdb_Report_2009.pdf (accessed September 10, 2009).

APPENDICES

Appendix A: Social Media Survey

The following question pertains to future social media developments specific to the University

If the following were available in a social media
tool for the University, how often would you use
them to...
:---
2. Receive free merchandise from the college?
3. Interact with college or university administrators (Deans, Vice Presidents, etc.)?
4. Find information about student organizations?
5. Find scholarships offered by the college?

Please share any other ways you would like a social media tool to be used by ETSU:

My primary program is (e.g. CSCI, Management \& Marketing, Biology):
\qquad

[^9]1. What social media tools do you currently have an account with? Check all that apply.

- Blog	- MySpace	- Wikis
- Facebook	- PodCasts	- (other)
- Google Buzz	- Twitter	- None of these (skip to
- Linkedln	- YouTube	question 3)
Please rank 5 of the below based on your level of usage. (1-5 with 1 being most used)		
Blog		
Facebook ___ PodCasts ____ (other		
_ Google Buzz	Twitte	
Linkedln	_ YouTube	

3. Which of the following would lead you to join a social media site approved by the University? Check all that apply.

Invite from a department advisor/professor

- Invite from a fellow student
- School homepage (www.etsu.edu)

Department page (www.etsu.edu/biology, for example)
Posters, signs, orientation booklets

- Other:

The following question is in regards to Facebook

Rate the following features of Facebook based
on how often you use them:

The following question pertains to future social media developments specific to your department/major
If the following were available in a social media
tool, how often would you use them to...

Please continue to the next page

Please continue to the next page

Appendix B: Preliminary Research

State	School
AL	University of Alabama
AL	Auburn
AK	University of Alaska Anchorage
AK	University of Alaska Fairbanks
AZ	University of Arizona
AZ	Arizona State University
AR	University of Arkansas
AR	Arkansas State University
CA	University of California, Berkeley
CA	California State University, Los Angeles
CO	Colorado State University
CO	University of Colorado at Boulder
CT	Central Connecticut State University
CT	University of Connecticut
DE	Delaware State University
DE	University of Delaware
FL	Florida State University
FL	University of Florida
GA	Georgia Institute of Technology
GA	University of Georgia
HI	University of Hawaii at Manoa
HI	University of Hawaii at Hilo
ID	Boise State University
ID	University of Idaho
IL	Southwestern Illinois College
IL	University of Illinois at Chicago
IN	Indiana State University
IN	Indiana University Bloomington
IA	Iowa State University
IA	The University of lowa
KS	Kansas State University
KS	University of Kansas
KY	University of Kentucky
KY	Western Kentucky University
LA	Louisiana State University
LA	University of Louisiana at Lafayette
ME	University of Maine
ME	University of Southern Maine
MD	Towson University

$2009-2010$	Links on	Prospective/	Date
Enrollment	homepage	Admissions	viewed
28,807	FTY	-	$2 / 22 / 2010$
24,602	FTY	-	$2 / 22 / 2010$
15,662	none	none	$2 / 23 / 2010$
9,828	FY	-	$2 / 23 / 2010$
29,716	F	-	$2 / 23 / 2010$
54,277	none	TFY	$2 / 23 / 2010$
15,426	YF		$2 / 23 / 2010$
9,764	none		$2 / 23 / 2010$
25,530	none	none	$3 / 9 / 2010$
15,352	none	none	$3 / 9 / 2010$
25,413	none	none	$3 / 9 / 2010$
25,408	none	none	$3 / 9 / 2010$
9,989	FT	-	$3 / 9 / 2010$
21,496	TYF	-	$3 / 9 / 2010$
3,756	FTY	-	$3 / 9 / 2010$
16,521	none	FT	$3 / 9 / 2010$
29,869	none	none	$3 / 9 / 2010$
36,386	none	none	$3 / 9 / 2010$
13,000	T	none	$3 / 9 / 2010$
26,142	none	none	$3 / 9 / 2010$
13,781	F	F	$3 / 9 / 2010$
3,974	TFY	-	$3 / 9 / 2010$
19,667	TFY	-	$3 / 9 / 2010$
11,957	none	none	$3 / 9 / 2010$
16,496	F	F	$3 / 9 / 2010$
15,964	none	none	$3 / 9 / 2010$
8,460	none	FTY	$3 / 9 / 2010$
32,490	none	none	$3 / 9 / 2010$
22,521	FT	-	$3 / 9 / 2010$
20,823	none	F	$3 / 9 / 2010$
23,581	none	none	$3 / 11 / 2010$
21,322	TFY	-	$3 / 11 / 2010$
27,000	TFY	-	$3 / 11 / 2010$
16,947	none	FTY	$3 / 11 / 2010$
23,017	TFY	-	$3 / 11 / 2010$
16,361	none	none	$3 / 11 / 2010$
9,667	TF	none	$3 / 11 / 2010$
7,870	TFY	-	$3 / 11 / 2010$
none	none	$3 / 11 / 2010$	

MD	University of Maryland at College Park	26,475	F	none	3/11/2010
MA	University of Massachusetts Boston	11,041	TFY	-	3/11/2010
MA	University of Massachusetts Lowell	8,031	TFY	-	3/11/2010
MI	Michigan State University	36,489	TFY	-	3/11/2010
MI	University of Michigan Ann Arbor	38,927	FY	-	3/11/2010
MN	Southwest Minnesota State University	6,114	TFY	-	3/11/2010
MN	University of Minnesota Twin Cities	32,557	none	FY	3/11/2010
MS	Mississippi State University	14,135	FTY	-	3/11/2010
MS	University of Mississippi	13,204	FTY	-	3/11/2010
MO	Missouri State University	17,024	none	FTY	3/11/2010
MO	University of Missouri St. Louis	12,358	none	F	3/11/2010
MT	Montana State University	10,840	none	none	3/11/2010
MT	The University of Montana	12,421	none	none	3/11/2010
NE	University of Nebraska-Lincoln	18,955	FTY	-	3/12/2010
NE	University of Nebraska Omaha	11,327	none	none	3/12/2010
NV	Nevada State College	2,126	FTY	-	3/13/2010
NV	University of Nevada Las Vegas	22,708	FTY	-	3/13/2010
NH	Keene State College	5,147	none	FTY	3/13/2010
NH	University of New Hampshire	12,226	F	none	3/13/2010
NJ	Rutgers University	29,095	none	none	3/13/2010
NJ	The College of New Jersey	5,600	FT	-	3/13/2010
NM	New Mexico State University	14,698	none	FTY	3/13/2010
NM	The University of New Mexico	20,047	FTY	-	3/13/2010
NY	State University of New York	423,371	FTY	-	3/13/2010
NY	The City University of New York	213,293	none	none	3/13/2010
NC	North Carolina State University	23,042	Y	none	3/13/2010
NC	University of North Carolina	17,981	FTY	-	3/13/2010
ND	North Dakota State University	11,243	none	F	3/13/2010
ND	University of North Dakota	10,440	FTY	-	3/13/2010
OH	Ohio State University	49,195	FY	FTY	3/13/2010
OH	University of Cincinnati	30,417	none	none	3/13/2010
OK	Oklahoma State University	17,849	none	none	3/13/2010
OK	University of Central Oklahoma	14,413	FT	-	3/13/2010
OR	Oregon State University	18,067	none	F	3/13/2010
OR	University of Oregon	16,681	none	FT	3/13/2010
PA	Penn State University Park	38,630	none	FY	3/13/2010
PA	University of Pittsburgh	18,031	none	none	3/13/2010
RI	Rhode Island College	7,601	F	none	3/13/2010
RI	University of Rhode Island	13,000	FTY	-	3/13/2010
SC	Clemson University	14,713	FTY	-	3/13/2010
	University of South Carolina at				
SC	Columbia	20,494	FT	-	3/13/2010
SD	South Dakota State University	10,532	FT	-	3/14/2010

SD	University of South Dakota	7,098	none	none	$3 / 14 / 2010$
TN	East Tennessee State University	11,648	none	none	$3 / 14 / 2010$
TN	University of Tennessee	20,400	FTY	-	$3 / 14 / 2010$
TX	Texas A\&M University	38,809	FTY	-	$3 / 14 / 2010$
TX	University of Texas at Austin	39,000	none	none	$3 / 14 / 2010$
UT	Utah State University	13,394	FTY	-	$3 / 14 / 2010$
UT	University of Utah	22,149	none	none	$3 / 14 / 2010$
VT	University of Vermont	10,371	none	FTY	$3 / 14 / 2010$
VT	Vermont Technical College	1,649	none	none	$3 / 14 / 2010$
VA	University of Virginia	14,297	none	none	$3 / 14 / 2010$
VA	Virginia Tech	23,512	none	F	$3 / 14 / 2010$
WA	University of Washington Seattle	29,397	FY	none	$3 / 14 / 2010$
WA	Washington State University	21,726	TY	none	$3 / 14 / 2010$
WV	Marshall University	9,314	none	TY	$3 / 14 / 2010$
WV	West Virginia University	21,720	FTY	-	$3 / 14 / 2010$
WI	University of Wisconsin - Madison	29,153	FTY	-	$3 / 14 / 2010$
WI	University of Wisconsin - Milwaukee	24,333	none	none	$3 / 14 / 2010$
WY	Central Wyoming College	2,160	none	FT	$3 / 14 / 2010$
WY	University of Wyoming	9,544	FTY	-	$3 / 14 / 2010$
			F=		
			Facebook		
			T=		

Facebook

State	School		Fans	Videos	Notes	Links	Albums	Photos	Pages	Events	Discussions
AL	University of Alabama	Fan	26,522	39	1,118	116	2	0	37	0	0
AL	Auburn	Fan	40,078	16	0	RSS	8	0	14	175 past	0
AK	University of Alaska Anchorage	Group	1,125	0	0	17	0	0	0	0	17
AK	University of Alaska Fairbanks	Fan	2,304	10	45	5	10	12	13	3 past	4
AZ	University of Arizona	Fan	28,751	35	2,017	0	2	133	36	1	0
AZ	Arizona State University	Fan	16,494	0	0	84	12	7	39	4 past	25
AR	University of Arkansas	Fan	8,323	40	0	RSS	5	82	20	6 past	7
AR	Arkansas State University	Fan	1,508	0	0	1	1	0	0	0	0
CA	University of California, Berkeley California State University, Los	Fan	24,616	0	0	RSS	1	134	5	0	25
CA	Angeles	Group	1,294	0	0	0	0	19	0	0	53
CO	Colorado State University	Fan	17,937	2	0	96	2	25	19	0	3
CO	University of Colorado at Boulder Central Connecticut State	Fan	5,251	6	0	RSS	2	0	0	0	0
CT	University	Fan	2,195	0	77	34	10	5	0	5 past	2
CT	University of Connecticut	Fan	227	0	0	8	3	0	0	1	1
DE	Delaware State University	Fan	2,493	3	150	0	8	4	0	6	7
DE	University of Delaware	Fan	9,036	1	0	92	5	5	9	5	1
FL	Florida State University	Fan	26,100	0	0	0	4	35	9	0	8
FL	University of Florida	Fan	2,873	0	0	0	2	4	8	0	0
GA	Georgia Institute of Technology	Fan	9,011	5	2	102	4	0	56	0	0
GA	University of Georgia	Fan	17,235	4	616	0	5	0	80	0	0
HI	University of Hawaii at Manoa	Fan	4,722	0	696	RSS	17	11	21	10	7
HI	University of Hawaii at Hilo	Fan	31	0	7	0	0	0	24	4	0
ID	Boise State University	Fan	2,641	0	249	0	10	11	7	0	0
ID	University of Idaho	none	0	0	0	0	0	0	0	0	0

IL	Southwestern Illinois College	Fan	958	0	0	6	1	0	2	0	0
IL	University of Illinois at Chicago	Fan	3,447	1	2	RSS	0	0	11	0	2
IN	Indiana State University	Fan	2,845	33	0	0	64	20	7	2	6
IN	Indiana University Bloomington	Fan	54,043	2	0	RSS	7	9	35	7 past	15
IA	lowa State University	Fan	2,434	4	1	RSS	2	3	15	6 past	1
IA	The University of Iowa	Fan	5,839	7	84	RSS	6	5	66	2 past	1
KS	Kansas State University	Fan	24,621	0	0	RSS	48	0	17	0	23
KS	University of Kansas	Fan	78,114	31	2	93	23	50	93	0	5
KY	University of Kentucky	Fan	47,195	6	0	0	3	10	6	1 past	0
KY	Western Kentucky University	Profile	196	0	0	0	0	0	0	0	0
LA	Louisiana State University University of Louisiana at	Fan	155,631	11	77	745	19	143	67	55 past	8
LA	Lafayette	Fan	539	3	0	2	0	3	0	0	0
ME	University of Maine	Fan	478	0	5	0	2	0	0	2 past	0
ME	University of Southern Maine	Fan	1,808	4	198	126	4	0	1	1 past	4
MD	Towson University University of Maryland at College	Fan	4,593	0	0	0	0	0	1	0	14
MD	Park University of Massachusetts	Fan	17,782	8	305	49	3	53	4	1	20
MA	Boston University of Massachusetts	Fan	1,840	3	1	247	4	6	13	1	6
MA	Lowell	Fan	1,869	138	122	0	17	10	8	273 past	0
MI	Michigan State University	Fan	49,768	4	5	252	30	121	96	0	0
MI	University of Michigan Ann Arbor Southwest Minnesota State	Fan	100,914	72	0	79	3	0	34	0	60
MN	University University of Minnesota Twin	Fan	679	2	0	RSS	1	0	0	6 past	1
MN	Cities	Fan	186	0	0	0	0	0	0	0	0
MS	Mississippi State University	Fan	20,342	37	0	RSSS	37	20	21	0	2
MS	University of Mississippi	Fan	8,248	0	2	45	0	0	5	16 past	3
MO	Missouri State University	Fan	9,839	24	0	123	2	13	50	0	0
MO	University of Missouri St. Louis	Fan	177	2	23	0	5	0	0	6 past	0

MT	Montana State University	Fan	2,846	0	0	19	1	74	1	0	2
MT	The University of Montana	Fan	4,807	0	0	2	2	0	2	1	0
NE	University of Nebraska-Lincoln	Fan	8,344	12	6	164	9	23	19	1	2
NE	University of Nebraska Omaha	Fan	1,965	15	385	381	8	23	4	2 past	1
NV	Nevada State College	Fan	241	0	2	42	1	0	0	1 past	1
NV	University of Nevada Las Vegas	Fan	763	2	14	RSS	5	2	0	0	1
NH	Keene State College	Fan	3,628	4	9	37	4	18	7	3 past	1
NH	University of New Hampshire	Fan	5,535	17	2	8	4	37	18	9 past	1
NJ	Rutgers University	Fan	2,549	22	1	160	12	6	12	2 past	7
NJ	The College of New Jersey	Fan	4,328	6	0	RSS	5	0	0	7 past	0
NM	New Mexico State University	Fan	5,645	6	2	0	6	9	3	0	5
NM	The University of New Mexico	Fan	6,092	9	2	298	2	7	0	29 past	14
NY	State University of New York	Fan	3,354	0	13	0	15	11	31	1	10
NY	The City University of New York	-	0	0	0	0	0	0	0	0	0
NC	North Carolina State University	Fan	22,428	0	0	0	1	17	1	0	3
NC	University of North Carolina	Fan	20,737	0	0	0	1	0	38	0	0
ND	North Dakota State University	Fan	316	0	0	1	5	0	7	5	1
ND	University of North Dakota	Fan	6,021	8	0	RSS	14	24	18	0	5
										1,255	
OH	Ohio State University	Fan	65,391	0	0	0	29	15	22	past	30
OH	University of Cincinnati	Fan	35,799	0	0	218	2	41	2	30	1
OK	Oklahoma State University	Fan	30,857	5	27	RSS	0	0	19	0	0
OK	University of Central Oklahoma	Fan	6,346	0	0	0	2	64	13	8 past	1
OR	Oregon State University	Fan	20,870	0	242	0	5	166	30	19 past	7
OR	University of Oregon	Fan	828	12	0	197	1	1	24	3 past	0
PA	Penn State University Park	Fan	890	19	0	43	1	7	1	2 past	0
PA	University of Pittsburgh	Fan	7,408	0	0	63	0	8	1	1 past	8
RI	Rhode Island College	Fan	2,621	2	0	RSS	14	2	1	0	0
RI	University of Rhode Island	Fan	9,353	7	34	225	27	5	9	13 past	0
SC	Clemson University	Fan	20,319	4	2	0	8	0	8	0	19
SC	University of South Carolina at	Fan	16,263	21	78	RSS	5	30	11	18 past	3

	Columbia										
SD	South Dakota State University	Fan	6,691	2	0	0	5	0	3	8 past	11
SD	University of South Dakota	Fan	2,098	1	1	13	2	1	3	0	2
TN	East Tennessee State University	Fan	3,717	15	13	92	6	48	2	0	0
TN	University of Tennessee	Fan	53,042	10	0	334	6	28	10	24 past	0
TX	Texas A\&M University	Fan	170,026	10	7	0	20	518	32	315 past	72
TX	University of Texas at Austin	Fan	110,053	1	0	36	2	4	66	1 past	0
UT	Utah State University	Fan	9,041	15	7	RSS	6	5	10	25 past	4
UT	University of Utah	Fan	23,787	42	43	RSS	19	97	30	29 past	222
VT	University of Vermont	Fan	4,212	0	242	0	1	7	0	1	3
VT	Vermont Technical College	Fan	817	0	10	0	9	60	1	1 past	0
VA	University of Virginia	Fan	21,051	2	0	$\begin{array}{r} \text { RSS } \\ \mathrm{A} \end{array}$	3	75	12	11 past	16
VA	Virginia Tech	Fan	27,718	11	0	LOT	2	0	18	0	0
WA	University of Washington Seattle	Fan	23,111	8	24	RSS	6	214	39	33 past	0
WA	Washington State University	-	0	0	0	0	0	0	0	0	0
WV	Marshall University	Fan	9,035	8	0	36	6	11	0	3 past	6
WV	West Virginia University University of Wisconsin -	Fan	57,040	36	10	91	13	187	10	1	0
WI	Madison University of Wisconsin -	Fan	20,980	0	0	132	1	8	15	0	0
WI	Milwaukee	Fan	2,499	16	0	194	3	0	17	83 past	3
WY	Central Wyoming College	Fan	522	0	8	0	3	0	7	0	0
WY	University of Wyoming	Fan	722	0	0	28	4	0	13	2 past	0

Appendix D: Preliminary Twitter Research

Twitter

State	School
AL	University of Alabama
AL	Auburn
AK	University of Alaska Anchorage
AK	University of Alaska Fairbanks
AZ	University of Arizona
AZ	Arizona State University
AR	University of Arkansas
AR	Arkansas State University
CA	University of California, Berkeley
CA	California State University, Los Angeles
CO	Colorado State University
CO	University of Colorado at Boulder
CT	Central Connecticut State University
CT	University of Connecticut
DE	Delaware State University
DE	University of Delaware
FL	Florida State University
FL	University of Florida
GA	Georgia Institute of Technology
GA	University of Georgia
HI	University of Hawaii at Manoa
HI	University of Hawaii at Hilo
ID	Boise State University
ID	University of Idaho
IL	Southwestern Illinois College
IL	University of Illinois at Chicago

	Following	Followers	Listed	Tweet	$\#$	RT/@
UofAlabama	43	2,486	104	869	0	0
AuburnU	14	6,557	184	1,294	2	0
-	0	0	0	0	0	0
-	0	0	0	0	0	0
UofA	126	5,089	169	1,183	0	0
ASU	11,296	11,594	293	1,134	2	y
ArkRazorbacks	69	5,027	167	6,416	0	0
ASUJonesboro	11	990	37	991	0	0
-	0	0	0	0	1^{*}	0
-	0	0	0	0	1^{*}	0
ColoradoStateU	692	709	48	55	0	y
mycuboulder	76	872	26	633	0	y
CCSU	31	165	15	10	0	y
uconnadmissions	0	45	4	6	0	0
DelStateUniv	5	105	4	29	0	0
UDAdmissions	36	346	22	153	0	y
*sports accts	0	0	0	0	0	0
UFAdmissions	20	348	21	46	0	y
Georgia_Tech	132	3,348	152	365	0	y
universityofga	1	1,249	62	13	2	0
UHManoa	2,149	5,809	233	658	0	y
uhhadvise	41	110	11	320	0	0
boisestatelive	2,928	2,684	81	1,185	0	0
uidaho	142	577	40	301	2	y
-	0	0	0	0	0	0
UICCareerSrvcs	452	820	52	304	1	0

IN	Indiana State University	indianastate	31	615	21	228	0	y
IN	Indiana University Bloomington	IUBloomington	85	8,549	273	902	0	y
IA	Iowa State University	IowaStateUNews	190	2,161	110	532	0	y
IA	The University of Iowa	uiowa	761	4,146	189	1,000	1	y
KS	Kansas State University	k_state_news	38	1,529	93	1,018	1	y
KS	University of Kansas	KUNews	2	2,796	169	334	0	0
KY	University of Kentucky	universityofky	115	2,954	78	474	0	y
KY	Western Kentucky University	WKUAdmissions	20	217	14	164	0	0
LA	Louisiana State University	LSUNews	63	3,230	97	1,368	0	y
LA	University of Louisiana at Lafayette		0	0	0	0	0	0
ME	University of Maine	UMaineNews	99	725	51	1,366	0	0
ME	University of Southern Maine	USouthernMaine	133	473	29	504	0	0
MD	Towson University	TowsonUNews	573	1,757	84	706	0	y
MD	University of Maryland at College Park	UofMaryland	1	2,956	133	2,103	0	0
MA	University of Massachusetts Boston	umassboston	625	628	39	352	2	y
MA	University of Massachusetts Lowell	umasslowell	42	544	23	390	$2+$	y
MI	Michigan State University	michiganstateu	74	842	81	341	1	y
MI	University of Michigan Ann Arbor	-	0	0	0	0	0	0
MN	Southwest Minnesota State University	smsualumni	13	102	4	22	0	0
MN	University of Minnesota Twin Cities	-	0	0	0	0	0	0
MS	Mississippi State University	msstate	0	1,039	40	167	0	0
MS	University of Mississippi	univms	8	1,707	52	116	3	0
MO	Missouri State University	missouristate	21	1,942	60	768	4	y
MO	University of Missouri St. Louis	-	0	0	0	0	0	0
MT	Montana State University	AdmissionsMSU	132	159	10	74	1	y
MT	The University of Montana	GetYourGrizOn	0	5	0	36	0	0
NE	University of Nebraska-Lincoln	UNLNews	52	656	56	553	1	y
NE	University of Nebraska Omaha	unomaha	1394	1,365	65	1,652	0	0
NV	Nevada State College	NevadaState	9	39	4	71	0	0
NV	University of Nevada Las Vegas	UNLVNews	108	1,215	50	356	1	y
NH	Keene State College	ksc_web	17	175	9	22	0	y

NH	University of New Hampshire	thenewhampshire	54	1,059	57	635	0	y
NJ	Rutgers University	ScarletKnights	0	692	18	4,645	0	0
NJ	The College of New Jersey	TCNJ	15	590	28	261	0	0
NM	New Mexico State University	nmsu	730	1,138	59	1,904	1	y
NM	The University of New Mexico	UNM	4285	4,421	105	531	1	y
NY	State University of New York	GenerationSUNY	2,000	1,250	82	1,103	1	y
NY	The City University of New York	-	0	0	0	0	0	0
NC	North Carolina State University	NCSU	204	2,467	163	1,075	1	y
NC	University of North Carolina	Carolina_News	177	1,887	120	1,034	1	y
ND	North Dakota State University	NDSU	483	1,608	61	945	0	0
ND	University of North Dakota	myUND	427	1,011	50	748	1	y
OH	Ohio State University	OhioState	2,799	3,270	176	989	0	y
OH	University of Cincinnati	proudlycincy	635	478	28	578	1	y
OK	Oklahoma State University	okstatenews	1,970	2,172	76	230	3	y
OK	University of Central Oklahoma	UCOBronchos	0	1,004	32	166	0	y
OR	Oregon State University	oregonstateuniv	1,605	2,257	143	1,208	1	y
OR	University of Oregon	BeAnOregonDuck	1,113	1,068	57	725	10	y
PA	Penn State University Park	peenstatelive	0	6,223	199	1,922	0	0
PA	University of Pittsburgh	PittTweet	917	677	43	26	0	0
RI	Rhode Island College	RICtalk	0	91	2	29	0	0
RI	University of Rhode Island	URINews	59	1,359	41	705	0	y
SC	Clemson University University of South Carolina at	ClemsonNews	526	1,044	51	360	0	0
SC	Columbia	UofSCnews	461	2,883	114	500	0	0
SD	South Dakota State University	SDState	9	488	12	192	2	0
SD	University of South Dakota	-	0	0	0	0	0	0
TN	East Tennessee State University	easttnstateu	313	618	30	253	2	y
TN	University of Tennessee	UTKnoxville	1,565	2,663	107	289	1	y
TX	Texas A\&M University	TAMUTalk	79	4,108	176	2,103	1	0
TX	University of Texas at Austin	UTAustin	124	2,931	188	343	2	y
UT	Utah State University	USUAggies	554	485	24	313	0	y

UT	University of Utah	uutah	124	1,568	93	535	0	0
VT	University of Vermont	uvmvermont	54	913	50	153	1	y
VT	Vermont Technical College	-	0	0	0	0	0	0
VA	University of Virginia	UVA	1,166	3,447	158	2,322	1	y
VA	Virginia Tech	vtnews	47	4,067	155	929	0	y
WA	University of Washington Seattle	UWSportsNews	57	5,364	248	5,324	1	y
WA	Washington State University	WSUPullman	1,329	1,519	106	2,941	3	y
WV	Marshall University	marshallu	138	479	20	465	0	0
WV	West Virginia University	WestVirginiaU	41	2,243	75	475	5	y
WI	University of Wisconsin - Madison	UWMadisonNews	429	3,196	222	2,656	2	y
WI	University of Wisconsin - Milwaukee	uwm	4	1,897	77	877	0	0
WY	Central Wyoming College	CentralWY	99	129	11	182	0	y
WY	University of Wyoming	discoveruw	25	85	8	39	0	y

Appendix E: Preliminary YouTube Research

YouTube

									Channel
State	School University of	C Views	U Views	Joined	Last Act $13 \mathrm{hrs}$	Subscribers	Subscriptions	Friends	
AL	Alabama	14,647	45,026	1/3/2007	ago	237	0	76	10
AL	Auburn	71,222	480,353	9/20/2006	1 wk ago	1,045	7	0	60
	University of								
AK	Alaska Anchorage	0	0	0	0	0	0	0	0
	University of								
AK	Alaska Fairbanks	2,927	19,131	2/7/2007	3 hrs ago	56	0	12	0
	University of								
AZ	Arizona	29,664	269,320	11/12/2005	2 wks ago	710	5	0	0
	Arizona State				5 days				
AZ	University	37,854	418,415	1/1/2006	ago	913	19	0	0
	University of								
AR	Arkansas	3,837	8,786	1/10/2008	6 hrs ago	41	0	0	0
	Arkansas State								
AR	University	0	0	0	0	0	0	0	0
	University of								
	California,				23 hrs				
CA	Berkeley	3,301,383	5,130,912	5/2/2006	ago	37970	11	0	632
	California State								
	University, Los								
CA	Angeles	0	0	0	0	0	0	0	0
	Colorado State								
CO	University	977	2,927	2/17/2009	3 hrs ago	24	24	0	3
	University of								
	Colorado at								
CO	Boulder	2,607	14,163	1/5/2009	5 mo ago	57	0	0	0
	Central								
	Connecticut State								
CT	University		0	0	0	0	0	0	0

CT	University of				6 hrs ago	107	0	5	0
	Connecticut	15436	4,444	7/31/2007					
	Delaware State								
DE	University	524	394	3/24/2009	2 mo ago	1	0	0	2
	University of								
DE	Delaware	0	0	0	0	0	0	0	0
	Florida State								
FL	University	0	0	0	0	0	0	0	0
	University of								
FL	Florida				0	0	0	0	0
	Georgia Institute								
GA	of Technology	20,731	79,912	8/7/2006	1 wk ago	329	2	0	13
	University of								
GA	Georgia	8,868	25,244	11/1/2007	1 wk ago	95	0	0	0
	University of								
HI	Hawaii at Manoa	1,085	8,828	10/8/2007	I hr ago	23	0	2	0
	University of								
HI	Hawaii at Hilo	238	1,102	1/18/2008	2 wks ago	3	3	0	0
	Boise State								
ID	University	6,852	7,742	3/27/2007	3 wks ago	35	0	0	2
ID	University of Idaho	0	0	0	0	0	0	0	0
	Southwestern								
IL	Illinois College	0	0	0	0	0	0	0	0
	University of								
IL	Illinois at Chicago	8,704	77,293	9/26/2006	1 wk ago	56	0	14	1
	Indiana State				6 days				
IN	University	1,965	8,682	7/25/2008	ago	30	0	0	0
	Indiana University								
IN	Bloomington	0	0	0	0	0	0	0	0
	Iowa State				5 days				
IA	University	2,149	12,187	2/20/2009	ago	41	0	0	1
	The University of				5 days				
IA	lowa	13,501	28,739	11/8/2007	ago	80	30	0	3
KS	Kansas State	14,366	59,458	3/24/2006	1 day ago	0	22	0	0

	University of Minnesota Twin								
MN	Cities	2,124	1,994	1/28/2009	1 mo ago	15	10	0	0
	Mississippi State								
MS	University	514	0	8/20/2009	0	3	0	0	0
	University of								
MS	Mississippi	9,060	60,264	5/12/2008	1 wk ago	76	0	0	0
	Missouri State								
MO	University	30,850	152,980	12/20/2006	8 hrs ago	287	0	0	1
	University of								
MO	Missouri St. Louis	138	180	9/7/2006	1 mo ago	0	0	0	0
	Montana State								
MT	University	0	0	0	0	0	0	0	0
	The University of								
MT	Montana	2,762	12,066	12/8/2006	1 wk ago	50	1	11	7
	University of								
NE	Nebraska-Lincoln	3,298	8,437	7/14/2006	1 mo ago	43	3	0	3
	University of								
NE	Nebraska Omaha	0	0	0	0	0	0	0	0
	Nevada State								
NV	College	153	1,804	10/7/2008	1 day ago	3	0	0	0
	University of								
NV	Nevada Las Vegas	1,578	4,731	3/30/2006	1 wk ago	40	4	1	2
	Keene State								
NH	College	3,923	19,495	9/18/2008	1 mo ago	47	5	3	0
	University of New								
NH	Hampshire	5,619	45,047	2/21/2008	1 wk ago	78	0	0	0
					17 hrs				
NJ	Rutgers University	5,355	50,057	3/24/2006	ago	159	0	0	0
	The College of				2 days				
NJ	New Jersey	3,045	38,976	6/16/2008	ago	18	1	0	1
	New Mexico State								
NM	University	23,889	202,737	5/8/2007	1 day ago	359	0	96	10
NM	The University of	15,230	66,961	11/15/2007	1 day ago	175	19	0	8

	New Mexico								
	State University of				3 days				
NY	New York	4,526	2,976	9/3/2009	ago	49	42	26	2
	The City University				4 days				
NY	of New York	15,798	50,596	1/23/2007	ago	239	15	0	0
	North Carolina				17 hrs				
NC	State University	68,446	269,566	4/1/2006	ago	685	23	0	30
	University of North				2 days				
NC	Carolina	104,344	465,035	12/15/2006	ago	1451	15	0	0
	North Dakota State								
ND	University	0	0	0	0	0	0	0	0
	University of North								
ND	Dakota	9,021	32,053	1/16/2007	3 wks ago	61	0	0	6
	Ohio State								
OH	University	55,297	131,096	9/19/2006	1 day ago	742	0	0	21
	University of								
OH	Cincinnati	10,984	28,962	6/26/2008	1 day ago	114	0	4	0
	Oklahoma State								
OK	University	54,700	180,279	7/30/2008	1 day ago	374	8	0	8
	University of				3 days				
OK	Central Oklahoma	3,072	10,514	5/6/2008	ago	53	0	0	0
	Oregon State				2 days				
OR	University	45,954	174,593	5/23/2008	ago	697	0	0	8
	University of				5 days				
OR	Oregon	32,998	434,286	4/24/2007	ago	683	0	0	0
	Penn State								
PA	University Park	1,337	22,488	9/22/2009	1 mo ago	18	6	0	0
	University of								
PA	Pittsburgh	0	0	0	0	0	0	0	0
	Rhode Island								
RI	College	556	0	2/3/2010	1 wk ago	16	0	1	0
	University of				10 hrs				
RI	Rhode Island	16,506	67,648	1/5/2009	ago	121	0	0	0
SC	Clemson University	18,787	79,496	9/20/2006	1 wk ago	194	0	0	0

	University of South Carolina at								
SC	Columbia	511	0	2/21/2006	3 wks ago	14	2	0	0
	South Dakota State								
SD	University	0	0	0	0	0	0	0	0
	University of South								
SD	Dakota	0	0	0	0	0	0	0	0
	East Tennessee								
TN	State University	4,359	21,057	4/28/2008	1 day ago	42	1	0	0
	University of								
TN	Tennessee	26,042	479,781	2/22/2008	1 mo ago	400	0	0	0
	Texas A\&M				3 days				
TX	University	36,170	109,120	3/22/2007	ago	451	20	0	0
	University of Texas				2 days				
TX	at Austin	11,275	97,436	7/21/2008	ago	509	11	8	8
	Utah State				3 days				
UT	University	5,803	88,310	11/13/2007	ago	112	0	0	0
					6 days				
UT	University of Utah	13,943	73,590	3/4/2008	ago	180	5	0	4
	University of								
VT	Vermont	3,325	4,658	5/14/2009	2 wks ago	27	1	0	0
	Vermont Technical								
VT	College	0	0	0	0	0	0	0	0
	University of				5 days				
VA	Virginia	20,619	29,997	9/18/2006	ago	605	0	0	0
					2 days				
VA	Virginia Tech	67,862	334,554	11/26/2006	ago	627	0	0	8
	University of								
	Washington				3 days				
WA	Seattle	28,340	65,849	7/12/2006	ago	271	32	24	1
	Washington State				3 days				
WA	University	10,170	73,836	9/20/2007	ago	142	0	0	2
	Marshall				2 days				
WV	University	17,193	80,738	6/5/2008	ago	121	80	3	0

WV	West Virginia	26 min							
	University	41,308	334,936	7/19/2006	ago	459	0	0	0
	University of								
	Wisconsin -				4 days				
WI	Madison	13,816	15,569	9/28/2006	ago	120	0	0	0
	University of								
	Wisconsin -								
WI	Milwaukee	0	0	0	0	0	0	0	0
	Central Wyoming								
WY	College	0	0	0	0	0	0	0	0
	University of								
WY	Wyoming	3,058	9,085	5/28/2009	3 mo ago	14	0	1	0

VITA
MEGAN L. FULLER

Personal Data:
Date of Birth: November 1, 1986
Marital Status: Single

Education:
Public Schools, Knoxville, Tennessee
B.S. Computer Science, Cum Laude, East Tennessee State University, Johnson City, Tennessee 2009
M.S. Computer Science, East Tennessee State

University, Johnson City, Tennessee 2011
Professional Experience: Graduate Assistant, East Tennessee State University,
College of Business and Technology 2009-2011
System Administrator Intern, Johnson City, Tennessee 2010-2011
Website Developer, Camp Directory Online, Johnson City,
Tennessee 2009-2011
Honors and Awards:
Who's Who Among Students in American
Universities and Colleges
Sigma Alpha Lambda
Upsilon Pi Epsilon Honor Society

[^0]: ${ }^{1}$ Ohio State University Facebook Fan Pages search on October 20, 2009
 ${ }^{2}$ UC Berkeley YouTube channel views as of October 20, 2009
 ${ }^{3}$ UC Berkeley YouTube channel views as of October 20, 2009
 ${ }^{4}$ University of New Mexico Flickr group search on October 20, 2009

[^1]: ${ }^{5}$ Ohio State University Twitter search on October 20, 2009
 ${ }^{6}$ Ohio State University delicioius.com search on October 20, 2009

[^2]: *These respondents did not have a Facebook account, so the question was not applicable.
 ** There is a discrepancy in totals because three surveyors did not answer the gender question and one did not answer the Facebook question.

[^3]: *These respondents did not have a Facebook account, so the question was not applicable.
 ** There is a discrepancy in totals because thirteen surveyors did not answer the program of study question and three did not answer the Facebook question.

[^4]: *These respondents did not have a Facebook account, so the question was not applicable.
 ** There is a discrepancy in totals because three surveyors did not answer the gender question and two did not answer the Facebook question.

[^5]: *These respondents did not have a Facebook account, so the question was not applicable.
 ** There is a discrepancy in totals because thirteen surveyors did not answer the gender question and two did not answer the Facebook question.

[^6]: *Survey respondents did not have a Facebook account, so the question was not applicable.
 ** There is a discrepancy in totals because six surveyors did not answer the class classification question and one did not answer the Facebook question.

[^7]: *These respondents did not have a Facebook account, so the question was not applicable.
 ** There is a discrepancy in totals because three surveyors did not answer the gender question and four did not answer the Facebook question.

[^8]: Chart 128: Program of Study and Interact with College or University Administrators (Deans, Vice Presidents, etc.)

[^9]: Thank you for participation in this research.
 If you have questions about this research or wish to see the results, please contact
 Megan Fuller via email at zmlf14@goldmail.etsu.edu or phone 865-771-9948.

