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ABSTRACT 

Determination of the Activation Parameters of Reaction Between [Fe(CN)6]-4 and 
K[Co(HEDTA)NO2] 

by 

Sammy Eni Eni 

The kinetics of the oxidation of [Fe(CN)6]-4 by K[Co(HEDTA)NO2] was studied in order to get the 

mechanism and the activation parameters of the reaction. Using a freshly-made Na3PO4 

solution as the reaction medium with a pH of 6.00 the ionic strength was maintained at 0.10 M 

and the buffer molarity was 0.001 M. 

 

The rate constant (kobs) of the reaction between [Fe(CN)6]-4  and  K[Co(HEDTA)NO2]  was 

determined at temperatures of 25.00C, 27.50C, 30.00C, 35.00, and 40.00C. We explored this 

reaction by monitoring the evolution of ferricyanide,  [Fe(CN)6]-3, spectroscopically for which 

ε420 = 1023 cm-1 M-1  by recording the absorbance as a function of time at  420 nm wavelength. 

The data were plotted and results analyzed to give activation parameters, energy of activation 

(Ea), entropy of activation (∆S‡), and enthalpy of activation (∆H‡) for the two reacting 

complexes under the specified reaction conditions. Based on previous results, an outer-sphere 

electron-transfer pathway and a first order rate of reaction for each of the reacting species 1 

have been proposed. 
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CHAPTER 1 

INTRODUCTION 

 

Modern day chemistry has seen tremendous improvements both in novelties and 

already existing reactions, particularly with the understanding of their underlying mechanisms. 

Mechanisms are simply pathways that reactants undergo in order to get to their products. 

Reactions are widely classified into groups based on various common intrinsic 

properties. Addition, substitution, acid-base, and oxidation-reduction (redox) reactions are just 

a few common chemical reactions. Our area of interest is redox reactions that involve the loss 

and gain of electrons from species. The species that gains electrons is the oxidizing agent while 

the other that loses the electron is the reducing agent. The two species involved in the reaction 

have to be in close proximity and the electrons are then transferred either through a ligand or 

the metal center based on the plausible mechanism. Details of the mechanism can be acquired 

by exploring parameters like the rate of electron transfer, the equilibrium constant between 

the species and the order of the reaction. 

Two basic mechanisms of redox reactions exist; inner-sphere and outer-sphere. Outer-

sphere mechanism also known as non-bonded electronic transfer. These refers to the transfer 

of electrons between chemical moieties that remain as separate chemical species before, 

during, and also after the transfer is completed. Inner-sphere mechanism, also known as self-

exchange electronic transfer, occurs when two sites undergoing electronic transfer are 

connected through a chemical bridge through which the electronic exchange takes place. 
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An example for an outer-sphere mechanism is;  

[Co(NH3)6]3+ + [Cr(H20)6]2+ → [Cr(H2O)6]3+ + [Co(NH3)6]2+  

There is transfer of an electron from Cr to Co with no bridging between the complexes.  

               An example of an inner-sphere mechanism is; 

  [CoCl(NH3)5]2+ + [Cr(H2O)6]2+ → [CrCl(H2O)5]2+ + [Co(NH3)5(H2O)]2+  

Here the Cl forms a bridge between the two complexes which facilitates electron-
transfer. 

  The mechanism of a reaction is the detailed manner in which the reaction proceeds with 

emphasis on the number and nature of the steps involved in the reaction. There are various 

means of elucidating the mechanism that include determining the rate law, the effect on the 

rate constant by varying the structure of reactants (linear free energy relations), and also 

parameters like temperature and pressure. Experiments and good chemical intuition also have 

a great role to play. 

 For a mechanism to be considered plausible, its individual steps have to add up to an 

overall balanced equation. The individual steps with their respective rate constants must all be 

balanced with respect to charges and atoms. The over-all reaction must produce a rate law that 

is identical to the experimental rate law. Other parameters and trends could also be taken into 

consideration in order to maximize the possibility of getting the right mechanism. This 

especially applies to the rate determining step for instance; any species that occurs in the 

reaction stoichiometry but not in the rate law must react in the step preceding the rate 

determining step. 
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The crystal field stabilization theory helps determine both the geometry of the complex 

and its stability that is acquired from the d-orbital electronic arrangement of metal. Crystal field 

stabilization energy is the energy gained by the complex due to the splitting of the d-orbital into 

t2g and eg sublevels. The energy difference between these two sublevels is dependent on 

various parameters including the ligand itself. If the ligand field strength is large, the electrons 

will pair up and fill the lower t2g sublevel before getting into the eg sublevel. This is the ‘low-

spin’ case. In the ‘high spin’ case, the field strength is small and the electrons can partially fill 

both eg and t2g sublevels before pairing. 

  The Fe in ferrocyanide and Co in the HEDTA complex (HEDTA is 2-hydroxylethyl-

ethylenediaminetriacetate) both have a low-spin 3d6 electronic configuration. The cobalt is in 

its +3 oxidation state while the Fe is in its +2 oxidation state. Their electrons occupy the low 

energy t2g orbital because they are low-spin and all six electrons in the two species are  paired. 

 There exist many techniques used to analyze the products from redox reactions. The 

UV/Visible electron absorption spectroscopy is mostly used due to its simplicity and overall 

accuracy. Species absorbs energy from a certain portion of the electro-magnetic spectrum 

based on their electronic configuration. By measuring the ratio of the amount of energy 

transmitted through the sample and a reference the absorbance of the species can be acquired. 

Using the Beer-Lambert law, 

A= c ε l,    where ε is the Extinction coefficient and l is the cell path length. Absorbance 

(A) is proportional to the concentration of the sample.     The rate of a reaction is the change 
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with time of the concentration of one of the reactants or one of the products of the reaction; 

that is, 

Rate is d[reactants]/ dt. 

Suppose that the rate of a reaction depends only on the concentration of species A and B. The 

proportionality factor k, relating rate to the concentration of [A] and [B], the rate equation is 

                 Rate of reaction (V) =k[A]a[B]b   where k is the specific rate constant. 

The values of a and b determine the order of the reaction. The overall order is the sum of a and 

b. 

The rate of reaction is measured mostly by the initial-rate method where the initial 

concentrations of the species reacting are accurately known and used. The steady-state 

approach is also used especially in very complex systems. Many times a ‘pseudo first order’ is 

used in conducting kinetic experiments. Here one of the reactants is in a concentration at least 

10 times in excess of the species of interest. The excess reactant is assumed to stay relatively 

unchanged in the course of the reaction. As the reaction proceeds, it either approaches 

equilibrium or continues until the limiting reagent is consumed. Other parameters like 

temperature or pressure could be used to change equilibrium position. 

  From previous research 1 on the mechanism of the reaction between ferrocyanide and 

[Co(HEDTA) NO2]- , the observe rate constant, kobs,  the electronic transfer rate constant k2 and 

the rate constant for the formation of the iron-pair, kos, of the reaction of the species at a given 

temperature (250 C) were all determined using the literature procedure. It was realized that the 

rate constants were not affected by pH and that each species exhibited a first order rate of 
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reaction. As a result of the analyses of the results and data, the outer-sphere mechanism was 

also proposed as the means of electron transfer. 

In early 1974, the Kinetics of the reaction of [Co(HEDTA) ]2-  with ferricyanide was 

studied 2 in which the equilibrium constant of the formation reaction and the rate constant of 

the dissociation reaction of the intermediate at an ionic strength of 0.66 M were explored in 

detail. In this research, it was concluded that the reaction between the species proceeded with 

two consecutive steps; the first step was the formation of a metastable binuclear intermediate 

through an inner-sphere mechanism, while the second step included the dissociation of the 

intermediate to produce ferrocyanide and the oxidized Co complex. This study led to many 

other studies of the reaction of ferricyanide with several cobalt aminopolycarboxylate 

complexes in order to ascertain how changes in the nature of aminopolycarboxylates 

influenced the features of their reactions2.  

  Our research is aimed at exploring the reduction and oxidation between [Fe (CN)6]-4 and 

[Co(HEDTA) NO2]- by determining the activation parameters of the reaction. These molecules 

contain transition metal ions with octahedral geometry and all have a low-spin ‘d6’ electron 

configuration. Looking closely, we realize that the two complexes are negatively charged and it 

is intriguing in that in spite of repelling each other (as we expect like charges to do) they 

transfer electrons between themselves! 

With an already existing guideline for our synthesis of K[Co(HEDTA)NO2], necessary 

modifications led to a higher yield and a purer product. Potassium ferrocyanide is a stock 

compound, the synthesized crystalline cobalt complex was verified through analytical methods 



12 
 

and comparing results with literature values proved rather satisfactory. Next we explored the 

reaction of our cobalt complex with ferrocyanide by monitoring the evolution of ferricyanide 

[Fe(CN)6]-3 at 420 nm, with ε420= 1023 dm3mol-1cm-1. We then carried out the reaction at 

temperatures of 25.00 C, 27.50 C, 30.00 C, 35.00 C, and 40.00 C. We were able to replicate each 

set of data, and by plotting we deduced the activation parameters for the reaction.  

The overall reaction between the two species is represented in the Figure 1 below; 

 

 

Figure 1. Schematic Representation of Reaction Between Fe (CN)6]-4 and [Co(HEDTA) NO2]- 
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CHAPTER 2 

EXPERIMENTAL METHODS 

 

Instruments, Glass-ware, and Miscellaneous Materials 

The following instruments and glass-ware were used in the experiment:  UV/Vis/IR 

spectrometer with a temperature bath, Fisher pH meter, Microsoft Excel, 500 µL syringe , 10.0 

ml volumetric flasks, 100 ml volumetric flask, 1.0 cm path length cuvettes, rubber septa, and 22 

gauge syringe needles.  

Reagent Grade Stock Chemicals 

The reagent grade stock chemicals used included the following; cobalt chloride 

hexahydrate,CoCl2.6H2O, (2-hydroxylethyl) - ethylene diaminetriacetic acid (HEDTA), and 

sodium nitrite NaNO2. We also used glacial acetic acid, potassium hexacyanoferrate(II), sodium 

nitrate (NaNO3), sodium phosphate monobasic Na2HPO4, Standard buffer solutions, dilute HCl, 

sodium hydroxide, isopropanol, and ethanol. All the chemicals used were ACS reagent grade 

chemicals and were used as obtained.  

Cleaning Solutions 

 In order to prevent staining of the glassware with Prussian-blue complex, care must be 

taken while cleaning. A solution of NaOH and isopropanol was prepared. 

 De-ionized water was first used to remove excess ferrocyanide.  Then a saturated 

solution of NaOH in isopropanol was used to wash the glassware. Distilled water was used to 
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rinse off the isopropanol, then the glassware was soaked in dilute HCl before finally rinsed with 

distilled water.  

Synthesis of K[Co(EDTA)NO2] 

A 27.82 g of HEDTA was weighed and added to a solution of 12.03 g (0.33 moles) NaOH 

in a 250.0 mL beaker with 50.0 mL of demonized water. The solutions were mixed thoroughly 

which produced 3 Na+HEDTA -3. This solution was then added to 24.00 g (0.1000 moles) of 

CoCl2.6H2o in a 500.0 mL beaker. Enough distilled water was added to ensure complete 

solution. NaNO2, 15.00 g (0.2174 moles), was added drop-wise to the solution. The solution 

effervesces, and adding NaNO2 quickly causes the solution to foam excessively. Glacial acetic 

acid (70.0 mL) was added and the solution mixed thoroughly.  

 

Most of the liquid was slowly evaporated at room temperature. The liquid was decanted 

and the solid was washed with ice water. Repeated washing was required to remove impurities 

of Co +2and nitrite ions because K+ would be added in the next step. Excess Co+2 and nitrite in 

combination with K+, will precipitate as K3Co(NO2)6. The solid was re-dissolved in distilled water 

at room temperature. Approximately 15.0 mL of water in excess was added to completely 

dissolve the solid. To this solution, 29.76 g (0.4000 moles) of KCl was added and mixed 

thoroughly. The precipitate was then re-crystallized at room temperature, the liquid was 

decanted, and the solid washed with cold distilled water. Repeated dissolving, re-crystallization, 

and washing were needed to achieve high purity. After the final re-crystallization, the product 
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was washed with 50/50 ethanol-water solution and dried under a vacuum at 70.00 C. This gave 

a product yield of 89.9%. 

The amount of H2O in our product was determined by drying a 0.5073 g of our product 

in a 100.00 C oven for 10 minutes. The solid was then cooled and weighed. The process was 

repeated until the mass was constant. The constant mass was 0.5035 g. This gave a percent 

weight loss (amount of water) of 0.749%. This meant that our product had very little amount of 

water and so it was dry enough for the reaction with ferrocyanide. 

Characterization 

  The first characterization was done by measuring the electronic absorption spectrum of 

a 0.003676 M solution of K[Co(HEDTA) NO2] that gave a maximum absorbance (Amax) of 0.847 at 

495 nm. Using Beer’s law, the molar extinction coefficient was calculated to 230.4dm3mol-1cm-1 

that was compared to the literature value of 232.00 dm3mol-1cm- indicating a purity of 99.3%, 

and this was an indication that Beer’s Law was obeyed. This first characterization confirmed the 

product to be the K[Co(HEDTA)NO2].  

     The second characterization was done with the Infrared (IR) spectrum to determine if the 

nitro group was present in our complex and also to determine if it existed as a nitro (NO2) or as 

a nitrito (ONO). This was done by grinding 0.25 g of our complex with 1 g of KBr. The sample   

was crushed and ground to reduce particle size and also to produce a homogenous mixture. A 

small pellet of our crushed product was made by applying a pressure of 20,000 psi using the 

pellet press.   



16 
 

     This pellet was inserted in the IR and showed a peak at 1334.15 cm-1. This confirmed two 

things about the complex; first, it confirmed the presence of a nitro group in the complex and 

second, it confirmed the kind of bonding the nitro group had with the Co complex. If the NO2 

group present in the complex had a N bonded to the Co center, we have a nitro function, but if 

the Oxygen is bonded to the metal center, we have a nitrito (ONO) function. The spectrum is 

shown in Figure 2. 

The second characterization confirmed the presence of the nitro group in our complex 

and also confirmed the type of bonding existing between the NO2 and the Co center.  

Kinetics 

  For our kinetic measurements to be meaningful, it was necessary to prepare a solution 

with constant molarity and ionic strength (µ) that was to be our reaction medium. The buffer 

was prepared by dissolving 0.8500 g (0.10 moles) of NaNO3 and 0.142 g (0.01 moles) of 

Na2HPO4 in 85.0 mL of distilled water. This was titrated to a desired pH with dilute HCl. The 

buffer solution was transferred to a 100.0 mL volumetric flask and adjusted to the mark with 

distilled water. This gave a buffer solution with an ionic strength of 0.1 M, and a buffer molarity 

of 0.01 M and pH of 6.00. The buffer solution was used as the reaction medium. 

 Because ferrocyanide is oxidized by O2, the reaction was carried out without O2. A 

known weight of the dry complex was placed in a clean 10mL volumetric flask and sealed with a 

septum.   A 22 gauge needle was then inserted in the top.  A second needle attached to an 

argon supply at 1 atm was also inserted. Argon flushed the container for 2 minutes. 
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The argon supply was removed and a venting needle from the degassing apparatus was 

inserted. While keeping a positive pressure of approximately 2 atm, the apparatus was inverted 

so that the buffer solution flowed into the 10.0 mL volumetric flask. When the volumetric flask 

was filled to the mark, both needles were removed from reagent flask. 

Ferrocyanide and the Co complex by themselves were measured for stability. Solutions 

with known concentrations of ferrocyanide were prepared as above at pH 6.00. The solutions 

were monitored over a period of 2 hours at 420.0 nm against a control buffer solution. A 

solution of K[Co(HEDTA)NO2] was also prepared and a spectrum observed from 360.0 nm to 

600.0 nm over a period of 2 hours to determine if the Co complex is stable. 

The reaction between [Co(HEDTA)NO2]- and ferrocyanide was observed from the 

oxidation of ferricyanide by recording the absorbance at 420.0 nm as a function of time at 

various temperature. The [Co(HEDTA)NO2]-  also absorbs energy in the region at 420.0 nm. 

Therefore the reference cell contained an equal concentration of the Co complex as the 

reaction cell. To determine if the reaction between the species went to completion, or reached 

equilibrium, the reaction was carried at different concentrations and the maximum absorbance 

was compared with literature values and the percent reaction completion was calculated. 

  First, the buffer was prepared and degassed by the procedure described earlier. A 

ferrocyanide solution was prepared by placing 1.0983 g (0.0026 moles) of K4[Fe(CN)6] in a 10.0 

mL volumetric flask, (in constant temperature water bath).  The flask was filled with the buffer 

solution as described earlier in the section above.  
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In a second 10.0 mL volumetric flask, 0.0041 g (9.660 × 10-6 moles) of K[Co(HEDTA)NO2] 

was prepared in the same fashion. Adequate time was provided to allow the species to dissolve. 

Two quartz cuvettes were flushed with argon and sealed with a septum. The solution in the 

reference cuvette was made by using a 500 µL glass syringe to add 0.800 mL of the 

[Co(HEDTA)NO2]- solution. Then 0.500 mL of the buffer was added. The reaction cuvette was 

prepared by using a 500 µL glass syringe to inject 0.800 mL of [Co(HEDTA)NO2]- . Using a 

separate syringe, 0.500 mL [Fe(CN)6]-4 was injected. The cuvette was inverted twice to mix the 

reactants. Quickly, the cuvette was placed into the spectrometer and the scan was started. The 

reaction was studied at temperature of 25.00 C, following the increase in absorbance at 420 nm. 

After approximately 6 minutes, the absorbance began to level off. After several minutes, the 

absorbance was checked again. This process was repeated until the absorbance did not change. 

The final reading was taken as Amax. This experiment was repeated leaving the ferrocyanide 

concentration the same and decreasing the amount of [Co(HEDTA)NO2]-. The ferrocyanide was 

0.1M and remained constant. The [Co(HEDTA)NO2]- concentrations measured were 3.0 × 10-4 

M, 4.5 × 10-4 M, 6.0 × 10 -4 M and 2.0 × 10 -3 M. An additional experiment was done in which 2.0 

× 10 -3 M [Co(HEDTA)NO2]- was reacted with 0.0090 M [Fe(CN)6]-4. 

  The rate constants of the reaction at various temperatures were determined. Reagent 

solutions were prepared in the above-mentioned procedure. The [Fe(CN)6]-6 solution contained 

1.3728 g (0.00325 moles) K4[Fe(CN)6] in 10.0 mL of the buffer solution. The Co complex solution 

contained 0.0066g (1.55×10-5 moles) of K[Co(HEDTA)NO2] in 10.0 mL of the buffer solution. In 

this set of kinetic experiments, the Co complex concentration remained at 6.00 × 10-4 M in the 

reagent cuvette while the reference cuvette had distilled water. This was accomplished by 
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injecting 0.500 mL of the Co complex solution using a 500 µL glass syringe and 0.80mL of the 

buffer solution to a sealed and argon-flushed cuvette. These cuvettes were placed in the 

temperature bath for 10 minutes in order for both solutions to have the same temperature. 

The reaction cuvette contained 0.80 mL of the ferrocyanide solution and 0.50 mL of the 

[Co(HEDTA)NO2]- solution. These kinetic studies were performed at pH 6.00 and temperatures 

of 25.00 C, 27.50 C, 30.00 C, 35.00 C, and 40.00 C. This was a 1: 1 molar ratio between the species. 

Another set of reaction was carried out with a molar ratio of 1:10 between the ferrocyanide 

and Co complex respectively. This was carried out with a Co complex molarity of 3.0 × 10-4 M 

and a ferrocyanide solution molarity of 0.20 M.  Absorbance readings were taken after every 

minute for 15 minutes .This absorbance was subtracted from the maximum absorbance. A plot 

of In (Amax-At) versus time (seconds) gave a slope of ‘-kobs’, the observed rate constant. This 

process was repeated for the various temperatures and results replicated. From the observed 

rate constants, we plotted the data were plotted using both Arrhenius and Erying’s equations 

to obtain the activation parameters; energy of activation (Ea), entropy of activation (∆S‡), and 

enthalpy of activation (∆H‡) of the two reacting species. 
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CHAPTER 3 

RESULTS  

 

  In our research, we improved the synthesis of K[Co(HEDTA)NO2]   over the published 

method3 and also investigated several activation parameters of the oxidation reaction between 

ferrocyanide and K[Co(HEDTA)NO2] . 

We used various analytical methods to characterize and confirm the identity and purity 

of K[Co(HEDTA)NO2]. First, we used the UV-Vis to get the plot of the absorbance of a given 

concentration of the complex. From this plot, we calculated the molar extinction coefficient of 

the complex. This was used to characterize as well as determine the purity of the complex.  

Using the Beer-Lambert law, the absorbance divided by the concentration equals a 

constant known as the molar extinction coefficient, ε, given a path length (1 cm).  A less pure 

compound is expected to absorb less at a given wavelength, hence giving rise to a lower molar 

extinction coefficient. Two solutions, 3.677 × 10-3 M and 1.725 × 10-3 M of K[Co(HEDTA)NO2],   

produced a molar extinction coefficient of 230.4 dm3mol-1cm-   at 495 nm. The literature value 3 

is 232.0. This gave us a purity of 99.3%. This was a clear indication that Beer’s law was obeyed 

and that the precipitate was pure K[Co(HEDTA)NO2]. 

The next method of characterization used the IR spectrum to determine the presence, 

position and orientation of the nitro group in the complex. The IR showed a peak 1334.52 cm-1. 

This confirmed two things about the complex; first, it confirmed the presence of a nitro group 

in the complex and secondly, it confirmed the kind of bonding the nitro group had with the Co 
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complex. If the NO2 group present in the complex had the N bonded to the Co center, the 

literature 4 value for the peak position was given to be 1335 cm-1.  On the other hand, if we had 

the O in NO2 bonded to the Co center, the peak position from the literature value is the at 1428 

cm-1. Hence, comparing our peak of 1334.52 cm-1, we realized that we had the N bonded to the 

Co because our value was approximately equal to the literature value for N in the nitro group. 

The spectrum is illustrated in Figure 2 below. This second characterization confirmed the 

presence of the nitro group in our complex and also confirmed the type of bonding existing 

between the NO2 and the Co center. 

 

Figure 2. The Plot of the Percent Transmittance vs Wave Numbers of K[Co(HEDTA)NO2]. 
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From the UV-Vis and IR, we confirmed the purity of the complex. We also confirmed the 

presence of the nitro group. The position of the nitro group in our complex was further 

confirmed by comparing our value for UV-Vis with the literature and related research. When 

the nitro group is present in the axial position, the complex absorbs light at a wavelength of 495 

nm with its extinction coefficient at 232 dm3mol-1cm- . If the nitro group is in the equatorial 

position in the complex, the complex absorbs light at a higher wavelength2 (530nm).Our peak 

corresponds to the nitro group in the axial position as it absorbs at 495nm, opposed to the 

equatorial position. This was the last step used to complete the characterization of the 

complex. The structure of the complex is illustrated in the UV-Vis spectrum in Figure 3 below. 

  The rate constants of the reaction at various temperatures were determined.  This 

process was repeated for the various temperatures and results replicated.  Ferricyanide is the 

product of the oxidation of ferrocyanide and as the ferricyanide evolves, it is detected by the 

absorption spectroscopy. A ferricyanide solution of 9.384 × 10-4 M of ferricyanide made from 

fresh grade K3[Fe(CN)6], gave a spectral peak at 420 nm with a molar extinction coefficient of 

1023 dm3 mol-1 cm-1, which is in agreement with the literature value5 .  

 The reaction was carried out at constant ionic strength by using a Na3PO4 buffer. In 

order to prevent oxidation, all solutions were properly degassed with Ar and containers sealed 

with a rubber septum. The concentration of buffer and inert electrolyte is very important. This 

is because the phosphate molecule, if present in high concentration will complex with Fe+3 that 

causes a breakdown of the ferrocyanide thereby producing erroneous results. Therefore, we 

maintained a buffer concentration of 0.01 M. 
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We then carried out a series of experiments to determine if the reaction went to 

completion or resulted in equilibrium. Solutions of [Co(HEDTA)NO2]- with ferrocyanide of 

0.00030M, 0.00045 M, 0.00060 M and 0.0020 M were reacted with a range of 4.5 to 333 molar 

excess of ferrocyanide. The theoretical maximum absorbance at 423nm where ε =1023 cm-1 M-

1, assuming complete conversion to product was then compared with the actual maximum 

absorbance. The data are illustrated in Table 1 below while the spectrum is illustrated in Figure 

3. 

Table 1. Percent of Reaction Completion Between ferrocyanide and Co Complex .  

The pH of solution was 6.00, ferrocyanide concentration was 0.1 except for * where the was 
0.009 M. 

Molarity of 
K[Co(HEDTA)NO2] 
 

Excess 
molarity of 
K4[Fe(CN)6] 

Theoretical 
Amax 

Actual 
Amax 

Percent of 
completion 

3.00×10-4 333 0.307 0.302 98% 

4.50×10-4 222 0.460 0.421 91% 

6.00×10-4 166 0.614 0.516 84% 

2.00×10-3 50.0 2.05 1.141 55% 

2.00×10-3 4.50* 2.05 0.703 34% 
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Figure 3.  The Spectrum1 of K[Co(HEDTA)NO2] at Wavelength Range of 400 nm-600 nm at pH 6. 

The concentration of K[Co(HEDTA)NO2] is 0.0017 M. 

The same experimental procedure was repeated at temperatures 25.00 C, 27.50 C,  

30.00 C, 35.00 C , and 40.00 C. The plot illustrating the change in absorbance with respect to time 

(seconds) was similar for all temperature. This plot is represented in Figure 4 below. 
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Figure 4. Plot of Absorbance (A420), vs Time of the Reaction Between Ferrocyanide and 

[Co(HEDTA) NO2]-.  

 From the data, the plot of ln(Amax-At) vs time gave the rate constants at the respective 

temperatures. The plot is illustrate in Figure 5. 
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Figure 5. The Plot of ln(Amax-At) vs Time for a 1:1 Molar Ratio. 

The rate constants at the respective temperatures 25.00 C, 27.50 C, 30.00 C, 35.00 C , and 

40.00 C for the 1:1 molar ratio are represented in Table 2 below.  

Table 2.  Observed Rate Constant and Temperature for the 1:1 Molar Ratio. 

Temperature, 
K 

298.0k 300.5k 303.0k 308.0k 313.0k 

Observed 
rate constant, 
s-1 

0.0027 0.0029 0.0035 0.0044 0.0055 
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After getting the rate constant, k, we proceeded to get the activation parameters of the 

reacting complexes. We used the Arrhenius equation and plotted ln(k) vs 1/T (K-1) to get the 

energy of activation Ea. The plot is illustrated in Figure 6.   

 

 Figure 6. Plot of ln (k) vs 1/T (K-1) for the 1:1 Molar Ratio. 

From the plot, the slope = -Ea/R and we calculated the energy of activation (Ea) to equal    

34.8 KJ/mol. This value falls within the range of values of redox reactions of this type as 

represented in the literature. 

We then used the Eyring’s equation;  

 

 

y = -4544x +  9.843
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This is rearranged to 

 

We used our data to plot ln (k/T) vs 1/T in order to get the enthalpy of activation (∆H‡), 

and the entropy of activation (∆S‡), and the plot is represented in Figure 7. 

 

Figure 7. Plot of ln (k/T) vs 1/T for the 1:1 Molar Ratio.  

From the Eyring equation, the slope =-(∆H‡)/R was calculated and ∆H‡ equal 34.42 

kJ/mole. From the intercept, we got the entropy to equal 170.3 J/mol K. 
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 In the second set of experiments, we used a 1:10 ratio between the K4[Fe(CN)6] and 

K[Co(HEDTA)NO2] to obtain pseudo first order conditions. From the data, the plot of ln (Amax-At) 

vs time gave the rate constants at the respective temperatures. The plot is illustrate in Figure 8. 

 

Figure 8. The Plot of ln (Amax-A) vs Time for 1:10 Molar Ratio. 

The rate constants at the respective temperatures 25.00 C, 27.50 C, 30.00 C, 35.00 C , and 

40.00 C for the 1:10 molar ratio are represented in Table 3 below.  
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Table 3. The Observed Rate Constants at Different Temperatures for 1:10 Ratio 

Temperature, 
K 

298.0k 300.5k 303.0k 308.0k 313.0k 

Observed 
rate constant, 
s-1 

0.0046 0.004 0.0059 0.0075 0.0093 

 

  After getting the rate constant, k, we proceeded to get the activation parameters of the 

reacting complexes .We used the Arrhenius equation and plotted ln(k) vs 1/T(K-1) to get the 

energy of activation, Ea. The plot is illustrated in Figure 9.  

 

Figure 9. Plot of ln (k) vs 1/T (K-1) for the 1:10 Molar Ratio.                                                                 

we calculated the energy of activation (Ea) to equal 34.3 KJ/mol.      
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We then used the Eyring’s equation and plotted ln (k/T) vs 1/T in order to get the 
enthalpy of activation (∆H‡), and the entropy of activation (∆S‡) as illustrated in Figure 10. 

 

 

Figure 10. Plot of ln (k/T) vs 1/T (k-1) for the 1:10 Molar Ratio.                                                                        

From the Eyring equation, we calculated ∆H‡ to equal 37.00 kJ/mole and from the intercept we 

calculated the entropy to equals 171.6 J/mol K. 
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CHAPTER 4 

DISCUSSION 

 

  From the absorbance plot of K[Co(HEDTA)NO2], we calculated the molar extinction 

coefficient using the Beer’s law. Our value (230 dm3 mol-1 cm-1) was calculated to be 99.3% of 

the literature value of 232dm3 mol-1 cm-1 at wavelength of 495 nm. This was important 

evidence that our product was the K[Co(HEDTA)NO2]. Furthermore, by using the IR, we 

determined that N in the nitro group was bonded to the Co center. This was done by obtaining 

a peak position of 1334.52cm-1, which when compared with literature value4 (1335cm-1) 

confirmed the fact that N in the nitro group was indeed the bonded element to the Co center. 

This further supported the fact that our product was pure K[Co(HEDTA)NO2]. These procedures 

and their results clearly indicated that our product was properly synthesized and also in its pure 

form. 

From our experiments, the unchanged absorbance of the ferrocyanide in a degassed 

buffer solution of pH 6 indicated that the complex was stable without the presence of air. 

Likewise, K[Co(HEDTA)NO2] stability is also indicated as its spectrum remains unchanged over 

the time in the course of the runs. 

  Table 1 gives the observed percent reaction between the complexes at different molar 

ratios. As indicated, the percent completion is low when the molar ratio between the species is 

small and high when the molar ratio is large. In the case where the molar ratios between the 

two complexes is less than 10, the maximum absorbance  does not equal the molarity of the  
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limiting reagent K[Co(HEDTA)NO2] multiplied by the molar extinction coefficient of ferricyanide 

(1023 dm3 mol-1 cm-1). This means that the reaction at low molar ratios between the complexes 

exists at equilibrium which is further indicated by the low percent completion of the reaction. 

Nevertheless, when the molar ratio is large (1:10), with ferrocyanide in excess, the maximum 

absorbance is approximately equal to the molarity of the limiting reagent K[Co(HEDTA)NO2] 

multiplied by the molar extinction coefficient for ferricyanide. This is showed by the high 

percent completions at these molar ratios.  This means that at a high molar ratio, we have a 

pseudo first order reaction between the limiting reagent K[Co(HEDTA)NO2] and the 

ferrocyanide in excess. The reaction therefore goes very close to completion and we have an 

overall high percent completion. 

Former research 1 indicated a first order behavior for each reactant.  From Tables 2 and 

3, we clearly show that the rate constants increase as the temperature increases. All duplicated 

data were supportive of this idea. This further complemented the early research in the fact that 

we now know with high certainty, and with backing from our data and plots that, the first order 

reactant rate constants increases with temperature. These plots further allow us to get succinct 

information of the activation parameters of the reacting species.   

  The time needed to remove the cuvettes from the temperature bath and eject and 

inject solutions was varied from 3 to 4 seconds, that came with many trials and practice.  The 

time for mixing and initiating the UV-Vis scans introduced determinate errors in our result that 

was unavoidable. 
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  Figures 5 and 8 show the logarithmic evolution of ferrocyanide with time as we plotted 

ln(Amax-A) vs time, giving us the observed rate constants in the two cases at the respective 

temperatures. The observed rate constants were then used in accordance with the Arrhenius 

equation and also the Eyring equations to obtain the Ea, ∆S‡, and ∆H‡ for the two reacting 

complexes. The value of the enthalpy of activation 34.42 KJ/mol for the 1:1 ratio which is lower 

than that of the 1:10 molar ratio is indicative of the fact that at equilibrium, the rate of 

conversion of reactants to products is comparable to the rate of conversion of products to 

reactants. Hence, at that specified temperature as indicated by the Arrhenius equation, as a 

result of the kinetic equilibrium between reactants and products, the enthalpy of activation for 

the product formation is low. In the case of the 1:10 ratio the enthalpy of activation is high 

(37.00 KJ/mol ) because one reacting species, K[Co(HEDTA)NO2], is limited and so the excess 

ferrocyanide reacts with most of the K[Co(HEDTA)NO2] to form the product. As a result, the 

reaction goes to completion thereby having a higher enthalpy of activation.   This idea is in 

conformity with other related research 2of compounds of this nature and the value of Ea and 

positive values ∆S‡and ∆H‡, are in the range expected on the basis of literature values 2. Table 4 

illustrated below contains activation parameters for the 1:1 and 1:10 molar ratios.                 

Table 4.  Activation Parameters for 1:1 and 1:10 Molar Ratios. 

Activation parameters for 1:1 ratio Activation parameters for 1:10 ratio 
 Ea  = 34.8KJ/mol 

 
 Ea  = 34.3KJ/mol 

 
 ∆H‡ = 35.24kJ/mole 

 
 ∆H‡ = 37.00kJ/mole 

 
 ∆S‡  = 170.3J/mol K.  

 
 ∆S‡  = 171.6J/mol K.  
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These values correspond with the line of thought that the solvation spheres of both 

reacting species undergo little modification to the extent that the process of electronic transfer 

occurs with the minimum change in their coordination spheres. This is in accordance with the 

Frank-Condon principle that states for any vertical electronic transition, the time it takes an 

electron to be transferred between the two species is 10-15 seconds which is faster than any 

molecular motion, hence the molecule remains unchanged during the transfer. The positive 

value of the ∆S‡ is a clear indication of an outer-sphere mechanism. This is because in the 

transition state for an outer-sphere the two complexes are not linked together. They are free to 

move randomly giving rise to positive ∆S‡. For an inner-sphere mechanism, the complexes are 

linked together by a bridging ligand, hence do not move freely. This gives rise to negative ∆S‡ 

for inner-sphere mechanisms. This confirms the values of similar research2 and further confirms 

our conclusion that the outer-sphere mechanism is the path way of the electron transfer. 

Pertaining to our reaction and activation parameters, the rate of electronic transfer is 

greater than the reorganization energy of the two reacting species. Therefore, the electron 

transfer occurs with minimum change from the coordination sphere of the reactants. This in 

turn means that the electronic transfer occurs without bond breaking and formation, which 

favors outer-sphere mechanism as the mechanistic pathway over inner-sphere mechanism. This 

is supported by Marcus theory. Because both species are octahedral low spin ‘3d6’ species, they 

both undergo very little internal reorganization. This means little rearrangement energy 

between the species in the transition state, which in turn increases electronic transition. 
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 In Inner-sphere mechanism there is a formation of a bridge between the reacting 

species which facilitates electronic transfer. This is made possible by a bridging ligand, hence 

for the product ferricyanide to be formed, bonds would have to be formed and broken at the 

activation complex in the transition state. Hence, one of the ligands in the K[Co(HEDTA)NO2] 

would have to be dissociated. If this were the case then the spectrum of the K[Co(HEDTA)NO2] 

would have been different because it would result to a different structural molecule. But 

because the spectrum did not change over the period of the redox reaction, no ligand 

dissociation occurred.  This further indicates the preference of an outer-sphere over the inner-

sphere mechanism. 

  In similar studies of compounds of this nature 2,3, the rate of inner sphere mechanism is 

200 times faster than our results. The rate of outer-sphere mechanism between a positive and 

a negatively charge species is 30 times faster than our results. Because we are dealing with two 

negatively charge species, the rate of electronic transfer is expected to be the slowest due to 

repulsion. Related research2 have activation parameters; ∆H‡ ranging from 87 – 102 KJ/mol, ∆S‡ 

ranging from 27 KJ/mol – 95 KJ/mol with values of rate constants ranging from   11 s-1 to       

3500 s-1. This research was done at a low pH of 3.8 and was carried out in order to determine 

the correlation between the size of alkyl functions, R, and rate of reaction between the 

[Co(RNH2)5(H20)]3+ and ferrocyanide. Similar research10 studied the reaction between different 

aminoplycarboxylates; TRDTA, CyDTA, EDTA, PDTA, and HEDTA linked to Co centers and 

monitored their reactions with ferrocyanide. The outer-sphere mechanism was proposed and 

the rate constants varied from 1.0 × 10-4 s-1 to 5.4 × 10-3 s-1. This research included the ligand we 
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used(HEDTA) and our values of rate constants was in the same range as that of the research 

which further supports our conclusion of an outer-sphere mechanism. 

In conclusion, our synthesis of the kinetically-inert complex K[Co(HEDTA)NO2] has been 

improved to give us a purer product with higher yield (89.5%). Various activation parameters 

Ea, ∆S‡, and ∆H‡ have been determined and data replicated for the reaction between 

K[Co(HEDTA)NO2] and the ferrocyanide.  From the activation parameters and from other 

research1, we have been able to conclude that the electronic transfer between 

K[Co(HEDTA)NO2] and ferrocyanide occurs by an outer-sphere mechanism. 

Future areas of study include exploration for the reduced form of [Co(HEDTA)NO2]-. The 

structural change associated with the reduction is not yet known and also the specific location 

of reduction on the molecule is yet to be determined. As a result of the high lability of the 

[Co(HEDTA)NO2]2-, it is very hard to isolate it in solution. Advance techniques and 

instrumentation (may be trapping) may allow us to isolate and study it. This might be beneficial 

to the world of science and will take us closer to a clearer understanding of species and 

reactions of this nature. 
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APPENDICES 

Appendix A: The Data for Absorbance vs Temperatures for 1:1 Molar Ratio 

Time, seconds(25.00C) Absorbance(25.00C) Time, seconds 
(27.500C) 

Absorbance(27.50

C) 
0.00 0.324 0.00 0.327 
60.0 0.406 60.0 0.395 
120.0 0.483 120.0 0.477 
180.0 0.537 180.0 0.539 
240.0 0.577 240.0 0.589 
300.0 0.606 300.0 0.633 
360.0 0.630 360.0 0.666 
420.0 0.648 420.0 0.695 
480.0 0.664 480.0 0.719 
540.0 0.678 540.0 0.744 
600.0 0.689 600.0 0.779 
720.0 0.709 720.0 0.793 
900.0 0.734 900.0 0.829 
1020 0.748 1020 0.848 

 

 

 

 

 

Time,seconds 
(30.00C) 

Absorbance 
(30.00C) 

Time,seconds 
(35.00C) 

Absorbance 
(35.00C) 

Time,seconds 
(40.00C) 

Absorbance 
(40.00C) 

0.00 0.394 0.00 0.496 0.00 0.752 
60.0 0.480 60.0 0.615 60.0 0.802 
120.0 0.576 120.0 0.705 120.0 0.904 
180.0 0.641 180.0 0.756 180.0 0.962 
240.0 0.687 240.0 0.785 240.0 0.995 
300.0 0.721 300.0 0.806 300.0 1.020 
360.0 0.748 360.0 0.821 360.0 1.039 
420.0 0.770 420.0 0.833 420.0 1.055 
480.0 0.789 480.0 0.844 480.0 1.070 
540.0 0.805 540.0 0.853 540.0 1.083 
600.0 0.820 600.0 0.861 600.0 1.093 
720.0 0.844 720.0 0.874 720.0 1.112 
900.0 0.875 900.0 0.887 900.0 1.138 
1020 0.891 1020 0.894 1020 1.490 
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Appendix B: The Data for Absorbance vs Temperatures for 1:10 Molar Ratio: 

Time, 
seconds(25.00C) 

Absorbance(25.00C) Time, seconds 
(27.500C) 

Absorbance(27.50C) 

0.00 0.371 0.00 0.475 
60.0 0.516 60.0 0.557 
120.0 0.624 120.0 0.611 
180.0 0.709 180.0 0.633 
240.0 0.763 240.0 0.652 
300.0 0.801 300.0 0.644 
360.0 0.826 360.0 0.654 
420.0 0.834 420.0 0.652 
480.0 0.859 480.0 0.660 
540.0 0.864 540.0 0.671 
600.0 0.872 600.0 0.674 
660.0 0.864 660.0 0.676 
720.0 0.872 720.0 0.678 
1020 0.900 1020 0.690 

 

All data were replicated and values of activation parameters were similar in all cases with 

respect to the blank. 

 

Time,second
s (30.00C) 

Absorbance 
(30.00C) 

Time,second
s (35.00C) 

Absorbance 
(35.00C) 

Time,seconds 
(40.00C) 

Absorbanc
e (40.00C) 

 0.00 0.583  0.00 0.734  0.00 1.3343 
60.0 0.716 60.0 0.809 60.0 1.5049 
120.0 0.788 120.0 0.836 120.0 1.6120 
180.0 0.826 180.0 0.850 180.0 1.6771 
240.0 0.849 240.0 0.859 240.0 1.7143 
300.0 0.869 300.0 0.863 300.0 1.7350 
360.0 0.863 360.0 0.865 360.0 1.7483 
420.0 0.870 420.0 0.868   
480.0 0.876 480.0 0.869   
540.0 0.877 540.0 0.870   
600.0 0.879 600.0 0.871   
720.0 0.881 660 0.872   
840.0 0.883     
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