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ABSTRACT 

 
 

Biopharmaceutic and Pharmacokinetic Studies of Sucrose Acetate Isobutyrate 
 

as an Excipient for Oral Drug Delivery 
 
 

by 
 

Martin Ray Tant 
 
 

Sucrose acetate isobutyrate (SAIB), a randomly substituted sucrose approximating sucrose 

diacetate hexaisobutyrate, is produced by Eastman Chemical Company for a variety of 

applications.  SAIB is widely used in the food industry as a weighting agent to disperse flavoring 

oils in primarily citrus-based soft drink beverages.   Additionally, SAIB is currently being 

marketed by another company as a parenteral drug delivery system.  The studies reported here 

focused on investigating SAIB as an excipient, or delivery vehicle, for use in oral delivery of 

several drugs, including ibuprofen, saquinavir, and clarithromycin.  Dissolution experiments 

were conducted using both ibuprofen and caffeine, and results suggest that SAIB can be used 

in dosage forms to control release rate.  Pharmacokinetic studies in which laboratory rats were 

dosed with formulations containing drugs such as ibuprofen, saquinavir, and clarithromycin 

suggest that SAIB may act to reduce animal-to-animal variability in drug concentration profiles 

in some cases, and that it may also enhance gastroretention of the dosage forms.  Finally, 

dosage form imaging studies suggest but do not reliably confirm that SAIB may aid in 

promoting gastric retention, which would make its use in dosage form formulation beneficial for 

administration of drugs whose action is intended to occur in the stomach. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

 The general goal of oral drug administration is to simply, safely, and effectively deliver a 

drug to the target tissue, or biospace, within the body at the concentration and for the duration 

required to achieve the desired clinical or pharmacologic effect.  The rate and extent to which 

the drug of interest reaches the biospace is a direct result of (1) the kinetics of the following 

processes: liberation from the dosage form; dissolution; absorption into systemic circulation; 

distribution to the target tissue; metabolism; and excretion; and (2) the dose size and 

frequency of dosing.   The study of the rates of the processes given in (1) above encompasses 

the sciences of biopharmaceutics and pharmacokinetics (Van de Waterbeemd et al. 2003).  

Biopharmaceutics concerns the physicochemical properties of the drug and dosage form and 

involves such factors as (1) the stability of the drug within the dosage form, (2) the release of 

the drug from the dosage form, (3) the rate of dissolution of the drug, and (4) the systemic 

absorption of the drug (Shargel et al. 2005).  Pharmacokinetics involves the study of the rates 

of absorption, distribution, metabolism, and excretion, as well as the interrelationships of these 

complex and dynamic processes (Ritschel et al. 2004).  Pharmacodynamics, on the other hand, 

describes the rate at which the drug causes the pharmacologic effect once it has reached the 

biospace in sufficient concentration to induce the effect (Tozer and Rowland 2006).  One way to 

explain the difference between pharmacokinetics and pharmacodynamics is that 

pharmacokinetics describes the effect of the body on the drug while pharmacodynamics 

describes the effect of the drug on the body.   

 The LADMER (liberation, absorption, distribution, metabolism, excretion, and response) 

acronym is often used to define the processes of interest in oral drug delivery (Shargel et al. 

2005).  The schematic diagram given in Figure 1 illustrates in a simplified way the dynamic 
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interrelationships between these complex processes and shows the general boundaries between 

the sciences of biopharmaceutics, pharmacokinetics, and pharmacodynamics.  From a physical, 

chemical, and mathematical understanding of the biopharmaceutics and pharmacokinetics of a 

particular drug dosage form, as well as the pharmacodynamics of the specific drug, one can 

predict the dose and dosing frequency required to maintain the drug level needed in the 

biospace that will result in the desired clinical or pharmacologic effect. 

 

 

   Biopharmaceutics        Pharmacokinetics 

 

 

                             

        

 

                                                                                                                Response 

 
Figure 1. Dynamic relationship between the drug, dosage form, and pharmacologic effect 

(adapted from Shargel et al. 2005) 

  

 

 The general goal of pharmacokinetics is to describe these processes mathematically 

from the point of drug dissolution in the intestinal lumen to systemic circulation.  Because 

elimination, which occurs by both metabolism and excretion, and distribution of the drug 

between the blood and tissue are continuous, these processes must be considered in addition 

to absorption.  Basically, there are 3 different classes of approaches (Fournier 2007) for 

Drug release 
and dissolution 

Drug in systemic 
circulation 

Drug in  
tissues 

Excretion and 
Metabolism 

Pharmacologic or 

clinical effect 

Absorption 

Elimination Pharmacodynamics 

Distribution 

Liberation 
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mathematically describing the time-dependent plasma concentration of a drug administered to 

the body: (1) the compartmental approach, (2) the physiological approach, and (3) the model-

independent approach.  The compartmental approach is now very highly developed and is quite 

well described within the texts by Ritschel and Kearns (2004) and by Shargel et al. (2005).  

More recent approaches to quantitatively modeling pharmacokinetic processes have been 

physiologically based.  In these approaches the processes of the different physiological systems 

are modeled mathematically, often requiring the use of higher mathematics than is required for 

more simplistic approaches to pharmacokinetics.  The field of physiologically based 

pharmacokinetic modeling is currently evolving (Mancheras and Iliadis 2005, Reddy et al. 2006).  

The third approach for modeling pharmacokinetic data can be classified as phenomenological, 

as no attempt is made to describe the actual processes involved – only the resulting data.  All of 

the pharmacokinetic modeling performed in the present work follows the compartmental 

approach. 

 Sucrose acetate isobutyrate (SAIB), a randomly substituted mixture of sucrose esters 

approximating sucrose diacetate hexaisobutyrate, is produced by Eastman Chemical Company 

(Kingsport, TN) under the trademark Sustain.  It is available in a variety of compositions for 

different applications.  The most common application of SAIB is that of a weighting agent to 

disperse flavoring oils in primarily citrus-based soft drink beverages.  SAIB acts as a density-

adjusting agent to prevent separation and to maintain a cloudy dispersion throughout the 

beverage product, and is approved as a food additive in more than 40 countries.  Due to the 

potential risk of acute and chronic exposure to this compound by humans, extensive toxicology 

studies using various animal subjects, including humans, were conducted beginning in the early 

1960s.  Many of these are summarized in 2 reviews published in 1998 in the journal Food and 

Chemical Toxicology.  Here, Reynolds and Chappel (1998) reviewed toxicity studies published 
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prior to 1988, while Reynolds (1998) reviewed studies of the metabolism and pharmacokinetics 

of SAIB in rats, dogs, monkeys and humans.  In the same issue appear articles concerning 

subchronic toxicity of SAIB in rats and dogs (Proctor and Chappel 1998), toxicity studies in the 

cynomolgus monkey (Blair and Chappel 1998), toxicity and carcinogenicity studies in the rat 

and the mouse (Mackenzie et al. 1998a), reproductive studies in the rat and teratology studies 

in the rat and rabbit  (Mackenzie et al. 1998b), the effect of SAIB on the hepatobiliary function 

of humans (Chiang et al. 1998), and, finally, the genotoxic effects of SAIB (Myhr et al. 1998).   

 In the early 1970s, Reynolds and Chappel (1998) confirmed the finding of Morgareidge 

(1965) that ingestion of SAIB by dogs results in an increase in the weight of the liver and serum 

alkaline phosphatase levels resulting from interference of SAIB with biliary excretion.  Further 

studies in dogs, which were reviewed by Proctor and Chappel (1998), suggest that effects of 

SAIB on the hepatobiliary system of the dog can appear after only one low dose.  However, this 

effect is rapidly reversible following cessation of SAIB ingestion, suggesting that it is likely to be 

a pharmacological effect rather than a toxic one.  Similar effects were not found in rats and 

monkeys.    

The results of the toxicity studies of Blair and Chappel (1998) on the cynomolgous 

monkey showed that animals ingesting up to 2400 mg/kg body weight of SAIB per day showed 

no signs of specific toxicity, including a lack of the effects on the hepatobiliary function 

observed in dogs.   

Hensley (1975) and Orr et al. (1976) conducted studies on humans.  Hensley (1975) 

dosed human volunteers at a level of 10 mg/kg body weight per day for 14 days, while Orr et 

al. (1976) dosed a different sample of human volunteers at levels of 7 and 20 mg/kg body 

weight per day for the same time period.  The 20 mg/kg per day dosage regimen is 4 times 

greater than the lowest dosage used in dogs which resulted in increases in BSP 
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(bromosulfophthalein) and ICG (indocyanine green).  Chiang (1998) conducted further studies 

on the effect of SAIB on the hepatobiliary function of humans.  These studies suggest that daily 

SAIB dosages of 20 mg/kg body weight in humans do not result in changes in biliary function as 

in the case of dogs.   

Myhr et al. (1998) conducted a series of different in vitro genotoxicity assays that 

examined the interaction of SAIB with genetic material from metabolically competent liver cells 

at concentrations of 0.024 to 1000 μg/ml.  These tests, which are capable of detecting point 

mutations, chromosomal damage, and the induction of DNA lesions, were negative, indicating 

that SAIB has no damaging effects on DNA.  These workers concluded that, because of these 

negative results, and the fact that Tennant et al. (1987) had previously established that these in 

vitro genotoxicity assays are sensitive tests for potential carcinogenicity in vivo, SAIB is 

therefore not genotoxic and should not contribute to the dietary intake of mutagens.  

MacKenzie et al. (1998) conducted a 3-generation reproductive and teratogenicity study 

of Fischer 344 rats receiving oral dosages of SAIB up to 2.0 g/kg for 10 weeks.  A separate 

teratogenicity study was conducted on New Zealand white rabbits at oral dosages of up to 1.2 

g/kg body weight.  These workers concluded that, even at these high doses of SAIB,  

there were no observed effects in either case. 

In a series of patents, Southern Biosystems made claims for inventions using SAIB as a 

parenteral depot delivery system under the trademark SABER (sucrose acetate isobutyrate – 

extended release), currently marketed by Durect (Tipton and Ewing 1996; Tipton and Holl 

1996; Gibson et al. 1999).  SABERTM can be classified as a biodegradable in situ-forming depot 

(ISFD) system (Tipton and Dunn 2000; Hatefi and Amsden 2002).    Sullivan et al. (1998) 

tested a SABER system for release of progesterone and estradiol in seasonally anovulatory 

mares.  Genentech, Inc. made claim for a specific formulation for parenteral dosing of growth 
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hormone, specifically human growth hormone (Okumu 2001).  In 2002, Hatefi and Amsden and 

then Matschke et al. published reviews of injectable dosage forms that act as in situ forming 

drug delivery or depot delivery systems.  Tipton (2003) published a review of the use of SAIB 

as an in situ forming drug delivery system.  

Because SAIB is a mixed ester, it is not crystallizable and thus exists as an extremely 

highly viscous liquid.   SAIB is very difficult to handle in its neat form due to both its high 

viscosity (>100,000 cP at 25°C) and high degree of tackiness.  However, a 90%/10% 

SAIB/ethanol solution possesses such a dramatically lower viscosity (770 cP at 25°C) that it is 

injectable.  In the SABER system, the drug of interest is dissolved in the low-viscosity SAIB-

ethanol solution and injected into tissue.  Upon injection, the ethanol rapidly diffuses away, 

leaving the high-viscosity, hydrophobic SAIB in situ depot containing the drug.  The drug then 

diffuses out of the SAIB and into the surrounding tissue and the SAIB depot is slowly 

metabolized.  As a result of that work, the question arose as to whether or not SAIB has 

potential as an excipient for oral drug delivery. 

The absorption of most drugs delivered orally occurs primarily in the small intestine and 

the rate of absorption is dependent upon both the solubility and the permeability of the drug.  

Solubility might be enhanced by chemical means, e.g. by using a cosolvent that acts to 

solubilize the drug in the gastrointestinal environment (Li et al. 1999).  The effective 

permeability of the drug through the gut wall may be enhanced by decreasing the degree of 

ionization of the drug (Palm et al. 1999; Kobate et al. 2008), by blocking metabolizing enzymes 

(Bai et al. 1996; Yusuf et al. 2000), or by blocking transporters that extrude the drug back into 

the intestinal lumen (Huisman et al. 2001,2003; Constantinides and Wasan 2006; Collnot et al. 

2007).  Thus the possibility exists that any enhancement of absorption of a drug in an SAIB 

delivery system could be due to effects on any of these processes.  Effects on drug liberation 
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and solubility are easily tested, while effects on transport or metabolism require specific in vitro 

testing such as Caco-2 transport studies and microsomal metabolic studies (Tucker et al. 2001; 

Cummins et al. 2003).  Identification of particular transporters and/or enzymes involved may be 

accomplished using recombinant transporters/enzymes or microsomal systems that differentially 

express the proteins of interest (Crespi et al. 2000). 

 An additional way that drug absorption might be enhanced is by using gastroretentive 

dosage forms (GRDFs) that prolong the lifetime and integrity of the delivery system within the 

stomach (Chawla et al. 2003; Hoffman et al. 2004; Streubel et al. 2006).  This approach has 

been shown to be particularly effective for drugs having a narrow distribution window, such 

drugs being well absorbed in the proximal small intestine but to a lesser extent in the distal.  

Examples of such drugs are levodopa, metformin, furosemide, and ciprofloxacin.  GRDFs have 

been shown to be effective for furosemide and ciprofloxacin, e.g. Depomed's RFD/ciprofloxacin 

recently marketed drug product, Ciprofloxacin GR™, for treatment of urinary infections. 

Gastroretentive dosage forms may also be the desirable delivery approach for certain drugs 

whose action is intended to occur, not in tissue, but within the gastric environment, e.g. the 

treatment of Helicobacter pylori  in the stomach using clarithromycin (Conway et al. 2005; 

Bardonnet et al. 2006).  In this latter case, gastric retention extends the duration of exposure of 

the drug to the bacteria in their gastric habitat and thus the exposure time of the bacteria to 

the minimum inhibitory concentration of antibiotic.  Such an increase in the duration of 

exposure reduces frequency of dosing, improves compliance (fewer dosages), and greatly 

enhances the probability of eradication. 

 In this work, I hypothesized that sucrose acetate isobutyrate may enhance the 

absorption of some drugs and that this enhancement might occur by one or more of the 

following mechanisms:  (1) modification of drug liberation from the dosage form, (2) 
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enhancement of drug solubility, (3) gastroretention of the dosage form, or (4) modification of 

the absorption mechanism.  The question regarding mechanisms (1) and (2) above were 

addressed using dissolution studies and mechanisms (3) and (4) were addressed through 

pharmacokinetic studies and dosage form imaging studies in live animals.  These studies 

reported here were directed at determining whether or not SAIB might be a useful excipient for 

oral drug delivery and, if so, which of the mechanisms does it affect. 
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CHAPTER 2 

METHODS AND MATERIALS 

 

Dissolution Experiments 

Ibuprofen 

 Sucrose acetate isobutyrate (SAIB), whose structure is 

 

was supplied by Eastman Chemical Company in the form of Sustane SAIB ET-10 containing 

approximately 90 wt% SAIB and 10 wt% ethanol.  As mentioned in the previous chapter, this 

particular form of SAIB was used because of its lower viscosity and ease of handling.  In 

addition, ibuprofen, being soluble in ethanol, is easily dissolved in this system.  Ibuprofen, 

having the chemical structure 

 

   

 

was supplied in crystalline form by the Performance Chemicals and Intermediates Business 

Organization of Eastman Chemical Company.   
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 Ibuprofen was initially dissolved in the Sustane SAIB ET-10 at 12.5 wt%.  At this 

concentration the SAIB ET-10 was nearly saturated.  Higher concentrations were made by 

adding additional ethanol to the mixture to solubilize the ibuprofen. Two additional 

compositions were then made: one containing 16.8% ibuprofen in a system of 82.6% 

SAIB/17.4% EtOH and 22.6% ibuprofen in a system of 79% SAIB/21% EtOH.  Both solutions 

were essentially saturated with ibuprofen.  Amounts of these 3 different Ibuprofen/SAIB/ EtOH 

solutions were then transferred to capsules for dissolution testing using a USP-1 dissolution 

apparatus (illustrated in Figure 1), specifically a Distek Dissolution System, in a 6.8 pH buffered 

solution.  Exact amounts were measured to give a concentration of 50.0 ppm when fully 

dissolved in the dissolution apparatus.  Three additional capsules were prepared: one empty 

capsule, one capsule containing only ibuprofen, and one capsule containing only SAIB.  The 

capsules were placed in separate baskets and simultaneously immersed in different baths 

containing 6.8 pH buffer maintained at 37°C.   The baskets were rotated at 50 rpm and 10 mL 

aliquots were removed at specific time intervals during the dissolution process.   

             

Figure 2.  The USP-1 Dissolution Apparatus of the U.S. Pharmacopeia containing buffer solution 

and a rotating basket containing the dosage form  
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The samples were then analyzed immediately after collection using a Hewlett-Packard 8452A 

Diode Array Spectrophotometer.  The analysis followed the procedure for ibuprofen outlined in 

the U.S. Pharmacopeia, which stipulates that the absorption at 280 nm be subtracted from the 

absorption at 266 nm.  Clearly from Figure 3 below, one can see that the absorption at 266nm 

varies greatly with concentration while that at 280nm is much less a function of concentration.  

Plotting the difference in absorption at these two wavelengths vs. concentration gives a linear 

relationship as shown in Figure 4.   
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Figure 3.  Absorption spectra for 6.8 pH buffer, standard solutions of ibuprofen in 6.8 pH buffer, 

and a capsule dissolved in the buffer 
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Figure 4.  Calibration plot for analysis of ibuprofen during dissolution in 6.8 pH buffer 

 

Caffeine 

 Caffeine, having the chemical structure 

 

 

and carboxymethylcellulose (CMC), i.e. 
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were compounded together at a 25/75 weight ratio and caffeine/CMC/SAIB (not including 

ethanol) formulations were compounded at a 25/25/50 weight ratio.  Ethanol was added to the 

formulation to facilitate mixing.  Because SAIB ET-10 was used to prepare these formulations, 

calculations of weights to be used had to include allowance for the additional ethanol present.  

The formulations were then lyophilized overnight to remove ethanol and were reweighed to 

determine the exact composition and the amount of ethanol lost.  They were then packed into 

size 9 porcine hard gelatin capsules, obtained from Torpac, for the dissolution study.    

 For the dissolution experiments, a 10 mL vial containing 9 mL of buffer solution was 

placed into a reciprocating water bath at 37°C for 5 minutes to reach temperature.  A capsule 

was then placed into the vial and the bath was cycled at 60 cycles/min. Then 0.5 mL aliquots 

were removed at specific time increments, filtered, and stored.  0.5 mL of buffer was then 

replaced into the vial and it was returned to the reciprocating water bath.  Following the 

dissolution and sample collection procedure, 200 µL were removed from the solution taken at 

each time increment, transferred to a UV 96-well plate, and analyzed at 275 nm.  A calibration 

curve, shown in Figure 5, was constructed and used to determine concentration as a function of 

the time following introduction of the capsule to the dissolution vial. 
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Figure 5.  Calibration plot for analysis of caffeine during dissolution in 1.2 pH buffer 

(absorbance at 275nm) 

 

 

Pharmacokinetic Experiments 

 

 Male Sprague-Dawley rats were used for all pharmacokinetic studies.  The animals were 

housed in temperature-controlled rooms with, generally, three rats to a cage, having controlled 

12-hr light and dark cycles in the ETSU Division of Laboratory Animal Resources on the College 

of Medicine campus.  Water was provided during the entire period.  Some studies included a 

12-hr fasting period prior to dosing while some did not, the specifics of which are described 

below.  All studies were reviewed and approved by the ETSU Committee on Animal Care. 
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Ibuprofen 

 For the pharmacokinetic (PK) studies with ibuprofen, SAIB was not formulated into the 

dosage form.  For this initial PK study on rats, Sustain SAIB MCT containing 80 wt% SAIB and 

20 wt% medium chain triglycerides was manually compounded into standard rat chow.  

Eighteen male Sprague-Dawley rats were included in the study and the rats were divided into 3 

groups of 6 rats each.  Group I and II rats were fed a normal diet of rat chow until and 

throughout dosing and blood collection.  Group III rats were fed a diet of ground rat chow 

containing 4 wt% SAIB and 1 wt% MCT for 48 hrs before dosing and throughout the blood 

collection.  Although animals are typically fasted prior to commencement of PK studies, these 

animals were not fasted as it was desired to determine the effect of diet (SAIB vs. no SAIB) on 

the pharmacokinetics of ibuprofen.   Group I rats were dosed intravenously at the beginning of 

the pharmacokinetic experiment and Group II and Group III rats were dosed orally at about 10 

mg/Kg as 0.45 mL.  Approximately 125 µL of blood were collected into mini-capillary collection 

tubes containing EDTA dipotassium salt (SAFE-T FILL; RAM Scientific Inc., Yonkers, NY USA), 

placed on dry ice, and kept frozen until analysis.  Samples were analyzed by HPLC/MS by Mr. 

James L. Little at Eastman Chemical Company and data were analyzed using a GraphPad Prism, 

Version 5.0 software package. 

 

Saquinavir 

 Two different saquinavir formulations were made for oral dosing: (1) a formulation 

containing 25 wt% saquinavir and 75 wt% CMC and (2) a formulation containing 25 wt% 

saquinavir, 25 wt% CMC, and 50 wt% SAIB.  Animals were fasted beginning 12 hours prior to 

commencement of the pharmacokinetic study.  Blood samples were collected in the same 

manner as for the ibuprofen study described earlier, and samples were analyzed for saquinavir 
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by Dr. Michael Wempe by HPLC/MS/MS at Eastman Chemical Company, Kingsport, Tennessee.  

Data were analyzed using the GraphPad Prism 4.0, Version 4 software package. 

 

Clarithromycin 

 Two different clarithromycin formulations were made: (1) a formulation containing about 

15 wt% clarithromycin and 85 wt% CMC and (2) a formulation containing about 20 wt% 

clarithromycin, 40 wt% CMC, and 40 wt% SAIB.  Pharmacokinetic studies were conducted as 

described for saquinavir and samples were analyzed via LC/MS/MS by Dr. Michael Wempe for 

clarithromycin, decladinose clarithromycin (product of acid-catalyzed hydrolysis in the stomach), 

and the metabolites demethyl clarithromycin and hydroxyl clarithromycin.  Standard curves for 

clarithromycin and decladinose clarithromycin are shown in Figures 6 and 7, respectively.  Data 

were analyzed using the GraphPad Prism 4.0, Version 4 software package. 

 

 

Dosage Form Imaging Studies in Live Animals 

 In order to determine if dosage forms containing SAIB persist in the gastrointestinal 

tract for longer periods of time thus leading to extended release of the drug in vivo, 

formulations containing (1) 25 wt% barium sulfate and 75 wt% CMC and (2) 25 wt% barium 

sulfate, 25 wt% CMC, and 50 wt% SAIB were made and packed into capsules in the same 

manner as for the pharmacokinetic studies.  Animals were orally dosed, restrained, and then X-

rayed in the animal facility at ETSU as a function of time following dosing.  Images were 

collected using a Pinnacle Systems Dazzle imaging board and a personal computer and were 

visually compared to determine qualitative differences in rate of dispersion of the dosage form.   
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Figure 6. Standard curve of clarithromycin 

 

Decladinose Clarithromycin
Standard Curve (n=4 ± SD)
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Figure 7. Standard curve of decladinose clarithromycin.  LOD = limit of detection. 
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Statistical Analysis 

 

 Statistical analysis of the data for this work was accomplished using the JMP® statistical 

software package.  A one-way analysis of variance (ANOVA) was used to compare groups that 

received different types of a dosage form containing a particular drug.  Tukey-Kramer HSD 

(Honestly Significant Difference) comparisons were used to compare groups when the ANOVA 

was inconclusive.  In cases where groups being compared had large differences in variability, 

we used a variance-stabilizing transformation to account for this variability and comparisons 

were made of the transformation to ensure that conclusions reached were not simply based on 

noise in the data.  
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CHAPTER 3 

 

RESULTS 

 

 

Dissolution Experiments 

 

Ibuprofen 

 Ibuprofen was chosen as a model drug to begin investigating how sucrose acetate 

isobutyrate affects the release and dissolution kinetics of a drug when compounded into an oral 

dosage form.  For these initial studies we used an SAIB/ethanol mixture without removing the 

ethanol from the dosage form.  It is well known that when such a system is injected 

parenterally, the ethanol rapidly diffuses into surrounding tissue leaving the drug dissolved 

within the SAIB (Tipton 2003).  The result is a depot delivery system from which the drug 

slowly diffuses out into the surrounding tissue.  As described in the previous chapter, 

dissolution experiments for ibuprofen in 6.8 pH buffer involved measuring the absorption at 266 

and 280nm and subtracting the latter from the former.  These experiments resulted in the plots 

shown in Figure 8.  Using the calibration curve from Figure 4 and accounting for withdrawal of 

buffer without replacement and for the presence of gelcap and/or SAIB, the concentration-time 

curves shown in Figure 9 were obtained.  

 Each of these dosage forms contained the same amount of ibuprofen – enough to give a 

50.0 ppm solution of ibuprofen at full dissolution.  Clearly the dissolution of the dosage form 

containing only ibuprofen in a gelcap reached 50.0 ppm at long times.  The other 3, in which 

ibuprofen was dissolved in various compositions of SAIB and ethanol, did not, suggesting that 

not all of the ibuprofen was released from the dosage form even after about 3 days.  These 

results will be discussed more thoroughly in Chapter 4. 
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Figure 8.  Absorbance at 266nm minus absorbance at 280nm during the dissolution in 6.8 pH 
buffer for several dosage forms 
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Figure 9.  Concentration profiles vs. time for dissolution of ibuprofen in 6.8 pH buffer   

        from several different dosage forms 
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Caffeine 

 While the dissolution work using solutions of ibuprofen in SAIB/ethanol provided useful 

information, further investigations of drug dissolution from solid drug forms containing SAIB 

were performed.  Because carboxymethylcellulose (CMC) is often used as a binder in drug 

dosage forms, and we indeed did use it in pharmacokinetic work to be described later, we 

included it as well – primarily in the controls.  Two dosage forms were made: (1) one 

containing 25% caffeine and 75% CMC as a control, and (2) one containing 25% caffeine, 50% 

SAIB, and 25% CMC.  Experiments were performed as described previously, and the 

measurements of absorption vs. time are shown in Figure 10 below.   

 Converting absorbance to concentration using the calibration curve (Fig. 5) leads to the 

plot shown in Figure 11, where the results are shown with 2 different time scales.  Clearly the 

concentration of caffeine reaches much higher values for the caffeine/SAIB/CMC dosage form 

than for the caffeine/CMC dosage form.  This can be partially explained by the fact that the 

caffeine/SAIB/CMC dosage form contained more caffeine (7.45 mg) than the caffeine/CMC 

dosage form (4.525 mg).  It should also be noted that the calibration curve is very flat in the 

high-concentration region and that concentration values are thus not as reliable in this region. 
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Figure 10.  Absorbance at 275 nm vs. time for dissolution of caffeine in 1.2 pH buffer from 2 

different dosage forms – one containing SAIB and one without 
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Figure 11.    Concentration-time dependence during dissolution of dosage forms in 1.2 pH 

buffer 
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 The dissolution results reported here on ibuprofen and caffeine dissolution experiments, 

both with and without SAIB as part of the dosage form, suggest that the inclusion of SAIB is 

observed to decrease the rate of release and/or dissolution of the drug.  These results will be 

discussed more thoroughly in the Discussion section. 

 

 

Pharmacokinetic Experiments 

 

Ibuprofen 

 Figures 12-14 show plasma concentration-time profiles for rats in the three groups of six 

rats each dosed with ibuprofen in the following ways, respectively: Fig. 12 - rats fed a normal 

diet and dosed intravenously, Fig 13 – rats fed a normal diet and dosed orally, and Fig. 14 – 

rats fed a normal diet with 4 wt % sucrose acetate isobutyrate blended into the food.  Data 

were fitted using an open one-compartment model, including elimination only for the 

intravenously dosed rats and including both absorption and elimination for the orally dosed rats.  

These equations are given as 

 

         tkeleCtC


 0              (1) 

 

for the rats dosed intravenously and 

 

       tktk tel eAeBtC


          (2) 

 

for the rats dosed orally, where 

  C(t) =  drug concentration in blood at time t 

  ka = absorption rate constant 

  kel = elimination rate constant 

 

and A and B are constants.  GraphPad Prism 5.0 was used to model the data.  The models 

converged for all experiments except rat #3 in Figure 14.  Curve fits are shown in the figures 

and kinetic parameters are shown in Tables 1-3. 
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 Although the open one-compartment model fit the data for many of the rats, the data 

for others appear to follow an open 2-compartment model.  This behavior is observed when the 

kinetics of distribution between blood and other soft tissue, and distribution into deeper tissues, 

occur at different rates.  In this case the equations for intravenous and oral administration 

become 

       tk
eAeBtC te  

         (3) 

and         tktt aeCeAeBtC
  0                 (4) 

 

respectively, where 

  C(0)    = initial drug concentration 

  α = distribution slope 

and  β = overall elimination slope. 

  

Such a model shows an initial rapid appearance of drug in the blood followed by a rapid 

decrease resulting from both distribution into the deeper compartment, i.e. tissue, and 

elimination through normal metabolic processes.  As distribution into the tissue and 

redistribution back into the blood reaches a steady state, elimination becomes the controlling 

process, causing a decrease in drug concentration in the blood, and the concentration-time 

slope changes.   

 For the open one-compartment model, C(0)=A=B, and thus these constants can be 

easily compared to determine consistency between groups.  A comparison of C(0), A, and B 

obtained from the curve fits for each dosing method was conducted using a one-way analysis of 

variance (ANOVA) in the JMP® 9.0.0 statistics package.  This comparison is shown in Fig. 15.  

The values of C(0), obtained from curve fits for the rats dosed intravenously are much more 

tightly grouped than the values of A and B obtained from the curve fits for the rats dosed orally.  

Due to the amount of variability in A and B for the rats dosed orally, a variance-stabilizing 

transformation on C(0), A, and B was used to determine if there are significant differences 

between the groups.  Results of a Box-Cox transformation suggested that an inverse square 

transformation should be performed on C(0), A, and B.  The Tukey-Kramer HSD test on these 

transformed results revealed that the means of the inverse square roots are not significantly 

different.  Thus, there is no difference between C(0), A, and B.  These constants should be the 

same for the open one-compartment model. 
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Figure 12.  Ibuprofen plasma concentration profiles for rats fed a normal diet and dosed 

intravenously.  Data were fitted using an open one-compartment intravenous model 

(elimination only) 
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Figure 13.  Ibuprofen plasma concentration profiles for rats fed a normal diet and dosed orally.  

Data were fitted using an open one-compartment oral model (absorption and elimination) 
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Figure 14.  Ibuprofen plasma concentration profiles for rats fed a diet consisting of rat chow 

containing 4 wt% SAIB and dosed orally.  Data were fitted using an open one-compartment oral 

model (absorption and elimination) 
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Table 1.  Pharmacokinetic Parameters for Rats (Normal Diet) Dosed Intravenously with 

Ibuprofen 

Parameter 

IV1 

Normal 

Diet 

IV2 

Normal 

Diet 

IV3 

Normal 

Diet 

IV4 

Normal 

Diet 

IV5 

Normal 

Diet 

IV6 

Normal 

Diet 

Mean 

±σ 

C(0) 77.75 71.18 63.51 65.06 66.30 70.35 69.0±4.7 

kel 0.954 1.391 1.292 1.095 1.217 1.111 1.18±0.14 

R2 0.976 0.996 0.983 0.965 0.969 0.974  

 

Table 2.  Pharmacokinetic Parameters for Rats (Normal Diet) Dosed Orally with Ibuprofen  

Parameter 

Oral1 

Normal 

Diet 

Oral2 

Normal 

Diet 

Oral3 

Normal 

Diet 

Oral4 

Normal 

Diet 

Oral5 

Normal 

Diet 

Oral6 

Normal 

Diet 

Mean 

±σ 

A=B 264.6 11.78 17.58 16.57 21.02 71.43 67.2±90.8 

ka 3.312 6.831 3.860 8.221 3.692 2.912 4.80±1.99 

kel 2.473 0.482 0.772 0.496 0.729 1.138 1.02±0.69 

R2 0.955 0.919 0.959 0.972 0.988 0.883  

 

Table 3.  Pharmacokinetic Parameters for Rats (SAIB Diet) Dosed Orally with Ibuprofen 

Parameter 

Oral1 

SAIB 

Diet 

Oral2 

SAIB 

Diet 

Oral3 

SAIB 

Diet 

Oral4 

SAIB 

Diet 

Oral5 

SAIB 

Diet 

Oral6 

SAIB 

Diet 

Mean 

±σ 

A=B 144.5 21.21 NC* 14.61 15.40 14.67 42.08±51.27 

ka 3.867 33.03 NC* 6.761 4.098 5.378 10.63±11.25 

kel 1.887 0.860 NC* 0.4746 0.455 0.507 0.84±0.55 

R2 0.994 0.982 NC* 0.978 0.976 0.943 
 

 

* NC = No Convergence 
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Figure 15.  Results of statistical analysis of C(0), A, and B  for ibuprofen obtained using the 

open one-compartment model for (1) rats fed a normal diet and dosed intravenously and (2) 

rats fed a normal diet and dosed orally, and (3) rats fed a diet containing 4 wt% SAIB and 

dosed orally 

Oral SAIB 
Oral 
IV 

Level 
A 
A 
A 

0.21557135 
0.19557205 
0.12057238 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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The elimination rate constants, kel, should be the same as well.  Figure 16 shows the results of 

a similar statistical analysis on the elimination rate constants for all 3 rat groups.  A one-way 

ANOVA of the data and a Tukey-Kramer HSD on the inverse square root were performed as 

before.  There were no differences observed for the 3 groups. 

This statistical analysis was also performed on the integrated absorption rate constants, 

ka, for each rat dosage group.  A one-way ANOVA of the data and a Tukey-Kramer HSD on the 

inverse square root were once again performed and the results are shown in Figure 17.  In this 

case, and inverse transformation of ka was used and the Tukey-Kramer HSD indicated that 

there is no significant difference between the ka’s for ibuprofen absorption for the rats fed 

different diets. 

Finally, Figure 18 shows the results of the Tukey-Kramer HSD for the means of areas 

under the ibuprofen plasma concentration-time curves.  The long horizontal line of the green 

diamond indicates the mean, the short horizontal lines indicate the standard error of the mean, 

and the upper- and lower-most points of the diamond indicate the standard deviations.  The 

latter 2 are the pooled standard errors and standard deviations.  The results suggest that the 

mean value of the area under the curve for the IV dosage form is significantly different from 

the mean values for the 2 groups dosed orally.  However, the mean for the 2 groups dosed 

orally are not significantly different from each other.  

 

Saquinavir 

 Figures 19 and 20 show the individual blood plasma concentration-time plots for rats 

dosed with saquinavir/CMC dosage forms and 6 rats dosed with saquinavir/CMC/SAIB dosage 

forms, respectively.  We show these data individually for clarity.  Figure 21 shows the open 

one-compartment model fits of these data.  Because there is so much scatter, we decided to 

look at the data in a different way for this study.  Figure 22 shows the mean values for the 6 

rats in each of the 2 groups along with standard error of the means for each group at each 

time.  This figure suggested that the area under the curve for the dosage form containing SAIB 

might be larger than that without SAIB.  To investigate this we integrated the area under each 

of the curves and calculated a mean AUC for each of the 2 groups.  Conducting a one-way 

analysis of variance and a Tukey-Kramer HSD, the results of which are shown in Figure 23, we 

determined that there is no significant difference in the mean areas under the curves for the 2 

groups of rats. 
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Figure 16.  Results of statistical analysis of elimination rate constant, Kel, for ibuprofen obtained 

using the open one-compartment model for (1) rats fed a normal diet and dosed intravenously 

and (2) rats fed a normal diet and dosed orally, and (3) rats fed a diet containing 4 wt% SAIB 

and dosed orally 

 

 

Kel Oral 
Kel Oral SAIB 
Kel IV 

Level 
A 
A 
A 

1.1238221 
0.9718967 
0.9270531 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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Figure 17.  Results of statistical analysis of absorption rate constant, Ka, for ibuprofen obtained 

using the open one-compartment model for rats dosed orally and (1) fed a normal diet or (2) 

fed a diet containing 4 wt% SAIB and dosed orally 

 

Ka Oral 

Ka Oral SAIB 

Level 
A 

A 

0.24054890 

0.17334904 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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Figure 18.  Results of statistical analysis of areas under the ibuprofen plasma concentration-

time curve obtained using the open one-compartment model for (1) rats fed a normal diet and 

dosed intravenously and (2) rats fed a normal diet and dosed orally, and (3) rats fed a diet 

containing 4 wt% SAIB and dosed orally 

IV 
Oral 
Oral SAIB 

Level 
A 

B 
B 

53.246667 
35.575000 
29.350000 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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Figure 19.   Saquinavir concentration profiles for the 6 rats dosed with saquinavir/CMC dosage 

forms 
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Figure 20.  Saquinavir concentration profiles for the 6 rats dosed with saquinavir/CMC/SAIB 

dosage forms 
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Figure 21.  Aggregate plots showing: (a) the concentration of saquinavir for rats dosed with 

saquinavir/CMC dosage forms and (b) the concentration of saquinavir for rats dosed with 

saquinavir/CMC/SAIB dosage forms 
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Figure 22.  Saquinavir mean concentration profiles for the 6 rats dosed with either 

saquinavir/CMC or saquinavir/CMC/SAIB dosage forms.  Shown are the means and standard 

error of the means for all rats of each population 
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Figure 23.  Results of statistical analysis of areas under the saquinavir plasma concentration-

time curve for rats dosed either (1) saquinavir/CMC or (2) saquinavir/CMC/SAIB 

Saquinavir CMC/SAIB 
Saquinavir CMC 

Level 
A 
A 

3213.3333 
2481.4000 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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Clarithromycin 

 According to Wibawa et al. (2003), clarithromycin is hydrolyzed in an acidic environment 

(e.g. the stomach) to decladinose clarithromycin as shown in Figure 24.  The pharmacokinetic 

studies that we conducted on clarithromycin included blood analysis for both clarithromycin and 

decladinose clarithromycin. 
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Figure 24.  Acid catalyzed hydrolysis of clarithromycin to decladinose clarithromycin 

 

 Figure 25 shows the mean clarithromycin blood plasma concentration-time plots for 

three rats dosed with clarithromycin/CMC dosage forms and 3 rats dosed with 

clarithromycin/CMC/SAIB dosage forms.  Figure 26 show the concentration-time profiles for 

decladinose clarithromycin.  Clearly there is more variability in the results for the rats dosed 

with clarithromycin/CMC than the clarithromycin/CMC/SAIB dosage forms.  Several statistical 

analyses of the areas under the curves for these 2 groups were performed, including a one-way 

analysis of variance and a Tukey-Kramer HSD.  A t-test revealed a P-value of 0.747.  These are 

shown in Figure 27 for clarithromycin.  All the results confirm that there is no difference 

between the areas under the curves.  The results for decladinose clarithromycin are shown in 

Figure 28.  In this case, a natural log transformation was performed for the Tukey-Kramer HSD.  

The areas under the curves were found to be statistically significant for decladinose 

clarithromycin, the concentrations being much higher for the clarithromycin/CMC/SAIB dosage 

forms than for the clarithromycin/CMC forms.   
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Figure 25.  Clarithromycin concentration-time profiles for rats dosed orally with and without 

SAIB (n = 3 ± SEM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26.   Decladinose clarithromycin plasma concentration-time profiles for rats dosed orally 

with clarithromycin both with and without SAIB (n = 3 ± SEM) 
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Figure 27.  Results of statistical analysis of areas under the clarithromycin plasma 

concentration-time curves for rats does with either (1) clarithromycin/CMC or (2) 

clarithromycin/CMC/SAIB 

 

 

Clar CMC 
Clar CMC/SAIB 

Level 
A 
A 

1692.8333 
1483.6667 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 

Clar CMC/SAIB-Clar CMC 
Assuming unequal variances 
Difference 
Std Err Dif 
Upper CL Dif 
Lower CL Dif 
Confidence 

-209.2 
579.6 

1911.4 
-2329.7 

0.95 

t Ratio 
DF 
Prob > |t| 
Prob > t 
Prob < t 

-0.36088 
2.42175 
0.7473 
0.6263 
0.3737 -2000 -1000 0 500 1500 

t Test 
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Figure 28.  Results of statistical analysis of areas under the decladinose clarithromycin plasma 

concentration-time curves for rats does with either (1) clarithromycin/CMC or (2) 

clarithromycin/CMC/SAIB 

Declad CMC/SAIB 
Declad CMC 

Level 
A 

B 
8.3581940 
7.0269531 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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 Rat liver microsomal incubations performed at Eastman Chemical Company by Wempe 

(2006) demonstrated that 3 metabolites are formed from clarithromycin as shown in Figure 29.  

As a result of this work, both demethyl-clarithromycin and hydroxy-clarithromycin were also 

monitored and their blood plasma concentration-time plots are shown in Figures 30 and 31, 

respectively.  For both of these metabolites, less variation again results from administration of 

clarithromycin with SAIB but there are no statistically significant differences, as demonstrated 

by the results shown in Figures 32 and 33. 

 The results of this study are consistent with the hypothesis that the formulation 

containing SAIB is retained in the stomach for a longer period of time and also suggest that in 

this particular study SAIB acts to decrease the animal-to-animal variability of drug concentration 

profiles. 
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Figure 29.  In vivo metabolism from liver microsomal incubations 
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Figure 30.   Demethyl clarithromycin concentration-time profiles for rats dosed orally with 

clarithromycin both with and without SAIB (n = 3 ± SEM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31.  Hydroxy-clarithromycin concentration-time profiles for rats dosed orally with 

clarithromycin both with and without SAIB (n = 3 ± SEM) 
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Figure 32.  Results of statistical analysis of areas under the demethyl clarithromycin plasma 

concentration-time curves for rats does with either (1) clarithromycin/CMC or (2) 

clarithromycin/CMC/SAIB 

 

 

Demeth CMC 
Demeth CMC/SAIB 

Level 
A 
A 

266.45667 
142.36667 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 

Demeth CMC/SAIB-Demeth CMC 
Assuming unequal variances 
Difference 
Std Err Dif 
Upper CL Dif 
Lower CL Dif 
Confidence 

-124.09 
106.80 
280.90 

-529.08 
0.95 

t Ratio 
DF 
Prob > |t| 
Prob > t 
Prob < t 

-1.16187 
2.311632 

0.3512 
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Figure 33.  Results of statistical analysis of areas under the hydroxy clarithromycin plasma 

concentration-time curves for rats does with either (1) clarithromycin/CMC or (2) 

clarithromycin/CMC/SAIB. 

Hyd CMC 
Hyd CMC/SAIB 

Level 
A 
A 

10.925092 
8.610617 

Mean 

Levels not connected by same letter are significantly different. 

Comparisons for all pairs using Tukey-Kramer HSD 
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X-Ray Imaging Experiments 

 

 X-rays of rats dosed with (1) 25%BaSO4/75%CMC and (2) 25%BaSO4/                  

25% CMC/50%SAIB are shown in Figure 34.  Images are presented sequentially so that time 

moves from left to right and images from different groups can be compared directly at each 

time. These x-rays show that the dosage form containing SAIB persisted up to 100 minutes, 

while the dosage form that did not contain SAIB persisted only to 35 minutes.  Had these been 

the only 2 dosing experiments performed, one would conclude that dosage forms containing 

SAIB retain their integrity for longer times.  However, additional experiments were performed 

with mixed results using different dosage forms and different rats.  Some dosage forms 

disappeared after relatively short times (~30 minutes), while others persisted to much longer 

times (>100 minutes).  However, these results do suggest that perhaps through improvements 

in the design of SAIB dosage forms and in consistency of SAIB dosage form preparation, it may 

be possible to create SAIB dosage forms that retain their integrity for longer periods of time.   
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    Pre-dosing (BaSO4/CMC)      2 min (BaSO4/CMC) 

 

        

 Pre-dosing (BaSO4/CMC/SAIB)   2 min BaSO4/CMC/SAIB 

 

Figure 34.  X-ray images showing the BaSO4/CMC dosage form (top) and BaSO4/CMC/SAIB 

(bottom) in vivo as a function of time following oral dosing 
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       5 min (BaSO4/CMC)      10 min (BaSO4/CMC) 

 

        

     5 min (BaSO4/CMC/SAIB)    10 min BaSO4/CMC/SAIB 

 

Figure 34 (continued).  X-ray images showing the BaSO4/CMC dosage form (top) and 

BaSO4/CMC/SAIB (bottom) in vivo as a function of time following oral dosing 
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      15 min (BaSO4/CMC)      20 min (BaSO4/CMC) 

 

        

    15 min (BaSO4/CMC/SAIB)    20 min BaSO4/CMC/SAIB 

 

Figure 34 (continued).  X-ray images showing the BaSO4/CMC dosage form (top) and 

BaSO4/CMC/SAIB (bottom) in vivo as a function of time following oral dosing 
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      30 min (BaSO4/CMC)      40 min (BaSO4/CMC) 

 

        

    30 min (BaSO4/CMC/SAIB)    40 min BaSO4/CMC/SAIB 

 

Figure 34 (continued).  X-ray images showing the BaSO4/CMC dosage form (top) and 

BaSO4/CMC/SAIB (bottom) in vivo as a function of time following oral dosing 
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50 min (BaSO4/CMC) 

 

 

50 min (BaSO4/CMC/SAIB) 

 

Figure 34 (continued).  X-ray images showing the BaSO4/CMC dosage form (top) and 

BaSO4/CMC/SAIB (bottom) in vivo as a function of time following oral dosing 
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    75 min (BaSO4/CMC/SAIB)    100 min BaSO4/CMC/SAIB 

 

Figure 34 (continued).  X-ray images showing the BaSO4/CMC/SAIB in vivo as a function of time 

following oral dosing 
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CHAPTER 4 

 

DISCUSSION 

 

 As discussed in Chapter 1, the processes involved in oral drug delivery are complex and 

interdependent.  Absorption of a chemical substance into the bloodstream for distribution to 

various tissues of the body that contain the receptors that stimulate the pharmacologic 

response cannot occur until the drug has been dissolved in the fluids of the intestinal lumen.  

The amounts of drug administered and the rates of the processes of drug dissolution, 

absorption, and distribution must therefore be quantified in order for drug delivery to be 

understandable and predictable.  As the goal of this work was to begin to gain an 

understanding of how sucrose acetate isobutyrate might be used to control processes involved 

in oral drug delivery, we focused on understanding various aspects of these processes for 

several different drug and dosage systems – primarily dissolution and pharmacokinetics.   

 

Dissolution Experiments 

 

Ibuprofen 

 As described in Chapters 2 and 3, initial dissolution studies were conducted using 

capsules containing ibuprofen dissolved in a solution of sucrose acetate isobutyrate and 

ethanol.   Figures 8 and 9 show the results of the dissolution experiments conducted on several 

ibuprofen dosage forms.  Figure 8 shows the absorption results of aliquots take from the 

dissolution apparatus at different times following introduction into the apparatus and Figure 9 

shows the calculated ibuprofen concentration.  The upper curve in each figure, shown by blue 

diamonds and dashed line, is that of the control sample – a capsule containing only ibuprofen 

powder.   In this case, the concentration of ibuprofen dissolved in the buffer is dependent upon 

the kinetics of 2 consecutive processes:  (1) the dissolution/disintegration of the capsule and 

(2) the dissolution of the ibuprofen powder as it is exposed to the buffer solution.  As 

mentioned previously, all dosage forms contained precisely enough ibuprofen to give a 50.0 

ppm solution at full dissolution.  Clearly, for this dosage form, the ibuprofen powder had been 

exposed to the buffer within the first 10 minutes after being introduced to the buffer as 35% of 

the ibuprofen was in solution by that time.  Therefore the capsule had dissolved/disintegrated 
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enough to allow escape of the powder into the buffer solution within the first 10 minutes after 

introduction to the dissolution bath.  At 45 minutes into the dissolution experiment about 85% 

of the ibuprofen was dissolved, and all of it was in solution within 6 hours.  This sample 

containing only ibuprofen powder thus provided an excellent control to compare with those 

containing both ibuprofen and sucrose acetate isobutyrate.  The dissolution of the dosage form 

containing 12.5 wt% ibuprofen dissolved in 90%SAIB/10%EtOH is shown by red squares and 

red dashed line.  It would be assumed that release of the ibuprofen/SAIB/EtOH following 

dissolution/disintegration of the capsule would occur at about the same time as for the control 

sample.  However, 6 hours into the dissolution experiment only about 18.3% of the ibuprofen 

had been released into solution.  Visual inspection of the dosage form revealed that the SAIB 

remained together and attached to the rotating basket during the experiment.  Clearly the 

diffusion of the ibuprofen out of the SAIB is a relatively slow process.  The other 2 curves 

represent dissolution of dosage forms containing higher concentrations of ibuprofen (16.4 and 

22.5 wt%).  The amount of ethanol in these 2 dosage forms was higher in order to dissolve 

more ethanol.  The release rates for these 2 dosage forms were obviously virtually the same.  

The conclusion from these experiments is that, while dissolution of ibuprofen at 6.8 pH is very 

rapid, its release/dissolution rate can be controlled through design of the dosage form using 

SAIB/ethanol as an excipient. 

 

Caffeine 

 The initial dissolution experiments on ibuprofen used ethanol as a solvent for the SAIB 

and the ibuprofen.  Our next experiments, which were conducted on caffeine due to its stability 

and solubility, did not use ethanol as a cosolvent.  Instead, caffeine was compounded with a 

mixture of SAIB and carboxymethylcellulose (CMC) as described in the experimental section.  

The results of these experiments are shown in Figures 10 and 11.   The absorbance at 275 nm 

is shown as a function of time in Figure 10.  The calibration curve shown in Figure 5 was then 

used to convert absorbance to concentration, which is plotted in Figure 11.  Similar to the 

observation from the previous study on ibuprofen, caffeine from the dosage form compounded 

with SAIB and CMC goes into solution more slowly than from the one in which caffeine was 

compounded with CMC alone.  As mentioned earlier, final concentration levels are much higher 

for the caffeine/CMC/SAIB dosage form than for the caffeine/CMC dosage form because it 

contained more caffeine (7.45 mg vs. 4.525).  Also, concentrations above about 0.2 mg must 



 

 66 

be viewed with caution as the calibration curve becomes very flat in this concentration range 

and small deviations in absorbance can have a very large effect on the calculated concentration.  

The more interesting results of this experiment are, however, at very early times (<5 min) and 

low concentrations (<0.2 mg/mL).  Clearly, the dosage form containing SAIB releases caffeine 

much more slowly than the dosage form that does not.  In fact, the dissolution curve for the 

dosage form containing SAIB is concave upward while the dissolution curve for the dosage form 

that does not contain SAIB is concave downward.  One can easily calculate an initial dissolution 

rate for both dosage forms from the first data point obtained for each.  At 1 min following 

introduction of the dosage forms, the concentration of caffeine for the caffeine/CMC dosage 

form is 0.11 mg/ml while that of the caffeine/SAIB/CMC dosage form is 0.0006 mg/ml.  Even 

accounting for the difference in the amount of caffeine present in the 2 dosage forms, the 

dissolution rate of caffeine from the caffeine/CMC dosage form was initially many times faster 

than the dissolution of caffeine from the caffeine/CMC/SAIB dosage form.  Visual observation of 

the dissolution experiments confirmed that the caffeine/CMC/SAIB dosage forms maintained 

their integrity longer, as was observed in the ibuprofen dissolution experiments, thus allowing 

the drug to be released more slowly into the buffer solution.  Clearly, by manipulating the 

relative amounts of drug, CMC, and SAIB one should be able to vary the release rate of the 

drug from the dosage form and thus control how and to what extent the drug is released in the 

body. 

 

 

Pharmacokinetic Experiments 

 

Ibuprofen 

 

 Initial pharmacokinetic experiments were performed using ibuprofen as the drug.  

Instead of using a dosage form containing SAIB compounded with the drug, it was initially 

decided to feed the rats a diet either containing or not containing SAIB as a component.  In this 

way the rats that were fed a diet containing 4 wt% SAIB would always have SAIB throughout 

their digestive system while the rats fed a normal diet would not.  This would then serve as a 

test of whether or not SAIB might improve absorption of ibuprofen.  As stated earlier, blood 

samples were analyzed by Mr. James L. Little of Eastman Chemical Company.  Figures 12-14 
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show the results of the pharmacokinetic study.  Data were fitted using an open one-

compartment model with elimination only for the intravenously dosed rats and using an open 

one-compartment model with both absorption and elimination for the orally dosed rats. 

 The calculated pharmacokinetic parameters obtained using GraphPad 5.0 are tabulated 

in Tables I-III along with R2 values for each curve fit and mean values and sample standard 

deviations for each set of rats.  It should be noted that the values of the parameters for the rats 

dosed intravenously are much more reproducible than for the animals dosed orally.  Figure 15 

shows the results of a one-way analysis of variance and a Tukey-Kramer HSD for the pre-

exponential constants for all of the curve fits.  The results confirm that there is no difference 

between C(0), A, or B for the different rat groups, as should be the case.  The elimination rate 

constant, kel, for all 3 rat groups should be the same as well.  The same statistical analyses 

were performed on kel and, as shown in Figure 16, kel is not statistically different for the 3 

groups.  The same 2 statistical comparisons were performed on the ka values for the 2 rat 

groups that were dosed orally, one being fed an SAIB diet and the other fed a normal diet.  

These results are shown in Figure 17 and indicate that there is no difference in the absorption 

rate constant for these 2 groups, as should be the case.   

 The total amount of drug absorbed from an oral dosage is typically calculated as the 

area under the concentration-time curve and then compared with area under the curve 

calculated for the intravenously dosed rats.  This was done using the trapezoidal rule approach 

in GraphPad Prism 5.0 and the results are shown in Figure 18 along with the results of the 

Tukey-Kramer statistical analysis.  It was found that there is a statistical difference between the 

rat group dosed intravenously and the 2 rat groups dosed orally, with the IV-dosed rats 

absorbing more ibuprofen since all of the drug was injected into the circulatory system.  

However, there was no statistically significant difference in the total amount of drug absorbed 

between the 2 rat groups dosed orally and thus the SAIB diet had no discernible effect on drug 

absorption. 

 

Saquinavir 

 Because the inclusion of SAIB in the diet had no detectable effect upon absorption of 

ibuprofen in rats, it was decided to investigate SAIB as an actual component of the dosage form 

itself and to compare the pharmacokinetics of a drug in rats dosed with such a dosage form to 

the pharmacokinetics of the drug in rats dosed with a dosage form not containing SAIB.  
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Saquinavir was chosen as the model drug for this study and the measured blood concentration 

levels following oral dosing are shown in Figures 19 and 20.  Clearly there is a great deal of 

scatter in the results.  It is interesting, however, that high saquinavir blood plasma 

concentration levels are maintained for both dosage groups for up to 3 days.  Figure 21 shows 

the compiled results with curve fits assuming an open one-compartment model.  Again, the 

scatter is great and no real conclusion can be drawn from the data.  If the data within each of 

the 2 groups are compiled together we get more data points at each time and can analyze it 

statistically.  Calculating standard errors of the mean for each group at each time increment 

separately leads to Figure 22.  Lines are drawn to connect the means and standard errors are 

shown.  The only difference between the 2 curves occurs at longer times where the rats dosed 

with dosage forms containing SAIB appear to maintain higher blood concentration levels of 

saquinavir.  This result indicates the potential of SAIB as a possible sustained release agent.  

Further manipulation of the dosage form composition should be carried out to investigate this 

potential.  These data were analyzed further by calculating the areas under the concentration-

time curves for each rat and applying a Tukey-Kramer HSD comparison.  These results are 

shown in Figure 23 and show that there is no difference in the areas under the curves for the 2 

rat groups.  Therefore, we were not able to determine an effect of having SAIB as a component 

of the dosage form on the total absorption of saquinavir. 

 

Clarithromycin 

 The most interesting pharmacokinetic study carried out as part of this work was 

conducted on clarithromycin.  As stated previously, an acidic environment such as that found in 

the stomach is expected to catalyze clarithromycin to decladinose clarithromycin.  Figures 25 

and 26 show the blood concentration levels of clarithromycin and decladinose clarithromycin, 

respectively, following dosing for 2 groups of rats dosed with clarithromycin dosage forms 

containing SAIB or not.  Figure 25 shows that, while there is not statistical difference in blood 

level concentrations at times up to 6 hours, beyond that time there is a statistically higher blood 

concentration level of clarithromycin for the rats dosed with dosage forms containing SAIB.  

This supports the previously discussed saquinavir results that suggested a possible sustained or 

prolonged release of drug from the dosage forms containing SAIB.  Areas under the 

concentration-time curves were again calculated and compared.  The results shown in Figure 27 
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reveal that, although the pharmacokinetics of clarithromycin is apparently different, the total 

amount of clarithromycin absorbed by the 2 rat groups cannot be differentiated.   

The results presented in Figure 26 show that the blood concentration of decladinose 

clarithromycin, which would likely be formed in the acidic environment of the stomach, is 

always higher for the rats dosed with dosage forms containing SAIB.  The Tukey-Kramer HSD 

comparison, as shown in Figure 28, reveals that these rats produced much more of the 

decladinose form, suggesting that the SAIB dosage forms may be retained in the stomach for 

longer periods of time than dosage forms that do not contain SAIB.  This could obviously be 

useful for a drug such as clarithromycin, as it is widely used for treatment of gastric 

Helicobacter pylori, and gastric retention of the drug could maximize exposure to the bacteria 

and thus be beneficial.   

 Blood concentrations of the metabolites demethyl clarithromycin and hydroxyl 

clarithromycin are shown in Figures 30 and 31, respectively.  These amounts indicate a portion 

of the clarithromycin that has been absorbed and metabolized by the body.  The Tukey-Kramer 

HSD comparison for the areas under the curves are shown in Figure 32 and 33 for the demethyl 

and hydroxy forms, respectively.    It was found that the differences between the blood levels 

resulting from oral dosage via an SAIB-containing dosage form and one not containing SAIB are 

are not statistically significant.  However, there is clearly less variation for the SAIB dosage 

forms.  This result was also observed for clarithromycin itself.  Apparently, SAIB imparts an 

improved level of control to the release of clarithromycin in the body therefore rendering 

concentration levels of the drug itself, as well as the metabolites demethyl clarithromycin and 

hydroxyl clarithromycin, potentially more predictable. 

 

 

X-Ray Imaging Experiments 

 

 As described earlier, rats were dosed with capsules containing (1) 25%BaSO4/75%CMC 

and (2) 25%BaSO4/25% CMC/50%SAIB.  X-ray images were obtained as a function of time 

after dosing to follow break-up and dispersion of the dosage forms in the gastrointestinal 

system.  The dosage forms are clearly observable following dosing and persist for a variety of 

durations.  However, the length of time that they are observable by x-ray is highly variable and 

does not seem to be related to whether or not SAIB is a component of the dosage form.   
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Hence we have not been able to determine a difference in gastrointestinal integrity and 

longevity for dosage forms prepared with and without SAIB from this work.  However, it is 

important to point out the fact that the dosage form not being observable by this method is not 

proof that it does not retain some integrity.  We do believe that by improvements in the design 

of dosage forms and consistency in preparation, the longevity of dosage forms containing SAIB 

may be enhanced. 
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CHAPTER 5 

 

CONCLUSIONS 

 

 These biopharmaceutic and pharmacokinetic studies of sucrose acetate isobutyrate in 

experimental dosage forms were aimed at determining whether or not SAIB offers advantages 

over other excipients in the oral delivery of drugs.  Several different types of studies have been 

conducted in an effort to address this question:  (1) drug dissolution studies using ibuprofen 

and caffeine as model drugs directed at determining if SAIB influences the release (liberation) 

of dissolution of the drug; (2) pharmacokinetic studies in live laboratory rats using ibuprofen, 

saquinavir, and clarithromycin as model drugs to determine if SAIB affects blood concentration 

profiles of the drug following administration, e.g. by altering the rate or extent of drug release 

or absorption; and (3) dosage form imaging studies in live laboratory rats directed at 

determining whether or not SAIB improves dosage for integrity or promotes retention of the 

dosage form in the stomach.  The results of these studies led to several conclusions regarding 

the effects of SAIB in oral drug delivery and, in other cases, suggest further potential work to 

verify the results and conclusions.   

 The results of dissolution studies of ibuprofen/SAIB/ethanol dosage forms suggest that 

this system may behave in a way similar to the reservoir system developed by Durect; i.e. once 

the capsule is dissolved away, the SAIB/ethanol matrix acts as a depot delivery system, slowly 

releasing ibuprofen over time.  By varying the concentrations of drug, SAIB, and ethanol the 

release rate of the drug can be controlled.  The dissolution studies of caffeine/SAIB/CMC 

(carboxymethylcellulose) and caffeine/CMC dosage forms suggest that the incorporation of SAIB 

into the dosage form leads to a reduction in the initial release rate of the drug.  Further studies 

in this area should include different ratios of SAIB and CMC to learn more about the effects of 

this ratio on release rate. 

 The pharmacokinetic studies of ibuprofen were directed at determining if the presence 

of SAIB in the gastrointestinal tract of the rats would affect absorption of the drug.  It was 

found that the amount of ibuprofen absorbed was less for the rats fed an SAIB diet than for 

those fed a normal diet.  This suggests that SAIB simply being present in the digestive system 

at the levels used does not result in enhancement of drug absorption in the case of ibuprofen.  

Further studies could be directed at other types of drugs.  Pharmacokinetic studies of 
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saquinavir/SAIB/CMC and saquinavir/CMC dosage forms did not reveal a difference in the 

overall amount of drug absorbed, but data results suggest that higher blood concentration 

levels of saquinavir may be maintained at long times when SAIB is included as an excipient.  

Further studies should be conducted to confirm this.  Finally, pharmacokinetic studies of 

clarithromycin/SAIB/CMC and clarithromycin/CMC dosage forms show that decladinose 

clarithromycin levels in the blood are much higher in the rats dosed with dosage forms 

containing SAIB than without.  Decladinose clarithromycin is much more likely to be formed in 

the acidic environment of the stomach, suggesting that the dosage forms containing SAIB are 

retained in the stomach for longer periods of time.  Further studies should be conducted to 

confirm this finding.  In addition, all of the results for the clarithromycin study show that the 

clarithromycin blood levels are more controlled, i.e. more reproducible, when SAIB is included in 

the dosage form. 

 Finally, the dosage form imaging studies were not conclusive in confirming results from 

other studies that dosage forms containing SAIB persist for longer periods of time.  Though 

some dosage forms containing SAIB were longer-lived than some without SAIB, this observation 

was not consistent.  It is possible that inconsistencies in dosage form preparation led to this 

result.  Future work should be directed at improving dosage form preparation and making the 

preparation process more consistent.  It could not be determined whether or not SAIB 

promotes gastric retention of the dosage form. 
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