SCHOOL Of East Tennessee State University
GRADUATE STUDIES Digital Commons @ East
EAST TENNESSEE STATE UNIVERSITY Tennessee State University

Electronic Theses and Dissertations Student Works

Satistying STEM Education Using the Arduino
Microprocessorin C Programming

Brandyn Moore Hoffer

East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
b Part of the Educational Methods Commons

Recommended Citation

Hoffer, Brandyn Moore, "Satisfying STEM Education Using the Arduino Microprocessor in C Programming” (2012). Electronic Theses
and Dissertations. Paper 1472. https://dc.etsu.edu/etd/1472

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State

University. For more information, please contact digilib@etsu.edu.

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Satisfying STEM Education Using the Arduino Microprocessor in C Programming

A thesis

presented to

the faculty of the College of Business and Technology

Department of Engineering Technology, Surveying and Digital Media

In partial fulfillment

of the requirements for the degree

Masters of Science in Technology

with a concentration in Engineering Technology

by

Brandyn M. Hoffer

August 2012

Dr. J. Paul Sims, Chair

Mr. Garth R. Ghearing

Mr. William K. Hemphill

Keywords: Arduino, microprocessor, technology education, programming, computer science, STEM

ABSTRACT

Satisfying STEM Education Using the Arduino Microprocessor in C Programming

by

Brandyn M. Hoffer

There exists a need to promote better Science Technology Engineering and Math (STEM)
education at the high school level. To satisfy this need a series of hands-on laboratory
assignments were created to be accompanied by 2 educational trainers that contain various
electronic components. This project provides an interdisciplinary, hands-on approach to teaching
C programming that meets several standards defined by the Tennessee Board of Education.
Together the trainers and lab assignments also introduce key concepts in math and science while
allowing students hands-on experience with various electronic components. This will allow
students to mimic real world applications of using the C programming language while exposing
them to technology not currently introduced in many high school classrooms. The developed
project is targeted at high school students performing at or above the junior level and uses the

Arduino Mega open-source Microprocessor and software as the primary control unit.

DEDICATION

This thesis is dedicated to my family who has continued to encourage me to pursue
higher education and a successful future. First, | would like to dedicate this to my mother
Carolyn Hoffer who supported my curiosity in technology at a young age despite the damage it
caused to numerous electronic devices. Her continuous support of my decisions and
encouragement over the years kept me in school despite changing majors and universities several
times. Her willingness to let me make my own decisions in life has allowed me to develop into
the person | am today and | could not ask for better. | would like to thank my father Brett Hoffer
who has supported me in my decisions and assumed much of the financial burden of the extreme
price of putting a kid through college. He has taught me the value of hard work and dedication
and been an ever present example of how those qualities directly affect success in the “real
world” and personal life. I would also like to thank my grandparents Rolland Vogt and the late
Eva Vogt who supplied me with magnifying glasses, VCRs, and other electronics that originally
sparked my interest in science and technology. Their praise for learning how to hook up and fix
various devices and computers made education in the field of technology an obvious and

satisfying choice once | was ready to make it.

ACKNOWLDEGEMENTS

I would like to thank Dr. Paul Sims for the education and opportunities he has provided
me with over the years. His interest in my education is the reason | joined the M.S. of
Engineering Technology program at ETSU, and | am very thankful for his knowledge and

generosity.

| would like to thank Mr. Garth Gearing for volunteering to oversee all of my
independent studies and Topics in Technology courses. His help has allowed me to gain valuable
hands-on experience and provided me a continuous outlet for exploration in the field of

Electronic Technology.

| would like to thank Mr. William Hemphill for dedicating his time and knowledge in
helping create the Trainers. If it wasn’t for his valuable input, the prototype trainer would be a

dysfunctional wreck comprised of plastic, superglue, and duct tape.

| would also like to thank Matt Crum and Benjamin McMurry for their assistance with
the creation of the first prototype trainer as well as their input and knowledge on mechanical

engineering and design.

Finally I would like to thank the Arduino open source development team and all of the
programmers who either contributed to my knowledge or provided code used in the project

created for this thesis. These people are listed in Appendix A.

CONTENTS

Page

ABSTRACT . et h ettt nne e 2

DEDICATION L.ttt ettt st b e e hb e et e sa e et e e e ke e et e e sbeeenbeesbeeanneeas 3

ACKNOWLDEGEMENTS ...ttt sttt b e be e sbeeenee e 4

LIST OF TABLES ...ttt bbbttt b et e e bt et e e sbeeanbeesbeeantee s 9

LIST OF FIGURESottt et 10
Chapter

1. INTRODUCTION ..ottt sttt annas 11

2. MEETING EDUCATIONAL NEEDSoooii e 15

The PUrpose 0f the PrOJEC.........cviiieicie e 15

STEM Needs iN EAUCALION........cuiiiiiiiieieienieece et 19

An Interdisciplinary Approach to C Programming........ccccccceevveveieenesiieseeseereesseennen 21

Meeting Standards While Incorporating Other DisCiplines...........cccooeveiininciinnnnne 24

REQUITEIMENT L ...ttt bbb 28

REQUITEIMENT 2.t bbbttt bt b ene s 29

REQUITEMENT 3.ttt ettt et e e sbe e s beesreeereeas 29

REQUITEMENT 4 ...ttt e sb et e e sbe e e be e sreeereeas 29

Chapter Page
REQUITEMENT D ...t e et e e st e teenaeaneennas 30
REQUITEMENT B ...ttt ettt e e e saeeste s e re e teenaenneenras 30
REQUITEMENT 7 ...ttt e st e e e s s e ste e s e te e teeneeeneenns 30
REQUITEMENT 8. 30
REQUITEMENT ...t 31

3. THE LAB MANUAL ...ttt 36
Format and REASONINGccveiiieiieiieie ettt sra e sre e reeste e e sneenas 36

Lab Descriptions and CONCEPLScvevveeiieiieiieiie ettt sra et sre e 39

Lab 8: Maintaining Lighting Levels Using a Photoresistor...........ccoccvvvvevviienennnns 40

Lab 10: Interfacing With a Matrix Keypad..........cccoceririnininiiieeiene e 53

4. DESIGN CONSIDERATIONS ...ttt 67

THhe ArdUINO MEJA......cuiiieieiecie ettt ste e reeareeee s 67

Other Electronic Components and DEVICEScovevveieeiieie s 70
Materials and CONSEIUCTIONooveiiiiiiiieiccre e 80

5. CONCLUSION AND RECOMENDATIONSooiiiieiieeeee e 89
REFERENGCES ...ttt ettt et et e b e st e et e st e e sbe e e nbe e e beeenteenneeanee 94
APPENDICES ...ttt ettt et nbe et e b e e rbe e be e e R be et et e e nreeanbeeres 97
AppendixX A: ArdUing ProgrammerS........ccciieiiieiie it e esieesee s steesiee e ssesabeessseesreesnaeareesseas 97
Appendix B: The Lab ManUELcooiiioiii e 99

APPendix C: Lab DESCIIPLIONS.civiieieieieiteite sttt bt 185

Lab L2 “Hi GUYS ! ettt ettt ettt et nae e b annas 185
Lab 2: Simulating a Stop LIgNt.........ccveiiiiie e 185
Lab 3: INPULS AN OULPULS......ccueeieiiecieee et e e nas 186
Lab 4: Better Serial COMMUNICALIONcoveiiiiiiieisierieece e 187
Lab 5: Programming @ KEYPAccveiiiiiiiiiieiisesie e 187
Lab 6: Reading ANalog INPULScoiiiiiiiee e 188
Lab 7: Dimming a Light Using the Keypad............ccccoiiiiiiiniiiieee e 188
Lab 8: Maintaining Lighting Levels Using a Photo ReSIiStorcccccoevveieiicieciccee, 189
Lab 9: Interfacing With an LCD SCIEENcvciviiieieee e 189
Lab 10: Interfacing With a Matrix Keypad............cooviiririeiinc e 190
Lab 11: Making @ CalCUIALONc.ooiiiiieie e 191
Lab 12: Resistance and the ONM METErcccooiiiiiiieiieec e 191
Lab 13: Creating a Light MELErccvoiiiii e 192
Lab 14: Ultrasonic Distance MeasUremMeNtScourereirirerieininieiee s 193
APPENTIX D: DAASNEELSc.veeviceiccieecie ettt nas 194
10 K ROtary POIENTIOMELETccueiiieiieieieite ettt 194
10K TUNET POTENTIOMETEN ... ettt 197
DHOUE. ...t b bbbt bbbttt bbb bt 199
GIEEN LED ..o 203

LG SO BN ..ottt e e et et et e e e e et e e et eeeeet e aeeararr e ——————— 204

PROTOTESISTON ...ttt b bbb ene s 205

e (0] 1103 B = 0) OSSOSO 207
PUSH BULLON ...ttt 208
REU LED ...t bbbttt bbb 211
Safety SOCKEL (BOtN) ..o s 212
UIra BrgNT LED ..o 213
UItrasoniC DISTANCE SENSOTc.ueiiiiiiieiieiiesie ettt bbb 214
YEIHOW LED ...ttt bbbt 216
AppendiX E: AULOCAD DIaWINGSoiveieiieiireie e st et ste e sae e eae e steene e sreenesneennas 217
Trainer 1 AULOCAD DIAWINGccveiiieiiitiiiesiesie ettt bbb 217
Trainer 2 AUTOCAD DIAWINGcoveieiiiiiiitesiesii ettt sb s 218

AV I I USROS TP PO 219

LIST OF TABLES

Table Page
1. Lab 8: Commands and DeSCription SECHION..........ccveiieii i 43
2. Lab 8: Naming CONVENTION........c.ciiiie ettt sra et enbe e e sneennas 49
3. Lab 10: Commands and DesCription SECION..........cciiveiueiieiieie e 54
4. Lab 10: Character Print EXAMPIESccvoiiiieiicie et 57
5. Lab 10: Keypad BULLONScc.iiieiicieiec ettt st ba et esneeanas 59
6. Arduino Mega 2560 SUMMAIY.........ccuciiieieiieiieieeiee s e se e sreeste et e e esaessaesteesessaesteeneesreennas 68
7. EIECLrONICS PAIS LEST ...ttt 72
8. PN CONNECTIONS ...ttt bbbt bbbttt sb et sb e neeneas 79
9. KBY LADEIS ... et 79
10. Hardware and Construction Materialscccoiiiiiiiiiieiee e 88

LIST OF FIGURES

Figure Page
1. ATAUINO TTAINEIS ...ttt bbbt b b et b bbb n e n e 19
2. 18D 8 COUE ...ttt 53
T O 4o T T (= N 1 - Y2 OSSR 58
4. LAD 10 COUR ...ttt b bbb bbb 65
5. Arduino Mega 2560 (Arduino, Arduino Mega 2560, 2012)........cccccvveveerieiieieeie e e esee e 70
6. Trainer 1L SCNEMALIC Lc.ooviiiiiiiieiisie ettt 74
7. Trainer L SCREMALIC 2cuoiiiiiiiiieieesie ettt ettt 76
8L TTAINEE 2.ttt bbbt bbbt s et b bt e btk e bt b e Rt et et e bbbt b b ne s 78
9. ProtOtYPE TTAINET L ...ttt bbbttt sb e b bt nneeneas 82
10. Project BOX OUESTURcueiuiiiiiieiieiieiei ettt bbbttt b bbb 84
11, Project BOX INSIAR.......c..oiuiieiiieii ittt 84
12. IMIDF SUPPOIT INSEIT ...ttt n e ne s 85
13. Project BoX ATIEr MITIINGooiiiiiiiiieee e e 86
14, ProtOtYPe TTAINET 2 ...ttt bbbttt b bbbt be e 87

10

CHAPTER 1

INTRODUCTION

In an effort to create an educational tool that would provide students with a fundamental
understanding of C programing as well as exposure to electronic technology, two trainers and
associated labs were created. This project is meant to assist high school students performing at or
above the junior level of education. The Trainers consist of two separate units each comprised of
multiple components designed around several laboratory assignments. The laboratory
assignments each aim to progress with more complicated code once the student has used the
previously introduced code commands in various programs (referred to as sketches by the
Arduino software). The resulting prototypes and lab assignments are constructed in a way that
makes them easy to use and easy to complete during allotted class time. The result of
completion of the labs using the associated trainers will be a proficiency in the basics of C
programing as well as exposure to multiple technology components, key ideas in using both

analog and digital electronics, and the ability to interface with various sensors and displays.

The Arduino microprocessor was chosen for its ease of use, its capabilities, its relatively
cheap purchase price, and the fact that it is programmed in the C language; making the
knowledge gained by programming applicable to multiple areas in computer technology. The
Arduino is also an “open source” device consisting of a hardware unit available in multiple
configurations for various technology applications. The Arduino Mega 2560 unit was chosen as
the key piece of hardware for use with the trainers because of its abundance of inputs and outputs

and its ability to demonstrate all necessary C commands. The Arduino units are programmed by

any computer with a standard operating system using open source software. The associated
trainers are used by simply connecting different plugs to various inputs and outputs to the
Arduino unit. All necessary connections to make the hardware and electrical components
function have already been made allowing students to focus solely on their understanding of the

programs being created and the technology concepts introduced.

The lab manual introduces key commands that work together to accomplish specific tasks
with the developed trainers or with a computer. The lab manual begins by illustrating in detail
how to connect the Arduino to a computer with a Windows 7 operating system, and begin
communication. The lab assignments build in a logical order continuing to introduce new
commands and techniques while using previously introduced commands. Students are limited to
using only those commands introduced in each lab section as well as those introduced previously
in an effort to guide students programming; forming easily gradable and consistent finished
sketches. Examples of functioning sketches for each finished lab assignment have also been
complied to have a functioning program for educators to grade with. Each lab also introduces
key concepts in electronics to better aid students in understanding the tasks they are performing

as well as educate them to these concepts.

The trainer and associated labs meets several of the required course content standards for
education in C programing as well as others in math and technology courses as defined by the
Tennessee Board of Education. The individual components were chosen for their ability to
demonstrate successful use of C code. LEDs serve as indicators of producing successful control
statements that turn on various outputs. The LEDs provide an easy to notice indication that a
particular control statement was correctly formed or an output was properly specified. These are
used in a variety of ways to demonstrate binary numbers, analog outputs through dimming, and

12

simple output control. A potentiometer is used as the first analog input. This device allows for
the voltage on an analog pin to be easily changed simply by twisting a knob. A photo resistor
was used as a light sensor to vary the analog input as a function of the presence of light in the
room. These allow for control statements to be used with variable inputs and require proper data

formatting.

To further demonstrate the idea of resistance as well as provide a lab dealing with more
complicated control statements several resistors were used to form multiple voltage divider
circuits to measure the resistance of an external resistor. The photoresistor was used again in a
second trainer to measure lighting levels. This was chosen for its ability to demonstrate output
control based on analog inputs and to expose students to a transducer device. Simple push
buttons were used as the primary means to demonstrate input control statements and simulate
digital electronics. These are featured on the first trainer to illuminate LEDs and to provide

readout on the computer through the manipulation of binary numbers.

More complicated electronics such as the matrix keypad, the LCD screen and the
Ultrasonic distance sensor expose students to highly useful components. The keypad and LCD
screen also allow for the use of library or header files in C programming, allowing students to
call data from a prepared file. Through various labs these electronics allow students to develop
algorithms and use multiple data types including characters and arrays. Controlling these devices
requires students to use more complicated mathematical functions and conditional statements

allowing for exposure to many of the basics of C programming.

The prototypes and associated lab manuals as well as their design specifications and

components will be kept by East Tennessee State University. These prototypes will hopefully be

13

adopted by the college of Engineering Technology for minor scale production and sold or
donated to local area High Schools as a learning tool should they show interest. Mr. Garth
Gearing’s automation and robotics lab has the necessary tools and equipment to meet small scale
production of these units and is currently (summer semester of year 2012) being converted into a
manufacturing work cell with multiple robots on a conveyer system as well as an automatic

storage and retrieval palletizing device.

These trainers and associated labs will aid students gaining a greater understanding of
electronics and programming through hands-on application. The resulting education should spark
students’ interest in computer science, technology, and engineering majors improving education
in Tennessee and meeting the much needed demand for STEM graduates. Members of the
“Rising Above the Gathering Storm™ (2010, p. ix) committee discussed the current state of
STEM education and its impact; “participants expressed concern that the weakening of science
and technology in the United states would inevitably degrade its social and economic conditions,
and in particular erode the ability of its citizens to compete for high-quality jobs”. To produce
the best possible trainer for distribution to schools, revisions to the final prototypes may be made
to creating a more manufactureable trainer unit. The current design meets all necessary
functionality and the associated labs introduce a basic proficiency in using a variety of C

programming commands to meet various tasks and control a variety of inputs and outputs.

14

CHAPTER 2

MEETING EDUCATIONAL NEEDS

The Purpose of the Project

The initial goal of the project was to design an educational tool that allowed students to
investigate their interest in science and technology courses in high school in a unique way. In
order to properly meet course standards for the various technology related courses, high schools
often segment classes into highly specific curriculum. While these classes must meet or exceed
the standards for particular states educational requirements they often do not allow for students
to observe the way in which many of these courses work together. The resulting project was to
allow for students to easily use technology in a hands-on approach while meeting standard

course requirements.

In order to narrow the scope of the project a series of laboratory assignments were
created for use in a high school class room. These labs were to help meet the core requirements
defined by the Tennessee Department of Education curriculum standards for C programming.
These labs were accompanied by two educational trainers that allowed for technology and
engineering ideas to be applied through the use of C programming. The trainer exposes students
to various technologies and concepts that can be used in related STEM fields, thus promoting
education and interest in Science Technology Engineering and Math. This integrated approach
will show students how various fields and knowledge in these areas work together to provide

“real world” solutions.

15

The Arduino microprocessor is programmed in the C language. It can interface with any
analog or digital device that does not exceed its specifications. Any device that can be powered
by 5V and requires less than 40 mA of current can be used without the need for separate power
supplies. In order for students to use this device for C programming the trainers were developed
to incorporate electronics that could teach key concepts of the language. The trainers use simple
8 pin stackable headers as plugs to interface with the Arduino. These plugs correspond with the
electronics on the trainers to produce easily readable outputs showing proper completion of a

program. All electronics were chosen to demonstrate key programming or technology concepts.

Students first learn how to specify and format outputs through the use of LEDs. The first
trainer contains two sets of red, yellow, and green LEDs in a stoplight configuration. These are
used in the second lab teaching students about the basic structure of programming. These also
teach students to activate digital five volt outputs on the trainer that turn the LEDs on and off. If
the program is written correctly the LEDs simulate a stoplight. This allows for the output to be
observed by simulating a device most are familiar with. Errors in the programming will also be

easily noticed so the program can be debugged and retested.

Conditional statements are used in C to perform specific actions based on some variable
or event. “There are two forms of conditional statement: with or without an else clause”
(Harbison & Steele, 1984, p. 202). The “if...else” statement is used with momentary push
buttons to act as inputs and LEDs to act as outputs. Four buttons and four LEDs are featured on
the first trainer to teach students how to trigger digital outputs based on the condition of digital

inputs.

16

To further the understanding of conditional statements and introduce the concepts of
Binary and ASCII, a keypad was featured on the first trainer. This keypad sends a 4-bit binary
output to various digital pins to be interpreted by a program. The binary value read by the
Arduino is then displayed. Student use the Boolean operators with conditional statements to
interpret signals from the keypad. The keypad is also used to introduce different variables and
data types. In one lab students write a program that displays the key pressed in its binary for on
four LEDs. This is done by reading the keypad’s output and using math to reduce the ASCII

encoded number to its actual decimal value.

The first trainer features two analog input devices. These are a rotary potentiometer and a
photo sensor. Interfacing with these devices requires more complicated control statements and
the use of variables. These also demonstrate the principals of the analog to digital converter used
by the Arduino to interpret these signals. Another set of two ultra-bright LEDs are used to

visually demonstrate an analog output.

The second trainer uses an LCD screen to make the device portable. To control the LCD
screen a header (.h) file is used to display characters on the screen. Header files, discussed more
in depth later, are used to simplify code and retrieve data. The screen works in combination with
the other devices on the second trainer to display the value of variables and print specific
characters based on the condition received. A matrix keypad is featured on the second trainer.
This was used to interface with the LCD. Students use various buttons on the keypad to specify

what task the Arduino should be performing and send data to the Arduino.

In the first lab using these two devices, students are instructed to print characters to the

LCD screen based on the buttons pressed. This introduces character arrays and how to use them

17

in a program to produce certain actions. Students then create a simple calculator using these two
devices. This allows for numerical arrays to be used for calculations. Students develop an
algorithm to do math by calling the data stored in the array and performing the specified math

function.

Two safety sockets are located at the bottom of the second trainer. These use a voltage
divider in series with an external resistor to display the resistance measured in ohms. Students
will use this to compare measured and theoretical values of several resistors. The code to
perform this function is added onto the previous program using the keypad and LCD. Loops are
introduced to demonstrate how to execute only a portion of C code under certain conditions.
Students will also use loops with the photoresistor on the second trainer to calculate an average
reading over time. The analog reading will then be converted to a measure of luminance and

displayed on the screen.

The previous labs introduce the knowledge necessary to interface with the ultrasonic
sensor. By the time students write C code using this sensor, they will have reasonably developed
programming skills and know how to handle multiple variables and data types. This sensor is
used to calculate distance in a program based on the time in milliseconds read by the Arduino.
Students are instructed to interpret the received data and display the measurement in inches and
centimeters. Students will work in a group to interface with this device allowing them to present
a solution using the knowledge gained in C code. A picture of the two trainers can be seen in

Figure 1.

18

Figure 1. Arduino Trainers

Interfacing with these devices allows for a unique educational opportunity in C
programming. Currently there are issues with the way STEM education is being taught at the
high school level. These issues are defined in the next section of this paper. This approach to C
programming aims to better education in these fields by incorporating new ways of teaching. The
exposure to technology and math in the lab assignments should satisfy several of the needs to

better STEM education in Tennessee high schools.

STEM Needs in Education

The National Science Board (NSB) of the U.S. National Science Foundation clearly

states the need to promote STEM education in high school to encourage an educated workforce

19

in these fields. “Almost 30 percent of students in their first year of college are forced to take
remedial science and math classes because they are not prepared to take college-level courses”
(National Science Board, 2007, p. 2-3). The United States has historically been a source for
some of the most innovative science and technology advances and should strive to maintain that
stance. This is not possible if STEM education is not properly taught. While there are many
factors that contribute to the lack of properly educated students in the U.S., sparking students’
interest in these fields and teaching subjects in new ways can improve students’ abilities in these

subjects.

The global market is now making the technology market far more competitive than in
previous years. In order to compete and keep its position as a world leader for technology and
innovation it is important that the U.S. must properly educate students to be competent in the
STEM fields that drive innovation in this new age. Students must be exposed to this education
during high school or earlier in order to spark their interest and ensure they have what it takes to
receive a valued college degree in these areas. Unfortunately the U.S. is falling behind in
education. “The World Economic Forum ranks the United States 48th in quality of mathematics
and science education” according to a 2010 report evaluating the competitiveness of the U.S. in
the global market (By Members of the 2005 “Rising Above the Gathering Storm” Committee et
al., 2010, p. 6). While there are many social, political, and economic factors that affect
education in the United States, the way in which students are being taught plays a big role in

education.

Currently many teachers in the U.S. are not fully capable of teaching the STEM fields
effectively. Classes are often taught in a subject by subject basis with little interdisciplinary

approach. Teachers are often not given the tools and flexibility needed to become educated on

20

the subjects enough to teach them effectively. The STEM national action plan of the NSB states
that “the Nation faces a chronic shortage of qualified teachers who are adequately prepared and
supported to teach STEM discipline effectively” (NSB, 2007, p. 5). This is often the case
because of the inability to attract highly qualified professionals into teaching jobs. There is too
little flexibility in teacher compensation and other professional positions offer much higher
salaries and conditions than most teaching careers. The question remains: if there is a need to

improve STEM education, how is that done?

An Interdisciplinary Approach to C Programming

In order to Improve STEM education it is important to recognize that these fields do not
operate independently in real world applications. Many high school classes focus on teaching the
theory behind the subjects with little real world application. Individual classes often do not
incorporate concepts from other related subjects. The STEM fields in particular all work together
to form real world problem solving skills. Princeton University has created an undergraduate
college program known as Integrated Science that incorporates multiple aspects of various
science disciplines into a singular course without the single subject barriers of traditional
schools. David Botstein, the director of the Lewis-Sigler Institute for Integrative Genomics at
Princeton states that “Any budding researcher needs a foundation in several fields to be able to

work on the most important problems confronting scientists today” (Princeton University, 2012).

There are many expert opinions on how to better education that range from increasing
salaries, to making mandatory, across the country, benchmark standards. These ideas, however,

fall outside of the scope of the created project for this thesis and will not be discussed. Douglas,

21

Iversen, and Kalyandurg (2004) of the American Society for Engineering Education (ASEE)
have published a paper entitled Engineering in the K-12 Classroom that discusses several of the
issues with science and engineering education. Among the six major recommendations made to
improve science and engineering education in the U.S., three can be improved directly at the
classroom level. The first of which is to use more hands-on learning that will make curriculum
less theory-based and more context-based. The second is to take interdisciplinary approaches to
subjects. The last recommendation that falls within the scope of the classroom is to use and
improve K-12 teachers. While this project cannot improve teachers in these subjects, it can
provide them with a tool that will make their jobs easier and help ease the perception that

engineering and science are hard subjects.

Many teachers were surveyed in the previously mentioned ASEE report on their views of
engineering and associated education. Some of the key questions in this survey also illustrate
what is needed to better engineering education. According to the paper “teachers believe that
majoring in engineering in college is harder than majoring in many other subjects”

...furthermore “39.1% strongly agreed and 51.2% agreed with the statement, ‘Understanding
more about engineering can help me become a better teacher’” (Douglas et al., 2004, p.10).
While the STEM fields most certainly are not easy, the perception that they are too difficult to
enter can be changed with the proper approach to education. A series of hands-on assignments
that teaches the fundamentals of these subjects while demonstrating the ideas behind them can do

a lot to better understanding amongst both students and teachers.

The ASEE idea of improving hands-on learning goes hand in hand with the problem of
discontinuity between public education and workforce requirements. The NSB agrees that more
should be done to provide the type of useful education that has real world applications rather

22

than using memorization and theory alone to teach subjects. “All stakeholders should make a
serious effort to minimize the current disconnect between high school graduation requirements
and the skills and knowledge required to succeed in higher education and the workforce” (NSB,
2007, p. 19). Providing students with skills that will help in college level classes and their future
careers will not only provide a more useful education to the students but ease the number of

remedial class enrolments and training hours spent on new employees in related fields.

In order to satisfy the principals for improving STEM education in the high school setting
the created project was designed with these ideas in mind. Rather than abiding by the traditional
way C programming is taught in high schools, an interdisciplinary hands-on approach was taken.
C programming is typically taught through the use of lectures and reading for education where
the fundamental functions and commands of the language are to be memorized and demonstrated
through a few programs. Students do get some “hands-on” experience in the class room using a
computer to develop these basic programs, but this method only exposes students to the aspects
of computer science for this language. While C is typically used for programming computer
applications, it has other applications as well. The Arduino Microprocessor chosen for
demonstration of the language is a valuable technology and engineering tool that can accurately
show the usefulness of C beyond simply sitting in front of a computer. Using the Arduino to
control various electronics on the trainer demonstrates these key commands and how they can be
used in control systems and electronic devices. This in turn bridges the gap between a computer

language and the technology that can be driven by it.

23

Meeting Standards While Incorporating Other Disciplines

While many of the recommendations made by the NSB and the ASEE would improve
education, the coursework and classes introduced in high schools must still meet the curriculum
standards set out by each state. As previously mentioned, in an effort to narrow the scope of this
project it was created to meet several of the standards defined out by the Tennessee Department
of Education (TDOE) for C programming. While this project may meet course standards in other
states, they were not considered in the development of this project. An interdisciplinary class
covering many aspects of different subject would likely not meet these standards as a result of
not teaching any particular subject with enough depth. The created project satisfies the core
requirements set out by TDOE for standards 2.0 - 4.0 in the subject of C Programming
Applications. Standard 1.0, however, deals with the history and background of computers and

programming and will still be met by standard classroom instruction.

As it stands the TDOE sets core requirements for every class that must be met under state
guidelines in order for a high school class to be considered adequate. These standards are divided
into sections and defined by learning expectations and performance indicators. The individual

standards for each class are listed on the TDOE site at www.tn.gov/education/curriculum.shtml

and are available in Adobe PDF format for anyone to view. C Programming Applications is
listed under the Computer Technology courses subsection for grades 9-12. There is a prerequisite
for the class of Algebra I, meaning most students will not encounter this class until their 10" or
11" year. The class C Programming Applications has four standards as previously mentioned.
These are all satisfied by the education students will receive using the created project, excluding
the history requirements. The lab manual provides instruction on how to use the individual

commands as well as the previously mentioned concepts for technology education. This project

24

http://www.tn.gov/education/curriculum.shtml

IS not meant to replace current classroom materials and instruction but rather supplement them
allowing for an understanding of C programming applications that are not currently taught in
most Tennessee school class rooms. The electronics on the trainers correspond with specific
eight pin headers that have been labeled. This makes interfacing with the electronics as simple as
plugging them into the Arduino board. Having a simple interface allows for programming to be

the main focus of the class and prevents students from having to build circuits.

The following standards were taken from the TDOE website for C Programming
Applications core standards. The standards are listed in order and the way in which the created

project supports these standards is listed below each one.

Tennessee State Board of Education, C Programming Application Core Standard

1.0 (2005):

Standard 1.0
1. The student will gain competency in the background knowledge of
computers and programming.
Learning Expectations
The student will
1. Discuss the history of computers and programming languages.
2. Describe the purposes of the computer and the C language.
3. Discuss the architecture of the computer.
4. Summarize the characteristics of the C programming language.

5. Critique the role of the computer in society.

25

This standard is satisfied by traditional classroom instruction. While the created project
does teach some of the purposes of C programming and many of the characteristics of the
language, historical knowledge cannot be taught through the use of the trainer. The standards
recommend that students develop a timeline with dates demonstrating their proficiency of the

historical knowledge of computers and programming languages.

Tennessee State Board of Education, C Programming Application Core Standard 2.0

(2005):

Standard 2.0
2. The student will use system operations as they relate to C programs on
the computer.
Learning Expectations
The student will
1. Demonstrate computer start-up procedures.
2. Discuss the basic structure of the C language.
3. Explain C program entry, listing and editing as it relates to the operating
system.
4. Discuss the execution of programs.
5. Explain the storage, retrieval and deletion of programs.
Performance Indicators: Evidence Standard Is Met
The student is able to

+ demonstrate the use of a prepared C program on the computer.

26

This standard is satisfied within the first few lab assignments. The introduction to the
crated lab manual describes in detail how begin connecting the Arduino Mega microprocessor
and load a basic prepared program. This introduces the start-up procedures and the basic format
of the language (requirement 1 and 2). The second requirement is for the basic structure of the C
language is discussed. Students will see the basic programming structure for various commands
as they are introduced throughout the labs. In Lab 2 students edit the prepared program in the
introduction to perform a more complex task by simulating a stoplight rather than blinking a
single LED with the prepared program. This also allows students to be familiar with program
entry, editing, and execution (requirements 3 and 4). To satisfy requirement 5, the lab manual
suggests that programs should be saved often with understandable naming conventions. Code
that does not work should be deleted to prevent using it in future labs. This standard suggests that
students execute a prepared program then edit the program and execute the new one as a sample

performance task, which is performed in lab 2.

Tennessee State Board of Education, C Programming Application Core Standard

3.0 (2005):

Standard 3.0
3. The student will write and document an executable program in C
Learning Expectations
The student will
1. Identify names for variables and their data types.
2. Recognize the symbols for operations and use them in evaluating data.
3. Demonstrate the various methods of obtaining input/output and
formatting output.

27

4. Analyze the task and develop an algorithm.

5. Demonstrate control statements.

6. Identify, illustrate and perform operations on data types in arrays.

7. ldentify and use functions.

8. Read and/or write data files for input/output purposes.

9. Debug the program and verify the output of the program.
Performance Indicators: Evidence Standard Is Met

The student is able to

» analyze, design and write a minimum of two executable programs in C

for each of the Learning Expectations.

This standard has the widest range of learning expectations for the class and seems to be
the educational focus of C Programming applications. As a result the individual requirements

were broken down, and the ways in which they are satisfied were discussed.

Requirement 1

Identify names for variable types and their data types. The “int” or integer variable is
introduced in lab 3. Integers are used to call digital pins by recognizable names rather than
numerical address. Lab 4 introduces the data types “DEC, BIN, HEX,” and “OCT”. These are
the commands used to format a variable as a decimal, binary, hexadecimal, and octal number.
Lab 6 introduces the float variable used to express decimal or fractional numbers. Lab 10
introduces the data type byte and the variable “char” or character. These are used to specify
characters for an LCD display. Finally lab 11 introduces the “long” variable type that can store

much larger numbers than the “int” variable type.

28

Requirement 2

Recognize the symbols for operations and use them in evaluating data. All Boolean and
arithmetic math operations are introduced in lab 3. These are used with control statements to
produce the proper output. Lab 4 then introduces mathematical operations to be used with the
variable types. Finally in Lab 11, where students create a calculator with basic functions, almost

all variable types and most of the Boolean operators are used to perform the required functions.

Requirement 3

Demonstrate the various methods of obtaining input, output, and formatting output. In the
first lab students use the serial monitor or text display on the computer as an output. Lab 2
students activate 6 LEDs using digital outputs. Lab 3 further builds on this concept using digital
inputs in the form of push buttons. The analog input and output functions are introduced in labs 6
and 7. These are capable of reading or writing variable 5 V signals. All of these inputs and
outputs are used in many labs and students must format them properly in order to complete each

assignment. If the variable types are not formatted correctly, their sketch will not work.

Requirement 4

Analyze the task and develop an algorithm. When students create a calculator they must
form algorithms to handle the mathematical function input on the keypad. These algorithms will
allow the Arduino to interpret the incoming variables and perform the correct mathematical
function. Other labs require algorithms to be developed to convert an analog input measurement

into usable data, or a physical measurement such as the ohm or voltage.

29

Requirement 5

Demonstrate control statements. In lab 3 where students first used digital inputs and
outputs together, control statements allow for the proper output to be formed. These statements
become progressively more complicated when handling different variables and data types. The
“if” command is used heavily throughout the programs to specify an action to be performed

based on different inputs.

Requirement 6

Identify, illustrate, and perform operations on data types in arrays. The calculator lab uses
arrays to store numbers input with the keypad. These numbers are then used in the students’
calculations. Character arrays are specified in lab 10 where students learn how to interface with
the matrix keypad. These arrays allow for various characters to be received by the Arduino.

Control statements are used to specify what should be done when receiving each character.

Requirement 7

Identify and use functions. Functions must be used in all labs to create working programs.
Functions let the Arduino know how to handle individual portions of the code. The necessary
basic functions for programming the Arduino are the setup and loop functions. These are

introduced in the very first lab.

Requirement 8

Read and/or write data files for input and output purposes. Header files, discussed in
more detail in Chapter 3, are used as the primary data files. The LCD screen used first in lab 9

uses the library files to display characters to the LCD screen output. A header file is also used to

30

control the matrix keypad used in lab 10. This file allows for data from the keypad to be used as

an input for various functions. These files are used in the remaining labs.

Requirement 9

Debug the program and verify the output of the program. Completion of any lab
assignment is done by creating the proper output. As such, students must debug their programs to
correct errors and produce the desired output. Programs become progressively more complicated
increasing the likelihood of errors. Each completed program will give students more experience
in debugging these problems. The state of any variable, input, or output can be viewed on the
computer’s serial monitor allowing for students to see where problems occur. More complicated

labs encourage students to use the monitor to verify that calculations are correct.

The sample performance task to meet this standard recommends students convert one unit
of measurement to another. This occurs in the final lab where students will view distance
measurements on the LCD screen expressed both in centimeters and inches. Students convert
analog measurements in several labs prior to the final lab. These measurements are converted to
usable data to control outputs based on specific conditions. In lab 13 students will convert an
analog measurement into a measurement of illumination. In lab 12 students will use a voltage

divider to convert an analog measurement to ohms.

Tennessee State Board of Education, C Programming Application Core Standard

4.0 (2005):

Standard
4. The student will work as a team member to develop an integrated

application using C .

31

Learning Expectations

The student will

1. Define the roles of the team members.

2. Solve a complex task using C .

3. Compare and contrast the advantages of working as a group.
Performance Indicators: Evidence Standard Is Met

The team is able to

« analyze and present the solution of the task.

Upon completion of the Lab 13 students will have a detailed knowledge of the basics of
C programming and Arduino specific commands. Lab 14 is designed to be a coordinated group
project where student will work in a group to develop a distance measuring device using an
ultrasonic range finder. The output of the device will be measured, and students will plot their
readings against a ruler of known accuracy. They will use this information to determine an
equation for the line of best fit. There measurements will be displayed in centimeters and inches,
and measurements must be accurate for completion of the assignment. Students will have their

measurements checked against the ruler to verify that the proper calculations were performed.

The labs and the trainers also introduce concepts for the Principles of Technology I and
use math in a way that the Common Core State Standards Implementation Plan recommends.
According to the plan math should be used to link major topics within grades and provide
conceptual understanding with application. Multiple Labs use mathematics in the programming
of a sketch to solve algebraic equations. Students will use the calculator created in Labl11 to use

the sin, cosine, and tangent functions to verify their lab was created successfully. Many other

32

equations are introduced to handle variables and to produce readable and accurate measurements

for the various sensors introduced.

In order to explain the function of the keypads and other electronics, the concept of bits
and bytes is introduced. These data types use binary to represent numbers or characters. Binary is
explained in Lab 4 where students convert decimal numbers into several other formats. Binary is
a base two counting system that uses either a 1 or a 0 to signify high or low, on or off. This lab
includes the equation to convert decimal to binary. A Byte consists of eight binary bits that are
commonly used to Store American Standard Code for Information Interexchange (ASCII).
Computers communicate using binary numbers and encode all readable characters to integers for
storage. ASCII translates these to readable characters for the serial monitor from an eight-bit

binary code (Johnsonbaugh & Kalin, 1997, p. 15).

AJ/D converters measure an analog input in and convert it to a binary number in equal
steps. “Each unique digital code corresponds to a small range of analog input voltages. This
range is 1 LSB [least significant bit] wide” (Lundberg, p. 2). The concept of resolution is also
mention. The resolution of an A/D converter is equal to its full scale voltage divided by the
number of bits used to represent the voltage. This in turn determines the accuracy of an A/D

converter and the accuracy of the voltage students read in the serial monitor.

The A/D converter is used to measure the voltage from either a potentiometer or the
various voltage divider circuits. The voltage divider equation is used for measuring resistance in
multiple labs. The most notable is Lab 12 where students will use resistor color codes to predict
the value of the resistor. They will then use the ohm meter created to measure the resistance of

these components and compare them to their predicted values. This satisfies the TDOE standards

33

3220.3.4.a, 3220.3.4.b, and 3220.3.4.c for Technology I. These standards say students should
learn about electrical resistance, compare resistor values to measured values, and calculate

resistance (Tennessee State Board of Education, 2008).

Both analog and digital devices are used in the trainer and students will use both types in
their labs. Analog outputs use 5V pulse width modulation (PWM) at a rate of 490 hertz (Hz).
The analog output is therefore a square wave that “appears” to be changing in voltage as a result
of the duration of the pulse. One Hz is one cycle per second, or the amount of time a signal takes
to go from high to low and back to high again. The amount of time it takes for the signal to make
one cycle is the period of the signal. The frequency is defined as: Frequency = 1/ Period
(Davies, 1998, p. 275). Introducing these concepts satisfy the TDOE core standard 3220.3.3.b for
the class Technology 1 that applies to understanding frequency and period (Tennessee State

Board of Education, 2008).

In order to introduce hands-on technology application, a variety of electrical components
and sensors are used to demonstrate the labs. The use of a microprocessor allows students to
understand both digital and analog inputs and outputs. The more complex sensors in the trainer,
as well as variable voltage circuits, illustrate to students how to setup control programs using
technology concepts. Each of the more complex components of the trainer is described in the lab,
as well as the fundamental concepts for controlling them. Using these pieces of technology
commonly used in Electrical Technology and Engineering classes allows for the interdisciplinary

approach described by the NSB and ASEE.

In order to address the issue of helping teachers with complicated subjects the labs were

designed to introduce all knowledge pertaining to the assignment. A brief explanation of each

34

command used in the lab is provided, as well as an explanation of how they will be used in the
sketch. All the internal connections have already been made and students will only be required to
connect labeled plugs to the Arduino Mega microprocessor simplifying the technology side of
the trainers. Each lab has already been completed in a sketch that will be provided in digital
format along with the trainers. These completed sketches have all been tested to work in the way
the labs suggests and use only the commands students are intended to use. They are commented
in detail to explain the function of each command set in the sketch so teachers will have no
problem understanding how the program controls the various components. The Arduino and
associated program is an open source technology that has a variety of information available on
the web to explain in detail any concepts or issues not understood by the instructor. This in turn

should make the instructor’s job much easier in being able to explain these concepts to students.

35

CHAPTER 3

THE LAB MANUAL

Format and Reasoning

The Lab manual was created to provide personal instruction to students and teachers on
how to complete each task assignment. It is divided into 14 labs that each introduces new C
programming commands and key concepts related to the language and the operation of the
created trainers. There is also an introductory section that describes how to get the free Arduino
software, connect the device, and use it to execute various programs. Each lab is broken down
into four sections. These sections are Purpose, Equipment, Commands and Description, and
Procedure. The lab manual is written in the second person narrative to reflect that these are

instructions provided to the student for completion of the assignment.

The use of the second person narrative was chosen to involve the student in the writing of
the labs. The use of the pronouns “you” and “your” reflect that the assignments are the creation
of individual students and that instruction is directed at them. These also take on the same
narrative that is used in classroom instruction. They can be read aloud by an instructor or fellow
student and do not sound as removed as the third person narrative. While the second person
narrative is rarely appropriate, it can be used to better provide instruction so long as the specific
audience is known. Owens Community College (2012, p. 1) agrees “Second person is effectively
used when writing directions; in this case the audience is clearly identified and is seeking the

author’s advice.”

36

The different sections of each lab are consistent throughout the Lab manual. The author
of this thesis based the format on a common format observed in the majority of classes
containing lab instructions while pursuing a M.S in Technology. This format was also designated
and used by the author to provide instructional labs to undergraduate students in the classes of
Industrial Electronics, Electronic Communication, and Electronic Principals at East Tennessee
State University. A similar format was approved and accepted by Mr. David Jones and Dr.
Zhibin Tan while the author was assisting with their laboratory classes. The format differs
slightly for these classes based on the specific instructional needs for these classes. For example,
rather than a Commands and Description section, a Schematic section was included. This serves
the same purpose of defining what would be needed and how it will be used to complete the lab.
The instructional labs for these classes also included a question and answer section where
students would answer questions to determine their grade for the assignment. This section was
omitted in the majority of the labs designed for this project because completion will be defined
by a working program in most cases. Grades can be assigned by instructors based on students’
adherence to the format preferred by the instructor as well as the logical structure of the

commands in the program and their readability.

Each lab is introduced by number and title name. Immediately following the name is the
Purpose section. This section describes the goal of the lab and what technology or concepts will
be introduced. The next section is the Equipment section. This is simply a list of the equipment
that will be needed to for proper completion of the lab. All equipment for the labs is included
with the trainers created for the project. Common equipment used in every lab is the Arduino
Mega, the Arduino USB cable, and a computer. The Commands and Description section follows

and provides a brief description of each new C programming command used in the assignment

37

arranged in an easy to read table. Below the table supplementary information is provided on the
various commands to better describe their use in the assignment. These are provided for the
student as an easy reference while writing sketches. Any technology concepts or math used in the
assignment is also introduced in this section. The Procedure section is a step-by-step
instructional set for the student that allows them to complete the assignment. This section
contains recommended variable names, tips for completion of the assignment, and the guidelines
for the general structure of the sketch. Any connections that need to be made are also clearly
explained and pictures and other illustrations are used to provide a visual representation for more

complicated ideas.

The step-by-step instructions provided in each lab are written in a way to guide students
programming so they produce easy to grade, somewhat consistent sketches. There are a variety
of ways to produce the same outcome using different commands and even programs that have
few similarities between their commands and structures. Often times C programming commands
are interchangeable to perform the same task. In order to minimize the variability in students
completed sketches examples are provided and specific variable names are recommended. There
is no national guideline for the indentations or spacing used in professional programming, so this
was left to the teacher’s discretion. In order to further limit the commands used in a program and
prevent variability in the commands used to accomplish specific tasks, students are limited to
using only those commands that are listed in the Commands and Description section as well as
those introduced in previous labs. The completed sketches included with the created project
should be used by instructors as an example of one way in which the sketch can be completed.
Students may not produce identical sketches, but they will contain the same commands and same

basic structure to accomplish the assigned task.

38

Lab Descriptions and Concepts

The Lab manual introduces new commands to interface with various components on the
trainers in a logical manner that covers many of the basic C programming commands. In this
section an excerpt of two labs will be introduced. The full lab Manuel can be viewed in
Appendix B, and a brief explanation of each can be found in Appendix C. The C commands
learned in each lab will be discussed as well as the concepts introduced. This will show the
logical structure of each lab and the reason for introducing the individual commands and
technology concepts. All Arduino specific library commands used in the sketches have been

defined by the Arduino language reference site at http://arduino.cc/en/Reference/HomePage.

The first section is First Time Setup. This section covers downloading the free Arduino
software from the website which comes in a .zip file. Instructions on how to unzip and install the
file are also listed. Next, this section covers how to install the Arduino drivers. This occurs
automatically on some machines; however, computers running certain antivirus software and
firewalls can make this a bit difficult. The user must manually install the drivers for the Arduino
Mega 2560. To make this simple, pictures and file paths are included in the information. Next
the setup section shows how to connect the computer to the Arduino by specifying the specific
board and communication port. To verify that everything was performed correctly, a prewritten
example program that blinks an onboard LED on the Arduino is loaded and run to show students

how programs are used.

Before explaining the commands used in the labs it is necessary to explain what a header
or library file is. These files introduce new commands into the C programming language that
make more complicated programming tasks executable through a single command. There are

several Arduino specific commands included in every sketch that allow for digital and analog

39

http://arduino.cc/en/Reference/HomePage

control of the 1/0O pins. Other standard library files can also be included by depositing them in the
library folder of the Arduino program. These files are designated with the .h extension derived
from the header file name. According to Johnsonbaugh and Kalin (1997, p.33) these files
“request some action before the program is actually translated into machine code.” It is important
to note that these files are widely used to simplify the C programming language. Arduino uses
many of the basic C commands and automatically loads several header files to simplify 1/0
functions, timers, and other specific functions commonly used in sketches. This in turn allows

students to form programs that would be much more complicated without the use of these files.

Lab 8: Maintaining Lighting Levels Using a Photoresistor

Lab 8 is a good example of a fairly complex program done on the first trainer. This lab
was chosen for demonstration because it uses most of the electronics on the first trainer. All of
these devices, excluding the photoresistor, have been used in previous labs and should be
understood. An excerpt of the purpose section of the lab describes what will be done and how

this builds on previous labs.

Lab 8: Maintaining Lighting Levels Using a Photoresistor

Purpose

Now that you can use the Arduino with both analog inputs and outputs
you will be using both of them in a sketch. In the previous lab you dimmed a light
using the keypad buttons; however, most dimmers you see in houses and lighting
devices use a knob (potentiometer) to control the amount of light rather than a
keypad. Another common use for dimming lights is to maintain a certain

brightness level in an area by supplementing artificial light when natural light

40

begins to disappear. Windows and skylights allow for sunlight to illuminate a
room without the need for electricity, but the sun eventually sets, and it would be
much easier if the lights just came on without you having to move to the nearest
light controls to gradually make them brighter as this happens. In this lab you will
be programming the Arduino to control the same LEDs used in the last lab. The
“0” and “ENT” buttons will be used to select one of two different lighting modes.
The first lighting mode will make the LEDs become brighter as the room becomes
darker through the use of a Photo Resistor. A photo resistor is a device that has a
changing resistance that varies in the presence of light. The second lighting mode
will allow for manual adjustment of the LEDs through use of a potentiometer.
This setup allows for both manual and automated lights in the home or work
environment. You will also need to program a way to make your light sensor

more or less sensitive based on the desired lighting levels for the environment.

This lab is a good demonstration of solving a real world problem by using C
programming and the technology introduced. It states how this program can be used in a work
area, and the analog devices on the trainer all work together to form two specific outputs. One is
controlled by a variable resistance from the photoresistor, the other is manually controlled. The
next section is the “Equipment” section and lists all the equipment that will be used for the lab. It

also mentions optional equipment that may be useful but in no way is required.

41

Equipment

Arduino Mega

Arduino USB Cable

Computer

Arduino Power Cable (Optional)

Arduino Trainer

Light Source

The following section describes the commands used in the program and their function.
These are presented in a table and can be used as an easy reference during programming. Table 1

is the excerpt from this section:

42

Table 1.

Lab 8: Commands and Description Section

Command Description
map (Intiger, fromLow, fromHigh, toLow, The map() function can be used to change the
toHigh) value of a variable or integer to another more

appropriate value. Because the Arduino reads
fromLow, fromHigh, toLow, toHigh = any analog value from 0 to 1023 these are often
number used for calculation used as the fromLow (0) and fromHigh (1023)
numbers. Since analog outputs are 0 to 255
these are often used as the toLow (0) and

toHigh (255). Examples are below.

constrain(Value, Min, Max) This function “constrains” a value to a

Value = any integer, variable, or other data particular set of numbers. In other words the
type. Min value specified is the lowest number the
Min = the minimum value value can take. Even if the sketch tells it to go
Max = the maximum value lower the number will stay the value specified

by Min. Similarly Max provides an upper limit.

Because some of these commands are fairly complicated they require better explanation.
Students are also exposed to the voltage divider equation to understand how the photo resistor
works. The photo resistor, and how it functions, is explained in an easy to understand way below
the commands and description table. This lab requires multiple statements from a previous lab to

be used. As a result a computer tip is added at the end.

43

More on the Introduced Commands:

In the last sketch the math to “analogWrite()” the value of the LEDs was
performed manually. The “map()” function allows the Arduino to calculate these
values for you. For example, if the integer “x” had a value set by an analog input
(0-1023), and the expression was “x = map(x, 0, 1,023, 0, 255);” the integer x
would take the value of 255 when the analog input tells it to be 1,023. In other

words:

_ 225
Xfinal = Xinitial X To53

Similarly, if x was to take on the value 560 by an analog input, it would be
set to =139. It is always set to the nearest whole number. If this still does not
make sense look at the expression “x = map(x, 0, 100, 0, 1,000);” assuming X is

an integer. In this case if x = 70, then x is set to the value of 700. If x = 65 then x

10

is set to the value of 650 by the equation xfing = Xinitiar X To0"

It will be necessary to understand how the photo resistor in the trainer
works in order to perform this lab. This resistor responds to a change in light by
varying its resistance. The brighter it is the less resistance the photo resistor has,
and conversely the darker it is, the more resistance the photo resistor has. This
particular photo resistor has an 8K € resistance in the light and a 1M Q resistance
in the dark. The particular photo sensor in the trainer may go beyond these ratings
in extreme darkness or extreme light; however, these are the ratings for general

operation. This photo resistor is in a voltage divider configuration with a 100k €

44

resistor that is connected to the output that goes into the Arduino. The equation

for the output voltage is:

100,000)

14 =V-(
out = "\ (R 4+ 100,000)

Where “R” is the resistance of the photo resistor and "V;,," is the 5V input
from the Arduino. If you use the 8K Q rated value of the photo resistor (exposed
to light) and solve the equation you get the output voltage of =4.63 V. Similarly,
if you solve the equation for the 1M Q resistance (in the dark) you get an output
voltage of =0.45V. In other words, more light = lower resistance = higher

voltage. This is all a function of Ohm’s Law.

The “constrain()” command is useful when limiting sensors inputs or
integers to a particular set of values. In this lab you will need to figure out how to
set various sensitivity levels for the automated lighting. This means you will need
to constrain an integer to specific values to make it more or less sensitive based
on preference. Say you want to make the LEDs begin to come on when only a
little amount of sunlight is lost in the room. In this case you would want to use the
“map ()” command introduced in this section to respond to a somewhat small set
of values read from the analog input. Assume you discover that the analog input
reads 700 when the room is only somewhat dark, and this is when you want the
lights to come full on. Also assume the variable x is assigned a value by the photo
sensor through the “analogRead()” command. In this case you would need to use
the command “x = map(x, 700, 1,023, 255, 0);”. This would make the device

more sensitive to lighting levels in the specified range (700 to 1,025). In order to

45

prevent an error where the analog input goes “out of bounds” so to speak, you
would need to constrain the analog input from the photo sensor. In this case you
would need to insert “PhotoResistor = constrain(PhotoResistor, 700, 1,023);”.
This prevents a number less than 700 from being read. More information will be

in the procedure of this lab.

**Pro-Tip: The sketches are only going to get longer and longer. Use copy
and paste as much as you can to make these things take less time. Do this
using the right-click on the mouse or by pressing the keys “ctrl+c” to copy
and “ctrl+v” to paste; “ctrl+x” is the cut command. If you have the code in a

previous lab, copy and paste to save time.

The procedure section begins by testing the room for specific lighting levels to ensure the
photoresistor will work correctly. It describes the steps necessary to use the proposed commands
and includes information on how to make all necessary connections. Keep in mind that this is a
later lab for the first trainer and students already understand how to make some of these
connections and are familiar with the “serial monitor”. This is the text display on the computer

used for reading information sent from the Arduino.

Procedure

1. Begin by opening up a new sketch in the Arduino program or by opening up a
previous sketch you wish to modify. The lighting levels in every room differ so
you will need to discover what analog input values you will read for the particular
room you are in. Lab 6 can allow you to do this without writing any code. In a

separate sketch window, open up Lab 6 and modify the program to change the

46

Analog input from “A7” for the potentiometer to “A6” for the photo resistor.
Make sure you change all values of “A7” to “A6” throughout the whole sketch or

your readings will not be correct.

2. Connect the Arduino to the computer and upload your modified Lab 6. Next
connect the power plug from the trainer labeled “POWER” to the appropriate pins
on the Arduino with the label facing outward. Also connect the module 5 plug
labeled “5” to pins A0-A7 with the label facing outward. Open up the serial
monitor and observe the input. If lighting is not sufficient in the room you are in,
you may wish to use a flashlight or other direct lighting source to shine directly
on the top of the Arduino trainer. Sufficient light should produce a voltage value
of greater than 4.25V. If the maximum value in direct light is not 4.25V or
greater, you will need a better lighting source. Record the highest voltage

produced in direct light and the analog input value displayed in the serial monitor.

3. Next turn off the lights in the room for a moment and observe the voltage value
and analog input value of the sensor in a dark room. If the lights cannot be turned
off simply cup your hand around the photo resistor located above the
potentiometer knob and to the left of LEDs. It’s the squiggly looking thing. Once
the values in the serial monitor have become somewhat constant, record these
values and turn the lights back on or remove your hand. If multiple people are
sharing the same trainer feel free to share your measurements with others, as the

values should not differ so long as the trainer stays in the same lighting source.

47

The next few steps describe what needs to be programmed to accomplish the task
proposed for the lab. VVariable names are recommended to make students sketches similar and
easy to grade. This naming convention can be seen in Table 2. All connections needed for testing
the final sketch are also described. Students are reminded of the limitations of several recently
introduced commands in an effort to minimize errors during learning. Students are also
instructed to test their first section of code to verify that it has been formed appropriately. Steps
4-9 are listed below, with the final step describing exactly how the LEDs should react to various

inputs.

4. Now that you have your light and dark measurements close lab 6. Begin in the
new sketch by creating two integers to monitor the values of the photo sensor and
one for the potentiometer. Two will be used to directly record analog
measurements, and the other one will be used to map the values for both modes of
operation. You may wish to name these integers ‘“PhotoResistor”, “PotValue”,
and “x”. Add the “Mode” integer to select between manual and automated lights
with a default value of 0. You can also create integers to monitor the digital and
analog inputs and outputs used in this lab to make your program easier to read.
This is not necessary if you feel confident that you can understand the program
simply by referencing the pin numbers within the sketch. If you do wish to name

these pins you can use the following for easy reference and naming convention:

48

Table 2.

Lab 8: Naming Convention

Pin Number Integer Name pinMode
14 Bit0 INPUT
15 Bitl INPUT
16 Bit2 INPUT
17 Bit3 INPUT
A6 PhotoPin INPUT
A7 PotPin INPUT
6 LED1 OUTPUT
5 LED2 OUTPUT

5. In the setup of your program be sure to declare all of the appropriate inputs and
outputs listed in step 4. If you want a little extra information you can also begin
serial monitoring to keep track of the analog values within your sketch. Begin the
loop part of your program by inserting a control statement to set the mode based
on weather “0” or “ENT” has been pressed. Remember the binary value of 0 is
1010 and ENT is 1100. You can copy these from any previous keypad sketch so
long as the input pins match this one. Make the 0 button set manual controls and

the ENT button set automatic controls using a conditional statement.

6. Write another statement for manual controls that reads the analog value of the
potentiometer and set this to the variable you chose to store the value. This value

must also be assigned to the main control variable (suggested to be “x”).

49

Remember that “x” will be used to set the brightness of the LEDs, and that the
analogWrite function uses the values 0-255. This is where the map command

comes in handy.

7. You may wish to test your code by this point to verify you have used the map
function correctly. The power and module 5 plugs will need to be connected the
same as in step 2. The module 3 plug will need to be connected from digital pins
14-21 with the label facing the outside edge of the Arduino, and the module 4
plug will be connected to digital pins 0-7 with the same orientation. If it does not
work correctly read the “More Helpful Information” section under the commands

and pay attention to the example code and the way it is written.

8. Next create another condition statement for mode 2 or automatic controls.
Create a similar section of code to assign values read from the analog
photoresistor pin to the variable chosen for these values. When this mode is
activated the brightness of the LEDs (“x”) should be set from the photo resistor.
In order for the photo resistor to function properly for the room you are in you
must constrain them to the values discovered earlier for a light room and a dark
room. Map these constrained values to the analog output for the LEDs. Make sure
you invert the analog output values so that the LEDs come on when it is dark,

rather than when it is light.

9. Once you believe the code is correct, upload it to the Arduino device and plug
in the appropriate connections from the Arduino trainer the same as you did

before; listed in steps six and two. If everything works correctly the LEDs should

50

be off in the light and on in the dark. You should be able to switch between
manual and automatic controls using the 0 and ENT buttons, and the

potentiometer should vary the LEDs brightness.

The following code is provided for instructors to review a working program. There are
many comments in the program to detail the function of any statements not previously
introduced. Variable names match those suggested in the lab for easy reference. This code in

Figure 2 has been tested and works in the exact way described by the assignment.

int PhotoResistor = 0; //variable used to assign analog inputs

int PotValue=0; //variable used to assign analog inputs
intx=0; //variable used to map and write analog outputs
int Mode =0; //variable used to select between manual and automatic controls
const int Bit0 = 14;

const int Bitl = 15;

const int Bit2 = 16;

const int Bit3=17;

int PhotoPin = A6;

int PotPin = A7;

int LED1 =6;

int LED2 = 5;

void setup() {

pinMode(Bit0, INPUT); //these are the inputs for the keypad
pinMode(Bit1, INPUT);

pinMode(Bit2, INPUT);

pinMode(Bit3, INPUT);

51

pinMode(PhotoPin, INPUT); //these are the inputs for the controls
pinMode(PotPin, INPUT);

pinMode(LED1, OUTPUT); //these are the analog outputs
pinMode(LED2, OUTPUT);

Serial.begin(9600);

}

void loop() {
if (digitalRead(Bit0) == LOW && digitalRead(Bit1) == HIGH && digitalRead(Bit2) == LOW &&

digitalRead(Bit3) == HIGH) { // if Ois pressed
Mode = 0;
}
if (digitalRead(Bit0) == LOW && digitalRead(Bit1l) == LOW && digitalRead(Bit2) == HIGH &&
digitalRead(Bit3) == HIGH) { // if enter is pressed
Mode = 1;
}
if (Mode == 0) {

PotValue = analogRead(PotPin);

x = PotValue;

x =map(x, 0, 1023, 0, 255);
analogWrite(LED1, x);
analogWrite(LED2, x);

}

if (Mode ==1) {

PhotoResistor = analogRead(PhotoPin);
x = PhotoPin;

X = constrain(PhotoResistor, 671, 1012);
x =map(x, 671, 1012, 255, 0);
analogWrite(LED1, x);

analogWrite(LED2, x);

52

Serial.printin(x);
}
Figure 2. Lab 8 Code

Lab 10: Interfacing With a Matrix Keypad

Lab 10 was chosen because it instructs students on how to interface the keypad on the
second trainer with the LCD screen. These two devices are used in all other labs, and
understanding how to use these devices in crucial to completion of labs 10-14. It begins by
explaining the new C commands used including the “char” or character variable and the byte.

The equipment list is also displayed as with the previous lab.

Lab 10: Interfacing With a Matrix Keypad

Purpose

In this lab you will learn how to interface with the matrix keypad on the
second trainer. A matrix keypad is a type of keypad that closes the circuit between
two pins when a button is pressed rather than writing a pin HIGH as with the
previous keypad. The keypad library will be included in this sketch, which sends
pulses through the input pins and reads which output pins go HIGH to determine
which key has been pressed. You will also learn about the varable “char” or
character. This data type allows a number, letter, or symbol to be used in
conditional statement and commands. You will also learn the byte data type. A

byte is 8 binary bits that are used to store data. ASCII uses one byte of data for

53

each character. Using the new data types and a few other library specific keypad
commands you will be able to begin more complicated programming using the

keypad, rather than a serial monitor, to control what prints.

Equipment

Arduino Mega

Arduino USB Cable

Computer

Arduino Trainer Il

The commands in this section are then introduce in Table 3. Several of them are specific

to the keypad library.

Table 3.

Lab 10: Commands and Description Section

Command Description

char NAME = # or ‘CHARICTER’ The first command allows for one character to
char NAME[#] ={‘CHARICTER’} be specified by a particular name, much like
char NAME[#][#] = { integer. The ASCII number must be used to
{*CHARICTER’} specify the character, or a single character can
{*CHARICTER’} be placed between two apostrophes such as

} ‘A’. The second command is used for a single

54

line of characters where the number specifies
the number of characters. The third specifies an
array of characters where the first is the
number of rows, and the second is the number

of columns

byte

8 bits of data used to store a single ASCII

character in its binary form.

key

A library specific command used in the

program to refer to a specific key

NAME.getKey()

A library specific command that is a variation
of the C command getcar(). The name is
whatever you choose to name the keypad, and
signifies that the command will get the key
from that device. The .getKey() command
reads the character specified for that key and
“gets” the one you press to use in your

program.

Keypad

This command is used to declare the name of
the keypad for use with the .getKey()

command.

makeKeymap(Charicters), RowPins,
ColumnPins, CharicterRows,

CharicterColumns)

The Charicters are the characters specified for
the keypad array. The RowPins in this lab will

be 30, 32, 34, 36, and the ColumnPins will be

55

38, 40, 42, 44, 46, 48, 50, 52. The
CharicterRows and CharicterColums are the
number of rows and columns in the character

array for the keypad.

The Keypad.h library is not included with the Arduino software and must be downloaded.
This library is available free through the Arduino website, and students are instructed how do get
this library and include it in their program. This further demonstrates the open source nature of
the Arduino and its programming environment and allows students to take full advantage of this
technology in the future, should they choose to continue using the Arduino. A more in-depth
explanation of the “char” variable and how to use it to interface with the keypad is also provided
in Table 4. Figure 3 shows the character array for the keypad used in this lab while Table 5

shows the actual keypad buttons.

More on Keypad.h and char

Keypad.h is not a preloaded library file. In order to get the file you must

download it from http://arduino.cc/playground/Code/Keypad#Download. Once

you download the file you must extract the file and move it to the proper location
before opening the Arduino sketch program. Extract the file the same way you
extracted the Arduino software. Then copy the file into the “libraries” folder
within the “arduino-1.0” folder. Once this is done you can open the sketch
program and use this library with the “#include<>" command and you will have

access to several new examples.

56

http://arduino.cc/playground/Code/Keypad#Download

This library file uses characters in unique ways. For the purpose of this
sketch you will be specifying a keypad array that uses a single character for each
key. First, here are some examples of how to use char. Note the word “Character”

is what | have chosen to use as a name.

Table 4.

Lab 10: Character Print Examples

Command Entered Output on the LCD

char Character ='A";

Icd.print(Character); A

char Character[3] = {'A', 'B', 'C'};

Icd.print(Character[1]); B
Icd.print(Character[2]); C
Icd.print(Character[0]); A

char Character[2][3] = {

{A, 1, B},

{2,3,C},

b

lcd. print(Character[0][0]); A
lcd.print(Character[0][2]); B
lcd.print(Character[1][2]); C

57

The keypad on the Arduino trainer is a 4x8 keypad. In other words there
are four columns and eight rows in the internal circuitry. You will need to create a
character array similar to the final example for your keypad to display each
number or mathematical function pressed. Later you will use these characters to
perform various math functions. The character array for the keypad looks like

this:

{'N1'/'!I9I!|8I1'7"I Ivlzlle'},

{'TI1'X'1I6I1|5I1'4I1' I1'O'll ‘}’

{'Clll-ll'3'lI2Illl|" IflAll'N'}l

{ISI7'+-"I l" I7"I7'CI1' Il' I}!

Figure 3. Character Array

Each key can only hold one character, so functions such as “Sin” must be
represented by a single letter “S”. Some of the characters have been omitted and
will be added in later labs. Table 5 shows how each letter corresponds with the
button pressed. Functions with longer names have parenthesis around the brackets

used to display those characters.

58

Table 5.

Lab 10: Keypad Buttons

Cal(c) + (S)in
(L)ight 1 2 3 - (C)os
(O)hm 4 5 6 X (T)an
(D)ist. 7 8 9 / A
(A)lpha | Clear/(N)o 0 Enter/Yes S(Q)RT

The procedure for this lab is broken up to make sure students are creating the code
correctly. First students are introduced to the keypad library in the first few steps and told in
detail how to use the newly introduce commands to interface with the keypad. Suggested
variable names are used, and students are instructed to look at an example code provided with
the keypad library to compare their code to. Often times seeing a similar working program, and
comparing it to one created will clear up any syntax errors and improve understanding of the new
commands. The students are instructed to first print the characters from the keypad to the serial
monitor to verify this portion of the code works before attempting to form conditional statements

using the characters. This was done so students know exactly where the error in their program

occurs should one arise.

Procedure

1. Open up your previous sketch and copy all the code used to initiate the LCD
screen. These are the “#include<>” function, the LCD pins, the digital output used

to power the LCD and the “lcd.begin()” commands. Also include the new keypad

library “Keypad.h”.

59

2. Before the setup of your program include two constant bytes. Declare one for
“Rows” and one for “Columns”. These will be used to create the character array
for the 4x8 keypad. Make the character array mentioned in the Commands and
Description section. Name the character something easily recognizable like

‘Ckeysi,.

3. Next you will need a number array to specify the pins used by the keypad. This
will be an array of bytes and is entered “byte rowPins[Rows] = {30, 32, 34, 36};”.
These pins are also mentioned in the Commands and Description section. The
name “Rows” in the brackets specifies that the number of rows in the keypad is 4
from your previously declared byte. You will also need to add one for

“columnPins”.

4. To map the appropriate Arduino pins to the character array you created name
your keypad using the Keypad declaration and specify the row and column pins.
If you used all suggested variable names the code should appear as “Keypad
keypad = Keypad(makeKeymap(keys), rowPins, columnPins, Rows, Columns);”.
If any of this is confusing you may wish to consult one of the examples that came
with the Keypad to see how your code should appear. One good example is
“CustomKeypad” that is used to create a 4x4 keypad.

5. Now within the loop of your program you will need to assign one more
character to the key pressed using the “getKey()” function introduced. To verify
that all of your declarations and arrays have been created correctly, begin serial
communication and print the values of the keys to the serial monitor with a short

delay to prevent the monitor from scrolling too quickly. Connect the module 7

60

plug on the keypad to digital pins 52-30 with the wire strip hanging over the
outside edge of the Arduino. Verify that each printed character matches the key

pressed.

Next students are told to use the knowledge gained from the last lab, where they
interfaced with the LCD screen, to print the various mathematical functions. This lab provides
the basic code for the next lab where they will create a calculator. In order to ensure this code
can be used effectively students are told to use separate conditional statements to print the
mathematical functions. Students are then instructed on how to connect the devices and what

output they should expect on the screen for a successful program.

6. Once you have gotten the proper keys printing, you will need to print these to
the LCD screen to properly display them. The character “c” for Cal(c)ulator will
later be used to initialize a calculator function. Using the knowledge gained in the
last lab, create a conditional statement that tests to see if the key received is “c”. If
this character is received, clear the LCD screen to get rid of any unwanted
characters, print the word “Calculator” in the top left corner, and clear it again
after 2 seconds. The character “N” is used to represent the “Clear/(N)o” button.

Make this button simply clear the LCD.

7. Use conditional statements to print all numbers to the screen. Try using the
Boolean operator “||” or to do this in a single statement. In separate statements
you will need to print the mathematical operators “+, -, /, *, =" and “X” used for
multiplication, as these will be used for more complex functions in the future.

Also print the decimal, (“.”) for using decimal numbers in a separate statement.

61

8. For the tragicomic functions “S” for sin, “C” for cosine and “T” for tangent,
you will need to print “sin(, cos(, tan(“. Rather than simply displaying the

character.

9. Once you believe your code is correct, connect the module 6 plug in the second
trainer to the GND-41 digital pins as you did in the previous lab. Also connect the
keypad to digital pins 52-30 as you did in step 5. These two should overlap
slightly. Connect the USB cable through the battery door of the second trainer and
close the box. If everything has been performed correctly, you should be able to
print any mathematical operation or number. The clear button should clear the

screen, and pressing the Calc button should display the word Calculator.

As for every lab, a tested working code will be provided to the instructors to clear up any
confusion. The code compiled for this lab can be seen in figure 4. This code is also heavily
commented to explain the purpose of each section. It is well organized with indentations and

spaces between different sections of code to be easily read.

#include <Keypad.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(51, 49, 47, 45, 43, 41);

const byte Rows = 4; //four rows

const byte Columns = 8; //eight columns

char keys[Rows][Columns] = {

62

{79,807, =,
{T,'x,'s",'5''4","",'0",' '},
{c,-'3,2,'1", AN,
{ist'+, e L,

}; //This is the character array for the keypad

byte rowPins[Rows] = {30, 32, 34, 36}; //Connect to the row pin outs of the keypad

byte columnPins[Columns] = {38, 40, 42, 44, 46, 48, 50, 52}; //Connect to the column pin outs of
the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, columnPins, Rows, Columns); // Maps
the character array to the keys

void setup(){
pinMode(53, OUTPUT);

digitalWrite(53, HIGH); // sends power to the LCD

delay(50); // Allows LCD some time to warm up
Icd.begin(24,2); // Begins LCD library

}

void loop(){

char key = keypad.getKey(); // Defines "key" as a character and sets it to the character pressed

if (key =="c') { // This is the Calculator button
Icd.clear(); //Clears anything to remove characters
Icd.print("Calculatior");
delay(2000); // Displays Calculator and waits 2 seconds

Icd.clear(); // Clears again for input

63

if (key =="'N'") { //This is the Clear key on the keypad and should clear the LCD

Icd.clear();

if (key=="0"|| key=="1"|| key=="2" || key=="3"|| key=="4" || key=="5" || key =="6' | |
key=='7"|| key=="8'|| key=='9"){

lcd.print(key); // This prints the key if a number is pressed

}

//The next few keys are written separately to accommodate for future calculations. These are
basic math functions.

if (key =="+') {

lcd.print(key);

if (key == ") {

lcd.print(key);

if (key == 'X') {

Icd.print(key);

i (key == /) {

Icd.print(key);

//These are the more complex math functions

if (key == ") {

64

Icd.print(key);

}

if (key =='S") {
Icd.print("sin(");

}

if (key =="'C') {
Icd.print("cos(");

}

if (key =="T'){
lcd.print("tan(");

}

if (key =="'Q) {
lcd.print("sqrt(");

}

//These will be used to perform calculations

if (key =="'=") {
led.print("=");

}

if (key ==".") {
led.print(".");

}

}
Figure 4. Lab 10 Code

65

Both of these labs provide easy reference for all commands used and explain other more
complicated concepts in a way students will be able to comprehend. The information given on
the keypad and analog lab allow students to have a basic understanding of the electronics used
without going into as much depth as a technology or electronics lab. This allows the
programming, or interface with these devices, to be the main focus of the labs. Students are
given clear step by step instruction on how to form the code leaving enough room for them to
form their own individual programs. All other labs introduce concepts in similar ways, with new
concepts being explained in depth using examples. The labs require students to use their
knowledge of previous concepts to finish the assignment. The example code provided will be
similar to any sketch created for the same assignment. Variable names and basic structure of the
code may differ from student to student; however, all programs will serve the same function as

the examples provided.

66

CHAPTER 4

DESIGN CONSIDERATIONS

The Arduino Mega

“Arduino is an open-source electronics prototyping platform based on flexible, easy-to-
use hardware and software. It's intended for artists, designers, hobbyists, and anyone interested in
creating interactive objects or environments” (Arduino, 2012, p. 1). The Arduino Mega 2560,
and the associated software was chosen as the key technology for the development of the created
project for several reasons. The open source nature of Arduino, the programming language used,
the interface, and applications all make it the ideal tool in meeting the previously defined STEM
educational need. The hardware is reasonably priced and the software is free making the Arduino

a very affordable teaching tool.

The benefit of the programming the Arduino with open source software is that all
students have free access to the software. Students and schools will pay nothing to use the
Arduino programming environment. Students can download the software on home computers to
use personal time to advance their work, or simply play around. There are a variety of programs
and libraries available through the Arduino website to further education and expand the
capabilities of the device. The software is also cross-platform, meaning it is available for most
major operating systems. The programming environment is simple and straightforward making it
an ideal choice for beginners. The example codes and libraries made available through the site

are free, easy to understand, and tested working by the Arduino users.

67

The open source hardware of Arduino boards means that preassembled boards can be

purchased for well under $50. This also means the Arduino can be built by hand and expanded

upon to improve its capabilities. “The Arduino is based on Atmel’s ATMEGAS and

ATMEGA168 microcontrollers. The plans for the modules are published under a Creative

commons license, so experienced circuit designers can make their own version of the module,

extending it and improving it” (Arduino, 2012, p. 2). The Arduino Mega 2560 was chosen for

this project because of its abundance of digital inputs and outputs and its operating

characteristics. Table 6 contains a summary of the characteristics of the Arduino Mega.

Arduino, Arduino Mega 2560 Summary (2012, p. 2):

Table 6.

Arduino Mega 2560 Summary

Summary

Microcontroller

Operating Voltage

Input VVoltage (recommended)

Input VVoltage (limits)

Digital I/0 Pins

Analog Input Pins

DC Current per I/0 Pin

ATmega2560

sV

7-12V

6-20V

54 (of which 15 provide PWM output)

16

40 mA

68

DC Current for 3.3V Pin

Flash Memory

SRAM

EEPROM

Clock Speed

50 mA

256 KB of which 8 KB used by boot loader

8 KB

4 KB

16 MHz

The Arduino Mega 2560 can be powered either by a standard USB printer cable or a

2.1mm center-positive power jack. The power jack can either be connected to a AC to DC

adapter or battery pack. The external supply can be anywhere from 6-20V, although 7-12V is

recommended for optimal performance. The “Vin” pin of the Arduino can also accept a stable 5

V power signal for operation. The Mega 2560 also has two voltage output pins consisting of a

5V and a 3.3V regulated output. The 5V 1/O pins make the hardware ideal for operating with a

variety of low power digital and analog devices, and the device even has sufficient current

capabilities to drive small electric servo or DC motors. Figure 5 shows a picture of the Arduino

Mega 2560.

69

MADE {
INITALY g~ - W

e R f:,

o

L - :2., 4
| Qo Gumms i pummp b0y * O

(=)
3 s a
X 7 s [
¥ - 1)

Figure 5. Arduino Mega 2560 (Arduino, Arduino Mega 2560, 2012)

Other Electronic Components and Devices

The electronics in the trainers were chosen for their ability to demonstrate the concepts
introduced for the lab assignments. They were also chosen for their operating characteristics and
compatibility with the voltage and current capabilities of the Arduino Mega 2560. The fact that
all exposed electronic elements operate on a low current 5V power supply means the risk of
electrocution or shock to students or teachers is nearly nonexistent. The more rugged
components featured in the first of the Arduino trainers develop have the ability to withstand the

abuse common to newly educated students exposed to their first electrical devices.

All electronic components and devices featured in the trainer including resistor
configurations operate at or below a 40 mA current. They are all powered either by the 5V
internal voltage output pin on the Arduino or directly from an analog or digital pin. Ground
connections were made to the common ground pins of the Arduino. All resistors are rated for up

70

to 500 mW or greater and are either metal film or carbon film through-hole resistors. Individual
datasheets for the various components used in the trainer can be seen in Appendix C. The
datasheets for the resistors have been omitted because their relevant characteristics have already
been described. The datasheet for the matrix keypad has also been omitted because it could not

be found.

All electronic components used to build the prototypes of the trainers are listed in Table 7

below. The majority of the components were purchased from Newark, the online electronic

components store at http://www.newark.com/. A few components were purchased from Jameco

Electronics at http://www.jameco.com/, and Robot Shop at http://www.robotshop.com/. Some of

the components used in the trainers were items from the department of Business and Technology
at ETSU. Items labeled with a “*” were identical in function to items used in the prototype
trainers but differed by model. These were items from ETSU. The price for the Matrix Keypad
denoted with “**” is for a similar item with fewer keys than the actual keypad used in the trainer.
No keypad with the same functionality and number of keys could be found on any of the three
sites listed. The keypad used was one of many found at ETSU and contained no model number

that could be matched to the product in a web search.

71

http://www.newark.com/
http://www.jameco.com/
http://www.robotshop.com/

Table 7.

Electronics Parts List

Unit
Component Quantity | Price Total Price From
5mm Red LED 6 $0.21 $1.25 Newark
5mm Green LED 2 $0.21 $0.42 Newark
5mm Yellow LED 2 $0.23 $0.46 Newark
Ultra-bright White LED 2 $0.69 $1.38 Newark
10K Ohm Rotary Pot 1 $1.41 $1.41 Newark
10k Tuner Pot 1 $0.75 $0.75 Jameco
SPST Pushbutton Switch 15 $1.44 $21.60 Newark
100 Ohm Resistor 1 $0.01 $0.01 Newark*
330 Ohm Resistor 20 $0.10 $1.94 Newark
1K Ohm Resistor 1 $0.09 $0.09 Newark*
10K Ohm Resistor 1 $0.04 $0.04 Newark*
100k Ohm Resistor 3 $0.04 $0.11 Newark*
1M Ohm Photoresistor 2 $1.79 $3.58 Jameco
Black Safety Socket 1 $3.59 $3.59 Newark
Red Safety Socket 1 $3.59 $3.59 Newark
Diode 15 $0.05 $0.75 Jameco
Arduino Mega 2560 1 S47.91 S47.91 Newark
24x2 LCD Display 1 $21.92 $21.92 Newark*
Ultrasonic Range Finder 1 $15.00 $15.00 RobotShop
Matrix Keypad 1 $29.99 $29.99 Newark**
Totals: $155.78

Two sets of red, yellow, and green LEDs were arranged in a stoplight configuration,
connected in series with 330 ohm current limiting resistors to ground. These can be seen in
Figure 5 connected to I/0O pins 09-16 which represent the Module 1 plug of the trainer. Figure 5
and all other schematics were created using Multisim 11.0. Another series of 4 LEDs used to
represent binary numbers have been connected in the same configuration. These are LEDs 07-10
of the schematic. Four single pole single throw (SPST) momentary buttons located below these

LEDs are connected from the 5V power supply in series with 330 ohm resistors connected to

72

ground to produce a readable current for the Arduino. I/O pins 01-08 are the Module 2 plug, and

connect these components to the Arduino.

The 10K ohm rotary potentiometer is connected from power to ground and sends the
wiper to 1/O pin 25 for the Arduino. The 1M ohm photoresistor is in a voltage divider
configuration with a 100k ohm resistor to produce a varying voltage to be read by the Arduino.
The output of the voltage divider is connected to I/O 26. Together these two pins make up the
Module 4 plug that is the plug for the only devices on the first trainer that send an analog signal
to the Arduino. Finally LEDs 11 and 12 represent the ultra-bright LEDs and are connected to 1/0
pins 18 and 19 of the module 5 plug. These LED’s are the only LEDs that are connected with the
330 ohm current limiting resistor going to ground. This is so the full 5V signal from the Arduino
can be felt by these LEDs allowing maximum illumination. This configuration can also be seen

in Figure 6.

73

VEE
5V
R7 RS R9 R10
\\AQLEDH \\QQLEDH 3300 3300 3300 330Q
‘ ‘ | | | |
R16 R17 ALED? ALEDS ALEDY ALED10
?330(1 %3309 *\4 R R R
L i i i o |
‘ J J1 32 J3 J4 —D
—lo— | —alo— | —lo— | —lo— 102
Lo o —0 o— -0 o -0 o
Ri1 _4' Key = A Key =B Key =C W Key =D fESD
104
— L——0
DIOQ VR’l—L R5 _Dl o5
1010 [3300 3300 Ri2 Lriz LrRu4 LRis 106
Photo_Resistor 330Q 330Q 2330Q <3330Q
- 1011 \ELEDL‘. \ELEDl 190,
1MQ 1012 \) J J J ‘ 108
R18 O— | Re RG —d |
AMNA— 1013 —
100kQ O— 330Q 3300
1014 To Digital Pins of the Arduino
— 0— XLED6 ALED3 Mega 2560
1025 1015 R R g
1022 Oo— L]
023 1026 1016 R4 R3
1027 — 330Q 3300
1024 O
1028 \\44LED5 \\AQLEDZ
Oo— To Digital Pins
1029 ; L i
To Digital PWM of the Arduino Mega 2560
Pins of the 1030
Arduino Mega 2560 o
1031
1032 =

To Analoa Pins of the Arduino Meaa 2560

Figure 6. Trainer 1 Schematic 1

Figure 7 shows the schematic of the binary keypad created for the first Arduino trainer.
This was placed in a separate schematic to make it more distinguishable from the other
components in the first trainer, and because of the number of components to create a properly
functioning keypad. Eleven SPST momentary push buttons were used with 10 of them forming
the numbers 0-9 and 1 being used as an “Enter” Button. Each of these buttons is connected to a
series of diodes to produce their associated binary number on 1/O pins 1-4 for the module 3 plug
with I/O 1 being the least significant bit. The diodes were used to prevent feedback from one
button being pressed and falsely supplying voltage to another. Keys 1, 2, 4, and 8 were not
connected with diodes as these are represented by single bytes and will not be affected by
feedback. Fifteen diodes were used to create the binary output for the circuit. In order to create a
proper reading for the 0 button this was wired to 1/0 pins 2 and 4 forming the binary number 10.
Similarly the Enter button is represented by the binary value of 12. Four 330 ohm resistors were

connected to I/O pins to ground to create a readable current for the Arduino to process.

75

R1

=

AA%Y%
1 330Q
PaV; R2
A% Bt
330Q
I R3
. AMA DIODE_DVZIRTUAL D3
330Q I
J7 J8 J9
o lo_ oo oo R4 1 DIODE_VIRTUAL 101
o o o ° %% DIODE_VIRTUAL D4 —
Key =7 Key =8 Key =9 3300 102
DIODE_VIRTUAL
D5 103
0
Ja J5 J6 DIODE_VIRTUAL 104
—Q o— —Q o— —Q o— 0
0 O; L—o O; L—o0 o D6 105
Key =4 Key =5 Key =6 0
DIODE_VIRTUAL
106
a?
J1 J2 J3 DIODE_VIRTUAL 107
—Q o— —Q o— —Q o—
o o Lo o Lo o 108
Key =1 Key =2 Key =3 D10 —a
DIODE _VIRTUAL To Digital Pins of the
D11 Arduino Mega 2560
JO JEnter
—olo— — lo— DIODE_VIRTUAL
0 O; o
Key =0 Key = Space
D12 D14
DIODE_VIRTUAL DIODE_VIRTUAL
D13 D15

1 ——p—

— DIODE_VIRTUAL DIODE_VIRTUAL

Figure 7. Trainer 1 Schematic 2

The second trainer’s schematic shows the internal connections made in Figure 8. The
module 1 plug consists of 1/0 pins 1-8 and connects the LCD screen pins necessary for four bit
operation to the Arduino. I/O pin 1 is connected to one of the common grounds of the Arduino
and 1/0 pin 2 provides power to the device. A 10K ohm tuner potentiometer is connected from
power to ground with the wiper going to the contrast adjustment for the LCD. This potentiometer

is inside the second trainer, as it does not need adjustment after initial tuning has been done.

The 1/0 pins named Red and Black represent the safety sockets used to connect leads for
measuring resistance. The 100, 1k, 10k, and 100k ohm resistors will be used in a voltage divider
configuration with power coming from only one 1/O pin at a time. A photoresistor voltage
divider circuit is connected in the same configuration as previously introduced; with I/O pin 15
providing power and 1/O pin 14 receiving the analog signal. These make up the module 3 plug
for the second trainer. The “UltraSonic” 1/O pins represent what their names suggest and are
connected to the module 4 plug using I/O pins 17-24. The 1/O pin 18 will once again be
connected to one of the common grounds on the Arduino with pin 19 supplying power and 20

receiving the signal.

77

||2‘01 Potentiometer
IIZ‘O2 10kQ
0,
103 Key=A 0% o
O UltraSonicSignal
104 N
O0— Red Black UltraSonicVcc
105 o o —H
O UltraSonicGnd
106 |
O
107 _ I
O 19 R1 1017
108 [m] AAN—— L —0
— 110 100Q 1018
|:'_—| R2 R5 d
To Digital Pins of the Arduino 5011 —AAA—4 AN 1019
Mega 2560 with |01 to Ground IO_12 1kQ 100kQ _IOZDO
- R3 .]
o AAN——1 Photo_Resistor
1013 1021
O 10kQ -0
1014 R4 1IMQ 1022
O AV~ —0
1015 100kQ 1023
. —0
1016 | 1024
- —J |

To Analog Pins of the Arduino
Mega 2560

Figure 8. Trainer 2

To Digital Pins of the Arduino
Meaa 2560

The Module 2 plug for the keypad has been omitted from the schematic drawings. The
keypad consists of 12 1/O pins that are connected directly to a single row 12 pin headers that
make up the module 2 plug. The datasheet for the keypad could not be found so its operation was
determined by taking apart the device and using a digital multi-meter to test for conductivity
through the pins. The device has five rows and six columns of buttons with an “Enter/Yes”
button taking up two key spaces. The keys 0-9, “Clear/No”, and “Alpha” were labeled and left as
they appeared. The “S.F.” key and other blank keys were labeled for use with the labs. It was
determined that the keypad functions as a 4x8 matrix keypad. A Matrix keypad closes the circuit
between the row and column pins based on the button pressed, with each button creating a
different closed circuit. Table 8 shows the closed circuit made when each button is pressed with
pin 1 being the pin farthest to the left of the plug. Table 9 shows the labels of the keys. In both

cases a single box on the table represents a physical key on the keypad.

Table 8.

Pin Connections

4410 449 448 447 446 445
3+10 349 3+8 3+7 3+6 3+5
2+10 2+9 2+8 2+7 2+6 2+5
1+10 149 1+8 1+7 1+6 145
3+11 3+12 2+11 1+11 1+12
Table 9.
Key Labels
Calc + Sin
Light 1 2 3 - Cos
Ohm 4 5 6 X Tan
Dist. 7 8 9 / A
Alpha Clear/No 0 Enter/Yes SQRT

79

Materials and Construction

Many of the material used to create the trainers were items already available in the
Business and Technology department of ETSU. Others more critical to the operation of the
trainer were purchased from electronics stores. The construction of the frame and physical design
of the first prototype trainer was done by graduate students Matt Crum and Benjamin McMurry
during the fall semester of 2011. All design information including dimensions, construction
techniques, and dimensional drawings for the first trainer were provided by Crum and McMurry
in a report prepared for ENTC 5900. The second prototype trainer was designed and constructed

by the author in the following semesters.

The rectangular body of the first trainer is constructed primarily from wood. This
material was chosen by Crum and McMurry because it is an easy to work with material that is
somewhat light and provides insulation for the internal electric components, as well as its
availability. The trainer consists of a body casing and faceplate fashioned with aluminum
housings for onboard LEDs. The wood for the lower body casing was cut using a radial arm saw
and table saw. The box measures 12 in. wide, 10.25 in. in length, and 6 in. high. The box also has
an internal wooden divider to separate the electronics from a 1 in. diameter hole where the plugs

for the trainer exit. The body was fashioned together using finishing nails.

The faceplate of the trainer was designed in AutoCAD 2007 by Crum and McMurry and
cut out of .25 in. thick MDF on a CNC router table using a .25 in two flute end mill to create the
holes for the buttons and the potentiometer and the outer perimeter of the faceplate. The screw
holes and led holes were cut out using a .125 in drill bit on the CNC router. An excerpt from

their report outlines the construction of the aluminum led faceplate housings:

80

Crum & McMurray (2012)

The two led faceplates were cut using a standard milling machine and a .375
two flute end mill. The two pieces were first machined square to a size roughly larger
than the placement of the LEDs. They were then surface machined mainly for
aesthetic reasons, as surface machining aluminum leaves a desirable pattern in the
surface of the material. The next step was to simply lay the led faceplate onto the box
faceplate and transpose the location of the LEDs onto the aluminum using a punch.
Once this was done clearance holes were drilled into the aluminum for the LEDs to
be installed into. The LED’s bodies are slightly tapered or larger on the end where the
wires exited the plastic than the top. This allowed for the majority of the LED’s body
to pass through the aluminum, but not all the way through. Two holes were then
drilled and tapped into the aluminum to accept a 10-24 socket head screw, and
clearance holes were drilled into the MDF for the same 10-24 socket head screws.
These two screws are to hold the aluminum faceplates in place and secure the LEDs

to the faceplate.

The dimensional drawing of the faceplate provided by Crum and McMurray can be seen
in Appendix D. A revision was later made to the faceplate of the box to include a photoresistor.
Two small holes were added to the faceplate using a drill press fitted with a 1/8 in drill bit. The

photo resistor was placed 1.5 in away from the top edge of the aluminum led housing.

The internal electrical components were soldered to a breadboard connecting to the
various component mounted in the faceplate. Wires were feed from the proto board through the 1

in. hole in the side of the box and connected to 8 pin stackable headers using a hot glue gun to

81

hold them firmly in place and provide insulation to the electric connections. The headers were
then insulated with electrical tape and labeled with their respective number. All components
were inserted into their respective place in the faceplate, and a metal knob was secured to the
potentiometer. Internal wiring connections were made using silicon filled 3 terminal connectors
which provide insulation and require less time to make connections then conventional soldering
techniques. The box was painted with blue and yellow pant to provide a more finished look. A

picture of the first prototype trainer can be seen in Figure 9 below.

Figure 9. Prototype Trainer 1

82

The second prototype trainer was created under the guidance of Mr. William Hemphill. It
was housed in a prefabricated project box produced by Hammond Manufacturing. The project
box is formed from ABS plastic and measures 8.661 in. wide, 8.12 in. long and 1.575 in. thick.
This project box was chosen for its lightweight relatively small size allowing the second trainer
to be portable. The project box also features a sliding battery door section that provides access to
internal components without having to open the box. Several project boxes were considered, but
this one allowed for the proper amount of clearance between the internal and external hardware

and had sufficient size to allow for all electronic components to be mounted appropriately.

Once again AutoCAD was used to form the dimensional drawing for the cutouts that
were to be made to seat various external components. The second prototype trainer AutoCAD
was also used to model the components edges to verify that they would have proper placement in
the project box without interfering with the internal screw mounts. The project box also
contained eight small plastic stubs that needed to be avoided when cutting out the holes for the
electronics. The project box outside can be seen in Figure 10 and the inside can be seen in Figure
11. Several revisions were made to the original drawing to ensure all components would be

placed properly.

83

Figure 10. Project Box Outside

Figure 11. Project Box Inside

An insert was created with the help of Mr. Hemphill to allow the project box to directly
rest on a surface and ensure pressure was applied to the inside of the box. This reduced the
likelihood of the box chattering when the holes were milled out using a CNC router. This also

84

prevented chipping and other damage when milling out the project box. The insert was model in
AutoCAD and the tool path was also created. A piece of 0.75 in. thick MDF board was used as
the primary material to rest firmly against the interior of the box. All cuts and holes were made
using a 0.25 in. drill bit on the CNC router. A second piece of 0.25 in. thick MDF board was cut
to the inner dimensions of the box without the holes made to compensate for the plastic stubs.
Both of these were placed inside the box allowing the MDF to have a small clearance to support
the full weight of the project box allowing pressure to be applied to the front, which was to
become the faceplate for inserting the various components. The insert created can be seen in

Figure 12.

Figure 12. MDF Support Insert

85

A tool path was created in AutoCAD for a 0.125 in. drill bit to make the proper cuts to
the faceplate. The inserts were used and the CNC router made the specified cuts to the project
box. Two holes were made in the front of the box to the diameter of the Ultrasonic range finder

using a standard drill press. Below is Figure 13, a picture of the box after all cuts were made.

Figure 13. Project Box After Milling

This project box is closed and secured by using the hardware provided with the box.
External electrical components were secured using small sized screws for the LCD screen,
ultrasonic range finder, and keypad. The safety sockets were secured using their provided
hardware. The photoresistor is held in place using a small amount of hot glue to secure it. Very

few resistors were needed to ensure proper operation of this equipment, and these resistors were

86

soldered in line with the wiring to the various components. The same 8 pin stackable headers
were used to secure the wires and provide a simple plug connection to the Arduino. The keypad
used a single row 12 pin header connected to the Arduino. All wires were held in place using hot
glue, then insulated with electrical tape and labeled with their respective number. These headers
were bent at a 90 degree angle to ensure clearance for the limited space within the project box. A

picture of the second prototype trainer can be seen in Figure 14.

Figure 14. Prototype Trainer 2

Table 10 shows the price of the various construction materials used. Items denoted with a
“*” gignify that the entire quantity of the item was not used and the amount used was estimated.
Items such as wire and three terminal connections could only be purchased in certain amounts
and therefore the price included was for the amount purchased. Items denoted with “**” are
items that were simply found available for use at ETSU and the price was estimated from similar

items. The price of screws, nails, and hot glue was omitted as very few of these were used and it

87

would be difficult to quantify the price of four small wood screws (or other items) when packs

containing minimal amounts still greatly exceed what was needed. The previously mentioned

suppliers were used as well as Sparkfun Electronics at http://www.sparkfun.com/, and Lowes at

http://www.lowes.com/.

Table 10.

Hardware and Construction Materials

Estimated
Component Quantity | Amount Unit Price | Total Price From
Single Header Strip 1 Pack 25% $1.29 $0.32 L&S Electronics*
White Project Case 1 $12.32 $0.00 Newark
3 Terminal Connectors 1 BOX 50% $27.23 $13.62 Newark*
8 Pin Stackable Header 9 $0.50 $0.00 Sparkfun
Proto Board 1 $495 $0.00 Jameco**
22AWG Solid White Wire 25' 1 50% $3.49 S$1.75 Jameco*
20AWG Stranded Black Wire 25' 1 25% $4.40 $1.10 Newark**
20AWG Stranded RED Wire 25' 1 25% $4.40 $1.10 Newark**
Jumper Wire Kit 1 10% $11.95 $1.20 Jameco*
Electrical Tape 60' 1 50% $1.35 $0.68 Jameco*
2"x6'x8' Treated Lumber 1 30% S5.57 S$1.67 Lowes**
0.5"x24"x48" MDF Board 1 10% $5.73 $0.57 Lowes**
0.75"x24"x48 M"DF Board 1 10% S8.44 S0.84 Lowes**
0.125"x4'x8' MDF Board 1 10% $9.96 $1.00 Lowes**
Totals: $23.84

In actuality many of the items listed in were not used in entirety, and several of the

trainers could be made using the materials marked with asterisks. With the electronics cost at

$155.78, the total equipment and material price for producing the Arduino Trainers amounts to

an estimate of $179.62. This price was lower in actuality as many of the purchased items were

already available for use and came at no cost.

88

http://www.sparkfun.com/
http://www.lowes.com/

CHAPTER 5

CONCLUSION AND RECOMENDATIONS

It is recommended that ETSU work with local area highs schools to investigate their
interest in using the created project as an educational tool to satisfy previously educational needs.
ETSU has already provided educational tools to David Crockett High School (DCHS) through
the Gear Up program, and has multiple contacts with that school. Gear Up is a “discretionary
grant program, is designed to increase the number of low-income students who are prepared to
enter and succeed in postsecondary education” (U.S. Department of Education, 2012, p. 1). Past
projects between DCHS include constructing and automated greenhouse, a solar powered
outdoor media classroom, and a video capturing wildlife observation system. It is recommended
that administrators of that school be given a demonstration of the created project and a copy of
the educational materials for their consideration. Should the GearUp grant be renewed, it is

recommended that any future schools be informed of this project for their consideration.

A web search on many of the local area high schools in east Tennessee reviled that many
do not currently teach the class C Programming Applications, although many do have a
programming class of some nature. This could cause poor adoption of the project created for this
thesis. As a result it is also suggested that afterschool and summer school project coordinators be
given a demonstration of the trainer. One such afterschool project is LEAPS, which is funded by
the Tennessee lottery. “The overall goal of LEAPs is to provide Tennessee students with
academic enrichment opportunities that reinforce and complement the regular academic

program” (TDOE, 2010, p. 4). The Lottery for Education: Afterschool Programs is designed to

89

use revenue generated by the lottery to further educate students classified as “at risk”. The
criteria for being at risk, however, are rather broad. A survey of 27,113 students reviled that 83%
were considered at risk for criteria involving poverty, dysfunctional living situations, enrolment
in a school with inadequate yearly progress, or at risk of being behind in classes (TDOE, 2010, p.

3).

Organizations involved with LEAPSs should be contacted, or a grant proposal for LEAPS
funding should be made. In order to qualify for a grant at least 50% of students must qualify as at
risk by the previously mentioned standards. The goal of the grant proposal must be education,
and grant proposals must be clear and well defined with a reasonable budget. The priorities of
education must include an average student participation of 15 hours a week. The program must
also develop reading, math, science, or computer literacy skills. There must be academic
mentoring and the program has to have some sports or leisure time (TDOE, 2012). Other
avenues of reaching students include various clubs and college center learning programs for

students offered by the University of Tennessee and University School at ETSU.

While the prototype trainers and Lab manual was developed for the previously mentioned
purpose of satisfying STEM educational need for high school students in Tennessee, the project
can serve other educational uses for ETSU. Dr. Zhibin Tan has requested a copy of the finished
lab manual and access to the prototype trainers for possible uses in ENTC 4337 —
Microprocessors. While the coursework may not be college level material, it can be used to
introduce the concept of how microprocessors work and be used as an introduction to more

complicated systems.

90

Mr. Garth Ghearing will also be reviewing the lab manual and trainer to investigate its
uses in ENTC 4957/5957 — Introduction to Mechatronics. The created project will most likely
not be used as required course material but rather to provide individual students with a
knowledge basis of the Arduino’s capabilities and applications in automated and robotic systems.
Many of the sensors and programs used in the trainers have already been used in robotic and
automation classes to provide a simple and cheap interface between inputs and outputs. Mr.
Ghearing has also state that he will further the development of the prototype and associated labs
in an effort to produce pilot models of the trainers in an automated production line using the
equipment at ETSU. These pilot trainers would include improvements on the original design
making them more capable of being manufactured using the automatic storage and retrieval

system in combination with the Denso robots mounted on the conveyer belt work cell at ETSU.

Should local area high schools show an interest in this project, it is recommended that the
pilot models of the trainers be put into production to not only help educate students in high
schools but also provide valuable teaching opportunities to those enrolled in Engineering
Technology at ETSU. Constructing a pilot version of the trainers will allow college students to
have hands-on experience in constructing and using various electronic circuits. Producing these
on an automated line will allow for education in programming and robotic control. Creating an
easily manufactured pilot trainer will expose college students to the concepts of design for

manufacturing and optimizing production.

Some design changes would need to be made for the pilot trainers to make them more
easily produced on an automated line and to improve the functionality. It is recommended that a
project box be used for the first trainer in order to provide a more consistent design with less

inherent variability to each created trainer. This will also reduce construction time. The first

91

trainer should also use printed circuit boards rather than prototype boards to mount electronic
components. This will vastly reduce wiring time and errors in the circuits. This will also
eliminate the need for the three terminal connectors used in the prototype and allow for pick and
place robotic construction of many of the circuits. The LEDs should also be replaced with more
compact flatter LEDs that will not protrude from the top of the project box. This will allow for
the same protection as the aluminum hosing on the prototype trainer without the need for

creating the aluminum faceplates.

It is recommended that a single type of stranded 20 gauge wire be used for all wiring
connections. This will allow the wiring to be more flexible, and using a single type will reduce
the cost for purchasing multiple rolls. This type of wire will not easily connect with the 8 pin
stackable headers used in the prototype and the headers do not have a desirable appearance. It is
recommended that prefabricated jumper wires with the appropriate headers be used, or one of the
many shield kits available for the Arduino be used for the connections. The author of this thesis
will make every effort possible to continue the development and distribution of the created

project in the future.

The prototypes and lab manual teach many of the basic C programming commands and
introduce many other library specific commands. They do this in a way that provides hands-on
experience with technology that is used in many other related fields. The labs also include key
concepts for understanding the fundamentals of technology and incorporate high school
appropriate math. The Lab assignments provided meet standard core requirements 2.0-4.0 for the
class of C Programming Applications as defined by the Tennessee State Department of
Education. This is done in an interdisciplinary way with plenty of information provided to allow

teachers to educate students with ease. In conclusion the created prototype trainers and lab

92

assignments meet the goals set out by this thesis by creating an educational tool that will meet

the STEM educational needs in Tennessee high schools.

93

REFERENCES

Arduino (2012). Arduino - Home Page. Retrieved 06/25/2012 From: http://arduino.cc/en/

Arduino (2012). Arduino Mega 2560. Retrieved 06/26/2012 From:

http://arduino.cc/en/Main/ArduinoBoardMega2560

Berry, R.E., & Meekings B.A.E. (1984). A book on C. Southampton, Great Britian: Camelot

Press. ISBN 0-333-36821-5

By Members of the 2005 “Rising above the gathering storm” Committee, Prepared for the
Presidents of the National Academy of Sciences, National Academy of Engineering,
Institute of Medicine. (2010). Rising Above the Gathering Storm, Revisited, Rapidly
Approaching Category 5. The National Academies Press. Retrieved 06/12/ 2012, From:

http://www.uic.edu/home/Chancellor/risingabove.pdf

Crum, M., & McMurray, B. (2012) Design planning and prototype creation for the Arduino
Training Module. Johnson City, TN: East Tennessee State University. Prepared for:

ENTC 5900: Independent Study.

Davies, A. (1998). Handbook of condition monitoring: Techniques and methodology. London

SE1 8HN, UK: Chapman & Hall, an imprint of Thomson Science. ISBN 0-412-61320-4

Douglas, J., Iversen, E., & Kalyandurg C. (2004). Engineering in the K-12 classroom, an
analysis of current practices & guidelines for the future. The American Society for
Engineering Education. Retieved 06/18/2012 From:

http://www.asibei.org/oddi/libros/Engineering%20in%20the%20K-12%20classroom.pdf

94

http://arduino.cc/en/
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.uic.edu/home/Chancellor/risingabove.pdf
http://www.asibei.org/oddi/libros/Engineering%20in%20the%20K-12%20classroom.pdf

Harbison, S.P., & Steele, G.L. Jr.(1984). C: A reference manual. Englewood Cliffs, NJ:

Prentice-Hall. ISBN 0-13-110016-5

Johnsonbaugh, R. & Kalin, M. (1997) C for scientists and engineers. Upper Saddle River, NJ:

Prentice-Hall. ISBN 0-02-361136-7

Kernighan, B.W., & Ritchie, D.M. (1978). The C programming language. Englewood Cliffs,

New Jersey: Prentic-Hall, Inc. ISBN 0-13-110163-3

Lundberg, K.H. Analog to digital converter testing. Retrieved 06/25/2012 From:

http://web.mit.edu/klund/www/papers/lUNP A2Dtest.pdf

National Science Board. (2007). National action plan for addressing the critical needs of the U.S.
science, technology, engineering, and mathematics education system. (NSB-07-114)
October 30, 2007. Retrieved 06/11/2012, From:

http://www.nsf.gov/nsh/documents/2007/stem action.pdf

Owens Community College (2012) Audience and person. The writing center. Retrieved

6/23/2012 From: https://www.owens.edu/writing/audience.html

Princeton University. (2012). Integrated science. (Last Updated March 1, 2012) Retrieved

06/18/2012 From: http://www.princeton.edu/integratedscience/

Tennessee Department of Education. (2010). Lottery for education: Afterschool programs
(LEAPS). Retrieved 7/3/2012 From:

http://www.tn.gov/education/safe schls/learning/doc/2010-11LEAPsAnnualReport.pdf

95

http://web.mit.edu/klund/www/papers/UNP_A2Dtest.pdf
http://www.nsf.gov/nsb/documents/2007/stem_action.pdf
https://www.owens.edu/writing/audience.html
http://www.princeton.edu/integratedscience/
http://www.tn.gov/education/safe_schls/learning/doc/2010-11LEAPsAnnualReport.pdf

Tennessee Department of Education. (2012). Lottery for education: afterschool programs
(LEAPSs). Retrieved 7/3/2012 From:

http://www.tn.gov/education/safe schls/learning/leaps.shtml

Tennessee State Board of Education. (2005) Core standards for C programming applications.
Tennessee Department of Education. Retrieved 6/20/2012 From:

http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf

Tennessee State Board of Education. (2008). Principles of technology I, principles of technology
I1, biology for technology curriculum standards. Tennessee Department of Education.

Retrieved 6/20/2012 From: http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf

96

http://www.tn.gov/education/safe_schls/learning/leaps.shtml
http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf
http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf

APPENDICES

Appendix A: Arduino Programmers

The following people contributed to the programming used in the created project or
provided code that educated Brandyn M. Hoffer allowing him to create the project. The People
listed here are given credit for their work, and this list is intended in no way to imply that they

endorse the created project or this thesis.

The following people are the developers of the Arduino project and further contributed through

providing example sketches used for reference when investigating the Arduino’s capabilities:

Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis

Credit is given to DojoDave, http://www.0j0.0rg, 2005, for creating the “Button” sketch used for

learning the Arduino inputs and outputs later modified by Tom Igore.

Credit is given to Nicholas Zambetti, 2006, for creating the “ASCIITable” sketch later modified

by Tom Igore, which was the basis for the creation of Lab 4: Better Serial Communication.

Credit is given to Mark Stanley, and Alexander Brevig for creation of the “keypad.h” header file
used in Labs 10-14, and for the example sketches provided with the library which demonstrated
its uses. The “CustomKeypad” sketch was modified to provide the basis for Lab 10: Interfacing

With a Matrix Keypad.

Credit is given to Limor Fried, 2009, who modified the LiquidCrystal.h library created by the

developers, which was used in Labs 9-14.

97

http://www.0j0.org/

Credit is given to Hernando Barrang who developed “Wiring”, “an-open source programming

framework for microcontrollers” (http://wiring.org.co/) which the Arduino syntax is based on.

Credit is given to Ben Fry and Casey Reas for developing Processing “an open source

programming language and environment” (http://processing.org/) which the Arduino

environment is based on.

98

http://wiring.org.co/
http://processing.org/

Appendix B: The Lab Manuel

LAB MANUAL FOR THE
ARDUINO

MICROPROCESSOR
TRAINER

99

Contents

Farst Time Setup
Step 1: Downloading the Software ..o
Step 2: Installing the Drovers

Figure 1: Locating The Arduino ...
Figure 2: Hardware Properties ...
Figure 3: Finally the Driver! oo
Figure 4: You Found the Drivers
Step 3: Insuring BEvervthing Worked
Figure 5: Arduino Program
Figure 6: Selecting the Proper Board........oooooiiiiiieee
Figure 7: Blink Example Program

Lab 1: “Hi Guys!™

BEQUaptnent oo e e e s

Commands and Description.._..__..______ ..

Procedure

Figure 8: Selecting the Serial Port ..
Figure 9: Opening BareMintum
Figure 10: I've Almost Done 1t For You ..o

Lab 2: Simulating a Stop Laght

Commands and Description ..o e

Procedure

100

.................................... 8

__________________________________ 14

Figure 11: Blink Example Program ... 22

Figure 12: Arduino Mega 2560 Power and Pin Locations ... 23

Lab 3: Inputs aned OUtpULE ..ot e e e e e e e s e s s e emne e n e e e emeeamn e e snansneaans 25
PO e 25
Equuapmnent e 25
Commands and Description . 26

B et OSSOSO SO 28
Lab 4: Better Sertal Communication ... 30
PO e 30

B L = | 30
Commands and Descriplionoo oottt e e ee e e e e e meen e sn e s e emeeeneeseeannannen 31

B et SO SRSO 33
Figure 13: Binary Translation Using the Serial Monitor ... 34

Lab 5: Programming a Kevpad 36
U O et ee e em et e et e ne e e et e e an e neemne s e anennemsenneesneneamrenneeseens 36
BEquapmment e 36
Commands and Description .. 37

B et eSO SO 37
Lab 6: Reading Analog Inputs .. 41
U O et ee e em et e et e ne e e et e e an e neemne s e anennemsenneesneneamrenneeseens 41
BEquapmment e 41
Commands and Descriplion . ..o oo e et e s e e e e e en e e e s e e snenane e e e e esnann 42
PO EdUIE e 44
Figure 14: Analog Input and Veltage ... 46

Lab 7: Dimming a Laght Using the Kevpad. . 48

101

s = | U 48
Commands and Description . 48
Figure 15: PWM with Square Waves .. oo e 50

B et OSSOSO SO 50
Lab 8: Maintaining Lighting Levels Using a Photoresistor ... 52
PO e 52

B LT = | OSSR 52
Commands and Descriplion . ..ot e em e e e e enne e ne et e e snename e e e e esnann 53
PO dUTE e 53
Lab 9: Interfacing With an LCD Sereen . 58
PO e 58

B LT = | OSSR 58
Commands and DescriptiOon ... 59
ProcadUre e 60
Lab 10: Interfacing With a Matrix Kevpad.....oooooooeeee e 63
U O et ee e em et e et e ne e e et e e an e neemne s e anennemsenneesneneamrenneeseens 63
BEquapmment e 63
Commands and Descriplion . ..o oot e e e e en e e s e snenameeeneesnann 64
ProcadUre e 67
Lab 11: Making a Caleulator ..ot ee e eme e s e e e eme e e eeseens 69
PO e 69

B LTy = | OSSR 69
Commands and Descriplion . ..o oo e et e s e e e e e en e e e s e e snenane e e e e esnann 70
PO EdUIE e 71

102

PO e 74
B LT = | OSSR 74
Commands and DescriptiOon ... 75
PO dUTE e 76
Lab 13: Creating a Light Meter e 79
P08 ettt e n e e et e enneamnn e n e anaeene e e s e et n e aneaaneeennen 79
Equuapmnent e 79
Commands and DescriptiOon ... 80
ProcadUre e 81
Lab 14: Ultrasonic Distance Measurements ... eeeeean 83
PO ettt n e e et enne e e n e anaeeneeene et nensneaamn e e en 83
Equuapmnent e 83
Commands and Description . 84
BT 1 S 84

103

First Time Setup

To set up vour Arduino for the first time vou will need to download the software, install
the correct drivers to vour computer, and select the correct USB port to ensure the signals are
actually sent to the Arduino device rather than an external hard drive, or printer. This section will
inform vou on how to do all of this in a few easy steps... well, a few steps. Once the device has
been set up 1t should work on that computer without the need for another setup unless a different
Arduino device is being used. The steps described in this section are meant to guide you for a
Windows 7 operating system. If vou have an O5 different from Windows 7 these steps mav be

different, but the same functions needs to be performed.

Step 1: Downloading the Software

First go to the Arduino web page at http://www arduino.cc/ . Next vou will see a menu

bar located under the Arduino home page logo with options such as “Buy | Download | Getting
Started...” From here, click on the “Download”™ button. Next click on the word “Windows™
under the word “Download™ on the page. This will prompt vou to open or save the file. Make
sure you save it to an easy to find location such as your desktop or documents folder. This file
will download as “Arduino-1 0-windows zip™. You will then need to extract the contents of this
.zip file to the same location. You can do this using a variety of programs such as WinRAR or
WinZip. If vou do not already have one of these programs or a similar program download and

mstall them from www. win-rar.com or Www. WInzip.com .

To extract the files, right-click on the Arduino file and select “extract here™ or “extract
file™ and select the appropriate destination. Next while the file 13 extracting grab vourself a cup
of coffee or soda, this should take a minute or so. Once the file 1s done extracting vou should see
“arduino-1.0" as a file folder in the selected location. It should also be noted at this point that
some antivirus software may warn you that this program is not trusted or unsafe. Being an open
source software many firewalls and antivirus programs will trv and prevent vou from installing
this software, however, if you have downloaded the program from the correct location I can
assure you 1t has never negatively affected any computer | have ever put it on. Please ignore

these warnings and add any exceptions necessary to install this on yvour computer.

104

Step 2: Installing the Drivers

Once the Arduino folder has been extracted to the proper location you must connect your
Arduino Mega or other Arduino device. If Windows prompts vou to install the drivers locate the
option that lets you install them manually, and continue reading from the next paragraph. If
Windows does not prompt vou to install the drivers, select “Devices and Printers™ in the start
menu, or locate this option in the control panel. This can also be found by typing “Devices and
Printers™ in the search bar of the start menu. Locate the “Arduino Mega 25607 in this window. It
should be listed under “Unspecified™ The figure below shows the Arduino device at the bottom
of the screen. Double click on the device and a new window will appear with the menu tabs
“General” and “Hardware”. Click on the “Hardware™ option, then the “Properties™ button located
towards the bottom right hand corner of the window. This can be seen in Figure 2. A new
window will open up with another button that says “Change settings™. Click that button. And
finally, vet another window with multiple menu tabs will pop up. Click the “Driver” tab in this
window and the button that says erther “Update Driver...” or “Install Driver...”. This can be

seen in Figure 3.

Figure 1: Locating The Arduino

() nel 8 Hardware snd Sound b Devices and Pristers & - |4 o
Add 5 devce Add & pinte - w“
DELL E196FF Loghech® Logrecn® Legiech® WARE-PC ATEL2
Urdying Wirslesi Warsdeia Mg
Fecerver Keyboard K350 M50
- ters a A
, ~ ;
B c f {
7 =y =¥y
G z
Fax P Deskjer Microsoft XPS Send To
D100 series Document Ometlote 2000
Witer
Urspecified (1 ThlS C e Rlﬂht
—
i Here
Arduino Mega
2560 (COMS)
'} 11 tems
—t
=[N

105

Figure 2: Hardware Properties

[3 Arduino Mega 2560 (COM9) Properties

3 Arduino Mega 2560 {COMS)

Device Functions:

Name
15 Arduino Mega 2560 (COMS)

Type

106

Figure 3: Finally the Driver!

[Arduino Mega 2560 (COM9) Properties L=)

[General [Pott Settings | Driver | Detals |

Arduino Mega 2560 (COMS)

{

Driver Provider: Arduino LLC (www arduino cc)
Driver Date: 111572007

Driver Version: 5.1.2600.0

Digtal Signer: Not digtally signed

To view detais about the driver files

¥ the device fais after updating the drver., rol
back to the previously installed driver.

Disables the selected device.

To update the driver software for this device.
Roll Back Driver

To uninstall the daver (Advanced)

ok) [oms)

. 4

Once you have located the window that asks if vou would like to search automatically for
driver software or browse your computer for it select the option that allows you to manually
browse your computer for this software. Click on the “Browse™ button and locate your
arduino-1.0 folder that was previously installed. In this folder, click on the “drivers™ subfolder,
and hit “OK”. Figure 4 shows this window and the location on the computer. Also make sure the
“Include subfolders™ box is checked. Now hit the “Next™ button and the mission has been
accomplished.

107

Figure 4: You Found the Drivers

%

@ L Update Driver Software - Arduino Mega 2560 (COM3)
Browse for driver software on your computer

Search fior driver software in this location:

C:\Users\Mr. E\Desktop\arduino-1.0\drivers v [Browse.. |

[Include subfolders

2 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

Ned | [Cancel

Step 3: Insuring Evervthing Worked

Now you will make sure everything was performed correctly by running an example lab
in the Arduino program. To start open up the Arduino folder downloaded in the previous step
and click on the Arduino program shown in the figure below. Next, click on “Tools™ Board>
Arduino Mega 25360 or Mega ADK". This can be seen in Figure 6 to make sure vou locate the
proper path. To select the proper USB port click on “Tools> Serial Port> COM#™ where the #
symbol represents the USB port the Arduino 1s connected to. If vou do not know which USB port
to select vou must go back to the “Devices and Printers™ window in Step 2. Looking at Figure 1
vou will notice that the “Arduino Mega 25607 has “(COM9)” written next to it. This 1s the
proper USB port. The number on vour computer may be different from the one listed in the

figure, however, this just needs to match the same port in the “Serial Port™ menu.

108

Figure 5: Arduino Program

-

Name

b _MACOSX
). drivers
ke examples
| hardware
o java

b lib

. libraries
| reference
4 tools

@ arduino
& ygiconv-2
3 cygwint
1= libusbd

| revisions
(=) ntxSerial

Date modified

11/28/2011 6:32 PM
11/28/2011 6:31 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:32 PM
11/28/2011 6:31 PM
11/28/2011 6:31 PM
11/28/2011 6:31 PM
11/28/2011 6:31 PM
11/28/2011 6:31 PM

Type Size

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
Aoplicati
DLL File
DLL File
DLL File
Text Document
DLL File

840 KB
7 KB
1829 k8
43K8
28 KB
76 KB

109

Figure 6: Selecting the Proper Board

[@ sketch_may16a | Arduino 1.0 o & |
File Edit Sketch Help
Auto Format Cird+T
Archive Sketch
skeich_may16 Fix Encoding & Reload

Senial Monitor Ctri+Shift+M “1

Board » Arduino Uno

Serial Port » Arduino Duemilanove w/ ATmega328

T N Arduino Diecimila or Duemilanove w/ ATmegal68

B Boationder Arduino Nano w/ ATmega328
Arduino Nano w/ ATmegal 68

© Arduino Mega 2560 or Mega ADK
Arduino Mega (ATmegal 280)
Arduino Mini w/ ATmega328
Arduino Mini w/ ATmegal68
Arduino Ethernet
Arduino Fio
Arduino BT w/ ATmega328
Arduino BT w/ ATmegal68
LilyPad Arduino w/ ATmega32s
: LilyPad Arduino w/ ATmegal68
Arduino Pro or Pro Mini (SV, 16 MHz) w/ ATmega328
Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmegal68
Arduino Pro or Pro Mini (33V, 8 MHz) w/ ATmega328
Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmegal68
Arduine Mega 25 Arduino NG or older w/ ATmegal68

N e: Arduino NG or older w/ ATmega8

Once the proper board and serial port have been specified. go to the menu bar and select
“File> Examples> 1 Basics™ Blink™. This will open up another Arduino window with a
preloaded example program that can be used to test the connection and make sure evervthing is

working properly. Figure 7 illustrates the location of this pre-installed program.

110

Figure 7: Blink Example Program

r@ sketch_may16a | Arduino 1.0 =JIC.
Edit Sketch Tools Help
New Ctrl+N
Open... Ctri+O
Sketchbook »
Examples ’ 1.Basics » AnalogReadSerial
Close Ctrl+W 2.Digital » BareMinimum
Save Ctrl+S 3.Analog » Blink
Save As... Ctrl+Shift+S 4.Communication » DigitaiReadSerial
Upload Ctrl+U 5.Control » Fade
Upload Using Programmer Ctri+Shift+U 6.Sensors ’
Page Setup Ctrl+Shift+P s 4
Print Ctri+P oy ’
ArduinolSP
Preferences Ctrl+Comma
EEPROM »
Quit Ctrl+Q Ethernet »
Firmata 4
LiquidCrystal »
SD »
Servo » &
SoftwareSerial
SPI
Stepper
Wire
Arduino Mega 2560 or Mega ADK on COMQ

Located directly below the menu bar you will see a few buttons. One of these looks like a circle
with a right arrow in it. This is the upload button. Hovering the mouse over these buttons will
allow you to read what they are. Click this button and if everything worked correctly you will see
the vellow led located next to pin 13 blinking on and off at a rate of 1 second after the program
displays the words “Done uploading.™ If you get an error that says “avrdude:” followed by a
bunch of nonsensical letters and numbers, this means something is wrong with the Arduino’s

communication. Check and make sure the Arduino is connected properly and recognized by the

111

computer. Also check and make sure the correct “COM=" port has been selected and the proper
board has been specified, than trv again. If this does not work, trv restarting the computer. Open
the example again then uploading it a final time. If you still receive an error vou will have to
Google search the exact error you are getting to find a solution. There are many other errors that
can occur and being an open source device, Google will become one of yvour best friends for

solving these errors.

112

Lab 1: “Hi Guys!™

Purpose

This lab will introduce the basic structure of Arduine sketches. The two basic text
commands that must be present in every Arduino sketch program will be learned. These
commands are used to reference the set up and running portion of the sketch. You will also learn
the serial response commands allowing for communication between the Arduino module and a
computer. Serial communication with a computer 1s useful both for interfacing with the
commuter and debugging programs through displaying the value of either digital or analog pins,
or the value represented by a variable. To learn these commands vou will write vour first
program using only the commands listed in the Commands and Description section of this lab.
All commands must be written exactly as they appear in this section. That includes capitals and
spaces. Successful completion of this lab will result 1n a program that can be loaded into the

Arduino Mega, and cause a response on the computers serial monitor.

Egquipment
Arduino Mega

Arduino USB cable

Computer

113

Commands and Description

Command

Description

void setup() {
¥

This command runs once during the start of a
program and 1s used to initialize varables, pin
modes, start using libraries, and other things
vou will be introduced to in later labs.
Information 1s placed on the preceding line

between the brackets.

void loop() {
}

This command runs continuously in a loop as
its name implies. The portion of the program
that solicits responses, performs calculations,
or has to do with any input or output is placed

on the preceding line between the brackets.

Serial begin(9600)

This command 1s used to begin serial
communication at the beginning of a sketch. It
15 used 1n the “void setup()” and will allow for
communication between the computer and the
Arduino via the attached USB cable. The value
9600 15 the baud rate and should be set to
match the baud rate of the computer’s serial

monitor.

Senal print()

This command “prints” anything written
between the colons. If the sketch 1s set up
properly and serial communication 1s running,
Serial print(“Hi Guvs™) will return “Hi Guys™

on the computer’s serial monitor.

114

Procedure
1. First plug in the USB interface cable to the computer. Once the computer has recognized the

device open up the Arduino interface program to create vour first sketch.

2. Next ensure the Arduino is communicating with the computer. To do this, select “Tools™ from
the drop down menu, then “Serial Port™. You should see a port, or list of ports labeled “COMz"
where the # signifies some number. If there is only one, select that device. If there are several,
simply go to the “Control Panel”™ on the computer. Open up “Devices and Printers™, and look for
the Arduino under “Unspecified”. Then go back to the sketch program and select the
corresponding port. This can be seen in the figure below. You may also have to select which
Arduino vou are using from “Tools™>"Board =, then select the Arduino vou have. This step will

be omitted in future labs, so remember how to do this.

Figure &: Selecting the Serial Port

@ sketch jan23s | Arduing 10 || G
Fie Edit Sketch l‘lonls' Help
Auto Format CirlsT
Archive Sketch
Skash_janide Fix Encoding & Reload
Serial Monitor Ctrl+Shift= M g
Board »
Serial Port P ¥ COMB
Programmer ¥

Burn Bootloader

Arduing Meg of Mega ADK of COMB

115

3. Once the serial port has been specified. it is fime to begin writing the sketch. Often in
programming it 1s easier to start by opening another sketch that has the same programming
structure, or commands, that vou will be using. Manv of the labs in this manual build on each
other and others can be completed by modifying existing programs. To select a sketch vou can
build this lab from, select “File™ »“Examples >"Basics > BareMinium”~. This can be seen

below, and if done properly vou will see a sketch containing the “setup™ and “loop™ commands.

Figure 9: Opening BareMinium

r@ sketch_jan23a | Arduino 1.0 == g
[File] Edit Sketch Tools Help
Mew Cerl+N
Open... Crl=0
Sketchbook »
Examples * 1.Basics » AnalogReadSenal
Close Cerl=W 2.Diigital b BareMinimium
Save Ctrl+5 3.Analog L Blink
Save As., Ctrl+Shift+5 4 .Communication » DigitalResdSenal
Upload Cirl= 5.Control " Fade
Upload Using Programmer Ctrl=5Shift+U G.5ensors "
Page Setup Ctrls Shift+P ?'D"_""*' '
Print Cerl+P o '
ArduinclsP
Preferences Crl-Comma
EEPROM "
Quit Crrl= Ethernet 4
Firmata »
LiquidCrystal J
S0 k
Servo ¥ -
“ "
SoftwareSerial
5P
Stepper
————————————

4. If vou choose to start by writing from scratch remember to pay close attention to syntax. The
“setup” and “loop” commands must start with the brackets seen in the commands, and end with
the appropriate closing bracket. All other commands introduced must be followed by a
semicolon ;" to signify the end of that line of data. If vou would like to leave a comment in your
sketch without 1t affecting the program, simply type /. Anything written after the slash marks,

on that same line of code, will appear grav n the sketch and the program will be unaffected by 1t.

116

The “BareMmimum™ program alreadv has comments, and vou should easilv be able to pick them
out. Use the commands introduced to write a sketch that returns “Hi Guys!™ (or anv other phrase)
using the commands given. All commands entered correctly will appear orange to signify correct

syntax. Figure 4 should clear up any confusion.
Figure 10: I've Almost Done it For You

. @ BareMinimum | Ardusno 0022 = &

setwp() { -
Serial.begin(9600) ; k I 1
THIS IS NOT A COMENT BECAUSE ITS MISSING THE SLASHES

loop() {

5. Easy right? Once vou have written the sketch check one last time to make sure you are not
missing any syntax. Below the drop down menu are a few buttons. One of them looks like a
circle check mark, and is the button on the farthest left. Hovering over these buttons will tell you
what they do. This button is the “Verify™ button and will compile vour program and make sure
vou do not have any errors. If vou get any errors, check the syntax again. Commands must be

written EXACTLY as they appear in the Commands and Description section.

117

6. Once the program compiles correctly hit the down arrow button. This 1s the save button. Name
and save your file. This button should be used every 5 minutes of work or so, regardless if the
sketch 1s complete or correct. Saving every so often will prevent vou from experiencing the rage
that comes from deleting hours’ worth of programming in the future. Alwavs remember to back
up vour programs on at least one other device. Save old files that don’t work with a different
name and delete them when they are no longer needed. Next hit the right arrow button. This will
load the program to the Arduino, and vou should see “Done uploading.™ written at the bottom of
the sketch when 1t 1s done. If you get an error that says “avrdude:” followed by a bunch of
nonsensical letters and numbers, this means something 1s wrong with the Arduino’s
communication. Check and make sure the Arduino 1s connected properly and recognized by the
computer. Also check and make sure the correct “COM#™ port has been selected then reload the

program.

7. Finally once the program has been uploaded successfully hit the button farthest to the right.
This 15 the “Serial Monitor™ button and will display communication between the Arduino and the
computer. If vou have done this lab correctly vou will see vour phrase scrolling across the

window. ¥ou can deselect the auto scroll button to make the words stop moving.

8. Save it again just to make sure. One cannot possibly stress how important saving and backing
up your programs are. One day you will ignore this advice and on that day vou will experience
the fury of a thousand programmers before vou. Congratulations! You have now written your

first sketch!

118

Lab 2: Simulating a Stop Light

Purpose

Now that vou are familiar with the basic structure of writing the Arduino sketch programs
vou will learn to interface the Arduino with external electronic components. The Arduino must
be programed to control six LED lights, turning them off and on in a “stop light” simulation.
There are two set of green, vellow, and red lights, that must turn off and on for specific amounts
of time, and they must switch simultaneously. For example, as one row goes to green the red on
that same row must go off, while the red for the other row comes on and the yellow goes off. If
this does not occur at the same time, imaginary people will certainly crash, possibly sustaining
serious imaginary injury or even imaginary death. To avoid the horror of such a thing happening,
the time delay functions and digital output functions will be learned to control the LED light on
the Arduino trainer. Once agam, vou must only use the commands in the Commands and

Description section of this lab. and any from the previous lab necessary for operation.

Egquipment
Arduino Mega

Arduino USB Cable
Computer
Arduino Power Cable (Optional)

Arduino Trainer

119

Commands and Description

Command

Description

pinMode(#,STATE)
STATE- INPUT/OUTPUT

digitalWrite(¥. STATE)
STATE- HIGH'LOW

This command is used to declare the state of a
digital or analog pin of the Arduino (either
INPUT or OUTPUT). The “#" in the command
must be the pin number vou wish to set, while
the “STATE" must be erther INPUT or
OUTPUT. This command 1s mostly used in the

“setup” portion of the program.

This command controls the state of a digital

pin. It can be set HIGH to send a 5 V output
signal to an external component or LOW to go
to 0V, sending no output. The “# is the
number of the pin vou wish to change output

of.

delav(#)

Procedure

This command causes a delay in the program,
or pauses it for the specified number (“#7) of
milliseconds. For example “delay{1000
would delay the program for 1000 milliseconds

or 1 second.

1. Begin by opening up the Arduine program and ensuring the computer 1s communicating with

the Arduino via the Arduino USB cable.

2. Open up the “Blink™ example in the drop down menu by clicking on

“File™>"Examples ™= "Basics"="Blink™. You should see the following program in figure 5.

120

Figure 11: Blink Example Program

[@ Blink | Arduin 10 Lo |) |

File Edit Sketch Tools Help

1d setup()
(13, OUTPUT);

loop () {
igir irite (13, HIGH) 2

vy (LOOD) 5
rate (13, LOW);

¥ (1000) »

3. You will notice in the “Blink™ program that pin 137 is set as an “OUTPUT™ in this program.
This means that the Arduino can be used to set the voltage on this pin. In the “loop™ section of
the program vou will notice the output goes “HIGH™ first. This will turn on the LED witha 5V
signal. Next vou will see the “delay(1000)" command followed by pin 13 being set “LOW™.
This causes the program to pause for 1 second after turning on the light, and then turn it off,
sending 0V to the LED. The Program than pauses a second time for 1 second and turns the light

back on in a loop causing it to blink on and off for 1 second each time.

4. Change the number of the pin from 13 to 7 in the program for all commands. Verify the
program and upload it to the Arduino once you have made these changes. Once it is successfully
uploaded get the Arduino trainer either unplug the Arduino USB cable and connect the Arduino

power cable or leave it plugged in to the USB cable to continuously supply power. Next, hook up

121

the trainer’'s “POWER” plug to the “POWER” strip of the Arduino. Also hook up the module 1
plug labeled “17 to pins 7-0. You will notice two pins missing from the “POWER” plug.
Looking at the “POWER" label and the outside edge of the Arduino, the pin to the farthest right
should connect to the “Vin™ hole of the Arduino. Again with the “17 facing vou and the other
outside edge of the Arduino facing vou, the pin to the farthest right should go into the “0~
pinhole of the Arduino. If done correctly the green LED in the first column should begin
blinking on and off.

Figure 12: Arduino Mega 2560 Power and Pin Locations

MADE
INITALY o - ~

'8 Bt

n‘ boomem g "

"
L

Ly
g
-
§

e

VMNLadabdbbdbuwwuwww

5. If the bottom left, green LED was blinking then it 1s time to write the stop light simulation.
Disconnect all plugs from the Arduino except the USB cable if you were using it to supply
power. If not, re-connect the USB cable and ensure the Arduino is communicating. WARINING:
If you do not disconnect the “POWER™ and “17 cables from the training module your program
may not load correctly. If anything is connected to the pin inputs of the Arduino while uploading

a sketch program it can cause an error to occur that does not allow it to upload.

6. In the setup of the sketch program set digital pins 7-0 as OUTPUTS using the “pinMode™

command. The LED lights correspond to these pins as follows:

122

Arduino Pin LED Light

7 Column 1 Green
6 Column 2 Green
5 Column 1 Yellow

Column 2 Yellow

Led| de

Column 1 Red

]

| Column 2 Red

7. To create a stop light simulation vou must alter the Blink sketch to change the delays and pins
which go high or low. For the purpose of more accurately simulating a stop light, the green of
one light should be set to be on for 12 seconds, vellow for 3 second, and red for 15 seconds.
While the first stop light is going from green to vellow the other stop light must stay red until the
first light becomes red. At this time the second stop light should become green and this process
should repeat with no delayvs where all lights are off. Both lights should function with the same
delays. In other words 1f the program would cause people to crash in real life then your

imaginary people will surely sustain injury.

8. Once the program has been completed, verify it to check it for any syntax errors, and upload it
to the Arduino. Reconnect the Arduino to the trainer making the same connections as in step 4.

Watch the LEDs to venfy that you have made a successful sketch that will allow your imagmary
people to commute safelv and efficiently. Once the sketch has been done correctly save and tum

in your work.

** Challenge: This lab can be written using only 4 “delay™ functions and 12 “digitalWrite”

functions where each pin only changes state two times. Can vou figure it out?

123

Lab 3: Inputs and Outputs

Purpose

This lab will teach vou how to turn on and off digital outputs using external electronic
components such as buttons, switches, or any other digital device. This is done by reading the
state of a digital pin specified as an input and through conditional “if” statements. “if” statements
allow for the Arduino to respond to specific situations (conditions) by continuously checking to
see if the specified conditions are satisfied if they are, the portion of the program contained
within the if stamen 1s run. Integers will also be introduced. These allow for a particular number
or value to be assigned to a single character or string of characters. This can be useful in making
programs more clearly understood, or to program with a value that changes based on conditions.
This object of this lab is to make the 4 red LEDs turn off and on with the corresponding buttons
on the trainer. This will be done using the commands introduced in this section and any

necessary from previous sections.

Equipment
Arduino Mega

Arduino USB Cable
Computer
Arduino Power Cable (Optional)

Arduino Tramner

124

Comimands and Description

Command

Description

int NAME = VALUE

NAME- Anvy letter or letters not already used
for a command

ALUE-Any number between -32, 768 and
32,767

or

const int NAME = VALUE

This command 1s used before the setup portion
of the program and all integers should be
declared using this command before anything
else is written in the program. Their “NAME™
can be anv character or string of characters not
already used as a sketch command. Their value
can be anv whole number between -32_768 and
32.767. For example “int LED = 57 will put the
value “57 anywhere “LED™ 1s written in the
program. Adding “const” keeps the specified
integer constant throughout the program and it
will not change. This 1s useful in declaring pin

numbers.

if (WARIABLE OFPERATOR VARIABLE) {
J

else {

i
VARIABLE- Any previously defined integer,
pin, or number

OPERATOR- Any symbol used for

mathematical comparison: <, = == !=

Used to establish a conditional expression. If
the condition is satisfied, the operation or
program written between “{” and 7} will run.
The “else™ command can be used if only two
actions are to be performed in any case.
Examples of the usage of this statement are
presented after this table to provide better
understanding. This is one of the most

important functions in programming

digitalR ead(%)

This 1s similar to the “digital Write™ command
in that the value can either be “LOW™ or
“HIGH”. The “#7 is the number of the pin you

wish to read from.

125

More on “if”* statements:

The variables can either be numbers, states (such as HIGH or LOW), or integers and the
operators can be any standard mathematical comparison as long as the syntax 1s correct. Because
the “=" (equals sign) is already used to assign values, such as with the “int”™ function “==" 18
used as the “equals to” comparator. Similarly “!1="1s used for “not equal™. The “!” symbol 15
used as a Boolean operator to mean not. Other Boolean operators are || for “or™, and “&&™ for

“and”. Examples of the proper syntax for the comparison and Boolean operators are listed below.

Command Expression Result

ifix=v){ If “x™ 15 equal to vy then digital output 7 will

digitalWrite (7, HIGH); be set high (sent a 5 V signal).

}

ifix=v){ If “x” 1s greater than “v" then digital output 7

digitalWrite (7, HIGH); will be set high (sent a 5 V signal).

}

ifx=v){ If “x” 15 less than “y™ then digital output 7 will

digitalWrite (7, HIGH); be high (sent a 5 V signal).

}

fix==y){ If “x™ 15 greater than or equal to “y~ then

digitalWrite (7, HIGH); digital output 7 will be set high (senta 3 'V

H signal). This also works for “<=" (less than or
equal to).

ifix!=v){ If “x” is not equal to “y” then digital output 7

digitalWrite (7, HIGH); will be set high (sent a 5 V signal).

}

v &&v=3){ If “x" greater than “v" and “y™ is less than *37

digitalWrite (7, HIGH); then digital output 7 will be set high (senta 3

H V signal).

126

fx=vy|x=z)1{ If “x” is equal to “v" or “x” 1s equal to “z”

digitalWrite (7, HIGH); then digital output 7 will be set high (senta 3

H V signal).

if (x =HIGH) { If “x™ 15 a digital input set “HIGH™ (has 5 V on
digitalWrite (7, HIGH); 1t) then digital output 7 will be set high (senta
H 5V signal) or else (any other time) digital

else { output 7 will be set low (sent a 0 V signal).
digitalWrite(7, LOW);

Procedure

1. Open up the Arduino sketch program and connect the Arduino to the computer. You can begin
by opening the “BareMinimum™ example introduced in lab one, or any other sketch you find
helpful to build off of. Start by defining yvour variables. You will be using the trainer module 2
plug 1n this lab which 1s connected to 4 buttons and 4 LEDs with the labels “B0, B1, B2, and
B3 You may wish to name vour integers “buttonB0™ and “1edB0” or something else that makes
these easily identified. These should be set equal to the pin they will be plugged mnto. When
looking at the label of the plug and the outside edge of the Arduino Mega, the plug will go into

pins 22-36, and their corresponding buttons and LEDs are:

Purpose Arduino Pin
buttonB3 [24
buttonB2 22
buttonB1 26
buttonB0 28
ledB3 130
ledB2 32
ledB1 34
ledBO 36

127

2. Next malke all the buttons mnputs and all the LEDs outputs using the “pinhlode™ command
from lab 2 If you have used the same integers as the lab suggests, vou can write

“pinMode(buttonB3, INPUT)™ rather than writing the pin number.

3. Using the “if” statements presented in this lab write a sketch that digitalReads the button pins,
and digitalWrites the corresponding LED to come on. In other words, once you load vour
program and connect 1t to the proper plugs on the tramer, button B0 should tum on LED BO,

button B1 should turm on LED Bl, ect. The LEDs must also turn off after the button 1s released.

4. Once vou have written vour program, save it, venfy it and check for anvy errors. When none
are found upload 1t to the Arduino. If you are leaving the Arduino connected to the USB cable,
simply plug in the “27 plug into the pins mentioned 1n step 1. Otherwise, connect the Arduino
power cable once 1t 18 disconnected from the computer to supply power to the circuit. In this lab
vou may wish to use the “Senal print” command to monitor the state of any buttons you press. A
code similar to the following example can be used to monttor the state of the buttons. This code
will be inserted into the loop section of the program, and will have to be written for every button.

Also remember to initialize serial communication in the setup of vour sketch.
Example:
if (digitalRead(buttonB0) == HIGH) {

Serial.print{“B0 is HIGH");

else {

Serial.print{“B0O is LOW");

3. Once vou have a working program save your sketch, and turn in vour work. This sketch will
be built upon in future labs, so make sure 1t 18 commented well and vou can clearly understand

all integers and functions used in the program.

128

Lab 4: Better Serial Communication

Purpose

In this lab vou will learn to better vour skills at interfacing a computer with the Arduino
using the serial commands introduced in the first lab, and some new serial commands that will
allow for better communication between the two. You may remember that in Lab 1 the phrase
entered would scroll continuously in the serial window. This lab will show vou how to print
serial commands only when prompted to. You will also learn how to do some basic math with
the Arduino to translate between standard ten digit decimal format that you count in and the two
digit binary format that computers use. As vou may know all digital electronics, such as
computers, communicate using a binary system; that is each individual bit may be either a 17 or
a “0”. You may be surprised to know that when vour press the ! key on a keyboard it is
translated to a binary number through a language known as ASCIIL In the ASCII language “!™
corresponds with the binary number “1000017 which is the number 33" in a base ten system
that vou count in. Because “!™ is represented by the lowest value in the ASCII table (100001 or
33) all numbers 0-9 are represented by a value greater than the number being typed in. For
example the number “17 1s represented in the computer by the value “1100017 which is the
decimal value “497 in a base 10 system. This may sound quite confusing, and memorizing all of
these values would take quite a bit of time, so today vou will learn how to make the Arduine do

this for vou.

Equipment
Arduino Mega

Arduino USB cable

Computer

129

Commands and Description

Command

Description

Serial println (FALUE, FORMAT)

VALUE- Anv alphanumeric value or integer
previously referenced within the program
FORMAT- can be any of the following
formats:

DEC- a base 10 decimal value represented by
0-9

BIN- a base 2 binary value represented by 0 or
1

HEX- a base 16 hexadecimal value
represented by 0-9 and A-F

OCT- a base 8 octal value represented by 0-8

Serial write()

This command works very similar to the
Serial print() command introduced 1n the first
lab. The same values and format syntax in this
lab can also be used for the Serial print()
command from Lab 1. Using the

Seral println() command will make the next
value printed appear on the line below the
previous value rather than to the right of 1t If
nothing is written between the parentheses this
command will simply cause the next value
printed to be on the next line. It acts much like

pressing the “enter” key on a computer.

| This command is useful for printing the value

of a variable as it was assigned. For example, if
x = 1. then the Arduino would store this value
in its ASCII encoded form which is “497 If
vou were to use the Serial print(x) or

Serial println(x) commands, the number 49
would be displayed. When using the

Serial write(x) command the value would be

printed as <17

Seral available{)
If (Serial available() = 0) {
¥

This command 1s used to check the number of
bytes that are available for the Arduino to read.
When used i the “If" command, the serial
monitor will not print a response unless
information 1s sent to 1t. In other words, the
values being printed will not scroll across or
down the serial monitor. They will only appear

when something ig entered on the computer

130

Serial.read()

This command is used to read the serial data
available to the Arduino. It can be used in the
form “x = Serial read()” which will assign any
number or key entered into the serial monitor
to the variable “x”_ If you were to use this
command and press “17 on the computer and
send that information to the Arduine, “x~

would egual “17

You will need to do math within the sketch and while the operators are relatively intuitive, they

are listed below for easy reference. Brackets such as “()" and [] may also be used to better

define the order of operations.

Mathematical Operators:

Operator Description

+ Addition

Example:

Z=XTY z “equals”™ x “plus” v

- Subtraction

Example

Z=X-¥ z “equals™ x “minus” v

* Multiplication

Example

z=x*y z “equals”™ x “titnes” v
Division

Example:

z=x/y z “equals”™ x “divided by ¥

] Brackets

Example:

z=(2+3)*y z “equals™ 2 “plus” 3 (or the value 5) “times™ v

131

A Little about Binary:

As mentioned in the Purpose section vou have been taught to count in a base 10 decimal
system. That means there are 10 digits used to express a given value. These digits are 0-9. Binary
on the other hand uses only two digits to express a given value. These digits are 0 and 1.
Computer and other electronic devices use this base 2 system so values can be expressed by a
state of on or off, high or low, 1 or 0. When a specific input or ouiput is on or high this registers
as a 1, while off 1s 0. In order to translate between binary or any other language and decimal a
simple equation can be used. Each digit in a binary number holds the value of 2® where n
represents the place of the digit. The first digit in binary is counted as 0, the second 1s 1, the third
15 2, and so on. The digit farthest to the right is the LSB or the first digit. Look at the number
0001. There is a 1 in the first digit so 2% =1 5o this is the number one. Now look at the number
1011. To solve this all vou need to do is add up the value of each digit that has a 1 in it. To add

them up count the place of digits starting with 0 and you get the equation:
242 428 =14248=11

Therefore 1011 is the number eleven. Can vou figure out what 1100 157

Procedure
1. Begin by plugging in the Arduino to the computer, and opening up the Arduino sketch
program. Also declare a variable to store the value you wish to enter. This can be entered before

the setup and should hold the initial value of 0. For example “int x =07 could be used.

2. Next enter the command to begin senial communication in the setup portion of the program. In
order to prevent the constant scrolling that occurred in lab one, enter in the “if”* command

presented in the “Commands and Description” section of this lab.

3. Enter 1n a command that will assign any value entered into the serial monttor to the variable
vou chose. This command should be entered after the “if” command but before any other data.
This will make the Arduino assign the entered value to the variable first when going through the

loop porttion of the program.

132

4. Use the “Serial print()”, “Serial. write()”, and “Sertal println()” commands to produce the

following table in the serial monitor:

Figure 13: Binary Translation Using the Serial Monitor

(@ coms =5,

| Send]

You Emtered: O
In Bimasy: 0

You Enteresd: 1
In Binary: 1

You Entersed: 2
In Bimary: 10

You Emtarsd: 3
In Bimary: 11

You Entered: 4
In Bimazy: 100
You Entered: §
In Bimary: 101
You Emtered: &
In Bimary: 110
¥You Enteresd: 7
In Binazy: 111
You Entered: @
In Bimazry: 1000
Tou Intered: 3
In Bimary: 1001

7 Autoscrol Nolneendng w | (9600baud

Remember that the Arduino will store the entered value in its ASCII encoded value. In other
words vou will need to do some math to get the entered value of 1 to actually display as the value
of 1 in binary. The easiest way to do this is begin by entering in the number “07 and see what
number is displayed in the serial monitor. Once you know this value, subtract it from your
variable before printing the number in binary. Without subtracting the appropriate value the

number 1 will be displayed as “1100017 in binary rather than simply displayving “17.

133

3. You will most likely need to try several different ways of using the three “print”, “println™,
and “write” commands to generate the above table correctly. Use the phrase “You Entered: “as a
label for the value entered when displaving it as a base 10 number. Use the phrase “In Binary: ™

to display the translated binary value of the number entered.

6. Once vou can enter in the numbers 0-9 and get their corresponding binary values generated in
the senial monitor exactly as thev appear in figure 7 you have done the lab correctly. You mav

need to load several programs and try this several times to get vour table to match figure 7.

**Challenge: Once vou have gotten the binary translation to display correctly add the
commands to vour sketch to display the number in hexadecimal and in octal. These must

be displayed in the same organized way as in figure 3.

134

Lab 5: Programming a Keypad

Purpose

Now that vou have translated the numbers 0-2 into binary numbers you will learn how to
use this knowledge to interface the Arduino with a kevpad. The kevpad on the Arduino trainer 1s
a very simple ten digit key pad with an enter button. Using the “if " statements already learned
and the binary table produced in the last lab vou will program the Arduino to interpret the
kevpad as an input causing the “B0-B3™ LEDs to illuminate. These four LED will represent the
binary numbers with a “1” being represented by an illuminated LED and a 0" being represented
by an LED which is off. LED “B0” is the least significant bit and LED “B37 is the most
significant. The kevpad numbers correspond with the binary numbers they represent for the most
part. These kevpad numbers are connected to four pins on plug number 3 forming a four bit input
for the Arduino. While the goal of this lab 1s to interpret the signals from the kevpad and
translate them into usable data the purpose of this exorcise 1s to learn how to use multiple and
somewhat complex 1f statements. This lab will focus on the program created rather than the end

result achieved.

Equipment
Arduino Mega

Arduino USB Cable
Computer
Arduino Power Cable (Optional)

Arduino Trainer

135

Commands and Description

The commands presented in the previous labs are used, and no new commands are

necessary to perform the actions required by lab 3.

Procedure

1. This lab contains both imnputs and outputs, and will use the “POWER” plug from the trainer as
well as the module 2 and module 3 plugs. The “POWER” plug is to be connected to the
“POWER” strip of the Arduino the same way it was connected in step 4 of Lab 2. That is the two
empty pins will hang off of the left side of the “POWER" strip with the label facing the outside
edge of the Arduino. The module 2 plug will be inserted into the digital pins 22-36 of the
Arduino with the 27 label facing the outside edge of the Arduino. The module 3 plug will be
inserted into pins 0-7, again with the “37 label facing the outside edge of the Arduino. When

inserted correctly the following pins will be used in the program as etther inputs or outputs:

pinMode Arduino Pin Purpose
INPUT 7 Keypad Bit0
INPUT 6 Keypad Birl
INPUT 5 Keypad Bit2
INPUT 4 Keypad Bit3
OUTPUT 30 LED B0
OUTPUT 32 LED B1
OUTPUT 34 LED B2
OUTPUT 36 LED B3

2. To begin, open up the Sketch program for the Arduine and declare the integers vou will use
for this lab. While declaring integers 1s not necessary, vour program will be much easier to
understand and debug if vour inputs are labeled with a recognizable phrase such as “ledB0™

rather than using the number 30 to declare this pin. Use the “int NAME = FALUE” command

introduced 1n Lab 3 to create easily recognizable names. Example: “int ledB0 = 30;7

136

3. Once vou have names for all of vour led pins and bits, and have set them equal to the pin
values in the above table, declare them as and input or output in the setup portion of the program.
Because vou have already named the pins you can do this by writing “pinMode (ledB0,

OUTPUT)" rather than specifying the pin number.

4. To get the kevpad to display the number entered in binarv a series of “if”" statements must be
formed to recognize which button is being pressed. The numbers 1-9 will correspond with their
binary values determined in Lab 4. For example the number “17 is represented as “00017 in
binary. Therefore, when “17 1s pressed on the keypad, “Kevpad Bit 07 will be high, and all other
kevpad bits will be low. When this is read bv the Arduino, LED B0 should illuminate and all
other LEDs should remain off.

3. You may need to investigate this more before vou contihue programing. To better illustrate
how the keypad corresponds with the lights enter in the following command in the loop section

of the sketch:
if (digitalRead [Bit0} == HIGH) {

digitalWrite(ledB0, HIGH);

The code provided only works 1if you have labeled vour Kevpad BitD as “Bat0™ and your LED B0
as “1ledB0”. You may have to change these integers to something different if you did not name
them the same. Duplicate and enter this code for all bits “Bit)™ to “Bit3™ and all LEDs “ledB0™
to“ledB3™ forming a series of four “if” statements. Finally end the loop portion of the program

with the following code:

if (digitalRead(Bit0) == LOW && digitalRead(Bitl) == LOW && digitalRead(Bit2) == LOW && digitalRead(Bit3) ==

Low) { /f if nothing is pressed
digitalWwrite(ledBa, LOW);
digitalWrite{ledB1, LOW);
digitalWrite(ledB2, LOW);

digitalWwrite(ledB3, LOW);

137

6. The last bit of code entered will turn off the LEDs once a keypad number is released. Once
again vou may need to change the integer names. Verify and upload this sketch to the Arduino
Mega and plug in the connections from step one if vou have not already done so. If this 1s done
correctly yvou will notice pressing a number on the kevpad (1-9) will illuminate the LEDs that

represent that number in binary.

7. But watt! What about 0" and “ENT™? You will notice that when yvou press the “07 button on
the kevpad LEDs B3 and B1 will illuminate giving the binary value of “1010” which 1s the
number “107 in a base ten counting system. This 1s necessary because the LEDs must turn off
when no kevs are being pressed. The keypad was wired up with “07 as the binary value “10107
so that the Arduino could register this key as an input, otherwise the default state of the kevpad
(when no buttons are being pressed) would constantly register as the number “07 if given the
binary value “00007. The “ENT™ button (short for Enter) was given the binary value of 11007

or “127 in a base ten system.

8. In order to displav the value of 07 all of the LEDs should be off. However, for the purpose of
distinguishing this from sumply not hitting a button vour finished sketch should display the value
of “0° by 1lluminating all four LEDs giving the binary value of “11117. Enter may remain the

default binary value.

9. The keypad in the Arduino trainer was designed for simplicity and easy interface with the
Arduino. Most keypads purchased from an electronics supplier are not as simple, and therefore
require much more complicated code. Currently the code vou have in vour sketch only turns on
an output LED when the corresponding input keypad button is pressed. If the kevpad was wired
directly to the LEDs it would perform the same way without the Arduino. Since you are trying to
learn programming rather than circuitry, completion of this lab will not be defined by
observation of the outputs. Instead you must create a program that accounts for all possible
inputs using “if” statements similar to the last one given in step five. In other words you need to
write 11 “1f " statement {one for each button). There will be a total of 12 *if” statements 1f the
prograt 1s done correctly. One for each button that can be pressed and the one given in step five

that will turn off the LEDs when nothing is being pressed.

138

8. Once vou have a total of 12 “if” statements that account for the state of each of the four
kevpad bits (either HIGH or LOW) compile and load your sketch into the Arduino Mega and
retest vour circuit. The LEDs should illuminate the same as before for the when the kevpad
numbers “1-9” are pressed. When “07 is pressed all of the LEDs should illuminate, and when
“ENT™ 1s pressed the binary value 11007 should be displayed by the LEDs. This program will

be useful for interfacing with more complex kevpads in later lab assignments.

139

Lab 6: Reading Analog Inputs

Purpose

Now that vou understand the basics digital mputs and outputs it’s time to learn how to
use analog inputs. Digital inputs on the Arduino Mega consist of esther a 0 V or 5 V signal
representing either on or off. Analog inputs on the other hand can take any value between 0 V
and 5V. The Arduino does this by converting a voltage level to a digital number that is
determined by a 10 bit analog to digital (A/D) converter. In the previous labs dealing with binary
vou programed a kevpad based on a four bit system with a maximum number being represented
by “11117 or the value of 15. The A/D converter on the Arduino Mega can hold any value from
0-1023 (0000000000-1111111111 in binary). This means that the voltage level on an analog pin
can be represented by a total of 1024 different values when the value of 0 18 included. While the
voltage value is not exact this provides a very good approximation of the actual analog value. In
this lab vou will use the potentiometer on the Arduino trainer to vary the voltage on one of the
analog inputs and display the measured value in the serial monitor. Interpreting analog signals 1s

highly important to interfacing the Arduino with sensors and other devices.

Equipment
Arduino Mega

Arduino USB Cable
Computer

Arduino Tramner

140

Comimands and Description

Command

Description

analogRead(#)

float NAME = VALUE

This command reads the voltage level on an
analog pin and converts it to a number from 0-
1023. The “#7 15 the number of the analog pin
to be read. This command 1s the analog version
of digitalRead(#) and can be used similarly.
For example “analogRead(7)” will read the

value from analog pin 7.

| This command is the same thing as the “int

NAME = VALUE™ command except 1t allows
the values to be fractional numbers. In other
words, this command 1s vsed when a decimal 1s
needed. This 1s useful when the math done
within a sketch will not yield whole numbers.
A float has 6-7 digits of precision and can
account for much larger or smaller numbers

than the integer command.

What is Resolution?

Different A'D converters have something called resolution. The resolution is what

determines the accuracy of the A/D converter. An analog signal is a signal that can take any

value, but the Arduino uses binary for calculations so 1t cannot give a truly exact value. Think of

12 in spool of string. You can unroll the spool of string and cut of any amount between 0-12in.

When you measure the string with a ruler you will not actually know the exact length of string,

however. You can come close, but vou are limited by the number of line divisions on the ruler. If

the string does not fall exactly on one of the lines yvou simply round up or down to approxumate

the length. If there are 8 divisions in an inch on the ruler, the resolution of the ruler 15 1/8 in or

0.125 1.

141

The resolution of an A/D works in the same way. The Arduino A/D converter can
measure 0-5V and can represent this value with 1024 numbers. This can be calculated by
dividing the maximum voltage that can be measured by the number of possible binary values. In
this case vou divide 5 V by 1024 gives the value 0.0048828 V. The resolution is therefore about
4.9 mV per bit. The exact value will not be determined by the Arduino will tell vou a value with

an accuracy of 4.9 mV

A New Trick with “if” Statements:

By now “if " statements have been used a wide variety of ways to monitor the current
state of variables and digital pins on the Arduino within the previous sketches. All of the
comparison and Boolean commands shown in Lab 3 work for analog inputs excluding the ones
where “HIGH™ or “LOW™ are used, as these values are constants used specifically for digital
inputs. To add to the already massive list of possible “if”" statements there 15 one more that needs
to be introduced for successful completion of this sketch. The “if " statement 1s used to monitor a
change 1n state on an input, output, or a variable. In Lab 5 pressing a kevpad button illuminated
the corresponding LEDs to display this number in binary. If the same statements were to be used
to “Serial. print()” these values to the serial monitor the values would continue to scroll until the
button 1s released. It would be much more practical to monitor a change in state on these inputs
to print the value only once rather than continuously have them scroll down the screen. You will
encounter a similar problem in this lab when vou print the values from the analog pin. The
following code can be used to monitor a change in state rather than simply responding to the
state of an input. For the purpose of this example digital pin 7 will be considered the input and
has a push button connected to it. The code presented 1s a simplified version of the

“StateChangeDetection™ example in the digital examples provided with the Arduino software.

int State = 0; J/ used to monitor the current state of the button
int Last5tate = 0; /{ used to moniter the previous state of the button
void setup(} {

142

pinMaods(7, INPUT); /f digital gin 7 is the input

Serial begin{9600);

void leop() {
State = digitalRead(7); // this will remain "LOW™ or "0" until the button is pressed

if {State |= LastState) { // once the button is pressed "State” will be "HIGH™ but "LastState” will be "LOW"

showing a change
if {State == HIGH){ //if the state went from "LOW" to "HIGH" the button has been pressed
Serial.println{"Butten State Changed High"); // "Button State Changed High” will be printed cnce

State = LastState; /) sets the new state of pin 7 to the old state to continue to monitor change

else { /{ otherwisze if the state goes from high to low (button was relegsed)
Serial.printin("Button State Changed Low"); /¢ "Button State Changed Low™ will be printed cnce

State = LastState; // sets the new state of pin 7 to the old state to continue to monitor changs

Often ties, there is no response programmed for when the button 1s released and that portion of

the code can be omitted.

Procedure
1. Begin by opening the Arduino sketch program and starting a new sketch, or example vou
prefer to begin from. Choose and name three variables. You will need two of these to monitor

the analog input. One will be used for the current state of the analog input and one will be used

143

for the previous state. You will also need one of the variables to be a “float™ that will allow for
the voltage calculation. For the purpose of providing a better explanation in future steps the
current state of the analog pin will be the variable “Analoglnput”™, the previous state will be the
variable “AnalogChange™ and the variable used for voltage calculation will simply be “Voltage™.
You may choose anv name yvou prefer. You may also wish to name the potentiometer pin as a
variable, rather than referencing the pin by its board number. “PotPin™ 1s a pretty good name for

that.

2. You will be using the “POWER” plug as well as the module 3 plug labeled “5". When vou are
ready to test vour sketch the module 5 plug will connect to pins “A0-A7™ with the label facing

the outer edge of the Arduino Mega. This connects pin “A7" to the potentiometer “PotPin” of the
Arduino trainer (the shiny metal knob). In the setup of your program begin serial communication

and set pin “A7T as an input.

3. It may be easier to write this sketch in two steps. First by programming the appropriate serial
response and math, then by adjusting the program to use state change detection. The first thing
that should occur in the loop portion of the program 1s the “Analoglnput™ should be read from

7

the PotPin. Next this value should be multiplied by “0.00488287 (the resolution) converting the

value to “Voltage™ giving the voltage measurement on this pin.

4_Next, both of these values need to be sent to the serial monitor in and easy to read and

understandable way. Rather than just displaying the raw values of these variables, use labels to
properly demonstrate what i1s being measured. The following figure is presented to show what
should be read in the serial monitor. The labels may be called anything vou prefer as long as it

makes the two variables easy to distinguish from each other.

144

Figure 14: Analog Input and Voltage

& coms = B8 =

Analeg Imput = 1023
Veltage = §.00
Analog Imput = 8§22
Voltage = 1.55

g Input = &

Veltage = 0,02
Rnalog Input = &57
Velrags = 3.40
Analog Imput = 1023
Voltage = §.00
Analog Impur = 779
Veltags = 3,80
Analog Input = 0
Veltage = 0.00
Analog Imput = 1023
Voltags = E.00

Analog Input = 63§
Veltage = 3.11
Analog Imput = 3895
Veltage = 1.53

7] Autoscroll Molneendng - [9600baud

5. You may wish to upload vour sketch at this point and test to make sure the values are being
printed correctly, and the “Voltage™ value 1s being calculated correctly. Use a calculator to
double check. The values should print continuously at this point because state change detection

has not vet been added.

6. Next yvou will prevent the constant scrolling of values and just print a new value when the
knob has been twisted and the voltage 1s changed. This is done by producing an “if” statement
that compares the current “Analoglnput”™ value to the previous “AnalogChange™ value. If vou did
test the sketch in step 5 vou should have noticed slight fluctuations in the “Analoglnput™ value
even when the knob was not touched. This i1s caused by very slight voltage instability, and can be
caused by many different factors. Your program will need to compensate for this change, and

should not constantly print out values because of this instability. For example the statement

145

“ifl Analoglhput > AnalogChange) {* would not solve this 1ssue. You must add a second
qualifier to this statement that executes the code between the brackets only when the knob has
been turned and the value actually changes. A small bit of math will solve this issue. Try using a
qualifying statement that only prints the vale if the change 1s greater than or less than the

previous value by an amount not affected by the voltage instability.

7. Once vou have the code to only print a change in value, there is one last thing that needs to be
corrected. A “delav()” must be inserted in the code to pause the program for a second or two so
the serial monitor only displavs the new changed value of the “AnalogInput™. This delay should
be activated by a significant change in the analog voltage. When the delay 1s in the correct place
the serial monitor will only display one value everv second or two. If this portion of the code 1s
not inserted correctly and the voltage is increased from 2 V to 3V, the serial monitor will print
every value of voltage between these two values, or 1t will print the value of the voltage before
the knob 1s done being twisted. Preventing this from happening makes the values much easier to

read.

8. Once the sketch has been completed upload 1t to the Arduino and test to make sure all
requirements function as they should. Once you have observed the proper output in vour serial

motnitor vou have completed the lab correctly.

146

Lab 7: Dimming a Light Using the Keypad

Purpose

In the last lab vou discovered how to interpret analog signals on the Arduino. In this lab
vou will learn how to use analog outputs to control the lighting level of a LED. The Arduino
does this using pulse width modulation (PWM). The analog inputs cannot be used as analog
outputs. Instead, the Arduino has several digital pins labeled with “PWM™. Any of these pins can
be used to generate a vanable voltage. To do this vou will modify Lab 5 to vary the voltage to
the ultra-bright LEDs on the Arduino trainer. Each number pressed will correspond with a

different voltage and therefore a different observed brightness.

Equipment
Arduino Mega

Arduine USB Cable
Computer
Arduino Power Cable (Optional)

Arduino Trainer

Commands and Description

Command Description

analogWrite(#, Value) | This sets the voltage level on one of the digital
PWM pins. The “#” 15 the number of the
digital PWM pin to be written to. The “Value™
must be set to a number between 0 and 235
where 0 15 off all the time and 235 1s full on. A
number between these two values will set a

voltage between O Vand 5 V.

147

Pulse Width Modulation (PWNM):

PWM 1s a wav of regulating voltage by rapidly switching an output on and off. For the
Arduino the modulation occurs at about 490 Hz. Hz stands for Hertz which 1s a measurement of
on and off cycles per second. In other words 1 Hz 1z 1 cycle per second, or the signal 1s off for
0.3 seconds and on for 0.5 seconds totaling 1 second. When a signal is turned on and off very
rapidly the voltage “felt” by the circuit or electrical device 1s the average voltage produced over a
period of time. While this may sound complicated it can be easily understood by using
percentages. If a 5 V signal 1s turned on 100% of the time the voltage “felt” by the device will be
5 V. Similarly if the voltage 1s turned on 50% of the time and off the other 50%, the voltage will
be 2.5 V. In this lab the voltage will be observed through the brightness of the LEDs. The on and
off switching happens so fast that it cannot be seen, and appears to be dimmed when the on pulse

1s reduced.

A good example of how this occurs 1s the operation of a television. The image viewed is
not a constant stream of light, but rather a function of lights changing very rapidly to appear as a
continuous signal. Most US televisions have a refresh rate of about 60 Hz. When watching the
TV vou do not notice it flickering 60 times a second, but rather the image produced by a change

over a short period of time.

The modulation uses a square wave and the “width™ referred to 15 the width of the on and
off pulses i milliseconds. For a frequency of 490 Hz the signal refreshes about every 2
milliseconds, which 1s known as the period. The period of a frequency is the amount of time it
takes to complete one cyele from on to off again. The period of a 60 Hz signal 1s given by the

equation Frequency = 1/Pertod. The figure below illustrates this idea of Pulse Width Modulation.

148

Figure 15: PWM with Square Waves

2 milliseconds = 3V =0n 100%

1 milliseconds = 2.3V = 0On 30%
N |

—

0.5 milliseconds = 1.25V =0n 25%

1.5 milliseconds = 3.75V =0n 73%

— ;
| | | 1
0.3

1.0 15 20

Time in Milliseconds

Procedure

1. Begin by connecting the Arduino to the computer via the USB cable and open the sketch for
Lab 5. You will need to add two more integers to the sketch to control the ultra-bright LEDs.
These LEDs will be connected to pins 6 and 5. You will also need to change the pin values for

the keypad buttons. If vou used the same naming convention suggested in Lab 5 these will be

149

called “Bit0, Bitl, Bit2 and Bit3”. These will be connected to digital pins 14, 15, 16, 17 in order
from least to greatest. This lab vou will use the module 4 plug and the module 3 plug. The
module 2 plug is optional. If vou choose to use the module 2 plug it will be connected the same
way as it was connected in Lab 5. That is the plug will be connected to digital pins 22-36 with

the “27 label facing outward.

2. You will need to modify lab 5 by adding two “analogWrite™ commands to each if statement.
That 1s two commands for each button pressed. You can leave the “digital Write™ commands for
the LEDs if vou would like to also connect the module 2 plug to better observe the circuit.
Otherwise all of the “digital Write™ commands can be deleted if vou choose not to use the module

2 plug.

3. The kevpad has 10 numbered buttons and an enter button which will be used to turn off the
Led’s. The maximum value for “analogWrite™ 1s 235 for a full 5 V signal Each number pressed
should increase the voltage on the LEDs with “17 being the least bright and “0” being the
brightest (0 will be used as 10 in this lab). Each number should increase the voltage an equal
amount in 10 total steps. Therefore pressing 1 will write the value of 25 5, and 0 will write the

value of 235, Pressing “ENT™ will write the value of 0 to turn off the LEDs.

4. Once vou have the appropriate commands in vour sketch and it has been modified to varv the
voltage from the PWM digital pins, vou can upload your sketch to the Arduino and connect the
module 3 and module 4 plugs. Module 4 plug will be connected from digital pins 0-7 with the
label “47 facing the outside edge of the Arduino. Module 3 plug will be connected to digital pins

14-21 with the label “37 also facing outward.

5. To test your sketch press the buttons in order from 1-9 and observe to see if the LEDs become
brighter each number pressed. This may become less noticeable with the higher numbers. The
enter button should turn the LEDs off and the 0 button should turn the LEDs full on. If this

works as expected vou have completed the lab correctly.

150

Lab 8: Maintaining Lighting Levels Using a Photoresistor

Purposze

Now that you can use the Arduino with both analog inputs and outputs you will be using
both of them 111 a sketch. In the previous lab vou dimmed a light using the kevpad buttons;
however, most dimmers yvou see in houses and lighting devices use a knob (potentiometer) to
control the amount of light rather than a kevpad. Another common use for dimming lights is to
maintain a certain brightness level in an area by supplementing artificial light when natural light
begins to disappear. Windows and skylights allow for sunlight to illuminate a room without the
need for electricity, but the sun eventually sets, and i1t would be much easier if the lights just
came on without vou having to move to the nearest light controls to gradually make them
brighter as this happens. In this lab vou will be programming the Arduino to control the same
LEDs used in the last lab. The “07 and “ENT" buttons will be used to select one of two different
lighting modes. The first lighting mode will make the LEDs become brighter as the room
becomes darker through the use of a Photo Resistor. A photo resistor 15 a device that has a
changing resistance that varies in the presence of light. The second lighting mode will allow for
manual adjustment of the LEDs through use of a potentiometer. This setup allows for both
manual and automated lights in the home or work environment. You will also need to program a
way to make vour light sensor more or less sensitive based on the desired lighting levels for the

environment.

Equipment
Arduino Mega

Arduino USB Cable
Computer
Arduino Power Cable (Optional)

Arduino Tramner

151

Light Source

Commands and Description

Command

Description

map (Intiger, fromLow, fromHigh, toLow,
toHigh)

JfromLow, fromHigh, toLow, toHigh = anv

number used for calculation

The map() function can be used to change the
value of a variable or integer to another more
appropriate value. Because the Arduino reads
analog value from 0 to 1023 these are often
used as the fromLlow (0) and fromHigh (1023)
numbers. Since analog outputs are 0 to 255
these are often used as the falow (0) and

toHigh (255). Examples are below.

constrain{ Falue, Min, Max)

Value = any integer, variable, or other data
type.

Min = the minimum value

Meax = the maximum value

This function “constrains™ a value to a
particular set of numbers. In other words the
Min value specified 1s the lowest number the
value can take. Even if the sketch tells it to go
lower the number will stay the value specified

by Min. Similarly Max provides an upper limnit.

More on the Introduced Commands:

In the last sketch the math to “analogWrite()" the value of the LEDs was performed

manually. The “map()" function allows the Arduino to calculate these values for vou. For

example, if the integer “x™ had a value set by an analog input (0-1,023), and the expression was

“x =map(x, 0, 1,023, 0, 255);” the integer x would take the value of 255 when the analog input

tells it to be 1023, In other words:

225

xf:'na.i = Xinirial X 1.023

Similarly, if X was to take on the value 560 by an analog input, it would be set to #139. It

15 always set to the nearest whole number. If this still does not make sense look at the expression

152

“x=map(x, 0. 100, 0, 1.000);” assuming x iz an integer. In this case 1f x = 70, then x 1s set to the

10

value of 700. If x = 65 then x iz set to the value of 650 by the equation X0 = Ximiriar X oo

[t will be necessary to understand how the photo resistor in the trainer works 1n order to
perform this lab. This resistor responds to a change in light by varving its resistance. The brighter
it 15 the less resistance the photo resistor has, and conversely the darker 1t 1s, the more resistance
the photo resistor has. This particular photo resistor has an 8K £ resistance in the light and a
1M @ resistance in the dark. The particular photo sensor in the trainer may go bevond these
ratings in extreme darkness or extreme light, however these are the ratings for general operation.
This photo resistor 1s in a voltage divider configuration with a 100k © resistor that 1s connected

to the output that goes into the Arduino. The equation for the output voltage 1s:

100,000
GAULIES

V..,..= P —
out (R + 100,000)

Where “R” 1s the resistance of the photo resistor and "V;,," 1s the 5V input from the
Ardumno. If you use the 8K O rated value of the photo resistor (exposed to light) and solve the
equation vou get the output voltage of #4.63 V. Similarly, if you solve the equation for the 1M
Q) resistance (in the dark) you get an output voltage of ®0.45V . In other words, more light =

lower resistance = higher voltage. This is all a function of Ohm’s Law.

The “constrain()" command 1z useful when limiting sensors mputs or integers to a
particular set of values. In this lab vou will need to figure out how to set various sensitivity levels
for the automated lighting. This means you will need to constrain an integer to specific values to
malke 1t more or less sensitive based on preference. Sav vou want to make the LEDs begin to
come on when only a little amount of sunlight is lost in the room. In this case yvou would want to
use the “map ()7 command introduced in this section to respond to a somewhat small set of
values read from the analog input. Assume you discover that the analog input reads 700 when the
room 18 only somewhat dark, and this 1z when vou want the lights to come full on. Also assume
the variable x 1s assigned a value by the photo sensor through the “analogRead()™ command. In
this case vou would need to use the command “x = map(x_ 700, 1,023, 255, 0);”. This would
make the device more sensitive to lighting levels in the specified range (700 to 1,025). In order

to prevent an error where the analog input goes “out of bounds™ so to speak, yvou would need to

153

constrain the analog input from the photo sensor. In this case vou would need to insert
“PhotoResistor = constrain(PhotoResistor, 700, 1,023);”. This prevents a number less than 700

from being read. More information will be in the procedure of this lab.

**Pro-Tip: The sketches are only going to get longer and longer. Use copy and paste as
much as vou can to make these things take less time. Do this without using the right-click
on the mouse or by pressing the keys “ctrl+c” to copy and “ctrl+v” to paste; “ctrl+x” is the

cut command. If you have the code in a previous lab, copy and paste to save time.

Procedure

1. Begin by opening up a new sketch in the Arduino program or by opening up a previous sketch
vou wish to modify. The lighting levels in every room differ so you will need to discover what
analog input values you will read for the particular room vou are in. Lab 6 can allow vou to do
this without writing any code. In a separate sketch window, open up Lab 6 and modify the
program to change the Analog input from “A7” for the potentiometer to “A6™ for the photo
resistor. Make sure you change all values of “A7" to “A6” throughout the whole sketch or vour

readings will not be correct.

2. Connect the Arduino to the computer and upload your modified Lab 6. Next connect the
power plug from the trainer labeled “POWER™ to the appropriate pins on the Arduino with the
label facing outward. Also connect the module 5 plug labeled “57 to pins A0-A7 with the label
facing outward. Open up the serial monitor and observe the input. If lighting 1s not sufficient in
the room vou are in, vou may wish to use a flashlight or other direct lighting source to shine
directly on the top of the Arduino trainer. Sufficient light should produce a voltage value of
greater than 4 25V If the maximum value in direct light is not 4 25V or greater, you will need a
better lighting source. Record the highest voltage produced in direct light and the analog input

value displaved in the serial monitor.

3. Next turn off the lights in the room for a moment and observe the voltage value and analog
input value of the sensor in a dark room. If the lights cannot be turned off simply cup vour hand
around the photo resistor located above the potentiometer knob and to the left of LEDs. It’s the

squiggly looking thing. Once the values in the serial monitor have become somewhat constant,

154

record these values and turn the lights back on or remove your hand. If multiple people are
sharing the same tramner feel free to share your measurements with others, as the values should

not differ so long as the trainer stavs in the same lighting source.

4. Now that vou have vour light and dark measurements close lab 6. Begin in the new sketch by
creating two integers to monitor the values of the photo sensor and one for the potentiometer.
Two will be used to directly record analog measurements, and the other one will be used to map
the values for both modes of operation. You may wish to name these integers “PhotoResistor”,
“PotValue™, and “x”. Add the “Mode™ integer to select between manual and automated lights
with a default value of 0. You can also create integers to monitor the digital and analog inputs
and outputs used in this lab to make vour program easier to read. This is not necessary if you feel
confident that yvou can understand the program simply by referencing the pin numbers within the
sketch. If you do wish to name these pins you can use the following for easy reference and

naming convention:

Pin Number Integer Name pinMode
14 Bit0 INPUT
15 Bitl INPUT
16 But2 INPUT
17 Bit3 INPUT
Ad PhotoPin INPUT
AT PotPin INPUT
6 LED1 OUTPUT
3 LED2 OUTPUT

5. In the setup of vour programn be sure to declare all of the appropriate inputs and outputs listed
in step 4. If vou want a little extra information vou can also begin serial monitoring to keep track
of the analog values within your sketch. Begin the loop part of vour program by mserting a
control statement to set the mode based on weather “0” or “ENT™ has been pressed. Remember

the binary value of 0 15 1010 and ENT is 1100. You can copy these from any previous keypad

155

sketch so long as the input pins match this one. Make the 0 button set manual controls and the

ENT button set automatic controls using a conditional statement.

6. Write another statement for manual controls that reads the analog value of the potentiometer
and set this to the variable you chose to store the value. This value must also be assigned to the
main control variable (suggested to be “x™). Remember that “x™ will be used to set the brightness
of the LEDs, and that the “analogWrite™ function uses the values 0-255. This is where the map

command comes in handy.

7. You may wish to test vour code by this pomnt to verify you have used the map function
correctly. The power and module 3 plugs will need to be connected the same as in step 2. The
module 3 plug will heed to be connected from digital pins 14-21 with the label facing the outside
edge of the Arduino, and the module 4 plug will be connected to digital pins 0-7 with the same
orientation. If it does not work correctly read the “More Helpful Information™ section under the

commands and pay attention to the example code and the way 1t 15 written.

§. Next create another condition statement for mode 2 or automatic controls. Create a similar
section of code to assign values read from the analog photoresistor pin to the variable chosen for
these values. When this mode 1s activated the brightness of the LEDs (k™) should be set from
the photo resistor. In order for the photo resistor to function properly for the room vou are in vou
must constrain them to the values discovered earlier for a light room and a dark room. Map these
constrained values to the analog output for the LEDs. Make sure vou invert the analog output

values so that the LEDs come on when it is dark, rather than when 1t 1s light.

9. Once vou believe the code 1s correct, upload it to the Arduino device and plug in the
appropriate connections from the Arduino trainer the same as vou did before; listed 1n steps six
and two. If everything works correctly the LEDs should be off in the light and on in the dark.
You should be able to switch between manual and automatic controls using the 0 and ENT

buttons, and the potentiometer should vary the LEDs brightness.

156

Lab 9: Interfacing With an L.CD Screen

Purpose

Up until now you have been observing any readout on the Arduino serial monitor on the
computer. Often times 1t 1s much more practical to have a portable electronic device that allows
vou to observe various values without having to lug around a laptop or other device. In this lab
vou will use library files (“.h™ files) for the first time to interface with an LCD screen thus
making the Arduino a portable device. Library files are files that vou can include in sketches that
allow vou to program more complicated devices and tasks with ease. Rather than writing the
sketch to display every number and letter with an LCD vou simply load the library file and use
commands specific to that library to “print™ words to the screen much in the same way the
“Sertal print” command works. The Arduino loads several libraries to simplify the sketches vou
are wrting with Arduino specific commands such as “digitalWrite™ and “delav()”. These would
otherwise take a significant amount of somewhat complicated C code. You will learn the various
LCD librarv specific commands, and build a program that can be added onto for several useful

pieces of technology.

Equipment
Arduino Mega

Arduino USB Cable
Computer
Arduino Trainer IT

Arduino 9V Power Plug (optional)

157

Comimands and Description

Command

Description

#include < NAME =

LiquidCrystal led(%, %, #, #, #. #)

This command includes librarv files in the
programming of a sketch. In this lab vou will
include the “LiquidCrvstal h™ library. This
command is declared before the setup of the

program. Begin this command with “&".

| This defines how the pins for the LCD screen

are connected. Using the recommended
connections for this lab the command will be
“LiquidCrystal led(31, 49, 47, 45, 43, 41).".
This command 1s declared before the setup of

the program.

led begin(%, £)

This command works the same way as

“Serial begin()”. It initializes communication
between the Arduine and the LCD screen. The
first # defines the number of characters in a
row, and the second # defines the number of
rows on the LCD. The LCD for the trainer is
24 x 2 (24, 2). This command 1s declared in the

setup of the program.

led print()

This command works the same as the

“Serial print()” command only 1t prints to the
LCD screen and it 1s not ASCII encoded. Thus
means that “led print(1)” will actually show 1
on the LCD screen rather than 49 Be sure to
use quotation marks to print words otherwise

the Arduino will assume the word 15 a variable.

led clear()

This command clears the LCD screen. Be sure

to include the brackets.

158

led setCursor(®, #) This command specifies where to set the cursor

led home() on the LCD screen. The coordinates (0,0) will
print characters to the default top left of the
screen. The command “lcd home()” can also be
used for this location. The coordinates (23,1)

prints characters to the bottom right of the

screen.
led autoscroll() These two commands turn on and off the auto
led noAutoscroll() scroll function, which prints each new

command one position to the left of the cursor,
and scrolls all other previously printed

commands to the left.

Procedure

1. There are quite a few comtnands 1n this lab, and it is important to understand all of them, and
how they affect the display of the LCD to accurately use 1t in future labs. Begin by opening up a
sketch and putting in the first two commands introduced in this lab. The module 6 plug will be
inserted from the “GND™ or ground pin to digital pin 41 of the Arduino Mega with the plastic

portion of the plug hanging over the outside edge of the Arduino.

2_ In the setup portion of the sketch declare digital pin 53 as an output and write 1t HIGH to
supply power to the LCD. Also include a 50 millisecond delay and “lcd begin{24.2)” in that
order. If pin 53 1s not high there will be no display. Without a proper delav after writing 1t HIGH
the LCD will not display the proper characters. You will have to do this for all future labs that
use the LCD screen.

3. In the loop portion of vour sketch you will simulate a conversation between the top and
bottom lines of the display. This will use all of the commands introduced and show vou how they

work with the display. After each line “speaks™ be sure to add a delay of 2 seconds so there 1z a

159

brief pause between words giving vou and vour instructor a chance to read what 1t says. First

print the word “Hev™ in the sketch. You will see this appear in the top left of the screen.

4. Next set the cursor to the bottom right hand corner of the screen and print the word “Hi™.
Remember to set the cursor so the letter “17 1s in the comer and not the “H™. After a small delay

clear the screen and set the cursor in the top left hand corner again to say “What's up?”

5. Turn on the auto scroll function and set the cursor to the bottom right again. This function
prints 1 segment to the left of where you set the cursor, so remember to compensate for that. If
done correctly the sentence will end in the bottom right. To demonstrate the scroll function, print

“Get off my LCD!™ with each word separated by a 0.3 second delay.

6_ Clear the screen again, turn off auto scroll and set the cursor to the top left again. Print the
sentence ~You should relax!™ with a 0.3 second delay between each word. Clear the screen one
more time and yvou should be done. Connect the module 6 plug to the Arduino in the second
trainer from the pin GND or ground to pin 41 with the wire hanging over the outside edge. Next
connect the USB cable through the battery door to provide power, or connect the 9V battery plug
to the power socket. If everything was performed correctly the conversation should look like this

as 1t plays out:

Figure 16: The Conversation

Hlel|y
Hle|y
Hi
Wil lhla|t]| (s ulpl?
el
Gle|t o |f|f

160

161

Lab 10: Interfacing With a Matrix Keypad

Purpose

In this lab vou will learn how to interface with the matrix kevpad on the second tramer. A
matrix kevpad 1s a type of kevpad that closes the circuit between two pins when a bution is
pressed rather than writing a pin HIGH as with the previous keypad. The kevpad library will be
included in this sketch, which sends pulses through the input pins and reads which output pins go
HIGH to determine which kev has been pressed. You will also learn about the data type “char”
or character. This data type allows a number, letter, or syimbol to be used in conditional
statement and commands. You will also learn the byte data type. A byvte 15 § binary bits that are
used to store data. ASCII uses one byte of data for each character. Using the new data types and
a few other librarv specific keypad commands vou will be able to begin more complicated

programming using the keyvpad, rather than a serial monitor, to control what prints.

Equipment
Arduino Mega

Arduino USB Cable
Computer

Arduino Trainer IT

162

Comimands and Description

Command

Description

char NAME = # or "CHARICTER’

char NAME[#] ={ " CHARICTER"}
char NAME[=][#] = {
{"CHARICTER}
{"CHARICTER'}

}

The first command allows for one character to
be specified by a particular name, much like
integer. The ASCII number must be used to
specify the character, or a single character can
be placed between two apostrophes such as
‘A’ The second command 1s used for a single
line of characters where the number specifies
the number of characters. The third specifies an
array of characters where the first is the
number of rows, and the second 1s the number

of columns

byte

8§ bits of data used to store a single ASCII

character in its binary form.

key

A library specific command used in the

program to refer to a specific key

NAME. getKev()

A library specific command that is a variation
of the C command “getcar()”. The name 1s
whatever vou choose to name the kevpad, and
signifies that the command will get the key
from that device. The © getKey()” command
reads the character specified for that key and
“gets” the one vou press to use i yvour

program.

Keypad

This command 1s used to declare the name of
the kevpad for use with the * getKev()™

command.

163

makeKeymap(Charicters), RowPins, The Charicrers are the characters specified for

ColumnPins, CharicterRows, the kevpad array. The RowPins in this lab will

CharicterColummns) be 30, 32, 34, 36, and the ColumnPins will be
3840, 42, 44, 46, 48, 50, 52. The
CharicterRows and CharicterColums are the
number of rows and columns in the character

array for the keypad.

More on Keypad.h and char

Kevpad h 15 not a preloaded library file. In order to get the file vou must download it

from http://arduino.ce/playground/Code/Keypad#Download. Once yvou download the file vou

must extract the file and move it to the proper location before opening the Arduino sketch
program. Extract the file the same way you extracted the Arduino software. Then copy the file
into the “libraries™ folder within the “arduino-1.0° folder. Once this is done vou can open the
sketch program and use this library with the #include=> command, and vou will have access to

several new examples.

This library file uses characters 1 unique wayvs. For the purpose of this sketch vou will be
specifying a keypad arrav that uses a single character for each key. First, here are some examples

of how to use char. Note the word “Character” is what I have chosen to use as a name.

164

Command Entered Qutput on the LCD

char Character ="'A';
led print{Character); A

char Character[3] = {'A", 'B', 'C'};

led print{Character[1]); B
led print{Character[2]); C
led print{Character[0]);

char Character[2][3] = {

{AVTUB

{2.73,'ChL

¥

led print{Character[0][0]); A
led print{Character[0][2]); B
led print{Character[1][2]): C

The keypad on the Arduino trainer 1s a 4x8 kevpad. In other words there are four columns
and eight rows in the internal circuitry. You will need to create a character array similar to the
final example for your keypad to display each number or mathematical function pressed. Later
vou will use these characters to perform vanious math functions. The character array for the

kevpad looks like this:
e R =0
{T.X6,5.4, 0 "},
(C3 2T AN,

Each kev can only hold one character, so functions such as “Sin™ must be represented by

a single letter “5”. Some of the characters have been omitted and will be added in later labs. The

165

table below shows how each letter corresponds with the button pressed. Functions with longer

names have parenthesis around the brackets used to display those characters.

Cal(c) + (S)in
{L)ight 1 2 3 - (Cos
| {O)hm | 4 5 G X (T)an
{D)ist. 7 8 9 / ﬂ
(A)lpha | Clear/(N)o 0 Enter/Yes 5{Q)RT

Procedure

1. Open up vour previous sketch and copy all the code used to initiate the LCD screen. These are
the “#include==" function, the LCD pins, the digital output used to power the LCD and the

“led begin()” commands. Also include the new kevpad librarv “Keypad.h™

2. Before the setup of your program include two constant bytes. Declare one for “Rows™ and one
for “Columns™ These will be used to create the character array for the 4x8 keypad. Make the
character array mentioned in the Commands and Descripfion section. Name the character

something easily recognizable like “keys™

3. Next vou will need a number array to specify the pins used by the kevpad. This will be an
array of bytes and is entered “byte rowPins[Rows] = {30, 32, 34, 56};”. These pins are also
mentioned in the Commands and Description section. The name “Rows™ in the brackets specifies
that the number of rows in the kevpad is 4 from vour previously declared byte. You will also

need to add one for “columnPins™.

4. To map the appropriate Arduino pins to the character array vou created name your keypad
using the Keypad declaration and specify the row and column pins. If vou used all suggested
variable names the code should appear as “Kevpad kevpad = Kevpad(makeKevmap(keys),
rowPins, columnPins, Rows, Columns);”. If any of this 1s confusing you may wish to consult one
of the examples that came with the Kevpad to see how your code should appear. One good

example is “CustomKeypad™ that 15 used to create a 4x4 keypad.

166

5. Now within the loop of your program yvou will need to assign one more character to the key
pressed vsing the “getKey()” function mtroduced. To venify that all of your declarations and
arravs have been created correctly, begin serial communication and print the values of the keys
to the serial monitor with a short delay to prevent the monitor from scrolling too quickly.
Connect the module 7 plug on the kevpad to digital pins 52-30 with the wire strip hanging over

the outside edge of the Arduino. Venify that each printed character matches the key pressed.

6. Once wou have got the proper kevs printing, vou will need to print these to the LCD screen to
properly display them. The character “c¢” for Cal(c)ulator will later be used to initialize a
calculator function. Using the knowledge gained in the last lab, create a conditional statement
that tests to see if the kev received is “c¢”. If this character 1s recetved, clear the LCD screen to
get rid of anv unwanted characters, print the word “Calculator™ in the top left corner, and clear it
again after 2 seconds. The character “N™ is used to represent the “Clear/(IN)o™ button. Make this

button simply clear the LCD.

. Use conditional statements to print all numbers to the screen. Try using the Boolean operator
“ or to do this in a single statement. In separate statements vou will need to print the
mathematical operators “+, -, /, ", = and “X" used for multiplication, as these will be used for

<

more complex functions in the future. Also, print the ©.” for using decimal numbers in a separate

statement.

8. For the tragicomic functions “S™ for sin, “C™ for cosine and “T" for tangent, you will need to

print “sini, cos(, tan(”. Rather than simply displaying the character.

9. Once vou believe vour code 18 correct, connect the module 6 plug in the second trainer to the
GND-41 digital pins as vou did in the previous lab. Also connect the kevpad module 7 plug to
digital pins 52-30 as you did in step 3. These two should overlap slightly. Connect the USB cable
through the battery door of the second trainer and close the box. If everything has been
performed correctly, vou should be able to print any mathematical operation or number. The
clear button should clear the screen, and pressing the Cale button should display the word

Calculator.

167

Lab 11: Making a Calculator

Purpose

The purpose of this lab is to make a basic calculator. You will modify vour last lab to
perform calculations using arravs. This calculator will perform all the basic math functions
including sin, tan, and cos. You will also learn the long data form which allows for much larger
numbers to be used in calculations. This will require vou to use many variable types for
calculations and vou will need to create several new conditional statements to successfully
complete the lab. This calculator will have some limitations so vou can program it in the allotted
class time. Creating a fully functional calculator would take a lot more complicated code, and

thus a lot more time.

Egquipment
Arduino Mega

Arduino USB Cable
Computer
Arduino Power Cable (Optional)

Arduino Trainer

168

Comimands and Description

Command

Description

sin(VARIABLE)

The tragicomic function sin. The FARI4ABLE
used for calculation must be written between

parentheses. Results are expressed as radians.

cos{ VARIABLE)

The tragicomic function cosine. The
VARIABLE used for calculation must be
written between parentheses. Results are

expressed as radians.

tan(VARIABLE)

long NAME

The tragicomic function tan. The FVARIABLE
used for calculation must be written between

parentheses. Results are expressed as radians.

| Tust like the “int™ function long can be any

integer value, named anything that 1s not

already a command. Long numbers take up 4
bytes and can be between -2,147 483,648 and
+2.147 483,647 allowing for calculation with

much larger numbers.

goto LABEL
LABEL:

You can use this command to specify a label
by any name. When you use this command the
program will search for the label and run any

code after the colon.

++ and -

Arrays:

Adding to pluses to an integer adds 1 to that
integer. Two minuses subtract 1. These are the

increment and decrement commands.

In Lab 10 vou created a character array to vse the keypad with the “char™ command.

Number arrays can be created from any variable type (int, long, float) with the same svntax

169

introduced for the “char” command. Simply replace “char”™ with “float™ and use numbers to

create an array of numbers with decimal places. Consider the following code:

float Mumber[5] ={0.1,0.2,0.3,0.4,0.5};

led print{Mumber[2]};

The first float vanable 1s assigned the address of 0 making “Number[0] =0.17. In the
given code the number 0.3 would be printed to the LCD screen. You will use both number and

character arrays to perform calculations in this lab. Now consider this code:

float Mumber[5] = {0.1,0.2,0.3,0.4,0.5}\
inti=0;

led.print{Mumber[il):;

++i;

led print{Mumber[i]);

led print{Mumber[i]);

Using the variable 1" to specifv the address in the array allows for the inerement and

decrement commands to be used. This will prant 0.1 0.2 0.17

Procedure

1. Begin by opening Lab 10 and creating a float array before the setup of vour program. It 1s
strongly recommended that you use the variable names mentioned in this procedure to make
corrections easier, and allowing others to help if there is a problem. The float array should be
named “Number”, and contain 5 variables all set to 0 mitially. Create a character array named
“math” with the same number of variables. Set these all to the character *07. You will need two
integers “17, and “7”, used to increment and decrement to perform calculations. And finally you

will need a long “Answer™ variable and a float “fAnswer” variable. Set everything to 0.

170

2. Tt 1s a good 1dea to save this as Lab 11 at this point to avoid overwriting vour previous lab 10
file. In the last lab pressing the clear button sunply cleared the screen. In this lab the clear button
should set all variables equal to 0, including both of the arrays. To do this Write ™ Number[0] =
0; Number[1] =0;" __. ect. This mav be annoving but it is necessary to perform calculations

properly.

3. You will need to set the key pressed to the float variable “Number[1]” to store this key and use
it for calculation. Furthermore, pressing 10 should set “Numbet[i] = 107 rather than 1, then
changing it to 0. A small bit of math can solve this problem. The key entered 1s a character in the
ASCII encoded format. 0 18 ASCII for 48 so0 you will need to subtract 48 from the kev value
entered. Use the equation “Number[1] = ((key-48) + (Number[1]*10))”. This will multiply the
first number entered by 10 to enter in larger numbers and subtract 48 from each new number to

ensure 1t 1s stored 1n 1ts decimal format.

4. Pressing +.-. X, or / should increment the “T” variable to signify the next key pressed will be a
new number. You will also need to assign “math[i]” to the key pressed to store which
mathematical function should be performed. Increment “;” after storing this value in the array.
The sin, cosine, and tangent functions should simply store the character pressed and increment

1", These will only be used to solve for radian of integer numbers to verify that they work.

5. Pressing the enter key should first clear the screen and print the equals sign. This should also
set “17, and “]” equal to 0 so the first number and math function entered can be checked. Set
“Answer” and “fAnswer” equal to the first number in the float array. After all this 1s entered add

the label “Again:™

6. For each math function vou will need to add a conditional if statement that checks to see what
character is stored in the “math[j]” array. Because vou have already set Answer to the first
number i the “Number[1]” arrav yvou will use this for the mathematical operations +,-, and X.
For example 1f + 15 in the math arrav “Answer = Answer + Number[1—1]". This will add the
current value to the next. Increment both the “1” and ™ variables after the math has been
performed and go to the “Again:” label to check the next operation to be performed. Division
and the tragicomic functions will use decimal numbers, so vou will need to use the float

“fAnswer” for calculation. At the end of each one of these conditional statements set the next

171

math character to the value "1°. Create a conditional statement for each of the basic math and

tragicomic functions.

7. Finally vou will need to print the answer to the screen of the led. By default, all characters in
the math array are set to “0°. Create a conditional statement that checks for this, and prints the
“Answer . [f more complicated math has been performed math will equal “1°. Check for this and

print the “fAnswer”™ variable for this case.

8. Now it is time to test if vour code works. Connect the module 6 plug in the second trainer to
the GND-41 digital pins. Also connect the kevpad module 7 plug to digital pins 52-30 as vou did
in the previous lab. These two should overlap slightly. Connect the USB cable through the
battery door of the second tramner and close the box. If vour code works you should be able to
add, subtract, and multiply up to 5 numbers. You should be able to divide any two integer
numbers and display the answer with two decimal places of accuracy. You should also be able to
use the sin, cosine, and tan function to find the radian value of any integer to two decimal places
of accuracy. Try the equations below and compare your answers with others in the class or check

against another calculator to verify the answer.

10.000-5,000+2.500-11-10=__ . This checks to see if the Calculator can handle 5 numbers.
100X20X30X2X 5= This checks to see 1f the long Answer displays large numbers.
3/2=__ This checks to see if the calculator handles decimals well.

sin(l) = . This should display the answer in radians and checks the trig functions.

You may wish to inprove vour calculator in the future to use decimal numbers, and the
other math functions. If vou want more than two decimal places of accuracy try printing the
values in scientific notation. Try to figure it out on yvour own or use some of the open source
code available through the Arduino site. This thing can perform any calculation you code for.

172

Lab 12: Resistance and the Ohm Meter

Purpose

In this lab vou will be creating an Ohm meter, which is a device used to measure
resistance. Y ou will write a sketch that measures the voltage on an analog input, and converts
this to a measurement of resistance using the voltage divider equation. The equation introduced
in Lab € can be rearranged using algebra to solve for the resistor values rather than voltage. You
will use this device to measure the resistance of several resistors, and compare vour
measurements with the theoretical values of the resistors based on their color codes. You will
also be introduced to the “while™ loop. This is a type of command much like the “if” statement
that only runs the portion of the code within the statement when the condition is satisfied. This
will allow vou to use vour Ohm meter without the code from the calculator sketch interfering

with you measurements.

Equipment
Arduino Mega

Arduino USB Cable

Computer

Arduino Power Cable (Optional)
Arduimo Trainer

Safety Leeds

Resistors

173

Commands and Description

Command Description

while (WARIABLE OPERATOR VARIABLE) { | This command is used exactly like an “if”

} statement. The only difference 1s that code
included between the brackets will loop until
the conditional statement is no longer true. No

code outside of the brackets will be run.

Resistors:

Reszistors are electrical devices used to vary voltage and current. These were used in
previous labs with the photoresistor and the potentiometer, a tvpe of variable resistor. There are
several resistors of set values in the second trainer. Each one can be used with the voltage divider
equation to measure a certain range of resistance. Instead of solving for voltage with the voltage

divider equation you will use it to solve for resistance. The equation 1s:

Voue = Vi (R2)
our ~ 'in (R1+R2:I

The R1 and R2 variables are the two resistors in the voltage divider. R1 1s the first
resistor connected to the voltage source. These are the resistors alreadv connected to the module
8 plug. You will be solving for R2. These will be the external resistors vou will be measuring.

Rearranging the equation to solve for R2, you get:

...
=TV
Cmfy -1

our

In this equation Vin 1s the 5 V input while Vout 1s the measured voltage. Resistors are

labeled with 4 color coded bands. Each of the first three bands represents a number. The last
band is usually gold or silver and 1s a measure of tolerance. The tolerance of a resistor
determines how close 1f 15 to its theoretical value. If the resistor is labeled to be 500 ohms, 1t will

be close to this number, but will not be exactly 500 ochms. This 1s why vou will be comparing the

174

measured and theoretical values. The colors each correspond with a particular number. These

colors are listed below.

Number Color Number Color
0 Black 3 Green
1 Brown 6 Blue
2 Red 7 Violet
3 Orange IE Grey
4 Yellow 4 White

The first two colors are the bands used to specify the resistor value, while the third tells
vou how many zeros to place after the first two numbers. If the first three bands on a resistor
where red, green, orange, then the theoretical value of the resistor would be 2 5 000 = 25,000.

Similarly brown, black, brown would be 100.

Procedure

1. To begin open up Lab 11. You will continue building up this code until all devices on the
second trainer can be run using a single sketch. Before the setup of the program create some new
variables for yvour resistance calculations. You will need one integer “Resistor™ to choose which
resistor will get power for measurement. This should have a default value of 1. You will need
one integer to activate the “OhmMeter”™ with a default value of 0. You will need an integer to
read the analog pin used as an input to monitor voltage. Try naming this “Reading™ and stet it to
0. You will also need a float to calculate “Voltage™ also set to 0. Finally vou will need a long
variable to calculate “Resistance™ Many of these were featured in Lab 6, and vou may want to

open this lab for reference.

2_ In the character array for the keypad vou will need to add the character *0° for Ohm meter.
This will take the previously unused space between the number “4° and the number “0°. This will
be used to activate the Ohm teter. Below vour code for the calculator create a conditional

statement that tests to see if this new character has been pressed. If it has been pressed set

175

“OhmMeter” equal to 1. Next use the while command introduced to test if “OhmMeter iz equal

to 1. All of your code for this lab will go within this statement.

3. When the “while” loop 1z running, none of the code outside of the loop will be used by the
Arduino, so vou will need to copy and paste the code that sets the char key equal to the key
pressed so the Arduino will still respond to buttons pressed on the keypad. Next create a
conditional statement that tests 1f the Alpha key has been pressed. This 1s represented by the
character *A°. When this key has been pressed add 1 to the variable resistor. This will be used to
select between different ranges of measurement. There will be 4 ranges, so vou will need a
separate conditional statement that sets “Resistor” equal to 1 when it is greater than 4. This will

allow vou to go back to the lowest range by pressing the Alpha kev to cycle through.

4. Create another conditional statement that tests 1f the Clear/No button ‘N™ has been pressed.
This should set “OhmMeter” equal to 0 to exit the while loop. These keys are the only keys that

should be used in this section of code.

3. You will need to create four more conditional statements. One statement will be used for each
range of measurement. The first will be when “Resistor™ is equal to 1, and will be the lowest
range. This lab will use the analog pins A0-A4. For the lowest range AD will be set to OUTPUT
with the “pinMode™ command. All other pins will be set to INFUT. You can “digital Write (A0,
HIGH)™ to send voltage to this pin and power the first resistor. The variable “Reading™ should
read analog pin A4 which 15 used in every range to measure the voltage of the voltage divider

created when measuring an external resistor.

6. Think back to Lab 6, and recall that analog measurements take the value of 0-1023. Convert
the “Reading” measurement to a voltage the same way vou did in Lab 6, and assign this to the
“Voltage™ variable. Next vou will insert the equation to calculate “Resistance™. In the equation
given in the Commands and Description section, “Resistance™ 1s R2. R1 is the resistor receiving
power. Each resistor and their measured values are listed below. You will need to use these
values in vour calculations. The voltage listed 1s the actual measured voltage of each pin. While
the signal 1s supposed to be 3V it varies slightly for each pin. The Voltage values listed will be

used for the Vin value of the voltage divider equation.

176

Analog Pin Resistor Value Voltage Output When High
Al 99 475

Al 985 499

A2 9.860 495

A3 100,600 5

7. After calculating the value you will need to print this to the LCD along with the range you are
in. To do this, clear the screen, and set the cursor to the top left corner and print the range. The
first range 1s “Range 0-5007. The second 1s 500-5000, the third 5000-50000, and the fourth
50000+, After printing the range, set the cursor to the bottom left hand side of the screen and
print the “Resistance™ value. Finally add a delay of 250 milliseconds to prevent the values from

printing too fast, making them unreadable.

8. Now vou should have code to calculate resistance for the first range. Do this for the other 3
ranges as well Each range should “digitalWrite™ the previous output “LOW™ as to not power
more than one pin at a time. Por the first Range, you will need to write A3 low. This should be
the very first thing written after the “if " statement. You will need to specify the “pinMode™ for
every range as well. Most of this can be copv and pasted excluding the resistance calculation and
the range.

9. Once vou are done with vour code, connect the module 6 and 7 plugs the same way as vou did
1n the last two labs. Connect the module 8 plugs to analog pins A0-A7. Connect the Module 9
plug from GND to digital pin 8 All plugs should hang over the outside edge of the Arduimo.
Close the trainer and connect the USB through the battery door. Connect safety leads to the Red

and Black sockets of the trainer, and get some resistors.

10. To test if the code works, pressing the Ohm button should activate the Ohm meter. Clear

should exit. When vou press Alpha, the range should cycle through. Read the value of 4 different
resistors color codes. Next select the range on vour Ohm meter that best fits the theoretical value.
The value displaved should be close to the predicted one, but it 1s very rarely the same. Compare
vour measured values with others to test for accuracy. When no measurement 1s taken, a random

number will be displayed. This is normal and should be ignored.

177

Lab 13: Creating a Light Meter

Purpose

In this assignment vou will be creating a light meter that measures the unit of Lux. This
will use the photo resistor in the same configuration as Lab 6. The code for this will be added on
to the previous code produced for the second trainer. You will also be learning about the “for™
loop to average measurements over time. In the last lab you may have noticed the number
displayed on the LCD would change somewhat rapidly making it difficult to read. Averaging the
recorded values over time can produce more stable readouts. You may wish to go back after
completing this lab to create more stable measurements for the Ohm meter. For loops can also be
used to increment arrays and set all the values equal to a particular number rather than specifving

every number in the series.
100300

Equipment
Arduino Mega

Arduino USB Cable

Computer

Arduino Power Cable (Optional)
Arduino Trainer

Light Source

178

Comimands and Description

Command Description

for (INITIALIZATION; CONDITION: INITIALIZATION occurs once when the code
INCREMENT) 15 run. For example “1 = 07 will set that value

4 once the for loop i3 encountered. The condition

1s tested every time the loop runs. As long as it
1s true the loop will run again. For example ™1
= 67 will test the variable “1”. Once this 1s no
longer true the loop terminates. The variable
tested iz incremented with the statement “1++7
to raise it by one every time the loop s tested.
This way the condition will eventually be
broken. The decrement command, “i--" | may
also be used. Any code between the brackets
will be run each time through the loop.

Calculating Averages with for

This 15 useful code for dealing with arrays. This lab will use previous variables to
calculate light, and some new ones. First the code from the previous lab was used to determine
the resistance of the of the ohm meter. The photoresistor 1s R1 in this case, however, so the

equation below was used for the resistance calculation:

R2XV,,
==

Cutr

R1 —R2

This resistance value will be store in a new array “LightResistance[1]”. A conditional

statement checks to see 1f 5 values have been stored then executes the “for™ loop:
if (i==5){
for (i=0; i<&; i++) {
Average = (Average + LightResistance[il);

}

179

-

The “Average” vanable 1s used for calculating the average of the resistance. This loop
starts by setting “1 =07, it loops 3 times incrementing 1" each time, and finally when the loop 1s
done it sets 1" back to 0 for new values to be stored. The average is then divided by 5 to find the

resistance. This will create a more stable and accurate reading.

Procedure

1. Open up the sketch you have been creating for the second trainer and create an mteger
“LightMeter™ that will be used to activate the light meter the same way as the previous lab.
Create two long integers “Average”™ and “Lux” for calculations. Create a long array with 5
variables called “LightResisistance™. Set all of these integers equal to zero. Finally add one more
integer for “Calculator”. Now that you have three separate sections of code that can run, you will

need to create a while loop that runs the code for the calculator when the ‘¢’ button 1s pressed.

2_ In the character array for the keyvpad add the character “L.” for Light after the number “1° and
before “A’°. Below the code vou have already made, create another conditional statement that will
acttvate the light meter by recerving the "L’ character. Create another while loop for this section
of vour sketch. This while loop will need the same code to get the keys pressed on the keypad,
and should be terminated by pressing the clear button. Pressing any of the other buttons for

calculator or ohin meter should also select these modes in all of the while loops.

3. Analog pin A5 will be the input for reading the voltage on the photoresistor and A6 should be
HIGH to power the device. Use the same code, and variables used to calculate voltage in Lab 12,

to determine the voltage on A6.

4. To calculate the resistance of the photoresistor, use the equation in the Commands and
Description section. Resistor B2 13 100,300 ohms. Set “LightResistance[1]” to this value, and
increment 1 each time this calculation 1s performed. Using the “for™ command mtroduced find

the average of 5 resistance readings, and assign this value to the integer “Average™. 5. In order to

180

covert the resistance measurement of the photoresistor to “Lux™ the resistance was calculated
and plotted on a graph with resistance as the x axis and “Lux” (measured with a meter of known
accuracy) was the v axis. The photo resistor on the second trainer was tested and its resistance
values were plotted against lux measurements of known accuracy. To perform the conversion,
constrain “Average” to 800 as the min, and 35000 as the max. Also constrain “Lux™ from 0-800.
Use the “map™ command to map “Average” to these values. Remember that the photoresistor has
more resistance in the dark, when there will be a lower “Lux” reading, so vou will need to

reverse the 800-0 measurement. Review Lab 8 if vou have forgotten how to do this.

5. Next vou will need to print the Lux measurement in the bottom left hand corner of the LCD
and display “LUX" 1n the top right. You should be familiar enough with the LCD screen
commands to do this. If you have trouble look at how vou printed the resistance in the last lab.
Also add a 50 millisecond delay at the end of the code to prevent these values from printing too

fast.

6. Once vou are done with vour code, connect the module 6 and 7 plugs for the kevpad and LCD.
Connect the module 8 plugs to analog pins AQ-A7 and the Module 9 plug from GIND to digital
pin 8 just like in the last lab. All plugs should hang over the outside edge of the Arduino. Close

the trainer and connect the USB through the battery door.

7. If vour code is correct pressing the Light button should begin light readings. You should
expect between 200 and 800 for an average lighting source. The value should mcrease when
exposed to more light, and decrease when turned away from the light, or covered slightly. The
value should not exceed the numbers specified in the constrain command. Compare your

measurements with others in the class to verify that vour calculations are cotrect.

181

Lab 14: Ultrasonic Distance Measurements

Purpose

In this lab vou will be using vour programming knowledge to work in a group and
interface with a new sensor. The distance sensor is located on top of the second trainer. This 1s an
ultrasonic range finder, and uses sound above the human level of hearing to measure distance.
You will work together to create code that will produce distance measurements in both inches
and centumeters. You will need to vse a ruler to determine how to make this conversion and
compare your measurements to verify accuracy. To keep 1t simple you will only be introduced to
two new commands very similar to ones vou have already used. These commands enable vou to

use microseconds for calculations.

Equipment
Arduino Mega

Arduine USB Cable

Computer

Arduino Power Cable (Optional)
Arduino Trainer

Measurement device

182

Commands and Description

Command Description

delavMicroseconds() This is the same as the “delay()” command,
except the number specifies the time in

microseconds rather than milliseconds.

pulseln(PIN, STATE) This command measures the amount of time 1n
microseconds it takes a pin to go from one

state to another. The PIN can be any digital

PWM pin, and the STATE is etther high or low.

The Ultrasonic Sensor

This sensor can measure any distance from 3 centimeters to 4 meters with accuracy. Like
most devices it has a power and ground pin, and a signal wire. When a short 3V pulse is sent to
the signal wire the device sends out a sound wave that humans cannot hear. The device then
listens for the sound wave to return and sends a high pulse on the same signal wire when the
pulse 1s received. The longer away an object 1s, the longer time between the send and the receive

pulse. Because sound travels very fast, this all happens in a matter of microseconds.

To control the device you will need to use the “pulseln™ command to measure the amount
of titne 1t takes for the device to go high. Using the command “pulseln (12, HIGH)™ will start
timing after the signal pulse is sent. When the device receives the sound it will go high again.

The time between these pulses will be returned in microseconds.

Procedure

1. Most of this will be up to vou and vour group and this section will only pride coding help on
how to use the distance sensor. You will need to insert the character 'D” between *7" and =" in
the kevpad character array. This will be used to activate the distance measuring mode of

operation by pressing the “Dist” button.

183

2. To use the ultrasonic sensor vou will need to send pulses through digital pin 12, First
configure it as an OUTPUT and write the pin LOW to ensure it goes to 0. Next insert a very
short delay of only 2 microseconds. Write the pin HIGH to start sending the sound wave pulse.
The pulse should only be high for 15 microseconds. After writing the pin LOW again, insert a
delay of 20 milliseconds and configure pin 12 as an INPUT to receive the pulse. You will nee

to create a variable to record the tume 1t takes for the pulse to return. Set this variable equal to the

“pulseln(12, HIGH)™ time recerved.

3. You will need to read these numbers on the LCD screen for this assignment. Your code should
allow vou to press the specified button to initiate this mode of operation. You will need to
connect all of the plugs for the second trainer the same way as vou did in the last lab. Once you
have code that will print the received values to the screen upload vour code and make all of the

necessary connections.

4. To interpret this measurement, place the second trainer on a flat surface. Set a measurement
device of known accuracy down to visually observe the distance of an object from the sensor.
Place some object a few inches away from the sensor and record the number observed; also
record the distance of the object from the sensor. Do this for at least 10 different measurements,

in equal steps, recording each one.

5. Once you have vour data plot the time received on the x axis and the distance on the v axis of
a graph. Determine an equation that will allow vou to convert your time measurements to inches,

and centimeters.

6. Once vou have the equation go back to your program and display the distance received in both

inches and centimeters 1n an easv to read way.

8. Reload vour modified program and make all necessary connections. Use the measurement
device previously used to venfy that your calculations are correct. If they are, congratulations!

You have now mastered the basics of the Arduino!

184

Appendix C: Lab Descriptions

Lab 1: “Hi Guys!”

Lab 1 introduces the Serial function of the Arduino as well as the basic program format.
Serial commands allow the Arduino to communicate with a computer while a program is
running. This is a valuable tool in monitoring and debugging sketches. It allows users to use the
“print” command to send data to the Arduino serial monitor on the computer to display variable
values, input/output states, and any other information in real time. The setup command is used to
setup initializers in a program that are meant to run once, while the loop command loops
continuously once the program is started. Because much of the Arduino programming is meant
to continuously monitor inputs/outputs and variables, the majority of programming statements
are used within the loop. Initializers such as “Serial.begin” are used in the setup to start
communication before the rest of the program is run. The purpose of this lab is to print the
phrase “Hi guys!”, or any other phrase chosen by students, to the serial monitor on the computer.
These are Arduino library specific commands, and not generic C commands. The “print”
command works similarly as the library specific command “printf” in the stdio.h library file for
the C language. “printf, print formatted, is perhaps the most commonly used output function
(Berry & Meekings, 1984, p.11). The “print” command must also be preceded by “Serial.” to

specify that the Arduino is printing to the serial monitor.

Lab 2: Simulating a Stop Light

In lab 2 other Arduino library specific commands are introduced to show the basics of
using the Arduino I/O functions. The “pinMode” command specifies weather a specific Arduino
pin is an input or an output. The “digitalWrite” command is used to write a specific digital pin

185

either HIGH (1, 5V) or LOW (0, 0V). These two commands are used for interfacing with all
digital peripheral devices. The “dealy” command which pauses the program for a given time in
milliseconds is also introduced. This is included in the Arduino library, and is usually formed in
C through the use of a “for” loop and the time.h library file. These commands are used along
with the previously introduced commands to simulate a stoplight on the trainer that uses red,

yellow, and green LEDs.

Lab 3: Inputs and Outputs

In this lab students learn the command “int” used to define a data type as an integer is
introduced. These can be named anything so long as they start with a letter, and do not take the
name of an existing command. Kernighan B.W. and Ritchie (1978, p. 9) state “an int is a 16-bit
signed number, that is, one that lies between -32,768 and +32,768.” These are useful for both
calculations, and to simplify code into a more readable structure. Rather than specifying a pin
number every time the “int” function allows students to name pins more understandable
expressions such as “GreenLED”. The “const” command is used with data types to keep them
constant. This is also introduced and recommended for pin numbers as these should not change

throughout the sketch.

This lab also introduces the “if...else” control expression to perform logical operations
based on inputs or variables. The “if” statement is one that tests a conditional expression, and
executes the action specified if that expression is true. The “if...else” expression performs the
same task, however a second action is specified after the command “else” if the condition is not
satisfied, the program executes the action listed under the “else” command. (Johnsonbaugh &
Kalin, 1997, p. 49). This is the primary statement used in the labs to enact various functions. In

order to properly form conditional expressions the syntax for comparison operators are also

186

introduced, such as greater than, less than, and equal to. The Boolean operators for and, or, not
are also introduced to form conditional expressions where multiple conditions should control the
output. Finally the “digitalRead” command is introduced that reads the state of a digital input in
the same way “digital Write” controls an output. This allows students to base conditions on

inputs.

Lab 4: Better Serial Communication

Lab 4 teaches students about better serial communication between the Arduino and the
computer to introduce various data types and the concept of binary. The “println” command is
introduced that functions the same as the “print” command except it enters each new text on the
line below the previous one, rather than scrolling to the right. This is useful in organizing
information in the serial monitor. When using these commands any character is not printed in its

ASCII encoded form.

In this lab students use the serial monitor to neatly display the numbers 0-9 in their
decimal, binary, hexadecimal and octal values. The “Serial.write” command is also introduced
that automatically prints characters in their ASCII encoded form. Students are taught how to
convert between decimal, a base 10 counting system, and binary, a base 2 counting system. An
Arduino specific command “Serial.avalable” is used to retrieve data entered into the serial
monitor and prompt an output based on this data. While the conversion is not shown for octal, a

base 8 system, and hexadecimal, base 16, students use the Arduino to discover what these are.

Lab 5: Programming a Keypad

This assignment does not introduce any new C commands but focuses on using those

already taught in more complicated ways. The goal of this lab is to have students use the

187

information discovered in the previous lab to prompt a keypad to display the number pressed in
binary using 4 LEDs. This lab uses multiple inputs and outputs, and total of 12 “if” statements to
produce the binary readout. Completion of this lab gives students the ability to interface with the
keypad on the first trainer for future labs, thus saving time by editing this sketch to produce
different outcomes. The keypad uses a 4 input binary circuit to display the numbers and allows

for control using multiple buttons.

Lab 6: Reading Analog Inputs

Next students learn the “analogRead” function and a new data type known as a “float”. A
“float” is a command used to specify a variable type where “float stands for floating point, i.e.,
numbers which may have a fractional part” (Kernighan & Ritchie, 1978, p. 9). The “analogRead”
function reads the voltage (from 0-5V) on an analog input pin. The value is converted from a 10-
bit binary value to a decimal number from 0-1023, and sent to the serial monitor for
interpretation. Students convert this number to the actual voltage read by the analog pin that is
connected to the wiper of a potentiometer used to vary the voltage. This provides the basis for
interfacing with analog electrical devices, and introduces the concept of an analog to digital
(A/D) converter. The concept of resolution is introduced to explain the A/D converter. Students
also learn how to only print relevant data from inputs and outputs to the serial monitor.
Previously data would print only when prompted thorough serial communication or otherwise

print continuously.

Lab 7: Dimming a Light Using the Keypad

The Arduino also has an “analogWrite” function that uses pulse width modulation
(PWM) to produce a varying DC value. Students control the lighting level of two ultra-bright

LEDs in equal steps using the keypad introduced in previous labs. The “analogWrite” function is

188

used for controlling analog electronic devices, and is useful in teaching the concept of PWM.
The commands and description section explains that PWM is the act of pulsing a signal on and
off very quickly to form an analog voltage when measured over time. The ultra-bright LEDs
appear to dim by using this method. The PWM occurs as a 490 hertz (Hz) square wave. The
width of the positive pulse of the 490 Hz square wave determines the amount of time the LEDs
are on and thus the brightness of the LEDs. For example, if the positive pulse width is only

active for 75% of the period the LEDs appear to be dimed by 25%.

Lab 8: Maintaining Lighting Levels Using a Photo Resistor

Students use the knowledge they gained from previous labs to automatically adjust the
brightness of a light based on the lighting levels in a room in this assignment. A photo sensitive
resistor that varies its resistive value based on the presence of light is used to control the ultra-
bright LEDs. While these are not actually bright enough to illuminate the whole room, the
concept taught is valuable in coordinating analog inputs and outputs and has real world
application in designing an automatic dimmer circuit. Students also learn the Arduino library
specific “map” command and the “constrain” command. The map command performs basic
arithmetic to map one set of values to another. This can be used to reverse a set of input values,
i.e. 0-100 to 100-0, or to multiply or divide them, i.e. 0-100 to 0-1000. In the second case the
value of 90 would be mapped to 900. Constraining values causes them to stay within specific
boundaries. In other words an integer, “int” cannot be less than or greater than the specified

values. These commands allow students to better use variables.

Lab 9: Interfacing With an LCD Screen

This is the first lab where a header file is introduced using the “#include” command. As

previously mentioned, the Arduino automatically loads several library files to allow for the use

189

of Arduino specific commands that execute more complicated C code. In this lab students are
shown how to manually use header files and their uses through the “LiquidCrystal” library. This
library allows for interface with an LCD screen on the second trainer to produce readout on a
portable device. Students are made familiar with many library specific commands used to control
the LCD screen. Some of the notable LCD commands are “setCursor”, “home”, and “clear”. The
commands are commonly set up as “#define” statements. “#define” statement replaces any
character string with the specified code before the program is compiled into machine code. The
commands introduced are commonly used as “#define” statements to set cursor positions without

having to specify their specific coordinates.

Lab 10: Interfacing With a Matrix Keypad

In Lab 10 student are introduced to several new data types and C commands through the
use of a matrix keypad library. Students will use the keypad on the second trainer and interface it
with the LCD screen to produce a readable output on the portable trainer. This also provides the
basics for the next lab in which students design a calculator. The “byte” data type is introduced
that signifies that the data consists of 8 binary bits. The “char” command is also used to create a
character array. The “char” command is short for character and “creates a 1-byte cell that can
hold one character” (Johnsonbaugh & Kalin, 1997, p. 70). A character array is a series of
characters that each occupies 1-byte arranged in columns and row. Students use the array to

specify which button is pushed.

The command “getchar” is also used to retrieve a character from the character array.
“The command “getchar” reads one character from the standard input” (Johnsonbaugh & Kalin,
1997, p. 70). In this case the input is the matrix keypad, and the term “Key” is used to denote that

the character comes from this input. As a result this command takes the form “getKey” in the

190

sketch. A matrix keypad is a type of keypad that closes the circuit between various rows and
columns to signify that a key has been pressed. The Arduino checks to see which row is written
HIGH and which column is read as HIGH and determines the key. This in turn will enable
students to use the keypad to enact certain actions based on the character, or simply print the

character.

Lab 11: Making a Calculator

This assignment expands upon the previous one, and introduces the data type “long” as
well as the “++” increment and “--" decrement functions. A “long” is an integer number that
occupies 32 bits and thus allows for calculations with much larger numbers. The increment and
decrement commands are shorthand that adds or subtracts the value of 1 from an integer. The
“array” function is also introduced for storing variables that can be called by the name of the
array and the numerical pointer address for the specific number needed. This allows students to
perform more complicated calculations with multiple numbers without having to specify a
variable name for each one (Berry & Meekings, 1984, p.60-64). This will also allow students to
store subsequent numbers entered into the array. Students will use all arithmetic operations (+,-
,*,/) and the tragicomic operators “sin”, “cos”, and “tan” to perform mathematical functions on

the Arduino.

Lab 12: Resistance and the Ohm Meter

Students have been programming primarily in the “loop” part of the sketch. Because this
loops continuously all conditions up to this point could be satisfied with the “if” statement. This
lab introduces the “while” loop and its uses. The “while” loop is accompanied by a conditional
expression much like the “if” statement. If the condition is true the action in the loop is executed
and the conditional expression is tested again. As long as the expression remains true, only the

191

portion of the program contained within the while loop is run. This will allow students to add the
Ohm Meter program they will create into the same sketch as the calculator while ignoring the

commands used to operate the calculator (Johnsonbaugh & Kalin, 1997, p. 40).

This lab also introduces students to the concept of electrical resistance, and the Ohm.
Students will first write a sketch that allows the Arduino to calculate resistance using the leads
on the second trainer, through a voltage measurement on an analog pin. They will measure

several resistors and compare these to the resistor values expressed by their color codes.

Lab 13: Creating a Light Meter

In this lab students will average light readings from the same photo resistor used to
control lighting levels in Lab 8. They will develop the equation to convert the analog input value
measured to the ST unit of Lux. The “for” loop will also be used to average the values over a
short period of time to ensure accurate measurements, and to correct for small fluctuations. The
“for” command is another looping command. It consists of 3 expressions where the first
expression is tested, and initiates the loop if it is true. The second expression tell the loop when
to terminate, and the third expression usually increments or decrements a variable used in the
first two expressions. “The for statement proves convenient to use when it is necessary to
execute a loop a given number of times” (Berry & Meekings, 1984, p.49). This statement can be
used to average the measurements over a period of time. This program will also be compiled into
the calculator and Ohm meter sketch to make the second portable trainer a multi-functional

device.

192

Lab 14: Ultrasonic Distance Measurements

This is the final lab on the second trainer, and will allow the trainer to perform four
different functions at the press of a button. Students will interface with an ultrasonic distance
sensor that measures the distance of an object located in front of it using a sound wave above the
human level of hearing. Students will use the “pulseln” Arduino specific command that measures
the amount of time it takes for an input to return to a HIGH state. The “delayMicroseconds”
command works the same way as the “delay” command for shorter time intervals. This
command will be used to rapidly switch the device from input to output in order to use the
measured time to determine the distance of the object from the sensor. Students will work in a
group to plot the digital measurements taken, and produce an equation that allows for the
distance to be displayed in inches, and converted to centimeters so both units of measurement
can be known. The sketch will be checked with a ruler of known accuracy to ensure the distance

is measured appropriately and that the conversion is correct.

193

Appendix D: Datasheets

10 K Rotary Potentiometer

Model P231

24mm Rotary Potentiometer
Conductive Plastic Element
100,000 Cycle Life

Metal shaft / Bushing

RoHS Compliant

Side Adjust . Solder Lugs P231
Resistance Rangs, Ohms S500-1M
Standard Resistance Tolerance +20%

Residual Resistance

20 ochms max

Input Veltage, maximum

500 Wac max.

Power rating, Walls

0.5%- B taper, 0.25W-others

Dielactric Strength

S00vac, | minute

Insulaticn Resistance, Minimum

1000 ohms at 250Vdc

Sliding Moize 100mY max.
Actual Elecirical Travel, Nominal 2607
Total Mechanical Travel 3007+ 107
Static Step Strength 70 oz-in

Rotational Terque

0.5to0 1.25 oz-in

ENVIRONMENTAL

Operating Temperature Range

-20°C fo +70°C

Rotational Life

100,000 cycles

' Specifications subject to change without nofize.

El Technologies Corporation
4200 Bonita Place, Fullerton, CA 82335 US4

Phone: 714 447 2245 Website: www bitechnologies.com

July 18, 2008 page 1of2

194

electronics

Bl technologies

Model P231

ORDERING INFORMATION?

P231-F C 20 B R100K

/ \\ Total Resistance
Model Series Tapers
A = Audio
B = Linear
Shaft Type C = Reverse Audio

Shaft Length “L" =ee below

Full CCW Shaft Posifion: see below

Shaft Types
E-TYPE =
L#0.5 o2 2
= ri]
g =

‘]

==

L |15(20|25[30]35| L |15]20|{25|30|35

L [15]z0]z5]30]25

—
~1
=
2
=

12112({ T | 6 [10]12]12(12

Shaft Position (F-Type Shaft)

Daszhed lines on Type “C" and Type “A° shows position of adjustment slot for E-Type and Q-Type shafis

Type C

Full CCW Pasition

Type &

Full CCW_Positicn

Full CCW Fosition

STANDARD RESISTANCE VALUES, OHMS

500 1K

2K 5K 10K 20K S0K 100K 200K 500K 1IMEG

* Contsct our custfomer service for cusfom designs snd feafurss.

Bl Technologies Corporation
4200 Bonita Place, Fullerton, CA 82235 USA

Fhone: 714 447 2345

July 18, 2008

Website: www.bitechnologies.com

'Fr lectronics

page 2 of 2 Bl technologies

195

Model P231

OUTLINE DRAWING

Full CCW Position

arking 1.5 L¥0S

263

p24
'
|

\MBI’E?E

1ne @8BS
@20 S qu.u ¢ B
‘ﬂE.BtEeHDlP

PANEL LAYOUT

CIRCUIT DIAGRAM

{8) O——

¥
{cow) o—AANAANANNAN—0 (IW)

Bl Technologies Corporation
1200 Bonita Place, Fullerton, CA 82235 USA

Fhone: 714 447 2345 \Website: www bitechnologies com

‘electronics
Bl technologies

July 18, 2008 page 2 of 3

196

10K Tuner Potentiometer

FOTEST _qump e odawef

Jauma s) jo Auadosd ay) aue |BualEWwW
paysene au jo swybuidos pue Jusjuod ay)

| ZPTP-LEB-008-| + WO 0IIWEN MMM

mo_zothbmﬁﬂ
001N

A peinguisig

197

Potentiometer 3362 Series
3299-W-102
Model* & 8¢S |
Stylesli A —m8——
Codelfi i 0553
ol
d "
':“_5 i -d *
i 3362W B
3362P B
3362P 3362w
£ Resistance S =
Series P/N MFG (Obms Characteristics
253982 | 3362P-1-102 1,000
;onl llwechnicll 250°410° -Srhr(ing <20mN.m
254036 | 3362P-1-104 100,000 TAVE grgec
l)
254028 | 3362P-1-503 50,000
Withstand Voltage |,y 00 S0V | tasslation ;160
254044 | 3362P-1-504 500,000 Sk eolstance:
254175 | 3362W-1-102 1,000 5 o
%ﬁ"‘:" Electrical 2109107 .s,u'::".d S0pes/tube
W 254204 | 3362W-1-103 10,000 raye ackaging
c +707C 0.5W Mechanical | 200 cycles
2542 2Wal-
254247 | 3362W-1-104 | 100.000 Rated Power £125C OW Endurance | AR<£10%R
No 29, Hegang Road, Southern District, Modern Industrial Port, Pt County, Chengdu Cay, Sichua Provinee Page 1

198

Diode

Distributed by:
AMEC * www.Jameco.com + 1-800-831-4242
The content and copyrights of the attached
E LECTRONICS material are the property of its owner.

199

_— Jameco Part Number 35991 (1N4004)
FAIRCHILD
o S

1N4001 - 1N4007

Features
* Low forward voltage drop.

* High surge cument capability.

D041

SALOM BAND DEROTES CATHODE

General Purpose Rectifiers (Glass Passivated)

Absolute Maximum Ratings® - -zscuniess ctenstsz notee

Symbaol Parameter Value Units
4001 | 4002 | 4003 | 4004 | 4005 | 4006 | 4007
- Pazk Rapsiitive Reverse Voltage 50 100 | 200 | 400 | &0D | 800 | 1000 W
(S Averags Rectifiad Forward Cumant, n A
2375 " lead langth (@ T, = 75°C
lmsyy Mon-repetifiva Pagk Forward Surge
Current 3o A
8.3 m5s Single Half-Sine-VWave
Taig Storage Tamperaiurs Rangs -85 to +175 '
T, Cparating Junction Tempsraturs -55 fo +175 'C

*Thess ratings are Imitng vales sbave which Fia servicssbilty of any semiccneucicr davies may be Impairec.

Thermal Characteristics

Symbaol Parameter Value Units
Fa Power Dissipation 3.0 W
Ria Thermzl Resiztancs, Junclion to Ambiant 50 cw

Electrical Characteristics - -zcuves omenss rane

Symbol Parameter Device Units
4001 | 4002 | 4003 | 4004 | 405 | 4006 | 4007
W, Forward Voltege @ 1.0 A 1.1 W
I Faximum Full Load Reaverse Currant, Full 30 A
Cycle T, =75C

ln Reversa Current (@ rated Vg Ty = 25°C 5.0 7y
T, = 100°C 500 A
C, Total Capacitance 15 pF

V=40, f=10MHz

2001 Peirchils Semicensvcier Sorperatisn HEDE1- 154207, P, &

200

LOO¥NL-LOO¥NL

General Purpose Rectifiers (Glass Passivated)

(continued)

Typical Characteristics

18 -
Shs " %
8 -
E 1.2 - 4
3 g, =
=1] <+
A \ E
Foap— aMoLEFHasE g =
5 HALF viaE N E s —
- HHE h, 8
£ RESETNE OR e 0
=, 4| moucTvE Losn § o i -
375 6.0 we LEAD - =
é LENGTHE 5 s Flllss Wt = 20085 —]|
o 0.2 = U1 N Lz 5 Duty Cycle =
) Pl
o2
e A -
£ o 20 40 60 &0 130 120 140 180 t80 oo
Ambignt Temparaturs [*C] 08 08 1 12 14
Forward Valtage, V, [V]

Fi 1.F rd C t Derating C
‘gura orwa urrent Derating Lurve Figure 2. Forward Voltage Characteristics

LOOYNL-LOOYNL

L
B . N
: 1 -
E Iy
E N £
318 = prt
& ™~ E
5 — 5
w1 =g 5]
E]
g
e © &
=
=
a0 ¥ .
1 2 4 & 810 20 40 80 100 0 20 4 &) 80 100 130 140
Number of Cycles at G0Hz Percent of Ratzd Peak Reverse Volage [5t]
Figure 3. Non-Repatitive Surge Current Figure 4. Reverse Current ve Revarse Voltage
0202% Pairctild Samisensucmr Corporation M4G07-1H430T, Mav. ©

201

TRADEMARKS

Tha following are registsrsed and unrsgistered trademarks Fairchild Semiconductor owns or iz authorized to use and is
not intended to be an axhsustive list of all such fredemarks.

ACEx™ FAST & OPTOLOGIC™ SMART START™ WICX™
Bottomless™ FASTr™ OFTOPLAMAR™ STARPOWER™
CoolFET™ FRFET™ PACIANT Stealth™
CROSSVOLT™ GlobalOptoisolator™ POP™ SuperS0OT™-3
DenseTrench™ GTO™ Power2d 7™ SuperSOT™-6
DOME™ HiSalCm™ PowerTrench 2 SupersOT™-8
EcoSPARK™ ISOPLANART™ QFET™ SyncFET™
EXCMOS™ LitHeFET™ Qs™ TinyLogic™
EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
EACT™ MicroPak™ Quiet Serigs™ UHC™

FACT Quiet Series™ MICROWIRE™ SILENTSWITCHER® UltraFET®
STARPOWER. iz usad under licenza

DISCLAIMER

FAIRCHILD SEMICCNDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHCOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TC IMPROVE RELIASILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOTASSUME ANY LIABILITY ARISING QUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPRCWVAL OF FAIRCHILD SEMICONDUCT OR CORPORATION.
As used harain:

1. Life zupport devicas or systsmz ars davicss or 2. A critical componant iz any componant of = lifs

systemz which, (2] ars intended for sungical implant inio
tha body, or (b) support or sustain life, or (c) whosa
failure to perform when propsry ussd in sccordancs
with instructions for use prowided in tha labeling, can be
razzonably sxpecied to result in significant injury to the
user.

support device or systam whozss failurs to perdorm can
be reazonsbly sxpected to cause tha failurs of the life
=upport dewvics or systsm, or to sffect itz zafsty or
affactiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status

Definition

Formative or
n Dasign

Advance Information

Thiz deteshest containe the design specifications for
product development. Spacifications may changs in
any mannar without notica.

Preliminary First Production

This datashsat conteins preliminary dats, and
supplsmantary dats will be published =t a later dats.
Fairchild Samiconductor ressrves tha right to make
changes at any time without notice in order to improva
design.

Mo Identification Nasdad Full Production

Thiz deteshest contsins final specifications. Fairchild
Semiconductor ressrvas the right to maks changes at
any time without notics in order to improva design.

Obsolate Mot In Production

This deteshest contsine spscifications on & product
that has besan discontinued by Fairchild semiconductor
The datzshast iz printsd for referancs information only.

202

Green LED

W/ Chicago Miniature Lighting, LLC
e ngbnng the world since 1910

4304H Series Solid State LED Lamps-Super Brite 30 med T-1 3/4 (5m

DESCRIPTION AND FEATURES

T=1 3/4 Super Brite LEDs

Al dimensions.

0
17
——
EE
s E
-~ 5
Qs
=
B o=
B
“3
%E
%8
= o
-

.:E
23
b

=t

Eé‘s‘

in ks = i + High-intensity light sutput.
| azenass * Wide viewing angle.

s 1
- - B.IERINE
|

|
o 231234
A
I
! R
1
038
030 T
SQTVE. 'H' WM.
.
- 058138
ANDDE P
— 1t 1
I i
JOPE -

ELECTRO-OPTICAL CHARACTERISTICS AND RATINGS
PART NUMEER AZ04H1 4304H3 AZD4HE 4304HT7
Qutput Color Red Arriber Green ¥ el
Diffus ion Diffused Diffused Diffuzed Diffuzed
Package Color Red Amiber Green ¥l
TestCurrant (mA) 10 13 10 10
Focward Velzge Typ. [V] 0 23 21 21
Forward Velage Max. [V] 1 3.0 3.0 3.0 30
Luminous Irensisy Min. (med) 1 o 4.0 3.0 25
Lumiriows Intensity Typ. [med) £.3 2 o £3
Capacisnce @ V=0 (oF) 45 4 0 45
Peak Wavelength nm) 850 GOE 563 583
iewing Anghe 2012 {degrees] 63 a0 75 65
Pawer Digsaton [mill) 60 135 75 B0
Reverse Ereskdown Valtage Min. V] 5 5 5 5

147 Central Avanue 18703 Dix Toledo Read Saret Zone Franca, Edifico B
Hacksnsack. MJ 07601 Brownstown, Ml 48133 Alajusla Coztz Rica

Phaona: (201) 483-3229
Fax: (201) 429-6911
E-mazil:zalssi@chml.com = Wab Sita: www.chml.com

Chicago Miniature Lighting, LLC reserves the right to make specification revisions that enhance the design andfor performance of the product

203

LCD Screen

HDM24216H-2

Dimensional Drawing 24 Characters x 2 Lines

54 1055 —| a3

o s el - ¢ ||J |
123 EE q 2 doooc O
e = e=][O [
. ju[u[u(u{ngn
13| [= Q000000
) ‘ | 4 *| .0oogoo
R ANIN L] , w5 OOO00 O
ey g4 “eRID]DDDD |:|
— - 1 000000
— roooooo

Dimenslon iolarance: «~0L3mm

Features Block Diagram
Character Format ... 57 Dots with Curser
Backlight..... EL Opfional
Cptions.. TH/Gray STH Y ellow STH, 12 o'Clockss o'Clock View
MNermal/Extended Temperature 00-D7 {1
Mormal/Megafive Displays oo m
E CONTROLLER
. W HO44750 40 40
Physical Data R3 @ —
Module Size....._ STE0W x 36.0H x 9.5T mm VL ERUNALENT .
Wiewing Area Size. Voo —=—{ R} onverz
Weight.......oco.co... VER
Absolute Maximum Ratings
PARAMETER SYMEOL MIN MAX UNIT } ’
- - Pin Connections
SUPPLY VOLTAGE Vo Veg [3 7.0 W
SUPPLY VOLTAGE FORLCD 0 13.5 W FLICEL || Bieal || =0t AELed
INFUT VOLTAGE Ves Voa Vs : o
OPERATING TEMPERATURE 0 0 C z ¥mo . v Pawer supply
STORAGE TEMPERATURE 20 70 C 2 v
4 RS Hil H: D&t Input
L: Imsiruciion dats Input
. L 5 RIW HiL H: Cata read
Electrical Characteristics (VDD=5.0£0.25V 25°C) ' L D2t arite
PARAMETER S5YM | CONDITION | MIN | TYP | BAX | UNIT £ E HH Enable signal
MPUT HIGH VOLTAGE Vg - 22 |- B v 7 oo HiL
H o i
MPUT LOW VOLTAGE Wy 8| -
— - - = - z oz HiL
CUTPLT HIGH VOLTAGE Vo oe=02ma |22 |- - X = o m
CUTPLT LOW WCATAGE Vo au=12ma |- - 04 |v P Y Ty =
POWER SUPFLY CURRENT | igg Wpg=Sa¥ |- 1.0 |2z |[ma z oS HL
POWER SUFPLY FORLED | VgV, [Ta=25"C 43 |- 27 v 13 [HiL
ZRIVE METHOD 116 Duty 4 o7 HL

204

Photoresistor

Distributed by:
AMEC * www.Jameco.com + 1-800-831-4242
The content and copyrights of the attached
E LECTRONICS material are the property of its owner.

205

Jameco Part Number 202454

Plastic-coated Types (7P 10p Types 5
Cell Resistance A Response Time at 10 0
Applied | Allowable Ambi c
Out- | Voltage Power Temperature 101x (3t 2856K) | OB
TypeNo. | line | at25C | Disspation Ta : 100 =10 | pice Time | Decay Tme
at 25C Min. Max. M. Typ. Type Typ.
(vdc) (mW) ' (T) (k) Ka) MQ) (ms) (ms)
7001 4 200 | 150 | | -30~475 36 | 144 | 03 0.6 50 20
7002 200 150 -30~+7S 4 20 0.5 9_65 - 5S 20
7003 } 200 150 -30~+75 8 24 0.5 0.7 55 20
7004 200 150 -30~+75 | 15 | 60 0.5 0.7 60 | 25
7005 200 150 -30-+758 50 150 20 0.85 60 25
5001 350 400 ~30~+75 8 16 0.3 0.6 55 25
5002 350 400 ~30~475 12 30 0.5 0.75 55 25
5003 350 400 -30~+75 12 58 1 0.75 SS 25
- Cell resistance vs. illuminance '
K-ohms -. AMeasured with the light source of a tungsten lamp operated 3t a color
1000 = ==z temperature of 2856K.
t B.Measured 10 saconds after removal of incident illuminance of 10 jux.
- C.Gamma characteristic between 10 lux and 100 lux and gievn by
100 i « log(R100}op(R10)
Tog(E100)-log(E10)
kg Where R100, R10: cell rasistances at 100 ux and 10 luxre spectively
et uys £100, E10: ifluminances of 100 lux and 10 lux respec tively
10 = D.The rise time is the time required for the cell conductarce to rise to
% 63% of the saturated level. The decay time is the time required for the
+ cell conductance to decay from the saturated level to 37%.
=1 i il £ Al characteristics are measured with the light history conditions:
1 the CdS cell is exposed to light (100 to 500 fux) for one to two
1 10 100 hax hours.
‘Cell resistance vs. temperature - Qut-line Dimension.

150

o
&

m|

[800 Series

g

|

~
o

8

CHANGE IN ILLUMINATED
RESISTANCE(%)

/I 20 ac 60

AMBIENT TEMPERATURE(C)

80

i —1
— 12— —{109)
1 ' -
2049 J [u"

206

Project Box

2

AV

._.O—u View of ;me.m—.—._—u_<
22000
[8.681] A
—
) b
:HS
o f4.64]
B
+) i %t + m %
& %
| .
188.00 A
_ [7.795]

SECTION B-B
Side View of Assembly

+50 24.00

177
¥ M 2.00
aﬂ* o L _._A_m L118]
i o 2 o 1
T }
vl 208.25 |A
[B.120]

Lid
. 6432]
80.00
e ~ [2362) 7
4 4
+ + + +— Ia\
ﬂ*um Il I’} B0.00
EN—?: [2.150]
+ + + - |+|
+ +

SECTION A-A
End View of Assembly

40.00
[1.575]

Top View Looking Inside Box

g 50.00 gl
[2:362]
+
+ + + +— [4‘
- 50.00
[2.150]
+ + + + - 1
4
Maximum P.C. Board Size
80.00 lag- 15.50
[2.362) [610]
'} _ It
H+ l.a‘+ + I
131.00 60.00 100.00
[B.157] 3950 paa0 [#201)
.* 1134 l
H +
_
1 M
fo—— 128.50
[5.088] R4.50
e 14050) 1771
[5.531]

Contact Factory mym@hammeondmig.com for quotes
Solid models of this enclosure available in STEP or IGES.

Enclosures can be Factory Modified (Milling, Drilling. Frinting etc

HOTE

[Purchased aszembiy noudes bow, (i and 4 cover sorews. Flame retanan: ASS
earia= WL fismmehiley rating of 54 V-0, Vanous Bstery holder ks susliabis.

PART NUMBERS

Cover Sorews for FR-ABE {Phg 100)

$2 . 0.5 & 20mm Nigknl Flatnd Maohine Sorsws] e
Cover Sorews: Tor GP-ASS (Fig 100) R
[24 x 258" Stainisce Shesl 2aif Tapping Bomwe]
F.C Board Mounting Sorws (Pkg of 50 or 100) 1533ATESD
[#4 x 174" 3eif Tapoing Sorewe] 1553ATEID

HAMMOND
MANUFACTURING

1599KBAT

WWw.hammondmeg.com

/N

207

Push Button

Pushbutton Switches

ﬁalnuﬂbump

Features:

e Frame : ABS, Black.
e Actuator 1 ABS, Black
¢ Printed : Nene.

R13-23A-05-BR, R13-23A-05-BB, R13-23A-05-BW and
R13-23A-05-BG
155

11

R35

I | I I

L)
=
=
e

33.3#1
203105

63
5.8 #1

] 0 I

28103 07
58105
Dimensions : Millimetras
Mounting Hole Circuit Diagram
0
12214,

el
r1

Dimensions : Milimetres

httpS/www farnell.com
httpd/wwew.newark com
http//www.cpc.co.uk

Page <1>

208

Galnuﬂbump

17/05/10 V1.1

Pushbutton Switches @ g

R13-23B-05-BR, R13-22B-05-BB, R13-23B-05-BW and
R13-23B-05-BG

15.5

=
[t
‘-; w
= S| o
@l o M1z
) @
]
™ @
%1 o
'D' 2803 " I_
0.7
5.8 +0.5
Dimsnsions - Millimetres
Mounting Hole Circuit Diagram

12:2285

—+
1

Cimensions : Millimetres

hittpfwwee farmell.com
e multicomp
hitpufwwe.coc.co.uk

Page <2 1770610 V1.1

209

Pushbutton Switches @ g

Specifications:
Rating 2154250V, 24 12V ac.
104 250% ac 1/2HP.

bavimum contact Resistance - S0md.

binimum insulation Resistance - 500 do 100M.

Dielectric strength - 1000V ac 1 minute.

Circuit 1 2P SPST OFF-{CM)

Switch Function 1 2P SPST OFF-OM.

Part Number Table

Description Part Number

Switch, 2PST, MOM, RED R13-234-05-BR
Switch, SPST, MOM, Black R12-234-05-B8
Switch, SPET, MOM, Whits R13-224-05-BW
Switch, SPST, MOM, Green R13-224-05-BG
Switch, SPST, Latching, Red R13-23B-05-BR
Switch, SPST, Latching, Black R12-236-05-B8
Switch, SPST, Latching, White R13-22B-05-BW
Switch, SPST, Latching, Green R13-22B-05-BG

Discloimer Tris oot shoet and s cemonts fne “Imormation”) Eaicng b the Fremier Famall Groeup (ine “Eroun) or am beamsed 50 1 Mo leance o granted or na use .o i ather Sian o Imlanration purpcses
nconnecioen with the groducts to which & relates. ho loence of any ntalectuel property fighis s gwnted. Tha Information & subject fo change without notice and replaces al cate sheets previously suppled.
Tr Imlaration sunphed s BElave % e aturats BUb S Rl GSNUTES 10 RSSOPEIN Y 400 RSS2SRy o7 SOTGIMNGES, Sy STER N OF S Ssian T B or 4 Gy LS ek of £ LS of this cata
shest shouls chack far tremeshics the Informazen and the su5ebl By of tne procducks for her pumese and not Make a7y asEImpecns besed on Infanration Indladad or cmised. La Hy 4 kes o darege
resuting from any nlance on the Irormasion o use of = Jnduding lanliy resuitng from negligenss o whare She Grup wes ewen of T posslnlty of such ks or cemage ansing) s excuded.
ksl net epdnate 12 0T o Rt 1he @run's IRSIEy for death of panandl Ny REtng frenn R reglencs. SPC Mutaomn 6 i regEtened tradenane of T Groun. O Premtier Farned ple 2010

httpufwwer farmell.com
e multicomp

httpufwwrer.coc.co.uk

Page <3> 1770610 V1.1

210

Red LED

W/ Chicago Miniature Lighting, LLC
e ngbnng the world since 1910

4304H Series Solid State LED Lamps-Super Brite 30 med T-1 3/4 (5m

DESCRIPTION AND FEATURES

T=1 3/4 Super Brite LEDs

Al dimensions.

0
17
——
EE
s E
-~ 5
Qs
=
B o=
B
“3
%E
%8
= o
-

.:E
23
b

=t

Eé‘s‘

in ks = i + High-intensity light sutput.
| azenass * Wide viewing angle.

s 1
- - B.IERINE
|

|
o 231234
A
I
! R
1
038
030 T
SQTVE. 'H' WM.
.
- 058138
ANDDE P
— 1t 1
I i
JOPE -

ELECTRO-OPTICAL CHARACTERISTICS AND RATINGS
PART NUMEER AZ04H1 4304H3 AZD4HE 4304HT7
Qutput Color Red Arriber Green ¥ el
Diffus ion Diffused Diffused Diffuzed Diffuzed
Package Color Red Amiber Green ¥l
TestCurrant (mA) 10 13 10 10
Focward Velzge Typ. [V] 0 23 21 21
Forward Velage Max. [V] 1 3.0 3.0 3.0 30
Luminous Irensisy Min. (med) 1 o 4.0 3.0 25
Lumiriows Intensity Typ. [med) £.3 2 o £3
Capacisnce @ V=0 (oF) 45 4 0 45
Peak Wavelength nm) 850 GOE 563 583
iewing Anghe 2012 {degrees] 63 a0 75 65
Pawer Digsaton [mill) 60 135 75 B0
Reverse Ereskdown Valtage Min. V] 5 5 5 5

147 Central Avanue 18703 Dix Toledo Read Saret Zone Franca, Edifico B
Hacksnsack. MJ 07601 Brownstown, Ml 48133 Alajusla Coztz Rica

Phaona: (201) 483-3229
Fax: (201) 429-6911
E-mazil:zalssi@chml.com = Wab Sita: www.chml.com

Chicago Miniature Lighting, LLC reserves the right to make specification revisions that enhance the design andfor performance of the product

211

L 4D L u3IHS % [Www] SIHONI WO siN wos | OO/HEL A3vD TAINYD 500" T XMX .))
a0 A8 q3N08daY b0 3 XX o AP 8 e e
8 | OMO IEIYNTE 692¢ V |oo/ez/s 3903 NHOr Sleusg langoeid Sl 40 ATEWINS B 2un3s0 Tree daen
o | s omowomns on oua |3z | aiva A0 GO0 | popeds emmenn | e s 2 “Loins S O 1
Q34 ‘N3070S ‘LIND0S ALILVS ao/0L/1 HSIOO WYHSIH _mmm_:: mmur._Eu_o._. OFMVINOD NOUSAHCNI TVIRHIEL ONY A:a_.“..u“__hm._u.w.m

SFILIL OMIMYEA S3Iva “AE NMYHEO SSIDNYHIIOL
JI0H SNILNNOW
[vo ¥ ozt [1o# £01]
OO F Eibe _ 0O F 02
[zo1] _
a8

loel eve 7 ﬁ (Z'01) OF :SSINMOIHL TINV WAINIXVI "0}

| E_N.W G40 X ZLN ‘Qv3IYHL HOLVYINSNI 6

080 -1 "D, 08+ OL D. 0Z- :IHUNLYHI4WTL 8

swyoliw 6> JONVLSISIY L

_ _ fs] XY VSZ SINTHHNO9

) _ oo Bt (1-0L01L231) 2d NLYD A00OL :FOVLIOA 'S

| _‘ _ A3LV1d TIMOIN ‘SSYHE LNN ONIMOOT ¥

1 | N @3LV1d TIMOIN ‘SSWHE :LOVINOD €

/ x|_ [] TVLIOVAIOd “HOLVINSNI Z

w2 i1 T 370H ¥3a10S [0°2] 080°@ /M L3IND0S ALIHVS L

[1'6] 9e00 0L#310N gel . 'SNOILVDI4103dS

J3s [##1]
[1#] g91'e — I—

LS'e

w/iz/e | OH |sefizda | OH | sofizde | mmr L0 SOM WO g |[com DT SE04-0e5

ADOTONHDIL
ao/1se | 200 | eodiede | D0 | oodou/ | OAH a3sVITIY L

*ROENKSAL
uvd |Qhdddy | AUWD |O¥DEHD] FUVA | NMwHG MNOILHINAS3a AM |# dzo 205 40 INISNOD MILLEM S53HdX3 FHL LNGHIM
AIN00ET 38 MeD Lefdel ML U0 TIOHM NI H43H1THM
MO SIHL 40 ROLHOZ ON 0303538 SIHDE T
BE0L OM dD0 . TOESL RPN . SODJ-DWS OM 20D SNOISINIH

Safety Socket (Both)

212

Ultra Bright LED

5.0mm Round LED Lamp

- N ~
OVL-55 Series 0.5 Scuars <2
Features: 3 L0
QIS S
+ Standard Smm round package g
« High lurinous output . _"‘\\
- Water clear lens ! irase e
| ——
| T TV
o~
g 24,0 MIN, 27
o
Maximum Ratings at Ta=25'C
Reverse Voltage (<100 uA4)
D.C. Forward Current ..
Pulse Current (Pulse Width of 0.1ms, 1/
Operating Temperature Range .
Storage Temperature Range ... i —40}0 +100°C
Soldering Temperature Dip Solderlng . 260Cfor 5 secs
Soldering Temperature Hand Solderlrg . 350°C for 3 secs
Radiation Diagrams
g] N
Electrical & Optical Characteristics at Ta=25 C
ez chp Derinant Vsing
Wrmslangts Amga
Msterxl Emitted Solour Brightran Lara Bolour Il 22 20ma 28 (dag
Ovi-ssiz nGeld / Sepphite Bus fhegz Weter Clacr £ bl 4300 b5 an kH
ovi-ssia nSeM Seppnite Trum Goean gz Witer Slagr E+-] 4550 1300 | == 40 kH
TossEs A1EzInEE Smc gz Wooar Chaor -] 4190 S0 | 2 1s s
ovi-ssia EAb $3 Yalow Hhegz Wetar Clacr 5= 4300 weoT | 21 is kH
ez ch
iy
starel =mrim leur Brightran Lamagolour | KA Tae:
oz naerSegphinte White gz Viezer Claer o oz a0 =0T | =2 40 hH
AN v

Casama ThaSEs Sheet 3o 5 Comams Ire et eing 1 e PRl Fame St B TEun 0 e I ana 10 T R ManIe B 0remied v T Se O S Siner e o mILTanan puTas
715 5 DR The ENTEon (3 BUSEST I SREnE WINSLE OO SN D E0ES) CEtE SNERT DMRVInUS) S

*2r 15 ateran, of COTINNENESS, & Ny 7O IR of CrTiZaion M 127 o ary Lse made of 1. Lse'w of 1ns os

Sotan ty o b roeiLess Tor e oS & et i Sy s g L0 Casad o Haton s e or mtien LAy o e or damage

nciucing Iebity resuting fom Feglgeros or whins e Gup Wes W 0f Fe pessioity of Such | ossor demegs B reng) |5 eckaces,

r st oF DersorE niry esuiting Yo s negigence. SPC Mutecrp ks $e regishe renermon of the Groug. © Premer Samel pic 2008

R farnal.com
et mutticomp

Hpfwena.cpe.oouk

Fzge <> 2210/08 V11

213

Ultrasonic Distance Sensor

\()/ Seeed Studio Works

WWW SEEEDSTUDIO.COM
Tech Support: info@seeedi.com

Seeed Ultrasonic Sensor

Seeed ultrasonic sensor is non-contact
distance measurement module, which
is also compatible with electronic brick.
It's designed for easy modular project
usage with industrial performance.

Features

Detecting range: 3cm-4m

Bestin 30 degree angle

Electronic brick compatible interface
5VDC power supply

Breadboard friendly

Dual transducer

Arduino library ready

Specifications
Supply voltage 5v
Global Current Consumption 15 mA
Ultrasonic Frequency 40k Hz
Maximal Range 400 cm
Minimal Range 3cm
Resolution 1cm
Trigger Pulse Width 10 ps
Outline Dimension 43x20x15 mm

Page 10of2

214

&

Practical test of performance,

Best in 30 degree angie

5/14/2010

WWW.SEEEDSTUDIO.COM
Tech Support: info@seeedi.com

\L)/ Seeged Studio Works ESSE

Sequence chart

Initiate Echo back
10uS|TTL to signal pin pulse width corresponds to distance
{about 150us-25ms, 38ms If no obstacle)
Signal
Fomula

puisa widih (uS) /58= disiance {cm)

putse width (uS) /148= distance (inch)
Internal

Ultrasonic Transducer will issue 8 40kHz pulse

A short ultrasonic pulse is transmitted at the time 0, reflected by an object. The senor
receives this signal and converts it to an electric signal. The next pulse can be transmitted
when the echo is faded away. This time period is called cycle period. The recommend
cycle period should be no less than 50ms.

If a 10ps width trigger pulse is sent to the signal pin, the Ulirasonic module will
output eight 40kHz ultrasonic signal and detect the echo back. The measured distance is
proportional fo the echo pulse width and can be calculated by the formula above. If no
obstacle is detected, the output pin will give a 33ms high level signal.

Revision History

Rev. Descriptions | Release date
1.0 Seead Ulirasonic Sensor 14.05.2010
Page 2 of 2 5142010

215

Yellow LED

W/ Chicago Miniature Lighting, LLC
e ngbnng the world since 1910

4304H Series Solid State LED Lamps-Super Brite 30 med T-1 3/4 (5m

DESCRIPTION AND FEATURES

T=1 3/4 Super Brite LEDs

Al dimensions.

0
17
——
EE
s E
-~ 5
Qs
=
B o=
B
“3
%E
%8
= o
-

.:E
23
b

=t

Eé‘s‘

in ks = i + High-intensity light sutput.
| azenass * Wide viewing angle.

s 1
- - B.IERINE
|

|
o 231234
A
I
! R
1
038
030 T
SQTVE. 'H' WM.
.
- 058138
ANDDE P
— 1t 1
I i
JOPE -

ELECTRO-OPTICAL CHARACTERISTICS AND RATINGS
PART NUMEER AZ04H1 4304H3 AZD4HE 4304HT7
Qutput Color Red Arriber Green ¥ el
Diffus ion Diffused Diffused Diffuzed Diffuzed
Package Color Red Amiber Green ¥l
TestCurrant (mA) 10 13 10 10
Focward Velzge Typ. [V] 0 23 21 21
Forward Velage Max. [V] 1 3.0 3.0 3.0 30
Luminous Irensisy Min. (med) 1 o 4.0 3.0 25
Lumiriows Intensity Typ. [med) £.3 2 o £3
Capacisnce @ V=0 (oF) 45 4 0 45
Peak Wavelength nm) 850 GOE 563 583
iewing Anghe 2012 {degrees] 63 a0 75 65
Pawer Digsaton [mill) 60 135 75 B0
Reverse Ereskdown Valtage Min. V] 5 5 5 5

147 Central Avanue 18703 Dix Toledo Read Saret Zone Franca, Edifico B
Hacksnsack. MJ 07601 Brownstown, Ml 48133 Alajusla Coztz Rica

Phaona: (201) 483-3229
Fax: (201) 429-6911
E-mazil:zalssi@chml.com = Wab Sita: www.chml.com

Chicago Miniature Lighting, LLC reserves the right to make specification revisions that enhance the design andfor performance of the product

216

Appendix E: AutoCAD Drawings

Trainer 1 AutoCAD Drawing

T
RE @
1 l _ULTRA BRIGHT LED
74 S o o
_ri 3/ 4 @l]
I e

FOTENTIOMETER
'RED LED x4
=y
[ST . -
= I1E __I.;-',~ LA —

|'°— @
N QOOG
) _ K MOMEMTAR: WITCH =

@
@

217

Trainer 2 AutoCAD Drawing

0.931 2.284 —-|
@626 ~(1) (5
0.591-
5500
4 291
0.604
! f
1103
} o o——20.125 ! 5l°°
] §
0.400 oo . 142
}
1.047
_
8.660 RO125 0.585]
3.250
e 0.647
t
¢§? 459? ﬂ) 1.073
i\ t
| 1378|1622+
3 875

218

Personal Data:

Education:

Professional Experience:

Honors and Awards:

VITA

BRANDYN M. HOFFER

Date of Birth: September 10, 1987

David Crockett High School, Jonesborough, Tennessee

B.S. Engineering Technology (Electronic Engineering
Technology Concentration), East Tennessee State
University, Johnson City, Tennessee 2010

M.S. Engineering Technology (Electronic Engineering
Technology Concentration), East Tennessee State

University, Johnson City, Tennessee 2012

Graduate Research Assistant, East Tennessee State University
College of Business and Technology, 2010-2012

Lead Student, U.S. Department of Energy Industrial Assessment
Center; East Tennessee State University, Johnson City,

Tennessee, 2009-2012

Graduated Magna Cum Laude (B.S.), TELS Scholarship,
SMART Grant, U.S. Department of Energy Industrial Assessment

Center Certificate of Participation

219

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	8-2012

	Satisfying STEM Education Using the Arduino Microprocessor in C Programming
	Brandyn Moore Hoffer
	Recommended Citation

	tmp.1379633764.pdf.GbsiP

