
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

8-2012

Satisfying STEM Education Using the Arduino
Microprocessor in C Programming
Brandyn Moore Hoffer
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Educational Methods Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Hoffer, Brandyn Moore, "Satisfying STEM Education Using the Arduino Microprocessor in C Programming" (2012). Electronic Theses
and Dissertations. Paper 1472. https://dc.etsu.edu/etd/1472

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=dc.etsu.edu%2Fetd%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Satisfying STEM Education Using the Arduino Microprocessor in C Programming

A thesis

presented to

the faculty of the College of Business and Technology

Department of Engineering Technology, Surveying and Digital Media

In partial fulfillment

of the requirements for the degree

Masters of Science in Technology

with a concentration in Engineering Technology

by

Brandyn M. Hoffer

August 2012

Dr. J. Paul Sims, Chair

Mr. Garth R. Ghearing

Mr. William K. Hemphill

Keywords: Arduino, microprocessor, technology education, programming, computer science, STEM

2

ABSTRACT

Satisfying STEM Education Using the Arduino Microprocessor in C Programming

by

Brandyn M. Hoffer

There exists a need to promote better Science Technology Engineering and Math (STEM)

education at the high school level. To satisfy this need a series of hands-on laboratory

assignments were created to be accompanied by 2 educational trainers that contain various

electronic components. This project provides an interdisciplinary, hands-on approach to teaching

C programming that meets several standards defined by the Tennessee Board of Education.

Together the trainers and lab assignments also introduce key concepts in math and science while

allowing students hands-on experience with various electronic components. This will allow

students to mimic real world applications of using the C programming language while exposing

them to technology not currently introduced in many high school classrooms. The developed

project is targeted at high school students performing at or above the junior level and uses the

Arduino Mega open-source Microprocessor and software as the primary control unit.

3

DEDICATION

This thesis is dedicated to my family who has continued to encourage me to pursue

higher education and a successful future. First, I would like to dedicate this to my mother

Carolyn Hoffer who supported my curiosity in technology at a young age despite the damage it

caused to numerous electronic devices. Her continuous support of my decisions and

encouragement over the years kept me in school despite changing majors and universities several

times. Her willingness to let me make my own decisions in life has allowed me to develop into

the person I am today and I could not ask for better. I would like to thank my father Brett Hoffer

who has supported me in my decisions and assumed much of the financial burden of the extreme

price of putting a kid through college. He has taught me the value of hard work and dedication

and been an ever present example of how those qualities directly affect success in the “real

world” and personal life. I would also like to thank my grandparents Rolland Vogt and the late

Eva Vogt who supplied me with magnifying glasses, VCRs, and other electronics that originally

sparked my interest in science and technology. Their praise for learning how to hook up and fix

various devices and computers made education in the field of technology an obvious and

satisfying choice once I was ready to make it.

4

ACKNOWLDEGEMENTS

I would like to thank Dr. Paul Sims for the education and opportunities he has provided

me with over the years. His interest in my education is the reason I joined the M.S. of

Engineering Technology program at ETSU, and I am very thankful for his knowledge and

generosity.

I would like to thank Mr. Garth Gearing for volunteering to oversee all of my

independent studies and Topics in Technology courses. His help has allowed me to gain valuable

hands-on experience and provided me a continuous outlet for exploration in the field of

Electronic Technology.

I would like to thank Mr. William Hemphill for dedicating his time and knowledge in

helping create the Trainers. If it wasn’t for his valuable input, the prototype trainer would be a

dysfunctional wreck comprised of plastic, superglue, and duct tape.

I would also like to thank Matt Crum and Benjamin McMurry for their assistance with

the creation of the first prototype trainer as well as their input and knowledge on mechanical

engineering and design.

Finally I would like to thank the Arduino open source development team and all of the

programmers who either contributed to my knowledge or provided code used in the project

created for this thesis. These people are listed in Appendix A.

5

CONTENTS

Page

ABSTRACT .. 2

DEDICATION .. 3

ACKNOWLDEGEMENTS .. 4

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

Chapter

1. INTRODUCTION .. 11

2. MEETING EDUCATIONAL NEEDS ... 15

The Purpose of the Project .. 15

STEM Needs in Education.. 19

An Interdisciplinary Approach to C Programming ... 21

Meeting Standards While Incorporating Other Disciplines .. 24

Requirement 1 ... 28

Requirement 2 ... 29

Requirement 3 ... 29

Requirement 4 ... 29

6

Chapter Page

Requirement 5 ... 30

Requirement 6 ... 30

Requirement 7 ... 30

Requirement 8 ... 30

Requirement 9 ... 31

3. THE LAB MANUAL ... 36

Format and Reasoning .. 36

Lab Descriptions and Concepts .. 39

Lab 8: Maintaining Lighting Levels Using a Photoresistor 40

Lab 10: Interfacing With a Matrix Keypad... 53

4. DESIGN CONSIDERATIONS .. 67

The Arduino Mega .. 67

Other Electronic Components and Devices .. 70

Materials and Construction ... 80

5. CONCLUSION AND RECOMENDATIONS ... 89

REFERENCES ... 94

APPENDICES .. 97

Appendix A: Arduino Programmers ... 97

Appendix B: The Lab Manuel ... 99

7

Appendix C: Lab Descriptions.. 185

Lab 1: “Hi Guys!” ... 185

Lab 2: Simulating a Stop Light ... 185

Lab 3: Inputs and Outputs ... 186

Lab 4: Better Serial Communication .. 187

Lab 5: Programming a Keypad ... 187

Lab 6: Reading Analog Inputs .. 188

Lab 7: Dimming a Light Using the Keypad.. 188

Lab 8: Maintaining Lighting Levels Using a Photo Resistor ... 189

Lab 9: Interfacing With an LCD Screen ... 189

Lab 10: Interfacing With a Matrix Keypad... 190

Lab 11: Making a Calculator .. 191

Lab 12: Resistance and the Ohm Meter .. 191

Lab 13: Creating a Light Meter .. 192

Lab 14: Ultrasonic Distance Measurements ... 193

Appendix D: Datasheets ... 194

10 K Rotary Potentiometer ... 194

10K Tuner Potentiometer .. 197

Diode ... 199

Green LED .. 203

8

LCD Screen ... 204

Photoresistor ... 205

Project Box.. 207

Push Button ... 208

Red LED ... 211

Safety Socket (Both) ... 212

Ultra Bright LED .. 213

Ultrasonic Distance Sensor ... 214

Yellow LED .. 216

Appendix E: AutoCAD Drawings .. 217

Trainer 1 AutoCAD Drawing ... 217

Trainer 2 AutoCAD Drawing ... 218

VITA ... 219

9

LIST OF TABLES

Table Page

1. Lab 8: Commands and Description Section.. 43

2. Lab 8: Naming Convention ... 49

3. Lab 10: Commands and Description Section.. 54

4. Lab 10: Character Print Examples .. 57

5. Lab 10: Keypad Buttons ... 59

6. Arduino Mega 2560 Summary.. 68

7. Electronics Parts List .. 72

8. Pin Connections .. 79

9. Key Labels .. 79

10. Hardware and Construction Materials .. 88

10

LIST OF FIGURES

Figure Page

1. Arduino Trainers ... 19

2. Lab 8 Code .. 53

3. Character Array ... 58

4. Lab 10 Code .. 65

5. Arduino Mega 2560 (Arduino, Arduino Mega 2560, 2012) ... 70

6. Trainer 1 Schematic 1 ... 74

7. Trainer 1 Schematic 2 ... 76

8. Trainer 2 .. 78

9. Prototype Trainer 1 ... 82

10. Project Box Outside .. 84

11. Project Box Inside ... 84

12. MDF Support Insert .. 85

13. Project Box After Milling ... 86

14. Prototype Trainer 2 ... 87

CHAPTER 1

INTRODUCTION

In an effort to create an educational tool that would provide students with a fundamental

understanding of C programing as well as exposure to electronic technology, two trainers and

associated labs were created. This project is meant to assist high school students performing at or

above the junior level of education. The Trainers consist of two separate units each comprised of

multiple components designed around several laboratory assignments. The laboratory

assignments each aim to progress with more complicated code once the student has used the

previously introduced code commands in various programs (referred to as sketches by the

Arduino software). The resulting prototypes and lab assignments are constructed in a way that

makes them easy to use and easy to complete during allotted class time. The result of

completion of the labs using the associated trainers will be a proficiency in the basics of C

programing as well as exposure to multiple technology components, key ideas in using both

analog and digital electronics, and the ability to interface with various sensors and displays.

The Arduino microprocessor was chosen for its ease of use, its capabilities, its relatively

cheap purchase price, and the fact that it is programmed in the C language; making the

knowledge gained by programming applicable to multiple areas in computer technology. The

Arduino is also an “open source” device consisting of a hardware unit available in multiple

configurations for various technology applications. The Arduino Mega 2560 unit was chosen as

the key piece of hardware for use with the trainers because of its abundance of inputs and outputs

and its ability to demonstrate all necessary C commands. The Arduino units are programmed by

12

any computer with a standard operating system using open source software. The associated

trainers are used by simply connecting different plugs to various inputs and outputs to the

Arduino unit. All necessary connections to make the hardware and electrical components

function have already been made allowing students to focus solely on their understanding of the

programs being created and the technology concepts introduced.

The lab manual introduces key commands that work together to accomplish specific tasks

with the developed trainers or with a computer. The lab manual begins by illustrating in detail

how to connect the Arduino to a computer with a Windows 7 operating system, and begin

communication. The lab assignments build in a logical order continuing to introduce new

commands and techniques while using previously introduced commands. Students are limited to

using only those commands introduced in each lab section as well as those introduced previously

in an effort to guide students programming; forming easily gradable and consistent finished

sketches. Examples of functioning sketches for each finished lab assignment have also been

complied to have a functioning program for educators to grade with. Each lab also introduces

key concepts in electronics to better aid students in understanding the tasks they are performing

as well as educate them to these concepts.

The trainer and associated labs meets several of the required course content standards for

education in C programing as well as others in math and technology courses as defined by the

Tennessee Board of Education. The individual components were chosen for their ability to

demonstrate successful use of C code. LEDs serve as indicators of producing successful control

statements that turn on various outputs. The LEDs provide an easy to notice indication that a

particular control statement was correctly formed or an output was properly specified. These are

used in a variety of ways to demonstrate binary numbers, analog outputs through dimming, and

13

simple output control. A potentiometer is used as the first analog input. This device allows for

the voltage on an analog pin to be easily changed simply by twisting a knob. A photo resistor

was used as a light sensor to vary the analog input as a function of the presence of light in the

room. These allow for control statements to be used with variable inputs and require proper data

formatting.

To further demonstrate the idea of resistance as well as provide a lab dealing with more

complicated control statements several resistors were used to form multiple voltage divider

circuits to measure the resistance of an external resistor. The photoresistor was used again in a

second trainer to measure lighting levels. This was chosen for its ability to demonstrate output

control based on analog inputs and to expose students to a transducer device. Simple push

buttons were used as the primary means to demonstrate input control statements and simulate

digital electronics. These are featured on the first trainer to illuminate LEDs and to provide

readout on the computer through the manipulation of binary numbers.

More complicated electronics such as the matrix keypad, the LCD screen and the

Ultrasonic distance sensor expose students to highly useful components. The keypad and LCD

screen also allow for the use of library or header files in C programming, allowing students to

call data from a prepared file. Through various labs these electronics allow students to develop

algorithms and use multiple data types including characters and arrays. Controlling these devices

requires students to use more complicated mathematical functions and conditional statements

allowing for exposure to many of the basics of C programming.

The prototypes and associated lab manuals as well as their design specifications and

components will be kept by East Tennessee State University. These prototypes will hopefully be

14

adopted by the college of Engineering Technology for minor scale production and sold or

donated to local area High Schools as a learning tool should they show interest. Mr. Garth

Gearing’s automation and robotics lab has the necessary tools and equipment to meet small scale

production of these units and is currently (summer semester of year 2012) being converted into a

manufacturing work cell with multiple robots on a conveyer system as well as an automatic

storage and retrieval palletizing device.

These trainers and associated labs will aid students gaining a greater understanding of

electronics and programming through hands-on application. The resulting education should spark

students’ interest in computer science, technology, and engineering majors improving education

in Tennessee and meeting the much needed demand for STEM graduates. Members of the

“Rising Above the Gathering Storm” (2010, p. ix) committee discussed the current state of

STEM education and its impact; “participants expressed concern that the weakening of science

and technology in the United states would inevitably degrade its social and economic conditions,

and in particular erode the ability of its citizens to compete for high-quality jobs”. To produce

the best possible trainer for distribution to schools, revisions to the final prototypes may be made

to creating a more manufactureable trainer unit. The current design meets all necessary

functionality and the associated labs introduce a basic proficiency in using a variety of C

programming commands to meet various tasks and control a variety of inputs and outputs.

15

CHAPTER 2

MEETING EDUCATIONAL NEEDS

The Purpose of the Project

The initial goal of the project was to design an educational tool that allowed students to

investigate their interest in science and technology courses in high school in a unique way. In

order to properly meet course standards for the various technology related courses, high schools

often segment classes into highly specific curriculum. While these classes must meet or exceed

the standards for particular states educational requirements they often do not allow for students

to observe the way in which many of these courses work together. The resulting project was to

allow for students to easily use technology in a hands-on approach while meeting standard

course requirements.

In order to narrow the scope of the project a series of laboratory assignments were

created for use in a high school class room. These labs were to help meet the core requirements

defined by the Tennessee Department of Education curriculum standards for C programming.

These labs were accompanied by two educational trainers that allowed for technology and

engineering ideas to be applied through the use of C programming. The trainer exposes students

to various technologies and concepts that can be used in related STEM fields, thus promoting

education and interest in Science Technology Engineering and Math. This integrated approach

will show students how various fields and knowledge in these areas work together to provide

“real world” solutions.

16

The Arduino microprocessor is programmed in the C language. It can interface with any

analog or digital device that does not exceed its specifications. Any device that can be powered

by 5V and requires less than 40 mA of current can be used without the need for separate power

supplies. In order for students to use this device for C programming the trainers were developed

to incorporate electronics that could teach key concepts of the language. The trainers use simple

8 pin stackable headers as plugs to interface with the Arduino. These plugs correspond with the

electronics on the trainers to produce easily readable outputs showing proper completion of a

program. All electronics were chosen to demonstrate key programming or technology concepts.

Students first learn how to specify and format outputs through the use of LEDs. The first

trainer contains two sets of red, yellow, and green LEDs in a stoplight configuration. These are

used in the second lab teaching students about the basic structure of programming. These also

teach students to activate digital five volt outputs on the trainer that turn the LEDs on and off. If

the program is written correctly the LEDs simulate a stoplight. This allows for the output to be

observed by simulating a device most are familiar with. Errors in the programming will also be

easily noticed so the program can be debugged and retested.

Conditional statements are used in C to perform specific actions based on some variable

or event. “There are two forms of conditional statement: with or without an else clause”

(Harbison & Steele, 1984, p. 202). The “if…else” statement is used with momentary push

buttons to act as inputs and LEDs to act as outputs. Four buttons and four LEDs are featured on

the first trainer to teach students how to trigger digital outputs based on the condition of digital

inputs.

17

To further the understanding of conditional statements and introduce the concepts of

Binary and ASCII, a keypad was featured on the first trainer. This keypad sends a 4-bit binary

output to various digital pins to be interpreted by a program. The binary value read by the

Arduino is then displayed. Student use the Boolean operators with conditional statements to

interpret signals from the keypad. The keypad is also used to introduce different variables and

data types. In one lab students write a program that displays the key pressed in its binary for on

four LEDs. This is done by reading the keypad’s output and using math to reduce the ASCII

encoded number to its actual decimal value.

The first trainer features two analog input devices. These are a rotary potentiometer and a

photo sensor. Interfacing with these devices requires more complicated control statements and

the use of variables. These also demonstrate the principals of the analog to digital converter used

by the Arduino to interpret these signals. Another set of two ultra-bright LEDs are used to

visually demonstrate an analog output.

The second trainer uses an LCD screen to make the device portable. To control the LCD

screen a header (.h) file is used to display characters on the screen. Header files, discussed more

in depth later, are used to simplify code and retrieve data. The screen works in combination with

the other devices on the second trainer to display the value of variables and print specific

characters based on the condition received. A matrix keypad is featured on the second trainer.

This was used to interface with the LCD. Students use various buttons on the keypad to specify

what task the Arduino should be performing and send data to the Arduino.

In the first lab using these two devices, students are instructed to print characters to the

LCD screen based on the buttons pressed. This introduces character arrays and how to use them

18

in a program to produce certain actions. Students then create a simple calculator using these two

devices. This allows for numerical arrays to be used for calculations. Students develop an

algorithm to do math by calling the data stored in the array and performing the specified math

function.

Two safety sockets are located at the bottom of the second trainer. These use a voltage

divider in series with an external resistor to display the resistance measured in ohms. Students

will use this to compare measured and theoretical values of several resistors. The code to

perform this function is added onto the previous program using the keypad and LCD. Loops are

introduced to demonstrate how to execute only a portion of C code under certain conditions.

Students will also use loops with the photoresistor on the second trainer to calculate an average

reading over time. The analog reading will then be converted to a measure of luminance and

displayed on the screen.

The previous labs introduce the knowledge necessary to interface with the ultrasonic

sensor. By the time students write C code using this sensor, they will have reasonably developed

programming skills and know how to handle multiple variables and data types. This sensor is

used to calculate distance in a program based on the time in milliseconds read by the Arduino.

Students are instructed to interpret the received data and display the measurement in inches and

centimeters. Students will work in a group to interface with this device allowing them to present

a solution using the knowledge gained in C code. A picture of the two trainers can be seen in

Figure 1.

19

Figure 1. Arduino Trainers

Interfacing with these devices allows for a unique educational opportunity in C

programming. Currently there are issues with the way STEM education is being taught at the

high school level. These issues are defined in the next section of this paper. This approach to C

programming aims to better education in these fields by incorporating new ways of teaching. The

exposure to technology and math in the lab assignments should satisfy several of the needs to

better STEM education in Tennessee high schools.

STEM Needs in Education

The National Science Board (NSB) of the U.S. National Science Foundation clearly

states the need to promote STEM education in high school to encourage an educated workforce

20

in these fields. “Almost 30 percent of students in their first year of college are forced to take

remedial science and math classes because they are not prepared to take college-level courses”

(National Science Board, 2007, p. 2-3). The United States has historically been a source for

some of the most innovative science and technology advances and should strive to maintain that

stance. This is not possible if STEM education is not properly taught. While there are many

factors that contribute to the lack of properly educated students in the U.S., sparking students’

interest in these fields and teaching subjects in new ways can improve students’ abilities in these

subjects.

The global market is now making the technology market far more competitive than in

previous years. In order to compete and keep its position as a world leader for technology and

innovation it is important that the U.S. must properly educate students to be competent in the

STEM fields that drive innovation in this new age. Students must be exposed to this education

during high school or earlier in order to spark their interest and ensure they have what it takes to

receive a valued college degree in these areas. Unfortunately the U.S. is falling behind in

education. “The World Economic Forum ranks the United States 48th in quality of mathematics

and science education” according to a 2010 report evaluating the competitiveness of the U.S. in

the global market (By Members of the 2005 “Rising Above the Gathering Storm” Committee et

al., 2010, p. 6). While there are many social, political, and economic factors that affect

education in the United States, the way in which students are being taught plays a big role in

education.

Currently many teachers in the U.S. are not fully capable of teaching the STEM fields

effectively. Classes are often taught in a subject by subject basis with little interdisciplinary

approach. Teachers are often not given the tools and flexibility needed to become educated on

21

the subjects enough to teach them effectively. The STEM national action plan of the NSB states

that “the Nation faces a chronic shortage of qualified teachers who are adequately prepared and

supported to teach STEM discipline effectively” (NSB, 2007, p. 5). This is often the case

because of the inability to attract highly qualified professionals into teaching jobs. There is too

little flexibility in teacher compensation and other professional positions offer much higher

salaries and conditions than most teaching careers. The question remains: if there is a need to

improve STEM education, how is that done?

An Interdisciplinary Approach to C Programming

In order to Improve STEM education it is important to recognize that these fields do not

operate independently in real world applications. Many high school classes focus on teaching the

theory behind the subjects with little real world application. Individual classes often do not

incorporate concepts from other related subjects. The STEM fields in particular all work together

to form real world problem solving skills. Princeton University has created an undergraduate

college program known as Integrated Science that incorporates multiple aspects of various

science disciplines into a singular course without the single subject barriers of traditional

schools. David Botstein, the director of the Lewis-Sigler Institute for Integrative Genomics at

Princeton states that “Any budding researcher needs a foundation in several fields to be able to

work on the most important problems confronting scientists today” (Princeton University, 2012).

There are many expert opinions on how to better education that range from increasing

salaries, to making mandatory, across the country, benchmark standards. These ideas, however,

fall outside of the scope of the created project for this thesis and will not be discussed. Douglas,

22

Iversen, and Kalyandurg (2004) of the American Society for Engineering Education (ASEE)

have published a paper entitled Engineering in the K-12 Classroom that discusses several of the

issues with science and engineering education. Among the six major recommendations made to

improve science and engineering education in the U.S., three can be improved directly at the

classroom level. The first of which is to use more hands-on learning that will make curriculum

less theory-based and more context-based. The second is to take interdisciplinary approaches to

subjects. The last recommendation that falls within the scope of the classroom is to use and

improve K-12 teachers. While this project cannot improve teachers in these subjects, it can

provide them with a tool that will make their jobs easier and help ease the perception that

engineering and science are hard subjects.

Many teachers were surveyed in the previously mentioned ASEE report on their views of

engineering and associated education. Some of the key questions in this survey also illustrate

what is needed to better engineering education. According to the paper “teachers believe that

majoring in engineering in college is harder than majoring in many other subjects”

…furthermore “39.1% strongly agreed and 51.2% agreed with the statement, ‘Understanding

more about engineering can help me become a better teacher’” (Douglas et al., 2004, p.10).

While the STEM fields most certainly are not easy, the perception that they are too difficult to

enter can be changed with the proper approach to education. A series of hands-on assignments

that teaches the fundamentals of these subjects while demonstrating the ideas behind them can do

a lot to better understanding amongst both students and teachers.

The ASEE idea of improving hands-on learning goes hand in hand with the problem of

discontinuity between public education and workforce requirements. The NSB agrees that more

should be done to provide the type of useful education that has real world applications rather

23

than using memorization and theory alone to teach subjects. “All stakeholders should make a

serious effort to minimize the current disconnect between high school graduation requirements

and the skills and knowledge required to succeed in higher education and the workforce” (NSB,

2007, p. 19). Providing students with skills that will help in college level classes and their future

careers will not only provide a more useful education to the students but ease the number of

remedial class enrolments and training hours spent on new employees in related fields.

In order to satisfy the principals for improving STEM education in the high school setting

the created project was designed with these ideas in mind. Rather than abiding by the traditional

way C programming is taught in high schools, an interdisciplinary hands-on approach was taken.

C programming is typically taught through the use of lectures and reading for education where

the fundamental functions and commands of the language are to be memorized and demonstrated

through a few programs. Students do get some “hands-on” experience in the class room using a

computer to develop these basic programs, but this method only exposes students to the aspects

of computer science for this language. While C is typically used for programming computer

applications, it has other applications as well. The Arduino Microprocessor chosen for

demonstration of the language is a valuable technology and engineering tool that can accurately

show the usefulness of C beyond simply sitting in front of a computer. Using the Arduino to

control various electronics on the trainer demonstrates these key commands and how they can be

used in control systems and electronic devices. This in turn bridges the gap between a computer

language and the technology that can be driven by it.

24

Meeting Standards While Incorporating Other Disciplines

While many of the recommendations made by the NSB and the ASEE would improve

education, the coursework and classes introduced in high schools must still meet the curriculum

standards set out by each state. As previously mentioned, in an effort to narrow the scope of this

project it was created to meet several of the standards defined out by the Tennessee Department

of Education (TDOE) for C programming. While this project may meet course standards in other

states, they were not considered in the development of this project. An interdisciplinary class

covering many aspects of different subject would likely not meet these standards as a result of

not teaching any particular subject with enough depth. The created project satisfies the core

requirements set out by TDOE for standards 2.0 - 4.0 in the subject of C Programming

Applications. Standard 1.0, however, deals with the history and background of computers and

programming and will still be met by standard classroom instruction.

As it stands the TDOE sets core requirements for every class that must be met under state

guidelines in order for a high school class to be considered adequate. These standards are divided

into sections and defined by learning expectations and performance indicators. The individual

standards for each class are listed on the TDOE site at www.tn.gov/education/curriculum.shtml

and are available in Adobe PDF format for anyone to view. C Programming Applications is

listed under the Computer Technology courses subsection for grades 9-12. There is a prerequisite

for the class of Algebra I, meaning most students will not encounter this class until their 10
th

 or

11
th

 year. The class C Programming Applications has four standards as previously mentioned.

These are all satisfied by the education students will receive using the created project, excluding

the history requirements. The lab manual provides instruction on how to use the individual

commands as well as the previously mentioned concepts for technology education. This project

http://www.tn.gov/education/curriculum.shtml

25

is not meant to replace current classroom materials and instruction but rather supplement them

allowing for an understanding of C programming applications that are not currently taught in

most Tennessee school class rooms. The electronics on the trainers correspond with specific

eight pin headers that have been labeled. This makes interfacing with the electronics as simple as

plugging them into the Arduino board. Having a simple interface allows for programming to be

the main focus of the class and prevents students from having to build circuits.

The following standards were taken from the TDOE website for C Programming

Applications core standards. The standards are listed in order and the way in which the created

project supports these standards is listed below each one.

Tennessee State Board of Education, C Programming Application Core Standard

1.0 (2005):

Standard 1.0

1. The student will gain competency in the background knowledge of

computers and programming.

Learning Expectations

The student will

1. Discuss the history of computers and programming languages.

2. Describe the purposes of the computer and the C language.

3. Discuss the architecture of the computer.

4. Summarize the characteristics of the C programming language.

5. Critique the role of the computer in society.

26

This standard is satisfied by traditional classroom instruction. While the created project

does teach some of the purposes of C programming and many of the characteristics of the

language, historical knowledge cannot be taught through the use of the trainer. The standards

recommend that students develop a timeline with dates demonstrating their proficiency of the

historical knowledge of computers and programming languages.

Tennessee State Board of Education, C Programming Application Core Standard 2.0

(2005):

Standard 2.0

2. The student will use system operations as they relate to C programs on

the computer.

Learning Expectations

The student will

1. Demonstrate computer start-up procedures.

2. Discuss the basic structure of the C language.

3. Explain C program entry, listing and editing as it relates to the operating

system.

4. Discuss the execution of programs.

5. Explain the storage, retrieval and deletion of programs.

Performance Indicators: Evidence Standard Is Met

The student is able to

• demonstrate the use of a prepared C program on the computer.

27

This standard is satisfied within the first few lab assignments. The introduction to the

crated lab manual describes in detail how begin connecting the Arduino Mega microprocessor

and load a basic prepared program. This introduces the start-up procedures and the basic format

of the language (requirement 1 and 2). The second requirement is for the basic structure of the C

language is discussed. Students will see the basic programming structure for various commands

as they are introduced throughout the labs. In Lab 2 students edit the prepared program in the

introduction to perform a more complex task by simulating a stoplight rather than blinking a

single LED with the prepared program. This also allows students to be familiar with program

entry, editing, and execution (requirements 3 and 4). To satisfy requirement 5, the lab manual

suggests that programs should be saved often with understandable naming conventions. Code

that does not work should be deleted to prevent using it in future labs. This standard suggests that

students execute a prepared program then edit the program and execute the new one as a sample

performance task, which is performed in lab 2.

Tennessee State Board of Education, C Programming Application Core Standard

3.0 (2005):

Standard 3.0

3. The student will write and document an executable program in C

Learning Expectations

The student will

1. Identify names for variables and their data types.

2. Recognize the symbols for operations and use them in evaluating data.

3. Demonstrate the various methods of obtaining input/output and

formatting output.

28

4. Analyze the task and develop an algorithm.

5. Demonstrate control statements.

6. Identify, illustrate and perform operations on data types in arrays.

7. Identify and use functions.

8. Read and/or write data files for input/output purposes.

9. Debug the program and verify the output of the program.

Performance Indicators: Evidence Standard Is Met

The student is able to

• analyze, design and write a minimum of two executable programs in C

for each of the Learning Expectations.

This standard has the widest range of learning expectations for the class and seems to be

the educational focus of C Programming applications. As a result the individual requirements

were broken down, and the ways in which they are satisfied were discussed.

Requirement 1

Identify names for variable types and their data types. The “int” or integer variable is

introduced in lab 3. Integers are used to call digital pins by recognizable names rather than

numerical address. Lab 4 introduces the data types “DEC, BIN, HEX,” and “OCT”. These are

the commands used to format a variable as a decimal, binary, hexadecimal, and octal number.

Lab 6 introduces the float variable used to express decimal or fractional numbers. Lab 10

introduces the data type byte and the variable “char” or character. These are used to specify

characters for an LCD display. Finally lab 11 introduces the “long” variable type that can store

much larger numbers than the “int” variable type.

29

Requirement 2

 Recognize the symbols for operations and use them in evaluating data. All Boolean and

arithmetic math operations are introduced in lab 3. These are used with control statements to

produce the proper output. Lab 4 then introduces mathematical operations to be used with the

variable types. Finally in Lab 11, where students create a calculator with basic functions, almost

all variable types and most of the Boolean operators are used to perform the required functions.

Requirement 3

Demonstrate the various methods of obtaining input, output, and formatting output. In the

first lab students use the serial monitor or text display on the computer as an output. Lab 2

students activate 6 LEDs using digital outputs. Lab 3 further builds on this concept using digital

inputs in the form of push buttons. The analog input and output functions are introduced in labs 6

and 7. These are capable of reading or writing variable 5 V signals. All of these inputs and

outputs are used in many labs and students must format them properly in order to complete each

assignment. If the variable types are not formatted correctly, their sketch will not work.

Requirement 4

Analyze the task and develop an algorithm. When students create a calculator they must

form algorithms to handle the mathematical function input on the keypad. These algorithms will

allow the Arduino to interpret the incoming variables and perform the correct mathematical

function. Other labs require algorithms to be developed to convert an analog input measurement

into usable data, or a physical measurement such as the ohm or voltage.

30

Requirement 5

 Demonstrate control statements. In lab 3 where students first used digital inputs and

outputs together, control statements allow for the proper output to be formed. These statements

become progressively more complicated when handling different variables and data types. The

“if” command is used heavily throughout the programs to specify an action to be performed

based on different inputs.

Requirement 6

 Identify, illustrate, and perform operations on data types in arrays. The calculator lab uses

arrays to store numbers input with the keypad. These numbers are then used in the students’

calculations. Character arrays are specified in lab 10 where students learn how to interface with

the matrix keypad. These arrays allow for various characters to be received by the Arduino.

Control statements are used to specify what should be done when receiving each character.

Requirement 7

 Identify and use functions. Functions must be used in all labs to create working programs.

Functions let the Arduino know how to handle individual portions of the code. The necessary

basic functions for programming the Arduino are the setup and loop functions. These are

introduced in the very first lab.

Requirement 8

 Read and/or write data files for input and output purposes. Header files, discussed in

more detail in Chapter 3, are used as the primary data files. The LCD screen used first in lab 9

uses the library files to display characters to the LCD screen output. A header file is also used to

31

control the matrix keypad used in lab 10. This file allows for data from the keypad to be used as

an input for various functions. These files are used in the remaining labs.

Requirement 9

Debug the program and verify the output of the program. Completion of any lab

assignment is done by creating the proper output. As such, students must debug their programs to

correct errors and produce the desired output. Programs become progressively more complicated

increasing the likelihood of errors. Each completed program will give students more experience

in debugging these problems. The state of any variable, input, or output can be viewed on the

computer’s serial monitor allowing for students to see where problems occur. More complicated

labs encourage students to use the monitor to verify that calculations are correct.

The sample performance task to meet this standard recommends students convert one unit

of measurement to another. This occurs in the final lab where students will view distance

measurements on the LCD screen expressed both in centimeters and inches. Students convert

analog measurements in several labs prior to the final lab. These measurements are converted to

usable data to control outputs based on specific conditions. In lab 13 students will convert an

analog measurement into a measurement of illumination. In lab 12 students will use a voltage

divider to convert an analog measurement to ohms.

Tennessee State Board of Education, C Programming Application Core Standard

4.0 (2005):

Standard

4. The student will work as a team member to develop an integrated

application using C .

32

Learning Expectations

The student will

1. Define the roles of the team members.

2. Solve a complex task using C .

3. Compare and contrast the advantages of working as a group.

Performance Indicators: Evidence Standard Is Met

The team is able to

• analyze and present the solution of the task.

Upon completion of the Lab 13 students will have a detailed knowledge of the basics of

C programming and Arduino specific commands. Lab 14 is designed to be a coordinated group

project where student will work in a group to develop a distance measuring device using an

ultrasonic range finder. The output of the device will be measured, and students will plot their

readings against a ruler of known accuracy. They will use this information to determine an

equation for the line of best fit. There measurements will be displayed in centimeters and inches,

and measurements must be accurate for completion of the assignment. Students will have their

measurements checked against the ruler to verify that the proper calculations were performed.

The labs and the trainers also introduce concepts for the Principles of Technology I and

use math in a way that the Common Core State Standards Implementation Plan recommends.

According to the plan math should be used to link major topics within grades and provide

conceptual understanding with application. Multiple Labs use mathematics in the programming

of a sketch to solve algebraic equations. Students will use the calculator created in Lab11 to use

the sin, cosine, and tangent functions to verify their lab was created successfully. Many other

33

equations are introduced to handle variables and to produce readable and accurate measurements

for the various sensors introduced.

In order to explain the function of the keypads and other electronics, the concept of bits

and bytes is introduced. These data types use binary to represent numbers or characters. Binary is

explained in Lab 4 where students convert decimal numbers into several other formats. Binary is

a base two counting system that uses either a 1 or a 0 to signify high or low, on or off. This lab

includes the equation to convert decimal to binary. A Byte consists of eight binary bits that are

commonly used to Store American Standard Code for Information Interexchange (ASCII).

Computers communicate using binary numbers and encode all readable characters to integers for

storage. ASCII translates these to readable characters for the serial monitor from an eight-bit

binary code (Johnsonbaugh & Kalin, 1997, p. 15).

A/D converters measure an analog input in and convert it to a binary number in equal

steps. “Each unique digital code corresponds to a small range of analog input voltages. This

range is 1 LSB [least significant bit] wide” (Lundberg, p. 2). The concept of resolution is also

mention. The resolution of an A/D converter is equal to its full scale voltage divided by the

number of bits used to represent the voltage. This in turn determines the accuracy of an A/D

converter and the accuracy of the voltage students read in the serial monitor.

The A/D converter is used to measure the voltage from either a potentiometer or the

various voltage divider circuits. The voltage divider equation is used for measuring resistance in

multiple labs. The most notable is Lab 12 where students will use resistor color codes to predict

the value of the resistor. They will then use the ohm meter created to measure the resistance of

these components and compare them to their predicted values. This satisfies the TDOE standards

34

3220.3.4.a, 3220.3.4.b, and 3220.3.4.c for Technology I. These standards say students should

learn about electrical resistance, compare resistor values to measured values, and calculate

resistance (Tennessee State Board of Education, 2008).

Both analog and digital devices are used in the trainer and students will use both types in

their labs. Analog outputs use 5V pulse width modulation (PWM) at a rate of 490 hertz (Hz).

The analog output is therefore a square wave that “appears” to be changing in voltage as a result

of the duration of the pulse. One Hz is one cycle per second, or the amount of time a signal takes

to go from high to low and back to high again. The amount of time it takes for the signal to make

one cycle is the period of the signal. The frequency is defined as: Frequency = 1 / Period

(Davies, 1998, p. 275). Introducing these concepts satisfy the TDOE core standard 3220.3.3.b for

the class Technology 1 that applies to understanding frequency and period (Tennessee State

Board of Education, 2008).

In order to introduce hands-on technology application, a variety of electrical components

and sensors are used to demonstrate the labs. The use of a microprocessor allows students to

understand both digital and analog inputs and outputs. The more complex sensors in the trainer,

as well as variable voltage circuits, illustrate to students how to setup control programs using

technology concepts. Each of the more complex components of the trainer is described in the lab,

as well as the fundamental concepts for controlling them. Using these pieces of technology

commonly used in Electrical Technology and Engineering classes allows for the interdisciplinary

approach described by the NSB and ASEE.

 In order to address the issue of helping teachers with complicated subjects the labs were

designed to introduce all knowledge pertaining to the assignment. A brief explanation of each

35

command used in the lab is provided, as well as an explanation of how they will be used in the

sketch. All the internal connections have already been made and students will only be required to

connect labeled plugs to the Arduino Mega microprocessor simplifying the technology side of

the trainers. Each lab has already been completed in a sketch that will be provided in digital

format along with the trainers. These completed sketches have all been tested to work in the way

the labs suggests and use only the commands students are intended to use. They are commented

in detail to explain the function of each command set in the sketch so teachers will have no

problem understanding how the program controls the various components. The Arduino and

associated program is an open source technology that has a variety of information available on

the web to explain in detail any concepts or issues not understood by the instructor. This in turn

should make the instructor’s job much easier in being able to explain these concepts to students.

36

CHAPTER 3

THE LAB MANUAL

Format and Reasoning

The Lab manual was created to provide personal instruction to students and teachers on

how to complete each task assignment. It is divided into 14 labs that each introduces new C

programming commands and key concepts related to the language and the operation of the

created trainers. There is also an introductory section that describes how to get the free Arduino

software, connect the device, and use it to execute various programs. Each lab is broken down

into four sections. These sections are Purpose, Equipment, Commands and Description, and

Procedure. The lab manual is written in the second person narrative to reflect that these are

instructions provided to the student for completion of the assignment.

The use of the second person narrative was chosen to involve the student in the writing of

the labs. The use of the pronouns “you” and “your” reflect that the assignments are the creation

of individual students and that instruction is directed at them. These also take on the same

narrative that is used in classroom instruction. They can be read aloud by an instructor or fellow

student and do not sound as removed as the third person narrative. While the second person

narrative is rarely appropriate, it can be used to better provide instruction so long as the specific

audience is known. Owens Community College (2012, p. 1) agrees “Second person is effectively

used when writing directions; in this case the audience is clearly identified and is seeking the

author’s advice.”

37

The different sections of each lab are consistent throughout the Lab manual. The author

of this thesis based the format on a common format observed in the majority of classes

containing lab instructions while pursuing a M.S in Technology. This format was also designated

and used by the author to provide instructional labs to undergraduate students in the classes of

Industrial Electronics, Electronic Communication, and Electronic Principals at East Tennessee

State University. A similar format was approved and accepted by Mr. David Jones and Dr.

Zhibin Tan while the author was assisting with their laboratory classes. The format differs

slightly for these classes based on the specific instructional needs for these classes. For example,

rather than a Commands and Description section, a Schematic section was included. This serves

the same purpose of defining what would be needed and how it will be used to complete the lab.

The instructional labs for these classes also included a question and answer section where

students would answer questions to determine their grade for the assignment. This section was

omitted in the majority of the labs designed for this project because completion will be defined

by a working program in most cases. Grades can be assigned by instructors based on students’

adherence to the format preferred by the instructor as well as the logical structure of the

commands in the program and their readability.

Each lab is introduced by number and title name. Immediately following the name is the

Purpose section. This section describes the goal of the lab and what technology or concepts will

be introduced. The next section is the Equipment section. This is simply a list of the equipment

that will be needed to for proper completion of the lab. All equipment for the labs is included

with the trainers created for the project. Common equipment used in every lab is the Arduino

Mega, the Arduino USB cable, and a computer. The Commands and Description section follows

and provides a brief description of each new C programming command used in the assignment

38

arranged in an easy to read table. Below the table supplementary information is provided on the

various commands to better describe their use in the assignment. These are provided for the

student as an easy reference while writing sketches. Any technology concepts or math used in the

assignment is also introduced in this section. The Procedure section is a step-by-step

instructional set for the student that allows them to complete the assignment. This section

contains recommended variable names, tips for completion of the assignment, and the guidelines

for the general structure of the sketch. Any connections that need to be made are also clearly

explained and pictures and other illustrations are used to provide a visual representation for more

complicated ideas.

 The step-by-step instructions provided in each lab are written in a way to guide students

programming so they produce easy to grade, somewhat consistent sketches. There are a variety

of ways to produce the same outcome using different commands and even programs that have

few similarities between their commands and structures. Often times C programming commands

are interchangeable to perform the same task. In order to minimize the variability in students

completed sketches examples are provided and specific variable names are recommended. There

is no national guideline for the indentations or spacing used in professional programming, so this

was left to the teacher’s discretion. In order to further limit the commands used in a program and

prevent variability in the commands used to accomplish specific tasks, students are limited to

using only those commands that are listed in the Commands and Description section as well as

those introduced in previous labs. The completed sketches included with the created project

should be used by instructors as an example of one way in which the sketch can be completed.

Students may not produce identical sketches, but they will contain the same commands and same

basic structure to accomplish the assigned task.

39

Lab Descriptions and Concepts

 The Lab manual introduces new commands to interface with various components on the

trainers in a logical manner that covers many of the basic C programming commands. In this

section an excerpt of two labs will be introduced. The full lab Manuel can be viewed in

Appendix B, and a brief explanation of each can be found in Appendix C. The C commands

learned in each lab will be discussed as well as the concepts introduced. This will show the

logical structure of each lab and the reason for introducing the individual commands and

technology concepts. All Arduino specific library commands used in the sketches have been

defined by the Arduino language reference site at http://arduino.cc/en/Reference/HomePage.

 The first section is First Time Setup. This section covers downloading the free Arduino

software from the website which comes in a .zip file. Instructions on how to unzip and install the

file are also listed. Next, this section covers how to install the Arduino drivers. This occurs

automatically on some machines; however, computers running certain antivirus software and

firewalls can make this a bit difficult. The user must manually install the drivers for the Arduino

Mega 2560. To make this simple, pictures and file paths are included in the information. Next

the setup section shows how to connect the computer to the Arduino by specifying the specific

board and communication port. To verify that everything was performed correctly, a prewritten

example program that blinks an onboard LED on the Arduino is loaded and run to show students

how programs are used.

 Before explaining the commands used in the labs it is necessary to explain what a header

or library file is. These files introduce new commands into the C programming language that

make more complicated programming tasks executable through a single command. There are

several Arduino specific commands included in every sketch that allow for digital and analog

http://arduino.cc/en/Reference/HomePage

40

control of the I/O pins. Other standard library files can also be included by depositing them in the

library folder of the Arduino program. These files are designated with the .h extension derived

from the header file name. According to Johnsonbaugh and Kalin (1997, p.33) these files

“request some action before the program is actually translated into machine code.” It is important

to note that these files are widely used to simplify the C programming language. Arduino uses

many of the basic C commands and automatically loads several header files to simplify I/O

functions, timers, and other specific functions commonly used in sketches. This in turn allows

students to form programs that would be much more complicated without the use of these files.

Lab 8: Maintaining Lighting Levels Using a Photoresistor

Lab 8 is a good example of a fairly complex program done on the first trainer. This lab

was chosen for demonstration because it uses most of the electronics on the first trainer. All of

these devices, excluding the photoresistor, have been used in previous labs and should be

understood. An excerpt of the purpose section of the lab describes what will be done and how

this builds on previous labs.

 Lab 8: Maintaining Lighting Levels Using a Photoresistor

Purpose

Now that you can use the Arduino with both analog inputs and outputs

you will be using both of them in a sketch. In the previous lab you dimmed a light

using the keypad buttons; however, most dimmers you see in houses and lighting

devices use a knob (potentiometer) to control the amount of light rather than a

keypad. Another common use for dimming lights is to maintain a certain

brightness level in an area by supplementing artificial light when natural light

41

begins to disappear. Windows and skylights allow for sunlight to illuminate a

room without the need for electricity, but the sun eventually sets, and it would be

much easier if the lights just came on without you having to move to the nearest

light controls to gradually make them brighter as this happens. In this lab you will

be programming the Arduino to control the same LEDs used in the last lab. The

“0” and “ENT” buttons will be used to select one of two different lighting modes.

The first lighting mode will make the LEDs become brighter as the room becomes

darker through the use of a Photo Resistor. A photo resistor is a device that has a

changing resistance that varies in the presence of light. The second lighting mode

will allow for manual adjustment of the LEDs through use of a potentiometer.

This setup allows for both manual and automated lights in the home or work

environment. You will also need to program a way to make your light sensor

more or less sensitive based on the desired lighting levels for the environment.

This lab is a good demonstration of solving a real world problem by using C

programming and the technology introduced. It states how this program can be used in a work

area, and the analog devices on the trainer all work together to form two specific outputs. One is

controlled by a variable resistance from the photoresistor, the other is manually controlled. The

next section is the “Equipment” section and lists all the equipment that will be used for the lab. It

also mentions optional equipment that may be useful but in no way is required.

42

Equipment

Arduino Mega

Arduino USB Cable

Computer

Arduino Power Cable (Optional)

Arduino Trainer

Light Source

The following section describes the commands used in the program and their function.

These are presented in a table and can be used as an easy reference during programming. Table 1

is the excerpt from this section:

43

Table 1.

Lab 8: Commands and Description Section

Command Description

map (Intiger, fromLow, fromHigh, toLow,

toHigh)

fromLow, fromHigh, toLow, toHigh = any

number used for calculation

The map() function can be used to change the

value of a variable or integer to another more

appropriate value. Because the Arduino reads

analog value from 0 to 1023 these are often

used as the fromLow (0) and fromHigh (1023)

numbers. Since analog outputs are 0 to 255

these are often used as the toLow (0) and

toHigh (255). Examples are below.

constrain(Value, Min, Max)

Value = any integer, variable, or other data

type.

Min = the minimum value

Max = the maximum value

This function “constrains” a value to a

particular set of numbers. In other words the

Min value specified is the lowest number the

value can take. Even if the sketch tells it to go

lower the number will stay the value specified

by Min. Similarly Max provides an upper limit.

 Because some of these commands are fairly complicated they require better explanation.

Students are also exposed to the voltage divider equation to understand how the photo resistor

works. The photo resistor, and how it functions, is explained in an easy to understand way below

the commands and description table. This lab requires multiple statements from a previous lab to

be used. As a result a computer tip is added at the end.

44

More on the Introduced Commands:

 In the last sketch the math to “analogWrite()” the value of the LEDs was

performed manually. The “map()” function allows the Arduino to calculate these

values for you. For example, if the integer “x” had a value set by an analog input

(0-1023), and the expression was “x = map(x, 0, 1,023, 0, 255);” the integer x

would take the value of 255 when the analog input tells it to be 1,023. In other

words:

Similarly, if x was to take on the value 560 by an analog input, it would be

set to 139. It is always set to the nearest whole number. If this still does not

make sense look at the expression “x = map(x, 0, 100, 0, 1,000);” assuming x is

an integer. In this case if x = 70, then x is set to the value of 700. If x = 65 then x

is set to the value of 650 by the equation

.

It will be necessary to understand how the photo resistor in the trainer

works in order to perform this lab. This resistor responds to a change in light by

varying its resistance. The brighter it is the less resistance the photo resistor has,

and conversely the darker it is, the more resistance the photo resistor has. This

particular photo resistor has an 8K Ω resistance in the light and a 1M Ω resistance

in the dark. The particular photo sensor in the trainer may go beyond these ratings

in extreme darkness or extreme light; however, these are the ratings for general

operation. This photo resistor is in a voltage divider configuration with a 100k Ω

45

resistor that is connected to the output that goes into the Arduino. The equation

for the output voltage is:

 (

()
)

Where “R” is the resistance of the photo resistor and is the 5V input

from the Arduino. If you use the 8K Ω rated value of the photo resistor (exposed

to light) and solve the equation you get the output voltage of 4.63 V. Similarly,

if you solve the equation for the 1M Ω resistance (in the dark) you get an output

voltage of 0.45V. In other words, more light = lower resistance = higher

voltage. This is all a function of Ohm’s Law.

The “constrain()” command is useful when limiting sensors inputs or

integers to a particular set of values. In this lab you will need to figure out how to

set various sensitivity levels for the automated lighting. This means you will need

to constrain an integer to specific values to make it more or less sensitive based

on preference. Say you want to make the LEDs begin to come on when only a

little amount of sunlight is lost in the room. In this case you would want to use the

“map ()” command introduced in this section to respond to a somewhat small set

of values read from the analog input. Assume you discover that the analog input

reads 700 when the room is only somewhat dark, and this is when you want the

lights to come full on. Also assume the variable x is assigned a value by the photo

sensor through the “analogRead()” command. In this case you would need to use

the command “x = map(x, 700, 1,023, 255, 0);”. This would make the device

more sensitive to lighting levels in the specified range (700 to 1,025). In order to

46

prevent an error where the analog input goes “out of bounds” so to speak, you

would need to constrain the analog input from the photo sensor. In this case you

would need to insert “PhotoResistor = constrain(PhotoResistor, 700, 1,023);”.

This prevents a number less than 700 from being read. More information will be

in the procedure of this lab.

**Pro-Tip: The sketches are only going to get longer and longer. Use copy

and paste as much as you can to make these things take less time. Do this

using the right-click on the mouse or by pressing the keys “ctrl+c” to copy

and “ctrl+v” to paste; “ctrl+x” is the cut command. If you have the code in a

previous lab, copy and paste to save time.

 The procedure section begins by testing the room for specific lighting levels to ensure the

photoresistor will work correctly. It describes the steps necessary to use the proposed commands

and includes information on how to make all necessary connections. Keep in mind that this is a

later lab for the first trainer and students already understand how to make some of these

connections and are familiar with the “serial monitor”. This is the text display on the computer

used for reading information sent from the Arduino.

Procedure

1. Begin by opening up a new sketch in the Arduino program or by opening up a

previous sketch you wish to modify. The lighting levels in every room differ so

you will need to discover what analog input values you will read for the particular

room you are in. Lab 6 can allow you to do this without writing any code. In a

separate sketch window, open up Lab 6 and modify the program to change the

47

Analog input from “A7” for the potentiometer to “A6” for the photo resistor.

Make sure you change all values of “A7” to “A6” throughout the whole sketch or

your readings will not be correct.

2. Connect the Arduino to the computer and upload your modified Lab 6. Next

connect the power plug from the trainer labeled “POWER” to the appropriate pins

on the Arduino with the label facing outward. Also connect the module 5 plug

labeled “5” to pins A0-A7 with the label facing outward. Open up the serial

monitor and observe the input. If lighting is not sufficient in the room you are in,

you may wish to use a flashlight or other direct lighting source to shine directly

on the top of the Arduino trainer. Sufficient light should produce a voltage value

of greater than 4.25V. If the maximum value in direct light is not 4.25V or

greater, you will need a better lighting source. Record the highest voltage

produced in direct light and the analog input value displayed in the serial monitor.

3. Next turn off the lights in the room for a moment and observe the voltage value

and analog input value of the sensor in a dark room. If the lights cannot be turned

off simply cup your hand around the photo resistor located above the

potentiometer knob and to the left of LEDs. It’s the squiggly looking thing. Once

the values in the serial monitor have become somewhat constant, record these

values and turn the lights back on or remove your hand. If multiple people are

sharing the same trainer feel free to share your measurements with others, as the

values should not differ so long as the trainer stays in the same lighting source.

48

 The next few steps describe what needs to be programmed to accomplish the task

proposed for the lab. Variable names are recommended to make students sketches similar and

easy to grade. This naming convention can be seen in Table 2. All connections needed for testing

the final sketch are also described. Students are reminded of the limitations of several recently

introduced commands in an effort to minimize errors during learning. Students are also

instructed to test their first section of code to verify that it has been formed appropriately. Steps

4-9 are listed below, with the final step describing exactly how the LEDs should react to various

inputs.

4. Now that you have your light and dark measurements close lab 6. Begin in the

new sketch by creating two integers to monitor the values of the photo sensor and

one for the potentiometer. Two will be used to directly record analog

measurements, and the other one will be used to map the values for both modes of

operation. You may wish to name these integers “PhotoResistor”, “PotValue”,

and “x”. Add the “Mode” integer to select between manual and automated lights

with a default value of 0. You can also create integers to monitor the digital and

analog inputs and outputs used in this lab to make your program easier to read.

This is not necessary if you feel confident that you can understand the program

simply by referencing the pin numbers within the sketch. If you do wish to name

these pins you can use the following for easy reference and naming convention:

49

Table 2.

Lab 8: Naming Convention

Pin Number Integer Name pinMode

14 Bit0 INPUT

15 Bit1 INPUT

16 Bit2 INPUT

17 Bit3 INPUT

A6 PhotoPin INPUT

A7 PotPin INPUT

6 LED1 OUTPUT

5 LED2 OUTPUT

5. In the setup of your program be sure to declare all of the appropriate inputs and

outputs listed in step 4. If you want a little extra information you can also begin

serial monitoring to keep track of the analog values within your sketch. Begin the

loop part of your program by inserting a control statement to set the mode based

on weather “0” or “ENT” has been pressed. Remember the binary value of 0 is

1010 and ENT is 1100. You can copy these from any previous keypad sketch so

long as the input pins match this one. Make the 0 button set manual controls and

the ENT button set automatic controls using a conditional statement.

6. Write another statement for manual controls that reads the analog value of the

potentiometer and set this to the variable you chose to store the value. This value

must also be assigned to the main control variable (suggested to be “x”).

50

Remember that “x” will be used to set the brightness of the LEDs, and that the

analogWrite function uses the values 0-255. This is where the map command

comes in handy.

7. You may wish to test your code by this point to verify you have used the map

function correctly. The power and module 5 plugs will need to be connected the

same as in step 2. The module 3 plug will need to be connected from digital pins

14-21 with the label facing the outside edge of the Arduino, and the module 4

plug will be connected to digital pins 0-7 with the same orientation. If it does not

work correctly read the “More Helpful Information” section under the commands

and pay attention to the example code and the way it is written.

8. Next create another condition statement for mode 2 or automatic controls.

Create a similar section of code to assign values read from the analog

photoresistor pin to the variable chosen for these values. When this mode is

activated the brightness of the LEDs (“x”) should be set from the photo resistor.

In order for the photo resistor to function properly for the room you are in you

must constrain them to the values discovered earlier for a light room and a dark

room. Map these constrained values to the analog output for the LEDs. Make sure

you invert the analog output values so that the LEDs come on when it is dark,

rather than when it is light.

9. Once you believe the code is correct, upload it to the Arduino device and plug

in the appropriate connections from the Arduino trainer the same as you did

before; listed in steps six and two. If everything works correctly the LEDs should

51

be off in the light and on in the dark. You should be able to switch between

manual and automatic controls using the 0 and ENT buttons, and the

potentiometer should vary the LEDs brightness.

 The following code is provided for instructors to review a working program. There are

many comments in the program to detail the function of any statements not previously

introduced. Variable names match those suggested in the lab for easy reference. This code in

Figure 2 has been tested and works in the exact way described by the assignment.

int PhotoResistor = 0; //variable used to assign analog inputs

 int PotValue = 0; //variable used to assign analog inputs

 int x = 0; //variable used to map and write analog outputs

 int Mode = 0; //variable used to select between manual and automatic controls

 const int Bit0 = 14;

 const int Bit1 = 15;

 const int Bit2 = 16;

 const int Bit3 = 17;

 int PhotoPin = A6;

 int PotPin = A7;

 int LED1 = 6;

 int LED2 = 5;

 void setup() {

 pinMode(Bit0, INPUT); //these are the inputs for the keypad

 pinMode(Bit1, INPUT);

 pinMode(Bit2, INPUT);

 pinMode(Bit3, INPUT);

52

 pinMode(PhotoPin, INPUT); //these are the inputs for the controls

 pinMode(PotPin, INPUT);

 pinMode(LED1, OUTPUT); //these are the analog outputs

 pinMode(LED2, OUTPUT);

 Serial.begin(9600);

 }

 void loop() {

 if (digitalRead(Bit0) == LOW && digitalRead(Bit1) == HIGH && digitalRead(Bit2) == LOW &&
digitalRead(Bit3) == HIGH) { // if 0 is pressed

 Mode = 0;

 }

 if (digitalRead(Bit0) == LOW && digitalRead(Bit1) == LOW && digitalRead(Bit2) == HIGH &&
digitalRead(Bit3) == HIGH) { // if enter is pressed

 Mode = 1;

 }

 if (Mode == 0) {

 PotValue = analogRead(PotPin);

 x = PotValue;

 x = map(x, 0, 1023, 0, 255);

 analogWrite(LED1, x);

 analogWrite(LED2, x);

 }

 if (Mode == 1) {

 PhotoResistor = analogRead(PhotoPin);

 x = PhotoPin;

 x = constrain(PhotoResistor, 671, 1012);

 x = map(x, 671, 1012, 255, 0);

 analogWrite(LED1, x);

 analogWrite(LED2, x);

53

 }

 Serial.println(x);

 }

Figure 2. Lab 8 Code

Lab 10: Interfacing With a Matrix Keypad

 Lab 10 was chosen because it instructs students on how to interface the keypad on the

second trainer with the LCD screen. These two devices are used in all other labs, and

understanding how to use these devices in crucial to completion of labs 10-14. It begins by

explaining the new C commands used including the “char” or character variable and the byte.

The equipment list is also displayed as with the previous lab.

Lab 10: Interfacing With a Matrix Keypad

Purpose

In this lab you will learn how to interface with the matrix keypad on the

second trainer. A matrix keypad is a type of keypad that closes the circuit between

two pins when a button is pressed rather than writing a pin HIGH as with the

previous keypad. The keypad library will be included in this sketch, which sends

pulses through the input pins and reads which output pins go HIGH to determine

which key has been pressed. You will also learn about the varable “char” or

character. This data type allows a number, letter, or symbol to be used in

conditional statement and commands. You will also learn the byte data type. A

byte is 8 binary bits that are used to store data. ASCII uses one byte of data for

54

each character. Using the new data types and a few other library specific keypad

commands you will be able to begin more complicated programming using the

keypad, rather than a serial monitor, to control what prints.

Equipment

Arduino Mega

Arduino USB Cable

Computer

Arduino Trainer II

The commands in this section are then introduce in Table 3. Several of them are specific

to the keypad library.

Table 3.

Lab 10: Commands and Description Section

Command Description

char NAME = # or ‘CHARICTER’

char NAME[#] ={‘CHARICTER’}

char NAME[#][#] = {

{‘CHARICTER’}

{‘CHARICTER’}

}

The first command allows for one character to

be specified by a particular name, much like

integer. The ASCII number must be used to

specify the character, or a single character can

be placed between two apostrophes such as

‘A’. The second command is used for a single

55

 line of characters where the number specifies

the number of characters. The third specifies an

array of characters where the first is the

number of rows, and the second is the number

of columns

byte 8 bits of data used to store a single ASCII

character in its binary form.

key A library specific command used in the

program to refer to a specific key

NAME.getKey() A library specific command that is a variation

of the C command getcar(). The name is

whatever you choose to name the keypad, and

signifies that the command will get the key

from that device. The .getKey() command

reads the character specified for that key and

“gets” the one you press to use in your

program.

Keypad This command is used to declare the name of

the keypad for use with the .getKey()

command.

makeKeymap(Charicters), RowPins,

ColumnPins, CharicterRows,

CharicterColumns)

The Charicters are the characters specified for

the keypad array. The RowPins in this lab will

be 30, 32, 34, 36, and the ColumnPins will be

56

38, 40, 42, 44, 46, 48, 50, 52. The

CharicterRows and CharicterColums are the

number of rows and columns in the character

array for the keypad.

 The Keypad.h library is not included with the Arduino software and must be downloaded.

This library is available free through the Arduino website, and students are instructed how do get

this library and include it in their program. This further demonstrates the open source nature of

the Arduino and its programming environment and allows students to take full advantage of this

technology in the future, should they choose to continue using the Arduino. A more in-depth

explanation of the “char” variable and how to use it to interface with the keypad is also provided

in Table 4. Figure 3 shows the character array for the keypad used in this lab while Table 5

shows the actual keypad buttons.

More on Keypad.h and char

Keypad.h is not a preloaded library file. In order to get the file you must

download it from http://arduino.cc/playground/Code/Keypad#Download. Once

you download the file you must extract the file and move it to the proper location

before opening the Arduino sketch program. Extract the file the same way you

extracted the Arduino software. Then copy the file into the “libraries” folder

within the “arduino-1.0” folder. Once this is done you can open the sketch

program and use this library with the “#include<>” command and you will have

access to several new examples.

http://arduino.cc/playground/Code/Keypad#Download

57

This library file uses characters in unique ways. For the purpose of this

sketch you will be specifying a keypad array that uses a single character for each

key. First, here are some examples of how to use char. Note the word “Character”

is what I have chosen to use as a name.

Table 4.

Lab 10: Character Print Examples

Command Entered Output on the LCD

char Character = 'A';

lcd.print(Character);

A

char Character[3] = {'A', 'B', 'C'};

lcd.print(Character[1]);

lcd.print(Character[2]);

lcd.print(Character[0]);

B

C

A

char Character[2][3] = {

 {'A', '1', 'B'},

 {'2', '3', 'C'},

 };

 lcd.print(Character[0][0]);

 lcd.print(Character[0][2]);

 lcd.print(Character[1][2]);

A

B

C

58

 The keypad on the Arduino trainer is a 4x8 keypad. In other words there

are four columns and eight rows in the internal circuitry. You will need to create a

character array similar to the final example for your keypad to display each

number or mathematical function pressed. Later you will use these characters to

perform various math functions. The character array for the keypad looks like

this:

{'^','/','9','8','7',' ','=','Q'},

{'T','X','6','5','4',' ','0',' '},

{'C','-','3','2','1',' ','A','N'},

 {'S','+',' ',' ','.','c',' ',' '},

Figure 3. Character Array

 Each key can only hold one character, so functions such as “Sin” must be

represented by a single letter “S”. Some of the characters have been omitted and

will be added in later labs. Table 5 shows how each letter corresponds with the

button pressed. Functions with longer names have parenthesis around the brackets

used to display those characters.

59

Table 5.

Lab 10: Keypad Buttons

Cal(c) + (S)in

(L)ight 1 2 3 - (C)os

(O)hm 4 5 6 X (T)an

(D)ist. 7 8 9 / ^

(A)lpha Clear/(N)o 0 Enter/Yes S(Q)RT

The procedure for this lab is broken up to make sure students are creating the code

correctly. First students are introduced to the keypad library in the first few steps and told in

detail how to use the newly introduce commands to interface with the keypad. Suggested

variable names are used, and students are instructed to look at an example code provided with

the keypad library to compare their code to. Often times seeing a similar working program, and

comparing it to one created will clear up any syntax errors and improve understanding of the new

commands. The students are instructed to first print the characters from the keypad to the serial

monitor to verify this portion of the code works before attempting to form conditional statements

using the characters. This was done so students know exactly where the error in their program

occurs should one arise.

Procedure

1. Open up your previous sketch and copy all the code used to initiate the LCD

screen. These are the “#include<>” function, the LCD pins, the digital output used

to power the LCD and the “lcd.begin()” commands. Also include the new keypad

library “Keypad.h”.

60

2. Before the setup of your program include two constant bytes. Declare one for

“Rows” and one for “Columns”. These will be used to create the character array

for the 4x8 keypad. Make the character array mentioned in the Commands and

Description section. Name the character something easily recognizable like

“keys”.

3. Next you will need a number array to specify the pins used by the keypad. This

will be an array of bytes and is entered “byte rowPins[Rows] = {30, 32, 34, 36};”.

These pins are also mentioned in the Commands and Description section. The

name “Rows” in the brackets specifies that the number of rows in the keypad is 4

from your previously declared byte. You will also need to add one for

“columnPins”.

4. To map the appropriate Arduino pins to the character array you created name

your keypad using the Keypad declaration and specify the row and column pins.

If you used all suggested variable names the code should appear as “Keypad

keypad = Keypad(makeKeymap(keys), rowPins, columnPins, Rows, Columns);”.

If any of this is confusing you may wish to consult one of the examples that came

with the Keypad to see how your code should appear. One good example is

“CustomKeypad” that is used to create a 4x4 keypad.

5. Now within the loop of your program you will need to assign one more

character to the key pressed using the “getKey()” function introduced. To verify

that all of your declarations and arrays have been created correctly, begin serial

communication and print the values of the keys to the serial monitor with a short

delay to prevent the monitor from scrolling too quickly. Connect the module 7

61

plug on the keypad to digital pins 52-30 with the wire strip hanging over the

outside edge of the Arduino. Verify that each printed character matches the key

pressed.

 Next students are told to use the knowledge gained from the last lab, where they

interfaced with the LCD screen, to print the various mathematical functions. This lab provides

the basic code for the next lab where they will create a calculator. In order to ensure this code

can be used effectively students are told to use separate conditional statements to print the

mathematical functions. Students are then instructed on how to connect the devices and what

output they should expect on the screen for a successful program.

6. Once you have gotten the proper keys printing, you will need to print these to

the LCD screen to properly display them. The character “c” for Cal(c)ulator will

later be used to initialize a calculator function. Using the knowledge gained in the

last lab, create a conditional statement that tests to see if the key received is “c”. If

this character is received, clear the LCD screen to get rid of any unwanted

characters, print the word “Calculator” in the top left corner, and clear it again

after 2 seconds. The character “N” is used to represent the “Clear/(N)o” button.

Make this button simply clear the LCD.

7. Use conditional statements to print all numbers to the screen. Try using the

Boolean operator “||” or to do this in a single statement. In separate statements

you will need to print the mathematical operators “+, -, /, ^, =” and “X” used for

multiplication, as these will be used for more complex functions in the future.

Also print the decimal, (“.”) for using decimal numbers in a separate statement.

62

8. For the tragicomic functions “S” for sin, “C” for cosine and “T” for tangent,

you will need to print “sin(, cos(, tan(“. Rather than simply displaying the

character.

9. Once you believe your code is correct, connect the module 6 plug in the second

trainer to the GND-41 digital pins as you did in the previous lab. Also connect the

keypad to digital pins 52-30 as you did in step 5. These two should overlap

slightly. Connect the USB cable through the battery door of the second trainer and

close the box. If everything has been performed correctly, you should be able to

print any mathematical operation or number. The clear button should clear the

screen, and pressing the Calc button should display the word Calculator.

 As for every lab, a tested working code will be provided to the instructors to clear up any

confusion. The code compiled for this lab can be seen in figure 4. This code is also heavily

commented to explain the purpose of each section. It is well organized with indentations and

spaces between different sections of code to be easily read.

#include <Keypad.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(51, 49, 47, 45, 43, 41);

const byte Rows = 4; //four rows

const byte Columns = 8; //eight columns

char keys[Rows][Columns] = {

63

 {'^','/','9','8','7',' ','=','Q'},

 {'T','X','6','5','4',' ','0',' '},

 {'C','-','3','2','1',' ','A','N'},

 {'S','+',' ',' ','.','c',' ',' '},

}; //This is the character array for the keypad

byte rowPins[Rows] = {30, 32, 34, 36}; //Connect to the row pin outs of the keypad

byte columnPins[Columns] = {38, 40, 42, 44, 46, 48, 50, 52}; //Connect to the column pin outs of
the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, columnPins, Rows, Columns); // Maps
the character array to the keys

void setup(){

 pinMode(53, OUTPUT);

 digitalWrite(53, HIGH); // sends power to the LCD

 delay(50); // Allows LCD some time to warm up

 lcd.begin(24,2); // Begins LCD library

}

void loop(){

 char key = keypad.getKey(); // Defines "key" as a character and sets it to the character pressed

 if (key == 'c') { // This is the Calculator button

 lcd.clear(); //Clears anything to remove characters

 lcd.print("Calculatior");

 delay(2000); // Displays Calculator and waits 2 seconds

 lcd.clear(); // Clears again for input

 }

64

 if (key == 'N') { //This is the Clear key on the keypad and should clear the LCD

 lcd.clear();

 }

 if (key == '0' || key == '1' || key == '2' || key == '3' || key == '4' || key == '5' || key == '6' ||
key == '7' || key == '8' || key == '9') {

 lcd.print(key); // This prints the key if a number is pressed

 }

 //The next few keys are written separately to accommodate for future calculations. These are
basic math functions.

 if (key == '+') {

 lcd.print(key);

 }

 if (key == '-') {

 lcd.print(key);

 }

 if (key == 'X') {

 lcd.print(key);

 }

 if (key == '/') {

 lcd.print(key);

 }

 //These are the more complex math functions

 if (key == '^') {

65

 lcd.print(key);

 }

 if (key == 'S') {

 lcd.print("sin(");

 }

 if (key == 'C') {

 lcd.print("cos(");

 }

 if (key == 'T') {

 lcd.print("tan(");

 }

 if (key == 'Q') {

 lcd.print("sqrt(");

 }

 //These will be used to perform calculations

 if (key == '=') {

 lcd.print("=");

 }

 if (key == '.') {

 lcd.print(".");

 }

 }

 Figure 4. Lab 10 Code

66

Both of these labs provide easy reference for all commands used and explain other more

complicated concepts in a way students will be able to comprehend. The information given on

the keypad and analog lab allow students to have a basic understanding of the electronics used

without going into as much depth as a technology or electronics lab. This allows the

programming, or interface with these devices, to be the main focus of the labs. Students are

given clear step by step instruction on how to form the code leaving enough room for them to

form their own individual programs. All other labs introduce concepts in similar ways, with new

concepts being explained in depth using examples. The labs require students to use their

knowledge of previous concepts to finish the assignment. The example code provided will be

similar to any sketch created for the same assignment. Variable names and basic structure of the

code may differ from student to student; however, all programs will serve the same function as

the examples provided.

67

CHAPTER 4

DESIGN CONSIDERATIONS

The Arduino Mega

 “Arduino is an open-source electronics prototyping platform based on flexible, easy-to-

use hardware and software. It's intended for artists, designers, hobbyists, and anyone interested in

creating interactive objects or environments” (Arduino, 2012, p. 1). The Arduino Mega 2560,

and the associated software was chosen as the key technology for the development of the created

project for several reasons. The open source nature of Arduino, the programming language used,

the interface, and applications all make it the ideal tool in meeting the previously defined STEM

educational need. The hardware is reasonably priced and the software is free making the Arduino

a very affordable teaching tool.

 The benefit of the programming the Arduino with open source software is that all

students have free access to the software. Students and schools will pay nothing to use the

Arduino programming environment. Students can download the software on home computers to

use personal time to advance their work, or simply play around. There are a variety of programs

and libraries available through the Arduino website to further education and expand the

capabilities of the device. The software is also cross-platform, meaning it is available for most

major operating systems. The programming environment is simple and straightforward making it

an ideal choice for beginners. The example codes and libraries made available through the site

are free, easy to understand, and tested working by the Arduino users.

68

 The open source hardware of Arduino boards means that preassembled boards can be

purchased for well under $50. This also means the Arduino can be built by hand and expanded

upon to improve its capabilities. “The Arduino is based on Atmel’s ATMEGA8 and

ATMEGA168 microcontrollers. The plans for the modules are published under a Creative

commons license, so experienced circuit designers can make their own version of the module,

extending it and improving it” (Arduino, 2012, p. 2). The Arduino Mega 2560 was chosen for

this project because of its abundance of digital inputs and outputs and its operating

characteristics. Table 6 contains a summary of the characteristics of the Arduino Mega.

Arduino, Arduino Mega 2560 Summary (2012, p. 2):

Table 6.

Arduino Mega 2560 Summary

Summary

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

69

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by boot loader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

 The Arduino Mega 2560 can be powered either by a standard USB printer cable or a

2.1mm center-positive power jack. The power jack can either be connected to a AC to DC

adapter or battery pack. The external supply can be anywhere from 6-20V, although 7-12V is

recommended for optimal performance. The “Vin” pin of the Arduino can also accept a stable 5

V power signal for operation. The Mega 2560 also has two voltage output pins consisting of a

5V and a 3.3V regulated output. The 5V I/O pins make the hardware ideal for operating with a

variety of low power digital and analog devices, and the device even has sufficient current

capabilities to drive small electric servo or DC motors. Figure 5 shows a picture of the Arduino

Mega 2560.

70

Figure 5. Arduino Mega 2560 (Arduino, Arduino Mega 2560, 2012)

Other Electronic Components and Devices

 The electronics in the trainers were chosen for their ability to demonstrate the concepts

introduced for the lab assignments. They were also chosen for their operating characteristics and

compatibility with the voltage and current capabilities of the Arduino Mega 2560. The fact that

all exposed electronic elements operate on a low current 5V power supply means the risk of

electrocution or shock to students or teachers is nearly nonexistent. The more rugged

components featured in the first of the Arduino trainers develop have the ability to withstand the

abuse common to newly educated students exposed to their first electrical devices.

 All electronic components and devices featured in the trainer including resistor

configurations operate at or below a 40 mA current. They are all powered either by the 5V

internal voltage output pin on the Arduino or directly from an analog or digital pin. Ground

connections were made to the common ground pins of the Arduino. All resistors are rated for up

71

to 500 mW or greater and are either metal film or carbon film through-hole resistors. Individual

datasheets for the various components used in the trainer can be seen in Appendix C. The

datasheets for the resistors have been omitted because their relevant characteristics have already

been described. The datasheet for the matrix keypad has also been omitted because it could not

be found.

 All electronic components used to build the prototypes of the trainers are listed in Table 7

below. The majority of the components were purchased from Newark, the online electronic

components store at http://www.newark.com/. A few components were purchased from Jameco

Electronics at http://www.jameco.com/, and Robot Shop at http://www.robotshop.com/. Some of

the components used in the trainers were items from the department of Business and Technology

at ETSU. Items labeled with a “*” were identical in function to items used in the prototype

trainers but differed by model. These were items from ETSU. The price for the Matrix Keypad

denoted with “**” is for a similar item with fewer keys than the actual keypad used in the trainer.

No keypad with the same functionality and number of keys could be found on any of the three

sites listed. The keypad used was one of many found at ETSU and contained no model number

that could be matched to the product in a web search.

http://www.newark.com/
http://www.jameco.com/
http://www.robotshop.com/

72

Table 7.

 Electronics Parts List

Component Quantity
Unit
Price Total Price From

5mm Red LED 6 $0.21 $1.25 Newark

5mm Green LED 2 $0.21 $0.42 Newark

5mm Yellow LED 2 $0.23 $0.46 Newark

Ultra-bright White LED 2 $0.69 $1.38 Newark

10K Ohm Rotary Pot 1 $1.41 $1.41 Newark

10k Tuner Pot 1 $0.75 $0.75 Jameco

SPST Pushbutton Switch 15 $1.44 $21.60 Newark

100 Ohm Resistor 1 $0.01 $0.01 Newark*

330 Ohm Resistor 20 $0.10 $1.94 Newark

1K Ohm Resistor 1 $0.09 $0.09 Newark*

10K Ohm Resistor 1 $0.04 $0.04 Newark*

100k Ohm Resistor 3 $0.04 $0.11 Newark*

1M Ohm Photoresistor 2 $1.79 $3.58 Jameco

Black Safety Socket 1 $3.59 $3.59 Newark

Red Safety Socket 1 $3.59 $3.59 Newark

Diode 15 $0.05 $0.75 Jameco

Arduino Mega 2560 1 $47.91 $47.91 Newark

24x2 LCD Display 1 $21.92 $21.92 Newark*

Ultrasonic Range Finder 1 $15.00 $15.00 RobotShop

Matrix Keypad 1 $29.99 $29.99 Newark**

Totals: $155.78

 Two sets of red, yellow, and green LEDs were arranged in a stoplight configuration,

connected in series with 330 ohm current limiting resistors to ground. These can be seen in

Figure 5 connected to I/O pins 09-16 which represent the Module 1 plug of the trainer. Figure 5

and all other schematics were created using Multisim 11.0. Another series of 4 LEDs used to

represent binary numbers have been connected in the same configuration. These are LEDs 07-10

of the schematic. Four single pole single throw (SPST) momentary buttons located below these

LEDs are connected from the 5V power supply in series with 330 ohm resistors connected to

73

ground to produce a readable current for the Arduino. I/O pins 01-08 are the Module 2 plug, and

connect these components to the Arduino.

The 10K ohm rotary potentiometer is connected from power to ground and sends the

wiper to I/O pin 25 for the Arduino. The 1M ohm photoresistor is in a voltage divider

configuration with a 100k ohm resistor to produce a varying voltage to be read by the Arduino.

The output of the voltage divider is connected to I/O 26. Together these two pins make up the

Module 4 plug that is the plug for the only devices on the first trainer that send an analog signal

to the Arduino. Finally LEDs 11 and 12 represent the ultra-bright LEDs and are connected to I/O

pins 18 and 19 of the module 5 plug. These LED’s are the only LEDs that are connected with the

330 ohm current limiting resistor going to ground. This is so the full 5V signal from the Arduino

can be felt by these LEDs allowing maximum illumination. This configuration can also be seen

in Figure 6.

Figure 6. Trainer 1 Schematic 1

LED1

LED2

LED3

LED4

LED5

LED6

R1

330Ω

R2

330Ω

R3

330Ω

R4

330Ω

R5

330Ω

R6

330Ω

LED7 LED8 LED9 LED10

R7
330Ω

R8
330Ω

R9
330Ω

R10
330Ω

J1

Key = A

J2

Key = B

J3

Key = C

J4

Key = D
R11

10kΩ

Key=A
50%

LED11 LED12

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

R12
330Ω

R13
330Ω

R14
330Ω

R15
330Ω

IO9

IO10

IO11

IO12

IO13

IO14

IO15

IO16

R16
330Ω

R17
330Ω

IO17

IO18

IO19

IO20

IO21

IO22

IO23

IO24

R18

100kΩ

Photo_Resistor

1MΩ

IO25

IO26

IO27

IO28

IO29

IO30

IO31

IO32

VEE

-5V

To Digital Pins

of the Arduino Mega 2560

To Analog Pins of the Arduino Mega 2560

To Digital PWM

Pins of the

Arduino Mega 2560

To Digital Pins of the Arduino

Mega 2560

75

 Figure 7 shows the schematic of the binary keypad created for the first Arduino trainer.

This was placed in a separate schematic to make it more distinguishable from the other

components in the first trainer, and because of the number of components to create a properly

functioning keypad. Eleven SPST momentary push buttons were used with 10 of them forming

the numbers 0-9 and 1 being used as an “Enter” Button. Each of these buttons is connected to a

series of diodes to produce their associated binary number on I/O pins 1-4 for the module 3 plug

with I/O 1 being the least significant bit. The diodes were used to prevent feedback from one

button being pressed and falsely supplying voltage to another. Keys 1, 2, 4, and 8 were not

connected with diodes as these are represented by single bytes and will not be affected by

feedback. Fifteen diodes were used to create the binary output for the circuit. In order to create a

proper reading for the 0 button this was wired to I/O pins 2 and 4 forming the binary number 10.

Similarly the Enter button is represented by the binary value of 12. Four 330 ohm resistors were

connected to I/O pins to ground to create a readable current for the Arduino to process.

 Figure 7. Trainer 1 Schematic 2

J4

Key = 4

J5

Key = 5

J6

Key = 6

J0

Key = 0

JEnter

Key = Space

J7

Key = 7

J8

Key = 8

J9

Key = 9

J1

Key = 1

J2

Key = 2

J3

Key = 3

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

V1
5 V

D1

DIODE_VIRTUAL

D2

DIODE_VIRTUAL

D3

DIODE_VIRTUAL

D4

DIODE_VIRTUAL

D5

DIODE_VIRTUAL

D6

DIODE_VIRTUAL

D7

DIODE_VIRTUAL

D8

DIODE_VIRTUAL

D9

DIODE_VIRTUAL

D10

DIODE_VIRTUAL

D11

DIODE_VIRTUAL

D12

DIODE_VIRTUAL

D13

DIODE_VIRTUAL

D14

DIODE_VIRTUAL

D15

DIODE_VIRTUAL

R1

330Ω

R2

330Ω

R3

330Ω

R4

330Ω

To Digital Pins of the

Arduino Mega 2560

77

The second trainer’s schematic shows the internal connections made in Figure 8. The

module 1 plug consists of I/O pins 1-8 and connects the LCD screen pins necessary for four bit

operation to the Arduino. I/O pin 1 is connected to one of the common grounds of the Arduino

and I/0 pin 2 provides power to the device. A 10K ohm tuner potentiometer is connected from

power to ground with the wiper going to the contrast adjustment for the LCD. This potentiometer

is inside the second trainer, as it does not need adjustment after initial tuning has been done.

The I/O pins named Red and Black represent the safety sockets used to connect leads for

measuring resistance. The 100, 1k, 10k, and 100k ohm resistors will be used in a voltage divider

configuration with power coming from only one I/O pin at a time. A photoresistor voltage

divider circuit is connected in the same configuration as previously introduced; with I/O pin 15

providing power and I/O pin 14 receiving the analog signal. These make up the module 3 plug

for the second trainer. The “UltraSonic” I/O pins represent what their names suggest and are

connected to the module 4 plug using I/O pins 17-24. The I/O pin 18 will once again be

connected to one of the common grounds on the Arduino with pin 19 supplying power and 20

receiving the signal.

Figure 8. Trainer 2

U1

G
N
D

V
C
C

C
V

R
S
R
W

E D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

Potentiometer

10kΩ

Key=A
50%

Red Black

I9

I10

IO11

IO12

IO13

IO14

IO15

IO16

R1

100Ω

R2

1kΩ

R3

10kΩ

R4

100kΩ

IO17

IO18

IO19

IO20

IO21

IO22

IO23

IO24

R5

100kΩ

Photo_Resistor

1MΩ

UltraSonicSignal

UltraSonicVcc

UltraSonicGnd

To Digital Pins of the Arduino

Mega 2560 with IO1 to Ground

To Digital Pins of the Arduino

Mega 2560

To Analog Pins of the Arduino

Mega 2560

79

The Module 2 plug for the keypad has been omitted from the schematic drawings. The

keypad consists of 12 I/O pins that are connected directly to a single row 12 pin headers that

make up the module 2 plug. The datasheet for the keypad could not be found so its operation was

determined by taking apart the device and using a digital multi-meter to test for conductivity

through the pins. The device has five rows and six columns of buttons with an “Enter/Yes”

button taking up two key spaces. The keys 0-9, “Clear/No”, and “Alpha” were labeled and left as

they appeared. The “S.F.” key and other blank keys were labeled for use with the labs. It was

determined that the keypad functions as a 4x8 matrix keypad. A Matrix keypad closes the circuit

between the row and column pins based on the button pressed, with each button creating a

different closed circuit. Table 8 shows the closed circuit made when each button is pressed with

pin 1 being the pin farthest to the left of the plug. Table 9 shows the labels of the keys. In both

cases a single box on the table represents a physical key on the keypad.

Table 8.

Pin Connections

4+10 4+9 4+8 4+7 4+6 4+5

3+10 3+9 3+8 3+7 3+6 3+5

2+10 2+9 2+8 2+7 2+6 2+5

1+10 1+9 1+8 1+7 1+6 1+5

3+11 3+12 2+11 1+11 1+12

Table 9.

Key Labels

Calc + Sin

Light 1 2 3 - Cos

Ohm 4 5 6 X Tan

Dist. 7 8 9 / ^

Alpha Clear/No 0 Enter/Yes SQRT

80

Materials and Construction

Many of the material used to create the trainers were items already available in the

Business and Technology department of ETSU. Others more critical to the operation of the

trainer were purchased from electronics stores. The construction of the frame and physical design

of the first prototype trainer was done by graduate students Matt Crum and Benjamin McMurry

during the fall semester of 2011. All design information including dimensions, construction

techniques, and dimensional drawings for the first trainer were provided by Crum and McMurry

in a report prepared for ENTC 5900. The second prototype trainer was designed and constructed

by the author in the following semesters.

The rectangular body of the first trainer is constructed primarily from wood. This

material was chosen by Crum and McMurry because it is an easy to work with material that is

somewhat light and provides insulation for the internal electric components, as well as its

availability. The trainer consists of a body casing and faceplate fashioned with aluminum

housings for onboard LEDs. The wood for the lower body casing was cut using a radial arm saw

and table saw. The box measures 12 in. wide, 10.25 in. in length, and 6 in. high. The box also has

an internal wooden divider to separate the electronics from a 1 in. diameter hole where the plugs

for the trainer exit. The body was fashioned together using finishing nails.

The faceplate of the trainer was designed in AutoCAD 2007 by Crum and McMurry and

cut out of .25 in. thick MDF on a CNC router table using a .25 in two flute end mill to create the

holes for the buttons and the potentiometer and the outer perimeter of the faceplate. The screw

holes and led holes were cut out using a .125 in drill bit on the CNC router. An excerpt from

their report outlines the construction of the aluminum led faceplate housings:

81

Crum & McMurray (2012)

The two led faceplates were cut using a standard milling machine and a .375

two flute end mill. The two pieces were first machined square to a size roughly larger

than the placement of the LEDs. They were then surface machined mainly for

aesthetic reasons, as surface machining aluminum leaves a desirable pattern in the

surface of the material. The next step was to simply lay the led faceplate onto the box

faceplate and transpose the location of the LEDs onto the aluminum using a punch.

Once this was done clearance holes were drilled into the aluminum for the LEDs to

be installed into. The LED’s bodies are slightly tapered or larger on the end where the

wires exited the plastic than the top. This allowed for the majority of the LED’s body

to pass through the aluminum, but not all the way through. Two holes were then

drilled and tapped into the aluminum to accept a 10-24 socket head screw, and

clearance holes were drilled into the MDF for the same 10-24 socket head screws.

These two screws are to hold the aluminum faceplates in place and secure the LEDs

to the faceplate.

The dimensional drawing of the faceplate provided by Crum and McMurray can be seen

in Appendix D. A revision was later made to the faceplate of the box to include a photoresistor.

Two small holes were added to the faceplate using a drill press fitted with a 1/8 in drill bit. The

photo resistor was placed 1.5 in away from the top edge of the aluminum led housing.

The internal electrical components were soldered to a breadboard connecting to the

various component mounted in the faceplate. Wires were feed from the proto board through the 1

in. hole in the side of the box and connected to 8 pin stackable headers using a hot glue gun to

82

hold them firmly in place and provide insulation to the electric connections. The headers were

then insulated with electrical tape and labeled with their respective number. All components

were inserted into their respective place in the faceplate, and a metal knob was secured to the

potentiometer. Internal wiring connections were made using silicon filled 3 terminal connectors

which provide insulation and require less time to make connections then conventional soldering

techniques. The box was painted with blue and yellow pant to provide a more finished look. A

picture of the first prototype trainer can be seen in Figure 9 below.

Figure 9. Prototype Trainer 1

83

The second prototype trainer was created under the guidance of Mr. William Hemphill. It

was housed in a prefabricated project box produced by Hammond Manufacturing. The project

box is formed from ABS plastic and measures 8.661 in. wide, 8.12 in. long and 1.575 in. thick.

This project box was chosen for its lightweight relatively small size allowing the second trainer

to be portable. The project box also features a sliding battery door section that provides access to

internal components without having to open the box. Several project boxes were considered, but

this one allowed for the proper amount of clearance between the internal and external hardware

and had sufficient size to allow for all electronic components to be mounted appropriately.

Once again AutoCAD was used to form the dimensional drawing for the cutouts that

were to be made to seat various external components. The second prototype trainer AutoCAD

was also used to model the components edges to verify that they would have proper placement in

the project box without interfering with the internal screw mounts. The project box also

contained eight small plastic stubs that needed to be avoided when cutting out the holes for the

electronics. The project box outside can be seen in Figure 10 and the inside can be seen in Figure

11. Several revisions were made to the original drawing to ensure all components would be

placed properly.

84

Figure 10. Project Box Outside

Figure 11. Project Box Inside

An insert was created with the help of Mr. Hemphill to allow the project box to directly

rest on a surface and ensure pressure was applied to the inside of the box. This reduced the

likelihood of the box chattering when the holes were milled out using a CNC router. This also

85

prevented chipping and other damage when milling out the project box. The insert was model in

AutoCAD and the tool path was also created. A piece of 0.75 in. thick MDF board was used as

the primary material to rest firmly against the interior of the box. All cuts and holes were made

using a 0.25 in. drill bit on the CNC router. A second piece of 0.25 in. thick MDF board was cut

to the inner dimensions of the box without the holes made to compensate for the plastic stubs.

Both of these were placed inside the box allowing the MDF to have a small clearance to support

the full weight of the project box allowing pressure to be applied to the front, which was to

become the faceplate for inserting the various components. The insert created can be seen in

Figure 12.

Figure 12. MDF Support Insert

86

A tool path was created in AutoCAD for a 0.125 in. drill bit to make the proper cuts to

the faceplate. The inserts were used and the CNC router made the specified cuts to the project

box. Two holes were made in the front of the box to the diameter of the Ultrasonic range finder

using a standard drill press. Below is Figure 13, a picture of the box after all cuts were made.

Figure 13. Project Box After Milling

This project box is closed and secured by using the hardware provided with the box.

External electrical components were secured using small sized screws for the LCD screen,

ultrasonic range finder, and keypad. The safety sockets were secured using their provided

hardware. The photoresistor is held in place using a small amount of hot glue to secure it. Very

few resistors were needed to ensure proper operation of this equipment, and these resistors were

87

soldered in line with the wiring to the various components. The same 8 pin stackable headers

were used to secure the wires and provide a simple plug connection to the Arduino. The keypad

used a single row 12 pin header connected to the Arduino. All wires were held in place using hot

glue, then insulated with electrical tape and labeled with their respective number. These headers

were bent at a 90 degree angle to ensure clearance for the limited space within the project box. A

picture of the second prototype trainer can be seen in Figure 14.

Figure 14. Prototype Trainer 2

Table 10 shows the price of the various construction materials used. Items denoted with a

“*” signify that the entire quantity of the item was not used and the amount used was estimated.

Items such as wire and three terminal connections could only be purchased in certain amounts

and therefore the price included was for the amount purchased. Items denoted with “**” are

items that were simply found available for use at ETSU and the price was estimated from similar

items. The price of screws, nails, and hot glue was omitted as very few of these were used and it

88

would be difficult to quantify the price of four small wood screws (or other items) when packs

containing minimal amounts still greatly exceed what was needed. The previously mentioned

suppliers were used as well as Sparkfun Electronics at http://www.sparkfun.com/, and Lowes at

http://www.lowes.com/.

Table 10.

Hardware and Construction Materials

Component Quantity
Estimated
Amount Unit Price Total Price From

Single Header Strip 1 Pack 25% $1.29 $0.32 L&S Electronics*

White Project Case 1

$12.32 $0.00 Newark

3 Terminal Connectors 1 BOX 50% $27.23 $13.62 Newark*

8 Pin Stackable Header 9

$0.50 $0.00 Sparkfun

Proto Board 1

$4.95 $0.00 Jameco**

22AWG Solid White Wire 25' 1 50% $3.49 $1.75 Jameco*

20AWG Stranded Black Wire 25' 1 25% $4.40 $1.10 Newark**

20AWG Stranded RED Wire 25' 1 25% $4.40 $1.10 Newark**

Jumper Wire Kit 1 10% $11.95 $1.20 Jameco*

Electrical Tape 60' 1 50% $1.35 $0.68 Jameco*

2"x6'x8' Treated Lumber 1 30% $5.57 $1.67 Lowes**

0.5"x24"x48" MDF Board 1 10% $5.73 $0.57 Lowes**

0.75"x24"x48 M"DF Board 1 10% $8.44 $0.84 Lowes**

0.125"x4'x8' MDF Board 1 10% $9.96 $1.00 Lowes**

Totals: $23.84

 In actuality many of the items listed in were not used in entirety, and several of the

trainers could be made using the materials marked with asterisks. With the electronics cost at

$155.78, the total equipment and material price for producing the Arduino Trainers amounts to

an estimate of $179.62. This price was lower in actuality as many of the purchased items were

already available for use and came at no cost.

http://www.sparkfun.com/
http://www.lowes.com/

89

CHAPTER 5

CONCLUSION AND RECOMENDATIONS

 It is recommended that ETSU work with local area highs schools to investigate their

interest in using the created project as an educational tool to satisfy previously educational needs.

ETSU has already provided educational tools to David Crockett High School (DCHS) through

the Gear Up program, and has multiple contacts with that school. Gear Up is a “discretionary

grant program, is designed to increase the number of low-income students who are prepared to

enter and succeed in postsecondary education” (U.S. Department of Education, 2012, p. 1). Past

projects between DCHS include constructing and automated greenhouse, a solar powered

outdoor media classroom, and a video capturing wildlife observation system. It is recommended

that administrators of that school be given a demonstration of the created project and a copy of

the educational materials for their consideration. Should the GearUp grant be renewed, it is

recommended that any future schools be informed of this project for their consideration.

 A web search on many of the local area high schools in east Tennessee reviled that many

do not currently teach the class C Programming Applications, although many do have a

programming class of some nature. This could cause poor adoption of the project created for this

thesis. As a result it is also suggested that afterschool and summer school project coordinators be

given a demonstration of the trainer. One such afterschool project is LEAPs, which is funded by

the Tennessee lottery. “The overall goal of LEAPs is to provide Tennessee students with

academic enrichment opportunities that reinforce and complement the regular academic

program” (TDOE, 2010, p. 4). The Lottery for Education: Afterschool Programs is designed to

90

use revenue generated by the lottery to further educate students classified as “at risk”. The

criteria for being at risk, however, are rather broad. A survey of 27,113 students reviled that 83%

were considered at risk for criteria involving poverty, dysfunctional living situations, enrolment

in a school with inadequate yearly progress, or at risk of being behind in classes (TDOE, 2010, p.

3).

 Organizations involved with LEAPs should be contacted, or a grant proposal for LEAPs

funding should be made. In order to qualify for a grant at least 50% of students must qualify as at

risk by the previously mentioned standards. The goal of the grant proposal must be education,

and grant proposals must be clear and well defined with a reasonable budget. The priorities of

education must include an average student participation of 15 hours a week. The program must

also develop reading, math, science, or computer literacy skills. There must be academic

mentoring and the program has to have some sports or leisure time (TDOE, 2012). Other

avenues of reaching students include various clubs and college center learning programs for

students offered by the University of Tennessee and University School at ETSU.

 While the prototype trainers and Lab manual was developed for the previously mentioned

purpose of satisfying STEM educational need for high school students in Tennessee, the project

can serve other educational uses for ETSU. Dr. Zhibin Tan has requested a copy of the finished

lab manual and access to the prototype trainers for possible uses in ENTC 4337 –

Microprocessors. While the coursework may not be college level material, it can be used to

introduce the concept of how microprocessors work and be used as an introduction to more

complicated systems.

91

 Mr. Garth Ghearing will also be reviewing the lab manual and trainer to investigate its

uses in ENTC 4957/5957 – Introduction to Mechatronics. The created project will most likely

not be used as required course material but rather to provide individual students with a

knowledge basis of the Arduino’s capabilities and applications in automated and robotic systems.

Many of the sensors and programs used in the trainers have already been used in robotic and

automation classes to provide a simple and cheap interface between inputs and outputs. Mr.

Ghearing has also state that he will further the development of the prototype and associated labs

in an effort to produce pilot models of the trainers in an automated production line using the

equipment at ETSU. These pilot trainers would include improvements on the original design

making them more capable of being manufactured using the automatic storage and retrieval

system in combination with the Denso robots mounted on the conveyer belt work cell at ETSU.

Should local area high schools show an interest in this project, it is recommended that the

pilot models of the trainers be put into production to not only help educate students in high

schools but also provide valuable teaching opportunities to those enrolled in Engineering

Technology at ETSU. Constructing a pilot version of the trainers will allow college students to

have hands-on experience in constructing and using various electronic circuits. Producing these

on an automated line will allow for education in programming and robotic control. Creating an

easily manufactured pilot trainer will expose college students to the concepts of design for

manufacturing and optimizing production.

Some design changes would need to be made for the pilot trainers to make them more

easily produced on an automated line and to improve the functionality. It is recommended that a

project box be used for the first trainer in order to provide a more consistent design with less

inherent variability to each created trainer. This will also reduce construction time. The first

92

trainer should also use printed circuit boards rather than prototype boards to mount electronic

components. This will vastly reduce wiring time and errors in the circuits. This will also

eliminate the need for the three terminal connectors used in the prototype and allow for pick and

place robotic construction of many of the circuits. The LEDs should also be replaced with more

compact flatter LEDs that will not protrude from the top of the project box. This will allow for

the same protection as the aluminum hosing on the prototype trainer without the need for

creating the aluminum faceplates.

It is recommended that a single type of stranded 20 gauge wire be used for all wiring

connections. This will allow the wiring to be more flexible, and using a single type will reduce

the cost for purchasing multiple rolls. This type of wire will not easily connect with the 8 pin

stackable headers used in the prototype and the headers do not have a desirable appearance. It is

recommended that prefabricated jumper wires with the appropriate headers be used, or one of the

many shield kits available for the Arduino be used for the connections. The author of this thesis

will make every effort possible to continue the development and distribution of the created

project in the future.

The prototypes and lab manual teach many of the basic C programming commands and

introduce many other library specific commands. They do this in a way that provides hands-on

experience with technology that is used in many other related fields. The labs also include key

concepts for understanding the fundamentals of technology and incorporate high school

appropriate math. The Lab assignments provided meet standard core requirements 2.0-4.0 for the

class of C Programming Applications as defined by the Tennessee State Department of

Education. This is done in an interdisciplinary way with plenty of information provided to allow

teachers to educate students with ease. In conclusion the created prototype trainers and lab

93

assignments meet the goals set out by this thesis by creating an educational tool that will meet

the STEM educational needs in Tennessee high schools.

94

REFERENCES

Arduino (2012). Arduino - Home Page. Retrieved 06/25/2012 From: http://arduino.cc/en/

Arduino (2012). Arduino Mega 2560. Retrieved 06/26/2012 From:

http://arduino.cc/en/Main/ArduinoBoardMega2560

Berry, R.E., & Meekings B.A.E. (1984). A book on C. Southampton, Great Britian: Camelot

Press. ISBN 0-333-36821-5

By Members of the 2005 “Rising above the gathering storm” Committee, Prepared for the

Presidents of the National Academy of Sciences, National Academy of Engineering,

Institute of Medicine. (2010). Rising Above the Gathering Storm, Revisited, Rapidly

Approaching Category 5. The National Academies Press. Retrieved 06/12/ 2012, From:

http://www.uic.edu/home/Chancellor/risingabove.pdf

Crum, M., & McMurray, B. (2012) Design planning and prototype creation for the Arduino

Training Module. Johnson City, TN: East Tennessee State University. Prepared for:

ENTC 5900: Independent Study.

Davies, A. (1998). Handbook of condition monitoring: Techniques and methodology. London

SE1 8HN, UK: Chapman & Hall, an imprint of Thomson Science. ISBN 0-412-61320-4

Douglas, J., Iversen, E., & Kalyandurg C. (2004). Engineering in the K-12 classroom, an

analysis of current practices & guidelines for the future. The American Society for

Engineering Education. Retieved 06/18/2012 From:

http://www.asibei.org/oddi/libros/Engineering%20in%20the%20K-12%20classroom.pdf

http://arduino.cc/en/
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.uic.edu/home/Chancellor/risingabove.pdf
http://www.asibei.org/oddi/libros/Engineering%20in%20the%20K-12%20classroom.pdf

95

Harbison, S.P., & Steele, G.L. Jr.(1984). C: A reference manual. Englewood Cliffs, NJ:

Prentice-Hall. ISBN 0-13-110016-5

Johnsonbaugh, R. & Kalin, M. (1997) C for scientists and engineers. Upper Saddle River, NJ:

Prentice-Hall. ISBN 0-02-361136-7

Kernighan, B.W., & Ritchie, D.M. (1978). The C programming language. Englewood Cliffs,

New Jersey: Prentic-Hall, Inc. ISBN 0-13-110163-3

Lundberg, K.H. Analog to digital converter testing. Retrieved 06/25/2012 From:

http://web.mit.edu/klund/www/papers/UNP_A2Dtest.pdf

National Science Board. (2007). National action plan for addressing the critical needs of the U.S.

science, technology, engineering, and mathematics education system. (NSB-07-114)

October 30, 2007. Retrieved 06/11/2012, From:

http://www.nsf.gov/nsb/documents/2007/stem_action.pdf

Owens Community College (2012) Audience and person. The writing center. Retrieved

6/23/2012 From: https://www.owens.edu/writing/audience.html

Princeton University. (2012). Integrated science. (Last Updated March 1, 2012) Retrieved

06/18/2012 From: http://www.princeton.edu/integratedscience/

Tennessee Department of Education. (2010). Lottery for education: Afterschool programs

(LEAPs). Retrieved 7/3/2012 From:

http://www.tn.gov/education/safe_schls/learning/doc/2010-11LEAPsAnnualReport.pdf

http://web.mit.edu/klund/www/papers/UNP_A2Dtest.pdf
http://www.nsf.gov/nsb/documents/2007/stem_action.pdf
https://www.owens.edu/writing/audience.html
http://www.princeton.edu/integratedscience/
http://www.tn.gov/education/safe_schls/learning/doc/2010-11LEAPsAnnualReport.pdf

96

Tennessee Department of Education. (2012). Lottery for education: afterschool programs

(LEAPs). Retrieved 7/3/2012 From:

http://www.tn.gov/education/safe_schls/learning/leaps.shtml

Tennessee State Board of Education. (2005) Core standards for C programming applications.

Tennessee Department of Education. Retrieved 6/20/2012 From:

http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf

Tennessee State Board of Education. (2008). Principles of technology I, principles of technology

II, biology for technology curriculum standards. Tennessee Department of Education.

Retrieved 6/20/2012 From: http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf

http://www.tn.gov/education/safe_schls/learning/leaps.shtml
http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf
http://www.tn.gov/education/ci/computer/doc/cprogapps.pdf

97

APPENDICES

Appendix A: Arduino Programmers

The following people contributed to the programming used in the created project or

provided code that educated Brandyn M. Hoffer allowing him to create the project. The People

listed here are given credit for their work, and this list is intended in no way to imply that they

endorse the created project or this thesis.

The following people are the developers of the Arduino project and further contributed through

providing example sketches used for reference when investigating the Arduino’s capabilities:

Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis

Credit is given to DojoDave, http://www.0j0.org, 2005, for creating the “Button” sketch used for

learning the Arduino inputs and outputs later modified by Tom Igore.

Credit is given to Nicholas Zambetti, 2006, for creating the “ASCIITable” sketch later modified

by Tom Igore, which was the basis for the creation of Lab 4: Better Serial Communication.

Credit is given to Mark Stanley, and Alexander Brevig for creation of the “keypad.h” header file

used in Labs 10-14, and for the example sketches provided with the library which demonstrated

its uses. The “CustomKeypad” sketch was modified to provide the basis for Lab 10: Interfacing

With a Matrix Keypad.

Credit is given to Limor Fried, 2009, who modified the LiquidCrystal.h library created by the

developers, which was used in Labs 9-14.

http://www.0j0.org/

98

Credit is given to Hernando Barrang who developed “Wiring”, “an-open source programming

framework for microcontrollers” (http://wiring.org.co/) which the Arduino syntax is based on.

Credit is given to Ben Fry and Casey Reas for developing Processing “an open source

programming language and environment” (http://processing.org/) which the Arduino

environment is based on.

http://wiring.org.co/
http://processing.org/

99

Appendix B: The Lab Manuel

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

Appendix C: Lab Descriptions

Lab 1: “Hi Guys!”

Lab 1 introduces the Serial function of the Arduino as well as the basic program format.

Serial commands allow the Arduino to communicate with a computer while a program is

running. This is a valuable tool in monitoring and debugging sketches. It allows users to use the

“print” command to send data to the Arduino serial monitor on the computer to display variable

values, input/output states, and any other information in real time. The setup command is used to

setup initializers in a program that are meant to run once, while the loop command loops

continuously once the program is started. Because much of the Arduino programming is meant

to continuously monitor inputs/outputs and variables, the majority of programming statements

are used within the loop. Initializers such as “Serial.begin” are used in the setup to start

communication before the rest of the program is run. The purpose of this lab is to print the

phrase “Hi guys!”, or any other phrase chosen by students, to the serial monitor on the computer.

These are Arduino library specific commands, and not generic C commands. The “print”

command works similarly as the library specific command “printf” in the stdio.h library file for

the C language. “printf, print formatted, is perhaps the most commonly used output function

(Berry & Meekings, 1984, p.11). The “print” command must also be preceded by “Serial.” to

specify that the Arduino is printing to the serial monitor.

Lab 2: Simulating a Stop Light

 In lab 2 other Arduino library specific commands are introduced to show the basics of

using the Arduino I/O functions. The “pinMode” command specifies weather a specific Arduino

pin is an input or an output. The “digitalWrite” command is used to write a specific digital pin

186

either HIGH (1, 5V) or LOW (0, 0V). These two commands are used for interfacing with all

digital peripheral devices. The “dealy” command which pauses the program for a given time in

milliseconds is also introduced. This is included in the Arduino library, and is usually formed in

C through the use of a “for” loop and the time.h library file. These commands are used along

with the previously introduced commands to simulate a stoplight on the trainer that uses red,

yellow, and green LEDs.

Lab 3: Inputs and Outputs

 In this lab students learn the command “int” used to define a data type as an integer is

introduced. These can be named anything so long as they start with a letter, and do not take the

name of an existing command. Kernighan B.W. and Ritchie (1978, p. 9) state “an int is a 16-bit

signed number, that is, one that lies between -32,768 and +32,768.” These are useful for both

calculations, and to simplify code into a more readable structure. Rather than specifying a pin

number every time the “int” function allows students to name pins more understandable

expressions such as “GreenLED”. The “const” command is used with data types to keep them

constant. This is also introduced and recommended for pin numbers as these should not change

throughout the sketch.

This lab also introduces the “if…else” control expression to perform logical operations

based on inputs or variables. The “if” statement is one that tests a conditional expression, and

executes the action specified if that expression is true. The “if…else” expression performs the

same task, however a second action is specified after the command “else” if the condition is not

satisfied, the program executes the action listed under the “else” command. (Johnsonbaugh &

Kalin, 1997, p. 49). This is the primary statement used in the labs to enact various functions. In

order to properly form conditional expressions the syntax for comparison operators are also

187

introduced, such as greater than, less than, and equal to. The Boolean operators for and, or, not

are also introduced to form conditional expressions where multiple conditions should control the

output. Finally the “digitalRead” command is introduced that reads the state of a digital input in

the same way “digitalWrite” controls an output. This allows students to base conditions on

inputs.

Lab 4: Better Serial Communication

Lab 4 teaches students about better serial communication between the Arduino and the

computer to introduce various data types and the concept of binary. The “println” command is

introduced that functions the same as the “print” command except it enters each new text on the

line below the previous one, rather than scrolling to the right. This is useful in organizing

information in the serial monitor. When using these commands any character is not printed in its

ASCII encoded form.

In this lab students use the serial monitor to neatly display the numbers 0-9 in their

decimal, binary, hexadecimal and octal values. The “Serial.write” command is also introduced

that automatically prints characters in their ASCII encoded form. Students are taught how to

convert between decimal, a base 10 counting system, and binary, a base 2 counting system. An

Arduino specific command “Serial.avalable” is used to retrieve data entered into the serial

monitor and prompt an output based on this data. While the conversion is not shown for octal, a

base 8 system, and hexadecimal, base 16, students use the Arduino to discover what these are.

Lab 5: Programming a Keypad

This assignment does not introduce any new C commands but focuses on using those

already taught in more complicated ways. The goal of this lab is to have students use the

188

information discovered in the previous lab to prompt a keypad to display the number pressed in

binary using 4 LEDs. This lab uses multiple inputs and outputs, and total of 12 “if” statements to

produce the binary readout. Completion of this lab gives students the ability to interface with the

keypad on the first trainer for future labs, thus saving time by editing this sketch to produce

different outcomes. The keypad uses a 4 input binary circuit to display the numbers and allows

for control using multiple buttons.

Lab 6: Reading Analog Inputs

Next students learn the “analogRead” function and a new data type known as a “float”. A

“float” is a command used to specify a variable type where “float stands for floating point, i.e.,

numbers which may have a fractional part” (Kernighan & Ritchie, 1978, p. 9). The “analogRead”

function reads the voltage (from 0-5V) on an analog input pin. The value is converted from a 10-

bit binary value to a decimal number from 0-1023, and sent to the serial monitor for

interpretation. Students convert this number to the actual voltage read by the analog pin that is

connected to the wiper of a potentiometer used to vary the voltage. This provides the basis for

interfacing with analog electrical devices, and introduces the concept of an analog to digital

(A/D) converter. The concept of resolution is introduced to explain the A/D converter. Students

also learn how to only print relevant data from inputs and outputs to the serial monitor.

Previously data would print only when prompted thorough serial communication or otherwise

print continuously.

Lab 7: Dimming a Light Using the Keypad

 The Arduino also has an “analogWrite” function that uses pulse width modulation

(PWM) to produce a varying DC value. Students control the lighting level of two ultra-bright

LEDs in equal steps using the keypad introduced in previous labs. The “analogWrite” function is

189

used for controlling analog electronic devices, and is useful in teaching the concept of PWM.

The commands and description section explains that PWM is the act of pulsing a signal on and

off very quickly to form an analog voltage when measured over time. The ultra-bright LEDs

appear to dim by using this method. The PWM occurs as a 490 hertz (Hz) square wave. The

width of the positive pulse of the 490 Hz square wave determines the amount of time the LEDs

are on and thus the brightness of the LEDs. For example, if the positive pulse width is only

active for 75% of the period the LEDs appear to be dimed by 25%.

Lab 8: Maintaining Lighting Levels Using a Photo Resistor

 Students use the knowledge they gained from previous labs to automatically adjust the

brightness of a light based on the lighting levels in a room in this assignment. A photo sensitive

resistor that varies its resistive value based on the presence of light is used to control the ultra-

bright LEDs. While these are not actually bright enough to illuminate the whole room, the

concept taught is valuable in coordinating analog inputs and outputs and has real world

application in designing an automatic dimmer circuit. Students also learn the Arduino library

specific “map” command and the “constrain” command. The map command performs basic

arithmetic to map one set of values to another. This can be used to reverse a set of input values,

i.e. 0-100 to 100-0, or to multiply or divide them, i.e. 0-100 to 0-1000. In the second case the

value of 90 would be mapped to 900. Constraining values causes them to stay within specific

boundaries. In other words an integer, “int” cannot be less than or greater than the specified

values. These commands allow students to better use variables.

Lab 9: Interfacing With an LCD Screen

 This is the first lab where a header file is introduced using the “#include” command. As

previously mentioned, the Arduino automatically loads several library files to allow for the use

190

of Arduino specific commands that execute more complicated C code. In this lab students are

shown how to manually use header files and their uses through the “LiquidCrystal” library. This

library allows for interface with an LCD screen on the second trainer to produce readout on a

portable device. Students are made familiar with many library specific commands used to control

the LCD screen. Some of the notable LCD commands are “setCursor”, “home”, and “clear”. The

commands are commonly set up as “#define” statements. “#define” statement replaces any

character string with the specified code before the program is compiled into machine code. The

commands introduced are commonly used as “#define” statements to set cursor positions without

having to specify their specific coordinates.

Lab 10: Interfacing With a Matrix Keypad

In Lab 10 student are introduced to several new data types and C commands through the

use of a matrix keypad library. Students will use the keypad on the second trainer and interface it

with the LCD screen to produce a readable output on the portable trainer. This also provides the

basics for the next lab in which students design a calculator. The “byte” data type is introduced

that signifies that the data consists of 8 binary bits. The “char” command is also used to create a

character array. The “char” command is short for character and “creates a 1-byte cell that can

hold one character” (Johnsonbaugh & Kalin, 1997, p. 70). A character array is a series of

characters that each occupies 1-byte arranged in columns and row. Students use the array to

specify which button is pushed.

The command “getchar” is also used to retrieve a character from the character array.

“The command “getchar” reads one character from the standard input” (Johnsonbaugh & Kalin,

1997, p. 70). In this case the input is the matrix keypad, and the term “Key” is used to denote that

the character comes from this input. As a result this command takes the form “getKey” in the

191

sketch. A matrix keypad is a type of keypad that closes the circuit between various rows and

columns to signify that a key has been pressed. The Arduino checks to see which row is written

HIGH and which column is read as HIGH and determines the key. This in turn will enable

students to use the keypad to enact certain actions based on the character, or simply print the

character.

Lab 11: Making a Calculator

 This assignment expands upon the previous one, and introduces the data type “long” as

well as the “++” increment and “--" decrement functions. A “long” is an integer number that

occupies 32 bits and thus allows for calculations with much larger numbers. The increment and

decrement commands are shorthand that adds or subtracts the value of 1 from an integer. The

“array” function is also introduced for storing variables that can be called by the name of the

array and the numerical pointer address for the specific number needed. This allows students to

perform more complicated calculations with multiple numbers without having to specify a

variable name for each one (Berry & Meekings, 1984, p.60-64). This will also allow students to

store subsequent numbers entered into the array. Students will use all arithmetic operations (+,-

,*,/) and the tragicomic operators “sin”, “cos”, and “tan” to perform mathematical functions on

the Arduino.

Lab 12: Resistance and the Ohm Meter

 Students have been programming primarily in the “loop” part of the sketch. Because this

loops continuously all conditions up to this point could be satisfied with the “if” statement. This

lab introduces the “while” loop and its uses. The “while” loop is accompanied by a conditional

expression much like the “if” statement. If the condition is true the action in the loop is executed

and the conditional expression is tested again. As long as the expression remains true, only the

192

portion of the program contained within the while loop is run. This will allow students to add the

Ohm Meter program they will create into the same sketch as the calculator while ignoring the

commands used to operate the calculator (Johnsonbaugh & Kalin, 1997, p. 40).

 This lab also introduces students to the concept of electrical resistance, and the Ohm.

Students will first write a sketch that allows the Arduino to calculate resistance using the leads

on the second trainer, through a voltage measurement on an analog pin. They will measure

several resistors and compare these to the resistor values expressed by their color codes.

Lab 13: Creating a Light Meter

 In this lab students will average light readings from the same photo resistor used to

control lighting levels in Lab 8. They will develop the equation to convert the analog input value

measured to the SI unit of Lux. The “for” loop will also be used to average the values over a

short period of time to ensure accurate measurements, and to correct for small fluctuations. The

“for” command is another looping command. It consists of 3 expressions where the first

expression is tested, and initiates the loop if it is true. The second expression tell the loop when

to terminate, and the third expression usually increments or decrements a variable used in the

first two expressions. “The for statement proves convenient to use when it is necessary to

execute a loop a given number of times” (Berry & Meekings, 1984, p.49). This statement can be

used to average the measurements over a period of time. This program will also be compiled into

the calculator and Ohm meter sketch to make the second portable trainer a multi-functional

device.

193

Lab 14: Ultrasonic Distance Measurements

 This is the final lab on the second trainer, and will allow the trainer to perform four

different functions at the press of a button. Students will interface with an ultrasonic distance

sensor that measures the distance of an object located in front of it using a sound wave above the

human level of hearing. Students will use the “pulseIn” Arduino specific command that measures

the amount of time it takes for an input to return to a HIGH state. The “delayMicroseconds”

command works the same way as the “delay” command for shorter time intervals. This

command will be used to rapidly switch the device from input to output in order to use the

measured time to determine the distance of the object from the sensor. Students will work in a

group to plot the digital measurements taken, and produce an equation that allows for the

distance to be displayed in inches, and converted to centimeters so both units of measurement

can be known. The sketch will be checked with a ruler of known accuracy to ensure the distance

is measured appropriately and that the conversion is correct.

194

Appendix D: Datasheets

10 K Rotary Potentiometer

195

196

197

10K Tuner Potentiometer

198

199

Diode

200

201

202

203

Green LED

204

LCD Screen

205

Photoresistor

206

207

Project Box

208

Push Button

209

210

211

Red LED

212

Safety Socket (Both)

213

Ultra Bright LED

214

Ultrasonic Distance Sensor

215

216

Yellow LED

217

Appendix E: AutoCAD Drawings

Trainer 1 AutoCAD Drawing

218

Trainer 2 AutoCAD Drawing

219

VITA

BRANDYN M. HOFFER

Personal Data: Date of Birth: September 10, 1987

Education: David Crockett High School, Jonesborough, Tennessee

 B.S. Engineering Technology (Electronic Engineering

 Technology Concentration), East Tennessee State

 University, Johnson City, Tennessee 2010

 M.S. Engineering Technology (Electronic Engineering

 Technology Concentration), East Tennessee State

 University, Johnson City, Tennessee 2012

Professional Experience: Graduate Research Assistant, East Tennessee State University

 College of Business and Technology, 2010-2012

 Lead Student, U.S. Department of Energy Industrial Assessment

 Center; East Tennessee State University, Johnson City,

 Tennessee, 2009-2012

Honors and Awards: Graduated Magna Cum Laude (B.S.), TELS Scholarship,

 SMART Grant, U.S. Department of Energy Industrial Assessment

 Center Certificate of Participation

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	8-2012

	Satisfying STEM Education Using the Arduino Microprocessor in C Programming
	Brandyn Moore Hoffer
	Recommended Citation

	tmp.1379633764.pdf.GbsiP

