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ABSTRACT

Finding Edge and Vertex Induced Cycles Within Circulants

by

Trina M. Wooten

Let H be a graph. G is a subgraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H).

The subgraphs of H can be used to determine whether H is planar, a line graph,

and to give information about the chromatic number. In a recent work by Beeler and

Jamison [3], it was shown that it is difficult to obtain an automorphic decomposition

of a triangle- free graph. As many of their examples involve circulant graphs, it is of

particular interest to find triangle-free subgraphs within circulants. As a cycle with at

least four vertices is a canonical example of a triangle-free subgraph, we concentrate

our efforts on these. In this thesis, we will state necessary and sufficient conditions

for the existence of edge induced and vertex induced cycles within circulants.
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1 INTRODUCTION

The purpose of this thesis is to find edge and vertex induced subgraphs (particu-

larly cycles) within circulant graphs. In Section 1.1, basic graph theoretical definitions

are introduced that pertain to this paper. In Section 1.2, we include background in-

formation from modern algebra and number theory that will be used throughout.

For Section 1.3, we define the circulant graph, its properties, and we also state the

problem we are analyzing. For Section 1.4, we define labellings of graphs. Finally, in

Section 1.5, we show a preview of major results and theorems that will be proven in

Chapter 4.

1.1 Basic Definitions of Graph Theory

A graph G consists of a vertex set V (G), an edge set E(G), and a relation that

associates one edge with two vertices, called the endpoints. We will assume that all

the graphs presented throughout this paper are simple, i.e., there are no loops (edges

whose endpoints are equal) or multiple edges (edges that have the same endpoints)

[17]. All graphs presented here are finite unless otherwise noted. In Figure 1, we have

an example of a graph G.

The order of G, denoted as n(G) = |V (G)|, is the number of vertices in G. The

size of G, denoted as e(G) = |E(G)|, is the number of edges in G. For example, in

Figure 1, n(G) = 8 and e(G) = 11. The complement of G, denoted as G, has a vertex

set V (G), and edges defined by v1v2 ∈ E(G) if and only if v1v2 /∈ E(G). A vertex v is

incident to an edge e if v is an endpoint of e. The degree of a vertex v is the number

of edges incident to v, denoted as degG(v) [17]. The maximum degree of G, denoted

9
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Figure 1: A Graph G

as ∆(G) = max{degG(v)}, is the largest number of edges incident to a vertex v in G.

The minimum degree of G, denoted as δ(G) = min{degG(v)}, is the smallest number

of edges incident to a vertex v in G. A graph G is d-regular when ∆(G) = δ(G) = d

[7]. Therefore, in Figure 1, ∆(G) = 3 and δ(G) = 2 but it is not a regular graph.

Two vertices v, w ∈ V (G) are adjacent if and only if v and w are endpoints of an

edge e [17]. A v−w walk denoted as W , is a sequence of vertices such that consecutive

vertices in this sequence are adjacent. In other words, W : v = w0, w1, w2, . . . , wj = w

where j ≥ 0 and wk and wk+1 are adjacent for k = 0, 1, 2, . . . , j − 1. In any walk W ,

the vertices and edges can be traversed more than once [7]. This is the case for a t−s

walk in Figure 2 with W : t, u, v, t, s, v, s.

A v −w path in G is a walk where the vertices and edges are traversed only once.

A graph G is connected if there is a v − w path for all v, w ∈ V (G). In particular,

a path on n vertices is denoted Pn. We will assume that all graphs in this thesis are

connected. A cycle is a v − w path with v = w. A cycle on n vertices is denoted

as Cn [7]. In Figure 3, we have an example of a t − s path P4 on the left and a C4

cycle on the right. A graph is complete when all the vertices are mutually adjacent.

10
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Figure 3: A Path and a Cycle on G

A complete graph on n vertices is denoted as Kn. A tree denoted as T is an acyclic

graph, i.e., it has no cycles [7]. So in Figure 1, G is a connected graph.

An isomorphism from a graph G1 to another graph G2 is a bijection α : V (G1) →

V (G2) such that vw ∈ E(G1) if and only if α(v)α(w) ∈ E(G2). If such a bijection

exists, we can say that G1 is isomorphic to G2 and which is denoted as G1
∼= G2 [17].

A graph H has a subgraph G if every vertex in G is also a vertex from H and every

edge of G is also an edge of H, i.e., V (G) ⊆ V (H) and E(G) ⊆ E(H). A maximum

clique is the largest complete subgraph in H. The order of the maximum clique is

denoted as ω(G) [17]. Referring back to Figure 1, the largest complete subgraph is

K3, i.e., ω(H) = 3. This particular subgraph is also a triangle, i.e., K3
∼= C3. So a

11



triangle-free graph contains no subgraph isomorphic to C3 [17].

An edge induced subgraph of G induced by A ⊆ E(G) denoted as 〈A〉 consists

of all the vertices that are incident with at least one edge in A. A vertex induced

subgraph of G induced by B ⊆ V (G) is denoted as GB . We define GB as follows:

V (GB) = B and

E(GB) = {b1b2 : b1, b2 ∈ B, b1b2 ∈ E(G)} [4].

This means GB has vertices from G with all their corresponding edges [10]. We have

an example in Figure 4, of an edge induced subgraph and a vertex induced subgraph.

On the far left, we have our original graph G. In the center, we have an edge induced

subgraph of G with A ⊆ E(G) such that A = {vu, ut, ts}. On the far right, we have

a vertex induced subgraph of G with B ⊆ V (G) such that B = {s, t, v, x, y, z} with

V (GB) = B and E(GB) = {st, tv, sv, sz, zx, yz, xy}.

We have another example of edge and vertex induced subgraphs in Figure 5 using

a graph called a wheel denoted as W1,n on the first line, i.e., a cycle with an appended

universal vertex [17]. On the second line towards the left, we have an edge induced

subgraph P3. On the right of this same line, we have a vertex induced subgraph C3.

Notice that in both of these subgraphs they consist of the same vertices. However,

one is an edge induced P3, the other is a vertex induced C3. On the third line, we

have a P3 subgraph which is both an edge and vertex induced subgraph. Our goal is

to find edge and vertex induced cycles within any circulant. After defining edge and

vertex induced subgraphs, we now can prove the following proposition:

Proposition 1.1 [5] If G is a vertex induced subgraph of H, then G is an edge

12
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Figure 4: Edge and Vertex Induced Subgraphs of G

induced subgraph of H.

Proof. Let HA be a vertex induced subgraph of H such that HA is isomorphic to

G. Since H has a vertex induced subgraph, there exists an edge induced subgraph

〈L〉 that is isomorphic to G. So we have that L ⊆ E(H). Therefore, L = E(HA). In

conclusion, we have that 〈L〉 is isomorphic to G.

The converse of Proposition 1.1 is false as we have seen using the wheel W1,4 in

Figure 5. Remember that we had an edge induced subgraph P3 and a vertex induced

subgraph C3. Both of these subgraphs had the same vertices from W1,4, but these

subgraphs are not isomorphic to each other. Thus, if G is an edge induced subgraph

of H, then G is not always a vertex induced subgraph of H.

We define a coloring of graph G as an assignment of colors to the vertices. A

proper coloring of G is an assignment of colors to the vertices of G such that adjacent

vertices receive different colors [17]. The chromatic number of a graph G is the

minimum amount of colors needed for a proper coloring of a graph. This is denoted

as χ(G) [10]. We will use the graph from Figure 1, to show that for this particular

graph χ(G) = 3, in Figure 6 with the colors labeled as 1, 2, and 3.
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1.2 Modern Algebra and Number Theory

In this section, we will give brief background information from modern algebra

and number theory. Let Γ be a non empty set. A group (Γ, ∗) with a binary operation

*, satisfies the following properties below [8]:

i) Closure: If c, d ∈ Γ, then c ∗ d ∈ Γ.

ii) Associativity: For all c, d, f ∈ Γ, (c ∗ d) ∗ f = c ∗ (d ∗ f).

iii) Identity: For all c ∈ Γ there exist an identity e ∈ Γ such that c ∗ e = e ∗ c = c.

iv) Inverse: For every c ∈ Γ there exist an element d ∈ Γ such that c∗d = d∗c = e.

The order of a group is the number of elements in (Γ, ∗), denoted as |Γ|. In a group

Γ, if there exist h ∈ Γ such that h = h−1, then h is called an involution. All groups

have at least one involution, namely the identity. If for all c, d ∈ Γ, c ∗ d = d ∗ c, then

Γ is Abelian. A group Γ is cyclic if there exists c ∈ Γ, such that Γ = {cm : m ∈ Z}.

This element c is a generator of Γ, denoted as Γ =< c >. In this thesis, we will be

using (Zn, +) as a cyclic group of order n. The involutions of this group are n
2

and 0

[8]. These involutions will be important in the notation listed below and on labellings

in Section 1.4. We will define the following below:

i) The set of positive integers as Z+ = {1, 2, 3, . . . };

ii) Integers modulo n, Zn = {0, 1, 2, . . . , n − 1};

iii) “Positive” integers modulo n: Z+
n = {x ∈ Zn : 0 < x < n

2
};

iv) Z∗

n = {x ∈ Zn : 0 < x ≤ n
2
}[2];

15



v) Modular Absolute Value:

|a|n =

{

a if 0 ≤ a ≤ n
2

n − a if n
2

< a < n.

Let a, b ∈ Z with b > 0. We have that b is a divisor of a if there exists c ∈ Z such

that a = bc. This is denoted as b|a. The greatest common divisor of a and b is the

largest d such that d|a and d|b. This is denoted as gcd(a, b). We have that a and b

are relatively prime if gcd(a, b) = 1 [8].

Proposition 1.2 [8] We have that gcd(a1, a2, a3, . . . , an) = 1 if and only if there

exists x1, x2, x3, . . . , xn ∈ Z such that x1a1 + x2a2 + x3a3 + · · · + xnan = 1.

In addition, Proposition 1.2 extends gcd to any number of variables.

1.3 Circulant Graphs

In this section, we define a circulant and state its properties. Let n ∈ Z+ and S ⊆

Z∗

n be given. A circulant, denoted as Cn(S), is an undirected graph with V (Cn(S)) =

Zn and E(Cn(S)) defined as follows:

E(Cn(S)) = {vw : v, w ∈ Zn and |v − w|n ∈ S}.

The elements in S are called lengths. So we have that vw ∈ E(Cn(S)) is of length a

if |v − w|n = a ∈ S [11]. An example of a circulant is shown in Figure 7 as C6(1, 2).

Heuberger [11] presented the following properties of a circulant below without

proof. For completeness, we include the proofs.

Proposition 1.3 [11] Let n ∈ Z with n ≥ 3 and S = {a1, a2, a3, . . . , am} ⊆ Z∗

n be

given. We have the following properties:

16
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Figure 7: C6(1, 2)

i) Cn(S) is connected if and only if gcd(a1, a2, a3, . . . , am, n) = 1;

ii) Cn(S) with gcd(a1, a2, a3, . . . , am, n) = d is isomorphic to d disjoint copies of

Cn

d
(a1

d
, a2

d
, a3

d
, . . . , am

d
);

iii) If gcd(ai, n) = 1 for some i = 1, 2, 3, . . . , n and a−1
i ≡ b (mod n), then

Cn(a1, a2, a3, . . . , am) is isomorphic to Cn(a1b, a2b, a3b, . . . , amb);

iv) Cn(S) is r-regular where:

r =

{

2m if S ⊂ Z+
n

2m − 1 if otherwise;

v) Cn(a) is isomorphic to Cn if and only if gcd(a, n) = 1;

vi) Cn(1, 2, 3, . . . , b
n
2
c) is isomorphic to Kn;

vii) Cn(S) is isomorphic to Cn(Z
∗

n − S).

Proof.

i) Assume that Cn(S) is connected. We must show that gcd(a1, . . . , am, n) = 1.

Since Cn(S) is a connected graph, there is a path between any two vertices.

17



Without loss of generality, we must show that there is a path between 0 and

1. Thus there is some combination of edge lengths that sum to one modulo

n. This implies that there exist s1, . . . , sk ∈ Z such that s1a1 + · · · + skak ≡ 1

(mod n).

s1a1 + · · · + skak ≡ 1 (mod n)

⇐⇒ s1a1 + · · · + skak = qn + 1 for some integer q

⇐⇒ s1a1 + · · · + skak − qn = 1

⇐⇒ gcd(a1, . . . , ak, n) = 1 by Proposition 1.2 .

If gcd(a1, . . . , ak, n) = 1 then there exists s1, . . . , sk such that

s1a1 + · · · + skak = 1 (mod n).

Thus you can make step size one. Hence Cn(S) is a connected graph.

ii) Assume Cn(S) has a gcd(a1, a2, a3, . . . , am, n) = d. We want to show that Cn(S)

is isomorphic to d disjoint copies of Cn

d
(a1

d
, a2

d
, a3

d
, . . . , am

d
). Let j ∈ V (Cn(S)).

Let Cj be a connected component containing j. Therefore, the elements of Cj

form j + id with an integer i. We have that d|n by assumption. This means

that there are d connected components consisting of n
d

vertices. Therefore,

s1
a1

d
+ s2

a2

d
+ s3

a3

d
+ · · · + sm

am

d
≡ 1 (mod n).

Next, we need to show that Cj is isomorphic to Cn

d
(a1

d
, a2

d
, a3

d
, . . . , am

d
). Let

β be a function where β : V (Cj) → V (Cn

d
(a1

d
, a2

d
, a3

d
, . . . , am

d
)) such that for

all s ∈ V (Cj) we have that β(s) = s
d

(mod n
d
). So, if vw ∈ E(Cn(S)), then

18



|v − w|n = ai ∈ S. Hence,

β(vw) = |β(v)− β(w)|n

d
= |

v

d
−

w

d
|n

d
=

ai

d
.

Therefore, β(vw) ∈ Cn

d
(a1

d
, a2

d
, a3

d
, . . . , am

d
). So, Cj

∼= Cn

d
(a1

d
, a2

d
, a3

d
, . . . , am

d
).

iii) Assume that gcd(ai, n) = 1 with j ∈ N and a−1
i ≡ b (mod n). We need to

show that Cn(a1, a2, a3, . . . , am) ∼= Cn(a1b, a2b, a3b, . . . , amb). Suppose x1x2 ∈

E(Cn(S)), such that |x1−x2|n = aj with aj ∈ S. Define s∗n = {a1b, a2b, a3b, . . . , amb}

and note the following below:

β(x1x2) = |β(x1) − β(x2)|n = |a−1
j x1 − a−1

j x2|n

= a−1
j |x1 − x2| ∈ s∗.

Therefore,

Cn(a1, a2, a3, . . . , am) ∼= Cn(a1b, a2b, a3b, . . . , amb).

iv) We need to show that Cn(S) is r− regular with the following conditions below:

r =

{

2m if S ⊂ Z+
n

2m − 1 otherwise.

Let x1 ∈ V (Cn(S)) and aj ∈ S. So x1 is adjacent to all the vertices of the form

x1 + aj (mod n) or x1 − aj (mod n). If aj 6= n
2

(mod n), then these vertices

are distinct. In other words, there are two of these for each difference. So,

deg(xi) = 2m. Since xi was chosen arbitrarily Cn(S) is 2m-regular. If one these

differences is an involution, xi + n
2

= xi −
n
2
. This means that x1 is adjacent to

19



one less vertex. Therefore,

r =

{

2m if S ⊂ Z+
n

2m − 1 otherwise.

v) Assume that Cn(a) ∼= Cn. We must show that gcd(a, n) = 1. We have that

Cn is a 2-regular connected graph. We have that Cn(a) is 2-regular if and only

if a 6= n
2

and gcd(a, n) = 1. Assume that gcd(a, n) = 1. We must show that

Cn(a) ∼= Cn. From (i) and (ii), we know that Cn(S) with gcd(a, n) = 1 ∈ S. A

connected graph is 2-regular if and only if it is a cycle [17]. So from (iv) Cn(a)

is a 2-regular graph. So the length a ∈ S with a = 1. Therefore, if Cn(a), then

Cn(1) ∼= Cn.

vi) We must show that Cn(1, 2, 3, . . . , b
n
2
c) is isomorphic to Kn. Since we are using

simple graphs, every complete graph Kn is a (n − 1)-regular graph. Using (iv)

Cn(S) is r-regular where:

r =

{

2m if S ⊂ Z+
n

2m − 1 otherwise.

If bn
2
c = n

2
then r = 2(n

2
) − 1 = n − 1. If bn

2
c 6= n

2
implies bn

2
c = n−1

2
= r =

2(n−1
2

) = n − 1. Hence, Cn(1, 2, 3, . . . , bn
2
c) ∼= Kn.

vii) We must show that Cn(S) is isomorphic to Cn(Z∗

n − S). We have that vw ∈

E(Cn(S)) if and only if |v − w|n ∈ S. Therefore,

|v −w|n /∈ Z∗ − S

⇐⇒ vw /∈ E(Cn(Z
∗ − S)).

Hence, Cn(S) is isomorphic to Cn(Z∗

n − S).
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Figure 8: Example of Labelling with f : C3 → Z4

1.4 Labellings

In this section, we will go over labellings that pertain to the purpose of this thesis.

A Zn-labelling of a graph G is an injective function f that maps V (G) to Zn, i.e.,

f : V (G) → Zn. Each of these vertex labels induces an edge label as follows: for all

ab ∈ E(G), f ′(ab) = |f(a) − f(b)|n. In Figure 8, we have an example of a labelling

f : C3 → Z4. So the edge labels are obtained by taking the difference of two vertices

modulo 4.

A Zn-labelling f of G = (V, E) is a Zn-valuation if and only if the edge induced

labelling f ′ is injective and if the involution n
2

is excluded from the edge label [4].

Labellings were introduced in Rosa’s paper [15] which described a Zn-valuation on a

graph of size n as a ρ-valuation if and only if n = 2r+1 and β-valuation if and only if

f is positive. We have that f is positive if and only if V → Z+
n ∪ {0} [4]. So we have

Rosa’s β-valuations were popularized by Golomb [9] which he called graceful. The

reason that f : V (G) → Zn must be injective is to prevent degeneracy of a subgraph.

If the labelling of the vertices is not injective, G will collapse as shown in Figure 9.

Next, we will look at a cycle that is induced within a circulant. So for G to be an
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Figure 9: Consequence of a Vertex Labelling not Being Injective
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Figure 10: Edge Induced C4 within C8(1, 2, 3)

edge induced subgraph of H = Cn(S) we need f(E(G)) ⊆ S. The concept of induced

edge labels can be extended to all pairs of vertices in the obvious way, which we call

co-edges [5].

We define a set of co-edge labels, f(E(G))

f(E(G)) = {|f(x) − f(y)|n : xy /∈ E(G)}.

For G to be a vertex induced subgraph of Cn(S), none of these co-edges can be in

the difference set S, i.e., f(E(G)) ∩ S = ∅ [5]. Referring to Figure 10, we have an

example of an edge induced C4 within C8(1, 2, 3).

1.5 Preview

In this section, we are introducing five major ideas that are essential to the

problem that we are analyzing. The first idea mentions the necessary and sufficient
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conditions to have a vertex induced subgraph within a circulant. The other four ideas

will be proven in Chapter 4, which deal with the major results obtained in this thesis.

Also in both of these chapters, an explanation will be given of each one. In Chapter 3,

we have two major theorems that come from the results of the tables that are listed.

They show the conditions for an edge and a vertex induced C4 ∈ Cn(a, b).

1) Let S ⊆ Z+
n be given. A circulant, Cn(S), contains a vertex induced Kk+1 if

and only if there exists {a1, . . . , ak} ⊆ S such that:

|ai − aj|n ∈ S for all 1 ≤ i ≤ j ≤ k

[2].

2) Suppose that Cn(S) is a d-regular circulant where d ≥ 2. If Cm is a vertex

induced subgraph of Cn(S), then m ≤ nd
2(d−1)

.

3) Let |S| ≥ 2. If Cm is a vertex induced subgraph of Cn(S), then m ≤ n
2

+ 1.

4) There exists an edge induced Cm if and only if there exists `i ∈ {0, 1} and

xi ∈ S for i = 1, 2, 3, . . . , m such that:

i)
∑m

i=1(−1)`ixi ≡ 0 (mod n) and

ii)
∑j

i=1(−1)`ixi 6=
∑k

i=1(−1)`ixi (mod n) for j 6= k.

5) There exists a vertex induced Cm if and only if (4) holds and:

∣

∣

∣

∣

∣

k−1
∑

i=1

(−1)`ixi −

j−1
∑

i=1

(−1)xi

∣

∣

∣

∣

∣

n

/∈ S

for all k, j ∈ {0, 1, 2, . . . , m} such that |k − j|n ≥ 2.
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For (1) we have the largest possible size of a vertex induced subgraph that can be

within any circulant. This is obtained by looking at the largest clique that is possible.

We have that (2) gives us the largest size possible for a vertex induced cycle within

any circulant. This is the upper bound of a vertex induced cycle. Notice that as d

becomes larger, k approaches n
2
.

Using the information from (2), we obtain another bound in (3). This idea shows

that we can not have long cycles within any circulant. We can however achieve

equality, i.e., a vertex induced Cm for m = n
2

+ 1 within a circulant. For example,

B = {0, 1, 3, 5} will induce a C4 in C6(1, 2).

For (4) and(5) we show necessary and sufficient conditions of having edge and

vertex induced cycles within circulants in general. For the edge induced cycles, two

conditions must be present:
∑m

i=1(−1)`ixi ≡ 0 (mod n), i.e., we should have a cycle

and
∑j

i=1(−1)`ixi 6=
∑k

i=1(−1)`ixi (mod n) for j 6= k i.e, to prevent degeneracy. For

vertex induced cycles, the conditions for an edge induced cycle must be present and

none of the co-edges from that cycle can be in the difference set S.

In conclusion, these five ideas will later become theorems. They are essential in

solving the problem of finding edge and vertex induced cycles within circulants. The

first three ideas give bounds on finding induced cycles within circulants. The last two

theorems give us the necessary and sufficient conditions for edge and vertex induced

cycles to exist in any circulant. In Chapters 2 - 5 we will do the following: We will give

more background information on this major problem, a specific example of a cycle

(C4) within a two difference circulant i.e., Cn(a, b), proofs of these ideas presented

here and open problems that will be analyzed in the future.
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2 LITERATURE REVIEW

In this chapter, we review the literature that relates to finding edge and vertex

induced cycles within circulants. In Section 2.1, we will give more detailed information

about labellings, valuations, and decompositions. We will use this information to

understand how to find subgraphs within circulants. In Section 2.2, we will look at

the previous work that leads to our problem. In Section 2.3, we will have a review

of work that shows the importance of finding subgraphs within circulants. In Section

2.4, we review the work of finding cliques.

2.1 Labels, Valuations, and Decompositions

A labelling is an injection between the vertices vi and f(vi) ∈ N. This induces

an edge labelling |f(vi) − f(vj)| on an edge vivj [15]. A decomposition D of a graph

H by a graph G is a partition of E(H) such that the subgraph induced by each part

of the partition, P, is isomorphic to G [2]. Labellings were developed by Rosa when

he was working on Ringel’s conjecture.

Conjecture 2.1 (Ringel [17]) Given any tree, T , of size q, the edge set of K2q+1 can

be partitioned into isomorphic copies of T .

Rosa showed this is possible, provided there exists a β-valuation on T [15]. Also

there is another paper titled “How to Number a Graph” in which Golumb calls Rosa’s

β-valuations graceful labellings, which is the popular term today [9].

Our problem is a bit easier than that of decompositions. A decomposition parti-

tions H into several copies of G. We need to find a only single copy of G. Nonetheless,
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labelling methods are valuable to our problem. A paper by Beeler and Jamison, “Val-

uations, Rulers, and Cyclic Decompositions of Graphs” [4], deals with graphs that

can host a decomposition by a graph G. This particular paper extends graceful to

arbitrary cyclic groups.

2.2 Where the Problem Comes From

The subject of automorphic decompositions gives us the problem of finding in-

duced cycles within circulant. Beeler, working under the supervision of Jamison,

described a specific kind of decomposition, namely automorphic [3]. In this paper,

many of their examples come from circulants [3]. Furthermore, he shows that it is

difficult to obtain an automorphic decomposition in a triangle-free host.

Theorem 2.2 [3] For the existence of an automorphism G-decomposition of H the

following conditions are necessary:

i) For all A ⊆ V (H) such that HA is triangle-free we require that n(G) ≥ ∆(HA);

ii) If H is a triangle-free, we require that χ(H) ≥ n(G) ≥ ∆(H);

iii) If H is a triangle-free and not an odd cycle, we require that χ(H) = n(G) =

∆(H) and G = P2.

2.3 Importance of Finding Subgraphs

In this section, we deal with the subjects of forbidden subgraphs, which relates

to finding edge and vertex induced subgraphs within circulants. Theorem 2.3 gives

necessary and sufficient conditions on the existence of planar graphs consisting of
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Figure 11: Graphs K3,3 and K5

edge induced subgraphs. A planar graph is when G can be drawn in the plane where

no two edges are crossing each other. In a graph G, a subdivision of v1v2 ∈ E(G) by

replacing v1v2 with a path v1, v3, v2 from a new vertex v3 [17].

Theorem 2.3 (Kuratowski [12]) G is planar if and only if it does not contain a

subdivision of K3,3 or K5 (seen in Figure 11) as an edge induced subgraph

In Theorem 2.4, we have necessary and sufficient conditions that must be valid to

have a vertex induced subgraph. A graph G is a line graph, denoted as L(G), has a

vertex for each edge in G. Two vertices in L(G) are adjacent if and only if they share

a common endpoint in G [17]. In Figure 12, these are the nine subgraphs that will

not be vertex induced within line graphs.

Theorem 2.4 (Beineke [6]) A simple graph G is a line graph if and only if G does

not have any of the nine graphs in Figure 12 as a vertex induced subgraph.

In the paper “Circulants and the chromatic index of Steiner Triple Systems”, the

authors give the colorability of Cn(a, b, a+b) [13]. Colorability is related to subgraphs

if G ⊆ H, then χ(G) ≤ χ(H) [17]. There are two distinct elements of the difference
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Figure 12: Graphs That Are Not Vertex Induced Subgraphs of Line Graphs

set S that we analyze, which are a and b. Mainly in this paper “On planarity and

colorability of circulant graphs”, Heuberger looks at the planarity and colorability of

Cn(a, b) [11]. The following propositions below come from Rosa’s [13] and Heuberger’s

[11] papers dealing with chromatic numbers of circulants.

Proposition 2.5 [11] G = Cn(a, b) be a connected circulant with |a|n 6= |b|n. Then:

i) χ(G) = 2 if and only if a and b are odd and n is even.

ii) χ(G) = 4 3 - n, n 6= 5 and b ≡ ±2a (mod n) or a ≡ ±2b (mod n).

iii) χ(G) = 4 if n = 13 and b ≡ ±5a (mod 13) or a ≡ ±5b (mod 13).

iv) χ(G) = 5 if n = 5.

v) χ(G) = 3 in all other cases.

Proposition 2.6 [13] Let G = Cn(a, b, a + b) be a connected 6 − regular circulant

where n ≥ 7 and a, b, and a + b are pairwise distinct positive integers. Then we have

the following:
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i) χ(G) = 7 if and only if n = 7.

ii) χ(G) = 6 if and only if Cn(a, b, a + b) ∼= C11(1, 2, 3).

iii) χ(G) = 5 if and only if Cn(a, b, a + b) ∼= Cn(1, 2, 3) and n 6= 7, 11 is not by 4 or

G is isomorphic to one of these circulants C13(1, 3, 4), C17(1, 3, 4),C18(1, 3, 4),

C19(1, 7, 8),C25(1, 3, 4),C26(1, 7, 8),C33(1, 6, 7),C37(1, 10, 11).

iv) χ(G) = 3 if and only if 3 | n and 3 - a, b, a + b.

v) χ(G) = 4 in all other cases.

In his dissertation, Beeler gives a general upper bound for the chromatic number

in the following proposition [2].

Proposition 2.7 [2] Let Ckn(S) be a circulant such that for all a ∈ S, k - a and n

is sufficiently large. Then we have χ(Ckn(S)) ≤ k.

He also shows that this bound is tight in certain circumstances. The chromatic

number of any circulant will be at most k.

2.4 Finding Cliques

In this section, we go over work done with finding cliques. In Theorems 2.8 and

2.9, we give a general upper bound and lower bound on the chromatic number when

observing cliques.

Theorem 2.8 (Turan [16]) If G is of order n with no k-clique, then:

e(G) ≤
n2(k − 2)

2(k − 1)
.
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Turan’s Theorem is very important in what we are trying to accomplish in finding

edge and vertex induced subgraphs within circulants that are triangle-free. This

relates the clique number to the order and size of G. A Turan graph is a graph that

has the maximum number of edges of any graph of order n which contains a complete

subgraph Kk. Therefore, it is very important not to have any K3 subgraphs within

any circulant [1, 14].

Theorem 2.9 [2] Let S ⊆ Z+
n be given. A circulant, Cn(S), contains a vertex induced

Kk+1 if and only if there exists {a1, a2, a3, . . . , ak} ⊆ S such that:

|ai − aj|n ∈ S for all 1 ≤ i ≤ j ≤ k.

Proof. Let H = Cn(S) and suppose that H contains Kk+1 as a vertex induced

subgraph. Let A ⊆ V (H) be such that HA
∼= Kk+1. By the cyclic nature of the

circulant, we may assume that 0 ∈ A. Let A = {0, v1, . . . , vk}. Since 0 is adjacent

to all of the vi, it follows that |vi|n ∈ S for all i. We claim that {|v1|n, . . . , |vk|n}

is the required set of differences. Since {0, v1, . . . , vk} are vertices of a circulant and

mutually adjacent, it follows that |vi − vj|n ∈ S for all i and j.

Conversely, assume that {a1, . . . , ak} ⊆ S is such that |ai − aj|n ∈ S for all

1 ≤ i < j ≤ k. In order to show that Cn(S) contains Kk+1, we need to find k + 1

distinct mutually adjacent vertices. We claim that {0, a1, . . . , ak} is the required set

of vertices. Clearly, 0 is adjacent to every vertex in the set as ai ∈ S for all i. Further,

|ai − aj|n ∈ S for all 1 ≤ i < j ≤ k by definition of S. Thus, all of the vertices in

{0, a1, a2, . . . , ak} are mutually adjacent. As such, we have constructed the required
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clique.

For any Cn(S) has a vertex induced complete subgraph if and only if the elements

of the difference set S have lengths that are distinct and/or equal to each other.

Producing a vertex induced subgraph within any circulant is more difficult than de-

veloping an edge induced one (not with cliques). We are more interested in necessary

and sufficient conditions in finding vertex induced cycles within circulants.
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3 C4 WITHIN Cn(S)

In this chapter, we have specific examples of a C4 within a two difference circulant,

i.e, Cn(a, b) where a 6= ±b (mod n). Tables 1 - 4 will be set up in the following fashion.

In the first column are the edge labels of C4. The second column contains the actual

figures of C4, with vertex labels. Each edge label goes in a clockwise direction giving

the vertex labels. The horizontal and vertical dashed lines are co-edges of C4, i.e.,

these edges are not in C4 but they are in C4. Column three gives the conditions for C4

to be an edge induced subgraph. The top line of the third column gives the condition

necessary to prevent degeneracy. The bottom line in the third column represents the

condition necessary for the completion of that particular cycle. Also in this same

column, the initials N.C.N. stand for “No Completion Necessary”. The last column

gives additional conditions for C4 to be a vertex induced subgraph. In order for this

C4 to be vertex induced none of these co-edges can be in the difference set S. The top

line in the fourth column represents the horizontal co-edge condition and the bottom

line gives the vertical co-edge condition. Tables 5 - 7 do not have any figures because

they have similar properties to those above. These will be discussed in more detail

later.

Here are the following two theorems for edge and vertex induced C4 being within

Cn(a, b).

Theorem 3.1 We have that C4 is an edge induced subgraph of Cn(a, b) if and only

if one of the following holds:

i) 4a ≡ 0 (mod n) and 2a 6= 0;
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ii) 3a + b ≡ 0 (mod n) and 2a 6= 0;

iii) 3a + b ≡ 0 (mod n) and a 6= −b;

iv) 3a − b ≡ 0 (mod n) and 2a 6= 0;

v) 3a − b ≡ 0 (mod n) and a 6= b;

vi) 2a + 2b ≡ 0 (mod n) and a 6= −b;

vii) 2a − 2b ≡ 0 (mod n) and a 6= b;

viii) Note it is always possible to achieve edge induced C4 via cancellation.

Proof. Refer to Tables 1 - 4; specifically column three.

Note it is always possible to achieve edge induced C4 using cancellation through

arithmetic. This is the condition in Theorem 3.1 (viii). However, our real interest

is vertex induced cycles. Hence, it is necessary to list the other more restrictive

conditions for achieving on edged induced C4. These may lead to alternate vertex

induced cycles, as shown in the next theorem.

Theorem 3.2 We have that C4 is a vertex induced subgraph of Cn(a, b) if and only

if one of the following holds:

i) Theorem 3.1 (i) holds and 2a /∈ S;

ii) Theorem 3.1 (ii) holds and 2a /∈ S;

iii) Theorem 3.1 (iii) holds and a + b /∈ S;

iv) Theorem 3.1 (iv) holds and 2a /∈ S or
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v) Theorem 3.1 (v) holds and a − b /∈ S;

vi) Theorem 3.1(vi) holds and a + b /∈ S;

vii) Theorem 3.1 (vii) holds and a − b /∈ S;

viii) Theorem 3.1 (viii) holds and a + b /∈ S and a − b /∈ S.

Proof. Refer to Tables 1 - 4; specifically column four.

Note that provided a ± b /∈ S, then cancellation will yield vertex induced C4.

The conditions in Theorems 3.1 and 3.2 are given in terms of a and positive values.

These theorems are given in terms of a because it is possible to reverse roles of a and b,

i.e., the condition 4a ≡ 0 (mod n) can be interpreted as 4b ≡ 0 (mod n). Conditions

are listed in terms of positive values because a ∈ S implies −a ∈ S and −4a ≡ 0

(mod n) if and only if 4a ≡ 0 (mod n). For completeness, these are listed in Tables

5 - 7.
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Table 1: 4a ≡ 0 (mod n) and 3a + b ≡ 0 (mod n)

E(C4) C4 Edge Cond. Vertex Cond.

a, a, a, a

0

a

2a

3a

2a 6= 0
4a ≡ 0

2a /∈ S
2a /∈ S

a, a, a, b

0

a

2a

3a

2a 6= 0
3a + b ≡ 0

2a /∈ S
2a /∈ S

a, a, b, a

0

a

2a

2a+b

a 6= −b,2a 6= 0
3a + b ≡ 0

a + b /∈ S
2a /∈ S

a, b, a, a

0

a

a+b

2a+b

a 6= −b
3a + b ≡ 0

a + b /∈ S
a + b /∈ S

b, a, a, a

0

b

a+b

2a+b

2a 6= 0, a 6= −b
3a + b ≡ 0

2a /∈ S
a + b /∈ S
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Table 2: 3a − b ≡ 0 (mod n)

E(C4) C4 Edge Cond. Vertex Cond.

a, a, a,−b

0

a

2a

3a

2a 6= 0
3a − b ≡ 0

2a /∈ S
2a /∈ S

a, a,−b, a

0

a

2a

2a-b

2a 6= 0,a 6= b
3a − b ≡ 0

a − b /∈ S
2a /∈ S

a,−b, a, a

0

a

a-b

2a-b

a 6= b
3a − b ≡ 0

a − b /∈ S
a − b /∈ S

−b, a, a, a

0

-b

a-b

2a-b

a 6= b, 2a 6= 0
3a − b ≡ 0

2a /∈ S
a − b /∈ S
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Table 3: 2a + 2b ≡ 0 (mod n)

E(C4) C4 Edge Cond. Vertex Cond.

a, a, b, b

0

a

2a

2a+b

a 6= −b,2a 6= 0
2a + 2b ≡ 0

a + b /∈ S
2a /∈ S

a, b, a, b

0

a

a+b

2a+b

a 6= −b
2a + 2b ≡ 0

a + b /∈ S
a + b /∈ S

a, b, b, a

0

a

a+b

a+2b

2b 6= 0,a 6= −b
2a + 2b ≡ 0

2b /∈ S
a + b /∈ S
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Table 4: 2a − 2b ≡ 0 (mod n) and Cancellation

E(C4) C4 Edge Cond. Vertex Cond.

a, a,−b,−b

0

a

2a

2a-b

a 6= b,2a 6= 0
2a − 2b ≡ 0

a + b /∈ S
2a /∈ S

a,−b, a,−b

0

a

a-b

2a-b

a 6= b
2a − 2b ≡ 0

a − b /∈ S
a − b /∈ S

a,−b,−b, a

0

a

a-b

a-2b

a 6= b,2b 6= 0
2a + 2b

−2b /∈ S
a − b /∈ S

a, b,−a,−b

0

a

a+b

b

a 6= ±b
N.C.N.

a − b /∈ S
a + b /∈ S

a,−b,−a, b

0

a

a-b

-b

a 6= ±b
N.C.N.

a + b /∈ S
a − b /∈ S
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Table 5: Negation of Tables 1 - 4

E(C4) Notes Edge Vertex

−a,−a,−a,−a Negate (a,a,a,a)
−2a 6= 0
−4a ≡ 0

−2a /∈ S
−2a /∈ S

−a,−a,−a,−b Negate (a,a,a,b)
−2a 6= 0

−3a − b ≡ 0
−2a /∈ S
−2a /∈ S

−a,−a,−b,−a Negate (a,a,b,a)
−2a 6= 0,−a 6= b
−3a − b ≡ 0

−a − b 6= S
−2a 6= S

−a,−b,−a,−a Negate (a,b,a,a)
−a 6= b

−3a − b ≡ 0
−a − b /∈ S
−a − b /∈ S

−b,−a,−a,−a Negate (b,a,a,a)
−a 6= b, −2a 6= 0
−3a − b ≡ 0

−2a /∈ S
−a − b /∈ S

−a,−a,−a, b Negate (a,a,a,-b)
−2a 6= 0

−3a + b ≡ 0
−2a /∈ S
−2a /∈ S

−a,−a, b,−a Negate (a,a,-b,a)
−2a 6= 0,−a 6= −b

−3a + b ≡ 0
−a + b /∈ S

2a /∈ S

−a, b,−a,−a Negate (a,-b,a,a)
a 6= b

−3a + b ≡ 0
−a + b 6= S
−a + b 6= S

b,−a,−a,−a Negate (-b,a,a,a)
−a 6= −b,−2a 6= 0

−3a + b ≡ 0
−2a /∈ S

−a + b /∈ S

−a,−a,−b,−b Negate (a,a,b,b)
2a 6= 0, a 6= −b
−2a − 2b ≡ 0

−a − b /∈ S
−2a /∈ S

−a,−b,−a,−b Negate (a,b,a,b)
−a 6= b

−2a − 2b ≡ 0
−a − b /∈ S
−a − b /∈ S

−a,−b,−b,−a Negate (a,b,b,a)
−a 6= b,−2b 6= 0
−2a − 2b ≡ 0

−2b /∈ S
−a − b /∈ S

−a,−a, b, b Negate (a,a,-b,-b)
−a 6= −b,−2a 6= 0
−2a + 2b ≡ 0

−a + b 6= S
−2a 6= S

−a, b,−a, b Negate (a,-b,a,-b)
−a 6= −b

−2a + 2b ≡ 0
−a + b /∈ S
−a + b /∈ S

−a, b, b,−a Negate (a,-b,-b,a)
2b 6= 0,−a 6= −b
−2a + 2b ≡ 0

−2b /∈ S
a − b /∈ S

−a,−b, a, b Negate (a,b,-a,-b)
−a 6= ±b
N.C.N.

−a + b /∈ S
−a − b /∈ S

−a, b, a,−b Negate (a,-b,-a,b)
−a 6= ±b
N.C.N.

−a − b /∈ S
−a + b /∈ S
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Table 6: Role Reversal of Tables 1 - 4

E(C4) Notes Edge Vertex

b, b, b, b Reverse (a,a,a,a)
2b 6= 0
4b ≡ 0

2b /∈ S
2b /∈ S

b, b, b, a Reverse (a,a,a,b)
2b 6= 0

a + 3b ≡ 0
2b /∈ S
2b /∈ S

b, b, a, b Reverse (a,a,b,a)
2b 6= 0,−a 6= b

a + 3b ≡ 0
a + b 6= S
2b 6= S

b, a, b, b Reverse (a,b,a,a)
−a 6= b

a + 3b ≡ 0
a + b /∈ S
a + b /∈ S

a, b, b, b Reverse (b,a,a,a)
−a 6= b, 2b 6= 0

a + 3b ≡ 0
2b /∈ S

a + b /∈ S

b, b, b,−a Reverse (a,a,a,-b)
2b 6= 0

−a + 3b ≡ 0
2b /∈ S
2b /∈ S

b, b,−a, b Reverse (a,a,-b,a)
2b 6= 0,a 6= b
−a + 3b ≡ 0

−a + b /∈ S
2b /∈ S

b,−a, b, b Reverse (a,-b,a,a)
a 6= b

−a + 3b ≡ 0
−a + b 6= S
−a + b 6= S

−a, b, b, b Reverse(-b,a,a,a)
a 6= b,2b 6= 0
−a + 3b ≡ 0

2b /∈ S
−a + b /∈ S

b, b, a, a Reverse(a,a,b,b)
2b 6= 0, −a 6= b

2a + 2b ≡ 0
a + b /∈ S
2b /∈ S

b, a, b, a Reverse (a,b,a,b)
−a 6= b

2a + 2b ≡ 0
a + b /∈ S
a + b /∈ S

b, a, a, b Reverse (a,b,b,a)
−a 6= b,2a 6= 0
2a + 2b ≡ 0

2a /∈ S
a + b /∈ S

b, b,−a,−a Reverse (a,a,-b,-b)
a 6= b,2b 6= 0
−2a + 2b ≡ 0

−a + b 6= S
2b 6= S

b,−a, b,−a Reverse(a,-b,a,-b)
a 6= b

−2a + 2b ≡ 0
−a + b /∈ S
−a + b /∈ S

b,−a,−a, b Reverse (a,-b,-b,a)
−2a 6= 0,a 6= b
−2a + 2b ≡ 0

−2a /∈ S
−a + b /∈ S

b, a,−b,−a Reverse (a,b,-a,-b)
±a 6= b
N.C.N.

−a + b /∈ S
a + b /∈ S

b,−a,−b, a Reverse (a,-b,-a,b)
±a 6= b
N.C.N.

a + b /∈ S
−a + b /∈ S
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Table 7: Negation of Table 6

E(C4) Notes Edge Vertex

−b,−b,−b,−b Neg./Rev. (a,a,a,a)
−2b 6= 0
−4b ≡ 0

−2b /∈ S
−2b /∈ S

−b,−b,−b,−a Neg./Rev. (a,a,a,b)
−2b 6= 0

−a − 3b ≡ 0
−2b /∈ S
−2b /∈ S

−b,−b,−a,−b Neg./Rev. (a,a,b,a)
−2b 6= 0,a 6= −b
−a − 3b ≡ 0

−a − b 6= S
−2b 6= S

−b,−a,−b,−b Neg./Rev. (a,b,a,a)
a 6= −b

−a − 3b ≡ 0
−a − b /∈ S
−a − b /∈ S

−a,−b,−b,−b Neg./Rev. (b,a,a,a)
a 6= −b, −2b 6= 0
−a − 3b ≡ 0

−2b /∈ S
−a − b /∈ S

−b,−b,−b, a Neg./Rev. (a,a,a,-b)
−2b 6= 0

a − 3b ≡ 0
−2b /∈ S
−2b /∈ S

−b,−b, a,−b Neg./Rev. (a,a,-b,a)
−2b 6= 0,−a 6= −b

a − 3b ≡ 0
a − b /∈ S
−2b /∈ S

−b, a,−b,−b Neg./Rev. (a,-b,a,a)
−a 6= −b

a − 3b ≡ 0
a − b 6= S
a − b 6= S

a,−b,−b,−b Neg./Rev.(-b,a,a,a)
−a 6= −b,−2b 6= 0

a − 3b ≡ 0
−2b /∈ S
a − b /∈ S

−b,−b,−a,−a Neg./Rev.(a,a,b,b)
−2b 6= 0, a 6= −b
−2a − 2b ≡ 0

−a − b /∈ S
−2b /∈ S

−b,−a,−b,−a Neg./Rev. (a,b,a,b)
a 6= −b

−2a − 2b ≡ 0
−a − b /∈ S
−a − b /∈ S

−b,−a,−a,−b Neg./Rev. (a,b,b,a)
a 6= −b,−2a 6= 0
−2a − 2b ≡ 0

−2a /∈ S
−a − b /∈ S

−b,−b, a, a Neg./Rev. (a,a,-b,-b)
−a 6= −b,−2b 6= 0

2a − 2b ≡ 0
a − b 6= S
−2b 6= S

−b, a,−b, a Neg./Rev.(a,-b,a,-b)
−a 6= −b

2a − 2b ≡ 0
a − b /∈ S
a − b /∈ S

−b, a, a,−b Neg./Rev. (a,-b,-b,a)
2a 6= 0,−a 6= −b

2a − 2b ≡ 0
2a /∈ S

a − b /∈ S

−b,−a, b, a Neg./Rev. (a,b,-a,-b)
±a 6= −b
N.C.N.

a − b /∈ S
−a − b /∈ S

−b, a, b,−a Neg./Rev. (a,-b,-a,b)
±a 6= −b
N.C.N.

−a − b /∈ S
a − b /∈ S
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4 MAJOR RESULTS

This chapter consists of the major results we have proven about necessary and

sufficient conditions in finding induced cycles within circulants. There are four theo-

rems presented in this chapter. Explanations and proofs will be given for each one.

In the following theorem, we have an upper bound on the size of the largest vertex

induced cycle within any circulant.

Theorem 4.1 Suppose that Cn(S) is a d-regular circulant where d ≥ 2. If Cm is a

vertex induced subgraph of Cn(S), then m ≤ nd
2(d−1)

.

Proof. A cycle on m vertices has m edges and is 2-regular. However, Cn(S) is

d-regular by hypothesis. This means that each vertex in the cycle has d − 2 incident

edges that are not in the cycle. As this cycle is vertex induced, these edges may not

be incident with two vertices in the cycle. Hence we have m + (d − 2)m = (d − 1)m

edges that are incident with at least one vertex in the cycle. However, a d-regular

graph on n vertices has nd/2 edges [17]. Thus the number of edges not incident with

the cycle is given by:

nd

2
− (d − 1)m ≥ 0.

Solving for m yields:

m ≤
nd

2(d − 1)
.

For this theorem, we proved that long vertex induced cycles can not exist within

circulants. This is another bound on how large a cycle can be within any circulant.
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Theorem 4.2 Let |S| ≥ 2. If Cm is a vertex induced subgraph of Cn(S), then m ≤

n
2

+ 1.

Proof. We note that the more differences in S, the more difficult it is to achieve a

vertex induced cycle. Without loss of generality, assume that |S| = 2. Suppose that

for all a ∈ S we have that gcd(a, n) = d ≥ 2. Thus, by Proposition 1.3, we have

that the edges of length a form a cycle of length n/d ≤ n/2. Any edge of length

b would then make a shorter cycle. Thus, we can not have a vertex induced cycle

of length k > n/2 + 1. We may then assume that gcd(a, n) = 1. Therefore, our

circulant is isomorphic to Cn(1, c) where c = a−1b by Proposition 1.3. The only edge

induced cycle of length n is chorded by the edges of length c. Take any edge induced

cycle of length m where n/2 + 1 < m < n. Such a cycle must contain at least two

non-adjacent vertices that are of distance 1 or c apart. Hence, this cycle cannot be

vertex induced.

Theorem 4.3 There exists an edge induced Cm if and only if there exists `i ∈ {0, 1}

and xi ∈ S for i = 1, 2, 3, . . . , m such that:

i)
∑m

i=1(−1)`ixi ≡ 0 (mod n) and

ii)
∑j

i=1(−1)`ixi 6=
∑k

i=1(−1)`ixi (mod n) for j 6= k.

Proof. Assume that Cm is an edge induced subgraph of Cn(S). We must show

that there exists `i ∈ {0, 1} and xi ∈ S for i = 1, 2, 3, . . . , m such that we have the

following:

i) completion of Cm and
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ii) prevention of degeneracy.

So, there exists A ⊆ E(Cn(S)) such that 〈A〉 ∼= Cm. For each edge viwi ∈ A,

there must be a difference in S. In other words, either vi − wi ≡ xi (mod n) or

vi − wi ≡ n − xi (mod n) where xi ∈ S. Define:

`i =

{

0 if vi −wi ≡ xi (mod n)
1 if vi − wi ≡ n − xi (mod n).

For completion of Cm we must have the following:

m
∑

i=1

(−1)`ixi ≡ 0 (mod n).

Notice that the jth vertex in the cycle is mapped to
∑j

i=1(−1)`ixi in Cn(S). There is

an injective relationship between each vertex from Cm within Cn(S). Hence, we have

that:
j

∑

i=1

(−1)`ixi 6=
k

∑

i=1

(−1)`ixi (mod n) for j 6= k.

Assume to the contrary that there exists `i ∈ {0, 1} and xi ∈ S for i = 1, 2, 3, . . . , m

such that:
m

∑

i=1

(−1)`ixi ≡ 0 (mod n) and

j
∑

i=1

(−1)`ixi 6=
k

∑

i=1

(−1)`ixi (mod n) for j 6= k.

Define A = {vjvj+1 : j = 0, 1, . . . , m} where v0 = 0 and for j = 1, . . . , m:

vj =

j
∑

i=1

(−1)`ixi.

We have that |vj+1 − vj|n = xj+1 ∈ S. So A ⊆ E(Cn(S)). Also, since v0 = vm = 0,

〈A〉 is cyclic. Since vj 6= vk there is an injective relationship with each vertex in

Cn(S). Hence 〈A〉 ∼= Cm.
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Theorem 4.4 There exists a vertex induced Cm if and only if Theorem 4.3 holds

and:
∣

∣

∣

∣

∣

k−1
∑

i=1

(−1)`ixi −

j−1
∑

i=1

(−1)xi

∣

∣

∣

∣

∣

n

/∈ S

for all k, j ∈ {0, 1, . . . , m} such that |k − j|n ≥ 2.

Proof. Assume that there is a vertex induced Cm in Cn(S). There must be an

edge induced cycle by Proposition 1.1. Therefore, Theorem 4.3 holds. Each vertex

satisfies:

vj =

j
∑

i=1

(−1)`ixi.

Since Cm is a vertex induced subgraph, we must have that |vk − vj|n /∈ S for non-

adjacent vertices vk and vj. The non-adjacent vertices in Cm have indices that must

satisfy |k − j|m ≥ 2. Therefore, we have:

∣

∣

∣

∣

∣

k
∑

i=1

(−1)`ixi −

j
∑

i=1

(−1)`ixi

∣

∣

∣

∣

∣

n

/∈ S

for all k, j ∈ {1, . . . , m} such that |k − j|m ≥ 2.

Suppose that Theorem 4.3 holds and

∣

∣

∣

∣

∣

k
∑

i=1

(−1)`ixi −

j
∑

i=1

(−1)`ixi

∣

∣

∣

∣

∣

n

/∈ S

for all k, j ∈ {1, . . . , m} such that |k − j|k ≥ 2. Since Theorem 4.3 holds, it follows

that there exists an edge induced Cm, with vertex set:

V (Cm) =

{

vj =

j
∑

i=1

(−1)`ixi : j = 1, . . . , m

}

.

To show that this is a vertex induced Cm, we must have that |vk − vj|n /∈ S for all

non-adjacent vertices in the cycle. Notice that vertices that are not adjacent in Cm
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these indices must satisfy |k − j|m ≥ 2. We have that

∣

∣

∣

∣

∣

k
∑

i=1

(−1)`ixi −

j
∑

i=1

(−1)`ixi

∣

∣

∣

∣

∣

n

/∈ S

for all k, j ∈ {1, . . . , m} such that |k − j|m ≥ 2, it follows that this cycle is vertex

induced.

With these major results of the first two theorems, we were able to apply bounds

on how large Cm can be within Cn(S). Notice that these bounds deal with vertex

induced cycles. Since we have vertex induced cycles there are also edge induced cycles

as shown by Proposition 1.1. The last two theorems give the conditions of edge and

vertex induced cycles in general. All four of these theorems give us the conditions of

how large Cm can be and their appearance. In the last chapter, we will summarize

everything up to this point and present some more open problems that may be studied

in the future.

46



5 CONCLUSION

This thesis dealt with finding edge and vertex induced subgraphs within circu-

lants. The subgraphs we used were cycles. There are several results that have been

discovered on the necessary and sufficient conditions in finding cycles within any

circulant.

We established that if there is a vertex induced subgraph, then we have an edge

induced subgraph. The converse of this proposition is not true because you can have

an edge induced subgraph that is not a vertex induced subgraph.

We analyzed C4 within any Cn(a, b). There were several cases that were presented.

For each case, we had tables that consist of the following possibilities when 4a ≡ 0

(mod n), 3a + b ≡ 0 (mod n), 3a− b ≡ 0 (mod n), 2a +2b ≡ 0 (mod n), 2a− 2b ≡ 0

(mod n) and cancellation through arithmetic. The last three tables gave necessary

and sufficient conditions without figures when the roles of a and b were reversed and

the edge labels were multiplied by −1. Tables 1-7 allowed us to classify necessary

and sufficient conditions for C4 ∈ Cn(a, b).

We also placed bounds on the size and length of a vertex induced cycle within any

circulant. We looked at the necessary and sufficient conditions for finding edge and

vertex induced cycles within any circulant.

In conclusion, we have proven the major results from the preview section that

pertain to our problem. They are as follows:

• Theorem 2.9 [2] Let S ⊆ Z+
n be given. A circulant, Cn(S), contains a vertex
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induced Kk+1 if and only if there exists {a1, a2, a3, . . . , ak} ⊆ S such that:

|ai − aj|n ∈ S for all 1 ≤ i ≤ j ≤ k.

• Theorem 4.1 Suppose that Cn(S) is a d-regular circulant where d ≥ 2. If Cm

is a vertex induced subgraph of Cn(S), then m ≤ nd
2(d−1)

.

• Theorem 4.2 Let |S| ≥ 2. If Cm is a vertex induced subgraph of Cn(S), then

m ≤ n
2

+ 1.

• Theorem 4.3 There exists an edge induced Cm if and only if there exists `i ∈

{0, 1} and xi ∈ S for i = 1, 2, 3, . . . , m such that:

i)
∑m

i=1(−1)`ixi ≡ 0 (mod n) and

ii)
∑j

i=1(−1)`ixi 6=
∑k

i=1(−1)`ixi (mod n) for j 6= k.

• Theorem 4.4 There exists a vertex induced Cm if and only if Theorem 4.3

holds and:
∣

∣

∣

∣

∣

k−1
∑

i=1

(−1)`ixi −

j−1
∑

i=1

(−1)xi

∣

∣

∣

∣

∣

n

/∈ S

for all k, j ∈ {0, 1, . . . , m} such that |k − j|n ≥ 2.

However, there are still more open problems to be studied. Using cycles as subgraphs,

we would like to explore C5, C6, . . . ,Cm with m ≥ 5 within Cn(a, b). Also, it would

be interesting to see these cycles within larger difference sets. The other subgraphs

that would be of interest are cycle-related graphs, like kites, coronas, and cycles glued

together in Figure 13. For the cycles glued together we are looking at two situations:

(1) when they are connected at one vertex and (2) when they share at least one edge.

Also we would like to answer the following questions:
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i.) Are Ck and Ck+t vertex induced subgraphs in Cn(S) but not Ck+1, . . . , Ck+t−1?

ii.) What is the structure of C (G) with G = Cn(S) where,

C (G) = {k : Ck is a vertex induced subgraph of G}?

In conclusion, we assert that the study of subgraphs within circulants warrants

further research. We hope that this thesis serves as a valuable resource for those

pursuing such research.

Figure 13: A Kite, Corona, and Cycles Glued Together
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