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ABSTRACT

Amended Estimators of Several Ratios for Categorical Data

by

Dandan Chen

Point estimation of several association parameters in categorical data are presented.

Typically, a constant is added to the frequency counts before the association measure

is computed. We will study the accuracy of these adjusted point estimators based

on frequentist and Bayesian methods respectively. In particular, amended estimators

for the ratio of independent Poisson rates, relative risk, odds ratio, and the ratio of

marginal binomial proportions will be examined in terms of bias and mean squared

error.
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1 INTRODUCTION

Ratios of parameters are some interesting measures that are widely estimated in

the study of categorical data. In this thesis, we will consider the estimation of the

ratio of independent Poisson rates, the relative risk under product binomial sampling,

the odds ratio, and the ratio of marginal binomial proportions under multinomial

sampling. Estimates of these ratios can be undefined if sampling zeros occur. To avoid

such situations, it has been suggested to add a small constant, say .5, to each frequency

count before computing the estimate of the desired ratio. In addition, adding a small

constant to the frequency counts may also reduce the bias and mean squared error

of the estimator. In this thesis, we will try to determine the correction constant

that minimizes bias and mean squared error for these ratios based on frequentist and

Bayesian methods.

1.1 Contingency Tables

A categorical variable has a measurement scale consisting of two or more categories,

and there is no intrinsic ordering to the categories. The joint distribution between two

categorical variables determines their relationship. This distribution also determines

the marginal and conditional distribution.

Let X and Y denote two categorical response variables, X with I categories and

Y with J categories. Classifications of subjects on both variables have IJ possible

combinations. The responses (X,Y ) of a subject chosen randomly from some popula-

tion have a probability distribution. A rectangular table having I rows for categories

of X and Y columns for categories of Y displays this distribution. The cell of the

10



table represents the IJ possible outcomes. When the cells contain frequency counts

of outcomes for a sample, the table is called a contingency table, or cross-classification

table.

We will consider the contingency table with 2 rows and 2 columns as shown in

Table 1, which is called 2× 2 (or 2-by-2) table.

Table 1: Observations in a 2× 2 contingency table

Column 1 Column 2 Total
Row 1 y11 y12 y1+

Row 2 y21 y22 y2+

Total y+1 y+2 n

For a 2× 2 table, Table 2 displays the notation for the joint and marginal distri-

butions. Let πij denote the probability that (X,Y ) occurs in the cell in row i and

column j. The probability distribution {πij} is the joint distribution of X and Y .

The marginal distributions are the row and column totals that result from summing

the joint probabilities. We denote these by {πi+} for the row variable and {π+j} for

the column variable, where the subscript “+” denotes the sum over that index; that

is,

πi+ =
∑

j

πij and π+j =
∑

i

πij.

These marginal distributions satisfy
∑

i πi+ =
∑

j π+j =
∑

i

∑
j πij = 1.0, and pro-

vide single-variable information.

In most contingency tables, one variable, say Y , is a response variable and the

other (X) is an explanatory variable. When X is fixed rather than random, the

notion of a joint distribution for X and Y is no longer meaningful. However, for a

11



Table 2: Joint and marginal probabilities

Column 1 Column 2 Total
Row 1 π11 π12 π1+

Row 2 π21 π22 π2+

Total π+1 π+2 1

fixed category of X, Y has a probability distribution. Given that a subject is classified

in row i of X, πj|i denotes the probability of classification in column j of Y . Note

that
∑

j πj|i = 1. The probabilities {π1|i, ..., πJ |i} form the conditional distribution of

Y at category i of X. Table 3 displays the notation for the conditional distributions

in the 2× 2 table.

Table 3: Conditional probabilities

Column 1 Column 2 Total
Row 1 π1|1 π1|2 1
Row 2 π2|1 π2|2 1

When both variables are response variables, descriptions of the association can

use their joint distribution or conditional distribution, and

πj|i = πij/πi+ for all i and j.

Two categorical response variables are defined to be independent if all joint proba-

bilities equal the product of their marginal probabilities,

πij = πi+π+j for i = 1, 2 and j = 1, 2. (1)

When Y is a response and X is an explanatory variable, it is more natural to define

12



independence of X and Y , if

πj|i = πij/πi+ = (πi+π+j)/πi+ = π+i for i = 1, 2.

13



1.2 Distributions for Categorical Data

Inferential data analyses require assumptions about the random mechanism that

generated the data. Three common probability distributions for categorical responses

are the binomial, multinomial, and Poisson. We describe each of these probability

distributions next.

1.2.1 Binomial Distribution

Many experiments have a fixed number n of binary observations. Let y1, y2, ..., yn

denote responses for n independent and identical trials such that P (Yi = 1) = π and

P (Yi = 0) = 1 − π. We use the generic labels “success” and “failure” for outcomes

1 and 0, respectively. Identical trials means that the probability of success π is the

same for each trial. Independent trials means that the {Yi} are independent random

variables. These are often called Bernoulli trials. The total number of successes,

Y =
∑n

i=1 Yi, has the binomial distribution with index n and parameter π, denoted

by Bin(n, π).

The probability mass function for the possible outcomes y for Y is

p(y) =

(
n

y

)
πy(1− π)n−y, y = 0, 1, 2, . . . , n. (2)

The mean and variance of Y are

µ = E(Y ) = nπ and σ2 = var(Y ) = nπ(1− π),

respectively.

14



1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. Suppose that each of n inde-

pendent, identical trials can have outcome in any of m categories. Let yij = 1 if trial

i has outcome in category j and yij = 0 otherwise. Then yi = (yi1, yi2, ..., yim) rep-

resents a multinomial trial, with
∑

j yij = 1; for instance, (0,0,1,0) denotes outcome

in category 3 of four possible categories. Note that yim is redundant, being linearly

dependent on the others. Let nj =
∑

j yij denote the number of trials having outcome

in category j. The counts (n1, n2, ..., nm) have the multinomial distribution.

Let πj = P (Yij = 1) denote the probability of outcome in category j for each trial.

The multinomial probability mass function is

p(n1, n2, ..., nm) =
n!

n1!n2! · · · nm!
πn1

1 πn2
2 · · · πnm

m . (3)

For the multinomial distribution the mean, variance and covariance are

E(nj) = nπj, var(nj) = nπj(1− πj) and cov(ni, nj) = −nπiπj,

respectively. We note that the marginal distribution of each nj has a binomial distri-

bution.

1.2.3 Poisson Distribution

Sometimes count data do not result from a fixed number of trials. For instance, if

y is equal to the number of phone calls arriving at a switchboard in the next minute,

there is no fixed upper limit n for y. Since y must be a nonnegative integer, its

distribution should place its mass on that range.
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The simplest such distribution is the Poisson. The Poisson distribution is used

for counts of events that occur randomly over time or space when outcomes in disjoint

periods or regions are independent. Its probabilities depend on a single parameter,

the mean λ. The Poisson probability mass function is given by

p(y) =
e−λλy

y!
, y = 0, 1, 2, . . . (4)

The Poisson distribution has the property that the E(Y ) = var(Y ) = λ.
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1.3 Some Ratios in 2× 2 Contingency Table

We will study the estimation of the ratio of independent Poisson rates, relative risk,

odds ratio, and the ratio of marginal binomial proportions in the 2 × 2 contingency

table. For small n, the distributions of these ratios are highly skewed. When the

ratio equals 1, for instance, the estimator cannot be much smaller than the real ratio

(since it should be greater than or equal to 0), but it could be much larger with

nonnegligible probability. The log transformation of these ratios, having an additive

rather than multiplicative structure, converges more rapidly to a normal distribution.

So we will focus on these log ratios in this thesis.

1.3.1 Relative Risk

Consider a study to compare two groups on a binary response variable. Let the

random variable Y have two categories, such as (success, failure) for the outcome

of a treatment. With only two possible outcomes, π2|i = 1 − π1|i, we will use the

simpler notation πi for π1|i. The difference of proportions of successes, π1 − π2, is a

basic comparison of the two rows. A value π1 − π2 of fixed size may have greater

importance when both πi are closed to 0 or 1 than when they are not. For a medical

study comparing two treatments on the proportion of subjects who die, the difference

between 0.001 and 0.010 may be more noteworthy than the difference between 0.401

and 0.410, even though both are 0.009. In such cases, the ratio of proportions is

informative.

The relative risk is defined to be the ratio

17



θr = π1/π2. (5)

It can be any nonnegative real number. A relative risk of 1.0 corresponds to indepen-

dence. For the proportions just given, the relative risks are 0.010/0.001 = 10.0 and

0.410/0.401 = 1.02.

1.3.2 Odds Ratio

For a probability π of success, the odds are defined to be

Ω = π/(1− π).

The odds are nonnegative, with Ω > 1.0 when a success is more likely than a failure.

For the 2×2 table designed to compare two groups on a binary response variable,

within row i, the odds of success instead of failure are Ωi = πi/(1 − πi) . The odds

ratio is defined as the ratio of the odds Ω1 and Ω2 in the two rows,

θo =
Ω1

Ω2

=
π1/(1− π1)

π2/(1− π2)
. (6)

For joint distributions, the equivalent definition for the odds in row i is Ωi = πi1/πi2, i =

1, 2 and hence the odds ratio is defined as

θo =
π11/π12

π21/π22

=
π11π22

π12π21

. (7)

Note that the odds ratio is also called the cross product ratio. We will discuss an

adjusted estimator for the odds ratio for joint distributions in this thesis.

18



1.3.3 Ratio of Marginal Binomial Proportions

Refer to Table 2, π1+ = π11 + π12 and π+1 = π11 + π21 denote the marginal

probabilities of interest. In some applications, a ratio of marginal proportions π1+/π+1

may be more interesting than a difference. For instance, if the difference between

π1+ = 0.01 and π+1 = 0.10 is considered to be more important than the difference

between π1+ = 0.51 and π+1 = 0.60, then a ratio of proportions may be preferred to

a difference of proportions. The ratio of marginal binomial proportions is defined as

θm =
π1+

π+1

=
π11 + π12

π11 + π21

. (8)

1.3.4 Ratio of Poisson Rates

If cell counts {Yij} in a contingency table are treated as independent Poisson

random variables, it may be of interest to estimate the ratio of two Poisson means.

Let Y1, Y2 be two independent Poisson variables, we have E(Yj) = V AR(Yj) = λj for

j = 1, 2, where λj are the means of two Poisson distributions. The Poisson ratio is

defined to be

θp =
λ1

λ2

. (9)
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1.4 Point Estimation

We now consider the estimation of the ratios for a given probability mass function

(p.m.f.) In certain instances, the experimenter needs a point estimate of the parameter

θ, namely the value of the parameter that corresponds to the selected p.m.f. Assume

that θ is a real valued parameter and that θ̂ is an estimator of θ. The probability

distribution of an estimator θ̂ is often referred to as the sampling distribution of θ̂.

Ideally, we would like the sampling distribution of θ̂ to be concentrated closely around

the true value of the parameter θ.

There are several theoretical approaches for finding frequentist estimators, such

as maximum likelihood estimation (MLE) and uniformly minimum variance unbiased

estimation (UMVUE). We will use the MLE to find the frequentist estimator.

Given outcomes ni, i = 1, ...N , the likelihood function under that sampling model,

is the probability of ni, treated as a function of the unknown parameters. The maxi-

mum likelihood (ML) estimates are the parameter values that maximize this function.

Under these parameter values, the observed data would have had highest probability

of occurrence.

From a Bayesian perspective, point estimation means that we would use a single

statistic to summarize the posterior distribution. The most important number sum-

marizing a distribution would be the location. The posterior mean, or the posterior

median would be good candidates. We will use the posterior median as the Bayesian

estimate since it is more robust.

We will use frequentist criterias for evaluating our estimators. There are several

simple measures of the quality of an estimator based on its sampling distribution. The

20



properties of the estimators that we will be considering are bias and mean squared

error.

The bias of an estimator θ̂ is defined to be

bθ(θ̂) = Eθ(θ̂)− θ. (10)

An estimator is said to be unbiased if bθ(θ̂) = 0, that is Eθ(θ̂) = θ. The mean squared

error (MSE) of θ̂ is defined to be

MSEθ(θ̂) = Eθ[(θ̂ − θ)2] (11)

It is easy to show that MSEθ(θ̂) = V arθ(θ̂) + [bθ(θ̂)]
2.

The bias of θ̂ gives some indication of whether the sampling distribution is centered

around θ while MSEθ(θ̂) is a measure of the dispersion of the sampling distribution

of θ̂ around θ, it is natural to prefer estimators with small MSE.
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2 FREQUENTIST METHOD

Poisson ratio, relative risk, odds ratio, and ratio of marginal binomial proportions

have been studied for a long period of time. Mainly, people focused on interval

estimation of these ratios using amended estimators but not much has been said

about the properties of these point estimators [2], [5].

2.1 Estimating the Odds Ratio

For a multinomial distribution, the MLE of πij is yij/n. Gart and Zweiful [4]

showed that the amended estimators

θ̃o =
(n11 + 1

2
)(n22 + 1

2
)

(n21 + 1
2
)(n12 + 1

2
)

(12)

and log θ̃o behave well in terms of bias and MSE.

For a multidimensional grid of points of π11, π12 and π21, we calculated the mean

bias and square root of MSE for estimators at all points in the grid. Figure 1 shows

the result when n = 20. For a small sample size, we can get the same result as Gart

[4]. But when sample size increases, the correction constant can be greater than 0.5.

2.2 Estimating the Relative Risk

Relative risk compares the parameters of two independent binomial distributions

in a 2 × 2 table, and the joint probability function for the entire data set is the

product binomial probability function. The MLE for π of the binomial distribution

is y/n where y is the count and n is the number of total trails. To avoid certain
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Figure 1: Log odds ratio estimate n=20

undefined situations, Walter [9] suggested a less biased estimator of the log relative

risk [log(π1|1)− log(π1|2)],

log θ̃r = log

(
y11 + 1

2

y1+ + 1
2

)
− log

(
y21 + 1

2

y2+ + 1
2

)
. (13)

For a bidimensional grid of points of π1 and π2, we compared the mean of bias and

square root of MSE for estimators at every point in the grid. When y1+ = 20, y2+ =

32, as shown in figure 2, we would choose 0.5 as our correction constant. If the sample

size is smaller, this value could be as small as 0.3.

Agresti [1] suggested adding the same correction constant to ni+ as that to ni1,

after comparing the effects under different sample size based on the mean bias and

squared root of MSE, we would say that adding the same correction constant to ni+
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Figure 2: Log relative risk estimate n1 = 20, n2 = 32

as that to ni1 is slightly better than adding twice the value to ni+ as that to ni1.

2.3 Estimating the Ratio of Marginal Binomial Proportions

The joint probability function for the entire data set is the multinomial distribu-

tion. The MLE of the marginal ratio is the sample marginal ratio. If counts in the

first column of 2 × 2 table equal to 0, the sample marginal ratio is undefined. We

have to add a constant c to each cell

log θ̃m = log[(n11 + c) + (n12 + c)]− log[(n11 + c) + (n21 + c)] (14)

For a multidimensional grid of points of π11, π12 and π21, we calculated the mean

bias and square root of MSE for the estimator at all points in the grid. Figure 3
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Figure 3: Log marginal ratio estimate n= 10

shows the result when n = 10. Similar results occur when n = 20. This indicates

that c = 0.5 is a good generalized correction constant for log θ̃m.

2.4 Estimating the Ratio of Poisson Rates

For a Poisson random variable Y , with mean λ, given a sample with counts n > 0,

the MLE of λ is λ̂ = n [7]. It is easy to show that

E[log(Y + c)] = log(λ) + (c− 1

2
)/λ + O(λ−2).

Thus, for two independent Poisson random variables, Agresti [1] showed that using

the sample log odds ratio after adding 1
2

to each cell can reduce bias in estimating

the log Poisson ratio.
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Figure 4: Log Poisson ratio estimate

By considering 10 times the real mean as the possible maximum outcome, with

two independent Poissons with means ranging from 0.1 to 20.1 and 0.1 to 30.1, one

can compare the effects of different amended estimators. According to Figure 4, 0.4

to 0.6 is an acceptable correction constant to be added to each cell while estimating

the log Poisson ratio based on the mean bias and square root of MSE.
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3 BAYESIAN METHODS

Bayesian data analysis is a practical method for making inferences from data using

probability models for quantities we observe and for quantities about which we wish

to learn. It facilitates a common-sense interpretation of statistical conclusions. The

process of Bayesian data analysis can be idealized by dividing it into the following

three steps [6]:

1. Setting up a full probability model.

2. Conditioning on observed data: calculating and interpreting the appropriate

posterior distribution.

3. Evaluating the fit of the model and the implications of the resulting posterior

distribution.

In order to make a probability statement about θ given y, we must begin with a

model providing a joint probability distribution for θ and y. The joint probability mass

or density function can be written as a product of two densities that are often referred

to as the prior distribution p(θ) and the sampling distribution (or data distribution)

p(y|θ) respectively:

p(θ, y) = p(θ)p(y|θ). (15)

Simply conditioning on the known value of the data y, using the basic property of

conditional probability known as Bayes’ rule, the posterior density is

p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

(16)
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whereby the formula of conditional probability, we have p(y) =
∑

θ p(θ)p(y|θ), and

the sum is over all possible values of θ (or p(y) =
∫

p(y)p(y|θ)dθ for continuous θ).

For the sake of computational convenience, the posterior density is usually expressed

in the unnormalized form,

p(θ|y) ∝ p(θ)p(y|θ) (17)

where “∝” stands for “proportional to.” Note that the probability function p(y|θ)

is often referred to as the likelihood function. Thus, Bayes’ formula can be simply

interpreted in words by the statement that the posterior density is proportional to the

likelihood function times the prior density. This implies that Bayesian inference, like

the traditional methodologies of statistics, also complies with the likelihood principle.

Nevertheless, a particular specification of the prior density p(θ) will make the posterior

distribution not dependent on the data only.

Simulation forms a central part in most applied Bayesian analysis, since it is

relatively easy to generate samples from a probability distribution even when the

density function cannot be explicitly integrated. In performing simulations, it is

helpful to consider the duality between a probability density function and a histogram

of a set of random draws from the distribution: given a large enough sample, the

histogram can provide near complete information about the density. From these

simulated values, we can estimate the posterior distribution of any quantity of interest.
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3.1 Using the Posterior to Estimate the Odds Ratio

It is natural to consider the sampling distribution as a multinomial distribution.

If y is the vector of counts then

p(y|θ) ∝
4∏

i=1

θyi

i , (18)

where the sum of the probabilities,
∑4

i=1 θi, is 1 and the distribution is implicitly

conditioning on the number of observations,
∑4

i=1 yi = n.

The conjugate prior distribution is a multivariate generalization of the beta dis-

tribution known as the Dirichlet,

p(θ|α) ∝
4∏

i=1

θαi−1
i (19)

The resulting posterior distribution for the θi’s is a Dirichlet with parameters αi +

yi + c1 if we add a correction constant c1 to each yi. Since our target is to get a

general parameter for all possible outcomes of cells, it is reasonable to let αi = c2 for

i = 1, 2, 3, 4. If c = c1 + c2, the posterior density is given by

p(θ|y) ∝
4∏

i=1

θyi+c−1
i . (20)

We will use simulation to get our point estimator. Given a sample size n and c

value, for each possible outcome, draw x1, . . . , x4 from independent gamma distribu-

tions with common scale 1 and shape parameter y1 + c, y2 + c, y3 + c, y4 + c. For each

i, let θi = xi/
∑k

i=1 xi, log θ̃r = log(θ1θ4)− log(θ2θ3). Repeating this procedure 1000

times produces 1000 draws of the posterior odds ratio. We will then take the median

of this posterior as our point estimate.
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Figure 5: Log odds ratio estimate (Bayesian) n= 10

If the real parameters p1, p2, p3, and p4 are given then the log odds ratio is log θr =

log(p1p4)− log(p2p3). The mean squared error of our estimator log θ̃r is

MSE(log θ̃r) = E(log θ̃r − log θr)
2 =

∑
y∈Y

((log θ̃r − log θr)
2p(y|θ) (21)

where Y is the space of all possible outcomes. The bias of our estimator is

b(log θ̃r) = E(log θ̃r)− log θr =
∑
y∈Y

(log θ̃r − log θr)p(y|θ) (22)

Since the real parameters can be any value on the interval (0,1), we grid each pa-

rameter from .01 to .97 in increments of .01. For each point in this multidimensional

grid, we can get a bias and MSE for posterior estimator given the total count n and

c value. Thus we use mean bias and MSE as our criterion to find the optimized c

value. As shown in Figure 5, c = .5 is good value when the sample is small.
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3.2 Using the Posterior to Estimate the Relative Risk

Relative risk is usually used to compare two groups on a binary response variable.

The sampling distribution is product binomial,

p(y|θ, n1, n2) =

(
n1

y1

)
θy1

1 (1− θ1)
n1−y1

(
n2

y2

)
θy2

2 (1− θ2)
n2−y2 . (23)

Because of the vague prior information, we choose a conjugate prior for both θ1

and θ2,

θi ∼ Beta(c2, c2), for i = 1, 2.

After adding a correction constant c1 to each yi, the posterior distribution is

θi|y ∼ Beta(yi + c− 1, ni − yi + c− 1) (24)

where c = c1 + c2.

Draw x1, x2 from independent gamma distributions 1000 times with common scale

1 and shape parameters y1 + c, n1− y1 + c, and then let θ1 = x1/(x1 + x2). Similarly,

draw x3, x4 from independent gamma distributions 1000 times with common scale 1

and shape parameters y2 + c, n2 − y2 + c, and then let θ2 = x3/(x3 + x4). For each

pair θ1 and θ2, let log θ̃r = log θ1− log θ2. We take the median of these 1000 log θ̃r as

the posterior estimator of the log relative risk.

Since the conditional probabilities of the cells range from 0 to 1.0, we grid all cell

probabilities from .01 to .99 in increments of .01. For each point in this multidimen-

sional grid, we can get a bias and MSE for the posterior estimator given n1, n2, and c.

By comparing the mean of bias and MSE of all grid points with different c values, one

can get the optimized correction constant. For example, when n1 = 5 and n2 = 10,

Figure 6 shows that .5 is a good value for c.
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Figure 6: Log relative risk estimate (Bayesian) with n1 = 5 and n2 = 10

3.3 Using the Posterior to Estimate the Ratio of Marginal Binomial Proportions

Similar to the odds ratio, we consider the sampling distribution to be multinomial.

Let y be the vector of counts. We add the same correction constant c1 to each yi,

and let αi = c2 for i = 1, 2, 3, 4, let c = c1 + c2, then the posterior is

p(θ|y) ∝
4∏

i=1

θyi+c−1
i . (25)

Given a sample size n and c value, for each possible outcome, draw x1, . . . , x4

from independent gamma distributions 1000 times with common scale 1 and shape

parameters y1 + c, y2 + c, y3 + c, y4 + c, and for each i, let θi = xi/
∑4

i=1 xi, and

log θ̃m = log(θ1 + θ2)− log(θ1 + θ3). From these 1000 θ̃m’s, we take the median as our

estimator.
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Figure 7: Log marginal ratio estimate (Bayesian) n= 10

If the real parameters p1, p2, p3, and p4 are given, the log marginal ratio log θm =

log(p1 + p2)− log(p1 + p3). The mean squared error of our estimator log θ̃m is

MSE(log θ̃m) = E(log θ̃m − log θm)2 =
∑
y∈Y

((log θ̃m − log θm)2p(y|θ) (26)

where Y is the space of all possible outcomes. The bias is

b(log θ̃m) = E(log θ̃m)− log θm =
∑
y∈Y

(log θ̃m − θm)p(y|θm). (27)

We grid each parameter from .01 to .97 in increments of .01. For each point in this

multidimensional grid, we can get a bias and MSE for the posterior estimator given

the total count n and c value. Thus we use the mean of the bias and MSE as our

criterion to find that an acceptable c value is .5 when n = 10 (see Figure 7).
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3.4 Using the Posterior to Estimate the Ratio of Poisson Rates

The sampling distribution of independent Poisson random variables is

p(y1, y2|θ1, θ2) =
e−θ1θy1

1

y1!

e−θ2θy2

2

y2!
. (28)

The conjugate prior for the Poisson model is a gamma density,

p(θ) ∝ e−βθθα−1.

We choose Gamma(c2, 0) as our prior for both θ1 and θ2. With this conjugate prior,

after adding a correction constant c1 to each yi, the posterior distribution is

θi|y ∼ Gamma(yi + c, 1)

where c = c1 + c2 and i = 1, 2. Draw θ1, θ2 from their posterior Gamma distribution

1000 times respectively. Let log θ̃p = log θ1 − log θ2. We again take the median of

these 1000 posterior log θ̃p’s as the estimator.

By considering 10 times the real mean as the possible maximum outcome, with

two Poisson means ranging from 0.1 to 4.1 and 0.1 to 7.1, one can compare the effects

of different posterior estimators. According to Figure 8, 0.5 is an acceptable c value

while estimating the log Poisson ratio based on the mean of the bias and the square

root of MSE.
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Figure 8: Log Poisson ratio estimate (Bayesian)

4 CONCLUSION

If we evaluate the amended log ratios in terms of bias and MSE, 0.5 is an ideal

correction constant for the following measures of association: the odds ratio, the

relative risk, the ratio of marginal binomial proportions and the ratio of independent

Poisson rates. As for the Bayesian method, the selection of an optimized correction

constant depends on the prior distribution. If we choose the prior distribution with

parameter α = 0.5, the correction constant is no longer needed.
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APPENDICES

.1 Matlab code for frequentist Poisson ratio estimation

clear tic;

for c1 = .1: .1 :2

clear bs exps rmses

exps = []; % stores an empty matrix in A

bs = [];

rmses = [];

for lamda1 =.1:.2:20.1

for lamda2 =.1:.2:30.1

n1 = round(10 * lamda1);

n2 = round(10 * lamda2);

x1 = (0:n1)’;

x2 = (0:n2)’;

n11 = kron(x1,ones(n2+1,1));

n21 = kron(ones(n1+1,1),x2);

ratio = log(lamda1) - log(lamda2);
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prob=pdf(’poiss’,n11,lamda1).*pdf(’poiss’,n21,lamda2);

est=log(n11+ c1) - log(n21 + c1);

expvalue = est’*prob;

bias = abs(expvalue - ratio);

rmse = (((est-ratio).^2)’*prob)^.5;

exps = [exps; expvalue];

bs = [bs; bias];

rmses = [rmses; rmse];

end

end

[c1, mean(bs), mean(rmses)]

end

toc;
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.2 Matlab code for frequentist relative risk estimation

clear tic;

c1s = [];

mbs = [];

mrms = [];

for c1 = .1: .1 :2

clear bs exps rmses

exps = []; % stores an empty matrix in A

bs = [];

rmses = [];

c2 = 1* c1;

n1 =30;

n2 = 45;

x1 = (0:n1)’;

x2 = (0:n2)’;

n11 = kron(x1,ones(n2+1,1));

n21 = kron(ones(n1+1,1),x2);
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for p1 = .01:.01:.99

for p2 =.01:.01:.99

ratio = log(p1) - log(p2);

prob =pdf(’bino’,n11,n1,p1).*pdf(’bino’,n21,n2,p2);

est = log(n11 + c1)- log(n1 + c2) - log(n21 +c1) +log(n2 +c2);

expvalue = est’*prob;

bias = abs(expvalue - ratio);

rmse = (((est - ratio).^2)’*prob)^.5;

exps = [exps; expvalue];

bs= [bs; bias];

rmses = [rmses; rmse];

end

end [c1,c2,n1,n2, mean(bs), mean(rmses)]

end

toc;
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.3 Matlab code for frequentist odds ratio estimation

clear tic;

for c1 = .1: .1 :2

clear bs exps rmses

exps = []; % stores an empty matrix in A

bs = [];

rmses = [];

% Multinomial

n = 10;

m = n + 1 ;

x1 = (0:n)’;

x2 = (0:n)’;

x3 = (0:n)’;

x4 = (0:n)’;

n11 = kron(x1,ones(m^2,1));

n12 = kron(ones(m,1),kron(x2,ones(m,1)));

n21 = kron(ones(m^2,1),x3);

F = [n11,n12,n21];
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t = find(sum(F’) <= n);

F = F(t,:);

n11 = F(:,1);

n12 = F(:,2);

n21 = F(:,3);

n22 = (n - sum(F’))’ ;

% Multinomial

for p11 = .01:.01 :.97

for p12 = .01 :.01:(.98- p11)

for p21 = .01:.01:(.99-p11-p12)

p22 = 1- p11- p12- p21;

ratio =log(p11) +log(p22)-log(p21) -log(p12);

%

nk = gammaln(m) - gammaln(n11+1) - gammaln(n12+1) - gammaln(n21+1)

- gammaln(n22+1);

%

lnkp = nk + n11.*log(p11) + n12.*log(p12) + n21.*log(p21) +

n22.*log(p22);

prob = exp(lnkp);

%est = ((n11 + c1)./(n1 + c2))./((n21 + c1)./(n2 + c2));
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est = log(n11 + c1)- log(n12 + c1) - log(n21 +c1) +log(n22 +c1);

expvalue = est’*prob; bias = abs(expvalue - ratio); rmse = (((est

- ratio).^2)’*prob)^.5;

exps = [exps; expvalue];

bs = [bs; bias];

rmses = [rmses; rmse];

end

end

end

[c1,n, mean(bs), mean(rmses)]
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.4 Matlab code for frequentist marginal ratio estimation

clear

for c1 = .3: .2 :2.1 tic; clear bs exps rmses

exps = []; % stores an empty matrix in A

bs = []; rmses = []; n = 20;

m = n + 1 ;

x1 = (0:n)’;

x2 = (0:n)’;

x3 = (0:n)’;

x4 = (0:n)’;

%

n11 = kron(x1,ones(m^2,1));

n12 = kron(ones(m,1),kron(x2,ones(m,1)));

n21 = kron(ones(m^2,1),x3);

F = [n11,n12,n21];

t = find(sum(F’) <= n);

F = F(t,:);

n11 = F(:,1);
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n12 = F(:,2);

n21 = F(:,3);

n22 = (n - sum(F’))’ ;

% Multinomial

for p11 = .01:.01 :.97

for p12 = .01 :.01:(.98- p11)

for p21 = .01:.01:(.99-p11-p12)

p22 = 1- p11- p12- p21;

ratio = (p11 + p12)/ (p11 + p21);

%

nk =gammaln(m)-gammaln(n11+1)-gammaln(n12+1)-gammaln(n21+1)-

gammaln(n22+1);

%

lnkp = nk + n11.*log(p11) + n12.*log(p12) + n21.*log(p21) +

n22.*log(p22);

prob = exp(lnkp);

est = (n11+ n12+ c1) ./ (n11 + n21 + c1);

expvalue = est’*prob;

bias = abs(expvalue - ratio);

rmse = (((est

- ratio).^2)’*prob)^.5;
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exps = [exps; expvalue];

bs = [bs; bias];

rmses = [rmses;rmse];

end

end

end

[c1,n, mean(bs), mean(rmses)]

toc;

end
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.5 Matlab code for Bayesian Poisson ratio estimation

clear

tic;

for c1 = .1: .1 :2

clear bs exps rmses thetas

exps = []; % stores an empty matrix in A

bs = [];

rmses = [];

thetas = [];

for lamda1 =.1:.2:4.1

for lamda2 =.1:.2:7.1

clear thetas thetas = [];

n1 = round(10 * lamda1);

n2 = round(10 *lamda2);

x1 = (0:n1)’;

x2 = (0:n2)’;

n11 = kron(x1,ones(n2+1,1));

n21 = kron(ones(n1+1,1),x2);
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j = length(n11) ;

for i= 1:j

z1 = gamrnd(n11(i) + c1 ,1,[1000 1]);

z2 = gamrnd(n21(i) + c1 ,1,[1000 1]);

y = log(z1) - log(z2);

thetasimu = median(y);

thetas = [thetas; thetasimu];

end

ratio = log(lamda1) - log(lamda2);

prob

=pdf(’poiss’,n11,lamda1).*pdf(’poiss’,n21,lamda2);

%est = log(n11 + c1) - log(n21 + c1);

expvalue = thetas’ * prob;

bias = abs(expvalue - ratio);

rmse =

(((thetas - ratio).^2)’*prob)^.5;

exps = [exps; expvalue];

bs = [bs; bias];
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rmses = [rmses; rmse];

end

end

[c1, mean(bs), mean(rmses)]

end

toc;
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.6 Matlab code for Bayesian odds ratio estimation

%bayesian

clear

for c1 =1.2:.1 :2 tic; clear bs exps rmses thetas

exps = []; % stores an empty matrix in A

bs = []; rmses = []; thetas = []; n = 10;

m = n + 1 ;

x1 = (0:n)’;

x2 = (0:n)’;

x3 = (0:n)’;

x4 = (0:n)’;

%

n11 = kron(x1,ones(m^2,1));

n12 = kron(ones(m,1),kron(x2,ones(m,1)));

n21 = kron(ones(m^2,1),x3);

F = [n11,n12,n21];

t = find(sum(F’) <= n);

F = F(t,:);
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n11 = F(:,1);

n12 = F(:,2);

n21 = F(:,3);

n22 = (n - sum(F’))’ ;

j = length(n11) ;

for i= 1:j

y1 = gamrnd(n11(i) + c1 ,1,[1000 1]); y2 = gamrnd(n12(i) + c1

,1,[1000 1]); y3 = gamrnd(n21(i) + c1 ,1,[1000 1]); y4 =

gamrnd(n22(i) + c1 ,1,[1000 1]);

%sumx = x1+x2+x3+x4;

%x11 = x1 ./ sumx;

%x21 = x2 ./ sumx;

%x31 = x3 ./ sumx;

%x41 = x4 ./ sumx;

y = log(y1) +log(y4) - log(y2) -log(y3);

%x = min(y):50:1000;

%subplot(1,2,1)

%hist(y,x)

%title(’Normally Distributed Random Numbers’,’FontSize’,16)

thetasimu = median(y); thetas = [thetas; thetasimu]; end
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% Multinomial

for p11 = .01:.01 :.97

for p12 = .01 :.01:(.98- p11)

for p21 = .01:.01:(.99-p11-p12)

p22 = 1- p11- p12- p21;

ratio =log(p11) +log(p22)-log(p21) -log(p12);

%

nk = gammaln(m) - gammaln(n11+1) - gammaln(n12+1) - gammaln(n21+1)

- gammaln(n22+1);

%

lnkp = nk + n11.*log(p11) + n12.*log(p12) + n21.*log(p21) +

n22.*log(p22);

prob = exp(lnkp);

%est = (n11+ n12+ c1) ./ (n11 + n21 + c1);

expvalue = thetas’ * prob;

bias = abs(expvalue - ratio); rmse = (((thetas-

ratio).^2)’*prob)^.5; exps = [exps; expvalue]; bs = [bs; bias];

rmses = [rmses; rmse];

end

end end [c1,n, mean(bs), mean(rmses)] toc; end
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.7 Matlab code for Bayesian relative risk estimation

clear tic; c1s = []; mbs = []; mrms = [];

for c1 = .1: .1 :2 clear bs exps rmses thetas

exps = []; % stores an empty matrix in A

bs = []; rmses = []; thetas = [];

c2 = 1* c1;

%c2 = .5;

n1 =5; n2 = 10;

x1 = (0:n1)’; x2 = (0:n2)’;

n11 = kron(x1,ones(n2+1,1)); n21 = kron(ones(n1+1,1),x2); n12 = n1

-n11; n22 = n2 - n21; j = length(n11) ;

for i= 1:j

z1 = gamrnd(n11(i) + c1 ,1,[1000 1]); z2 = gamrnd(n1 + c2 ,1,[1000

1]); z3 = gamrnd(n21(i) + c1 ,1,[1000 1]); z4 = gamrnd(n2 + c2

,1,[1000 1]);

y1 = z1 ./ z2; y2 = z3 ./ z4;
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y = log(y1) - log(y2);

%x = min(y):50:1000;

thetasimu = median(y); thetas = [thetas; thetasimu]; end

for p1 = .01:.01:.99

for p2 =.01:.01:.99

ratio = log(p1) - log(p2); prob =

pdf(’bino’,n11,n1,p1).*pdf(’bino’,n21,n2,p2);

expvalue = thetas’*prob; bias = abs(expvalue - ratio); rmse =

(((thetas - ratio).^2)’*prob)^.5;

%grid on;

%plot3(p1,p2,rmse);

exps = [exps; expvalue]; bs = [bs; bias]; rmses = [rmses; rmse];

end

end

[c1,n1,n2, mean(bs), mean(rmses)] c1s = [c1s;c1]; mbs =

[mbs;mean(bs)]; mrms = [mrms;mean(rmses)];

end
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.8 Matlab code for Bayesian marginal ratio estimation

%bayesian

clear

for c1 =.4:.1 :.7 tic; clear bs exps rmses thetas

exps = []; % stores an empty matrix in A

bs = []; rmses = []; thetas = []; n = 10;

m = n + 1 ;

x1 = (0:n)’;

x2 = (0:n)’;

x3 = (0:n)’;

x4 = (0:n)’;

%

n11 = kron(x1,ones(m^2,1));

n12 = kron(ones(m,1),kron(x2,ones(m,1)));

n21 = kron(ones(m^2,1),x3);

F = [n11,n12,n21];

t = find(sum(F’) <= n);

F = F(t,:);

56



n11 = F(:,1);

n12 = F(:,2);

n21 = F(:,3);

n22 = (n - sum(F’))’ ;

j = length(n11) ;

for i= 1:j

y1 = gamrnd(n11(i) + c1 ,1,[1000 1]); y2 = gamrnd(n12(i) + c1

,1,[1000 1]); y3 = gamrnd(n21(i) + c1 ,1,[1000 1]);

y = log(y1 + y2) - log(y1 + y3);

thetasimu = median(y); thetas = [thetas; thetasimu]; end

% Multinomial

for p11 = .01:.01 :.97

for p12 = .01 :.01:(.98- p11)

for p21 = .01:.01:(.99-p11-p12)

p22 = 1- p11- p12- p21;

ratio = log(p11 + p12)- log(p11 + p21);

%

nk = gammaln(m) - gammaln(n11+1) - gammaln(n12+1) - gammaln(n21+1)
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- gammaln(n22+1);

%

lnkp = nk + n11.*log(p11) + n12.*log(p12) + n21.*log(p21) +

n22.*log(p22);

prob = exp(lnkp);

%est = (n11+ n12+ c1) ./ (n11 + n21 + c1);

expvalue = thetas’ * prob;

bias = abs(expvalue - ratio); rmse = (((thetas-

ratio).^2)’*prob)^.5; exps = [exps; expvalue]; bs = [bs; bias];

rmses = [rmses; rmse];

end

end end [c1,n, mean(bs), mean(rmses)] toc; end
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