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ABSTRACT 

Scalable and Reliable File Transfer For Clusters Using 

Multicast 

by 

Hardik D. Shukla 

A cluster is a group of computing resources that are connected by a single computer 

network and are managed as a single system.  Clusters potentially have three key 

advantages over workstations operated in isolation�fault tolerance, load balancing and 

support for distributed computing.   

Information sharing among the cluster�s resources affects all phases of cluster 

administration. The thesis describes a new tool for distributing files within clusters.  This 

tool, the Scalable and Reliable File Transfer Tool (SRFTT), uses Forward Error 

Correction (FEC) and multiple multicast channels to achieve and efficient reliable file 

transfer, relative to heterogeneous clusters.  SRFTT achieves scalability by avoiding 

feedback from the receivers.  Tests show that, for large files, retransmitting recovery 

information on multiple multicast channels gives significant performance gains when 

compared to a single retransmission channel
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                                                             CHAPTER 1 

INTRODUCTION 

 

1.1 Cluster Computing And Its Advantages 

A cluster consists of a group of computing resources that are connected by a single 

computer network [Buyya99].  These resources can include servers, workstations, 

printers, and other networked systems.  What distinguishes a cluster from a standard 

computer network is singleness of purpose.  A cluster�s resources are managed as a single 

system, using special-purpose software that coordinates the cluster�s resources and 

creates an illusion of a single system. 

Clusters, potentially, have three key advantages over workstations operated in 

isolation.  The first is fault tolerance: the ability to recover from one or multiple system 

faults [Tanen95].  A computation on an isolated workstation can�t finish if that 

workstation fails.  If a cluster�s resource fails during a computation, the rest of the 

cluster�s resources assume the failed resource�s workload.  The cluster as a whole is 

available for more time to do useful work.   

A second advantage is load balancing: the ability to distribute work evenly and 

fairly among the cluster�s machines [Tanen95].  In a standard computer network one 

workstation can be bogged down while another sits idle.  In a cluster with load balancing 

the cluster management software redistributes work from overloaded machines to other 
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more lightly loaded resources.  This decreases the computation time and increases the 

system�s efficiency.   

A third advantage is support for distributed computation: the ability to complete 

computations on two or more processors [Tanen95].  Distributed computing uses 

multiple, cooperating systems to solve specialized problems like matrix multiplication 

and climate monitoring by spanning computations across multiple PCs.  MPI [MPIRef], 

PVM [Scott02], and C3 [Scott02] are examples of software that facilitate distributed 

computing on a cluster. 

Some of the potential advantages of cluster computing are similar to those 

obtained from special-purpose systems designed for robustness or performance.  Clusters, 

however, offers two additional potential advantages to fault-tolerant computing and 

supercomputing: cost and scalability. 

Fault-tolerant systems, historically, have been custom devices in special 

configurations [Vyto93].  The same is true for supercomputers, which, historically, have 

cost far more than the commodity computers of their era [HenPa96].  Cluster computers, 

however, can achieve the benefits of supercomputing using off-the-shelf hardware 

[BelGrey02].  Because of significant improvements in the cost-performance of 

commodity computers and networks, cluster computing has a potential to offer the 

benefits of special-purpose systems at significantly low costs. 

As for scalability, reconfiguring a special-purpose system to provide greater or 

lesser degrees of service is typically difficult to do.  Clusters, on the other hand, are 

readily scalable.  The size of a cluster�and, accordingly, its performance and 
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reliability�can typically be increased or decreased by simply adding or subtracting off-

the-shelf hardware. 

1.2 Cluster Computing And Its Challenges 

 Cluster computing, however, is not simple to do well.  Getting applications to run 

efficiently in distributed environments has proven to be a surprisingly difficult task 

[Tanen95].   The same is true for cluster administration [Scott02].  The applications 

development problem includes a variety of subtasks, such as program setup, distribution 

of tasks across a cluster, and managing communication among an application�s 

constituent tasks.  The cluster administration problem also includes multiple subtasks, 

like managing cluster membership, managing the access to a cluster, setting and 

monitoring the computing on an individual resource and configuring any cluster�s 

resource automatically.  Inefficient strategies for cluster operation make that cluster less 

attractive to use due to slower operation of programs and administrative hassles. 

The focus of the work addressed in this thesis, information distribution, is an 

underlying concern in all phases of cluster administration.  All of the above-mentioned 

cluster administration tasks require information sharing among the cluster�s resources. 

Information distribution is also a potentially important problem of computation but, to a 

lesser degree, given need to maximize ratio of computation to communication, for 

reasons of performance. 

Information can be distributed among a cluster�s resources using mechanisms like 

common data repositories, configuration scripts, file distribution, or message passing 

APIs (MPI).  The information may include operating system images, large datasets, 
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executables, or files.  In each case, key concerns related to the transfer of information 

include the speed with which information can be transferred; the reliability of the transfer 

mechanism in use; and the degree to which the mechanism will scale�i.e., support 

increases in the population of senders and receivers. 

1.3 File Distribution In Clusters 

1.3.1 Explanation of the problem. 

The focus of this thesis is the creation of tools for distributing files in clusters.  

Any file distribution mechanism is based on one of four communication models: 

• unicast, or communication between pairs of nodes 

• broadcast, or one-to-all communication 

• anycast, or one-to-one-of-many communication 

• multicast, or one-to-many communication 

Multicast has been a special focus of research due to its ability to conserve 

network bandwidth in situations where multiple receivers access transmissions from a 

single sender (cf. §2.2).  The use of multicast, however, is complicated by the lack of 

support for reliability in IPv4 multicast (cf. §3.1). 

The reliability problem has been a challenge to address.  Mechanisms that promote 

scalability may do so by degrading reliability, and vice-versa.  Standard schemes for 

making communications reliable use feedback from receiver to sender in the form of 

acknowledgements (ACK) or negative acknowledgements (NACK).  Unfortunately, as 

the number of receivers increases, the number of ACKs or NACKs from the receiver to 
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the sender increases.  This may create a bottleneck around the sender, causing scalability 

problems in the form of feedback implosion [GeSch97].  Reducing ACKs or NACKs to 

improve scalability may hurt reliability.   

A second issue in achieving reliability is the potential conflict between reliability 

and speed.  Heterogeneous clusters complicate file distribution.  If different systems in a 

cluster receive information at different rates of speed, then transmitting data too quickly 

or too slowly will result in data loss, excessive delays in transfer, or both.  Ideally, a 

sender should transmit information in a way that is fair to all the receivers.  Mechanisms 

to address the speed problem include receiver feedback, proxy servers, and transmitting 

the same information more than once.   

1.3.2 Current Strategies For Reliable File Distribution. 

Luigi has addressed the issue of implementing reliability in IPv4 multicast by 

transmitting forward error correction (FEC) packets along with the data packets 

[RiVic97].  In Luigi�s approach the file to be transmitted is divided in fixed number of 

groups.  Each group has a fixed number of data packets.  When the file is sent, the sender 

constructs parity packets from the data packets and transmits the parity and data packets 

together.   As the file is received, the receiver reconstructs lost data from parity packets.  

If enough packets reach the receiver successfully (cf. §4.2), the receiver can reconstruct 

any group even if all the data packets were lost.  Reliability is thus achieved without any 

ACKs or NACKs, avoiding prohblems with feedback implosion.  FCAST [GeSch97], a 

file distribution tool by Microsoft Inc., also uses this approach. 



 14

Sneha K. Kasera, Jim Kurose, and Don Towsley [KaKuTow00] introduced the use 

of multiple concurrent transmissions for improving the reliability of multicast.  This 

approach uses multiple multicast groups to reduce receiver-processing overheads.  A file 

to be transmitted is divided into a fixed number of groups with each group having a fixed 

number of data packets.  In the first round of transmission data packets of all the groups 

are transmitted on a primary transmission channel.  In the next and subsequent rounds of 

transmission instead of retransmitting the data packets of all groups on the same group, 

data packets of different groups are transmitted on different retransmission channels. 

1.4 SRFTT: A Hybrid Strategy For File Distribution 

This thesis�s particular contribution is an efficient and robust file distribution 

tool�the Scalable and Reliable File Transfer Tool (SRFTT).  To the best of author�s 

knowledge, SRFTT is the first tool that combines Luigi�s forward error correction 

technique and Kasera et al.�s multiple multicast channel technique.  The result is a tool 

that enhances file transfer reliability while making allowances for heterogeneous receiver 

rates. 

SRFTT transmits a file to a set of receivers using multiple rounds of 

communication.  The first, setup round uses TCP to transmit session parameters to the 

receivers�information like file name, file size, file checksum, and session ID that govern 

the subsequent transfer.   In the second round of communication, SRFTT transmits data 

packets on a primary transmission channel defined by a session parameter.  Subsequent 

rounds of transmission use multiple communications channels to transmit FEC recovery 
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packets.  These rounds allow slow receivers to recover from overrun errors and all 

receivers to recover from damage to packets during transmission.  

As a part of this work SRFTT�s performance was evaluated under different loss 

rates for file transfers of 1 KB to 256 MB.  Performance gains up to 33% are obtained by 

transmitting recovery packets on multiple channels instead of a single channel (cf. §6).   

The results of this evaluation show that for large files transmitting FEC packets on 

multiple multicast channels gives significant performance gains when compared to a 

single retransmission channel. 

1.5 Roadmap For This Thesis 

 The rest of this thesis is divided into 7 sections.  Section 2 is an overview of 

current multicast technology, including multicast mechanisms for IPv4 and commercial 

applications of multicast. Section 3 discusses the concept of reliability as it applies to 

multicasting.  Section 4 reviews current reliable multicast tools, including FCAST, 

RMDP, SRM, and multiple multicast channels.  Section 5 discusses SRFTT in detail.  

Section 6 discusses SRFTT performance under varied network conditions.  Section 7 

draws conclusions about the work and suggests possible improvements to SRFTT. 
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CHAPTER 2 

OVERVIEW OF CURRENT MULTICAST TECHNOLOGY 

 

Multicast is communication between a single sender and multiple receivers on a 

network [TechTarget01].  The current section discusses past work related to multicast-

based file distribution.  Section 2.1 defines multicast communication, comparing it to 

other communication mechanisms like unicast and broadcast.  Section 2.2 describes key 

features of multicast transmission, including the Internet Group Management Protocol 

(IGMP), multicast send and receive, and algorithms that create a multicast spanning tree.  

Section 2.3 discusses commercial multicast applications.   

The discussion below is along the lines of similar discussions in [GeSch97] and 

[Stardust01]. 

2.1     Multicast�A Definition And Comparison With Other Communication Models 

Multicast is one of three communication models supported by IPv4 (Internet 

Protocol version 4).  In multicast a sender uses a single send operation to send a packet of 

information to multiple receivers.  Other communication models supported by IPv4 are 

unicast, where one �send� operation sends to one receiver, and broadcast, where one 

�send� sends to all receivers in a set of networks.   

Multicast can offer substantial bandwidth savings when compared to unicast or 

broadcast.  Consider, for example, the load created by sending the same packet to 5 

receivers on a 25-host network by unicast, multicast, and broadcast.  In unicast the initial 
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relay device would receive 5 packets.  In broadcast the initial relay device would receive 

1 packet, but all 25 hosts would get the packet.  In multicast only one packet is sent to the 

initial relay device.  The relay devices at the network�s junction replicate packets sent to 

multiple downstream devices�here, to the 5 target hosts.   

2.2 Multicast Mechanism For IPv4 

In IPv4 multicast communication is supported by mechanisms that handle 

different aspects of the multicast process.  These mechanisms include IGMP, a protocol 

for managing multicast communication protocol; a multicast send mechanism; a multicast 

receive mechanism; and a set of multicast tree construction algorithms (relay algorithms). 

2.2.1 Multicast Communication Protocol�IGMP. 

An mrouter is a router that supports multicast [Stardust01].  All multicast hosts 

exchange group membership information with their local mrouters through Internet 

Group Management Protocol (IGMP).  IGMP is described in RFC 1112 [Rfc1112].  

IGMP�s operation can be divided into the following subtasks: election of querier, Host 

Membership Query, and Host Membership Report. 

The mrouter that periodically exchanges IGMP packets with the hosts on its 

subnet to check group membership states of its host is called the querier.  A querier is 

elected�that is, chosen�when IGMP begins its operation sequence or the current 

querier fails.  If there is more than one mrouter on the subnet, the mrouter with the lowest 

IP address becomes the Querier. 

A querier, once elected, sends Host Membership Query messages on its subnet to 

discover the group membership states of its hosts.  Host Membership Queries are 
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addressed to all hosts on the subnet.  The TTL of Host Membership Queries is one to 

prevent these queries from propagating outside the LAN. 

The hosts on the querier�s subnet reply to the Host Membership Query message by 

returning a Host Membership Report to the querier.  By sending the Host Membership 

report, the hosts declare their interest in multicast sessions to the querier.  The destination 

address of the Host membership report is all-host group and the TTL of the message is 1.   

The host membership reporting algorithm uses random delay timers to protect the 

querier against message overload.  If every host on the subnet were to send its host 

membership reports to the querier, the ensuing network congestion around the querier 

may bring the entire subnet network down.  The following technique reduces the number 

of Host Membership Reports in a subnet.  When a host receives a Host Membership 

Query message from the querier, the host doesn�t reply immediately but instead starts a 

random delay timer based on a randomly chosen value.  When the timer expires the host 

generates a Host Membership Report and sends the report on the multicast session 

address.  On receiving the report message other group members suppress their Host 

membership reports.  Thus only one host sends a report for one multicast session on a 

given subnet. 

2.2.2 Sending Mechanism. 

The IPv4 mechanism for supporting multicast, from the sender�s point of view, 

resembles the IPv4 mechanism for supporting the sending of UDP datagrams [Comer00].  

Each multicast session has a class D multicast address�an IP address between 224.0.0.0 

and 239.255.255.255 inclusive�that uniquely identifies the multicast session.  The 
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sender sends the information on a class D address associated with the given multicast 

session using a datagram oriented sending mechanism.  The sender need not be a part of 

the multicast session to which it sends data. 

2.2.3 Receiving Mechanism. 

The user�s host application joins the class D multicast address associated with the 

multicast session.  As a result of this join, a membership request is communicated to the 

mrouter of the host�s subnet.  The mrouter on the user�s subnet forwards this membership 

request to the intermediate mrouters between the sender and the receiver, using relay 

algorithms discussed in the next section.   

The receiving host�s network interface card obtains a new MAC address for each 

multicast session the receiver joins.  The receiving host�s network interface card places 

the low-order 23-bits of the IP address into the low-order 23 bits of the Ethernet multicast 

address 01-00-5E-00-00-00 to obtain a new Ethernet Multicast address and listens for this 

new MAC address also.  When the receiving host�s mrouter receives a packet destined 

for a class D multicast address, it maps the multicast group address to the associated 

MAC address and sends the message on the subnet using this new MAC address.  The 

receiver�s NIC intercepts this message, matches it with its new MAC multicast address, 

and sends it to the protocol stack, which passes the message to the application.   

It is possible for a receiver to receive messages from other multicast sessions it is 

not interested in.  There are 28 significant bits in an IP host group address and the 

receiving host�s. The mrouter maps only the lower order 23 bits to obtain a new Ethernet 

address.  Hence, up to 32 host group addresses can map to the same Ethernet multicast 
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address.  The host�s application layer discards messages from groups that aren�t of 

interest.   

2.2.4 Relay Algorithms. 

IP Multicast packets for a given session are transmitted to the receivers via a 

spanning tree that connects a session�s members.  Protocols for constructing the spanning 

tree operate in one of the two modes depending on the relative proximity of the members 

of the group.  These modes are referred to as Dense Mode and Sparse Mode. 

 

 FIG. 1 DVMRP  (adapted from [Stardust01]) 
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2.2.4.1 Dense Mode Relay Algorithms. 

All dense mode protocols are designed to work efficiently within a densely 

distributed network�one whose members are in close proximity.  Dense mode protocols 

also assume that the underlying network has reasonably high bandwidth.  Distance 

Vector Multicast Routing Protocol (DVMRP), Multicast Open Shortest Path First 

(MOSPF), and Protocol-Independent Multicast�Dense Mode (PIM-DM) are examples 

of dense-mode routing protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2. MOSPF (adapted from [Stardust01]) 
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DVMRP (cf. Fig. 1) is described in RFC 1075 [Rfc1075].  DVMRP uses a special 

metric, the DVMRP metric, to construct a different spanning tree from each sender to all 

receivers.  A DVMRP metric for a given source is constructed by taking into account the 

shortest number of hops from the source to all the receiver nodes.  In the initial phase of 

tree construction the mrouter on the node�s subnet multicasts a join message to all its 

adjacent mrouters.  These adjacent mrouters multicast the join message to their adjacent 

mrouters.  The forwarding of multicast messages continues till the join message reaches 

all the multicast members.  Then the DVMRP metric is applied to the tree and the 

branches of the tree that don�t provide the shortest path are pruned.   

Multicast Extensions to OSPF (MOSPF) (cf. Fig 2) is defined in RFC 1584 

[Rfc1584].  MOSP is a link state protocol.  In a link state protocol parameters such as 

network traffic and QOS (quality of service) are considered along with the number of 

hops to calculate the shortest path from the sender to the receiver.  All mrouters 

employing MOSPF periodically collect link state information from their neighboring 

mrouters.  Hence, each router can compute a multicast tree from any source to all the 

members in the group.  MOSPF employs Dijkstra�s algorithm [Rfc1584] to compute the 

multicast tree.  MOSPF is most suitable for small internetworks. 

 PIM-DM uses its underlying unicast protocol to check if the packet has arrived on 

the shortest path from the source.  If the path is shortest, PIM-DM forwards the packet to 

its adjacent mrouters.  Else, PIM-DM discards the packet.  PIM-DM gives protocol 

independence at the cost of more overhead compared to DVMRP [Rfc1075] (cf. Fig 3). 



 23

2.2.4.2 Sparse Mode Relay Algorithms.  

 All sparse mode protocols are designed to work efficiently within a sparsely 

distributed network�a network whose members are many hops away from each other.  

Sparse mode protocols are also intended for use in networks with limited bandwidth.  

Core Based Trees (CBT) and Protocol-Independent Multicast�Sparse Mode (PIM-SM) 

are examples of sparse-mode routing protocols. 

In CBT a core router constructs a single spanning tree that is shared by all the 

group members throughout the entire multicast session.  Mrouters send a join message to 

the core and join the spanning tree.  Session members join the shared multicast tree 

through their subnet mrouters.  When the core receives a join request, it returns an 

acknowledgment and accepts the new mrouter in the multicast session.  Any mrouter 

between the core and the newly joined mrouter can intercept a join request and can 

acknowledge the join request.  Some versions of CBT support the use of multiple cores to 

avoid bottlenecks around the core router. 
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An mrouter called a rendezvous point (RP) constructs a multicast distribution tree.  

The rendezvous point is analogous to the core in the CBT protocol.  During the initial 

phase of operation, the PIM-SM initially connects the senders and receivers to the 

rendezvous point and forms a group-shared tree (cf. Fig. 4).  Later the router closest to 

the receiver can change its connection to a particular source by sending a PIM join 

message directly to the source on the shortest path and pruning the extra branches.  Thus, 

because much of the network traffic is directed away from the RP, bottlenecks can be 

avoided around the RP. 

FIG 3. MOSPF Tree Construction (adapted from [Stardust01]) 
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FIG 4. PIM-SIM (adapted from [Stardust01]) 



 26

   

CHAPTER 3 

RELIABLE MULTICAST 

 

This section explores the limitations of the current IP multicast model with respect 

to scalability and reliability.  Section 3.1 discusses the concept of reliability as it applies 

to multicasting.  Section 3.2 discusses various concerns associated with implementing 

reliability in multicast communications, including the impact of application semantics on 

reliability implementation mechanisms, the need for reliability mechanisms in current 

IPv4 multicast model, mechanisms for adding reliability to the current IPv4 multicast 

data transmissions, and the use of forward and reverse flows to achieve reliability. 

3.1 Reliability: A Definition 

 Reliability, in the context of network communications, can imply support for any 

combination of the following guarantees: 

• A protocol maximizes the likelihood that receivers get data in timely way. 

• A protocol guarantees the in-order arrival of data at all receivers. 

• A protocol guarantees the correct arrival of data at all receivers. 

Different flows require different kinds of guarantees.  For example, applications 

that deliver voice or video in real time cannot tolerate out-of-order or untimely delivery, 

while file-transfer applications can typically tolerate delay and out-of-order delivery but 

not loss.   
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 Different kinds of delivery algorithms provide different kinds of reliability.  Each 

algorithm imposes its own form of overhead on a communication and cannot be used 

without imposing some kind of performance penalty. 

3.2 Implementing Reliability In Multicast Communications 

3.2.1 The Impact Of Application Semantics On Reliability. 

 An application�s semantics dictate its mechanisms for implementing reliability.  

Multimedia applications consider transmissions with some losses as �reliable� as long as 

these losses don�t degrade the quality of the transmission to the user to an excessive 

degree [Gonc02].  On the other hand, reliable data transfer applications such as reliable 

file transfer can tolerate retransmissions but can�t tolerate the loss of even a single packet 

[Gonc02].   

3.2.2 Need For reliability Mechanisms In Current IPv4 Multicast Model. 

 IPv4 multicast is unreliable [Comer00].  IPv4 multicast provides a best-effort 

delivery service that fails to guarantee the timely, ordered, or correct arrival of data.  The 

resulting lack of overhead allows application developers to use IPv4 to build efficient 

multicast applications that provide application-specific guarantees.  Unfortunately, this 

lack of reliability also forces developers who need reliability to implement guarantees on 

the top of the current IP multicast model.   

3.2.3 Adding Reliability To IPv4 Multicast In Data Transmissions. 

 There are two basic approaches to implementing reliable communication in any 

multicast protocol.  The first, sender-oriented approach, requires a transmission�s point of 
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origin to assume primary responsibility for detecting and correcting errors in transmission   

The second, receiver-oriented approach, makes reliability the responsibility of a 

message�s receivers. 

 Schemes for ensuring reliable dataflow can also be classified according to the 

stream of information used to support reliability.  Forward error correction (FEC) 

strategies use the flow of information from the sender to the receivers to enhance 

reliability (cf. §4).  Here, reliability is achieved by transmitting extra parity information 

along with the original data.  Automatic repeat request (ARQ) strategies use a second 

flow of information from the receivers to the sender to enhance or ensure reliability (cf. 

§4).  Here, reliability is achieved by transmitting two kinds of control packets: packets 

that return the status of recent communications (ACK/NAK), and packets that direct the 

sender to slow or speed the flow of information to the receiver (flow control packets).  

Hybrid strategies employ a combination of FEC and ARQ to enhance or ensure 

reliability. 

 For total reliability, the receivers must transmit control packets to the sender.   

 The rest of this section describes complicating factors that affect the use of 

forward and reverse flows in reliable communications in more detail. 

3.2.3.1 Forward Flows. 

 Issues that complicate the use of forward flows in reliable communications include 

variable flow rates, asynchronous join/leave, network heterogeneity, and data ordering 

[Gonc02]. 

 Variable flow rates.  Different receivers in the receiver set may have different data 
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reception rates.  A sender needs to balance its flow between its fastest and the slowest 

receivers in the receiver set so as to minimize the idle time at fast receivers and 

transmission overruns at slow receivers.  The mechanism that guarantees a fair 

transmission rate is called a flow control mechanism.  Avoiding idle time and 

retransmissions, in general, requires the concurrent transmission of each stream of 

information at multiple rates of speed�either by the receiver itself or by fast, 

intermediary stations that accept, buffer, and relay data from the receiver at the rates 

required by the slower receivers.   

  Approaches for implementing efficient flow control mechanisms include the use 

of multiple multicast channels and proxy mechanisms.   

 Multiple multicast channels.  In the multiple multicast channels approach the 

sender transmits its data on different multicast channels in a way that enables any 

receiver that subscribes to all the channels to get the entire file.  Slower receivers 

subscribe to a few groups whose overall transmission rates match their reception speed.  

Receivers with high reception rates join all data channels and leave quickly.  The sender 

transmits the entire file on every channel to ensure reception by the slowest receiver.   

In the proxy mechanism approach, a proxy is placed between the sender and 

receiver.  The proxy serves one or more LANs.  The proxy caches all the data transmitted 

by the sender and retransmits it according to the speed of its receivers on its LAN. 

 Asynchronous join/leave.  In a multicast session receivers can join and leave at any 

time.  How to retransmit information to receivers who have joined late is an important 

consideration for an efficient forward flow mechanism.  One solution to this problem 
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uses a data reservoir that stores all the information transmitted by the sender.  Receivers 

joining late can contact this data reservoir and obtain the information they have missed. 

 Network heterogeneity.  Currently, some network relay devices don�t support 

multicast.  A mechanism called IP tunneling [Gonc02] is used to transmit information to 

receivers that have relay devices in their path from the sender that don�t support 

multicast. 

  Data Ordering.  Some application semantics require that information be 

assembled in correct order (like file transfer), while some application semantics (like 

video conferencing) don�t require this. 

3.2.2.2 Reverse Flows. 

 Reverse flows consists of control packets (ACK or NACK) from the receivers to 

the sender.  The primary issue that complicates the implementation of reverse flows is the 

excessive retransmission of control packets to the original sender.  Too many control 

packets can result in feedback implosion�a situation where a bottleneck is created 

around the sender because of a large number of retransmission requests from the 

receivers [GeSch97].  Feedback implosion is addressed using random delay timers: the 

receivers wait for a random amount of time before transmitting ACK or NACK to the 

sender and the receivers suppress their requests for a packet to the sender if another group 

member requests the same packet. 
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CHAPTER 4 

OVERVIEW OF MULTICAST MECHANISMS 

 

This section describes research on reliable IP multicast.  Section 4.1 discusses 

Software FEC techniques including two protocols that implement FEC: Reliable 

Multicast Distribution Protocol (RMDP) and Fcast.  Section 4.2 discusses the Scalable 

Reliable Multicast (SRM) Framework.  This discussion includes SRM mechanics, ADU 

considerations in an SRM framework, synchronization mechanisms in an SRM 

framework, and SRM framework operation.  Section 4.3 discusses Kasera et al.�s 

multiple multicast channels framework including the framework�s operation, 

implementation semantics, use of IP�s multicast mechanism, local filtering mechanism, 

and operation with router support.   

4.1 Software FEC Techniques [RiVic97] 

 FEC performs well in lossy network environments�networks where the overhead 

of parity information is offset by the time savings that the receivers obtain by using one 

parity block to recover from varied data packet losses. 

 FEC enables recovery from lost packets and bit level corruption.  In IP multicast, 

however, the data link and physical layers rectify the bit level corruption errors.  Thus, it 

suffices for a scalable and reliable multicast protocol to provide error recovery 

mechanisms for erasure loses only [RiVic97]. 

 The FEC mechanism is divided into encoding and decoding phases.  In the 
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encoding phase the sender constructs parity packets from the source packets [RiVic97].  

In decoding phase the receiver reconstructs any lost packets by solving the differential 

equation on the parity packets and data packets. 

Figure 5 illustrates the use of FEC in data transmission.  FEC blocks are 

implemented using Rizzo and Vicisano�s (n, k) encoding-decoding system.  Here, n 

represents the total number of original data packets and k the total number of source 

packets.  The number of parity packets transmitted along with the original data packets is 

n � k.  The encoder (on the sender side) creates n � k parity packets from the k source 

packets by applying a differential equation on the source packets.  The decoder (on the 

receiver side) can reconstruct the entire source packets if it receives any k out of the total 

n packets transmitted. The parity blocks are of the same size as the original data packets. 

FIG 5 FEC Encoding/Decoding (adapted from [RiVic97]) 
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4.1.2 Protocols That Implement FEC. 

4.1.2.1 Reliable Multicast Distribution Protocol (RMDP). 

 RMDP is a reliable and scalable multicast protocol for file transfer.  In RMDP the 

sender transmits a large number of parity packets relative to data packets.  The authors 

use a round-based strategy to determine the existence of a multicast link between the 

client and the server.   

 In the first round of communication the client contacts the server by multicasting a 

join message to the server.  If the server replies, the client can safely assume the presence 

of a multicast link with the server; otherwise, the client unicasts its request to the server.  

Session parameters are exchanged between the client and the server during this first 

round of communication.   

 In the next and subsequent rounds of communication the server transmits the data 

and parity (FEC) packets for a fixed period of time.  If a client can reconstruct the 

original message from the packets it receives, it stops listening.  But if the client cannot 

reconstruct the original message and the server has stopped transmitting, the client sends 

a continuation request to the server and asks for more packets. 

The authors haven�t incorporated congestion control mechanisms in their current 

design.  RMPD claims to decrease the risk of feedback implosion from the clients to the 

server as the clients send feedback messages to the server only when the server has 

stopped transmitting and the client hasn�t received all the packets. 
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4.1.2.2 Fcast. 

Fcast [GeSch97] is a file transfer tool developed by Jim Gemmell, Eve Schooler, 

and Jim Gray of Microsoft. The discussion of Fcast that follows is organized along the 

lines of a similar discussion in [GeSch97]. 

 Fcast uses multicast to send files on IP networks.  Fcast receivers operate in one of 

two modes, according to the length of the time the receiver remains connected with the 

sender. 

 Tune In, Download, and Drop Out (TIDDO) mode.  In this model the sender loops 

through a set of files and transmits the files continuously for a fixed period of time.  

Receivers subscribe to the appropriate transmission channels, receive the files, and drop 

subscriptions immediately after receiving their files.  Receivers that want to receive the 

files again must resubscribe to the transmission channel.  Thus, TIDDO mode is used 

where the time needed to establish a connection is low and bandwidth is limited 

[GeSch97]. 
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FIG 6. TIDDO mode (adapted from [GeSch97] ) 
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Satellite mode.  In satellite mode receivers remain subscribed to the transmission channel.   

 

 

 

 

 

 

Here, the receiver may receive unwanted files, which wastes bandwidth.  Hence, the 

satellite model is used when set up time is high and bandwidth is plentiful. 

 The Fcast sender and receiver components are implemented as ActiveX controls 

[GeSch97]. In Fcast a sender starts transmission without directly synchronizing with the 

receivers.  The sender also transmits session parameters (multicast address, port number) 

through an outside mechanism as out-of-band data or email.  The sender divides the file 

to transmit in fixed size groups, computing parity on a group-by-group basis, and 

ordering every group�s parity information after that group�s data.  Each group is further 

divided into fixed size blocks (packets).  The sender loops through the groups, 

transmitting one block from each group on each pass through the groups.  Transmissions 

are ordered within groups: the ith block of each group is always transmitted before the 

(i+1)st block [GeSch97].  The sender also transmits each file�s attributes, including that 

file�s type (e.g., .zip or .ram), location, size, and name.  Receivers subscribe to the 

appropriate transmission channel to receive files of interest and remain subscribed or 

drop out depending on their mode of reception. 

ttiimmee
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FIG 7. Satellite mode (adapted from [GeSch97] ) 
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 The receiver caches received blocks in a temporary file until it receives all blocks 

necessary to reconstruct the entire file.  After all blocks are received, the receiver 

reconstructs the file, sets its attributes and stores the file at the location specified by the 

sender. 

 Fcast�s authors studied the effect of disk performance on file transfer time.  The 

authors suggest that if the disk can�t keep up with the speed at which packets are received 

from the network, many packets will be lost and require retransmission.  They describe 

five techniques for optimizing fcast performance in environments where networks 

outperform disks. 

 In-Memory: The basic requirement for implementing In-Memory data transfers is 

that the receiver must have enough main memory to receive and decode the entire file in 

main memory.  The In-Memory scheme is effective when files are small enough to fit in 

the main memory.  One probable application area of the In-Memory technique is 

transmitting periodic updates. 

 Receive-Order: In Receive-Order mode, a receiver writes incoming blocks 

immediately to disk without sorting the blocks, thereby ensuring fast reception.  The 

penalty of fast reception is paid during the decoding phase where blocks must be sorted 

before decoding. 

 Group-Area:  Fcast divides each file into groups and every group into blocks.  The 

area on disk that holds a group�s blocks is called its Group Area.  In Group-Area mode 

the blocks are written in their respective group-area on the disk without respect to 

ordering.  Thus, when the reception is completed the blocks are partially sorted.  The 
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subsequent sorting and decoding of blocks takes less time than receive order scheme.  

The authors introduce the concept of a bucket: a logical compartment in main memory 

dedicated to holding related blocks.  In the Group Area strategy, the main memory is 

divided into two buckets, one for receiving blocks and the other for writing the blocks. 

 Crowd-Bucket:  Crowd�Bucket mode partitions a file�s constituent groups into 

crowds.  The receiver writes the blocks in their respective crowd-area.  The operation of 

the Crowd-Bucket mechanism is similar to that of the Group-Area scheme.   

 Crowd-Pool: The Crowd-Pool mode of operation is similar to the Crowd-Bucket 

strategy, except that Crowd-Pool maintains a pool of buckets. 

4.2 SRM Framework  [FlJcLMcZh97] 

 The SRM framework is based on a multicast group delivery protocol model called 

Application Level Framing (ALF) by Clark and Tennenhouse.  ALF explicitly includes 

an application's semantics in the design of that application's protocol [Ja95].  Birman et 

al.�s Lightweight Sessions (LWS) protocol extended ALF by adding receiver-based 

reliability [BiSchStep91].  SRM is built upon ALF and LWS.  SRM maximizes 

information sharing among all group members.  Wb, the web based distributed 

whiteboard tool, implements the SRM framework. 

4.2.1 SRM Mechanics. 

 SRM is a receiver-oriented multicast mechanism.  Each member of the group is 

individually responsible for detecting its loss and requesting retransmission.  
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4.2.1.1 ADU. 

 The SRM framework divides the data to transmit into independent data units.  

Each such data unit is called an ADU (Application Data Unit).  ADU�s have global, 

persistent, and unique identifiers that identify each ADU separately over time and space. 

4.2.1.2 Synchronization Mechanism. 

 Each member multicasts periodic session messages to the multicast group.  

Session messages establish a group�s current membership, inform all group members 

about the latest sequence number of ADU being transmitted, and support the calculation 

of round-trip times for message exchanges between pairs of group members.  Session 

messages consume a very limited bandwidth compared to the data messages. 

  SRM members dynamically adjust the generation rate of session messages in 

proportion to the multicast group size.   

4.2.1.3 Operation. 

 Any member who detects a loss starts a random delay timer.  The delay timer�s 

range depends on the distance between the source and the member that has detected the 

loss.  The delay timer is chosen from the uniform distribution on [CI dSIA,( CI + C2 ) dSIA] 

seconds, where dSIA is host A's estimate of the one-way delay to the original source S of 

the missing data [FlJcLMcZh97].  Network parameters like network traffic, RTT, and 

expected delays govern the calculation of C1 and C2.  When a timer expires, the member 

that has detected the loss multicasts its retransmission request on the multicast group.  
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Other members having loses identical with the previous one suppress their requests and 

start a new random delay timer randomly chosen from a uniform distribution on  

2 i [CI dSIA, ( CI + C2 ) dSIA]  [FlJcLMcZh97]. 

When any member receives a retransmission request from another member, it 

checks if it has the packets requested by the other group member.  If so, it starts a random 

delay retransmission timer based on a value from the uniform distribution on [DI dSIA, ( 

DI + D2 ) dSIA] seconds, where dSIA is host B's estimate of the one-way delay to host A, 

and D1 and D2 are parameters of the repair algorithm dependent on the network 

parameters [FlJcLMcZh97].  If the member receives a retransmitted packet during the 

wait period and if it has set retransmission timer for the packet, it cancels its timer.  

Otherwise, after the timer expires it retransmits the packet on the multicast group.  It is 

likely that a member nearer to the member that has the lost packet will receive the 

retransmission request first and retransmit the packet. 

In order to prevent duplicate requests from triggering a responding set of 

duplicate repairs, host B ignores requests for data D for 3 * dSIB seconds after 

sending or receiving a repair for those data, where host S is either the original 

source of data D or the source of the first request [FlJcLMcZh97]. 

4.3 Multiple Multicast Channels  [KaKuTow00] 

 Sneha K. Kasera, Jim Kurose, and Don Towsley introduced use of multiple 

multicast channels for adding reliability to current multicast best effort delivery model.  

Their approach uses multiple multicast groups to reduce receiver-processing overheads.  
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In a typical ARQ-based reliable multicast scenario transmissions and retransmissions 

occur on the same multicast channel (group).  Because all packet transmissions and 

retransmissions use one group, each receiver receives all retransmissions of a packet even 

after correctly receiving the packet.  This imposes unnecessary receiver processing 

overhead because the network layer processes all the packets coming for the particular 

multicast group.  The redundant packet travels its way up to the application layer where 

the application layer finally discards the packet.  In a very lossy network receivers spend 

a lot of time processing unnecessary packets. 

 Multicast using multiple multicast channels attempts to solve the problem of 

redundant packets flowing in the network. 

4.3.1 Operation. 

 Kasera et al.�s protocol operates as follows.   Consider a system with a sender and 

R receivers such that data are to be transmitted from the sender to the receivers using G + 

1 channels.  One channel is used for the original transmission of packets from the sender.  

The remaining G channels are used for retransmissions and are mapped to ranges of 

sequence numbers such that a lost packet is retransmitted on the channel corresponding to 

the range to which it belongs.  The receivers join the retransmission channels for the 

packets that they have lost and leave the group after they receive the packet. 

 The authors have demonstrated two scenarios, one with an infinite number of 

multicast groups and the other with a finite number of multicast groups.  The authors 

have studied one to many and many to many communication methods in both the 
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scenarios.  Their data show that using a finite number of multicast groups can produce the 

effect of an infinite number of multicast groups. 

4.3.2 Implementation Semantics. 

4.3.2.1 Using The IP Multicast Mechanism. 

 Each multicast group is implemented as a different IP multicast group.  Joining 

and leaving the group means joining and leaving the IP multicast group. 

 When a receiver detects a packet loss, it determines the retransmission channel to 

join to recover the lost packet and starts a random timer.  After the timer expires, the 

receiver multicasts the request on the multicast group.  If another receiver receives a 

retransmission request for the same packet before the timer expires, it restarts its counter 

and again waits for a random amount to time.   

4.3.2.2 Local Filtering. 

 Joining and leaving a multicast group imposes extra overhead throughout the 

multicast tree.  Each join and leave message results in processing overhead at all the 

intermediate routers.  To avoid this, the authors have proposed a new concept of local 

filtering. 

 Initially a receiver joins the original transmission group and all retransmission 

multicast groups.  The network transmits IGMP messages to the entire multicast tree.  

The local interface filters out the unwanted packets, based on the information provided by 

the local join and leave operations, to save the receiver from processing these packets.   
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4.3.2.3 Adding Router Support. 

 Local filtering doesn�t reduce network bandwidth.  To reduce the use of network 

bandwidth the authors have proposed the use of retransmission-aware routers.  All 

transmissions and retransmissions take place on only one channel.  The router forwards 

retransmitted packets only to those receivers that have NACKed lost packets. 
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CHAPTER 5 

SRFTT (SCALABLE AND RELIABLE FILE TRANSFER TOOL) 

 

Scalable and Reliable File Transfer Tool (SRFTT), the subject of this thesis, is a 

tool developed to simplify information sharing among a cluster�s nodes.  SRFTT 

guarantees reliable data delivery for bulk data-transfer applications like file transfer, Web 

caches preloading software, and software upgrades distribution.  SRFTT combines the 

following two strategies for error management to achieve reliability: 

• Forward Error Correction (FEC) [RiVic97]:  In this approach recovery packets are 

encoded and decoded using software FEC techniques.  Data transfer tools like FCAST 

[GeSch97] and RMDP [RiVic97] (cf. §4.1.2.) use this approach. 

• Multiple multicast Channels [KaKuTow00]:  In this approach recovery packets are 

retransmitted on multiple retransmission channels to reduce reception time.  (cf. §4.3) 

The rest of this section discusses implementation issues related to SRFTT.  Section 5.1 

describes SRFTT�s operation, and Section 5.2 describes SRFTT�s component software.   

5.1 SRFTT Operation 

SRFTT makes four basic assumptions about its operating environment: the 

existence of a multicast link between the sender and the receivers, a static receiver set, a 

transfer unit of predetermined size and content, and a network of heterogeneous 

receivers. 
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SRFTT is session based.  Each session has an identifier that uniquely identifies the 

session.  Each session has a primary transmission channel to transmit the data packets 

and multiple retransmission channels to transmit the recovery packets.  All the 

retransmission channels are implemented as distinct multicast channels. 

 SRFTT operation is divided into the following three steps: 

• The sender transmits session information to all receivers.  Session information 

includes session id, primary transmission channel address, file name, file size, and file 

checksum.  

• The sender transmits the file on the session�s primary transmission channel.  The 

receivers join the primary transmission channel to receive the file.   

• The sender transmits recovery packets on the session�s retransmission channels.  The 

receivers subscribe to the appropriate retransmission channel to receive the lost 

packets. 

5.2 SRFTT Building Blocks 

 SRFTT is architected as a sender-receiver application where the sender acts as a 

server and the receivers as clients.  The architecture of SRFTT senders and receivers is 

described in Sections 5.2.1 and 5.2.2 respectively.  The SRFTT configuration file, which 

drives an SRFTT session, is described in Section 5.2.3. 

5.2.1 SRFTT Sender. 

SRFTT is sender-initiated: i.e. the sender initiates the file transfer.  The sender 

divides each file to be transmitted into B groups, with each group having K data packets.  
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The parameter K is fixed and pre-configured.  The value of B depends upon the file size 

and the value of K.  A detailed description of B and K is given in Section 5.2.3.   

 In the first round of transmission, the sender transmits the session information to 

all the receivers using a reliable data delivery mechanism (TCP/IP).  In the next round, 

the sender multicasts the data packets on the session�s primary transmission channel.  

After sending the data packets, the sender multicasts multiple �stop� packets on the 

session�s primary transmission channel.  A �stop� packet is a special packet that signals 

the end of transmission on the session�s primary channel.  In subsequent rounds of 

transmission, the sender multicasts the recovery packets on all of the session�s 

retransmission channels until a certain degree of redundancy has been achieved.  The 

recovery packets are encoded using software FEC techniques [RiVic97].   

 The number of retransmission channels is fixed and pre-configured (cf.  §5.2.3).   

5.2.2 SRFTT Receiver. 

 On receiving the session information from the sender, the receiver joins the 

session�s primary transmission channel to receive the file.  The file is divided in B * K 

packets, where B = number of groups and K = number of packets per group (cf.  §5.2.3).  

If a receiver receives all data packets correctly, the receiver leaves the primary 

transmission channel and reassembles the file from the received packets.   

 If a receiver fails to receive all the data packets correctly, the receiver joins the 

appropriate retransmission channels to recover the lost packets; receives the required 

number of recovery packets�i.e., the number of data packets lost for that group; leaves 

all retransmission channels; decodes the parity packets; and reassembles the file.  To 
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recover packets lost from a group i the receiver joins the retransmission channel i % T, 

where T = total number of retransmission channels.   

Both sender and receiver are multithreaded. The primary thread handles primary 

transmission channel, and the secondary threads handle retransmission channels. SRFTT 

uses the PISCES [Pfei02] and PFC [Pfei02] libraries to handle socket and thread 

management respectively. 

 There is no feedback from the receivers to the sender. This addresses the problem 

of feedback implosion and makes SRFTT scalable. 

5.2.3 SRFTT Configuration File. 

SRFTT uses a configuration file to configure parameters like packet size, group 

size (number of packets per group), number of retransmission channels, and network loss.  

For optimal SRFTT performance, these parameters must be tuned to the given application 

or environment.  This sub-section is a detailed description of the SRFTT configuration 

parameters. 

 Packet size: IP multicast is built on the top of IP protocol and IP multicast packets 

are transmitted as IP datagrams.  The network infrastructure de-fragments a packet in 

multiple IP datagrams if the packet size exceeds a certain limit (normally 512 or 1024 

bytes).  Increasing the packet size helps to transmit the file in fewer packets, thus 

reducing overhead while increasing the cost of fragmentation and reassembly.   

 Group size: Group size is defined as number of packets in a group.  Increasing the 

number of packets in a group increases the robustness of the transmission (in terms of 

erasure recovery capability) but also increases encoding and decoding costs [RiVic97]. 
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 Number of retransmission channels:  If the number of SRFTT retransmission 

channels is less than the number of groups in a file, some retransmission channels must 

carry recovery packets for two or more groups.  In this scenario, multicast groups that 

support multiple retransmission channels multiplex among their assigned channels, 

delaying retransmission, but decreasing the overall load on the network.   

 Loss rate:  A network�s loss rate is defined as the number of packets lost by the 

network per 100 packets transmitted.  SRFTT initially transmits FEC packets depending 

upon a pre-decided loss rate of the network.  Different networks have different loss rates.  

If the initial loss rate is configured below the network loss rate, the network load 

increases because of the retransmission requests by multiple receivers (cf. §5.2.2).  On 

the other hand, if the initial loss rate is configured above the network loss rate the 

network load increases because of the sender transmitting unnecessary FEC recovery 

packets. 
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CHAPTER 6 

PERFORMANCE 

  

This section reviews tests of SRFTT performance.  SRFTT�s performance was 

tested relative to different file sizes under varying loss rates and retransmission channel 

counts.  The results obtained show that for large files retransmitting recovery information 

on multiple multicast channels gives significant performance gains when compared to a 

single retransmission channel. 

The balance of this chapter is divided into three sections.  Section 6.1 describes the 

methodology for testing SRFTT.  The description reviews test parameters in detail.  

Section 6.2 describes the SRFTT test procedures.  Section 6.3 analyses the results 

obtained from the tests. 

6.1   SRFTT Test Methodology 

File transfer time and scalability are the defining attributes for a reliable file 

transfer mechanism.  Faster transfer times and more graceful degradation under heavier 

loads equates to better performance. 

Two important test parameters for any file transfer tool are file size and loss rate. 

• File size.  Modern day communications demand transmission of several GB of 

information.  A file transfer tool should be able to transfer files up to several GB with 

minimal degradation in performance.  SRFTT was tested for file sizes of up to 256 

MB.  Due to resource limitations, SRFTT was not tested beyond 256 MB.   
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• Loss rate.  Loss rate, the number of packets dropped or corrupted beyond repair 

during transmission, is typically measured as a percentage of all packets transmitted. 

Normally, loss rates increase and decrease with increases and decreases in network 

load.  Network loss rates normally average between 10% and 20% [Comer00].  In 

extreme situations, the network loss-rate can jump to 50%.  A reliable file transfer 

tool should incorporate recovery mechanisms for extreme conditions.  SRFTT was 

tested under stimulated network loss rates of up to 50%.   

A third SRFTT test parameter was the number of retransmission channels.  

SRFTT transmits recovery packets on multiple retransmission channels.  As the number 

of retransmission channels increases, the error recovery time decreases due to reduction 

in receiver-wait time and, hence, performance increases [KaKuTow00].  Also, increasing 

the number of retransmission channels beyond a certain point doesn�t improve 

performance gains for a given network state [KaKuTow00]. 

Scalability is a fourth important concern for a file transfer tool.  A file transfer tool 

should be able to service hundreds of clients without considerable degradation in service.  

Currently SRFTT has been tested with 10 clients due to resource limitations. 

6.2 SRFTT Test Procedures 

 SRFTT was tested on Dell Intel Pentium III 933 MHz workstations with 3Com�s 

10/100 Mb/s NIC cards running Windows 2000.  The network capacity is 10Mb/s.   

SRFTT�s performance was evaluated using files with fixed and incrementally 

increasing sizes.  The tests were designed to assess the effect of file size, transmission 

loss rate, and retransmission channel count on transfer time.   
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SRFTT divides the file to be transmitted in G groups.  Each group can be 

represented as a set of (k, n) packets where  

k = total number of data packets in a group,  

n = total number of packets in a group,  and 

n � k = number of FEC recovery packets in a group.   

The value of n was 255 for all the tests because of FEC library limitations [RiVic97].  

The network infrastructure fragments a packet into multiple IP datagrams if the packet 

size exceeds a network-specific limit (normally 1476 bytes for Ethernet) [Comer00].  The 

size of the data packet as well as the recovery packet is 1 KB to avoid fragmentation by 

the network infrastructure. 

6.2.1 Testing Procedure: Fixed File Size. 

In the fixed file size tests, a 2MB file was repeatedly sent over the network to 

determine how SRFTT�s performance was affected by varying the number of 

retransmission channels, network loss-rates, and values of k.  This testing procedure is 

similar to that of Luigi [RiVic97] with one addition�a new dimension, the number of 

retransmission channels, was added to the tests.  The value of k was set to 1, 8, 16 and 

finally 32 packets per group.  Increasing k beyond 32 had no effect on file transfer.   

For each k, a predetermined number of data packets were deliberately dropped to 

simulate varying network loss-rates.  On successive test runs, 0%, 1%, 2%, 5%, 10%, 

15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% of all packets were dropped.  A network 

loss rate of 0% yielded a loss of around 60 packets (3%), suggesting one of two things: 

the network either lost packets, or the network speed outpaced disk speed.  Gemmell and 
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Schooler�s research suggests that the second explanation is more probable [GeSch97].  

Accordingly, the loss-rates mentioned earlier are an approximation and variations in the 

range of  ±3% are possible.  

For every k and network loss-rate the number of retransmission channels was set 

to 1, then 2, then 3.  Increasing the number of retransmission channels beyond 3 did not 

change file transfer time.   

6.2.2 Testing Procedure: Incremental File Size. 

In the incremental tests, a succession of test files was sent over the network to 

determine SRFTT�s performance relative to file size and retransmission channel count.   
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FIG 8 Loss rate vs Transfer time with different values of k and single retransmission channels 
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File sizes were chosen to be 1 KB, 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 

MB, 128 MB, and 256 MB.  For consistency with fixed file size tests, each file was tested 

using 1, 2, and 3 retransmission channels.  Loss rate and k were held at 25% and 16 

respectively. 

6.3 Data And Analysis 

As shown in Figures 6.1, 6.2, and 6.3, SRFTT�s performance improves as the 

number of packets per group (k) increases when other parameters are held constant.  

These data are consistent with Luigi�s results [RiVic97].  As k increases the number of 

data packets in a group increases.   
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The FEC encoder generates n � k recovery packets from all the data packets of a 

group.  Because all data packets are involved in generating recovery packets, increasing k 

increases the number of data packets involved in generating recovery packets.  The FEC 

decoder can recover any data packet of a group if the number of distinct recovery packets 

received equals the number of packets lost for that group.  Thus, as the number of data 

packets in a group increases, a single recovery packet can help recover more data packets.  

Consider, for example, the scenarios where k = 1 and k = 8.  When k = 1, one recovery 

packet can help recover only one packet.  When k = 8, one recovery packet can help 

recover 8 packets.  Hence, as k increases, the efficiency of each recovery packet and the 

robustness of each transmission increases�but at the cost of increases in encoding and 

decoding overhead [RiVic97]. 

For a 2 MB file, SRFTT�s performance doesn�t improve drastically on increasing 

the number of retransmission channels.  However, adding retransmission channels has a 

noticeable effect on the transmission of 128 MB and 256 MB files.  Becuase packets per 

group (n) is held constant, increasing file size increases the number of groups (G).  As 

noted in Chapter 5, retransmission of recovery packets occurs on multiple multicast 

channels.  To recover a group�s packets, the receiver must join that group�s multicast 

channel.  For small files having fewer groups, the cost of joining multiple retransmission 

channels offsets the benefits of using multiple channels [KaKuTow00]. 

SRFTT�s performance increases with the increase in number of retransmission 

channels.  This observation is consistent with Kasera et al.�s results [KaKuTow00].  As 
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noted in Chapter 5, SRFTT transmits recovery packets of a group on a particular 

retransmission channel according to the following equation: 

Retransmission channel = Group mod (Number of retransmission channels). 

The number of retransmission channels is usually less than the number of groups.  Hence, 

one retransmission channel may service multiple groups.  In this scenario recovery 

packets of multiple groups are interleaved on retransmission channels.  As the number of 

retransmission channel increases, the time for the recovery packets of a group to be 

transmitted again on the group�s retransmission channel decreases.  This reduces the wait 

time of a receiver waiting for a particular group�s packets.  Hence, the efficiency 
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increases with the increase in the number of retransmission channels. 

As the file size increases, the effect of increasing the number of retransmission 

channels becomes pronounced (cf. Fig. 6.4).  Increasing the number of retransmission 

channels from 1 to 3 yields a gain of nearly 33 for file sizes larger than 32 MB.  Further 

increases in the number of retransmission channels yield further improvements.  For 

example, increasing the number of retransmission channels from 3 to 7 decreases the 

reception time for a 64MB file with k = 16 and loss-rate = 25% from 2361 sec. to 2185  

sec. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

This thesis has described the implementation and operation of a new tool for file 

transfer, specifically designed for use in heterogeneous clusters.  This tool, SRFTT, 

combines two techniques to achieve reliability in multicast communications: software 

FEC and multiple multicast channel approaches.  Even though both approaches have 

overheads, the cost of encoding/decoding FEC packets is offset by the ability to recover 

from multiple packet losses using a single FEC packet and the cost of joining and leaving 

multiple retransmission channels is offset by the reduced receiver reception time.  SRFTT 

performs better in heterogeneous environments.  For large files increasing the number of 

retransmission channels improves SRFTT�s performance significantly. 

SRFTT�s implementation will be available soon as freeware. Currently SRFTT is 

tested on the Windows platform. With minor modifications, SRFTT can be implemented 

on UNIX and Linux platforms.  SRFTT has been tested for file sizes up to 256 MB and 3 

retransmission channels.  More testing, however, should be performed on SRFTT to 

determine the tool�s ability to transfer massive files relative to larger and less uniform 

networks of PCs.  These tests should include transfers of larger, multi-gigabyte files, 

using more retransmission channels and more target hosts.  SRFTT should also be 

enhanced to support flow control mechanisms in order to improve the tool�s performance. 
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APPENDIX 

OBSERVATION TABLE 

 

Fixed File Size 

Number of Retransmission channels = 1      

K Loss Rate Time K Loss Rate TimeK 

Loss 

Rate TimeK Loss Rate Time 

1 1 142.5 8 1 23 16 1 20 32 1 19 

 2 168.5 2 24 2 20 2 19 

 5 171 5 24 5 20 5 19 

 10 177 10 24.4 10 20 10 19 

 15 180 15 24.5 15 20 15 19 

 20 204.5 20 24.5 20 20 20 19.5 

 25 208 25 24.5 25 20.5 25 20 

 30 216 30 24.5 30 20.5 30 20 

 35 220 35 25.5 35 20.5 35 20 

 40 233 40 25.5 40 20.5 40 20 

 45 234 45 26 45 20.5 45 20.5 

 50 264 50 27.5 50 21.5 50 21 
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Number of Retransmission channels = 2        

K Loss Rate Time K Loss Rate Time K Loss Rate TimeK Loss Rate Time

1 1 80 8 1 2216 1 19 32 1 19

 2 97.5  2 22 2 20 2 19

 5 100  5 22.5 5 20 5 19

 10 104  10 22.5 10 20 10 19

 15 104  15 23 15 20.5 15 19.5

 20 108  20 23.5 20 20.5 20 20

 25 112  25 23.5 25 21 25 20

 30 115  30 24 30 21 30 20

 35 116  35 24 35 21.5 35 20

 40 137  40 24.5 40 21.5 40 20

 45 138  45 25 45 22 45 20

 50 141  50 25 50 22 50 20
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Number of Retransmission Channels = 3      

K Loss Rate Time K Loss Rate Time KLoss RateTimeK Loss Rate Time 

1 1 57.5 8 1 21.56 1 18 32 1 19 

 2 59  2 21.5 2 19 2 19 

 5 59.5  5 22 5 19 5 19 

 10 60  10 23 10 19 10 19 

 15 65.5  15 23 15 19 15 19 

 20 65.5  20 23 20 20 20 19 

 25 66.5  25 23 25 20 25 19.5 

 30 68  30 23.5 30 20 30 19.5 

 35 70.5  35 23.5 35 20 35 19.5 

 40 73  40 23.5 40 20 40 19.5 

 45 76  45 23.5 45 20.5 45 20 

 50 78  50 25 50 21 50 20 
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Incremental File Size     

Loss Rate = 25  = 25, k = 16     

3 Rexmit Ch 2 Rexmit Ch 1 Rexmit Ch 

FileSize Time FileSize Time FileSize Time 

0.001 0 0.001 0 0.001 0

1 10 1 10 1 10

2 20 2 20 2 20

4 51.5 4 52 4 54.5

8 113 8 118 8 129

16 259.5 16 263 16 314

32 640 32 739 32 1172

64 2361 64 2658 64 3380

128 8306 128 9814 128 13024

256 27634 256 31583 256 43241
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Random Samples 

No change by increasing the number of retransmission channels to 4 or 5 on a 2Mb file 

K = 16, NRT = 7, Loss rate = 25 and file size = 64 Mb-- Transfer time = 2185 sec   
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