
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

8-2002

Scalable and Reliable File Transfer for Clusters
Using Multicast.
Hardik Dikpal Shukla
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Shukla, Hardik Dikpal, "Scalable and Reliable File Transfer for Clusters Using Multicast." (2002). Electronic Theses and Dissertations.
Paper 686. https://dc.etsu.edu/etd/686

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by East Tennessee State University

https://core.ac.uk/display/214067226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Scalable and Reliable File Transfer for Clusters Using

Multicast



A thesis

presented to

the faculty of the Department of Computer Science

East Tennessee State University



In partial fulfillments

of the requirements for the degree

Masters of Science in Computer Science



by

Hardik D. Shukla

August 2002



Phillip E. Pfeiffer

Martin L. Barrett

David L. Tarnoff

Stephen L. Scott

Keywords: multicast, file transfer, scalable, reliable, cluster

 2

ABSTRACT

Scalable and Reliable File Transfer For Clusters Using

Multicast

by

Hardik D. Shukla

A cluster is a group of computing resources that are connected by a single computer

network and are managed as a single system. Clusters potentially have three key

advantages over workstations operated in isolation�fault tolerance, load balancing and

support for distributed computing.

Information sharing among the cluster�s resources affects all phases of cluster

administration. The thesis describes a new tool for distributing files within clusters. This

tool, the Scalable and Reliable File Transfer Tool (SRFTT), uses Forward Error

Correction (FEC) and multiple multicast channels to achieve and efficient reliable file

transfer, relative to heterogeneous clusters. SRFTT achieves scalability by avoiding

feedback from the receivers. Tests show that, for large files, retransmitting recovery

information on multiple multicast channels gives significant performance gains when

compared to a single retransmission channel

 3

 DEDICATION

To the most beautiful person I have ever known, my wife Naisargi, who constantly

encouraged me to give my best effort,

My parents, whom I will always be indebted to

And

My mentor, Dr. Phillip Pfeiffer, with his reputed spirit for academic excellence in

conjunction with his inexhaustible energy, who, despite many 3 AM sessions, provided

an unwavering source of inspiration.

 4

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to ETSU committee members; Dr. Phillip

Pfeiffer, Dr. Martin Barrett and David Tarnoff.

The author sincerely appreciates the time and effort by Dr. Stephen Scott of Oak Ridge

National Labs.

 5

 CONTENTS

ABSTRACT������������������������������2

DEDICATION�����������������������������.3

ACKNOWLEDGEMENTS������������.������������4

LIST OF FIGURES���������������������������.8

Chapter

1 INTRODUCTION..9

 1.1 Cluster Computing And Its Advantages..9

 1.2 Cluster Computing And Its Challenges...11

 1.3 File Distribution In Cluster..12

 1.3.1

 1.3.2 Current Strategies For Reliable File Distribution.............................13

 1.4 SRFTT: A Hybrid Strategy For File Distribution..14

 1.5 Roadmap For This Thesis..15

2 OVERVIEW OF CURRENT MULTICAST TECHNOLOGY.............................16

 2.1 Multicast-A Definition And Comparison With Other Communication Models...16

 2.2 Multicast Mechanism For IPv4...17

 2.2.1 Multicast Communication Protocol-IGMP......................................17

 2.2.2 Sending Mechanism...18

 2.2.3 Receiving Mechanism..19

 2.2.4 Relay Algorithms..20

Explanation Of The Problem..12

 6

 2.2.4.1 Dense Mode Relay Algorithms..21

 2.2.4.2 Sparse Mode Relay Algorithms..23

3 RELIABLE MULTICAST...26

 3.1 Reliability: A Definition..26

 3.2 Implementing Reliability In Multicast Communications............................27

 3.2.1 The Impact Of Application Semantics On Reliability.....................27

 3.2.2 Need For Reliability Mechanisms In Current IPv4 Multicast Model.......27

 3.2.3 Adding Reliability To IPv4 Multicast In Data Transmissions..................27

 3.2.3.1 Forward Flows..28

3.2.3.2 Reverse Flows..30

4 OVERVIEW OF RELIABLE MULTICAST MECHANISMS.............................31

 4.1 Software FEC Techniques...31

 4.1.2 Protocols That Implement FEC..33

 4.1.2.1 Reliable Multicast Distribution Protocol (RMDP).....33

 4.1.2.2 Fcast..34

 4.2 SRM Framework...37

 4.2.1 SRM Mechanics...37

 4.2.1.1 ADU...38

 4.2.1.2 Synchronization Mechanism......................................38

 4.2.1.3 Operation..38

 4.3 Multiple Multicast Channels...39

 4.3.1 Operation..40

 7

 4.3.2 Implementation Semantics..41

 4.3.2.1 Using The IP Multicast Mechanism..........................41

 4.3.2.2 Local Filtering...41

 4.3.2.3 Adding Router Support..42

5 SRFTT (SCALABLE AND RELIABLE FILE TRANSFER TOOL)...................43

 5.1 SRFTT Operation..43

 5.2 SRFTT Building Blocks..44

 5.2.1 SRFTT Sender..44

 5.2.2 SRFTT Receiver...45

 5.2.3 SRFTT Configuration File...46

6 PERFORMANCE..48

 6.1 SRFTT Test Methodology..48

 6.2 SRFTT Test Procedures..49

 6.2.1 Testing Procedure: Fixed File Size..50

 6.2.2 Testing Procedure: Incremental File Size..51

 6.3 Data And Analysis..52

7 CONCLUSIONS AND FUTURE WORK..56

APPENDIX...57

BIBLIOGRAPHY...62

VITA...65

 8

LIST OF FIGURES

Number Page

1. DVMRP...20

2. MOSPF..21

3. MOSPF Tree Construction..24

4. PIM-SIM..25

5. FEC Encoding/Decoding...32

6. TIDDO mode...34

7. Satellite mode..35

8. Loss rate vs. Transfer time with different values of k and single retransmission.

channel..51

9. Loss rate vs. Transfer time with different values of k and two retransmission channels

for a 2MB file...52

10. Loss rate vs. Transfer time with different values of k and three retransmission

channels for a 2MB file..54

11. Incremental File size..55

 9

 CHAPTER 1

INTRODUCTION

1.1 Cluster Computing And Its Advantages

A cluster consists of a group of computing resources that are connected by a single

computer network [Buyya99]. These resources can include servers, workstations,

printers, and other networked systems. What distinguishes a cluster from a standard

computer network is singleness of purpose. A cluster�s resources are managed as a single

system, using special-purpose software that coordinates the cluster�s resources and

creates an illusion of a single system.

Clusters, potentially, have three key advantages over workstations operated in

isolation. The first is fault tolerance: the ability to recover from one or multiple system

faults [Tanen95]. A computation on an isolated workstation can�t finish if that

workstation fails. If a cluster�s resource fails during a computation, the rest of the

cluster�s resources assume the failed resource�s workload. The cluster as a whole is

available for more time to do useful work.

A second advantage is load balancing: the ability to distribute work evenly and

fairly among the cluster�s machines [Tanen95]. In a standard computer network one

workstation can be bogged down while another sits idle. In a cluster with load balancing

the cluster management software redistributes work from overloaded machines to other

 10

more lightly loaded resources. This decreases the computation time and increases the

system�s efficiency.

A third advantage is support for distributed computation: the ability to complete

computations on two or more processors [Tanen95]. Distributed computing uses

multiple, cooperating systems to solve specialized problems like matrix multiplication

and climate monitoring by spanning computations across multiple PCs. MPI [MPIRef],

PVM [Scott02], and C3 [Scott02] are examples of software that facilitate distributed

computing on a cluster.

Some of the potential advantages of cluster computing are similar to those

obtained from special-purpose systems designed for robustness or performance. Clusters,

however, offers two additional potential advantages to fault-tolerant computing and

supercomputing: cost and scalability.

Fault-tolerant systems, historically, have been custom devices in special

configurations [Vyto93]. The same is true for supercomputers, which, historically, have

cost far more than the commodity computers of their era [HenPa96]. Cluster computers,

however, can achieve the benefits of supercomputing using off-the-shelf hardware

[BelGrey02]. Because of significant improvements in the cost-performance of

commodity computers and networks, cluster computing has a potential to offer the

benefits of special-purpose systems at significantly low costs.

As for scalability, reconfiguring a special-purpose system to provide greater or

lesser degrees of service is typically difficult to do. Clusters, on the other hand, are

readily scalable. The size of a cluster�and, accordingly, its performance and

 11

reliability�can typically be increased or decreased by simply adding or subtracting off-

the-shelf hardware.

1.2 Cluster Computing And Its Challenges

 Cluster computing, however, is not simple to do well. Getting applications to run

efficiently in distributed environments has proven to be a surprisingly difficult task

[Tanen95]. The same is true for cluster administration [Scott02]. The applications

development problem includes a variety of subtasks, such as program setup, distribution

of tasks across a cluster, and managing communication among an application�s

constituent tasks. The cluster administration problem also includes multiple subtasks,

like managing cluster membership, managing the access to a cluster, setting and

monitoring the computing on an individual resource and configuring any cluster�s

resource automatically. Inefficient strategies for cluster operation make that cluster less

attractive to use due to slower operation of programs and administrative hassles.

The focus of the work addressed in this thesis, information distribution, is an

underlying concern in all phases of cluster administration. All of the above-mentioned

cluster administration tasks require information sharing among the cluster�s resources.

Information distribution is also a potentially important problem of computation but, to a

lesser degree, given need to maximize ratio of computation to communication, for

reasons of performance.

Information can be distributed among a cluster�s resources using mechanisms like

common data repositories, configuration scripts, file distribution, or message passing

APIs (MPI). The information may include operating system images, large datasets,

 12

executables, or files. In each case, key concerns related to the transfer of information

include the speed with which information can be transferred; the reliability of the transfer

mechanism in use; and the degree to which the mechanism will scale�i.e., support

increases in the population of senders and receivers.

1.3 File Distribution In Clusters

1.3.1 Explanation of the problem.

The focus of this thesis is the creation of tools for distributing files in clusters.

Any file distribution mechanism is based on one of four communication models:

• unicast, or communication between pairs of nodes

• broadcast, or one-to-all communication

• anycast, or one-to-one-of-many communication

• multicast, or one-to-many communication

Multicast has been a special focus of research due to its ability to conserve

network bandwidth in situations where multiple receivers access transmissions from a

single sender (cf. §2.2). The use of multicast, however, is complicated by the lack of

support for reliability in IPv4 multicast (cf. §3.1).

The reliability problem has been a challenge to address. Mechanisms that promote

scalability may do so by degrading reliability, and vice-versa. Standard schemes for

making communications reliable use feedback from receiver to sender in the form of

acknowledgements (ACK) or negative acknowledgements (NACK). Unfortunately, as

the number of receivers increases, the number of ACKs or NACKs from the receiver to

 13

the sender increases. This may create a bottleneck around the sender, causing scalability

problems in the form of feedback implosion [GeSch97]. Reducing ACKs or NACKs to

improve scalability may hurt reliability.

A second issue in achieving reliability is the potential conflict between reliability

and speed. Heterogeneous clusters complicate file distribution. If different systems in a

cluster receive information at different rates of speed, then transmitting data too quickly

or too slowly will result in data loss, excessive delays in transfer, or both. Ideally, a

sender should transmit information in a way that is fair to all the receivers. Mechanisms

to address the speed problem include receiver feedback, proxy servers, and transmitting

the same information more than once.

1.3.2 Current Strategies For Reliable File Distribution.

Luigi has addressed the issue of implementing reliability in IPv4 multicast by

transmitting forward error correction (FEC) packets along with the data packets

[RiVic97]. In Luigi�s approach the file to be transmitted is divided in fixed number of

groups. Each group has a fixed number of data packets. When the file is sent, the sender

constructs parity packets from the data packets and transmits the parity and data packets

together. As the file is received, the receiver reconstructs lost data from parity packets.

If enough packets reach the receiver successfully (cf. §4.2), the receiver can reconstruct

any group even if all the data packets were lost. Reliability is thus achieved without any

ACKs or NACKs, avoiding prohblems with feedback implosion. FCAST [GeSch97], a

file distribution tool by Microsoft Inc., also uses this approach.

 14

Sneha K. Kasera, Jim Kurose, and Don Towsley [KaKuTow00] introduced the use

of multiple concurrent transmissions for improving the reliability of multicast. This

approach uses multiple multicast groups to reduce receiver-processing overheads. A file

to be transmitted is divided into a fixed number of groups with each group having a fixed

number of data packets. In the first round of transmission data packets of all the groups

are transmitted on a primary transmission channel. In the next and subsequent rounds of

transmission instead of retransmitting the data packets of all groups on the same group,

data packets of different groups are transmitted on different retransmission channels.

1.4 SRFTT: A Hybrid Strategy For File Distribution

This thesis�s particular contribution is an efficient and robust file distribution

tool�the Scalable and Reliable File Transfer Tool (SRFTT). To the best of author�s

knowledge, SRFTT is the first tool that combines Luigi�s forward error correction

technique and Kasera et al.�s multiple multicast channel technique. The result is a tool

that enhances file transfer reliability while making allowances for heterogeneous receiver

rates.

SRFTT transmits a file to a set of receivers using multiple rounds of

communication. The first, setup round uses TCP to transmit session parameters to the

receivers�information like file name, file size, file checksum, and session ID that govern

the subsequent transfer. In the second round of communication, SRFTT transmits data

packets on a primary transmission channel defined by a session parameter. Subsequent

rounds of transmission use multiple communications channels to transmit FEC recovery

 15

packets. These rounds allow slow receivers to recover from overrun errors and all

receivers to recover from damage to packets during transmission.

As a part of this work SRFTT�s performance was evaluated under different loss

rates for file transfers of 1 KB to 256 MB. Performance gains up to 33% are obtained by

transmitting recovery packets on multiple channels instead of a single channel (cf. §6).

The results of this evaluation show that for large files transmitting FEC packets on

multiple multicast channels gives significant performance gains when compared to a

single retransmission channel.

1.5 Roadmap For This Thesis

 The rest of this thesis is divided into 7 sections. Section 2 is an overview of

current multicast technology, including multicast mechanisms for IPv4 and commercial

applications of multicast. Section 3 discusses the concept of reliability as it applies to

multicasting. Section 4 reviews current reliable multicast tools, including FCAST,

RMDP, SRM, and multiple multicast channels. Section 5 discusses SRFTT in detail.

Section 6 discusses SRFTT performance under varied network conditions. Section 7

draws conclusions about the work and suggests possible improvements to SRFTT.

 16

CHAPTER 2

OVERVIEW OF CURRENT MULTICAST TECHNOLOGY

Multicast is communication between a single sender and multiple receivers on a

network [TechTarget01]. The current section discusses past work related to multicast-

based file distribution. Section 2.1 defines multicast communication, comparing it to

other communication mechanisms like unicast and broadcast. Section 2.2 describes key

features of multicast transmission, including the Internet Group Management Protocol

(IGMP), multicast send and receive, and algorithms that create a multicast spanning tree.

Section 2.3 discusses commercial multicast applications.

The discussion below is along the lines of similar discussions in [GeSch97] and

[Stardust01].

2.1 Multicast�A Definition And Comparison With Other Communication Models

Multicast is one of three communication models supported by IPv4 (Internet

Protocol version 4). In multicast a sender uses a single send operation to send a packet of

information to multiple receivers. Other communication models supported by IPv4 are

unicast, where one �send� operation sends to one receiver, and broadcast, where one

�send� sends to all receivers in a set of networks.

Multicast can offer substantial bandwidth savings when compared to unicast or

broadcast. Consider, for example, the load created by sending the same packet to 5

receivers on a 25-host network by unicast, multicast, and broadcast. In unicast the initial

 17

relay device would receive 5 packets. In broadcast the initial relay device would receive

1 packet, but all 25 hosts would get the packet. In multicast only one packet is sent to the

initial relay device. The relay devices at the network�s junction replicate packets sent to

multiple downstream devices�here, to the 5 target hosts.

2.2 Multicast Mechanism For IPv4

In IPv4 multicast communication is supported by mechanisms that handle

different aspects of the multicast process. These mechanisms include IGMP, a protocol

for managing multicast communication protocol; a multicast send mechanism; a multicast

receive mechanism; and a set of multicast tree construction algorithms (relay algorithms).

2.2.1 Multicast Communication Protocol�IGMP.

An mrouter is a router that supports multicast [Stardust01]. All multicast hosts

exchange group membership information with their local mrouters through Internet

Group Management Protocol (IGMP). IGMP is described in RFC 1112 [Rfc1112].

IGMP�s operation can be divided into the following subtasks: election of querier, Host

Membership Query, and Host Membership Report.

The mrouter that periodically exchanges IGMP packets with the hosts on its

subnet to check group membership states of its host is called the querier. A querier is

elected�that is, chosen�when IGMP begins its operation sequence or the current

querier fails. If there is more than one mrouter on the subnet, the mrouter with the lowest

IP address becomes the Querier.

A querier, once elected, sends Host Membership Query messages on its subnet to

discover the group membership states of its hosts. Host Membership Queries are

 18

addressed to all hosts on the subnet. The TTL of Host Membership Queries is one to

prevent these queries from propagating outside the LAN.

The hosts on the querier�s subnet reply to the Host Membership Query message by

returning a Host Membership Report to the querier. By sending the Host Membership

report, the hosts declare their interest in multicast sessions to the querier. The destination

address of the Host membership report is all-host group and the TTL of the message is 1.

The host membership reporting algorithm uses random delay timers to protect the

querier against message overload. If every host on the subnet were to send its host

membership reports to the querier, the ensuing network congestion around the querier

may bring the entire subnet network down. The following technique reduces the number

of Host Membership Reports in a subnet. When a host receives a Host Membership

Query message from the querier, the host doesn�t reply immediately but instead starts a

random delay timer based on a randomly chosen value. When the timer expires the host

generates a Host Membership Report and sends the report on the multicast session

address. On receiving the report message other group members suppress their Host

membership reports. Thus only one host sends a report for one multicast session on a

given subnet.

2.2.2 Sending Mechanism.

The IPv4 mechanism for supporting multicast, from the sender�s point of view,

resembles the IPv4 mechanism for supporting the sending of UDP datagrams [Comer00].

Each multicast session has a class D multicast address�an IP address between 224.0.0.0

and 239.255.255.255 inclusive�that uniquely identifies the multicast session. The

 19

sender sends the information on a class D address associated with the given multicast

session using a datagram oriented sending mechanism. The sender need not be a part of

the multicast session to which it sends data.

2.2.3 Receiving Mechanism.

The user�s host application joins the class D multicast address associated with the

multicast session. As a result of this join, a membership request is communicated to the

mrouter of the host�s subnet. The mrouter on the user�s subnet forwards this membership

request to the intermediate mrouters between the sender and the receiver, using relay

algorithms discussed in the next section.

The receiving host�s network interface card obtains a new MAC address for each

multicast session the receiver joins. The receiving host�s network interface card places

the low-order 23-bits of the IP address into the low-order 23 bits of the Ethernet multicast

address 01-00-5E-00-00-00 to obtain a new Ethernet Multicast address and listens for this

new MAC address also. When the receiving host�s mrouter receives a packet destined

for a class D multicast address, it maps the multicast group address to the associated

MAC address and sends the message on the subnet using this new MAC address. The

receiver�s NIC intercepts this message, matches it with its new MAC multicast address,

and sends it to the protocol stack, which passes the message to the application.

It is possible for a receiver to receive messages from other multicast sessions it is

not interested in. There are 28 significant bits in an IP host group address and the

receiving host�s. The mrouter maps only the lower order 23 bits to obtain a new Ethernet

address. Hence, up to 32 host group addresses can map to the same Ethernet multicast

 20

address. The host�s application layer discards messages from groups that aren�t of

interest.

2.2.4 Relay Algorithms.

IP Multicast packets for a given session are transmitted to the receivers via a

spanning tree that connects a session�s members. Protocols for constructing the spanning

tree operate in one of the two modes depending on the relative proximity of the members

of the group. These modes are referred to as Dense Mode and Sparse Mode.

 FIG. 1 DVMRP (adapted from [Stardust01])

 21

2.2.4.1 Dense Mode Relay Algorithms.

All dense mode protocols are designed to work efficiently within a densely

distributed network�one whose members are in close proximity. Dense mode protocols

also assume that the underlying network has reasonably high bandwidth. Distance

Vector Multicast Routing Protocol (DVMRP), Multicast Open Shortest Path First

(MOSPF), and Protocol-Independent Multicast�Dense Mode (PIM-DM) are examples

of dense-mode routing protocols.

FIG 2. MOSPF (adapted from [Stardust01])

 22

DVMRP (cf. Fig. 1) is described in RFC 1075 [Rfc1075]. DVMRP uses a special

metric, the DVMRP metric, to construct a different spanning tree from each sender to all

receivers. A DVMRP metric for a given source is constructed by taking into account the

shortest number of hops from the source to all the receiver nodes. In the initial phase of

tree construction the mrouter on the node�s subnet multicasts a join message to all its

adjacent mrouters. These adjacent mrouters multicast the join message to their adjacent

mrouters. The forwarding of multicast messages continues till the join message reaches

all the multicast members. Then the DVMRP metric is applied to the tree and the

branches of the tree that don�t provide the shortest path are pruned.

Multicast Extensions to OSPF (MOSPF) (cf. Fig 2) is defined in RFC 1584

[Rfc1584]. MOSP is a link state protocol. In a link state protocol parameters such as

network traffic and QOS (quality of service) are considered along with the number of

hops to calculate the shortest path from the sender to the receiver. All mrouters

employing MOSPF periodically collect link state information from their neighboring

mrouters. Hence, each router can compute a multicast tree from any source to all the

members in the group. MOSPF employs Dijkstra�s algorithm [Rfc1584] to compute the

multicast tree. MOSPF is most suitable for small internetworks.

 PIM-DM uses its underlying unicast protocol to check if the packet has arrived on

the shortest path from the source. If the path is shortest, PIM-DM forwards the packet to

its adjacent mrouters. Else, PIM-DM discards the packet. PIM-DM gives protocol

independence at the cost of more overhead compared to DVMRP [Rfc1075] (cf. Fig 3).

 23

2.2.4.2 Sparse Mode Relay Algorithms.

 All sparse mode protocols are designed to work efficiently within a sparsely

distributed network�a network whose members are many hops away from each other.

Sparse mode protocols are also intended for use in networks with limited bandwidth.

Core Based Trees (CBT) and Protocol-Independent Multicast�Sparse Mode (PIM-SM)

are examples of sparse-mode routing protocols.

In CBT a core router constructs a single spanning tree that is shared by all the

group members throughout the entire multicast session. Mrouters send a join message to

the core and join the spanning tree. Session members join the shared multicast tree

through their subnet mrouters. When the core receives a join request, it returns an

acknowledgment and accepts the new mrouter in the multicast session. Any mrouter

between the core and the newly joined mrouter can intercept a join request and can

acknowledge the join request. Some versions of CBT support the use of multiple cores to

avoid bottlenecks around the core router.

 24

An mrouter called a rendezvous point (RP) constructs a multicast distribution tree.

The rendezvous point is analogous to the core in the CBT protocol. During the initial

phase of operation, the PIM-SM initially connects the senders and receivers to the

rendezvous point and forms a group-shared tree (cf. Fig. 4). Later the router closest to

the receiver can change its connection to a particular source by sending a PIM join

message directly to the source on the shortest path and pruning the extra branches. Thus,

because much of the network traffic is directed away from the RP, bottlenecks can be

avoided around the RP.

FIG 3. MOSPF Tree Construction (adapted from [Stardust01])

 25

FIG 4. PIM-SIM (adapted from [Stardust01])

 26

CHAPTER 3

RELIABLE MULTICAST

This section explores the limitations of the current IP multicast model with respect

to scalability and reliability. Section 3.1 discusses the concept of reliability as it applies

to multicasting. Section 3.2 discusses various concerns associated with implementing

reliability in multicast communications, including the impact of application semantics on

reliability implementation mechanisms, the need for reliability mechanisms in current

IPv4 multicast model, mechanisms for adding reliability to the current IPv4 multicast

data transmissions, and the use of forward and reverse flows to achieve reliability.

3.1 Reliability: A Definition

 Reliability, in the context of network communications, can imply support for any

combination of the following guarantees:

• A protocol maximizes the likelihood that receivers get data in timely way.

• A protocol guarantees the in-order arrival of data at all receivers.

• A protocol guarantees the correct arrival of data at all receivers.

Different flows require different kinds of guarantees. For example, applications

that deliver voice or video in real time cannot tolerate out-of-order or untimely delivery,

while file-transfer applications can typically tolerate delay and out-of-order delivery but

not loss.

 27

 Different kinds of delivery algorithms provide different kinds of reliability. Each

algorithm imposes its own form of overhead on a communication and cannot be used

without imposing some kind of performance penalty.

3.2 Implementing Reliability In Multicast Communications

3.2.1 The Impact Of Application Semantics On Reliability.

 An application�s semantics dictate its mechanisms for implementing reliability.

Multimedia applications consider transmissions with some losses as �reliable� as long as

these losses don�t degrade the quality of the transmission to the user to an excessive

degree [Gonc02]. On the other hand, reliable data transfer applications such as reliable

file transfer can tolerate retransmissions but can�t tolerate the loss of even a single packet

[Gonc02].

3.2.2 Need For reliability Mechanisms In Current IPv4 Multicast Model.

 IPv4 multicast is unreliable [Comer00]. IPv4 multicast provides a best-effort

delivery service that fails to guarantee the timely, ordered, or correct arrival of data. The

resulting lack of overhead allows application developers to use IPv4 to build efficient

multicast applications that provide application-specific guarantees. Unfortunately, this

lack of reliability also forces developers who need reliability to implement guarantees on

the top of the current IP multicast model.

3.2.3 Adding Reliability To IPv4 Multicast In Data Transmissions.

 There are two basic approaches to implementing reliable communication in any

multicast protocol. The first, sender-oriented approach, requires a transmission�s point of

 28

origin to assume primary responsibility for detecting and correcting errors in transmission

The second, receiver-oriented approach, makes reliability the responsibility of a

message�s receivers.

 Schemes for ensuring reliable dataflow can also be classified according to the

stream of information used to support reliability. Forward error correction (FEC)

strategies use the flow of information from the sender to the receivers to enhance

reliability (cf. §4). Here, reliability is achieved by transmitting extra parity information

along with the original data. Automatic repeat request (ARQ) strategies use a second

flow of information from the receivers to the sender to enhance or ensure reliability (cf.

§4). Here, reliability is achieved by transmitting two kinds of control packets: packets

that return the status of recent communications (ACK/NAK), and packets that direct the

sender to slow or speed the flow of information to the receiver (flow control packets).

Hybrid strategies employ a combination of FEC and ARQ to enhance or ensure

reliability.

 For total reliability, the receivers must transmit control packets to the sender.

 The rest of this section describes complicating factors that affect the use of

forward and reverse flows in reliable communications in more detail.

3.2.3.1 Forward Flows.

 Issues that complicate the use of forward flows in reliable communications include

variable flow rates, asynchronous join/leave, network heterogeneity, and data ordering

[Gonc02].

 Variable flow rates. Different receivers in the receiver set may have different data

 29

reception rates. A sender needs to balance its flow between its fastest and the slowest

receivers in the receiver set so as to minimize the idle time at fast receivers and

transmission overruns at slow receivers. The mechanism that guarantees a fair

transmission rate is called a flow control mechanism. Avoiding idle time and

retransmissions, in general, requires the concurrent transmission of each stream of

information at multiple rates of speed�either by the receiver itself or by fast,

intermediary stations that accept, buffer, and relay data from the receiver at the rates

required by the slower receivers.

 Approaches for implementing efficient flow control mechanisms include the use

of multiple multicast channels and proxy mechanisms.

 Multiple multicast channels. In the multiple multicast channels approach the

sender transmits its data on different multicast channels in a way that enables any

receiver that subscribes to all the channels to get the entire file. Slower receivers

subscribe to a few groups whose overall transmission rates match their reception speed.

Receivers with high reception rates join all data channels and leave quickly. The sender

transmits the entire file on every channel to ensure reception by the slowest receiver.

In the proxy mechanism approach, a proxy is placed between the sender and

receiver. The proxy serves one or more LANs. The proxy caches all the data transmitted

by the sender and retransmits it according to the speed of its receivers on its LAN.

 Asynchronous join/leave. In a multicast session receivers can join and leave at any

time. How to retransmit information to receivers who have joined late is an important

consideration for an efficient forward flow mechanism. One solution to this problem

 30

uses a data reservoir that stores all the information transmitted by the sender. Receivers

joining late can contact this data reservoir and obtain the information they have missed.

 Network heterogeneity. Currently, some network relay devices don�t support

multicast. A mechanism called IP tunneling [Gonc02] is used to transmit information to

receivers that have relay devices in their path from the sender that don�t support

multicast.

 Data Ordering. Some application semantics require that information be

assembled in correct order (like file transfer), while some application semantics (like

video conferencing) don�t require this.

3.2.2.2 Reverse Flows.

 Reverse flows consists of control packets (ACK or NACK) from the receivers to

the sender. The primary issue that complicates the implementation of reverse flows is the

excessive retransmission of control packets to the original sender. Too many control

packets can result in feedback implosion�a situation where a bottleneck is created

around the sender because of a large number of retransmission requests from the

receivers [GeSch97]. Feedback implosion is addressed using random delay timers: the

receivers wait for a random amount of time before transmitting ACK or NACK to the

sender and the receivers suppress their requests for a packet to the sender if another group

member requests the same packet.

 31

CHAPTER 4

OVERVIEW OF MULTICAST MECHANISMS

This section describes research on reliable IP multicast. Section 4.1 discusses

Software FEC techniques including two protocols that implement FEC: Reliable

Multicast Distribution Protocol (RMDP) and Fcast. Section 4.2 discusses the Scalable

Reliable Multicast (SRM) Framework. This discussion includes SRM mechanics, ADU

considerations in an SRM framework, synchronization mechanisms in an SRM

framework, and SRM framework operation. Section 4.3 discusses Kasera et al.�s

multiple multicast channels framework including the framework�s operation,

implementation semantics, use of IP�s multicast mechanism, local filtering mechanism,

and operation with router support.

4.1 Software FEC Techniques [RiVic97]

 FEC performs well in lossy network environments�networks where the overhead

of parity information is offset by the time savings that the receivers obtain by using one

parity block to recover from varied data packet losses.

 FEC enables recovery from lost packets and bit level corruption. In IP multicast,

however, the data link and physical layers rectify the bit level corruption errors. Thus, it

suffices for a scalable and reliable multicast protocol to provide error recovery

mechanisms for erasure loses only [RiVic97].

 The FEC mechanism is divided into encoding and decoding phases. In the

 32

encoding phase the sender constructs parity packets from the source packets [RiVic97].

In decoding phase the receiver reconstructs any lost packets by solving the differential

equation on the parity packets and data packets.

Figure 5 illustrates the use of FEC in data transmission. FEC blocks are

implemented using Rizzo and Vicisano�s (n, k) encoding-decoding system. Here, n

represents the total number of original data packets and k the total number of source

packets. The number of parity packets transmitted along with the original data packets is

n � k. The encoder (on the sender side) creates n � k parity packets from the k source

packets by applying a differential equation on the source packets. The decoder (on the

receiver side) can reconstruct the entire source packets if it receives any k out of the total

n packets transmitted. The parity blocks are of the same size as the original data packets.

FIG 5 FEC Encoding/Decoding (adapted from [RiVic97])

 33

4.1.2 Protocols That Implement FEC.

4.1.2.1 Reliable Multicast Distribution Protocol (RMDP).

 RMDP is a reliable and scalable multicast protocol for file transfer. In RMDP the

sender transmits a large number of parity packets relative to data packets. The authors

use a round-based strategy to determine the existence of a multicast link between the

client and the server.

 In the first round of communication the client contacts the server by multicasting a

join message to the server. If the server replies, the client can safely assume the presence

of a multicast link with the server; otherwise, the client unicasts its request to the server.

Session parameters are exchanged between the client and the server during this first

round of communication.

 In the next and subsequent rounds of communication the server transmits the data

and parity (FEC) packets for a fixed period of time. If a client can reconstruct the

original message from the packets it receives, it stops listening. But if the client cannot

reconstruct the original message and the server has stopped transmitting, the client sends

a continuation request to the server and asks for more packets.

The authors haven�t incorporated congestion control mechanisms in their current

design. RMPD claims to decrease the risk of feedback implosion from the clients to the

server as the clients send feedback messages to the server only when the server has

stopped transmitting and the client hasn�t received all the packets.

 34

4.1.2.2 Fcast.

Fcast [GeSch97] is a file transfer tool developed by Jim Gemmell, Eve Schooler,

and Jim Gray of Microsoft. The discussion of Fcast that follows is organized along the

lines of a similar discussion in [GeSch97].

 Fcast uses multicast to send files on IP networks. Fcast receivers operate in one of

two modes, according to the length of the time the receiver remains connected with the

sender.

 Tune In, Download, and Drop Out (TIDDO) mode. In this model the sender loops

through a set of files and transmits the files continuously for a fixed period of time.

Receivers subscribe to the appropriate transmission channels, receive the files, and drop

subscriptions immediately after receiving their files. Receivers that want to receive the

files again must resubscribe to the transmission channel. Thus, TIDDO mode is used

where the time needed to establish a connection is low and bandwidth is limited

[GeSch97].

ttiimmee

SSeennddeerr File set + FEC File set + FEC

LLooww lloossss
rreecceeiivveerr

jjooiinn lleeaavvee

HHiigghh lloossss
rreecceeiivveerr

jjooiinn lleeaavvee

FIG 6. TIDDO mode (adapted from [GeSch97])

 35

Satellite mode. In satellite mode receivers remain subscribed to the transmission channel.

Here, the receiver may receive unwanted files, which wastes bandwidth. Hence, the

satellite model is used when set up time is high and bandwidth is plentiful.

 The Fcast sender and receiver components are implemented as ActiveX controls

[GeSch97]. In Fcast a sender starts transmission without directly synchronizing with the

receivers. The sender also transmits session parameters (multicast address, port number)

through an outside mechanism as out-of-band data or email. The sender divides the file

to transmit in fixed size groups, computing parity on a group-by-group basis, and

ordering every group�s parity information after that group�s data. Each group is further

divided into fixed size blocks (packets). The sender loops through the groups,

transmitting one block from each group on each pass through the groups. Transmissions

are ordered within groups: the ith block of each group is always transmitted before the

(i+1)st block [GeSch97]. The sender also transmits each file�s attributes, including that

file�s type (e.g., .zip or .ram), location, size, and name. Receivers subscribe to the

appropriate transmission channel to receive files of interest and remain subscribed or

drop out depending on their mode of reception.

ttiimmee

SSeennddeerr File set A + FEC File set B + FEC

rreecceeiivveerr

jjooiinn

File set C + FEC

FIG 7. Satellite mode (adapted from [GeSch97])

 36

 The receiver caches received blocks in a temporary file until it receives all blocks

necessary to reconstruct the entire file. After all blocks are received, the receiver

reconstructs the file, sets its attributes and stores the file at the location specified by the

sender.

 Fcast�s authors studied the effect of disk performance on file transfer time. The

authors suggest that if the disk can�t keep up with the speed at which packets are received

from the network, many packets will be lost and require retransmission. They describe

five techniques for optimizing fcast performance in environments where networks

outperform disks.

 In-Memory: The basic requirement for implementing In-Memory data transfers is

that the receiver must have enough main memory to receive and decode the entire file in

main memory. The In-Memory scheme is effective when files are small enough to fit in

the main memory. One probable application area of the In-Memory technique is

transmitting periodic updates.

 Receive-Order: In Receive-Order mode, a receiver writes incoming blocks

immediately to disk without sorting the blocks, thereby ensuring fast reception. The

penalty of fast reception is paid during the decoding phase where blocks must be sorted

before decoding.

 Group-Area: Fcast divides each file into groups and every group into blocks. The

area on disk that holds a group�s blocks is called its Group Area. In Group-Area mode

the blocks are written in their respective group-area on the disk without respect to

ordering. Thus, when the reception is completed the blocks are partially sorted. The

 37

subsequent sorting and decoding of blocks takes less time than receive order scheme.

The authors introduce the concept of a bucket: a logical compartment in main memory

dedicated to holding related blocks. In the Group Area strategy, the main memory is

divided into two buckets, one for receiving blocks and the other for writing the blocks.

 Crowd-Bucket: Crowd�Bucket mode partitions a file�s constituent groups into

crowds. The receiver writes the blocks in their respective crowd-area. The operation of

the Crowd-Bucket mechanism is similar to that of the Group-Area scheme.

 Crowd-Pool: The Crowd-Pool mode of operation is similar to the Crowd-Bucket

strategy, except that Crowd-Pool maintains a pool of buckets.

4.2 SRM Framework [FlJcLMcZh97]

 The SRM framework is based on a multicast group delivery protocol model called

Application Level Framing (ALF) by Clark and Tennenhouse. ALF explicitly includes

an application's semantics in the design of that application's protocol [Ja95]. Birman et

al.�s Lightweight Sessions (LWS) protocol extended ALF by adding receiver-based

reliability [BiSchStep91]. SRM is built upon ALF and LWS. SRM maximizes

information sharing among all group members. Wb, the web based distributed

whiteboard tool, implements the SRM framework.

4.2.1 SRM Mechanics.

 SRM is a receiver-oriented multicast mechanism. Each member of the group is

individually responsible for detecting its loss and requesting retransmission.

 38

4.2.1.1 ADU.

 The SRM framework divides the data to transmit into independent data units.

Each such data unit is called an ADU (Application Data Unit). ADU�s have global,

persistent, and unique identifiers that identify each ADU separately over time and space.

4.2.1.2 Synchronization Mechanism.

 Each member multicasts periodic session messages to the multicast group.

Session messages establish a group�s current membership, inform all group members

about the latest sequence number of ADU being transmitted, and support the calculation

of round-trip times for message exchanges between pairs of group members. Session

messages consume a very limited bandwidth compared to the data messages.

 SRM members dynamically adjust the generation rate of session messages in

proportion to the multicast group size.

4.2.1.3 Operation.

 Any member who detects a loss starts a random delay timer. The delay timer�s

range depends on the distance between the source and the member that has detected the

loss. The delay timer is chosen from the uniform distribution on [CI dSIA,(CI + C2) dSIA]

seconds, where dSIA is host A's estimate of the one-way delay to the original source S of

the missing data [FlJcLMcZh97]. Network parameters like network traffic, RTT, and

expected delays govern the calculation of C1 and C2. When a timer expires, the member

that has detected the loss multicasts its retransmission request on the multicast group.

 39

Other members having loses identical with the previous one suppress their requests and

start a new random delay timer randomly chosen from a uniform distribution on

2 i [CI dSIA, (CI + C2) dSIA] [FlJcLMcZh97].

When any member receives a retransmission request from another member, it

checks if it has the packets requested by the other group member. If so, it starts a random

delay retransmission timer based on a value from the uniform distribution on [DI dSIA, (

DI + D2) dSIA] seconds, where dSIA is host B's estimate of the one-way delay to host A,

and D1 and D2 are parameters of the repair algorithm dependent on the network

parameters [FlJcLMcZh97]. If the member receives a retransmitted packet during the

wait period and if it has set retransmission timer for the packet, it cancels its timer.

Otherwise, after the timer expires it retransmits the packet on the multicast group. It is

likely that a member nearer to the member that has the lost packet will receive the

retransmission request first and retransmit the packet.

In order to prevent duplicate requests from triggering a responding set of

duplicate repairs, host B ignores requests for data D for 3 * dSIB seconds after

sending or receiving a repair for those data, where host S is either the original

source of data D or the source of the first request [FlJcLMcZh97].

4.3 Multiple Multicast Channels [KaKuTow00]

 Sneha K. Kasera, Jim Kurose, and Don Towsley introduced use of multiple

multicast channels for adding reliability to current multicast best effort delivery model.

Their approach uses multiple multicast groups to reduce receiver-processing overheads.

 40

In a typical ARQ-based reliable multicast scenario transmissions and retransmissions

occur on the same multicast channel (group). Because all packet transmissions and

retransmissions use one group, each receiver receives all retransmissions of a packet even

after correctly receiving the packet. This imposes unnecessary receiver processing

overhead because the network layer processes all the packets coming for the particular

multicast group. The redundant packet travels its way up to the application layer where

the application layer finally discards the packet. In a very lossy network receivers spend

a lot of time processing unnecessary packets.

 Multicast using multiple multicast channels attempts to solve the problem of

redundant packets flowing in the network.

4.3.1 Operation.

 Kasera et al.�s protocol operates as follows. Consider a system with a sender and

R receivers such that data are to be transmitted from the sender to the receivers using G +

1 channels. One channel is used for the original transmission of packets from the sender.

The remaining G channels are used for retransmissions and are mapped to ranges of

sequence numbers such that a lost packet is retransmitted on the channel corresponding to

the range to which it belongs. The receivers join the retransmission channels for the

packets that they have lost and leave the group after they receive the packet.

 The authors have demonstrated two scenarios, one with an infinite number of

multicast groups and the other with a finite number of multicast groups. The authors

have studied one to many and many to many communication methods in both the

 41

scenarios. Their data show that using a finite number of multicast groups can produce the

effect of an infinite number of multicast groups.

4.3.2 Implementation Semantics.

4.3.2.1 Using The IP Multicast Mechanism.

 Each multicast group is implemented as a different IP multicast group. Joining

and leaving the group means joining and leaving the IP multicast group.

 When a receiver detects a packet loss, it determines the retransmission channel to

join to recover the lost packet and starts a random timer. After the timer expires, the

receiver multicasts the request on the multicast group. If another receiver receives a

retransmission request for the same packet before the timer expires, it restarts its counter

and again waits for a random amount to time.

4.3.2.2 Local Filtering.

 Joining and leaving a multicast group imposes extra overhead throughout the

multicast tree. Each join and leave message results in processing overhead at all the

intermediate routers. To avoid this, the authors have proposed a new concept of local

filtering.

 Initially a receiver joins the original transmission group and all retransmission

multicast groups. The network transmits IGMP messages to the entire multicast tree.

The local interface filters out the unwanted packets, based on the information provided by

the local join and leave operations, to save the receiver from processing these packets.

 42

4.3.2.3 Adding Router Support.

 Local filtering doesn�t reduce network bandwidth. To reduce the use of network

bandwidth the authors have proposed the use of retransmission-aware routers. All

transmissions and retransmissions take place on only one channel. The router forwards

retransmitted packets only to those receivers that have NACKed lost packets.

 43

CHAPTER 5

SRFTT (SCALABLE AND RELIABLE FILE TRANSFER TOOL)

Scalable and Reliable File Transfer Tool (SRFTT), the subject of this thesis, is a

tool developed to simplify information sharing among a cluster�s nodes. SRFTT

guarantees reliable data delivery for bulk data-transfer applications like file transfer, Web

caches preloading software, and software upgrades distribution. SRFTT combines the

following two strategies for error management to achieve reliability:

• Forward Error Correction (FEC) [RiVic97]: In this approach recovery packets are

encoded and decoded using software FEC techniques. Data transfer tools like FCAST

[GeSch97] and RMDP [RiVic97] (cf. §4.1.2.) use this approach.

• Multiple multicast Channels [KaKuTow00]: In this approach recovery packets are

retransmitted on multiple retransmission channels to reduce reception time. (cf. §4.3)

The rest of this section discusses implementation issues related to SRFTT. Section 5.1

describes SRFTT�s operation, and Section 5.2 describes SRFTT�s component software.

5.1 SRFTT Operation

SRFTT makes four basic assumptions about its operating environment: the

existence of a multicast link between the sender and the receivers, a static receiver set, a

transfer unit of predetermined size and content, and a network of heterogeneous

receivers.

 44

SRFTT is session based. Each session has an identifier that uniquely identifies the

session. Each session has a primary transmission channel to transmit the data packets

and multiple retransmission channels to transmit the recovery packets. All the

retransmission channels are implemented as distinct multicast channels.

 SRFTT operation is divided into the following three steps:

• The sender transmits session information to all receivers. Session information

includes session id, primary transmission channel address, file name, file size, and file

checksum.

• The sender transmits the file on the session�s primary transmission channel. The

receivers join the primary transmission channel to receive the file.

• The sender transmits recovery packets on the session�s retransmission channels. The

receivers subscribe to the appropriate retransmission channel to receive the lost

packets.

5.2 SRFTT Building Blocks

 SRFTT is architected as a sender-receiver application where the sender acts as a

server and the receivers as clients. The architecture of SRFTT senders and receivers is

described in Sections 5.2.1 and 5.2.2 respectively. The SRFTT configuration file, which

drives an SRFTT session, is described in Section 5.2.3.

5.2.1 SRFTT Sender.

SRFTT is sender-initiated: i.e. the sender initiates the file transfer. The sender

divides each file to be transmitted into B groups, with each group having K data packets.

 45

The parameter K is fixed and pre-configured. The value of B depends upon the file size

and the value of K. A detailed description of B and K is given in Section 5.2.3.

 In the first round of transmission, the sender transmits the session information to

all the receivers using a reliable data delivery mechanism (TCP/IP). In the next round,

the sender multicasts the data packets on the session�s primary transmission channel.

After sending the data packets, the sender multicasts multiple �stop� packets on the

session�s primary transmission channel. A �stop� packet is a special packet that signals

the end of transmission on the session�s primary channel. In subsequent rounds of

transmission, the sender multicasts the recovery packets on all of the session�s

retransmission channels until a certain degree of redundancy has been achieved. The

recovery packets are encoded using software FEC techniques [RiVic97].

 The number of retransmission channels is fixed and pre-configured (cf. §5.2.3).

5.2.2 SRFTT Receiver.

 On receiving the session information from the sender, the receiver joins the

session�s primary transmission channel to receive the file. The file is divided in B * K

packets, where B = number of groups and K = number of packets per group (cf. §5.2.3).

If a receiver receives all data packets correctly, the receiver leaves the primary

transmission channel and reassembles the file from the received packets.

 If a receiver fails to receive all the data packets correctly, the receiver joins the

appropriate retransmission channels to recover the lost packets; receives the required

number of recovery packets�i.e., the number of data packets lost for that group; leaves

all retransmission channels; decodes the parity packets; and reassembles the file. To

 46

recover packets lost from a group i the receiver joins the retransmission channel i % T,

where T = total number of retransmission channels.

Both sender and receiver are multithreaded. The primary thread handles primary

transmission channel, and the secondary threads handle retransmission channels. SRFTT

uses the PISCES [Pfei02] and PFC [Pfei02] libraries to handle socket and thread

management respectively.

 There is no feedback from the receivers to the sender. This addresses the problem

of feedback implosion and makes SRFTT scalable.

5.2.3 SRFTT Configuration File.

SRFTT uses a configuration file to configure parameters like packet size, group

size (number of packets per group), number of retransmission channels, and network loss.

For optimal SRFTT performance, these parameters must be tuned to the given application

or environment. This sub-section is a detailed description of the SRFTT configuration

parameters.

 Packet size: IP multicast is built on the top of IP protocol and IP multicast packets

are transmitted as IP datagrams. The network infrastructure de-fragments a packet in

multiple IP datagrams if the packet size exceeds a certain limit (normally 512 or 1024

bytes). Increasing the packet size helps to transmit the file in fewer packets, thus

reducing overhead while increasing the cost of fragmentation and reassembly.

 Group size: Group size is defined as number of packets in a group. Increasing the

number of packets in a group increases the robustness of the transmission (in terms of

erasure recovery capability) but also increases encoding and decoding costs [RiVic97].

 47

 Number of retransmission channels: If the number of SRFTT retransmission

channels is less than the number of groups in a file, some retransmission channels must

carry recovery packets for two or more groups. In this scenario, multicast groups that

support multiple retransmission channels multiplex among their assigned channels,

delaying retransmission, but decreasing the overall load on the network.

 Loss rate: A network�s loss rate is defined as the number of packets lost by the

network per 100 packets transmitted. SRFTT initially transmits FEC packets depending

upon a pre-decided loss rate of the network. Different networks have different loss rates.

If the initial loss rate is configured below the network loss rate, the network load

increases because of the retransmission requests by multiple receivers (cf. §5.2.2). On

the other hand, if the initial loss rate is configured above the network loss rate the

network load increases because of the sender transmitting unnecessary FEC recovery

packets.

 48

CHAPTER 6

PERFORMANCE

This section reviews tests of SRFTT performance. SRFTT�s performance was

tested relative to different file sizes under varying loss rates and retransmission channel

counts. The results obtained show that for large files retransmitting recovery information

on multiple multicast channels gives significant performance gains when compared to a

single retransmission channel.

The balance of this chapter is divided into three sections. Section 6.1 describes the

methodology for testing SRFTT. The description reviews test parameters in detail.

Section 6.2 describes the SRFTT test procedures. Section 6.3 analyses the results

obtained from the tests.

6.1 SRFTT Test Methodology

File transfer time and scalability are the defining attributes for a reliable file

transfer mechanism. Faster transfer times and more graceful degradation under heavier

loads equates to better performance.

Two important test parameters for any file transfer tool are file size and loss rate.

• File size. Modern day communications demand transmission of several GB of

information. A file transfer tool should be able to transfer files up to several GB with

minimal degradation in performance. SRFTT was tested for file sizes of up to 256

MB. Due to resource limitations, SRFTT was not tested beyond 256 MB.

 49

• Loss rate. Loss rate, the number of packets dropped or corrupted beyond repair

during transmission, is typically measured as a percentage of all packets transmitted.

Normally, loss rates increase and decrease with increases and decreases in network

load. Network loss rates normally average between 10% and 20% [Comer00]. In

extreme situations, the network loss-rate can jump to 50%. A reliable file transfer

tool should incorporate recovery mechanisms for extreme conditions. SRFTT was

tested under stimulated network loss rates of up to 50%.

A third SRFTT test parameter was the number of retransmission channels.

SRFTT transmits recovery packets on multiple retransmission channels. As the number

of retransmission channels increases, the error recovery time decreases due to reduction

in receiver-wait time and, hence, performance increases [KaKuTow00]. Also, increasing

the number of retransmission channels beyond a certain point doesn�t improve

performance gains for a given network state [KaKuTow00].

Scalability is a fourth important concern for a file transfer tool. A file transfer tool

should be able to service hundreds of clients without considerable degradation in service.

Currently SRFTT has been tested with 10 clients due to resource limitations.

6.2 SRFTT Test Procedures

 SRFTT was tested on Dell Intel Pentium III 933 MHz workstations with 3Com�s

10/100 Mb/s NIC cards running Windows 2000. The network capacity is 10Mb/s.

SRFTT�s performance was evaluated using files with fixed and incrementally

increasing sizes. The tests were designed to assess the effect of file size, transmission

loss rate, and retransmission channel count on transfer time.

 50

SRFTT divides the file to be transmitted in G groups. Each group can be

represented as a set of (k, n) packets where

k = total number of data packets in a group,

n = total number of packets in a group, and

n � k = number of FEC recovery packets in a group.

The value of n was 255 for all the tests because of FEC library limitations [RiVic97].

The network infrastructure fragments a packet into multiple IP datagrams if the packet

size exceeds a network-specific limit (normally 1476 bytes for Ethernet) [Comer00]. The

size of the data packet as well as the recovery packet is 1 KB to avoid fragmentation by

the network infrastructure.

6.2.1 Testing Procedure: Fixed File Size.

In the fixed file size tests, a 2MB file was repeatedly sent over the network to

determine how SRFTT�s performance was affected by varying the number of

retransmission channels, network loss-rates, and values of k. This testing procedure is

similar to that of Luigi [RiVic97] with one addition�a new dimension, the number of

retransmission channels, was added to the tests. The value of k was set to 1, 8, 16 and

finally 32 packets per group. Increasing k beyond 32 had no effect on file transfer.

For each k, a predetermined number of data packets were deliberately dropped to

simulate varying network loss-rates. On successive test runs, 0%, 1%, 2%, 5%, 10%,

15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% of all packets were dropped. A network

loss rate of 0% yielded a loss of around 60 packets (3%), suggesting one of two things:

the network either lost packets, or the network speed outpaced disk speed. Gemmell and

 51

Schooler�s research suggests that the second explanation is more probable [GeSch97].

Accordingly, the loss-rates mentioned earlier are an approximation and variations in the

range of ±3% are possible.

For every k and network loss-rate the number of retransmission channels was set

to 1, then 2, then 3. Increasing the number of retransmission channels beyond 3 did not

change file transfer time.

6.2.2 Testing Procedure: Incremental File Size.

In the incremental tests, a succession of test files was sent over the network to

determine SRFTT�s performance relative to file size and retransmission channel count.

Number of Retransmission Channels:1

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Loss Rate

Tr
an

sf
er

 T
im

e

K = 1
K = 8
K = 16
K = 32

FIG 8 Loss rate vs Transfer time with different values of k and single retransmission channels

 52

File sizes were chosen to be 1 KB, 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64

MB, 128 MB, and 256 MB. For consistency with fixed file size tests, each file was tested

using 1, 2, and 3 retransmission channels. Loss rate and k were held at 25% and 16

respectively.

6.3 Data And Analysis

As shown in Figures 6.1, 6.2, and 6.3, SRFTT�s performance improves as the

number of packets per group (k) increases when other parameters are held constant.

These data are consistent with Luigi�s results [RiVic97]. As k increases the number of

data packets in a group increases.

NumberOfRetransmissionChannels: 2

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

LossRate

Tr
an

sf
er

Ti
m

e K = 1

K = 8

K = 16

K = 32

FIG 9 Loss rate vs Transfer time with different values of k and two retransmission channels

for a 2MB file

 53

The FEC encoder generates n � k recovery packets from all the data packets of a

group. Because all data packets are involved in generating recovery packets, increasing k

increases the number of data packets involved in generating recovery packets. The FEC

decoder can recover any data packet of a group if the number of distinct recovery packets

received equals the number of packets lost for that group. Thus, as the number of data

packets in a group increases, a single recovery packet can help recover more data packets.

Consider, for example, the scenarios where k = 1 and k = 8. When k = 1, one recovery

packet can help recover only one packet. When k = 8, one recovery packet can help

recover 8 packets. Hence, as k increases, the efficiency of each recovery packet and the

robustness of each transmission increases�but at the cost of increases in encoding and

decoding overhead [RiVic97].

For a 2 MB file, SRFTT�s performance doesn�t improve drastically on increasing

the number of retransmission channels. However, adding retransmission channels has a

noticeable effect on the transmission of 128 MB and 256 MB files. Becuase packets per

group (n) is held constant, increasing file size increases the number of groups (G). As

noted in Chapter 5, retransmission of recovery packets occurs on multiple multicast

channels. To recover a group�s packets, the receiver must join that group�s multicast

channel. For small files having fewer groups, the cost of joining multiple retransmission

channels offsets the benefits of using multiple channels [KaKuTow00].

SRFTT�s performance increases with the increase in number of retransmission

channels. This observation is consistent with Kasera et al.�s results [KaKuTow00]. As

 54

noted in Chapter 5, SRFTT transmits recovery packets of a group on a particular

retransmission channel according to the following equation:

Retransmission channel = Group mod (Number of retransmission channels).

The number of retransmission channels is usually less than the number of groups. Hence,

one retransmission channel may service multiple groups. In this scenario recovery

packets of multiple groups are interleaved on retransmission channels. As the number of

retransmission channel increases, the time for the recovery packets of a group to be

transmitted again on the group�s retransmission channel decreases. This reduces the wait

time of a receiver waiting for a particular group�s packets. Hence, the efficiency

NumberOfRetransmissionChannels: 3

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

LossRate

Tr
an

sf
er

Ti
m

e K = 1

K = 8

K = 16

K = 32

FIG. 10 Loss rate vs Transfer time with different values of k and three retransmission channels

for a 2MB file

 55

increases with the increase in the number of retransmission channels.

As the file size increases, the effect of increasing the number of retransmission

channels becomes pronounced (cf. Fig. 6.4). Increasing the number of retransmission

channels from 1 to 3 yields a gain of nearly 33 for file sizes larger than 32 MB. Further

increases in the number of retransmission channels yield further improvements. For

example, increasing the number of retransmission channels from 3 to 7 decreases the

reception time for a 64MB file with k = 16 and loss-rate = 25% from 2361 sec. to 2185

sec.

Incremental File Size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300

FileSize

Tr
an

sf
er

Ti
m

e

NumberOfRetransmissionChannels: 3

NumberOfRetransmissionChannels: 2

NumberOfRetransmissionChannels: 1

FIG 11 Incremental File Size

 56

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis has described the implementation and operation of a new tool for file

transfer, specifically designed for use in heterogeneous clusters. This tool, SRFTT,

combines two techniques to achieve reliability in multicast communications: software

FEC and multiple multicast channel approaches. Even though both approaches have

overheads, the cost of encoding/decoding FEC packets is offset by the ability to recover

from multiple packet losses using a single FEC packet and the cost of joining and leaving

multiple retransmission channels is offset by the reduced receiver reception time. SRFTT

performs better in heterogeneous environments. For large files increasing the number of

retransmission channels improves SRFTT�s performance significantly.

SRFTT�s implementation will be available soon as freeware. Currently SRFTT is

tested on the Windows platform. With minor modifications, SRFTT can be implemented

on UNIX and Linux platforms. SRFTT has been tested for file sizes up to 256 MB and 3

retransmission channels. More testing, however, should be performed on SRFTT to

determine the tool�s ability to transfer massive files relative to larger and less uniform

networks of PCs. These tests should include transfers of larger, multi-gigabyte files,

using more retransmission channels and more target hosts. SRFTT should also be

enhanced to support flow control mechanisms in order to improve the tool�s performance.

 57

APPENDIX

OBSERVATION TABLE

Fixed File Size

Number of Retransmission channels = 1

K Loss Rate Time K Loss Rate TimeK

Loss

Rate TimeK Loss Rate Time

1 1 142.5 8 1 23 16 1 20 32 1 19

 2 168.5 2 24 2 20 2 19

 5 171 5 24 5 20 5 19

 10 177 10 24.4 10 20 10 19

 15 180 15 24.5 15 20 15 19

 20 204.5 20 24.5 20 20 20 19.5

 25 208 25 24.5 25 20.5 25 20

 30 216 30 24.5 30 20.5 30 20

 35 220 35 25.5 35 20.5 35 20

 40 233 40 25.5 40 20.5 40 20

 45 234 45 26 45 20.5 45 20.5

 50 264 50 27.5 50 21.5 50 21

 58

Number of Retransmission channels = 2

K Loss Rate Time K Loss Rate Time K Loss Rate TimeK Loss Rate Time

1 1 80 8 1 2216 1 19 32 1 19

 2 97.5 2 22 2 20 2 19

 5 100 5 22.5 5 20 5 19

 10 104 10 22.5 10 20 10 19

 15 104 15 23 15 20.5 15 19.5

 20 108 20 23.5 20 20.5 20 20

 25 112 25 23.5 25 21 25 20

 30 115 30 24 30 21 30 20

 35 116 35 24 35 21.5 35 20

 40 137 40 24.5 40 21.5 40 20

 45 138 45 25 45 22 45 20

 50 141 50 25 50 22 50 20

 59

Number of Retransmission Channels = 3

K Loss Rate Time K Loss Rate Time KLoss RateTimeK Loss Rate Time

1 1 57.5 8 1 21.56 1 18 32 1 19

 2 59 2 21.5 2 19 2 19

 5 59.5 5 22 5 19 5 19

 10 60 10 23 10 19 10 19

 15 65.5 15 23 15 19 15 19

 20 65.5 20 23 20 20 20 19

 25 66.5 25 23 25 20 25 19.5

 30 68 30 23.5 30 20 30 19.5

 35 70.5 35 23.5 35 20 35 19.5

 40 73 40 23.5 40 20 40 19.5

 45 76 45 23.5 45 20.5 45 20

 50 78 50 25 50 21 50 20

 60

Incremental File Size

Loss Rate = 25 = 25, k = 16

3 Rexmit Ch 2 Rexmit Ch 1 Rexmit Ch

FileSize Time FileSize Time FileSize Time

0.001 0 0.001 0 0.001 0

1 10 1 10 1 10

2 20 2 20 2 20

4 51.5 4 52 4 54.5

8 113 8 118 8 129

16 259.5 16 263 16 314

32 640 32 739 32 1172

64 2361 64 2658 64 3380

128 8306 128 9814 128 13024

256 27634 256 31583 256 43241

 61

Random Samples

No change by increasing the number of retransmission channels to 4 or 5 on a 2Mb file

K = 16, NRT = 7, Loss rate = 25 and file size = 64 Mb-- Transfer time = 2185 sec

 62

BIBLIOGRAPHY

Unless specified otherwise, all web pages referenced below were on-line as of 3 June

2002. All RFCs may obtained at www.ietf.org

[BelGray02] Bell, G., and Gray, J., �What�s next in high performance

computing?� Communications of the ACM, Vol 45, No 2, Feb 2002

[BiSchStep91] Birman, K., Schiper, A., and Stephenson, P. ``Lightweight Casual

and Atomic Group Multicast'', ACM Transactions on Computer

Systems, Vol.9, No. 3, pp. 272314, Aug. 1991

[Buyya99] Buyya, R., High Performance Cluster Computing, Vol 1, Ch. 1,

Prentice-Hall, 1999

[Comer00] Comer, D., Internetworking with TCP/IP Vol.1: Principles,

Protocols, and Architecture, 4/e, Chapter 12-13, Prentice Hall,

c.2000

[FlJcLMcZh97] Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L., �A

Reliable Multicast Framework for Light-weight Sessions and

Application Level Framing�, IEEE/ACM Transactions on

Networking, Volume 5, Number 6, December 1997

[GeSch97] Gemmell; J. and Schooler, E., �Using Multicast FEC to Solve the

Midnight Madness Problem�,

citeseer.nj.nec.com/schooler97using.html, Sept. 1997

[Gonc02] Goncalves, M., IP Multicasting, McGraw-Hill, c. 2002

 63

[HenPa96] Hennessey, J. and Patterson, D., Computer Architecture�A

Quantitative Approach, Chapter 7, §13, Morgan Kaufman

Publishers, c.1996

[Ja95] Jacobson, V., ``Lightweight Sessions�A new architecture for real

time applications and protocols'', Third Annual Principal

Investigators Meeting, ARPA, Santa Rosa, CA, Sept. 1995

[KaKuTow00] Kasera, S., Kurose, J., and Towsley, D., �Scalable Reliable Multicast

Using Multiple Multicast Channels�, IEEE/ACM Transactions on

Networking, June 2000

[MPIRef] http://www-unix.mcs.anl.gov/mpi/

[Pfei02] Pfeiffer, P., csciwww.etsu.edu/phil/freeware.htm, 2002

[Rfc1075] Waitzman, C., Partridge, D., and Deering, S., �Distance Vector

Multicast Routing Protocol� Stanford University-- November 1988

[Rfc1112] RFC 1112: Deering, S., �Host Extensions for IP Multicasting�,

Aug. 1989

[Rfc1584] RFC 1584: Moy, J., �Multicast Extensions to OSPF�, March 1994

[RiVic97] Rizzo, L. and Vicisano, L, �A Reliable Multicast Data Distribution

Protocol Based on Software FEC Techniques (RMDP)�,

Proceedings of the Fourth IEEE HPCS Workshop, Chalkidiki,

Greece, 1997

[Scott02] Scott, S., �Projects Page�,

www.csm.ornl.gov/~sscott/Projectspage.htm, 2000

 64

[Stardust01] Stardust Technologies, "Introduction to Multicast Routing",

www.stardust.com/community/whitepaper/introrouting.html [last

referenced in July 2001; since removed from website]

[Tanen95] Tanenbaum, A. S., Distributed Operating Systems , Prentice Hall,

c.1995

[TechTarget01] TechTarget Inc,

searchnetworking.techtarget.com/sDefinition/0,sid7_gci212610,

00.html

[Vyto93] Vytopil, J, Formal Techniques in Real Time and Fault Tolerant

Systems, Kluwer Academic Publishers, c.1993

 65

VITA

HARDIK DIKPAL SHUKLA

Personal Data: Date of Birth: September 9, 1977
Place of Birth: Gujarat, India

 Marital Status: Married

Education: L.D. College Of Engineering, Ahmedabad, India;
 Instrumentation and Control, Bachelor of Engineering, 1999
 East Tennessee State University, Johnson City, TN, USA;
 Computer Science, Master Of Science, 2002
Professional
Experience: Intern, Oakridge National Labs
 Oakridge, TN, (Summer 2001)

Intern, Birla AT&T Communications
Gandhinagar, India, 1997-1998

Research Assistant, Department of Computer Science

 East Tennessee State University, TN, 1999-2000

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	8-2002

	Scalable and Reliable File Transfer for Clusters Using Multicast.
	Hardik Dikpal Shukla
	Recommended Citation

	Microsoft Word - 3D1B4B18-127C-2D42.doc

