
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

8-2008

Interval Estimation for the Ratio of Percentiles from
Two Independent Populations.
Pius Matheka Muindi
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Statistical Theory Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Muindi, Pius Matheka, "Interval Estimation for the Ratio of Percentiles from Two Independent Populations." (2008). Electronic Theses
and Dissertations. Paper 1969. https://dc.etsu.edu/etd/1969

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by East Tennessee State University

https://core.ac.uk/display/214067151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=dc.etsu.edu%2Fetd%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Interval Estimation for the Ratio of Percentiles from Two Independent Populations

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Pius Muindi

August 2008

Robert Price, Ph.D., Chair

Robert Gardner, Ph.D.

Edith Seier, Ph.D.

Yali Liu, Ph.D

Keywords: confidence intervals (CI), ratio of percentiles, percentiles.



ABSTRACT

Interval Estimation for the Ratio of Percentiles from two Independent Populations

by

Pius Muindi

Percentiles are used everyday in descriptive statistics and data analysis. In real life,

many quantities are normally distributed and normal percentiles are often used to

describe those quantities. In life sciences, distributions like exponential, uniform,

Weibull and many others are used to model rates, claims, pensions etc. The need

to compare two or more independent populations can arise in data analysis. The

ratio of percentiles is just one of the many ways of comparing populations. This

thesis constructs a large sample confidence interval for the ratio of percentiles whose

underlying distributions are known. A simulation study is conducted to evaluate

the coverage probability of the proposed interval method. The distributions that are

considered in this thesis are the normal, uniform and exponential distributions.
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1 INTRODUCTION

Percentiles or quantiles are very common in statistics. Percentiles are used to

determine the value of an observation with a given percentage below it. Percentiles

are used as a measure of central tendency as well as a measure of spread. The

median, which is one of the most used measures of central tendency, refers to the

50th percentile. The lower and upper quartiles which refer to the 25th and the

75th percentiles, respectively, are commonly used as measures of dispersion. The

five-number summary used in making the famous box plot is basically a summary of

specific percentiles of a distribution namely 1st, 25th, 50th, 75th and 100th. Quantiles

are also used in measuring reliability by determining the time to failure, survival and

hazard functions [3]. Percentiles are also used in hydrology and in statistical process

control [3].

The need to compare two distributions arises and the researcher will require some

particular parameter as a point of comparison. In many instances researchers are

compelled to use the mean as the point of comparison with the assumption that the

mean is the most reliable parameter for describing the population. This is not always

the case and sometimes the median may be more reliable when the distribution is

strongly skewed [7]. The researcher may also be interested in other percentiles of

the population and if there are two independent populations a comparison of the

percentiles may be of value.

Approximate distribution-free intervals for both the difference and ratio of me-

dians have been developed [7]. We consider interval estimation for the ratio of per-

centiles when the underlying distributions are known.
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We begin by defining a few of the terminologies used in this thesis. A percentile or

a quantile is the value of a variable below which a certain percentage of observations

fall. A percentile can also be defined as one of the 99 point scores that divide a ranked

distribution into groups, each of which contain 1/100 of the scores. A Parameter is a

number that describes the population. In statistical practice, the value of a parameter

is usually not known because it is difficult to examine the entire population. A

Statistic is a number that can be computed from a sample without making use of any

unknown parameters. In practice, we often use a statistic to estimate an unknown

parameter. If the random variables X1, X2, . . . , Xn are arranged in ascending order of

magnitude and then written as X(1), X(2), . . . , X(n), we call X(i) the ith order statistic

[2] (i = 1, 2, . . . , n). If E[u(X1, X2, ..., Xn)] = θ, the statistic u(X1, X2, ..., Xn) is

called an unbiased estimator of θ [5].

Theorem 1.1 [6] Draw a simple random sample of size n from any population with

mean µ and standard deviation σ. When n is large, the sampling distribution of the

sample mean x̄ is approximately normal with mean µ and standard deviation σ/
√
n.

This is referred to as the central limit theorem.

Theorem 1.2 [4] Let Xn be a sequence of random variables such that

√
n(Xn − θ)

D→ N(0, σ2).

Suppose the function f(x) is differentiable at θ and f
′
(θ) 6= 0. Then

√
n(f(Xn)− f(θ))

D→ N(0, σ2(f
′
(θ))2)

where
D→ denotes converge in distribution. This is referred to as the Delta Method.

11



Theorem 1.3 [4] Let {Xn}be a sequence of p-dimensional vectors. Suppose

√
n(Xn − µ0)

D→ Np(0,Σ).

Let g be a transformation g(x) = (g1(x), . . . , gk(x))
′

such that 1 ≤ k ≤ p and the k×p

matrix of partial derivatives,

B =
[
dgi
dµj

]
i = 1, . . . , k; j = 1, . . . , p,

are continuous and do not vanish in a neighborhood of µ0. Let B0 = B at µ0. Then

√
n(g(Xn)− g(µ0))

D→ Nk(0, B0ΣB0
′
). This is an extension of the Delta Method.

1.1 Maximum Likelihood Estimators (MLEs)

Let X1, X2, ..., Xn be a random sample from a distribution that depends on one or

more unknown parameters θ1, θ2, . . . , θm with p.m.f. or p.d.f. denoted by

f(x; θ1, θ2, . . . , θm). Suppose that θ1, θ2, . . . , θm is restricted to a given parameter

space Ω. Then the joint p.m.f. or p.d.f. of X1, X2, ..., Xn namely

L(θ1, θ2, . . . , θm) = f(x1; θ1, . . . , θm)f(x2; θ1, . . . , θm) . . . f(xn; θ1, . . . , θm),

(θ1, θ2, . . . , θm) ∈ Ω,

when regarded as a function of θ1, θ2, . . . , θm is called the likelihood function. Say

[u1(X1, X2, ..., Xn), u2(X1, X2, ..., Xn), . . . um(X1, X2, ..., Xn)]

is that m-tuple in Ω that maximizes L(θ1, θ2, . . . , θm). Then

12



θ̂1 = u1(X1, X2, ..., Xn)

θ̂2 = u2(X1, X2, ..., Xn)

...

θ̂m = u1(X1, X2, ..., Xn)

are maximum likelihood estimators of θ1, θ2, . . . , θm respectively; and the corre-

sponding values of these statistics, namely

u1(X1, X2, ..., Xn), u2(X1, X2, ..., Xn), . . . um(X1, X2, ..., Xn)

are called maximum likelihood estimates [5]. In many practical cases these esti-

mators (and estimates) are unique.

For many applications there is just one unknown parameter. In these cases, the like-

lihood function is given by

L(θ) =
n∏
i=1

f(xi; θ).

Let X1, X2, ..., Xn be continuous random variables from a population whose under-

lying distribution is known and parameters unknown. Let kp denote the 100pth

percentile. kp can be expressed in terms of the population parameters.

By way of maximum likelihood estimation, we can approximate the unknown pop-

ulation parameters using statistics obtained from a sample drawn from the population

whose underlying distribution is known. Then kp can be approximated using those

estimates.
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Let kp,x be the 100pth percentile from the first population (X) and let kp,y be

the 100pth percentile from the second population (Y ). Denote the percentile ratio

as kp ratio. Then kp ratio is given by kp,x/kp,y. We next discuss an approximate

(1−α)100% confidence interval for the kp ratio. To construct a confidence interval for

kp ratio we will estimate the natural log of kp ratio and the variance of the estimated

natural log of kp ratio and then exponentiate the end points of the interval. This is

based on the delta method.
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2 NORMAL DISTRIBUTION

Let X1, X2, . . . , Xn be a random sample from a normal population with mean µ and

variance σ2. Then the p.d.f. of X is given by

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, −∞ < x <∞. (1)

Let kp denote the 100pth percentile, then

kp = µ+ Zpσ (2)

where Zp denotes the 100pth percentile of the standard normal distribution N(0, 1)

[1]. Since µ and σ are unknown, we need to estimate kp. This can be done using the

minimum variance unbiased estimators of µ and σ.

2.1 Unbiased Estimators of µ and σ

Let X1, X2, . . . , Xn be a random sample from a normal population N(µ, σ2) and let

X̄ denote the sample mean and S2 denote the sample variance where

X̄ =
1

n

n∑
i=1

Xi , (3)

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)
2
, (4)

and

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)
2

(i = 1, 2, . . . , n). (5)

X̄ is the maximum likelihood estimator of µ and by the central limit theorem X̄ is

an unbiased estimator of µ and E(X̄) = µ .
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Lemma 2.1 [5] Let X1, X2, . . . , Xn be a random sample of size n from a normal

distribution N(µ, σ2). Then the distribution of (n−1)S2/σ2 is χ2(n−1), where χ2(n−

1) is a Chi-square distribution with n-1 degrees of freedom.

Proposition 2.2 S2 is an unbiased estimator of σ2.

Proof

We can use Lemma 2.1 to show that S2 is an unbiased estimator of σ2. By Lemma 2.1,

the distribution of (n− 1)S2/σ2 is χ2(n− 1). Therefore

E

(
(n− 1)S2

σ2

)
= E

(
χ2(n− 1)

)
n− 1

σ2
E(S2) = n− 1

E(S2) = σ2 . �

However, S is not an unbiased estimator of σ. Thus, we need to find a constant C

that can be used to remove the biasness such that E(CS) = CE(S) = σ. We know

from Lemma 2.1 (n−1)S2

σ2 ∼ χ2(n − 1). So,
√
n−1S
σ
∼
√
χ2(n− 1). Next we need to

find the p.d.f. of Y =
√
χ2(n− 1). Suppose f(x) and g(y) are p.d.f.’s of χ2(n − 1)

and
√
χ2(n− 1) respectively. Then

f(x) =
1

Γ(n−1
2

)2
n−1

2

x
n−1

2
−1 e−

x
2 , 0 ≤ x <∞. (6)

By change of variable technique we have y =
√
x⇒ x = y2 and dx

dy
= 2y. Thus

g(y) =
1

Γ(n−1
2

)2
n−1

2

(y2)
n−1

2
−1

e−
(y2)

2 2y, 0 ≤ y <∞. (7)
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Now,

E(Y ) =

∫ ∞
0

y
1

Γ(n−1
2

)2
n−1

2

(y2)
n−1

2
−1

e−
y2

2 2ydy

=

∫ ∞
0

(y2)
1
2

1

Γ(n−1
2

)2
n−1

2

(y2)
n−3

2 e−
y2

2 2ydy

=

∫ ∞
0

1

Γ(n−1
2

)2
n−1

2

(y2)
n−2

2 e−
y2

2 2ydy .

Letting t = y2, dt = 2ydy and we obtain,

E(Y ) =

∫ ∞
0

1

Γ(n−1
2

)2
n−1

2

t
n−2

2 e−
t
2dt

=

∫ ∞
0

1

Γ(n−1
2

)2
n−1

2

t
n
2
−1 e−

t
2dt

=
1

Γ(n−1
2

)2
n−1

2

∫ ∞
0

t
n
2
−1 e−

t
2dt

=
Γ(n

2
)2

n
2

Γ(n−1
2

)2
n−1

2

∫ ∞
0

t
n
2
−1 e−

t
2

Γ(n
2
)2

n
2

dt︸ ︷︷ ︸
1

.

Hence,

E(Y ) =
Γ(n

2
)
√

2

Γ(n−1
2

)
. (8)

Since Y =
√
χ2(n− 1) ∼

√
n−1S
σ

, E(Y ) =
√
n−1E(S)

σ
and therefore,

E(S) =
σE(Y )√
n− 1

=
σ√
n− 1

Γ(n
2
)
√

2

Γ(n−1
2

)

=
σ√
n−1

2

Γ(n
2
)

Γ(n−1
2

)

=
σ√

n−1
2

Γ(n−1
2

)

Γ(n
2

)

.

(9)
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Hence, we have √
n−1

2
Γ(n−1

2
)

Γ(n
2
)

E(S) = σ ⇒ C =

√
n−1

2
Γ(n−1

2
)

Γ(n
2
)

(10)

and

E(CS) = σ . (11)

Thus an unbiased estimator of kp is

k̂p = X̄ + ZpCS [1]. (12)

To compute confidence intervals we need the variance and the estimated variance of

the statistic of interest. In this case we require the variance of k̂p. Therefore

V ar(k̂p) = V ar(X̄ + ZpCS)

= V ar(X̄) + (CZp)
2V ar(S)

=
σ2

n
+ C2Z2

p

[
E(S2)− (E(S))2]

=
σ2

n
+ C2Z2

p

[
σ2 − σ2

C2

]
by proposition 2.2 and (11)

=
σ2

n

(
1 + nC2Z2

p(1− 1

C2
)

)
=

σ2

n

(
1 + nZ2

p(C2 − 1)
)

[1]. (13)

Thus the estimated variance of k̂p denoted ̂V ar(k̂p) is

̂V ar(k̂p) =

(
S2

n

(
1 + nZ2

p(C2 − 1)
))

. (14)
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2.2 Approximate Confidence Interval for the Ratio of Percentiles from Two

Independent Normal Distributions

In this section we are going to develop a method of computing the (1 − α)100%

confidence intervals for the ratio of two normal percentiles. These two percentiles must

come from two independent normal distributions and they must be the same 100pth

percentile. For example, if we use the 45th percentile from the first distribution then

we must use the 45th percentile from the second distribution. The means, variances,

and sample sizes of the two samples need not be equal.

Theorem 2.3 Let X1, X2, . . . , Xn be a random sample of size n from a normal pop-

ulation X with mean µx and variance σ2
x and let Y1, Y2, . . . , Ym be a random sample

of size m from another normal population Y with mean µy and variance σ2
y where X

and Y are independent. Let kp,x and kp,y be the 100pth percentiles from populations

X and Y, respectively. Then an approximate (1− α)100% confidence interval for the

ratio of the percentiles kp,x and kp,y is given by

k̂p,x

k̂p,y
exp

± Z(1−α
2

)

√√√√ ̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

 . (15)

Proof

We know that

kp,x = µx + Zpσx and kp,y = µy + Zpσy (16)

and the unbiased estimators of kp,x and kp,y are

k̂p,x = X̄ + ZpCxSx and k̂p,y = Ȳ + ZpCySy (17)
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respectively, where

Cx =

√
n−1

2
Γ(n−1

2
)

Γ(n
2
)

and Cy =

√
m−1

2
Γ(m−1

2
)

Γ(m
2

)
. (18)

The variances of these unbiased estimators k̂p,x and k̂p,y are

V ar(k̂p,x) =
σ2
x

n

(
1 + nZ2

p(C2
x − 1)

)
and V ar(k̂p,y) =

σ2
y

m

(
1 +mZ2

p(C2
y − 1)

)
(19)

and their respective estimated variances are

̂V ar(k̂p,x) =
S2
x

n

(
1 + nZ2

p(C2
x − 1)

)
and ̂V ar(k̂p,y) =

S2
y

m

(
1 +mZ2

p(C2
y − 1)

)
. (20)

The estimated kp ratio denoted by k̂p ratio is given by

k̂p ratio =
k̂p,x

k̂p,y
. (21)

Now we need to find the variance of the k̂p ratio. This can be simplified by introducing

natural logarithms and using the delta method to compute the variance.

ln(k̂p ratio) = ln

(
k̂p,x

k̂p,y

)
= ln(k̂p,x)− ln(k̂p,y) . (22)

The next few equations employ the delta method to compute the variance of

ln(k̂p ratio).

V ar(ln(k̂p ratio)) =

[
d ln(k̂p ratio)

dk̂p,x

d ln(k̂p ratio)

dk̂p,y

] [V ar(k̂p,x) 0

0 V ar(k̂p,y)

] d ln(k̂p ratio)

dk̂p,x
d ln(k̂p ratio)

dk̂p,y

 .
The variance covariance matrix has zero entries because X and Y are independent

and their covariance is zero.

V ar(ln(k̂p ratio)) =
[

1

k̂p,x
− 1

k̂p,y

] [V ar(k̂p,x) 0

0 V ar(k̂p,y)

] [ 1

k̂p,x

− 1

k̂p,y

]
. (23)
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Hence

V ar(ln(k̂p ratio)) =
V ar(k̂p,x)

k̂2
p,x

+
V ar(k̂p,y)

k̂2
p,y

(24)

and the estimated variance of the ln(k̂p ratio) is

̂V ar ln(k̂p ratio) =
̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

. (25)

The (1− α)100% confidence interval for the ln(kp ratio) can be computed as

ln(k̂p,x)− ln(k̂p,y)± Z(1−α
2

)

√√√√ ̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

(26)

and exponentiating the expression we have the (1 − α)100% confidence interval for

the kp ratio as

k̂p,x

k̂p,y
exp

± Z(1−α
2

)

√√√√ ̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

 . �

2.3 Simulation Results

To test this method, a simulation was done. This simulation involved a random

generation of two normally distributed samples using the R statistical software [8].

The parameters µ and σ2 used to generate first sample were fixed at 30 and 2, re-

spectively, and those of the second sample were fixed at 20 and 3 respectively. The

simulation process involved 50000 runs for each different set of sample sizes and the

resulting empirical coverages rates were recorded. Table 1 on next page shows some

of the simulation results. The empirical coverage can be seen to converge to 0.95 in

Figure 1
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Table 1: Empirical Coverage Rates of 90%, 95% and 99% Confidence Intervals for

the Ratio of Percentiles from Two Normal Populations.

percentiles n m 90% 95% 99%
10 50 0.8789 0.9169 0.9568
50 100 0.8972 0.9455 0.9842
10 10 0.8826 0.9292 0.9682
50 50 0.8973 0.9467 0.9855

p = 0.10 100 100 0.8987 0.9483 0.9875
200 200 0.8995 0.9492 0.9892
500 500 0.8997 0.9499 0.9902
50 10 0.8994 0.9496 0.9897
100 50 0.8996 0.9497 0.9899
10 50 0.8710 0.9220 0.9718
50 100 0.8964 0.9443 0.9870
10 10 0.8793 0.9290 0.9781
50 50 0.8963 0.9453 0.9882

p = 0.40 100 100 0.8996 0.9471 0.9887
200 200 0.8997 0.9475 0.9899
500 500 0.9000 0.9506 0.9899
50 10 0.8921 0.9440 0.9864
100 50 0.8994 0.9472 0.9888
10 50 0.8717 0.9212 0.9732
50 100 0.8963 0.9461 0.9871
10 10 0.8785 0.9302 0.9770
50 50 0.8944 0.9477 0.9875

p = 0.70 100 100 0.8997 0.9485 0.9895
200 200 0.8999 0.9493 0.9898
500 500 0.8999 0.9500 0.9901
50 10 0.8906 0.9416 0.9849
100 50 0.8992 0.9494 0.9897
10 50 0.8732 0.9224 0.9664
50 100 0.8993 0.9453 0.9874
10 10 0.8799 0.9310 0.9760
50 50 0.8961 0.9455 0.9873

p = 0.90 100 100 0.8995 0.9497 0.9891
200 200 0.8996 0.9499 0.9895
500 500 0.8997 0.9499 0.9900
50 10 0.8942 0.9462 0.9870
100 50 0.8985 0.9482 0.9891
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In Figure 1, the values 1−5 on the x−axis have been allocated to sets of samples

sizes in increasing order. On the y − axis we have the empirical coverage rates for

95% confidence interval at p = 0.10. For the first case where n < m we have 1, 2, 3, 4

and 5 corresponding to to the (10, 50), (50, 100), (100, 200), (150, 250) and (200, 500)

sample size combinations. For the second case where n = m we have 1, 2, 3, 4 and 5

corresponding to the (10, 10), (50, 50), (100, 100), (200, 200) and (500, 500) sample size

combinations. For the third case where n > m we have 1, 2, 3, 4 and 5 corresponding to

the (50, 10), (100, 50), (200, 100), (250, 150) and (500, 200) sample size combinations.

Figure 1: Coverage Rates vs Sample Size for Ratio of Normal Percentiles at p = 0.10
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3 EXPONENTIAL DISTRIBUTION

Let X1, X2, . . . , Xn be a random sample from an exponential population with mean

θ and variance θ2. Then the p.d.f. of X is given by

f(x) =
1

θ
e−x/θ, 0 ≤ x <∞. (27)

Since this is a continuous distribution the cumulative distribution function (c.d.f) can

be used to determine the value that lies on a given percentile

F (x) = P (X ≤ kp) =

∫ kp

0

1

θ
e−

x
θ dx = 1− e−

kp
θ = p (28)

and solving for kp we have

kp = − θ ln(1− p) (29)

where kp is the 100pth percentile. Since θ is not known we need to find an unbiased

estimator of θ that can be used to estimate kp.

3.1 Unbiased Estimator of θ

Let X1, X2, . . . , Xn be a random sample from an exponential population with mean

θ and let X̄ denote the sample mean. X̄ = 1
n

n∑
i=1

Xi is an unbiased estimator of θ [5].

Also by the Central Limit Theorem the sample mean is an unbiased estimator of the

population mean and E(X̄) = θ. Therefore the estimated kp denoted k̂p is given by

k̂p = −X̄ ln(1− p) . (30)
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Next we need to find the variance of k̂p and the estimated variance of k̂p denoted by

̂V ar(k̂p).

V ar(k̂p) = V ar(−X̄ ln(1− p))

= (ln(1− p))2V ar(X̄)

= (ln(1− p))2σ
2

n

= (ln(1− p))2 θ
2

n
. (31)

The above follows from the fact that X̄ is normally distributed with mean µ and

variance σ2

n
and for the exponential distribution σ2 = θ2 and so

̂V ar(k̂p) = (ln(1− p))2 X̄2

n
. (32)

3.2 Approximate Confidence Interval for the Ratio of Percentiles from Two

Independent Exponential Distributions

In this section, we are going to develop a method of computing the (1− α)100%

confidence intervals for the ratio of two exponential percentiles. These two percentiles

must come from two independent exponential distributions and they must be the

same 100pth percentile. For example, if we use the 45th percentile from the first

distribution then we must use the 45th percentile from the second distribution. The

means, variances, and sample sizes of the two samples need not be equal.

Theorem 3.1 Let X1, X2, . . . , Xn be a random sample of size n from an exponential

population X with mean θx and variance θ2
x and let Y1, Y2, . . . , Ym be a random sample

of size m from another exponential population Y with mean θy and variance θ2
y where
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X and Y are independent. Let kp,x and kp,y be the 100pth percentiles from populations

X and Y respectively. Then an approximate (1 − α)100% confidence interval for the

ratio of the percentiles kp,x and kp,y is given by

k̂p,x

k̂p,y
exp

(
± Z(1−α

2
)

√
1

n
+

1

m

)
. (33)

Proof

We know that

kp,x = −θx ln(1− p) and kp,y = −θy ln(1− p) (34)

and the unbiased estimators of kp,x and kp,y are

k̂p,x = −X̄ ln(1− p) and k̂p,y = −Ȳ ln(1− p) . (35)

respectively. The unbiased estimator of kp ratio denoted by k̂p ratio is given by

k̂p ratio =
k̂p,x

k̂p,y

=
−X̄ ln(1− p)
−Ȳ ln(1− p)

=
X̄

Ȳ
. (36)

Now we need to find the variance of the k̂p ratio. This can be done by introducing

natural logarithms and using the delta method to compute the variance.

ln(k̂p ratio) = ln

(
X̄

Ȳ

)
= ln(X̄)− ln(Ȳ ) . (37)

The next few equations employ the delta method to compute the variance of

ln(k̂p ratio).

V ar(ln(k̂p ratio)) =
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[
d ln(k̂p ratio)

dX̄

d ln(k̂p ratio)

dȲ

] [V ar(X̄) 0
0 V ar(Ȳ )

] [d ln(k̂p ratio)

dX̄
d ln(k̂p ratio)

dȲ

]
.

The variance covariance matrix has zero entries because X and Y are independent

and their covariance is zero.

V ar(ln(k̂p ratio)) =
[

1
X̄
− 1
Ȳ

] [σ2
x

n
0

0
σ2
y

m

] [
1
X̄

− 1
Ȳ

]
. (38)

Hence

V ar(ln(k̂p ratio)) =
σ2
x

nX̄2
+

σ2
y

mȲ 2
, (39)

V ar(ln(k̂p ratio)) =
θ2
x

nX̄2
+

θ2
y

mȲ 2
(40)

and the estimated variance of the ln(k̂p ratio) is

̂V ar(ln(k̂p ratio)) =
X̄2

nX̄2
+

Ȳ 2

mȲ 2
, (41)

̂V ar ln(k̂p ratio) =
1

n
+

1

m
. (42)

The (1− α)100% confidence interval for the ln(kp ratio) can be computed as

ln(X̄)− ln(Ȳ )± Z(1−α
2

)

√
1

n
+

1

m
(43)

and exponentiating the expression we have the (1 − α)100% confidence interval for

the kp ratio as

X̄

Ȳ
exp

(
± Z(1−α

2
)

√
1

n
+

1

m

)
. �
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3.3 Simulation Results

To test this method, 50000 simulations were done. Two random samples were

generated using the R statistical software [8]. The first sample was generated from an

exponential distribution with mean fixed at 0.1 and the second sample was generated

from an exponential distribution with mean fixed at 0.05. The simulation process

involved 50000 runs for each different set of sample sizes and the resulting empirical

coverage rates were recorded. Table 2 on the following page shows the empirical

coverage rates for a few sets of sample sizes. The empirical coverage can be seen to

converge to 0.95 in Figure 2.
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Table 2: Empirical Coverage Rates of 90%, 95% and 99% Confidence Intervals for

the Ratio of Percentiles from Two Exponential populations.

percentiles n m 90% 95% 99%
10 50 0.8932 0.9442 0.9854
50 100 0.8996 0.9461 0.9894
10 10 0.8925 0.9431 0.9875
50 50 0.9023 0.9502 0.9888

p = 0.10 100 100 0.8986 0.9492 0.9902
200 200 0.9003 0.9486 0.9893
500 500 0.9003 0.9504 0.9900
50 10 0.8915 0.9415 0.9860
100 50 0.8991 0.9472 0.9894
10 50 0.8903 0.9432 0.9855
50 100 0.8987 0.9480 0.9897
10 10 0.8891 0.9424 0.9868
50 50 0.8963 0.9494 0.9894

p = 0.40 100 100 0.9008 0.9460 0.9904
200 200 0.8964 0.9497 0.9899
500 500 0.9009 0.9499 0.9897
50 10 0.8903 0.9428 0.9848
100 50 0.8988 0.9503 0.9895
10 50 0.8909 0.9440 0.9853
50 100 0.9002 0.9511 0.9898
10 10 0.8913 0.9430 0.9861
50 50 0.8980 0.9473 0.9894

p = 0.70 100 100 0.8988 0.9486 0.9899
200 200 0.9017 0.9527 0.9898
500 500 0.9006 0.9485 0.9903
50 10 0.8929 0.9410 0.9854
100 50 0.8982 0.9486 0.9895
10 50 0.8910 0.9446 0.9855
50 100 0.8989 0.9492 0.9900
10 10 0.8935 0.9451 0.9855
50 50 0.8991 0.9494 0.9899

p = 0.90 100 100 0.8980 0.9493 0.9896
200 200 0.9002 0.9508 0.9895
500 500 0.8995 0.9493 0.9896
50 10 0.8926 0.9445 0.9853
100 50 0.8994 0.9493 0.9889

29



In Figure 2, the values 1 − 5 on the x − axis have been allocated to sets of

samples sizes in increasing order. On the y − axis we have the empirical coverage

rates for 95% confidence interval at p = 0.10. For the first case where n < m we

have 1, 2, 3, 4 and 5 corresponding to to the (10, 50), (50, 100), (100, 200), (150, 250)

and (200, 500) sample size combinations. For the second case where n = m we

have 1, 2, 3, 4 and 5 corresponding to to the (10, 10), (50, 50), (100, 100), (200, 200) and

(500, 500) sample size combinations. For the third case where n > m we have 1, 2, 3, 4

and 5 corresponding to to the (50, 10), (100, 50), (200, 100), (250, 150) and (500, 200)

sample size combinations.

Figure 2: Coverage Rates vs Sample Size for Ratio of Exponential Percentiles at

p = 0.10
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4 UNIFORM DISTRIBUTION

Let X1, X2, . . . , Xn be a random sample from a uniform population with minimum a

and maximum b. Then the p.d.f. of X is given by

f(x) =
1

b− a
a ≤ x ≤ b. (44)

Just like any other continuous distribution, the cumulative distribution function

(c.d.f) can be easily manipulated to come up with a formula for computing the per-

centiles

F (x) = P (X ≤ kp) =

∫ kp

a

1

b− a
dx =

kp − a
b− a

= p . (45)

Solving for kp we have

kp = a+ (b− a)p (46)

where kp denotes the 100pth percentile. For us to estimate the unknown parameters

a and b, we need to find unbiased estimators of both parameters.

4.1 Unbiased Estimators of a and b

Since a and b are the population minimum and population maximum, the first and

last order statistics are the most likelihood estimators of a and b respectively. Order

statistics are observations of a random sample arranged, or ordered in magnitude

from the smallest to the largest [5]. Let X1, X2, . . . , Xn be a random sample from a

uniform population with minimum a and maximum b and let X(1), X(2), . . . , X(n) be

the order statistics associated with the random sample where X(1) and X(n) are the
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minimum and maximum of Xi, respectively. Then X(1) and X(n) are the maximum

likelihood estimators of a and b, respectively. Though X(1) and X(n) are not exactly

unbiased estimators of a and b they are asymptotic unbiased estimators. That is

limn→∞E(X(1)) = a and limn→∞E(X(n)) = b. This is shown below. The p.d.f. of

the rth order statistics denoted fr(x) is given by

fr(x) =
n!

(r − 1)!1!(n− 1)!
[F (x)]r−1[1− F (x)]n−rf(x) a < x < b 1 ≤ r ≤ n [5].(47)

Substituting r=1 and r=n for the first and last order statistics we have

f1(x) = n[1− F (x)]n−1f(x) =
n(b− x)n−1

(b− a)n
a < x < b (48)

and

fn(x) = n[F (x)]n−1f(x) =
n(x− a)n−1

(b− a)n
a < x < b [5]. (49)

Now we need to find E(X(1)) and E(X(n)).

E(X(1)) =

∫ b

a

x
n(b− x)n−1

(b− a)n
dx

=
n

(b− a)n

∫ b

a

x(b− x)n−1dx.

Applying integration by parts we have

u = x, du = dx, dv = (b− x)n−1, v =
−(b− x)n

n

E(X(1)) =
n

(b− a)n

[
−x(b− x)n

n
−
∫
−(b− x)n

n
dx

]b
a

=
n

(b− a)n

[
−x(b− x)n

n
− (b− x)n+1

n(n+ 1)

]b
a

=

[
−x(b− x)n

(b− a)n
− (b− x)n+1

(b− a)n(n+ 1)

]b
a

= a+
b− a
n+ 1

. (50)
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E(X(n)) =

∫ b

a

x
n(x− a)n−1

(b− a)n
dx

=
n

(b− a)n

∫ b

a

x(x− a)n−1dx.

Applying integration by parts we have

u = x, du = dx, dv = (x− a)n−1, v =
(x− a)n

n

E(X(n)) =
n

(b− a)n

[
x(x− a)n

n
−
∫

(x− a)n

n
dx

]b
a

=
n

(b− a)n

[
x(x− a)n

n
− (x− a)n+1

n(n+ 1)

]b
a

=

[
x(x− a)n

(b− a)n
− (x− a)n+1

(b− a)n(n+ 1)

]b
a

= b− b− a
n+ 1

. (51)

From above limn→∞E(X(1)) = a and limn→∞E(X(n)) = b and the two are the best

minimum variance unbiased estimators of a and b respectively. Now we can estimate

kp denoted k̂p as follows,

k̂p = X(1) + (X(n) −X(1))p = (1− p)X(1) + pX(n) . (52)

Since we are building confidence intervals we need the variance of k̂p.

V ar(k̂p) = (1− p)2V ar(X(1)) + p2V ar(X(n)) + 2p(1− p)Cov(X(1)X(n)) . (53)

The last term of (53) exists because X(1) and X(n) are not independent. We begin by

computing the variance of X(1) as

V ar(X(1)) = E(X2
(1))− (E(X(1)))

2
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where

E(X2
(1)) =

∫ b

a

x2n(b− x)n−1

(b− a)n
dx (integration by parts)

=
n

(b− a)n

∫ b

a

x2(b− x)n−1dx

u = x2, du = 2xdx, dv = (b− x)n−1, v =
−(b− x)n

n

E(X2
(1)) =

n

(b− a)n

[
−x2(b− x)n

n
−
∫
−2x(b− x)n

n
dx

]b
a

s = 2x, ds = 2, dt = (b− x)n, t =
−(b− x)n+1

n+ 1

E(X2
(1)) =

n

(b− a)n

[
−x2(b− x)n

n
+

1

n

[
−2x(b− x)n+1

n+ 1
+

2

n+ 1

∫
(b− x)n+1dx

]]b
a

E(X2
(1)) =

1

(b− a)n

[
−x2(b− x)n −

[
2x(b− x)n+1

n+ 1
− 2(b− x)n+2

(n+ 1)(n+ 2)

]]b
a

= a2 +
2a(b− a)

n+ 1
+

2(b− a)2

(n+ 1)(n+ 2)
(54)

and therefore

V ar(X(1)) = a2 +
2a(b− a)

n+ 1
+

2(b− a)2

(n+ 1)(n+ 2)
−
(
a+

b− a
n+ 1

)2

=
n(b− a)2

(n+ 1)2(n+ 2)
. (55)

Next we compute the variance of X(n) as

V ar(X(n)) = E(X2
(n))− (E(X(n)))

2
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where

E(X2
(n)) =

∫ b

a

x2n(x− a)n−1

(b− a)n
dx (integration by parts)

=
n

(b− a)n

∫ b

a

x2(x− a)n−1dx

u = x2, du = 2xdx, dv = (x− a)n−1, v =
(x− a)n

n

E(X2
(n)) =

n

(b− a)n

[
x2(x− a)n

n
−
∫

2x(x− a)n

n
dx

]b
a

s = 2x, ds = 2, dt = (x− a)n, t =
(x− a)n+1

n+ 1

E(X2
(n)) =

n

(b− a)n

[
x2(x− a)n

n
− 1

n

[
2x(x− a)n+1

n+ 1
− 1

n+ 1

∫
2(x− a)n+1dx

]]b
a

E(X2
(n)) =

1

(b− a)n

[
x2(x− a)n −

[
2x(x− a)n+1

n+ 1
+

2(x− a)n+2

(n+ 1)(n+ 2)

]]b
a

= b2 − 2b(b− a)

n+ 1
+

2(b− a)2

(n+ 1)(n+ 2)
(56)

and so

V ar(X(n)) = b2 − 2b(b− a)

n+ 1
+

2(b− a)2

(n+ 1)(n+ 2)
−
(
b− b− a

n+ 1

)2

=
n(b− a)2

(n+ 1)2(n+ 2)
. (57)

Lastly we need to compute the covariance of X(1) and X(n) as

Cov(X(1)X(n)) = E(X(1)X(n))− E(X(1))E(X(n)) . (58)
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The joint p.d.f of X(1) and X(n) is given by

f1,n(x(1), x(n)) =
1

(b− a)n
n(n− 1)(x(n) − x(1))

n−2 a < x(1) ≤ x(n) < b [2]. (59)

Let X(1) = x and X(n) = y

E(X(1)X(n)) =
1

(b− a)n

∫ b

a

∫ y

a

xyn(n− 1)(y − x)n−2dxdy

=
n(n− 1)

(b− a)n

∫ b

a

∫ y

a

xy(y − x)n−2dxdy

=
n(n− 1)

(b− a)n

∫ b

a

y

[∫ y

a

x(y − x)n−2dx

]
︸ ︷︷ ︸

1

dy .

First we integrate 1 using integration by parts

(1) =

∫ y

a

x(y − x)n−2dx u = x, du = dx, dv = (y − x)n−2, v =
−(y − x)n−1

n− 1

=
−x(y − x)n−1

n− 1
+

∫ y

a

(y − x)n−1

n− 1
dx

=

[
−x(y − x)n−1

n− 1
− (y − x)n

n(n− 1)

]y
a

=
a(y − a)n−1

n− 1
+

(y − a)n

n(n− 1)
.

Plugging (1) back to our equation and using integration by parts we have

E(X(1)X(n)) =
n(n− 1)

(b− a)n

∫ b

a

y

[
a(y − a)n−1

n− 1
+

(y − a)n

n(n− 1)

]
dy

=
1

(b− a)n

n∫ b

a

ay(y − a)n−1dy︸ ︷︷ ︸
2

+

∫ b

a

y(y − a)ndy︸ ︷︷ ︸
3


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where

(2) = na

∫ b

a

y(y − a)n−1dy, u = y, du = dy, dv = (y − a)n−1, v =
(y − a)n

n

= na

[
y(y − a)n

n
−
∫

(y − a)n

n
dy

]b
a

= na

[
y(y − a)n

n
− (y − a)n+1

n(n+ 1)

]b
a

= ab(b− a)n − a(b− a)n+1

n+ 1

and

(3) =

∫ b

a

y(y − a)ndy, u = y, du = dy, dv = (y − a)n, v =
(y − a)n+1

n+ 1

=

[
y(y − a)n+1

n+ 1
−
∫

(y − a)n+1

n+ 1
dx

]b
a

=

[
y(y − a)n+1

n+ 1
− (y − a)n+2

(n+ 1)(n+ 2)

]b
a

=
b(b− a)n+1

n+ 1
− (b− a)n+2

(n+ 1)(n+ 2)
.

Putting (2) and (3) together we have

E(X(1)X(n)) =

1

(b− a)n

[([
ab(b− a)n − a(b− a)n+1

n+ 1

]
+

[
b(b− a)n+1

n+ 1
− (b− a)n+2

(n+ 1)(n+ 2)

])]
E(X(1)X(n)) =

1

(b− a)n

[(
ab(b− a)n − a(b− a)n+1

n+ 1
+
b(b− a)n+1

n+ 1
− (b− a)n+2

(n+ 1)(n+ 2)

)]
hence

E(X(1)X(n)) = ab− a(b− a)

n+ 1
+
b(b− a)

n+ 1
− (b− a)2

(n+ 1)(n+ 2)

= ab+
(b− a)2

n+ 1
− (b− a)2

(n+ 1)(n+ 2)
. (60)
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Now we have

Cov(X(1)X(n)) = E(X(1)X(n))− E(X(1))E(X(n))

= ab+
(b− a)2

n+ 1
− (b− a)2

(n+ 1)(n+ 2)
−
(
a+

b− a
n+ 1

)(
b− b− a

n+ 1

)
=

(b− a)2

(n+ 1)2(n+ 2)
(61)

and

V ar(k̂p) = (1− p)2V ar(X(1)) + p2V ar(X(n)) + 2p(1− p)Cov(X(1)X(n))

= (1− p)2

(
n(b− a)2

(n+ 1)2(n+ 2)

)
+ p2

(
n(b− a)2

(n+ 1)2(n+ 2)

)

+2p(1− p)
(

(b− a)2

(n+ 1)2(n+ 2)

)

V ar(k̂p) =

(
(b− a)2

(n+ 1)2(n+ 2)

)(
n(1− p)2 + np2 + 2p(1− p)

)
(62)

and the estimated variance of k̂p denoted ̂V ar(k̂p) is

̂V ar(k̂p) =

(
(X(n) −X(1))

2

(n+ 1)2(n+ 2)

)(
n(1− p)2 + np2 + 2p(1− p)

)
. (63)

4.2 Approximate Confidence Interval for the Ratio of Percentiles from Two

Independent Uniform Distributions

In this section, we are going to develop a method of computing the (1− α)100%

confidence intervals for the ratio of two uniform percentiles. Just like the previous

two cases, these two percentiles must come from two independent exponential distri-

butions and they must be the same 100pth percentile. For example, if we use the 45th

percentile from the first distribution then we must use the 45th percentile from the
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second distribution. The population parameters and sample sizes of the two samples

need not be equal.

Theorem 4.1 Let X1, X2, . . . , Xn be a random sample of size n from a uniform pop-

ulation X with minimum a and maximum b and let Y1, Y2, . . . , Ym be another random

sample of size m from another exponential population Y with minimum c and max-

imum d where X and Y are independent. Let kp,x and kp,y be the 100pth percentiles

from populations X and Y respectively. Then an approximate (1−α)100% confidence

interval for the ratio of the percentiles kp,x and kp,y denoted kp,x
kp,y

is given by

k̂p,x

k̂p,y
exp

± Z(1−α
2

)

√√√√ ̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

 . (64)

Proof

We know that

kp,x = a+ (b− a)p and kp,y = c+ (d− c)p (65)

and the respective unbiased estimators of kp,x and kp,y are

k̂p,x = (1− p)X(1) + pX(n) and k̂p,y = (1− p)Y(1) + pY(m) . (66)

The variances of these unbiased estimators k̂p,x and k̂p,y are

V ar(k̂p,x) =

(
(b− a)2

(n+ 1)2(n+ 2)

)(
n(1− p)2 + np2 + 2p(1− p)

)
and

V ar(k̂p,y) =

(
(d− c)2

(m+ 1)2(m+ 2)

)(
m(1− p)2 +mp2 + 2p(1− p)

)
(67)
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and their estimated variances are

̂V ar(k̂p,x) =

(
(X(n) −X(1))

2

(n+ 1)2(n+ 2)

)(
n(1− p)2 + np2 + 2p(1− p)

)
and

̂V ar(k̂p,y) =

(
(Y(n) − Y(1))

2

(m+ 1)2(m+ 2)

)(
m(1− p)2 +mp2 + 2p(1− p)

)
. (68)

The estimated kp ratio denoted by k̂p ratio is given by

k̂p ratio =
k̂p,x

k̂p,y
. (69)

Now we need to find the variance of the k̂p ratio. This can be simplified by introducing

natural logarithms and using the delta method to compute the variance.

ln(k̂p ratio) = ln

(
k̂p,x

k̂p,y

)
= ln(k̂p,x)− ln(k̂p,y). (70)

The next few equations employ the delta method to compute the variance of

ln(k̂p ratio).

V ar(ln(k̂p ratio)) =

[
d ln(k̂p ratio)

dk̂p,x

d ln(k̂p ratio)

dk̂p,y

] [V ar(k̂p,x) 0

0 V ar(k̂p,y)

] d ln(k̂p ratio)

dk̂p,x
d ln(k̂p ratio)

dk̂p,y

 .
The variance covariance matrix has zero entries because X and Y are independent

and their covariance is zero.

V ar(ln(k̂p ratio)) =
[

1

k̂p,x
− 1

dk̂p,y

] [V ar(k̂p,x) 0

0 V ar(k̂p,y)

] [ 1

dk̂p,x

− 1

dk̂p,y

]
. (71)

Hence

V ar(ln(k̂p ratio)) =
V ar(k̂p,x)

k̂2
p,x

+
V ar(k̂p,y)

k̂2
p,y

(72)
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and the estimated variance of the ln(k̂p ratio) is

̂V ar ln(k̂p ratio) =
̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

. (73)

The (1− α)100% confidence interval for the ln(kp ratio) can be computed as

ln(k̂p,x)− ln(k̂p,y)± Z(1−α
2

)

√√√√ ̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

(74)

and exponentiating the expression we have the (1 − α)100% confidence interval for

the kp ratio as

k̂p,x

k̂p,y
exp

± Z(1−α
2

)

√√√√ ̂V ar(k̂p,x)
k̂2
p,x

+
̂V ar(k̂p,y)
k̂2
p,y

 . �
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4.3 Simulation Results

To test this method of building confidence intervals for the ratio of uniform per-

centiles, simulations were done. Two random random samples were generated using

the R statistical software [8]. The first random sample was generated from a uniform

distribution with minimum and maximum fixed at 1 and 3 respectively and the second

sample was generated from a uniform distribution with minimum and maximum fixed

at 2 and 5 respectively. The simulation process involved 100000 runs for each set of

sample sizes and the resulting empirical coverage rates were recorded. Table 3 shows

some of the empirical coverages rates from the simulations. The empirical coverage

can be seen to converge to 0.95 in Figure 3.
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Table 3: Empirical Coverage Rates of 90%, 95% and 99% Confidence Intervals for

the Ratio of Percentiles from Two Uniform populations.

percentiles n m 90% 95% 99%
10 50 0.7412 0.7857 0.8523
50 100 0.8643 0.9005 0.9449
10 10 0.8301 0.8796 0.9401
50 50 0.8852 0.9261 0.9664

p = 0.10 100 100 0.8940 0.9305 0.9693
200 200 0.8979 0.9328 0.9717
500 500 0.8981 0.9356 0.9723
50 10 0.7756 0.8143 0.8773
100 50 0.8828 0.9219 0.9636
10 50 0.8093 0.8566 0.9129
50 100 0.8872 0.9259 0.9672
10 10 0.8204 0.8768 0.9412
50 50 0.8865 0.9297 0.9714

p = 0.40 100 100 0.8946 0.9349 0.9741
200 200 0.8984 0.9372 0.9758
500 500 0.9015 0.9395 0.9775
50 10 0.8139 0.8616 0.9190
100 50 0.8906 0.9285 0.9714
10 50 0.8089 0.8577 0.9132
50 100 0.8880 0.9230 0.9640
10 10 0.8226 0.8737 0.9353
50 50 0.8870 0.9293 0.9712

p = 0.70 100 100 0.8947 0.9330 0.9741
200 200 0.8995 0.9363 0.9758
500 500 0.9017 0.9391 0.9752
50 10 0.8165 0.8619 0.9177
100 50 0.8884 0.9264 0.9671
10 50 0.7761 0.8238 0.8860
50 100 0.8734 0.9114 0.9537
10 10 0.8241 0.8746 0.9351
50 50 0.8871 0.9267 0.9674

p = 0.90 100 100 0.8962 0.9328 0.9697
200 200 0.8983 0.9358 0.9727
500 500 0.9016 0.9361 0.9733
50 10 0.7814 0.8302 0.8923
100 50 0.8825 0.9188 0.9606
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In Figure 3, the values 1 − 5 on the x − axis have been allocated to sets of

samples sizes in increasing order. On the y − axis we have the empirical coverage

rates for 95% confidence interval at p = 0.10. For the first case where n < m we

have 1, 2, 3, 4 and 5 corresponding to to the (10, 50), (50, 100), (100, 200), (150, 250)

and (200, 500) sample size combinations. For the second case where n = m we

have 1, 2, 3, 4 and 5 corresponding to to the (10, 10), (50, 50), (100, 100), (200, 200) and

(500, 500) sample size combinations. For the third case where n > m we have 1, 2, 3, 4

and 5 corresponding to to the (50, 10), (100, 50), (200, 100), (250, 150) and (500, 200)

sample size combinations.

Figure 3: Coverage Rates vs Sample Size for Ratio of Uniform Percentiles at p = 0.10
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5 CONCLUSION

The method used to compute an approximate confidence interval for ratio of per-

centiles from the three distributions can be extended to other distributions. Typically,

the approximate coverage probability for a ratio can be improved by first applying

the delta method to the natural log function. The interval for the ratio can be found

by exponentiating the end points of the interval found based on the natural log trans-

formation.

5.1 Results

From the simulations results in Tables 1 − 3, it can be seen that the empirical

coverage rates are largely dependent on the sample sizes. Obviously, it can be seen

that the larger the sample size the better the coverage. There are a few variations

which correspond to whether the samples sizes in question are equal or not equal and

other variations may occur as a result of changing the population parameters. When

the sample sizes are unequal, the coverage can be low if the larger of the two sample

sizes corresponded to the population that had the larger variability. For the uniform

distribution, the coverage is slow to converge to the specified level of confidence. This

may be due to the fact that the order statistics are biased estimators of the parameters

or it may be caused by the kurtosis present in the uniform distribution.

5.2 Limitations

There are two main limitations associated with this method of computing confi-

dence intervals.
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First is the fact that this method only works for populations whose underlying

distribution is known. If one intends to apply this method on any collected data,

then one must determine what kind of distribution the data comes from otherwise the

method cannot be used. A possible distribution-free method known as bootstrapping

may be a solution.

Secondly the method is dependent on sample size and may not be reliable for very

small sizes. For the uniform distribution this method may be only reliable for sample

sizes greater than or equal to 50.

This method also relies on the central limit theorem thus the reason for the use

of the Z-statistic. Other minor problems may arise from the difficulty to determine

the maximum likelihood estimators and the unbiased estimators for the population

parameters. This can be seen in the case of the uniform distribution where order

statistics were used and this made the whole process quite lengthy and cumbersome.
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APPENDICES

Appendix A: R Code for the CI of Normal Percentiles Ratio [8]

confidence interval = function(n1,n2,mu1,sig1,mu2,sig2,alpha,p){

z=qnorm(1-alpha/2)

zp=qnorm(p) #z for the pth percentile

#sample1=(insert sample 1 here)

#sample2=(insert sample 2 here)

sample1=rnorm(n1,mu1,sig1) #random normal sample 1

sample2=rnorm(n2,mu2,sig2) #random normal sample 2

c1 = (sqrt((n1-1)/2)*gamma((n1-1)/2))/gamma(n1/2) #constant for

removing std dev bias

c2 = (sqrt((n2-1)/2)*gamma((n2-1)/2))/gamma(n2/2) #constant for

removing std dev bias

#lnc1 = log(sqrt((n1-1)/2)) + lgamma((n1-1)/2) - lgamma(n1/2)

# if n1 is large (outside gamma function)

#c1 = exp(lnc1)

#lnc2 = log(sqrt((n2-1)/2)) + lgamma((n2-1)/2) - lgamma(n2/2)

# if n2 is large (outside gamma function)

#c2 = exp(lnc2)

mean1=mean(sample1) #mean of sample 1

mean2=mean(sample2) #mean of sample 2

sd1=sd(sample1) #standard deviation of sample 1
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sd2=sd(sample2) #standard deviation of sample 2

kp1=mean1+(c1*zp*sd1) # MVUE of the pth percentile 1

kp2=mean2+(c2*zp*sd2) # MVUE of the pth percentile 2

var kp1 hat=(sd1^ 2/n1)*(1 + n1*zp^ 2*(c1^ 2 - 1)) # estimated

variance of kp1

var kp2 hat=(sd2^ 2/n2)*(1 + n2*zp^ 2*(c2^ 2 - 1)) # estimated

variance of kp2

kp ratio=kp1/kp2 # estimated percentile ratio

var lnratio = var kp1 hat/kp1^ 2 + var kp2 hat/kp2^ 2 #variance

of the natural log of kp ratio

lb = kp ratio*exp(-z*sqrt(var lnratio)) #lower limit of the

percentile ratio confidence interval

ub = kp ratio*exp(z*sqrt(var lnratio)) #upper limit of the

percentile ratio confidence interval

list(c1,c2,mean1,mean2,sd1,sd2,kp1,kp2,var kp1 hat,var kp2 hat,lb,ub)

#list all the statistics defined above that you desire to compute }

confidence interval(200,100,20,3,30,2,.05,.1) # insert your values

here
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Appendix B: R Code for the CI of Exponential Percentiles Ratio[8]

confidence interval = function(n1,n2,mu1,mu2,alpha,p){

z=qnorm(1-alpha/2) #100pth percentile of the standard normal N(0,1)

#sample1=(insert sample 1)

#sample2=(insert sample 2)

sample1=rexp(n1,mu1) #randomly generated exponential sample 1

sample2=rexp(n2,mu2) #randomly generated exponential sample 2

mean1=mean(sample1) #mean of sample 1

mean2=mean(sample2) #mean of sample 2

kp1 = -mean1*log(1-p) #100pth percentile of sample 1

kp1 = -mean2*log(1-p) #100pth percentile of sample 2

ratio hat=kp1/kp2 #ratio of the two 100pth percentiles

var lnratio = 1/n1 + 1/n2 #variance of the natural log of ratio hat

lb = ratio hat*exp(-z*sqrt(var lnratio)) #lower bound of confidence

interval

ub = ratio hat*exp(z*sqrt(var lnratio)) #upper bound of confidence

interval

list(mean1,mean2,kp1,kp2,ratio hat,lb,ub) #list all the statistics

required

}

confidence interval(100,200,1/10,1/20,.05,.1) #Insert your values here
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Appendix C: R Code for the CI of Uniform Percentiles Ratio [8]

confidence interval= function(n1,n2,a,b,c,d,alpha,p){

z=qnorm(1-alpha/2)

#sample1=(insert sample 1 here)

#sample2=(insert sample 2 here)

sample1=runif(n1,a,b) #random uniform sample 1

sample2=runif(n2,c,d) #random uniform sample 2

x=sort(sample1) # sort sample 1 ascending

y=sort(sample2) # sort sample 2 ascending

kp1=x[1]+(x[n1]-x[1])*p # MVUE of the 100pth percentile 1

kp2=y[1]+(y[n2]-y[1])*p # MVUE of the 100pth percentile 2

var kp1=(((x[n1]-x[1])^ 2)*((n1*(1-p)^ 2)+(n1*p^ 2)+(2*p*(1-p))))/

((((n1+1)^ 2)*

(n1+2))*(kp1^ 2)) #variance of kp1

var kp2=(((y[n2]-y[1])^ 2)*((n2*(1-p)^ 2)+(n2*p^ 2)+(2*p*(1-p))))/

((((n2+1)^ 2)*

(n2+2))*(kp2^ 2)) #variance of kp2

kp ratio=kp1/kp2 #estimated percentile ratio

var lnratio = (var kp1)+(var kp2) #variance of natural log of

percentile ratio

lb = kp ratio*exp(-z*sqrt(var lnratio)) #lower limit of percentile

ratio confidence interval

ub = kp ratio*exp(z*sqrt(var lnratio)) #upper limit of percentile
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ratio confidence interval

list(mean(sample1),mean(sample2),kp1,kp2,kp ratio,lb,ub) #list desired

statistics

}

confidence interval(200,100,1,3,2,5,.05,.1) # insert your values here
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