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ABSTRACT 

Survival Model and Estimation for Lung Cancer Patients 

by  

Xingchen Yuan 

 

Lung cancer is the most frequent fatal cancer in the United States. Following the notion 

in actuarial math analysis, we assume an exponential form for the baseline hazard 

function and combine Cox proportional hazard regression for the survival study of a 

group of lung cancer patients. The covariates in the hazard function are estimated by 

maximum likelihood estimation following the proportional hazards regression analysis. 

Although the proportional hazards model does not give an explicit baseline hazard 

function, the baseline hazard function can be estimated by fitting the data with a non-

linear least square technique. The survival model is then examined by a neural network 

simulation. The neural network learns the survival pattern from available hospital data 

and gives survival prediction for random covariate combinations. The simulation results 

support the covariate estimation in the survival model. 
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CHAPTER 1 

INTRODUCTION 

 

Cancer develops when the cells in a part of the body begin to grow out of control. 

It is the second most significant reason for US mortality.  In 2001, cancer caused 553,768 

deaths in the United States, which accounted for 22.9% of all deaths in that year1 (Table 

1.1). In the past fifty years, efforts have been made to reduce death rates for different 

diseases, but the death rate for cancer remains almost unchanged2 (Figure 1.1).  

 

Table 1.1 Cause of Death Distribution in USA 

RANK CAUSE OF DEATH NO. OF DEATH % OF ALL DEATH 

1 Heart Diseases 700,142 29.0 

2 Cancer 553,768 22.9 

3 Cerebrovascular diseases 163,538 6.8 

4 Chronic lower respiratory diseases 123,013 5.1 

5 Accidents (Unintentional injuries) 101,537 4.2 

6 Diabetes mellitus 71,372  3.0 

7 Influenza and Pneumonia 62,034 2.6 

8 Alzheimer’s disease 53,852 2.2 

9 Nephritis 39,480  1.6 

                                                 
1 Source: US Mortality Public Use Data Tape 2001, National Center for Health Statistics, Centers for 
Disease Control and Prevention, 2003.  
 
2 Sources: 1950 Mortality Data - CDC/NCHS, NVSS, Mortality Revised. 2001 Mortality Data–NVSR-
Death Final Data 2001–Volume 52, No. 3.  
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Figure 1.1 Changing of Death Rates in Last 50 Years 

Left column: 1950; Right column: 2000 

Among different types of cancers, lung cancer is the most frequent fatal cancer in 

the United States for both men and women. Each year, there are about 170,000 new cases 

of lung cancer in the U.S.A. and 150,000 deaths attributable to this disease. Men are 

affected somewhat more frequently (100,000 cases/year) than women (70,000 cases/year). 

Worldwide, there are 1 million new cases per year. Over the past 5 decades, the number 

of yearly cases has increased, and the worldwide incidence may double to 2 million per 

year in the coming decade. The average patient is 60 years old, and only 1% of patients 

are under 40 years old. Historically, about 90% of patients have died from the disease. 

 Recently, there has been a great deal of interest in modeling survival data of 

cancer patients (see [2], [8], [12] for example). Survival analysis is concerned with 
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studying the time between entry to a study and a subsequent event, such as death. In 

practice, after a lung cancer patient is hospitalized, medical data regarding the patients’ 

condition is recorded. This data set may include information such as the patient’s survival 

time, the tumor’s stage, the health grade, the disease free time etc. With these data, we 

wish to predict a patient’s survival chance, or a group of patients’ survival distribution 

over time. 

 The goal of this study was to develop a survival model for relating the hospital 

data profile to censored survival data such as time to cancer death or recurrence. 

Censored survival times occur if the event of interest (i.e., death) does not occur for a 

patient during the study period. Traditionally, there are two approaches to modeling the 

unknown survival distribution. One is to assume a classical parametric model such as 

normal, lognormal, gamma, Weibull, Pareto or beta, and then use a histogram, kernel or 

other nonparametric estimate of the unknown density function. In [5], a survival density 

curve is estimated using a logspline model for lung cancer patients. This method is 

straightforward, but cannot reflect the contribution of patients’ hospital conditions to the 

survival distribution. Another approach is the proportional hazards model, which was first 

proposed by Cox in 1972 and is also well-known as the Cox regression model [7]. The 

model can incorporate the patients’ hospital conditions as a vector of covariates in the 

hazard function and can estimate the unknown parameters for the covariates by partial 

likelihood without assuming a structure of baseline hazard. In this study, however, we 

proposed an exponential structure of the baseline hazard function following the notion in 

actuarial mathematics, and estimated the parameters by the available censored survival 

data so that the explicit survival function was determined. This estimation was achieved by 
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a least squares fit for the cumulative hazard value computed by the statistical software, 

SPSS. 

 In a survey study, the design parameters for the survey are sometimes related to 

the hazard function but are not fit into the model. On some other occasions, the 

independence assumption of the covariates may be violated. Sometimes correlations exist 

within each level of nesting. This could cause biases and affect variances of parameter 

estimation [10,11]. Therefore, tests need to be done to evaluate the goodness of the 

estimated survival function. There are two popular ways to test the model in the survival 

analysis. One is to use 1/2 or 2/3 of the time scale in the survival data to determine the 

parameters and then use the whole data set to validate the model; another is to use the 

whole data set to set up the model, and then use a resample method to check the model. 

In this study, due to the lack of patient data, we proposed a neural network model to 

simulate the patients’ survival pattern and used the neural network to generate a long list 

of “virtual data” to test the survival model. 

 The thesis is organized as follows: In chapter 2, we give a description for the 

survival model. In this chapter, we first introduce the concepts of hazard function and 

survival function and their relationship, followed by an outline of the method of 

proportional hazard model, after which we propose and justify the exponential form for 

baseline hazard function. In chapter 3, we discuss the parameter estimation by statistical 

methods including maximum likelihood estimation (MLE) and non-linear least square 

estimation (LSE). We also introduce the idea and concept of neural network and set up 

the proper neural network by Matlab programs for test purposes. In chapter 4, we present 
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the computational result with actual patient data. Discussions and conclusions are given 

in chapter 5. 
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CHAPTER 2 

DESCRIPTION OF MODELS 

2.1 Survival Function and Hazard Function 

 Following the notion in Actuarial Mathematics [4], we denote by T a non-negative 

random variable representing the failure time of an individual in the population. If T is 

distributed with a probability density function (pdf) f(t), then the cumulative distribution 

function (cdf) is  

{ } ∫=≤=
t

dzzftTtF
0

)(Pr)( ,                                           (2.1) 

which gives the probability that the event has duration t. The survival function, S(t), is 

defined as the complement of the cdf of T. That is, 

{ } ∫
∞

=−=>=
t

dzzftFtTtS )()(1Pr)(                                (2.2) 

The survival function gives the probability of being alive at duration t. Naturally, 

we have S(0)=1 and  as 0)( →tS ∞→t . 

An alternative characterization of the distribution of T is given by the hazard 

function. Sometimes it is also called the force of mortality, the mortality intensity 

function, or the failure rate. The hazard function is the probability that an individual will 

experience an event (for example, death) within a small time interval, given that the 

individual has survived up to the beginning of the interval. It can therefore be interpreted 

as the instantaneous risk of occurrence of dying at time t.  

The hazard function h(t) can be expressed using the following equation: 
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{ }
dt

tTdttTt
th

dt

>+≤<
=

→

Pr
lim)(

0                                        (2.3) 

The numerator of this expression is the conditional probability that the event will occur in 

the interval (t, t+dt) given that it has not occurred before, and the denominator is the 

width of the interval. We obtain a rate of event occurrence per unit of time. Taking the 

limit as the width of the interval goes down to zero, we obtain an instantaneous rate of 

occurrence. 

 The conditional probability in the numerator may be written as the ratio of the 

joint probability that T is in the interval (t, t + dt) and T > t, to the probability of the 

condition T > t. The former may be written as f(t)dt for small dt, while the latter is S(t) by 

definition. Dividing by dt and taking the limit, we obtain  

( )

)(
)('

)(

)(

)(

)(1

)(

)(

)(
)()(

tS
tS

tS

tS
dt
d

tS

tS
dt
d

tS

tF
dt
d

tS
tfth

−=

−
=

−
==

=

                                  (2.4) 

This equation suggests the relationship between the survival function and the hazard 

function. That is, the rate of occurrence of the event at duration t equals the density of 

events at t divided by the probability of surviving to that duration without experiencing 

the event. 

 Furthermore, equation (2.4) suggests that  

)(log)( tS
dt
dth −= ,                                                  (2.5) 

and then,  
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CdzzhtS
t

+−= ∫0 )()(log
.                                           (2.6) 

The boundary condition S(0)=1 implies C=0, and thus 

{ }∫−=
t

dzzhtS
0

)(exp)(   .                                           (2.7) 

Combining (2.7) with (2.4), we get 

{ }∫−==
t

dzzhthtSthtf
0

)(exp)()()()(  .                               (2.8) 

 

2.2 Survival Times and Kaplan-Meier Method 

In our study, the survival time is counted as the time period from lung cancer 

detection to death. A significant feature of survival times is that the event of interest is 

very rarely observed in all subjects. For example, although the patients may be followed 

up for several years, there will be some patients who are still alive at the end of the study. 

We do not, therefore, know what their survival time is after the cancer detection. Such 

survival times are termed censored. There are also many other reasons leading to 

censoring, such as 

• Death from unrelated causes 

• Loss of follow-up 

• Termination of study 

From a set of observed survival times (including censored times) in a sample of 

individuals, we can estimate the proportion of the population of such people who would 
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survive a given length of time under the same circumstances. This method is called the 

product limit or Kaplan-Meier method.  

Suppose there are n individuals and k distinct failure times t1 < t2 < … < tk. Let dj 

be the number deaths at time tj. Let nj be number of individuals at risk at time tj, that is 

the number of individuals alive and uncensored just prior to time tj. If a censoring time is 

a tj, they are assumed to be censored just after the deaths. 

With these assumptions, the Kaplan-Meier estimator for the survival function is 

∏
<

−
=

ttj j

jj

j
n

dn
tS

:

)(ˆ  .                                                  (2-9) 

This gives the same answer no matter if there is censoring or not. 

 However, Kaplan-Meier has its limitation. It only allows comparisons with 

discrete predictors; besides, it does not allow for additional structure to be included in the 

analysis. To permit the patients’ hospital conditions as a vector of covariates in the hazard 

function and survival function, we may consider the Cox regression, i.e., the proportional 

hazards model. 

 

2.3 Cox Regression 

A Cox model is a well-recognized statistical technique for exploring the 

relationship between the survival of a patient and a set of explanatory variables (see [1], 

[16] for example). We call these explanatory variables covariates.  

Suppose that we have collected n patients with lung cancer. For the ith patient, let 

(ti; δi) be the observed phenotype, where ti is the failure time (or when death happens) 
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when δi =1, and is the censoring time (e.g., time of last known being cancer-free) when δi 

= 0. Let be the vector of p covariates for the i),( 1 ipii xxx L= th sample taken from the ith 

patient. We assume the following general Cox model and the hazard function for the ith 

patient is modeled as 

 ))(exp()()( 0 ii xfthxth = ,                                         (2.10) 

where h0(t) is called the baseline hazard function. Although f(xi) may assume many 

formats, a popular and simple model for f(x) is   

pipiii xxxxf βββ ++== L11)(                                  (2.11) 

where β is a column vector of coefficients. In this equation, it is assumed that the effects 

of the different covariates on survival are constant over time and are addictive in a 

particular scale. A Cox model makes no assumptions about the form of h0(t), but assumes 

a parametric form for the effect of the covariates (predictors) on the hazard. In this sense, 

a Cox model is a semi-parametric model. 

The parameter β can be estimated by the partial likelihood method. Let the 

observed follow up time of the ith individual be ti with corresponding covariates xi, i = 

1, …, n. The conditional probability for ith individual failing at ti given that the individual 

is from the risk set R(ti) (i.e., R(ti) = { j: tj >= ti}) is [10] : 

∑
∈ )(

0

0

)exp()(
)exp()(

itRl
li

ii

xth
xth

β
β .                                                (2.12) 

Assume there are K failures; the partial likelihood function is then: 

∏ ∑=
∈

K

i
tRl

l

i

i

x
x

1
)(

)exp(
)exp(
β

β
.                                                (2.13) 
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Recalling the definition of δi at the beginning of this section, the partial likelihood 

function can be expressed as: 

i

n

i
n

j
jj

i

xty

x
L

δ

β

β
β ∏

∑=

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
1

1
)exp()(

)exp(
)( ,                                    (2.14) 

where when , otherwise 0)( =ty j jtt ≤ 1)( =ty j . Equation (2.14) can be also written as 

∏
∑ ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

=

uncensoredi
n

j
jj

i

xty

x
L

_

1
)exp()(

)exp(
)(

β

β
β .                               (2.15) 

For a sample of size n, the log partial likelihood for expression (2.15) is  

∑ ∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−==

=uncensoredi

n

j
jji xtyxLl

_ 1
)exp()(log)(log)( ββββ .               (2.16) 

The maximum partial likelihood estimation of β can be obtained as a solution of the equation 

0)(
=

∂
∂
β
βl ,  

and thus, 

0
)exp()(

)exp()(

_

1

1 =−∑
∑

∑

=

=
n

uncensoredi
n

j
jj

n

j
jjj

i

xty

xxty
x

β

β
.                              (2.17) 

Cox and others have shown that this partial log-likelihood can be treated as an 

ordinary log-likelihood to derive valid (partial) MLE of β. Therefore we can estimate 

hazard ratios and confidence intervals using maximum likelihood techniques and the 
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principle will be discussed in the next chapter. To avoid the baseline hazard, estimates are 

based on the partial as opposed to the full likelihood. 

 Usually, Cox proportional hazard regression model is a very useful tool to 

estimate the coefficients in a linear combination of covariates in survival analysis since 

both the SAS PHREG procedure and the SPSS Survival Package perform regression 

analysis of the survival data based on the proportional hazards model. However, because 

of the nature of proportional hazard regression, neither software packages give an explicit 

function expression for the baseline hazard function h0(t). In the next section, we will 

justify an explicit function of the baseline hazard function h0(t) and also estimate the 

parameters in h0(t) using non-linear least square technique based on the result obtained 

from the Cox regression for the survival function fitting the data set of lung cancer 

patients. 

 

2.4 Baseline Hazard for Lung Cancer Patients 

Like any cancer, the exact reason why people get lung cancer remains unknown. 

However, studies have shown that certain factors are strongly correlated with an increase 

in lung cancer. By rank, these factors are listed below [13]: 

1. Tobacco smoking or exposure to smoke 

2. Carcinogen exposures 

3. Radiation exposure 

4. Miscellaneous risks factors (such as old scars in the lungs) 

The first three factors involve an interaction between an individual and the 

environment. Presumably, an individual is continuously exposed to and absorbs certain 
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levels and amounts of smoke, radiation, or some kind of toxic material like a carcinogen 

which leads to lung cancer. Although a portion of the absorbed toxic material is 

discharged from the body, the cumulative effect of retained toxins contributes to the 

individual’s death [6]. 

For a given τ in [0,t] and the infinitesimal time element [τ, τ+dτ], let the sum 

δdτ+o(dτ) be the probability that a unit of toxic material is absorbed during [τ, τ+dτ] and 

the sum υdτ+o(dτ) be the probability that a unit of toxic material in the body is 

discharged during [τ, τ+dτ]. Assuming that δ and υ are independent of time, then the 

probability that an individual will absorb a unit of toxic material during [τ, τ+dτ] and will 

retain it in his or her body up to time t is given by (see [6]) 

{ }υττδ )(exp −− td .                                       (2.18) 

Integrating (2.18) over all possible value of τ yields 

{ } {[ tdt
t

⋅−−=−−∫ υ }]
υ
δτυτδ exp1)(exp

0
 ,                          (2.19) 

The quantity in (2.19) is the expected amount of toxic material absorbed during 

the interval [0, t] and present in the body at time t. It also suggests a possible function 

format for the hazard for “exposure-caused cancer types.” Suppose the baseline hazard 

for lung cancer patients is proportional to the quantity in (2.20), i.e., 

( )exp(1)(0 bt
b
ath −−= ) .                                          (2.20) 

Defining the cumulative baseline hazard function, H0(t), by integrating h0(t) and 

applying boundary condition h0(0)=0 yields 

( ⎥⎦
⎤

⎢⎣
⎡ −−−== ∫ )exp(11)()(

0 00 bt
b

x
b
adxxhtH

t ) .                        (2.21) 
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CHAPTER 3 

STATISTICS METHODS AND NEURAL NETWORK 

3.1 Maximum Likelihood Estimation 

Maximum likelihood estimation begins with writing a mathematical expression 

known as the likelihood function of the sample data. Loosely speaking, the likelihood of a 

set of data is the probability of obtaining that particular set of data, given the chosen 

probability distribution model. This expression contains the unknown model parameters. 

The values of these parameters that maximize the sample likelihood are known as the 

maximum likelihood estimates (MLE).  

Maximum likelihood estimation is a totally analytical maximization procedure. It 

applies to every form of censored or multi-censored data, and it is even possible to use 

the technique across several stress cells and to estimate acceleration model parameters at 

the same time as life distribution parameters. Moreover, MLE and likelihood functions 

generally have very desirable large sample properties:   

• They become unbiased minimum variance estimators as the sample size increases. 

• They have approximate normal distributions and approximate sample variances 

that can be calculated and used to generate confidence bounds.  

• Likelihood functions can be used to test hypotheses about models and parameters.   

Although MLE has many good attributes, it has an important drawback in that, 

with small numbers of failures (say less than 30 or sometimes less than 50), MLE might 

be heavily biased and the large sample optimality properties do not apply.  
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Let X be a continuous random variable with pdf 

),,;( 21 pxf βββ L                                                      (3.1) 

where pβββ L21 ,  are p unknown constant parameters which need to be estimated.  

Let . One conducts an experiment and obtains N independent 

observations, , which correspond in the case of life data analysis to failure 

times. The likelihood function is given by 

),( 21 p
T ββββ L=

Nxxx L21 ,

∏
=

==

=
N

i
pi

pN

Nixf

xxxLL

1
21

2121

.,,2,1),,,,;(
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LL
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βββ
                              (3.2) 

The Logarithmic function is 

(∑
=

==
N

i
pixfLl

1
21 ),,,;(loglog βββ L ).                              (3.3) 

For the survival analysis, we assume (2.9) and (2.10). Then the pdf becomes 

.)exp()(exp)(
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The log-likelihood function l(β) has the expression 
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When taking partial derivatives with respect to β to maximize l, the computation 

becomes very difficult. That is why in a Cox model, a proportional hazard model is used 

so that the term h0(z) can be cancelled out for MLE calculation. 

Recall (2.16), the maximum likelihood estimation for β
)

 is ( ) 0=β
)

s , where the 

score function 
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2

1

M

.                                                           (3.6) 

One of the nonlinear algorithms to compute this maximization is the Newton-Raphson 

iteration. The Newton-Raphson algorithm for computing β
)

 starts with an initial guess 

)0(β
)

 and iteratively determine )(mβ
)

 by using the formula 
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where 

( ) ( )

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

⋅=

⋅−=

ppp

p

p

lll

lll

lll

N

HessianNU

β
β

ββ
β

ββ
β

ββ
β

β
β

ββ
β

ββ
β

ββ
β

β
β

ββ

2

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

1
2

2

)()()(

)()()(

)()()(

L

MOMM

L

L

.                           (3.8) 

 24



The Hessian matrix is positive definite, so it is strictly concave on β. However, the 

computation is obviously tough work. In practice, we use software to carry out this 

process for MLE. 

 

3.2 Non-Linear Least Square Fit 

Least square regression (LSE) is a very popular and useful tool used in statistics 

and many other fields. Suppose we want to find a relationship between a dependent 

(response) variable Y and an independent (predictor) variable X, under a statistical 

relation  

εθ += )(XgY ,                                                   (3.9) 

where ε is the error, and θ is a vector of parameters to be estimated in function g. If g 

assumes a non-linear format in terms of X, we are facing a non-linear regression. 

For , , let ( )TmxxxX L21,= ( )TmyyyY L21,=

( )θθ iiiii xgyyyf −=−= ˆ)( .                                       (3.10) 

Then, the non-linear least square regression is to find  which minimizes , where θ̂ )ˆ(θF

)(θF  is defined as  

( ) )()(
2
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2
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2
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1

22 θθθθθ ffffF T
m

i
i∑

=

=== .                   (3.11) 

There are many algorithms for finding  including Gauss-Newton method, 

Levenberg-Marquardt method, Powell’s Dog Leg method, etc. (see [7]). We will use the 

θ̂
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Gauss-Newton method. It is based on implementing first derivatives of the components of 

the vector function. In some special cases, it can give quadratic convergence the same as 

the Newton-method does for general optimization (see [8]). 

The Gauss–Newton method is based on a linear approximation to the components 

of f in the neighborhood of θ. For small h  we see from the Taylor expansion that 

hJfhlhf )()()()( θθθ ⋅≡=+ .                                       (3.12) 

J is the Jacobian matrix. Inserting this to the definition for F we get 

.
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                             (3.13) 

The Gauss-Newton step h  minimizes L(h). ˆ

In real practice, the Gauss-Newton least squares fit for baseline hazard function 

can be achieved by using Matlab software package.  

 

3.3 Neural Network Testing 

 In the Cox model, the main interest is usually about the parameter vector β. 

However, when one is interested in making predictions about the failure time for a given 

set of covariates, or when one assumes a parametric family for the baseline hazard 

function, just as what we have done, then it becomes important to test that h0 is equal to 

some specified hazard rate function or to evaluate how stable h0 is for different data 
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sources [15]. In the field survival analysis, there are two popular ways to test a model. 

One is to use 1/2 or 2/3 of the time scale in the survival data to determine the parameters 

and then use the whole data set to examine the model. In our study, however, because of 

the short length of data (total 66 rows, among which around two-thirds are censored) and 

the high data demand from MLE (refer to section 3.1), this solution is not feasible. 

Another way is to use the whole data set to set up the model then use a resample method 

to check the model. As we have known, MLE relies heavily on the given data set, 

especially when the length of data is not too long. If we randomly resample the original 

data, the selected data for testing may be far from the “pattern” of the whole data set, e.g., 

have quite different mean and variance.  

 In the following, we propose an artificial neural network (ANN) testing model. 

First we let the ANN “learn” the patients’ survival pattern from the given hospital data. 

Next, we use the ANN to generate a long list of “virtual data” and “simulate” the survival 

pattern, to test our covariate estimation and baseline hazard estimation. By this process, 

we also show the great potential as a research tool in survival analysis. 

 The concept of a neural network came up as early as the middle of this century. A 

Neural Network is an information processing paradigm that is inspired by the way biological 

nervous systems, such as the brain, process information. Or simply speaking, it is software 

that is "trained" by presenting it examples of input and the corresponding desired output.  

 Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that are 

too complex to be noticed by either humans or other computer techniques. A trained 
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neural network can be thought of as an "expert" in the category of information it has been 

given to analyze. 

 The typical structure of a feed forward neural network consists of a layer of d 

(the dimension of the futures) input units, a layer of output units, and a variable number 

of hidden layers of units, as shown in Figure 3.1. Generally, more layers result in higher 

accuracy, but also are more time-consuming on computation.  

 The construction of the ANN for this study and test results will be shown in the 

next chapter. 

 

Figure 3.1 Typical Structure of Neural Network 
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CHAPTER 4 

APPLICATION TO LUNG CANCER DATA 

4.1 Data Structure 

A data set records the survival times (S_INT, in months) of the lung cancer 

patients seen at Vanderbilt University School of Medicine Hospital. The data also record 

patients’ hospital conditions including 

 PT: patient term, ranges from T1 to T4 

 PN: occurrence of lymph notes, a symptom of cancer invasion, ranges from N0 

to N2 

 STAGE: pathological diagnosis of cancer and it is ordinal, ranges from 1A to IV 

 DF_INT: disease free time, in months 

 GRADE: the fitness condition when patient in hospital, ranges from well to poor 

 STATUS: indicating if the patient is alive (A) or dead (D). If the Status of a 

patient is “A” (alive), this row of data are censored. 

In our study, we take PT, PN, STAGE, DF_INT, and GRADE as covariates in 

estimation. The original hospital data set records information for 66 patients and is listed 

in Appendix I. To perform the regression, we need to convert the categorical data in PT, 

PN, STAGE, STATUS, and GRADE columns to quantitative data. For example, for 

patient term, let T1=1, T2=2, T3=3 and T4=4.  
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4.2 Estimation for Covariates 

The proportional hazard regression to estimate β was performed by SPSS. The 

results are shown in Appendix II. 

The Cox regression gives the mean and standard deviation for each covariate in 

given data. The β is estimated at a certain significance level. For “patient term” and 

“grade,” β is positive, which means a higher value for these two variables will result in 

higher hazard or risk of death. For “disease free time,” β assumes a negative value. This 

means the longer the patient is disease free, the less likely that he or she will die shortly, 

which is reasonable. The β values for PN and STAGE are both near zero, which indicates 

that these two variables do not associate well with the hazard rate. 

The Cox regression gives baseline cumulative hazard and overall cumulative 

hazard vs. survival time, at the mean value of covariates. To estimate the hazard function, 

we fix the covariates at their mean values, then use least squares regression to estimate 

the parameters a and b in (2.20) by fitting two columns of data in the survival table in 

Appendix II.   

 

4.3 Estimation for Baseline Hazard Function 

Starting from the results from Cox regression, let  

XT=Survival Time=[1 2 3 4 5 6 8 9 11 16 17 18 33], 

HT=Cum Baseline Hazard= [0.006 0.010 0.022 0.029 0.037 0.054 0.065 0.089 

0.129 0.163 0.303 0.377 0.991]. 
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Following the Gauss-Newton least square estimation discussed by section 3.2, we 

find estimations for a and b. The Matlab computation results are summarized below.  

FITTEDMODEL = 
 
    General model: 
    FITTEDMODEL(x) = a/b*(x-1/b*(1-exp(-b*x))) 
    Coefficients (with 95% confidence bounds): 
    a =    0.002185  (0.001524, 0.002845) 
    b =    0.01727  (-0.01574, 0.05029) 

 
GOODNESS =  

sse: 0.0129 
rsquare: 0.9854 
dfe: 11 
adjrsquare: 0.9840 
rmse: 0.0342 

OUTPUT =  
numobs: 13 
numparam: 2 
residuals: [13x1 double] 
Jacobian: [13x2 double] 
exitflag: 1 
iterations: 7 
funcCount: 22 
firstorderopt: 1.4601e-004 
algorithm: 'Gauss-Newton' 

 
The estimated baseline hazard function is 

( ))01727.0exp(11265.0)(0 tth −−=                                     (4-1) 

Figure 4.1 shows the fit for cumulative baseline hazard. Figure 4.2 plots the 

baseline hazard as a function of time. 
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Figure 4.1 Fit for Cumulative Hazard 
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Figure 4.2 Baseline Hazard as a Function of Time  
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4.4 Survival Model Testing 

With the help of MatLab function “newff”, a feed-forward backpropagation 

network is constructed to simulate the survival model. This network has a total of three 

layers: an input layer of dimension 6, a hidden layer of dimension 6, and an output layer 

of dimension 1. The unit of output layer may assume value “0” or “1”, representing 

“alive” and “dead” respectively. More hidden levels have been proven not to improve NN 

performance. Since the output values assume only two possible values, we use “logsig” 

as the nonlinear transfer function between layers. 

When having “traingda / learngdm” as the training / learning function, the NN 

reaches best performance and the error rate for the training set is 9%. The error rate is 

defined as the rate of false “alive-dead” judgments for all 66 training cases. The network 

performance is shown in Figure 4.3. 
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Figure 4.3 Network Performance over Epochs 
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After the ANN is set up, we generate a 1000 ×6 matrix to simulate 1000 patient 

records. Each column of the matrix corresponds to a covariate, and each row stores a 

patient’s information on PT, PN, STAGE, S_INT, D_INT, and GRADE. Then, we use the 

trained ANN to judge the STATUS of the patient, as we “believe” the NN has learned the 

“right” survival pattern of lung cancer patients. 

At first, we generate the data for each column randomly and uniformly distributed 

in the domain. For example, the domain for PN column is the closed interval [1, 4]. All 

numbers are rounded to integers. After a Cox regression analysis, the computation does 

not converge. This result shows that randomly generated data are not acceptable. The 

covariates for lung cancer patients must be distributed with a certain pattern. 

Recall the Cox regression results for the original hospital data. The mean and 

standard deviation for each covariate are calculated. With these results, another 1000 ×6 

matrix is generated. For each column, the generated data assume normal distribution with 

corresponding mean and standard deviation, as shown in Table 4.1. Still, all numbers are 

rounded to integers (disregarding that the rounding may shift the mean and deviations for 

each column).  

 

Table 4.1 Statistics for Hospital Data and ANN Generated Data 

 HOSPITAL DATA ANN GENERATED DATA 
 Mean SD Mean SD 

PN 1.837 0.789 1.858171 0.768 
PT 0.581 0.808 0.668378 0.671 

STAGE 3.350 1.780 3.379877 1.634 
DF_INT 10.050 9.203 7.533881 6.215 
GRADE 2.750 1.157 2.727926 1.048 
S_INT 14.125 9.878 14.03593 8.996 
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After a Cox regression and a least square fit for the cumulative baseline hazard as 

we did before, the baseline hazard for the ANN generated data is plotted as a function of 

time. It is compared to the baseline hazard function we found for the original hospital 

data, as shown in Figure 4.4. 

Furthermore, define the score function 

ββ ⋅= Txxs );( .                                                        (4-2) 

Then the hazard function changes to be  

)exp()()( 0 sthxth i =  .                                                (4-3) 

The score function determines the risk of death. The higher the score, the more 

likely a patient will die (or die sooner). Table 4.2 gives the scores for each patient for the 

NN generated data. 
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Figure 4.4 Estimated Baseline Functions 
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Table 4.2 Patients’ Scores 

PT PN STAGE DF_INT STAT S_INT STATUS SCORE (S_INT)*(STATUS)

2 0 3 1 0 1 -1 0.601 -1 

1 1 5 1 2 1 1 1.865 1 

2 0 3 1 3 1 -1 1.072 -1 

3 0 3 1 2 1 -1 0.676 -1 

2 1 2 1 2 1 -1 0.306 -1 

2 0 5 1 3 1 1 1.952 1 

1 0 3 1 2 1 1 1.154 1 

2 0 2 1 1 1 -1 0.318 -1 

2 1 4 2 2 2 1 0.945 2 

1 1 3 0 3 2 1 1.383 2 

2 2 3 2 3 2 -1 0.493 -2 

1 0 3 2 4 2 1 1.227 2 

1 1 6 2 1 2 1 1.907 2 

2 1 3 2 3 2 -1 0.662 -2 

2 1 2 2 1 2 -1 -0.092 -2 

4 0 6 2 4 2 1 1.83 2 

2 0 4 2 2 2 1 1.114 2 

2 2 1 2 2 2 -1 -0.544 -2 

2 1 3 2 2 2 -1 0.505 -2 

1 2 4 2 0 2 -1 0.701 -2 

1 0 4 2 0 2 1 1.039 2 

2 1 2 3 4 3 -1 0.138 -3 

2 1 6 3 1 3 1 1.427 3 

2 2 2 3 2 3 -1 -0.345 -3 

2 0 2 3 2 3 -1 -0.007 -3 

…………Data Truncated ……… 

3 0 5 10 2 31 -1 -0.613 -31 

1 1 5 8 1 31 -1 0.021 -31 

1 0 1 31 3 31 -1 -6.799 -31 

2 2 4 10 2 31 -1 -1.152 -31 

1 1 5 7 3 33 1 0.576 33 

1 1 2 0 4 33 1 1.1 33 

1 1 5 4 3 34 1 1.299 34 

2 0 5 2 4 34 1 1.868 34 

3 0 3 5 0 34 -1 -0.602 -34 

1 1 4 15 4 34 -1 -1.635 -34 

1 1 3 18 1 34 -1 -3.269 -34 

3 1 6 11 3 34 -1 -0.426 -34 

2 1 2 17 4 34 -1 -3.236 -34 

1 1 3 0 3 34 1 1.383 34 
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A scatter plot for score vs. survival time is shown in Figure 4.5. Notice that time 

assumes a negative value if it is censored (patient is still alive.) 

Figure 4.5 shows that when a patient scores a negative or very small value, he or 

she tends to survive; the lower the score, the longer he or she will live. A high positive 

score means higher percentage of death instead. This proves that proportional hazard 

regression is a good way to estimate β coefficients. 
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Figure 4.5 Scores vs. Time to Death or Censoring 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

1. In this study we set up a survival model for lung cancer patients. This was 

achieved by three steps: using proportional hazard regression to estimate the 

coefficients for five covariates; using non-linear least square fit to estimate the 

exponential baseline hazard function; and using a neural network to examine the 

survival model. The analysis tools used in this research were SPSS, EXCEL and 

Matlab.  

2. MLE is a powerful statistical tool but it has its own limitation. When the data 

length is short, MLE might be heavily biased. In this study, there were data for 66 

patients, but two thirds were censored and only one third is used in MLE. The 

shortage of data results in a not very ideal significance level of the estimation. 

3. Neural network simulation is a new idea for testing the model, especially when 

the original data set is short. Neural network application in survival analysis has 

promising prospects.  

4. Although we assume a linear combination format in the score function, the five 

covariates are believed to be correlated with each other. A randomly generated 

covariate matrix may not result in a convergent Cox regression. 

5. When the NN generated data assume the same mean and SD with the original data, 

they tend to have similar baseline hazard functions by LSE. This supports our 

assumption on the format of baseline function. 

6. The score function provides a good indication for the risk of death. This backs up 

the Cox regression for β estimation. 
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7. Future work includes: 

• Regression for larger volume of hospital data for more stable β estimation.  

• Find out the correlation among the parameters. Assume a more accurate 

model for ( βxf )  in the hazard function and re-formulate the MLE in 

proportional hazards regression. This is tough work but truly worthwhile to do 

in the future. 

• Explore more NN applications in survival analysis. 
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APPENDICES 

 

APPENDIX A 

Patients Data 
 

 # PT PN STAGE STAT S_INT DF_INT GRADE 

1 T1 N2 IIIA D 11 5 mod 

2 T4 N2 IIIB D 11 9 poor 

3 T1 N1 IV D 17 0 poor 

4 T2 N0 IB A 24 24 well-mod 

5 T2 N0 IV D 9 0 mod-poor 

6 T2 N2 IIIA A 21 7 well-mod 

7 T4 N0 IV D 1 1 poor 

8 T1 N0 IA A 21 13 well-mod 

9 T3 N0 IIB D 2 0 mod-poor 

10 T2 N0 IB A 20 20 mod 

11 T1 N0 IA D 3 3 mod 

12 T2 N0 IB A 23 23 poor 

13 T1 N0 IA D 8 8 mod-poor 

14 T2 N1 IIB A 21 21 mod 

15 T2 N0 IB A 20 20 mod 

16 T2 N0 IB D 33 30 mod-poor 

17 T2 N0 IB A 18 18 mod-poor 

18 T2 N2 IIIA D 6 0 poor 

19 T2 N2 IIIA D 3 3 mod-poor 

20 T1 N1 IIA D 5 0 poor 

21 T2 N2 IIIA A 21 17 poor 

22 T2 N0 IB A 23 10 mod-poor 

23 T2 N0 IB A 26 26 well-mod 

24 T2 N0 IB A 26 26 mod 

25 T1 N2 IIIA D 18 0 poor 

26 T2 N1 IIB A 17 17 mod-poor 

27 T2 N0 IIB A 33 9 mod 

28 T2 N0 IB D 17 17 mod 

29 T2 N0 IIB A 42 42 mod-poor 

30 T2 N0 IIB D 16 5 poor 

31 T1 N1 IIA D 1 0 poor 

32 T2 N0 IB D 17 15 poor 

33 T2 N2 IIIA D 9 0 poor 

34 T2 N2 IIIA D 4 0 mod-poor 

35 T2 N0 IB A 2 1 poor 
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36 T2 N0 IB A 5 1 well-mod 

37 T2 N2 IIIA A 6 6 mod 

38 T1 N0 IA A 1 1 well 

39 T1 N0 IA A 1 1 mod 

40 T1 N0 IA A 3 3 mod-poor 

41 T1 N0 IA A 1 1 mod-poor 

42 T1 N0 IA A 1 1 well-mod 

43 T3 N0 IIB A 1 1 well 

44 T1 N0 IA A 1 1 poor 

45 T2 N0 IB A 2 2 poor 

46 T2 N0 IB A 1 1 well-mod 

47 T2 N0 IB A 1 1 mod 

48 T1 N0 IA A 12 0 mod-poor 

49 T1 N2 IIIA A 6 4 mod-poor 

50 T2 N0 IB A 1 1 mod 

51 T2 N0 IB A 3 3 poor 

52 T3 N0 IIB A 10 4 poor 

53 T3 N1 IIIA D 6 6 poor 

54 T2 N0 IB A 1 0 mod 

55 T4 N1 IIIB A 2 0 mod-poor 

56 T2 N0 IB A 1 1 mod 

57 T2 N0 IB A 1 1 mod-poor 

58 T2 N0 IB A 5 4 poor 

59 T1 N2 IIIA A 1 1 poor 

60 T1 N0 IA A 1 1 mod 

61 T1 N0 IA A 7 7 poor 

62 T2 N0 IB A 2 2 mod 

63 T2 N1 IIB A 1 1 mod 

64 T2 N2 IIIA A 11 4 poor 

65 T1 N0 IA A 10 3 poor 

66 T1 N0 IA A 1 1 poor 
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APPENDIX B 

Cox Regression Results 
 
 

Case Processing Summary

 

Block 0: Beginning Block 

Omnibus Tests of Model Coefficients

133.322

-2 Log
Likelihood

 
Block 1: Method = Enter 

 
Variables in the Equation

.550 .326 2.855 1 .091 1.734
-.010 .315 .001 1 .974 .990
-.057 .182 .099 1 .753 .944
-.141 .050 8.131 1 .004 .868
.418 .280 2.219 1 .136 1.518

PT
PN
STAGE
D_FREE
GRADE

B SE Wald df Sig. Exp(B)

 

20 30.3% 
46 69.7% 
66 100.0% 
0 .0% 
0 .0% 

0 .0% 

0 .0% 

66 100.0% 

Event 
Censored
Total

Cases available 
in analysis 

Cases with missing
values
Cases with negative time
Censored cases before
the earliest event in a
stratum
Total

Cases dropped 

Total 

Percent N

 Note: Dependent Variable: S_TIME

Omnibus Tests of Model Coefficients

109.761 19.581 5 .001 23.561 5 .000 23.561 5 .000

-2 Log 
Likelihood Chi-square df Sig.

Overall (score) 
Chi-square df Sig.

Change From Previous Step
Chi-square df Sig.

Change From Previous Block

.  
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Covariate Means

1.833
.515

3.000
6.879
2.788

PT
PN
STAGE
D_FREE
GRADE

Mean

 
Survival Table 

 

At mean of covariates 

Time 
Baseline Cum 

Hazard Survival SE Cum Hazard 
1.00 .006 .983 .012 .017 
2.00 .010 .971 .018 .029 
3.00 .022 .939 .030 .062 
4.00 .029 .922 .036 .082 
5.00 .037 .903 .042 .102 
6.00 .054 .860 .053 .151 
8.00 .065 .835 .061 .181 
9.00 .089 .780 .073 .248 
11.00 .129 .698 .091 .359 
16.00 .163 .635 .105 .455 
17.00 .303 .431 .123 .842 
18.00 .377 .350 .121 1.050 
33.00 .991 .064 .115 2.755 
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APPENDIX C 

Selected Matlab Programs 
 
 
 
%This program is to find out baseline hazard function by non-linear least 
%square fit using original hospital data 
%Also plot h0(x) and H0(x) 
%Last revised on 10/02/04 
%Copyrighted by Xingchen Yuan 
 
clear; 
 
T=[1 2 3 4 5 6 8 9 11 16 17 18 33]'; 
H=[0.006 0.010 0.022 0.029 0.037 0.054 0.065 0.089 0.129 0.163 0.303 0.377 0.991]'; 
plot(T,H,'rx'); 
hold on; 
 
g=fittype('a/b*(x-1/b*(1-exp(-b*x)))'); 
F = FITOPTIONS('METHOD','NonlinearLeastSquares','StartPoint',[0.1,0.1]); 
[FITTEDMODEL,GOODNESS,OUTPUT]=fit(T,H,g,F) 
 
a=0.002185; 
b=0.01727; 
c=a/b; 
 
for i=1:331 
    x(i)=(i-1)*0.1; 
    y(i)=c*(x(i)-1/b*(1-exp(-b*x(i)))); 
end 
 
plot(x,y,'b'); 
xlabel('Time, months'); 
ylabel('Cumulative Hazard'); 
 
hold off; 
h=0.1265*(1-exp(-0.01727*x)); 
plot(x,h); 
xlabel('Time, months'); 
ylabel('Hazard'); 
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%This program is to construct a Neural Network and Train the NN with hospital data 
%Last revised on 10/05/04 
%Copyrighted by Xingchen Yuan 
 
 
clear; 
 
data1=[1 2 5 5 2 11 1 
4 2 6 9 4 11 1 
1 1 7 0 4 17 1 
2 0 2 24 1 24 0 
2 0 7 0 3 9 1 
3 2 5 7 1 21 0 
4 0 7 1 4 1 1 
1 0 1 13 1 21 0 
3 0 4 0 3 2 1 
2 0 2 20 2 20 0 
1 0 1 3 2 3 1 
2 0 2 23 4 23 0 
1 0 1 8 3 8 1 
2 1 4 21 2 21 0 
2 0 2 20 2 20 0 
2 0 2 30 3 33 1 
2 0 2 18 3 18 0 
2 2 5 0 4 6 1 
2 2 5 3 3 3 1 
1 1 3 0 4 5 1 
2 2 5 17 4 21 0 
2 0 2 10 3 23 0 
2 0 2 26 1 26 0 
2 0 2 26 2 26 0 
1 2 5 0 4 18 1 
2 1 4 17 3 17 0 
2 0 4 9 2 33 0 
2 0 2 17 2 17 1 
2 0 4 42 3 42 0 
2 0 4 5 4 16 1 
1 1 3 0 4 1 1 
2 0 2 15 4 17 1 
2 2 5 0 4 9 1 
2 2 5 0 3 4 1 
2 0 2 1 4 2 0 
2 0 2 1 1 5 0 
2 2 5 6 2 6 0 
1 0 1 1 0 1 0 
1 0 1 1 2 1 0 
1 0 1 3 3 3 0 
1 0 1 1 3 1 0 
1 0 1 1 1 1 0 
2 0 4 1 0 1 0 
1 0 1 1 4 1 0 
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2 0 2 2 4 2 0 
2 0 2 1 1 1 0 
2 0 2 1 1 1 0 
1 0 1 0 3 12 0 
1 2 5 4 3 6 0 
2 0 2 1 2 1 0 
2 0 2 3 4 3 0 
3 0 4 4 4 10 0 
3 1 5 6 4 6 1 
2 0 2 0 2 1 0 
4 1 6 0 3 2 0 
2 0 2 1 2 1 0 
2 0 2 1 3 1 0 
2 0 2 4 4 5 0 
1 2 5 1 4 1 0 
1 0 1 1 2 1 0 
1 0 1 7 4 7 0 
2 0 2 2 2 2 0 
2 1 2 1 2 1 0 
2 2 5 4 4 11 0 
1 0 1 3 4 10 0 
1 0 1 1 4 1 0]; 
 
[a,b]=size(data1); 
p=data1(1:a,1:b-1)'; 
t=data1(1:a,b)'; 
 
number=5; 
pr=[min(p');max(p')]'; 
s=[number 3 1];                                 %two layer network 
funct={'logsig','logsig','logsig'}; 
 
net=newff(pr,s,funct,'traingda','learngdm','mse'); 
net.trainParam.epochs=1000; 
net.trainparam.goal=0.01; 
net=train(net,p,t);                              %train the NN 
 
y=round(sim(net,p)); 
disp('Error for trainging samples: By Neural Network'); 
error1=sum(abs(y-t))/66                              % Neural Network Error for training data 
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%This program is to generated 1000 patient data to feed 
%Data could be uniformly distributed or normal distributed 
%Run this program ONLY AFTER running the NN construction program, which is given on last 
page. 
%Last revised on 10/05/04 
%Copyrighted by Xingchen Yuan 
 
n=1000 
 
p1=round(NORMRND(1.833,0.789,1,n));    
p2=round(NORMRND(0.581,0.808,1,n));  
p3=round(NORMRND(3.35,1.78,1,n));  
p4=round(NORMRND(10.05,9.023,1,n)); 
p5=round(NORMRND(2.75,1.157,1,n)); 
p6=round(NORMRND(14.125,9.878,1,n));  
 
for i=1:n 
    if p1(i)>4 
        p1(i)=4; 
    end 
    if p1(i)<1 
        p1(i)=1; 
    end 
     
    if p2(i)>2 
        p2(i)=2; 
    end 
    if p2(i)<0 
        p2(i)=0; 
    end 
     
    if p3(i)>7 
        p3(i)=7; 
    end 
    if p3(i)<1 
        p3(i)=1; 
    end 
     
    if p5(i)>4 
        p5(i)=4; 
    end 
    if p5(i)<0 
        p5(i)=0; 
    end 
     
    if p6(i)<1 
        p6(i)=1; 
    end 
     
    if p4(i)>=p6(i) 
        p4(i)=p6(i); 
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    end 
    if p4(i)<0 
        p4(i)=0; 
    end 
end 
         
%p1=ceil(4*rand(1,n));   %1-4 
%p2=floor(3*rand(1,n));  %0-2 
%p3=ceil(7*rand(1,n));   %1-7 
%p5=floor(5*rand(1,n));  %0-4 
%p6=ceil(33*rand(1,n));  %1-42 
%p4=round(rand(1)*p6); 
 
pp=[p1; p2; p3; p4; p5; p6]; 
 
tt=round(sim(net,pp)); 
disp('total patients number is'); 
n 
disp('the total death number is:'); 
death=sum(tt) 
 
data2=[pp;tt]'; 
save data2.dat data2; 
save data3.dat data2 -ASCII; 
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