
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

5-2001

A Data Layout Descriptor Language (LADEL).
Ashfaq Ahmed Jeelani
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Jeelani, Ashfaq Ahmed, "A Data Layout Descriptor Language (LADEL)." (2001). Electronic Theses and Dissertations. Paper 54.
https://dc.etsu.edu/etd/54

CORE Metadata, citation and similar papers at core.ac.uk

Provided by East Tennessee State University

https://core.ac.uk/display/214067073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

A Data Layout Descriptor Language (LADEL)

A thesis

presented to

the faculty of the Department of Computer and Information Science

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science

by

Ashfaq A Jeelani

May 2001

Dr. Phillip Edward Pfeiffer IV, Chair

Dr. Donald Sanderson

Dr. Terry Countermine

Keywords: block I/O, data layout, dynamic data layout, network I/O,

file I/O, structured data

 ii

CONTENTS
 Page

LIST OF FIGURES ������������������������ iv

ABSTRACT ������������������.�������� vi

Chapter

1. INTRODUCTION ��������������������.. 1

1.1. Statement of Problem ������.�����������. 1

1.2. Research Outcomes ������������������.. 3

1.3. LADEL: An Introductory Example ������������. 5

1.4. Overview of This Thesis ����������������. 8

2. BLOCK I/O ������������������������ 9

2.1. Importance of Block I/O in Programming Applications ����. 10

2.2. Role of Block-Oriented I/O in Mainstream C++ Programming �. 12

2.3. Microsoft�s Second Order File System ����..������� 15

3. LADEL ��������..����������������� 19

3.1. The LADEL Language �����������������. 20

3.1.1. Basic LADEL Specification Syntax �������� 21

3.1.2. LADEL Selection and Streaming Operators �����. 22

3.1.3. Nameless Fields ���������������� 24

3.1.4. Variable-length Fields ���.����������. 24

3.1.5. Array Specifier ����������������. 29

3.1.6. The BLOCKSIZE Keyword �����������. 32

3.1.7. Flexible B-tree Declarations �����������. 34

3.1.8. The SURPLUS Keyword ������������. 34

 iii

 Chapter Page

3.2. LADEL�s Formal Grammar ���..������������ 37

3.3. LADEL Buffer Management Object Operators and Methods��.. . 39

3.4. LADEL�s Buffer Management Object �������..���� 40

4. READABILITY and PERFORMANCE EVALUATION ������. 46

4.1. Complexity and Readability Evaluation ����������.. . 47

4.1.1. Simple Example ���������������.. 47

4.1.2. Complex Example ��������������� 52

4.2. Performance Evaluation ����������������� 60

4.2.1. Case 1-1: Performance Testing Using a
 Simple Data Layout �����������. 60

4.2.2. Case 1-2: Performance Testing Using a
 Complex Data Layout ����������.. 61

4.2.3. Case 2: Performance Testing for the constructor ��� 62

4.2.4. Analysis of the Performance Results �������.. 62

5. CONCLUSIONS���������������������.. 65

5.1. Summary of Work ������������������.� 65

5.2. Ideas for Further Improvements ����..���������. 67

5.2.1. Support for Multiple Declarations within a
Structure Definition �����������. 68

5.2.2. Hash Table Creation in the Top Most BMO ����� 69

5.3. Conclusions ���������������������.. 70

REFERENCE LIST ����������������������. 71

VITA ���������������������������� 72

 iv

LIST OF FIGURES

FIGURE Page

1. Example LADEL Specification ������������������.. 5

2. Layout of structured diary data in a flat file without a supporting SOFS ��.. 17

3. Layout of structured diary data in a flat file with the support of SOFS ��..� 18

4. Simple LADEL specification with semantics �������������. 22

5. LADEL BMOs for declaration of Figure 3.1 �������������.. 23

6. Example with nameless fields �������������������. 24

7. A layout descriptor with min/max values for each field ���������. 25

8. One possible memory layout for the layout descriptor of Figure 3.4 ����.. 27

9. Another possible memory layout for the layout descriptor of Figure 3.4 �� � 28

10. Example with arrays of structs in specification ������������� 29

11. Layout Equivalent to the Data Layout of Figure 3.7 ����������� 30

12. Memory Layout of Data Layout in Figure 3.8 �������������. 31

13. Use of BLOCKSIZE keyword as a size qualifier an array ��������.. 32

14. Use of BLOCKSIZE keyword to specify the number of elements in an array � 33

15. Use of second array qualifier to specify the maximum number of additional
 elements that should be added to the array �����������.. 34

16. Use of BLOCKSIZE keyword to allocate as many records as fit
 in available storage ��������������������.. 35

17. Use of SURPLUS keyword to allocate surplus bytes ����������.. 35

18. Another example of use of SURPLUS keyword to allocate surplus bytes ��.. 36

19. Layout used for explanation of BMO ����������������.. 42

 v

FIGURE Page

20. C++ structure declaration and initialization for simple example ������. 48

21. Code demonstrating manual packing with casting and indexing
 for simple example ��������������������.. 49

22. Code demonstrating manual packing with the use of memcpy for
 simple example ����������������������. 50

23. LADEL structure declaration for simple example �����������.. . 51

24. LADEL structure data initialization and packing code for simple example �� 51

25. Demonstrating blind casting of struct to char * ������������� 52

26. C++ Structure declaration for complex example ������������ . 53

27. C++ structure data initialization for complex example ���������� 54

28. Code demonstrating manual packing for complex example �������� 55

29. LADEL structure declaration for complex example ����������� 58

30. LADEL structure data initialization and packing code for
 complex example ���������������������. 59

31. Data Specification Layout Supported Currently ������������. 68

32. Desired Data Specification Layout �����������������.. 69

 vi

ABSTRACT

A Data Layout Descriptor Language (LADEL)

By

Ashfaq A Jeelani

To transfer data between devices and main memory, standard C block I/O interfaces use block
buffers of type char. C++ programs that perform block I/O commonly use typecasting to move
data between structures and block buffers. The subject of this thesis, the layout description
language (LADEL), represents a high-level solution to the problem of block buffer management.
LADEL provides operators that hide the casting ordinarily required to pack and to unpack
buffers and guard against overflow of the virtual fields. LADEL also allows a programmer to
dynamically define a structured view of a block buffer�s contents. This view includes the use of
variable length field specifiers that supports the development of a general specification for an I/O
block that optimizes the use of preset buffers. The need for optimizing buffer use arises in file
processing algorithms that perform optimally when I/O buffers are filled to capacity. Packing a
buffer to capacity can require reasonably complex C++ code. LADEL can be used to reduce this
complexity to considerable extent. C++ programs written using LADEL are less complex, easy
to maintain, and easier to read than equivalent programs written without LADEL. This increase
in maintainability is achieved at a cost of approximately 11 % additional time in comparison to
programs that use casting to manipulate block buffer data.

 1

CHAPTER 1

INTRODUCTION

1.1) Statement of Problem

Block I/O is an important tool for improving the performance of network and file-system

applications. Sending data in chunks, rather than as individual bytes, can reduce the processing

and latency overheads incurred by such applications. To do a block I/O transfer, the sender first

packs the data into a single contiguous block of bytes, known as a buffer. The buffer is then sent

as a whole to a device�s driver, and sent as a unit, for eventual unpacking and processing by a

second application.

This thesis considers the problem of how to manage I/O buffers in the C++ programming

language. The main motivation for this research is to find ways of extending the C++ language

to make buffer management code easier to write and maintain. C++ is generally regarded as a

high-level language: one that encourages programmers to use carefully crafted data types and

classes to structure data. Standard C++ block I/O methods, however, use block buffers of type

char, rather than structs and classes, to transfer data between devices and main memory. These

methods include file I/O methods like fstream::read() and fstream::write(), and network I/O

methods like Winsock�s send() and recv() methods. Using buffers of type char to support I/O

made historic sense, in the context of C++�s evolution from C. Using I/O buffers of type char

also simplifies the design of the C/C++ standard library, by allowing the library to provide just

one interface for each type of block I/O routine. But the decision does shift the burden of

 2

packing and unpacking buffers to the programmer.

C++�s reliance on char-oriented block I/O has encouraged the use of low-level code for C++

buffer management. One common strategy for manipulating buffers in C++ involves the use of

C-style block move operators, along with typecasting, to move data between structs and block

buffers. Each of a struct�s constituent fields is first typecast to char *, and then moved, a byte at

a time, into the I/O buffer. As a structure�s complexity increases, the complexity of the code for

manually packing the structs increases. Also, the very use of typecasting makes application-level

code difficult to read and maintain.

A second strategy for buffer manipulation involves typecasting the whole struct as char *.

Advocates of �structure-casting� argue that the pointer obtained from typecasting an entire

structure will reference a block of memory containing the structure�s data. Unfortunately, the

C++ language specification does not guarantee that a structure�s fields will be stored

contiguously or even mapped into memory in consistent, compiler-invariant ways. So the C++

programs that use this strategy may face problems with portability, correctness, or both.

A third strategy for buffer manipulation in C++ is to stream data between classes and block

buffers, using overloaded class operators like �<<� and �>>�. Classes that support stream-based

buffer packing and unpacking are commonly referred to as streamable classes. In such classes,

the overloaded �<<� and �>>� operators transfer data between a class�s internal variables and a

target buffer. This strategy, though cleaner than the first two strategies, has problems of its own.

Streaming operators are typically coded in ways that make them inflexible and unsafe. These

operators typically force programmers to transfer data en masse between a buffer and an object,

 3

and do not support direct buffer manipulation on a field-by-field basis. They force programmers

to specify the layout of a buffer at compile time, and do not support the run-time determination

of a buffer�s contents. Finally, they are typically coded without checks for buffer underflow or

overflow, arising from accidental misuse of the operators.

A final limitation of standard strategies for C++ buffer management is the lack of any support in

the C++ language for automatically resizing a data structure to fill an available buffer. Here, the

concern is supporting data structures like B-trees that, for optimum performance, should be

expanded to fill whatever blocksize is �natural� for the underlying medium.

The outcome of this research is a specialized language for C++ programming that streamlines

buffer management: the Layout Description Language, or LADEL.

1.2) Research Outcomes

LADEL is a �little� language that augments C++ with operators that hide the casting ordinarily

required to pack and to unpack buffers. The language provides C++ programmers with a high-

level, precise, and flexible language for accessing data written to and read from block I/O

devices. The following is a list of features that this language, LADEL, provides:

• C-like declarations for specifying buffer layout, including layouts that support nested structs

with named, typed fields.

 4

• Support for dynamic buffer layout: i.e., the ability to distribute space in buffer that may be

available at run time, beyond that buffer�s minimum requirements to function. Support for

dynamic buffer layout involves the following capabilities:

1. The ability to specify minimum size requirement for each field in buffer.

2. The ability to specify additional space to allocate for each field in buffer. Three possible

ways for specifying additional space have been implemented:

• as a specification of the minimum and maximum number of bytes per field;

• as a function of the overall size of the buffer;

• as a function of the amount of space remaining after a structure�s minimum allocation

has been met.

3. The ability to determine, after an allocation is complete, the amount of storage allocated

to each field.

• Support for operator-based buffer manipulation, including the following:

1. Support for selection-operator-based field access.

2. Support for safe, stream-based manipulation of individual fields, including checks for

overflow and underflow on a per-field basis.

• Support for buffer manipulation with no language-specific extensions to C++. To meet this

goal, LADEL was implemented as a language within C++, using a class whose constructor

processes a layout specification in string format. No additions to the C++ grammar were

required.

 5

1.3) LADEL: An Introductory Example

The example specification shown in Figure 1.1 illustrates the feel and use of the LADEL

language.

The BufferManagementClass constructor, in effect, acts as the LADEL compiler. The

constructor transforms the layout specification named mySpecification into a set of objects that

support structured accesses to sourceBuf. Five such buffer management objects (BMOs) are

generated from the declaration for BufferWrapper:

• The first object is an anonymous, top-level buffer BMO. This top-level object, which

supports streaming into the buffer as a whole, references a contiguous block of storage that

contains exactly sizeof(int) + 5*sizeof(char) bytes + 3*sizeof(float). This top-level object,

when referenced with a selection operator, can return references to one of two second-level

buffer management objects.

• The second object, a second-level BMO, is associated with the name "field1". This second

string mySpecification =
string(“ struct ”) +
string(“ { ”) +
string(“ (int) field1; ”) +
string(“ struct “) +
string(“ { “) +
string(“ (char*5) field21; “) +
string(“ (float*3) field22; “) +
string(“ } field2; ” “) +
string (“}TopLevelSpec “);

char sourceBuf[128];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

Figure 1.1

Example LADEL Specification

 6

object references a contiguous, one-integer-long sub-block at the head of the underlying

block I/O buffer.

• The third object, a second second-level BMO, is associated with the name "field2". This

third object references a contiguous, five-character long + three-float-long sub-block that

starts at the fifth byte position in the underlying buffer assuming that the size of integer is 4.

This object is streamable and selectable. This object, when referenced with a selection

operator, can return references to one of two third-level buffer management objects.

• The fourth object, a third-level BMO, is associated with the name "field21" This object

references a contiguous, five-char-long sub-block that starts at the fourth byte position in the

underlying buffer.

• The remaining object, a third-level BMO, is associated with the name "field22". It references

a three-float-long sub-block that starts immediately after the last byte in field21.

LADEL provides access to individual fields through selection and streaming operators. The

selection operators include ^ (select by name) and [] (select by index). The streaming operators

include << (insert into buffer) and >> (extract from buffer). For example, a statement like

 BufferWrapper^�field1� << 23456;

streams the value 23456 into field1 of the structure shown in Figure 1.1. A detailed discussion

of the operators supported by LADEL is provided in section 3.3 and section 3.4 of Chapter 3.

Figure 1.1 is meant to suggest how LADEL provides C++ programmers with high-level access to

data in buffers. LADEL provides data abstraction at a higher level than casting and streaming,

without restricting how programmers structure data. LADEL also allows C++ programmers to

 7

specify how buffers are structured at run time. LADEL BMOs allow programs to access a

buffer�s logical subfields and to do so with built-in error checks that guard against underflow,

overflow, and other forms of improper field access.

As a part of this work, tests were run to determine how using LADEL would impact program

performance. In one set of these tests one record of data was manually packed 500,000 times

into a buffer. In a related set of tests data were laid out and packed 500,000 times using LADEL.

When these tests were performed using a simple data layout the time taken by the program using

LADEL was twice the time taken by the program that did not use LADEL. When the same tests

were performed using a very complex data layout with three level of nesting the time taken by

the program using LADEL was 10 times the time taken by program not using LADEL. It was

determined that this degradation in performance was due to increasing number of function calls

required for selection operations as we go deeper in the object hierarchy.

The same tests, however, were then rerun with hand-optimized code. The LADEL selection

operation was applied once, and the object pointers returned by this operation were saved. The

LADEL-based test code then manipulated the buffers an additional 499,999 times, using the

saved pointers from the initial selection operation. Eliminating redundant selection operations

substantially improved LADEL performance: the hand-optimized LADEL code yielded a

performance degradation of 11% as compared to programs that performed typecasting-based

buffer manipulation.

 8

1.4) Overview of This Thesis

The balance of this document consists of four chapters. Chapter two discusses background issues

connected with the development of LADEL. This chapter considers the role of block oriented

I/O in mainstream programming. It discusses standard C++ strategies for doing block I/O in

more detail. It then concludes with a discussion of Microsoft�s second order file system

(SOFS), one of the ideas that inspired this work. Chapter two also describes how LADEL would

support the development of an SOFS-like program and describes the problems associated with

heterogeneous data transfer over a network.

Chapter three gives a detail explanation of LADEL with a comprehensive set of examples. It

provides a formal grammar for LADEL and describes the operators supported by LADEL.

Chapter 3 also documents LADEL�s key class, the BufferManagementClass.

Chapter four compares the performance of programs written using LADEL with programs

written without using LADEL. Chapter four also demonstrates the ease of use of LADEL with

two specific code examples.

Conclusions along with suggestions for improvements to LADEL are given in chapter five.

 9

CHAPTER 2

BLOCK I/O

Applications that communicate using stream based protocols typically use block-oriented rather

than byte-oriented send and receive. Block-oriented send and receive results in much better

performance than byte-at-a-time I/O. Similarly, applications that share data using disk files use

block-oriented reads and writes. This chapter discusses the importance of block I/O, along with a

data management technology that has similarities to the ideas developed in this thesis.

Section 2.1 discusses the importance of block I/O in programming applications. The usefulness

of dynamic data structure creation for some types of commercial applications is also considered.

These commercial applications are developed in two parallel phases. In the first phase the actual

functionality of the application is developed. In the second phase the data layout of the

application is configured.

Section 2.2 discusses the role of block oriented I/O in mainstream C++ programming. Common

casting-based and streaming-based strategies for manipulating block buffers and problems with

those strategies are also discussed.

Section 2.3 discusses Microsoft�s second order file system (SOFS). The goals of a second order

file system (SOFS) are similar to those that motivated the development of LADEL. An SOFS is

a file system within a file system. An SOFS provides applications with a structured storage

where the applications can store different types of data as different objects within a file. An

 10

SOFS then provides high-level direct access to those objects within the file. LADEL provides

C++ programmers with a way to define structured data in physical memory and then provides

high-level direct access to individual data elements within the structure.

2.1) Importance of Block I/O in Programming Applications

Network applications that need to send and receive data across a network perform block-oriented

rather than byte-oriented I/O. For example if an application wants to send 80 KB of data across a

network, and sends it 1 byte at a time, it would require 80 thousand send operations to transfer

the 80 KB of data. Sending the same data in blocks of 8 KB would require only 10 send

operations. As the latency associated with send operations is quite considerable, reducing the

number of send operations results in improved performance. So network applications usually

pack a large chunk of data into a block buffer before transferring that data across a network.

Similarly, applications that share data using disk files perform block-oriented reads and writes.

Block-oriented reads and writes are done to take advantage of the block-oriented data storage

mechanism of the disk. Generally a disk is divided into sectors and sectors are divided into

blocks. When data are accessed as blocks, one positioning of a read/write head allows multiple

bytes of data to be accessed. Accessing the same data on byte-by-byte basis would potentially

require as many read/write head positioning as there are bytes to be accessed. As the mechanical

movement of the read/write head is the most expensive operation in the whole process of reading

and writing data from disk files, performing block-oriented I/O yields better performance than

byte-oriented I/O.

 11

Network I/O is an integral part of applications that are developed using the client-server

paradigm. In the client-server paradigm most of the functionality is developed in the client and

the data is stored in server. Then the data are transferred from the server to its clients at the

clients� requests. This transfer is done in blocks of data as discussed above. The data in the block

buffer received from server are unstructured, and must be structured by the clients for each

request. This structuring requires very low level coding, and makes application programming

difficult. A high-level language construct that supports the dynamic structuring of buffered data

would allow the application programmer to focus more on developing the actual functionality.

This same concern applies to applications that read their data from disk files. They read data in

blocks and then structure these data in memory. Just how such an application must structure its

data may depend on a file�s actual content. For example, the precise layout of data in a file with

self-describing data may not even be predictable at compile time. A high-level capability for

defining a structured view of a buffer at run-time would simply the task of block I/O

management for applications that manipulate such files.

An important class of applications that would benefit from dynamic buffer specifications is those

applications whose functionality and user interface (UI) vary, depending on information

discovered at run-time. Consider, for example, an application that needs to show different UIs

for different users. The application developer needs, as part of this application, to write some

logic where he can read the layout of UI for different users and generate the UI. As each UI will

have a different set of data, the programmer needs to create some sort of dynamic data structure

to hold each UI�s data. C++ does not support the dynamic specification of data structures

directly. To achieve his goal, the programmer must create some sort of data structure, like a

 12

linked list, to hold the data for the UI. Linked list creation and management is a low level

operation and its coding is error prone.

The commercial application market features many applications available that are self-

configuring, based on startup files or other metadata.1 These self-configuring applications are

developed in two parallel phases. In the first phase the actual functionality is developed. In the

second phase the data layout for each individual UI is configured. This data layout is configured

using tools that write the layout into some file or database. The application developed in the first

phase reads the layout from this file or database and displays the data accordingly. The coding

for such an application is very complex and requires very complex mechanisms for managing the

data dynamically. If some sort of dynamic data structure specification facility were provided to

these commercial applications, the development and testing time could be reduced significantly.

Also the resulting code would be less complex and easier to read and to maintain.

2.2) Role of Block-Oriented I/O in Mainstream C++ Programming

C++ supports a variety of useful high-level features for software development, including support

for strong typing, classes, inheritance, and exception handling. C++, however, lacks a set of

high-level language constructs for positioning data in physical memory. This ability to position

data in memory is important for inter-program communication via unstructured media.

Programs that exchange data via unstructured media need guarantees about how I/O positions

data in physical memory to synchronize data accesses. Examples of such programs include

1 This discussion of configurable applications is highly nonspecific, for reasons of confidentiality.

 13

network applications that communicate via stream-based protocols and applications that use

stream-based and block-based files to share data. Because I/O buffers are typically

heterogeneous data structures, what is wanted is a set of guarantees about how heterogeneous

objects like structs are mapped to physical memory. These layout guarantees could be provided

by the language specification, or by the specification for the language�s run-time system or by

the implementation itself�but they must be present for correct operation.

 The C++ language standard does not provide the desired guarantees about how data in structs

are mapped to memory [Koenig]. Standard C++ input and output methods�methods like

fstream::read(), fstream::write(), and Winsock�s send() and recv() methods�operate on buffers

of type char rather than structs. This lack of support for struct-based I/O forces the programmer

who is concerned about the integrity of data transfers to manually pack heterogeneous data into

buffers of type char, and then to unpack the buffers at the receiver. The resulting code is neither

easy to read nor maintain. The C memcpy() function, which moves data between sets of

locations, can be used to simplify packing. memcpy(), however, is still a low-level primitive,

and yields low-level code (cf. Figure 4.3).

At least two alternatives to character-buffer-based I/O have been proposed. Some authorities

suggest that a struct be passed to a method like fstream::write() by casting the entire struct as an

object of type char* [Uckan]. This approach to doing I/O with structs, however, is unsafe,

because the C++ standard fails to specify how the individual components of classes and structs

are to be positioned in physical memory2. The other alternative, which is used with classes, is to

2 Stroustrup has stated that C++ compilers are required to lay out the structs contiguously in memory
[Stroustrup]. This constraint, however, is not an explicit part of the standard.

 14

make a class streamable. In a streamable class, overloaded versions of the �<<� and �>>�

operators are provided that transfer data between a class�s internal variables and a stream.

Parrington[Parr] discusses a similar use of the << and >> operators in the context of buffer

management for remote procedure call. Even though using streamable classes for doing buffer

I/O is better than using casting, there are two other desirable features which streamable classes

lack:

• Streamable classes do not allow the programmers the ability to treat a block as a hierarchical

object, made up of sub-blocks that can be streamed individually. This feature would be

helpful for developing applications that pack multiple logical objects into a single physical

data structure, like a second-order file system (cf. section 2.3). Providing direct access to

different types of data stored within a single file makes the job of writing applications that

require storing structured data, easier. Treating different types of data as objects within a file

reduces the complexity of file sharing semantics.

• Streamable classes do not give programmers the ability to specify a buffer�s structure

dynamically, a feature which is required in situations where the size of device�s block buffers

are not known at compile time. C++ does not allow the number of records or size of

individual records to expand a feature that if provided can take advantage of an I/O

subsystem�s underlying block size.

 15

2.3) Microsoft�s Second Order File System

Microsoft implemented a �second order file system� (SOFS) as part of its COM (Component Object

Model) software package. COM is designed to promote software interoperability: that is, to allow

arbitrary applications running on arbitrary systems to share objects. COM defines mechanisms and

interfaces that allow applications to connect to each other as software objects. COM�s storage-

related interfaces are collectively called Persistent Storage or Structured Storage.

COM implements persistent storage as an SOFS. In COM�s implementation of persistent storage, a

single file entity is treated as a structured collection of storages and streams. Storages and streams

act like directories and files respectively. A Stream object in COM is the conceptual equivalent of a

single disk file and a Storage object is the conceptual equivalent of a directory. Streams hold data,

are associated with access rights, and are accessed with a single seek pointer. Storages, which are

also associated with access rights, contain arbitrary numbers streams and sub-storages. Storages

and streams are implemented in standard formats and can be shared between processes.

The following example, taken from [Microsoft], illustrates the use of COM to simplify the

development of an application that stores highly structured data. The application in question, a

diary program, allows a user to associate entries that represent days with objects that represent daily

events. These objects are permitted to contain different kinds of information: text objects for textual

information, bit maps for newspaper images, and so forth [Microsoft]. The resulting network of

objects could easily contain multiple levels of indirection and cross-referencing, (cf. Figure 2.1,

reproduced from [Microsoft]). COM simplifies the development of the diary application by

 16

allowing a developer to create a hierarchy of storages that organize events according to the flow of

time. This hierarchy would consist of streams representing specific events, contained in storages for

individual days, contained in storages for individual months, grouped into storages for specific years

(cf. Figure 2.2, reproduced from [Microsoft]). COM also provides a set of file-system-like APIs

that map these objects and storages into a single, flat file automatically, on the user�s behalf. The

problem of expanding information in objects is solved as the object itself expands the stream in its

control. The implementation of the �file system within a file� determines where to store information

on the diary application�s behalf, making the application easier to code.

 Standard file system primitives, like the ones found in UNIX and other major operating systems,

allow users to organize data in a related set of files and directories, in a way that is logically similar

to how an SOFS like COM stores data in different objects within a file. The proponents of SOFS,

however, argue that SOFSes are better for managing certain kinds of data than directories.

Directory structures, according to this argument, are useful for loosely coupled system of files,

while SOFSes are useful for managing tightly coupled systems of data objects. Files and

directories consume system resources, and are generally awkward for maintaining a dataset that

consists of a lot of small, interrelated objects. Hence SOFS is desirable for applications that need to

store highly structured data within a file.

 17

File Header
- Offset to year
- Offset to year

Year Header
Offset to month
Offset to month
Offset to month

Year Header

Continuation of File

Month Header
- Offset to day
- Offset to day
- Offset to day

Month Header

Day Header
- Offset to Text

- Offset to Bitmap
- Offset to Drawing

Month Header

Day Header

Text Object
Text

Bitmap Object
Format Info

Bits

Day Header

Drawing Object
Metafile

Figure 2.1

Layout of structured diary data in a flat file without a supporting SOFS

 18

Root File

Year

Year

Month

Month

Day

Text Object

Storage

File Header

Stream

Year Header

Month

Day

Day

Drawing Object

Meta File
Bitmap Object

Format Info

Bits

Text

Day Header

Month Header

Figure 2.2

Layout of structured diary data in a flat file with the support of SOFS

 19

CHAPTER 3

LADEL

The Layout Descriptor Language, or LADEL, allows programs to manipulate blocks of raw

(i.e., unstructured) storage as hierarchical data structures. This structuring of raw storage takes

place at run-time, using two kinds of constructs:

• a set of declarators, which allow a programmer to define a structured view of a block of raw

storage;

• a buffer management object (BMO), which �realizes� a specific view of storage, relative to a

specific raw storage buffer.

Other LADEL operators then allow programs to query BMOs for status information and to

manipulate the raw storage associated with a BMO as a hierarchy of named, typed streams.

The LADEL language was designed for use in a standard C++ environment. The balance of this

chapter describes LADEL syntax and implementation and illustrates its use with a series of

examples. Section 3.1 describes the LADEL language. Topics include basic LADEL syntax;

selection and streaming operators; nameless and variable-length fields; LADEL arrays; and the

BLOCKSIZE and SURPLUS keywords. Section 3.2 specifies LADEL�s formal grammar.

Section 3.3 gives an overview of the operators supported by LADEL. Section 3.4 concludes with

an overview of the LADEL Block Management Object.

 20

3.1) The LADEL Language

The LADEL language was developed to provide C++ users with a high-level view of block-

buffered I/O. LADEL simplifies the development of standard C++ code for buffer manipulation

in two ways. The LADEL language allows programmers to stream typed data into and out of

block buffers by referencing named fields whose sizes, types, and offsets are computed from

user-supplied declarations. LADEL also simplifies the development of code that needs to adapt

to buffers of varying size. The LADEL language allows users to specify, as a part of a field�s

definition, a range of sizes and/or repetition counts for that field. LADEL then matches the

declaration to the supplied buffer at run-time, using a top-down �spare byte distribution�

algorithm. Support for this feature was added to the language specifically for applications like

B-trees, which should attempt to pack as many records into each buffer as the underlying disk

I/O system will allow.

LADEL has been implemented as C++ class with a constructor that parses C++-like

specifications for data layouts. A LADEL class, known as BufferManagementClass, generates

objects that manage program access to an associated block buffer at run-time. The

BufferManagementClass constructor accepts, as one of its arguments, a specification of a data

layout in the form of a string. This string defines a view of storage that, roughly speaking, is

comparable to the view determined by a C/C++ struct. The LADEL data layout string, in

particular, defines a hierarchically structured, typed data object that, in turn, may consist of other

structs, nested to an arbitrary depth. Each structure and substructure is referred to as a field. The

BufferManagementClass constructor ultimately maps each field in the data layout to a range of

 21

offsets in a user-specified block buffer. The BufferManagementClass constructor also

instantiates one object of type BufferManagementClass for managing access to each field. These

buffer management objects (BMOs) are themselves arranged in a hierarchy that is isomorphic to

the hierarchy defined by the declaration.

Every BMO generated for an I/O buffer manages data operations on one region of the buffer.

BMOs support the safe streaming of data between elementary C++ data types and a buffer�s sub-

blocks: range checking is done to ensure that streaming operations do not overrun block

boundaries. BMOs also support selection of individual fields from the data layout.

The features and uses of the LADEL language are illustrated below, using a progressive series of

examples.

3.1.1) Basic LADEL Specification Syntax

The layout specification in Figure 3.1 is a simple example, which shows how a data layout can

be specified using LADEL. The syntax is very similar to C++ except for the size specifier, (int *

5), which specifies the space that a subregion in a block should occupy, in bytes. LADEL�s

BufferManagementClass constructor converts the layout specification in Figure 3.1 into the 5

BMOs shown in Figure 3.2. For example, the BMO labeled �field2� controls access to the eight-

integer long sub-block that starts at the fourth byte position in sourceBuf. Through this BMO

another two BMO�s (for field21 and for field22 respectively) can be referenced, which control

the access of the 3 integer-long field field21 and the 5 integer-long field field22. The constructor

 22

also gives the programmer precise control over how data are arranged in memory. In the layout

specification given in Figure 3.1 field1 will be positioned immediately before field2, and field22

immediately after field21.

3.1.2) LADEL Selection and Streaming Operators

BMOs, once constructed, can be manipulated using four overloaded operators:

• The >> operator, which streams a data item from a BMO into its right operand.

• The << operator, which streams a data item from into its right operand into a BMO.

• The ^ operator, which selects a sub field from a BMO.

• The [] operator, which selects one of a set of related fields.

string mySpecification =
string(“ struct ”) +
string(“ { ”) +
string(“ (char*3) field1; ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (int*5) field21; ”) +
string(“ (int*3) field22; ”) +
string(“ } field2; ” ”) +
string (“}buffer ”);

char sourceBuf [128];

BufferManagementClass
BufferWrapper (sourceBuf, sizeof (sourceBuf), mySpecification)

Figure 3.1
Simple LADEL specification with semantics

 23

The >> and << operators use a �current position� cursor associated with each BMO. This object

keeps track of the next byte to be written into or read from underlying buffer. The current

position in a BMO can also be adjusted and inspected, using setpos() and getpos() methods,

respectively. The selection and streaming operators raise exceptions when an unknown or

anonymous field is selected, or when a streaming operator attempts to access locations beyond

the boundaries of a sub field. The ^ operator was overloaded for use as a selection operation

Figure 3.2

 LADEL BMOs for declaration of Figure3.1

char buf [128]

buffer

begin

end

field1 begin

end

field2

begin

end

field21

begin

end

field22

begin

end

3 * sizeof(char)

5 * sizeof(int)

3 * sizeof(int)

125 * sizeof(char)
 - 8 * sizeof(int)

 24

because the standard selection operator, dot (.), cannot be overloaded in C++. The indexing

operator [] is discussed further in section 3.1.5.

3.1.3) Nameless Fields

Nameless fields are fields that do not have any name by which they can be referred. Only their

sizes are declared in the Data Layout. A nameless field in a LADEL specification cannot be

selected, or manipulated directly. Nameless fields can be used for inter-field padding. Inter-field

padding can be used to ensure data alignment in environments where alignment is required: e.g.,

on processors that lack alignment networks. One example of a nameless field is given in the

layout specification in Figure 3.3, where the third field acts as a space holder.

3.1.4) Variable-length Fields

LADEL allows users to specify fields whose size can vary, relative to the amount of space

present in a buffer at run-time. LADEL allows a programmer to specify the minimum number of

bytes that should be reserved and also the number of bytes beyond the minimum that should be

assigned to a field, if space is available in the underlying buffer. For example

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (char*3) field1; ”) +
string(“ (int*5) field2; ”) +
string(“ (1); ”) +
string(“} ”);

Figure 3.3

Example with nameless fields

 25

 (2,6) field1;

specifies that field1 should contain a minimum of 2 bytes and that a maximum of 8 bytes (i.e., 6

additional bytes beyond the first 2) can be assigned to field1.

The following series of examples shows how LADEL distributes the surplus space in the

underlying buffer among different fields of the struct based on min/max values of the fields. The

layout descriptor shown in Figure 3.4 specifies a family of storage assignments, where the actual

assignment is dependent upon the size of the underlying buffer.

When the example in Figure 3.4 is executed with BUFFER_SIZE of less than 3, the

BufferManagementClass constructor generates a �no assignment possible� exception.

string variableSpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (1,1)field1; ”) +
string(“ (2,3) ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (1,2) field21; ”) +
string(“ (1,1) field22; ”) +
string(“ }field2 ”) +
string(“}buffer ”);

char sourceBuf[BUFFER_SIZE];

BufferManagementClass
BufferWrapper (sourceBuf, sizeof(sourceBuf),

variableSpecification)

Figure 3.4

A layout descriptor with min/max values for each field

 26

When the example in Figure 3.4 is executed with BUFFER_SIZE equal to 3, the declaration in

Figure 3.4 is equivalent to the following, fixed-length declaration:

-. struct{(1)field1;{struct{(1)field21; (1)field22;}field2;} buffer;

As the minimum requirement for the layout is 3 all the fields will get their minimum

requirements (field1 gets 1 byte, field21 gets 1 byte, and field22 gets one byte).

The memory layout for the declaration in Figure 3.4, relative to a buffer size of 3, is shown in

Figure 3.5 below.

When the example in Figure 3.4 is executed with BUFFER_SIZE equal to 4, the declaration in

Figure 3.4 is equivalent to the following, fixed-length declaration:

-. struct{(2)field1;{struct{(1)field21; (1)field22;}field2;} buffer;

 As the minimum requirement for the layout is 3, there is one surplus byte. According to the rules

of surplus storage distribution this byte goes to field1. The above declaration�s memory layout is

shown in Figure 3.6.

When the example in Figure 3.4 is executed with larger buffers, the declaration in Figure 3.4 is

equivalent to the following, fixed-length declarations:

-. struct{(2)field1;{struct{(2)field21; (1)field22;}field2;} block; (BUFFER_SIZE = 5);

-. struct{(2)field1;{struct{(3)field21; (1)field22;}field2;} block; (BUFFER_SIZE = 6);

-. struct{(2)field1;{struct{(3)field21; (2)field22;}field2;} block; (BUFFER_SIZE >= 7)

 27

 BUFFER _SIZE = 3

Figure 3.5

One possible memory layout for the layout descriptor of Figure 3.4

buffer

begin

end

field1

begin

end

field2

begin

end

field21

begin

end

field22

begin

end

1 * sizeof(char)

1 * sizeof(char)

1 * sizeof(char)

 28

In the above examples, LADEL first distributes available storage in a way that meets the

minimum requirements of each field. LADEL distributes the surplus storage in a top-down,

left-to-right manner: a field F�s allotment of surplus storage is restricted to the amount of storage

that its parent has obtained, and limited to the amount of storage that remains after the storage

requests of F�s predecessor siblings have been satisfied. In the above example, field1�s

maximum requirements would be satisfied from the surplus storage before any other field.

 BUFFER_SIZE = 4

Figure 3.6
Another possible memory layout for the layout descriptor of Figure 3.4

buffer

begin

end

field1

begin

end

field2

begin

end

field21

begin

end

field22

begin

end

2 * sizeof(char)

1 * sizeof(char)

1 * sizeof(char)

 29

3.1.5) Array Specifier

An array specifier of N, when appended to a field name F, directs LADEL to generate N

consecutive instances of the specified field, named F[0] � F[N-1] inclusive. The layout

descriptor of Figure 3.7, for example, would generate the same layout as shown in Figure 3.8 if

integers were allowed as field names. The data layout of Figure 3.8 is depicted here just for

explanatory purposes, as LADEL does not permit use of integers as field names.

string variableSpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (2,4) ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (1,2)field11; ”) +
string(“ (1,2) field12; ”) +
string(“ }field1[2] ”) +
string(“ (1,1)field2; ”) +
string(“}buffer ”);

char sourceBuf[BUFFER_SIZE];

BufferManagementClass
BufferWrapper (sourceBuf, sizeof(sourceBuf),

variableSpecification);

Figure 3.7
Example with arrays of structs in specification

 30

The layout descriptor of 3.7 generates the equivalent of one of the following storage

assignments, depending on the number of bytes in the underlying buffer:

-. �no assignment possible� exception (BUFFER_SIZE <= 4).

-. struct{struct{(1) field11,(1)field12}field1[2]; (1) field2 }buffer; (BUFFER_SIZE = 5);

-. struct{struct{(1) field11, (1) field12}field1[2]; (2) field2}buffer; (BUFFER_SIZE = 6);

-. struct{struct{(2) field11, (1) field12}field1[2]; (1) field2}buffer; (BUFFER_SIZE = 7);

-. struct{struct{(2) field11, (1) field12}field1[2]; (2) field2}buffer; (BUFFER_SIZE = 8);

-. struct{struct{(3) field11, (1) field12}field1[2]; (1) field2}buffer; (BUFFER_SIZE = 9);

string variableSpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (2,4) ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (1,2) field11; ”) +
string(“ (1,2) field12; ”) +
string(“ }0; ”) +
string(“ (2,4) ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (1,2)field11; ”) +
string(“ (1,2)field12; ”) +
string(“ }1; ”) +
string(“(1,1)field2; ”) +
string(“}buffer ”);

char sourceBuf[BUFFER_SIZE];

BufferManagementClass
BufferWrapper (sourceBuf, sizeof(sourceBuf),

variableSpecification);

Figure 3.8

Layout Equivalent to the Data Layout of Figure 3.7

 31

-. struct{struct{(3) field11,(1) field12}field1[2];(2) field2}buffer; (BUFFER_SIZE = 10);

 BUFFER_SIZE = 5

Figure 3.9

Memory Layout of Data Layout in Figure 3.8

buffer

begin

end

field1[1] begin

end

field1[2]

begin

end

field11

begin

end
field22

begin

end

1 * sizeof(char)

field11

begin

end

field12

begin

end

1 * sizeof(char)

1 * sizeof(char)

1 * sizeof(char)

1 * sizeof(char)

field2

begin

end

 32

-. struct{struct{(3) field11,(2) field12}field1[2];(1) field2}buffer; (BUFFER_SIZE = 11);

-. struct{struct{(3) field11,(2) field12}field1[2];(2) field2}buffer; (BUFFER_SIZE = 12);

-. struct{struct{(3) field11,(3) field12}field1[2];(1) field2}buffer; (BUFFER_SIZE = 13);

-. struct{struct{(3) field11,(3) field12}field1[2];(2) field2}buffer; (BUFFER_SIZE ≥ 14);

The surplus storage distribution rules of example 4 apply to arrays, except that LADEL

guarantees that the number of bytes allocated to each element of the array will be same.

3.1.6) The BLOCKSIZE Keyword

LADEL allows the use of special keyword BLOCKSIZE as a size qualifier that denotes the

number of bytes in the underlying block buffer. The layout descriptor shown Figure 3.10, when

presented with a BLOCKSIZE-byte-long block buffer, reserves the first �BLOCKSIZE/2� bytes

for field1, and the remaining �BLOCKSIZE/2� bytes for field2.

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (BLOCKSIZE/2)field1 ”) +
string(“ (BLOCKSIZE/2) field2; ”) +
string(“}buffer; ”);

char sourceBuf[BLOCKSIZE];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

Figure 3.10

Use of BLOCKSIZE keyword as a size qualifier an array

 33

The BLOCKSIZE keyword may also be used to specify the number of elements in an array of

storage. The layout descriptor shown in Figure 3.11 would generate the following set of storage

assignments, relative to an n-byte-long buffer:

-. struct{struct{(3) field11;(2) field12;}field1[k];}buffer;

 (n = 5k + j, k ≥ 0; j = 0,1,2,3,4)

Intuitively, this declarator, when evaluated, allocates the first 5*�n/5� bytes in sourceBuf to �n/5�

records, named field1[0]�field[�n/5�-1]. The final n mod 5 bytes in sourceBuf are not assigned

to any record.

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (3)field11; ”) +
string(“ (2)field12; ”) +
string(“ }field1[BLOCKSIZE/5] ”) +
string(“} buffer; ”);

char sourceBuf[BLOCKSIZE];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf),mySpecification);

Figure 3.11

Use of BLOCKSIZE keyword to specify the number of elements in an array

 34

3.1.7) Flexible B-tree Declarations

The layout descriptor shown in Figure 3.12 reserves a minimum of 2 2-byte elements for field1,

and two more, if space is available. Also the BLOCKSIZE keyword may be used to request

LADEL to allocate as many records as will fit in the available storage. The layout descriptor

shown in Figure 3.13 requests that a minimum of 1 3-byte element for field1 be reserved and

BLOCKSIZE/3 elements more if space is available. This feature of LADEL can be used in

implementing B-trees where it is ideal to fit as many records in the available storage as possible.

3.1.8) The SURPLUS Keyword

The SURPLUS keyword may be used to denote the number of bytes in the underlying block

buffer, beyond the minimum, that could be distributed at the current level of the field hierarchy.

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (1)field11; ”) +
string(“ (1)field12; ”) +
string(“}field1[2,2]; ”);

char sourceBuf[BUFFER_SIZE];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

 Figure 3.12
Use of second array qualifier to specify the maximum number of additional

elements that should be added to the array.

 35

The value of SURPLUS at the topmost level of a field hierarchy is equal to BLOCKSIZE, less

the layout descriptor's minimum allocation. The value of SURPLUS at an inner level of the

hierarchy is determined relative to the number of bytes obtained by that level's parent during

descriptor evaluation.

 The data layouts of Figure 3.14 and Figure 3.15 illustrate the use of the SURPLUS keyword to

specify the allocation of surplus bytes in the underlying buffer.

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (1)field11; ”) +
string(“ (1)field12; ”) +
string(“ (1)field13; ”) +
string(“}field1[1,BLOCKSIZE]; ”);

char sourceBuf[BUFFER_SIZE];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

 Figure 3.13
Use of BLOCKSIZE keyword to allocate as many records as fit in available storage

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (2, SURPLUS/2) field1; ”) +
string(“ (4, SURPLUS/2) field2; ”) +
string(“}block; ”);

char sourceBuf[128];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

Figure 3.14
Use of SURPLUS keyword to allocate surplus bytes

 36

The layout descriptor shown in Figure 3.14 generates the following storage assignments, relative

to an n-byte-long buffer and m surplus bytes:

-. �no assignment possible" exception (n <= 5).

-. struct { (2+m) field1; (4+m) field2; } block; (n = 2m+6, m>=0);

-. struct { (3+m) field1; (4+m) field2; } block; (n = 2m+7, m>=0);

The layout descriptor shown in Figure 3.15 generates the following storage assignments, relative

to an n-byte-long buffer and m surplus bytes:

-. �no assignment possible" exception (n <= 2).

-. struct {struct {(1) subf1; (1) subf2; } field1; (n-2) field2; } block; (3 ≤ n ≤ 8);

-. struct {struct {(m) subf1; (m) subf2; } field1; (7) field2; } block; (n = 2m+7, m ≥ 1);

-. struct {(2m+1) struct{(m) subf1; (m) subf2;}field1; (7) field2;}block; (n=2m+8, m≥1);

string mySpecification =
string(“struct ”) +
string(“{ ”) +
string(“ (0, SURPLUS) ”) +
string(“ struct ”) +
string(“ { ”) +
string(“ (1, SURPLUS/2)field11; ”) +
string(“ (1, SURPLUS/2) field12; ”) +
string(“ }field1; ”)+
string(“ (1, 6) field2; ”)+
string(“}block; ”);

char sourceBuf[128];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

Figure 3.15
Another example of use of SURPLUS keyword to allocate surplus bytes

 37

Storage expressions that evaluate to negative values (e.g., SURPLUS-6, SURPLUS ≤ 5) are

treated as "0" for the purpose of storage distribution.

The SURPLUS and BLOCKSIZE fields may not be used together in a single specification.

Attempting to do so will cause the BufferManagementClass constructor to throw an

InvalidUseofKeyWordException exception.

3.2) LADEL�s Formal Grammar

 The following is the grammar for strings that describe block layouts:

fieldSpec ::= sizeQualifier fieldPart vectorQualifier ;

sizeQualifier ::= (sizeExpr)

 ::= (sizeExpr, surplusSizeExpr)

 ::= NULL

fieldPart ::= struct { fieldSpecList }

 ::= fieldName (i.e., an alphanumeric identifier)

 ::= NULL

vectorQualifier ::= [sizeExpr, sizeExpr]

 ::= [sizeExpr]

 ::= NULL

sizeExpr ::= sizeTerm

 ::= sizeExpr ± sizeExpr

 38

sizeTerm ::= sizeFactor

 ::= sizeTerm * sizeTerm

 ::= sizeTerm / sizeTerm

sizeFactor ::= (sizeExpr)

 ::= naturalNumber

 ::= C++ baseType

surplusSizeExpr ::= surplusSizeTerm

 ::= surplusSizeExpr ± flexibleSizeExpr

surplusSizeTerm ::= surplusSizeFactor

 ::= sizeTerm * surplusSizeTerm

 ::= surplusSizeTerm * sizeTerm

 ::= surplusSizeTerm / sizeExpr

surplusSizeFactor ::= (surplusSizeExpr)

 ::= naturalNumber (i.e., a nonnegative integer)

 ::= C++ baseType (i.e., char, unsigned char, int, etc.)

 ::= BLOCKSIZE

 ::= SURPLUS

fieldSpecList ::= fieldSpec

 ::= fieldSpec fieldSpecList

 39

3.3) LADEL Buffer Management Object Operators and Methods

Storage associated with LADEL buffer management objects may be manipulated using the <<,

>>, ^, and [] operators:

- The extraction operator, >>, streams objects from a BMO-managed buffer, according to

the type of the right-hand argument. An expression of the form foo >> baseVariable, where

• foo is a is a storage descriptor whose type is same as baseVariable type, and

• baseVariable is an object of type "built-in" i.e., a char, an int, a float, etc.,

streams a sequence of bytes from foo into baseVariable. Every BMO is associated with a

current position cursor that tracks the next byte to be written into or read from the BMO�s

associated buffer. The expression "foo >> baseVariable�

• copies the next sizeof(baseVariable) bytes at the current position in foo into

baseVariable, then

• advances foo's current position indicator by sizeof(baseVariable) bytes.

- The insertion operator, <<, inserts objects into a BMO-managed buffer, in a way that is

comparable to the operation of the extraction operator >>.

- The selection operator, ^, retrieves a child BMO from a BMO. An expression of the

form (foo^"xxx") >> bar, where foo and bar denote BMOs and "xxx� names a top-level field

in foo, copies the BMO for foo's xxx component into bar.

 40

- The indexing operator, [], also retrieves a subordinate (child) BMO from a BMO. An

expression of the form foo[n] >> bar, where foo and bar denote BMOs and n is the index of a

top-level field in foo, copies the top-level hierarchical storage descriptor for foo's nth

component into bar. (0-offset indexing is used).

A final BMO-based method, the positioning operator setpos(), resets the "current byte within

field" index for streaming operations.

The selection and streaming operators raise exceptions when invalid operations are attempted:

i.e., when an unknown or an anonymous field is selected, or when a streaming operator attempts

to access locations beyond the boundaries of a sub field

3.4) LADEL�s Buffer Management Object

A Buffer Management Object (BMO) manages a user specified block buffer of type char. A

BMO also manages buffer data for the user. BMOs provide methods and operators for data

access and manipulation using syntax similar to C++. A BMO user can create a specification

for a data structure in a string format and pass this specification to a BMO object constructor.

This initial BMO, referred to here as a Top Level BMO object, then parses the data layout string

and creates a set of child BMOs. The children of the Top Level BMO object provide direct

access to individual fields in the data layout.

 41

The following document the usage of each individual method and operator of BMO. The

explanations are given with reference to layout in Figure 3.16.

1. Constructor

BufferManagementClass(char* myBuffer, int sizeOfBuffer, stringClass&

 dataLayout)

• Parameters

- myBuffer : A user specified data buffer that will hold the user�s data. .

- sizeOfBuffer: Size of the user specified buffer

- dataLayout : A string object defining a structured view of myBuffer.

• Example

 BufferManagementClass

 ToplevelBmo(myBuffer, sizeOfBuffer, mySpecification);

2. Selection Operators

I. BufferManagementClass&

 BufferManagementClass::operator^(const stringClass& FieldName);

• Parameters

 42

- FieldName: Name of the field in the user specified data structure.

• Return Value

 Returns a reference to a BMO representing the field FieldName

• Example

(ToplevelBmo^�Name�) returns a reference to a BMO representing the

field Name.

II. BufferManagementClass& operator [](const int& idx) const;

• Parameters

- idx : index of the field within a array of fields of same type.

• Return Value

Returns a reference to a BMO representing the field with index idx within

an array of fields of same type

• Example

(ToplevelBmo^�Address�)[0] returns a reference to BMO representing

field Address[0]

3. Insertion Operations

BufferManagementClass::operator << (const int& myInt);

• Parameters

- myInt: integer to insert into the field represented by the BMO.

stringClass mySpecification =
stringClass(“ struct ”) +
stringClass(“ { ”) +
stringClass(“ (char*10) Name; ”) +
stringClass(“ (char) flag; ”) +
stringClass(“ struct ”) +
stringClass(“ { ”) +
stringClass(“ struct ”) +
stringClass(“ { ”) +
stringClass(“ (int)PostBoxNo; ”) +
stringClass(“ (char*21)Street; ”) +
stringClass(“ (char*12)City; ”) +
stringClass(“ } Address; ” ”) +
stringClass(“ } Addresses[4]; ” ”) +
stringClass(“ double Salary; ” ”) +
stringClass(“}Person ”);

int sizeOfBuffer = 10 * sizeof(char) + sizeof(char)
+ 4 * (sizeof(int) + 21 * sizeof(char)
+ 12 * sizeof(char)) + sizeof(double);

char *myBuffer = new char[SizeOfBuffer];

Figure 3.16
Layout used for explanation of BMO

 43

• Example

 int myInt = 23456;

(((ToplevelBmo^�Addresses�)[0])�PostBoxNo�) << myInt;

 The << operator is also overloaded for objects of �float�, �double�, �char�, stringClass, and

null terminated strings.

4. Extraction Operations

BufferManagementClass::operator >> (int& myInt);

• Parameters

- myInt : a variable of type integer. Data will be extracted from the field

represented by the BMO object into myInt.

• Example

 int myInt;

 ((ToplevelBmo^�Addresses�)[0])�PostBoxNo�) >> myInt;

 The << operator is also overloaded for objects of �float�, �double�, �char�, stringClass, and

null terminated strings.

5. Miscellaneous

I. BufferManagementClass::setPos(int Pos);

• Parameters

- Pos: a variable of type integer. The current position in the field

represented by the BMO will be set to pos.

 44

• Example

 (ToplevelBmo^�Salary�).setpos(0);

II. int BufferManagementClass::getSize(void);

• Return Value

Returns the size of the field represented by the BMO.

• Example

 (ToplevelBmo^�Name�).getSize() will return 10;

III. BufferManagementClass::getNumberOfRecords();

• Return Value

 Returns the number of fields within an array of fields of same type.

• Example

 (ToplevelBmo^�Address�).getNumberOfRecords will return 4

IV. stringClass BufferManagementClass::getBmoName();

• Return Value

 Returns a string containing the name of the BMO.

• Example

 (ToplevelBmo^�Salary�).getBmoName will return �Salary�;

(ToplevelBmo^�Addresses�)[0].getBmoName will return �Address[0]�;

 45

To summarize, LADEL provides C-like declarations for specifying buffer layout with support

for nested structs with named, typed fields. It also supports dynamic buffer layout: i.e., the

ability to distribute space in buffer that may be available at run time, beyond that buffer�s

minimum requirements to function. LADEL also provides operator-based buffer manipulation,

with support for selection-operator-based field access and support for safe, stream-based

manipulation of individual fields, including checks for overflow and underflow on a per-field

basis. This support for buffer manipulation is provided with no language-specific extensions to

C++. LADEL was implemented as a language within C++, using a class whose constructor

processes a layout specification in string format.

 46

CHAPTER 4

Readability and Performance Evaluation

This chapter consists of two sections. Section 4.1 evaluates the complexity and readability of

code that manipulates block buffer data. Two sample buffer manipulation problems, involving a

simple and a moderately complex data layout, are used as test cases to argue the claim that

LADEL simplifies buffer management logic. The standard C++ manual buffer manipulation

idioms yield complex, low-level codes, especially when compared to the code produced using

LADEL. The manual buffer manipulation code for the moderately complex layout is also

substantially more complex than the manual buffer manipulation code for the simple layout.

This substantial increase in complexity contrasts with the LADEL examples, which exhibit a

much smaller increase in size, relative to the complexity of the data layout.

Section 4.2 describes two series of tests that were conducted to determine the performance of

LADEL. The first series of tests involved packing data for network transmission in a sender

program, sending the data, and finally unpacking these data at a receiver. The time required to

pack a buffer using classic C++ typecasting code was compared to the time required for buffer

packing with LADEL code. These tests were conducted once with a simple data layout, and

once with complex data layout. The second series of tests assessed the execution time required

by LADEL�s constructor. The tests suggest that LADEL�s overhead is small, particularly when

constructors and selection are invoked in judicious ways.

 47

4.1) Complexity and Readability Evaluation

It has already been stated that manually packing the contents of struct into a char buffer, writing

the buffer to a device, and then unpacking the buffer at the receiving end produces low-level,

messy code. The two examples below demonstrate how the use of LADEL results in simpler and

cleaner code that is easier to read and maintain.

4.1.1) Simple Example

Assume that the following information needs to be packed into a buffer, outgoingBuffer, prior to

being written to a network socket: name of a person [e.g., �Smith�]; person�s address,

including post box number [e.g., 23456], street [e.g., �North Greenwood Drive�], and city

[e.g., �Johnson City�]; and person�s salary [e.g., 50000.00].

In the standard C++ idioms for buffer packing, the user first creates a structure of the required

type (cf. Figure 4.1). The programmer then fills the structure, and packs the buffer using casting

and indexing, as shown in Figure 4.2, or the memcpy() function, as shown Figure 4.3.

The sizeof() and casting, along with the need for byte-by-byte copying, make the code in Figure

4.2 long-winded and tedious to read and write. The byte-by-byte copying is needed to avoid

alignment errors. The briefer code in Figure 4.3 is still cryptic, low-level and difficult to

maintain.

 48

Figure 4.4 and 4.5 show how the same task is handled using LADEL. The data structure is

created as a string and passed as an argument to the constructor of BufferManagementClass,

which manages the block buffer data on the programmer�s behalf. The code in Figure 4.5

demonstrates that the code required to pack a buffer with data using LADEL is much simpler

than manual packing code. Also the code is easy to read and maintain. Note, in particular, the

absence of sizeof() operators and expressions that compute offsets into the buffer.

struct PersonType {
char Name[10];
struct {

int PostBoxNo;
char Street[21];
char City[12];

}Address;
double Salary;

}

struct PersonType Person;

Person.Name = “Smith”;
Person.Address.PostBoxNo = 23456;
Person.Address.Street = “North Greenwood Drive”;
Person.Address.City = “Johnson City”;
Person.Salary = 50000.00;

Figure 4.1

C++ structure declaration and initialization for simple example

 49

const unsigned outgoingBufferPayloadLength =
sizeof(Person.Name) + sizeof(Person.Address.PostBoxNo) +
sizeof(Person.Address.Street) + sizeof(Person.Address.City) +
sizeof(Person.Salary);

const unsigned outgoingBufferTerminatorLength = sizeof(char);

const unsigned outgoingBufferLength =
sizeof(outgoingBufferPayloadLength)

+ outgoingBufferPayloadLength
+ outgoingBufferTerminatorLength;

char *const pOutgoingBufferPayloadLength = &outgoingBuffer[0];

char *const Name =
&outgoingBuffer[sizeof(outgoingBufferPayloadLength)];

char * const PostBoxNo = &outgoingBuffer[
sizeof(outgoingBufferPayloadLength) + sizeof(Person.Name)];

char *const street =
&outgoingBuffer[sizeof(outgoingBufferPayloadLength)

+ sizeof(Person.Name) + sizeof(Person.Address.PostBoxNo)];

char *const city = &outgoingBuffer[sizeof(outgoingBufferPayloadLength)
+ sizeof(Person.Name) + sizeof(employee->Address.PostBoxNo)
+ sizeof(Person.Address.Street)];

char *const salary =
&outgoingBuffer[sizeof(outgoingBufferPayloadLength)

+ sizeof(Person.Name) + sizeof(Person.Address.PostBoxNo)
+ sizeof(Person.Address.Street)+ sizeof(Person.Address.City)];

for(unsigned i = 0; i < sizeof(outgoingBufferPayloadLength); i++)
pOutgoingBufferPayloadLength[i] =

((char *)(&outgoingBufferPayloadLength))[i];

for(i = 0; i < sizeof(employee->Name); i++) Name[i] = Person.Name[i];

for(i=0; i<sizeof(float); i++)
Salary[i] = ((char *)(&(employee.Salary)))[i];

for(i=0; i<sizeof(int); i++)
PostBoxNo[i] = ((char *)(&(Person.Address.PostBoxNo)))[i];

for(i = 0; i < sizeof(Person.Address.Street); i++)
Street[i] = Person.Address.Street[i];

for(i = 0; i < sizeof(Person.Address.City); i++)
City[i] = Person.Address.City[i];

outgoingBuffer_pTerminator = '\0';

Figure 4.2

Code demonstrating manual packing with casting and indexing for simple example

 50

const unsigned outgoingBufferPayloadLength =
sizeof(Person.Name) + sizeof(Person.Address.PostBoxNo)

+ sizeof(Person.Address.Street)
+ sizeof(Person.Address.City) + sizeof(Person.Salary);

const unsigned outgoingBufferTerminatorLength = sizeof(char);

const unsigned outgoingBufferLength =
sizeof(outgoingBufferPayloadLength)

+ outgoingBufferPayloadLength + outgoingBufferTerminatorLength;

char *const pOutgoingBufferPayloadLength = &outgoingBuffer[0];

char *const Name =
&outgoingBuffer[sizeof(outgoingBufferPayloadLength)];

char * const PostBoxNo = &outgoingBuffer[
sizeof(outgoingBufferPayloadLength) + sizeof(Person.Name)];

char *const street =
&outgoingBuffer[sizeof(outgoingBufferPayloadLength)

+ sizeof(Person.Name) + sizeof(Person.Address.PostBoxNo)];

char *const city = &outgoingBuffer[sizeof(outgoingBufferPayloadLength)
+ sizeof(Person.Name) + sizeof(employee->Address.PostBoxNo)
+ sizeof(Person.Address.Street)];

char *const salary =
&outgoingBuffer[sizeof(outgoingBufferPayloadLength)

+ sizeof(Person.Name) + sizeof(Person.Address.PostBoxNo)
+ sizeof(Person.Address.Street)
+ sizeof(Person.Address.City)];

memcpy(pOutgoingBufferPayloadLength,
((char *)(&outgoingBufferPayloadLength)),

sizeof(outgoingBufferPayloadLength));

memcpy(Name, Person.Name, sizeof(employee->Name);

memcpy(Salary, ((char *)(&(employee.Salary))), sizeof(float));

memcpy(PostBoxNo, ((char *)(&(Person.Address.PostBoxNo))),
sizeof(int));

memcpy(Street, Person.Address.Street, sizeof(Person.Address.Street));

memcpy(City, Person.Address.City, sizeof(Person.Address.City));

outgoingBuffer_pTerminator = '\0';

Figure 4.3

Code demonstrating manual packing with the use of memcpy for simple example

 51

A third strategy that is sometimes used for buffer packing in C++ passes a struct to an I/O

routine by casting the entire struct as objects of type char * [Uckan]. The resulting code, which

stringClass mySpecification =
stringClass(“struct ”) +
stringClass(“{ ”) +
stringClass(“ (char*10) Name; ”) +
stringClass(“ struct “) +
stringClass(“ { “) +
stringClass(“ (int)PostBoxNo; “) +
stringClass(“ (char*21)Street; “) +
stringClass(“ (char*12)City; “) +
stringClass(“ } Address; “) +
stringClass(“ double Salary; “) +
stringClass(“}Person “);

 Figure 4.4

LADEL structure declaration for simple example

int SizeOfBuffer = 10 * sizeof(char) + sizeof(int) + 21 * sizeof(char)
+ 12 * sizeof(char) + sizeof(double);

char *outgoingBuffer= new char[SizeOfBuffer];

BufferManagementClass
outbufBmo (outgoingBuffer, SizeOfBuffer mySpecification);

(outbufBmo ^"Name") << "Burlington";

((outbufBmo ^"Address")^"PostBoxNo") << 23456;

((outbufBmo ^"Address")^"Street") << "North Greenwood Drive";

((outbufBmo ^"Address")^"City") << "Johnson City";

(outbufBmo ^"Salary") << double (5000.0);

Figure 4.5
LADEL structure data initialization and packing code for simple example

 52

is shown in Figure 4.6, looks clean. This code, however, assumes that casting a struct as an

object of type char * yields a consistent result. Unfortunately, the C++ language standard makes

no guarantees whatsoever about how the individual components of classes and structs are to be

positioned in physical memory. This idiom, accordingly, is potentially nonportable at best, and

unsafe at worst.

In short, an informal comparison of the approaches shown above shows that LADEL provides a

cleaner interface for block buffer management, while guaranteeing that data are laid out

contiguously in the memory, in a deterministic way.

4.1.2) Complex Example

This second, more complex, example shows the use of LADEL to insert 10 records into a buffer.

The records to be inserted have the following information:

- Last Name of the person

struct PersonType Person;

Person.Name = “Smith”;
Person.Address.PostBoxNo = 23456;
Person.Address.Street = “North Greenwood Drive”;
Person.Address.City = “Johnson City”;
Person.Salary = 50000.00;

char *outgoingBuffer = (char *) (&Person);

Figure 4.6

Demonstrating blind casting of struct to char *.

 53

- First Name of the person

- 4 addresses of the person

- Post Box Number

- Street

- City

 - 4 Activities related to this person.

To hold this information the structure shown in Figure 4.7 needs to be defined. For the purpose

of this example the same info will be inserted into all 10 employee records as shown in Figure

4.8

The code in Figures 4.9 demonstrates the use of a standard C++ idiom to pack the specified

buffer. After the code in Figures 4.9 is executed, outgoingBuffer contains the data to be written

to a socket.

struct employeeType
{

char Last_Name[7];
char First_Name[6];
struct
{

int PostBoxNo;
char street[22];
char city[13];

}Address[4];
struct
{

char type[5];
char description[24];

}Activity[5];
};

employeeType employee[10];

Figure 4.7

C++ Structure declaration for complex example

 54

Figures 4.10 and 4.11 show how the same task is handled using LADEL. The data structure is

created in string format and passed on to the constructor of BufferManagementClass.

BufferManagementClass will manage the block buffer data on the programmer�s behalf. After

the code in Figure 4.11 is executed, outgoingBuffer has the data to be written to a socket.

for(unsigned i=0;i<10;i++)
{

employee [i].Last_Name = "Jordan";

employee [i].First_Name = "Smith";

for (int j=0; j<4; j++)
{

employee [i].Address[j].PostBoxNo = 23456;

employee [i].Address[j].street =
"North Greenwood Drive";

employee [i].Address[j].city = "Johnson City";

}
for(int k=0; k<5; k++)
{

employee [i].Activity[k].type = "Call";

employee [i].Activity[k].description =
"Send Mailer to Customer";

}

}

Figure 4.8

C++ structure data initialization for complex example

 55

const unsigned sizeOfOneRecord = sizeof(employee[0].Last_Name)
+ sizeof (employee[0].First_Name)
+ 4 * (sizeof(employee[0].Address[0].PostBoxNo)
+ sizeof (employee[0].Address[0].street)
+ sizeof (employee[0].Address[0].city))
+ 5 * (sizeof (employee[0].Activity[0].type)
+ sizeof (employee[0].Activity[0].description));

const unsigned outgoingBufferPayloadLength = 10 * sizeOfOneRecord;

const unsigned outgoingBufferLength =
sizeof(outgoingBufferPayloadLength)

+ outgoingBufferPayloadLength;

char *outgoingBuffer = new char[outgoingBufferLength];

char *const pOutgoingBufferPayloadLength = &outgoingBuffer[0];

for(i = 0; i < sizeof(outgoingBufferPayloadLength); i++)
pOutgoingBufferPayloadLength[i] =

((char *)(&outgoingBufferPayloadLength))[i];

unsigned sizeOfOneAddress = sizeof(employee[0].Address[0].PostBoxNo)
+ sizeof (employee[0].Address[0].street)
+ sizeof (employee[0].Address[0].city) ;

unsigned sizeOfOneActivity = sizeof (employee[0].Activity[0].type)
+ sizeof (employee[0].Activity[0].description) ;

Figure 4.9
Code demonstrating manual packing for complex example

 56

for(i=0; i<10; i++)
{

char *const Last_Name = &outgoingBuffer[i * sizeOfOneRecord
+ sizeof(outgoingBufferPayloadLength)];

for(int p = 0; p < sizeof(employee[i].Last_Name); p++)
Last_Name[p] = employee[i].Last_Name[p];

char *const First_Name = &outgoingBuffer[i * sizeOfOneRecord
+ sizeof (employee[i].Last_Name)
+ sizeof(outgoingBufferPayloadLength)];

for(p = 0; p < sizeof (employee[i].Last_Name); p++)
First_Name[p] = employee[i].First_Name[p];

for(int j=0; j<4; j++)
{

char *const PostBoxNo = &outgoingBuffer[
i * sizeOfOneRecord

+ sizeof(employee[i].Last_Name)
+ sizeof (employee[i].First_Name)
+ j * sizeOfOneAddress
+ sizeof(outgoingBufferPayloadLength)];

for(p=0; p<sizeof(employee[i].Address[j].PostBoxNo);
p++)

PostBoxNo[p]=
((char *)(&(employee[i].Address[j].PostBoxNo)))[p];

char *const street = &outgoingBuffer[
i * sizeOfOneRecord

+ sizeof (employee[i].Last_Name)
+ sizeof (employee[i].First_Name)
+ j * sizeOfOneAddress
+ sizeof(employee[i].Address[j].PostBoxNo)
+ sizeof(outgoingBufferPayloadLength)];

for(p = 0; p < sizeof (employee[i].Address[j].street);
p++)

street[p] = employee[i].Address[j].street[p];

Figure 4.9 (Continued)

 57

 char *const city = &outgoingBuffer[i * sizeOfOneRecord
+ sizeof(employee[i].Last_Name)
+ sizeof (employee[i].First_Name)
+ j * sizeOfOneAddress
+ sizeof(employee[i].Address[j].PostBoxNo)
+ sizeof (employee[i].Address[j].street)
+ sizeof(outgoingBufferPayloadLength)];

for(p = 0; p < sizeof(employee[i].Address[j].city); p++)
city[p] = employee[i].Address[j].city[p];

}

for(int k=0; k<5; k++)
{

char *const type = &outgoingBuffer[i * sizeOfOneRecord
+ sizeof (employee[i].Last_Name)
+ sizeof (employee[i].First_Name)
+ 4 * sizeOfOneAddress + k * sizeOfOneActivity
+ sizeof(outgoingBufferPayloadLength)];

for(p = 0; p < sizeof(employee[i].Activity[k].type);
p++)

type[p] = employee[i].Activity[k].type[p];

char *const description = &outgoingBuffer[
i * sizeOfOneRecord

+ sizeof(employee[i].Last_Name) +
+ sizeof (employee[i].First_Name)
+ 4 * sizeOfOneAddress
+ k * sizeOfOneActivity
+ sizeof(employee[i].Activity[k].type)
+ sizeof(outgoingBufferPayloadLength)];

for(p = 0; p <
sizeof(employee[i].Activity[k].description);

p++)
description[p] =

employee[i].Activity[k].description[p];

}

Figure 4.9 (Continued)

 58

Comparing the two code fragments in the second example we can say that it is much easier to

use LADEL for managing structured data in a block buffer than managing it manually. The two

examples also show that as complexity of data layout increases the complexity of the code that

manually manages buffer data increases. With LADEL the complexity of buffer management

code grows much less quickly.

stringClass mySpecification;

mySpecification =
stringClass("struct ") +
stringClass("{ ") +
stringClass(" (int) SizeOfOutgoingBufer; ") +
stringClass(" struct ") +
stringClass(" { ") +
stringClass(" (char*6) Last_Name; ") +
stringClass(" (char*5) First_Name; ") +
stringClass(" struct ") +
stringClass(" { ") +
stringClass(" struct ") +
stringClass(" { ") +
stringClass(" (int)PostBoxNo; ") +
stringClass(" (char*21)street; ") +
stringClass(" (char*12)city; ") +
stringClass(" }Address[4]; ") +
stringClass(" }Addresses; ") +
stringClass(" struct ") +
stringClass(" { ") +
stringClass(" struct ") +
stringClass(" { ") +
stringClass(" (char*4)type; ") +
stringClass(" (char*23)description; ") +
stringClass(" }Activity[5]; ") +
stringClass(" }Activities; ") +
stringClass(" }Person[10]; ") +
stringClass("}employee; ");

Figure 4.10
LADEL structure declaration for complex example

 59

int SizeOfBuffer = 10 * (6 * sizeof(char) + 5 * sizeof(char)
+ 4 * (sizeof(int)
+ 21 * sizeof(char) + 12 * sizeof(char))
+ 5 * (4 * sizeof(char) + 23 * sizeof(char)))
+ sizeof(int);

char *outgoingBuffer = new char[SizeOfBuffer];

BufferManagementClass
outbufBmo (outgoingBuffer, SizeOfBuffer, mySpecification);

(outbufBmo^” SizeOfOutgoingBufer”) << SizeOfBuffer;

for(int i=0; i < 10; i++)
{

char mychar[16];
stringClass Person = “Person[“ + itoa[i, mychar, 10) + “]”;
BufferManagementClass& PersonBmo = (outbufBmo^Person);

(PersonBmo^"Last_Name") << "Jordan";
(PersonBmo^"First_Name") << "Smith";

for(int j=0; j<4; j++)
{

BufferManagementClass & AddressBmo =
(PersonBmo^"Addresses")[j];

(AddressBmo ^"PostBoxNo") << 23456;
(AddressBmo^"street") << "North Greenwood Drive";
(AddressBmo ^"city") << "Johnson City";

}
for(int k=0; k<5; k++)
{

BufferManagementClass & ActivityBmo =
(PersonBmo^"Activities")[k];

(ActivityBmo^"type") << "Call";
(ActivityBmo^"description") << "Sent mailer to customer";

}

}

const unsigned outgoingBufferLength = outbufBmo.getSize();

char *outgoingBuffer = new char[outgoingBufferLength];

outbufBmo >> outgoingBuffer;

Figure 4.11

LADEL structure data initialization and packing code for complex example

 60

4.2) Performance Evaluation

Performance testing was done for the examples in Figures 4.1, 4.2, 4.4, 4.5 and Figures 4.7

through 4.14. The testing was performed using a pair of client-server programs that exchange

messages via TCP. The performance testing was conducted on Windows 2000 professional

operating system, with Pentium III processor with128 MB RAM, using Microsoft�s Visual C++

6.0 compiler.

4.2.1) Case 1-1: Performance Testing Using a Simple Data Layout

The first set of tests was conducted using a data layout consisting of name of a person; an

address, which itself consisted of post box number, street, and city; and a salary. This

information is as depicted in Figure 4.1 in section 4.1. These tests were conducted once with

manually managed buffer packing code (refer to Figure 4.2 and Figure 4.3 in section 4.1) and

once with LADEL managed buffer packing code (refer to Figure 4.5 in section 4.1) .The first

case consisted of four types of tests as depicted in table 4.2.1.

The LADEL part of the packing test was done in two different ways. First the required selection

operations were performed as a part of each insert cycle. Then the required selection operations

were performed only once at the beginning of the test. The references to the selected BMOs

were then saved and used to access the BMOs throughout the rest of the loop. The results of this

first set of tests are depicted in table 4.2.1.

 61

Table 4.2.1
Results of performance test for Simple Data Layout

Method Data Packed

500,000 times at
client, sent once to
the server

Data received once
at server, Unpacked
500,000

Data Packed and
sent 500,000 times
at client

Data received and
Unpacked 500,000
times at server

Casting 13 Sec 14 Sec 4,500 Sec 4,500 Sec

LADEL
with
repeated
selection

25 Sec

26 Sec

4,571 Sec

4,578 Sec

LADEL
with saving
BMO Ptrs

15 Sec

16 Sec

4,550 Sec

4,550 Sec

4.2.2) Case 1-2: Performance Testing Using a Complex Data Layout

In the second case tests were conducted using a data layout consisting of the name of a person; 4

addresses for that person, each of which consisted of post box number, street, and city; and 4

activities associated with that person, which in turn consisted of type and a description (cf.

Figure 4.7). This test was also conducted once with manually managed buffer packing code (cf.

Figures 4.8 through 4.11) and once with LADEL managed buffer packing code (cf. Figures 4.12

through 4.14). This case consisted of two types of tests as depicted in table 4.2.2.

The LADEL packing test was again conducted in two ways. First, the selection operations were

performed with each insert all through the test: i.e. 500,000 times. In the second test, the

selection operations were performed only once. During the first pass the pointers to

BufferManagementClass objects were saved. The saved pointers were then used for subsequent

insertion operations. The results of the second case tests are depicted in table 4.2.2.

 62

4.2.3) Case 2: Performance Testing for the constructor (which performs the actual

layout)

The BufferManagementClass constructor was invoked 1,000,000 in two separate tests: once with

the data layout depicted in Figure 4.4 and once with the data layout depicted in Figure 4.2. This

test was conducted to determine the performance of LADEL�s BMO tree creation code. The

results from this test are shown in table 4.2.3.

4.2.4) Analysis of the Performance Results

For programs that did insertions and did not repeatedly use the selection operations, the

improvement in code quality obtained from LADEL is achieved at a cost of an 11% increase in

execution time over programs that use casting to manipulate block data. For programs that did

insertion as well as sent and received data over the network, the improvement is achieved at a

cost of approximately 1.2% of the overall program execution time. The conclusion here is that

Table 4.2.2
Results of performance test for Complex Data Layout

Method Data Packed 500,000 times
at client, sent once to the
server

Data received once at server,
Unpacked 500,000

Casting 226 Sec 226 Sec

LADEL without saving
BufferManagementClass Ptrs

2,500 Sec

2,500 Sec

LADEL with saving
BufferManagementClass Ptrs

250 Sec

250 Sec

 63

the use of LADEL incurs negligible performance degradation for networking programs and

minor performance degradation for any other types of program.

Table 4.2.3
Results of performance test for just laying out the data

 Time in sec for Laying out
1,000,000 times

Time in sec for Laying out 1
time

Specification of Data Layout in
Figure 4.4 (BMO tree with 7
nodes created)

3,400 sec 3.4 Milliseconds

Specification of Data Layout in
Figure 4.12 (BMO tree with
261 nodes created)

2,0000 sec 20 Milliseconds

The conclusion from the test conducted in section 4.2.3 is that LADEL�s data layout code

performs well particularly when constructors are invoked in judicious ways. The constructor of

BufferManagementClass takes a reasonable amount of time for laying out the BMO tree for a

reasonable data layout specification. When the number of fields in data layout specification

increases to a high number as in data layout of figure 4.12 the performance degrades as expected.

A second performance problem involved the selection operations. As the complexity and the

hierarchy of the layout descriptor increased, the performance of LADEL took a big hit. This

performance degradation resulted from the increasing number of function calls when the

selection operations were performed for objects deeper and deeper within the Block Management

Object hierarchy. For each indirection the number of function calls increased by one. This

problem was overcome by performing the selection operation only once and then saving the

BufferManagementClass pointers from these operations. For subsequent insertions these saved

 64

pointers were used. This considerably improved performance. The performance degradation

associated with LADEL�s selection operation could be eliminated by incorporating hash tables

into Top Level BufferManagementClass object. These hash tables would reference every

subordinate BufferManagementClass object in the top-level object�s hierarchy. An effect similar

to hash table functionality is achieved in the performance tests by saving references to all the

BMOs within the BMO tree. This saving of references to BMOs is done in the test programs, as

the current implementation of LADEL does not have this hash table support.

 65

CHAPTER 5

CONCLUSIONS

The starting point for this thesis was the need for a language that simplifies the task of block

buffer manipulation. The primary result of the work on this problem was a language, LADEL

that allows C++ programmers to specify buffer layouts in a high-level way. Section 5.1

summarizes the work on LADEL presented in Chapters 1 through 4. Section 5.2 discusses

further improvements to the LADEL language that were not implemented as a part of this thesis.

Section 5.3 concludes with observations on the significance of the work.

5.1) Summary of Work

We have seen that managing block buffer data manually resulted in a low level code that was

difficult to read and maintain. LADEL reduced the complexity of the buffer packing code by

providing a high-level interface for buffer manipulation. LADEL also provided a way for

structuring the data within a block buffer.

We have also seen that C++�s I/O facilities did not provide a set of high-level language

constructs that allow control over the precise positioning of data in physical memory. LADEL

solved this problem by supporting flexible data layout that gave control to the programmers over

how data are positioned in memory.

We discussed two proposed strategies for solving the buffer manipulation problem. One strategy

was to type cast the whole stuct of data as char *. The problem with this strategy was that it

 66

assumed that data within a struct would be laid out contiguously in memory. For systems that did

not lay data contiguously in memory, this strategy would result in non-portable or incorrect code

or both. LADEL solved this problem by guaranteeing that the data within a LADEL specification

would be laid out contiguously in memory.

The second strategy was to make a C++ class streamable and overload extraction (>>) and

insertion (<<) operators in such a way that data can be streamed in and out of the class�s internal

variables. One of the problems with this strategy was that it did not allow programmers to treat a

buffer as a hierarchical object consisting of sub-blocks with the ability to individually and

independently stream data in an out of these sub-blocks. LADEL solved this problem by

providing a mechanism for specifying flexible data layout and augmented this mechanism with

operators that allow data from sub-blocks to be streamed in and out individually and

independently.

Another problem with the second strategy was that it did not allow programmers to dynamically

specify the data layout. LADEL solved this problem by allowing the programmers to create their

data layouts in string format at run time.

We did some readability and maintainability comparisons between code performing buffer

manipulation using LADEL and code performing buffer manipulation manually. The outcome of

these comparisons was that the use LADEL resulted in code that was easy to read and maintain.

 67

Some performance tests were run to determine how LADEL performs as compared to code that

manually managed the block buffer data. When these tests were conducted it was found that the

performance of LADEL degraded as the number of selection operations increased. As selection

was performed on deeper and deeper fields within a data layout, the number of function calls

increased, which resulted in performance degradation. Doing the selection operation only once

and saving the pointers for streaming operations for the next pass solved this performance

problem.

The results from these performance tests demonstrated that improved readability and

maintainability of LADEL was achieved at a cost of 11% degradation in performance compared

to the code that manually managed block buffer data. This degradation reduced to 1.1 % when

the cost of transferring the packed data was taken into account. So it is concluded that use of

LADEL does not have much affect on the performance of programs using it.

5.2) Ideas for Further Improvements

Currently LADEL solves many problems associated with block buffer manipulation. It is quite

flexible and performs well. There are at least two desirable features that could be added to

LADEL. The first improves the flexibility by allowing multiple data layouts to be passed to the

constructor of BufferManagementClass. The second addition is to maintain a hash table of

pointers to all the BMOs within the top level BMO. These two features are discussed below.

 68

5.2.1) Support for Multiple Declarations within a Structure Definition

In the current implementation of LADEL only one statement per buffer declaration specification

is allowed. It does not have any symbol table capabilities. For example consider the layout

shown in Figure 5.1. It should be possible to specify the layout of Figure 5.2, which is

equivalent to layout of Figure 5.1.

The constructor in data layout of Figure 5.2 takes another argument that tells the number of data

layouts being passed to the constructor of BufferManagementClass. The last data layout in the

array of layouts would be the actual specification that needs to be laid out on the underlying

buffer. The BufferWrapper object then creates a symbol table where it will maintain all the

declarations specified in first n-1 layouts specified in the array where n equal the size of the data

stringClass mySpecification =
stringClass(“struct “) +
stringClass(“ { “) +
stringClass(“ (char*10) Name; “) +
stringClass(“ struct “) +
stringClass(“ { “) +
stringClass(“ struct “) +
stringClass(“ { “) +
stringClass(“ (char*10) Street; “) +
stringClass(“ (char*21) City; “) +
stringClass(“ } Address[4]; “)+
stringClass(“ }Addresses “) +
stringClass (“ } Person; “);

char sourceBuf[256];

BufferManagementClass
BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecification);

Figure 5.1
Data Specification Layout Supported Currently

 69

layout array. This improvement to the LADEL will improve the readability of the specifications

and allow the programmer to construct a big data layout as a collection of small data layouts.

5.2.2) Hash Table Creation in the Top Most BMO

In section 4.2 it was pointed out that the performance of LADEL degrades as the number of

selection operation performed increases. This is due to increasing number of function calls that

result as deeper and deeper fields are accessed within a layout. This problem could be solved by

maintaining a hash table of all BMO pointers for the data layout in the top level BMO. So for

example if the field City of the field Addresses[0] is to be accessed it should be possible to say

 BufferWrapper^�Addresses[0]^City� instead of

 (BufferWrapper^�Addresses[0]�)^�City�

stringClass mySpecifications[2];
stringClass mySpecification[0] =

stringClass(“typedef “) +
stringClass(“ struct “) +
stringClass(“ { “) +
stringClass(“ (char*10) Street; “) +
stringClass(“ (char*21) City; “) +
stringClass(“ }Address; “);

stringClass mySpecifications[1] =
stringClass(“struct “) +
stringClass(“ { “) +
stringClass(“ (char*10) Name; “) +
stringClass(“ Address[4]; “)+
stringClass (“ } Person; “);

char sourceBuf[256];
BufferManagementClass

BufferWrapper(sourceBuf, sizeof(sourceBuf), mySpecifications, 2);

Figure 5.2
Desired Data Specification Layout

 70

The first statement would require only one function call as compared to two for second

statement. So the performance would sure improve with storing the BMO pointers at the top

level BMO. But it is important to point out that we are seeing the performance problems when

we perform about 4 million selection operations. So in cases where very few selection operations

are performed LADEL�s performance degradation will be negligible.

5.3) Conclusion

The aim of this thesis was to provide C++ programmers with a tool for simplifying the task of

block buffer management. As demonstrated in Chapter 4, classic idioms for managing block

buffer data produce complex and low-level code. This manually managed code is difficult to

read and maintain. As the complexity of the data layout increases the readability and

maintainability of standard C++ buffer management code decreased. But with the use of

LADEL, the readability and maintainability improves, even with complex data layouts. LADEL

also provides C++ programmers with ability to specify buffer layouts at run time. As discussed

in Chapter 2 this ability to specify buffer layout at run time could be quite useful to applications

that read their data layouts at run time from some file or a database. All these improvements

were achieved without much degradation in performance as demonstrated in chapter 4.

 71

REFERENCE LIST

Koenig , 2001. http://www.cygnus.com/misc/wp/draft/ : �02-21-2001�

Microsoft, 2001 �msdn.microsoft.com/library/default.asp?URL=/library/specs/s1d202.htm� : �02-21-2001�

Graham D. Parrington. A Stub Generation System for C++. Computing Systems 8 (2): 135-169 (1995)

Stroustrup. Posting, comp.lang.c++.moderated [Private communication, James Higgins to Prof. Pfeiffer (my
advisor), September 1999 (?); exact date of original posting uncertain]

Uckan, Y. Problem Solving Using C++ c. 1993, Times High Mirror Education Group, p. 742ff.

 72

VITA

Ashfaq A. Jeelani

Personal Data: Date of Birth: October 2, 1972

Place of Birth: Hyderabad, India

Marital Status: Single

Education: Osmania University, Hyderabad, India;

 Computer Science, Bachelor of Engineering, 1994

 East Tennessee State University, Johnson City, Tennessee;

Computer Science, Master of Science, 2001

Professional

Experience: Computer Specialist, Dept. of Housing,

East Tennessee State University; Tennessee, 1997-1998

 Software Engineer, Siebel Systems; San Mateo

 California, 1999-current.

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2001

	A Data Layout Descriptor Language (LADEL).
	Ashfaq Ahmed Jeelani
	Recommended Citation

	Microsoft Word - WordThesis.doc

