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ABSTRACT

Parameter Estimation for a Modified Cable Model Using a Green’s Function and

Eigenvalue Perturbation

by

Scott La Voie

In this thesis we developed the Green’s Function for a tapered equivalent cylinder
model of dendritic electrical propagation. We then use the Green’s Function to de-
velop a Carleman linear embedding scheme which is used to estimate the effects of a
nonlinear ion channel hot-spot on the tapered cylinder solution. Mathematica c© was
used to implement the Carleman embedding scheme.
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LIST OF SYMBOLS

x Distance along the cable (cm)
t Time (s)
Rs Resistance of the soma (Ω)
RD Resistance of the dendritic cable (Ω)
Cs Somatic capacitance (F)
RN = RsRD/(Rs + RD) Input resistance of the neuron (Ω)
Rm Membrane specific resistance (Ω/cm2)
Cm Membrane specific capacitance (FΩ)
Ri Intracellular specific resistance (Ω cm)
Rms Somatic specific resistance (Ω cm2)
RmD Dendritic specific resistance (Ω cm2)
d Diameter of cable (cm)
λ = (RMd/(4Ri))

1/2 Space constant (cm)
τm = RmCm Time constant (s)
X = x/λ Electrotonic distance (dimensionless)
T = t/τm Dimensionsless time variable
V (X,T ) Electrotonic potential (resting assumed 0)(V)
l Physical length of cable (cm)
L = l/λ Electrotonic length of cable (dimensionless)
τs = RsCs Somatic time constant (s)
σ = τs/τm ∈ (o, 1] Somatic shunt parameter (dimensionless)
ri = 4Ri/(πd2) Intracellular resistance per unit length (Ω/cm)
γ = ρ∞ = Rs/(λri) Dendritic to somatic conductance ratio for semi-infinite

cables (dimensionless)
ρ = γ tanh(L) = Rs/RD Dendritic to somatic conductance ratio (Dimensionless)
Vs(T ) Electrotonic potential at the soma (V)
I0 Magnitude of applied current at the soma (A)
Isyn(T ) Synaptic current (A)
T0 Maximum width (duration) for which the synaptic current

is activated (dimensionless)
g(T ) Synaptic conductance change (f)
β Maximum amplitude of synaptic conductance change f
α = βλri Positive parameter (dimensionless)
K Separation constant
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1 Introduction to Neuron Models

A neuron has three major components: the soma or cell body, the axon, and the

dendrites which connect to the axon of other neurons at the synapses. Electrical flow

occurs from the axon of one neuron to the dendrites of another through neurotrans-

mitters where it sums either spatially or temporally until a threshold is reached and

the neuron then fires down its own axon and onto the dendrites of other neurons. The

modelling of neurons is of particular interest because robust models allow for faster,

more cost-effective research as opposed to using real neurons from animals.

Figure 1: Main components of a typical neuron and synaptic gap.

1.1 Historical Notes

Interest in determining electrical properties of neurons dates back to Galvani and

Volta [11]. Cable theory now dominates the research in studying electrical properties

of neurons. Lord Kelvin (also known as Professor William Thomson) created cable

theory while in correspondence with Professor Stokes to solve the problems faced with

the transatlantic telegraph cable then being planned[5]. A very important property

of cable theory is that it allows for the reduction to a single spacial dimension along
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the cable.

Tremendous advances in both the mathematical description of cables as well as

the experimental techniques have occurred in the last 100 years. Some of the more

important aspects are the use of single axon preparations and the development of

space and voltage clamps. There have been two predominant views of cable theory

since 1945, one by Hodgkin & Rushton and the other Davis & Lorente de Nó [11].

The modelling work aforementioned was developed with cylinders. Dendrites,

however, actually taper, which is caused by a deviation from the 3/2 power law at

the branch points [8]. The work completed in this thesis leads to a modified tapered-

cylinder model.

1.1.1 Definitions

A space clamp is a technique in which membrane potentials are isolated from all

other voltage dependent variables, which allows for the study of time dependent

membrane potentials since all spacial potentials are set to zero. The technique involves

inserting a long electrode with very low resistance per unit length in the axon, which

is immersed in a solution of very high conductivity.

A voltage clamp is a technique in which the membrane voltage is controlled

(fixed) in order to study the normal feedback that occurs between voltage and current.

The technique involves the use of two electrodes, one to keep the membrane potential

fixed and the other to measure the change in potential across the membrane.

The somatic shunt, or a diverted potential to the soma, is a condition thought

to be caused in experiments by the damage due to penetration of the membrane by

3



potential measuring instruments. Under specific assumptions the shunt boundary

condition is derived.

Rall’s equivalent cylinder model is a powerful simplifying reduction of branching

dendrites to one equivalent cylinder. The advantage is that properties of a whole

dendritic tree can be studied with well developed mathematical analysis [11].

1.1.2 Research Overview

This thesis consists of four major parts: development of model, eigenvalue perturba-

tion for a restricted model, a Green’s function approach to solving the problem (the

main work of the thesis), and future plans.

The development of the model consisted of an introduction to the biological and

physical aspects of the problem as well as the development of the mathematical model

used to estimate parameters of interest (potentials, currents, conductance, etc.)

The eigenvalue perturbation for a restricted model was a standard technique ap-

proach to the somatic shunt. The purpose of this part of the research was to gain a

base-level understanding of the research area.

The main work consisted of a Green’s function approach to solving the cable equa-

tion. The use of a Green’s function solves a less restricted cable model and introduces

a nonlinearity (a hot spot.) The embedding of the nonlinearity from the main equation

into one of the boundary conditions renders the problem more accessible.

In the future work we will adapt this work to Poznanski’s persistent sodium chan-

nel model. [10]

4



1.2 Cable Equation

The cable equation is the mathematical model by which electrical properties of the

neuron are modelled. The equation is a second-order, nonlinear, nonhomogeneous

partial differential equation.

1.2.1 Derivation

A dendritic segment is modelled by a cylinder with a membrane and a lumped soma.

Figure 2: Lumped soma RC circuit model.

The currents through a small patch are given by the membrane current density

Im, the external current densities I(x, t) and the axial current directed toward the

soma. In particular, on a small patch we have

Im −∆Iaxial = −I(x, t)

where the membrane current Im is a sum of a capacitative current and a current

5



across the membrane resistance. Thus,

cm
dV

dt
+

V

rm

−∆Iaxial = −I(x, t)∆x (1.2.1)

However, the axial current can be modelled by approximating the cylinder in the

following diagram:

rmcm

ri

rmcm

ri

rmcm

ri

rmcm

ri

rmcm

ri

V(x) V(x+∆x)

∆x

Iaxial

Figure 3: Cylinder and RC circuit equivalence.

Using rm = Rm∆x, cm = Cm∆x for the membrane resistance and ri = Ri∆x as the

internal resistance we see

Iaxial =
V (x +4x)− V (x)

Ri4x
=⇒ lim

4x→0
Iaxial =

1

Ri

∂V

∂x
.

(
Cm

dV

dt
+

V

Rm

)
∆x−∆Iaxial = −I(x, t)∆x

Cm
dV

dt
+

V

Rm

− ∆Iaxial

∆x
= −I(x, t). (1.2.2)

6



Empirical evidence implies that intracellular fluid and membrane thickness are uni-

form. Thus, internal resistance Ri and membrane capacitance Cm may be assumed

to be constant. Now (1.2.2) becomes

Cm
dV

dt
+

V

Rm

− 1

Ri

∂2V

∂x2
= −I(x, t)

Rm

Ri

∂2V

∂x2
− τm

∂V

∂t
− V = I(x, t).

where τm = CmRm is the membrane time constant. If we let λ2 = Rm

Ri
, then X = x

λ

transforms our model into dimensionless form:

∂2V

∂X2
− τm

∂V

∂t
− V = I(x, t)

If we assumed sealed ends (i.e., no current flow), then the boundary conditions and

initial condition are

∂V

∂X
(0, t) = 0

∂V

∂X
(l, t) = 0

V (X, 0) = Vin ≡ constant.

Using subscript notation, our system to be solved is then

7



Vxx − τmVt − V = I(x, t) (1.2.3)

Vx(0, t) = 0

V (l, t) = 0

V (x, 0) = 0

1.3 Delta Function Justification

This justification is provided by Dr. Jeff Knisley and can be found in [12].

Assume a cable of length l with a point source at x0 ∈ (0, l) . For each ε > 0, let

V (x, t) be a solution to

∂V

∂t
=

∂2V

∂x2
+ k

∂V

∂x
− V (1.3.1)

Vx (0, t) = Vx (l, t) = 0 (1.3.2)

V (x, ε) =
1

ε
√

2π
e−(x−x0)2/(2ε2). (1.3.3)

It can be shown that

lim
ε→0+

V (x, ε) = 0 if x 6= x0 (1.3.4)

lim
ε→0+

∫ ∞

−∞
V (x, ε) dx = 1 (1.3.5)

(i.e., it is a Gaussian probability distribution for each ε > 0). This allows the following:
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Proposition 1.1 If f (x) ∈ C0 [0, l] , if f (x) = 0 for x < 0 or x > l0, and if V

satisfies (1.3.4) and (1.3.5), then

lim
ε→0+

∫ l

0

V (x, ε) f (x) dx = f (x0) .

Proof:

Let’s first notice that we can write

∫ l

0

V (x, t) f (x) dx =

∫ ∞

−∞
V (x, t) f (x) dx

=

∫ ∞

−∞
V (x, t) f (x0) dx +

∫ ∞

−∞
V (x, t) [f (x)− f (x0)] dx

=

∫ ∞

−∞
V (x, t) f (x0) dx +

∫

R\(a,b)

V (x, t) [f (x)− f (x0)] dx

+

∫ b

a

V (x, t) [f (x)− f (x0)] dx

where (a, b) is an interval on which |f (x)− f (x0)| < ε. Then

lim
ε→0+

∫ ∞

−∞
V (x, ε) f (x0) dx = f (x0) lim

ε→0+

∫ ∞

−∞
V (x, ε) dx = f (x0) .

In addition, it is easy to show that

lim
ε→0+

∫

R\(a,b)

V (x, ε) [f (x)− f (x0)] dx = 0

and also that

∣∣∣∣
∫ b

a

V (x, ε) [f (x)− f (x0)] dx

∣∣∣∣ ≤
∫ b

a

1√
2π

e−(x−x0)2/(2ε2)dx → 0

as ε approaches 0.¤

In the sequel, we will use the notation
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∂V

∂t
=

∂2V

∂x2
+ k

∂V

∂x
− V (1.3.6)

Vx (0, t) = Vx (l, t) = 0 (1.3.7)

V (x, 0) = δ (x− x0) (1.3.8)

to denote the family of functions that satisfy (1.3.1), (1.3.2), (1.3.3), (1.3.4), and

(1.3.5).

1.4 Green’s Function Concept

The following justification is provided by Dr. Jeff Knisley and can be found in [12].

Let L be a differential operator with domain D ⊂ L2 [0, l] . Then L is unbounded

since

‖Lxn‖
‖xn‖ = o (n)

as n →∞. Suppose now that the spectrum of L is discrete. Then the resolvent is

ρ (L) =
{
z ∈ C | (zI − L)−1 BLO on L2 [0, l]

}

is uncountable and the resolvent operator Rz = (zI − L)−1 can be considered a

continuous function of z. It follows that (zI − L)−1 f = g is a solution to the nonho-

mogeneous differential equation

zg − Lg = f.

Moreover, since

f (x) =

∫ ∞

−∞
f (u) δ (x− u) du,
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then it follows that

(
(zI − L)−1 f

)
(x) =

∫ ∞

−∞
f (u) (zI − L)−1 δ (x− u) du.

Now we let G (x, z, u) be the solution to

(zI − L)−1 δ (x− u) = G

which is equivalent to

zG− LG = δ (x− u) .

Then G is called the Green’s function of L and it follows that

(
(zI − L)−1 f

)
(x) =

∫ ∞

−∞
G (x, u, z) f (u) du.

It is important to point out that Duhamel’s principle [14] allows us to modify

our definition of the Green’s function. In particular, suppose that we have

Vt − (zI − L) V = F (x)

V (x, 0) = 0

and let us suppose that we let W (x, t) = V (x, t)− (zI − L)−1 F (x) . Then

Wt − (zI − L) W = Vt − (zI − L) V − (zI − L) (zI − L)−1 F (x)

= F (x)− F (x)

= 0

and W (x, 0) = 0− (zI − L)−1 F (x) . That is, our original non-homogenous equation

becomes

Wt − (zI − L) W = 0

11



W (x, 0) = − (zI − L)−1 F (x) .

We thus define a Green’s function to be the solution of the main partial differential

equation with the delta function imbedded within the initial conditions.

12



2 Preliminary Work

2.1 Eigenvalue Perturbation

2.1.1 Introduction

In the early stages of the research we used perturbation to solve the hot spot by

linearizing with the Laplace transform technique. The problem statement was:

rm

ri

∂2Vj

∂x2
= rmcm

∂Vj

∂t
+ Vj − rmj

gj(xj, t) (2.1.1)

where gj(xi, t) is the internal ion density and where rj is the internal resistance.

To illustrate the Laplace Transform method we assume gj(xi, t) = 0. We then

have

rm

ri

∂2Vj

∂x2
= rmcm

∂Vj

∂t
+ Vj. (2.1.2)

Re-scaling in x and letting τm = rmcm [7] leads to

∂2V

∂x2
= τm

∂V

∂t
+ V (2.1.3)

V (0, t)− γVx(0, t) + σVt(0, t) = 0

Vx(l, t) = 0

V (x, 0) = 0

which corresponds to the simplification of just one cylinder and a voltage depolariza-

tion in the initial conditions.
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Using the Laplace operator on derivatives, L [
df
dt

]
= sf̂(s)−f(0) [6] we get the Laplace

transform of (2.1.3)

∂2V̂

∂x2
= sτsV̂ − V (x, 0) + V̂ . (2.1.4)

Working with just one cylinder, the initial assumption (constant Vin) implies that

V (x, 0) = 0 so (2.1.4) becomes

∂2V̂

∂x2
= (sτs + 1)V̂ (2.1.5)

V (0, t)− γVx(0, t) + σVt(0, t) = 0 (2.1.6)

Vx(l, t) = 0

V (x, 0) = 0

where (2.1.6) is the somatic shunt boundary condition [7]. The homogenous form of

(2.1.5) has the general solution V̂ (x) = A cosh [β (l − x)] + B sinh [β (l − x)] where

β2 = sτm + 1. The boundary conditions imply B = 0 and

A =
1

(1− ατs) cosh (βl) + γβ sinh (βl)
. (2.1.7)

The solution to (2.1.5) is then

V̂ (x, s) = A cosh (βl) =
cosh (βl)

(1− ατs) cosh (βl) + γβ sinh (βl)
. (2.1.8)
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2.1.2 Eigenvalue Equation

Separating variables in (2.1.5) yields a solution of the form

V (x, t) =
∞∑

j=1

cj(x)e−αjt (2.1.9)

which in Laplace space is of the form

V̂ (x, s) =
∞∑

j=1

cj(x)

s + αj

. (2.1.10)

The αj’s are simple poles of V̂ with residues cj. The αj’s are the zeros of the

denominator of the Laplace space solution (2.1.8).

Next we convert the hyperbolic functions to trigonometric functions by letting

s = −α and using the identities

cosh(iθ) = cos(θ)

sinh(iθ) = i sin(θ).

Thus we convert (2.1.8)

V̂ (x, s) =
cosh (βl)

(1− ατs) cosh (βl) + γβ sinh (βl)
(2.1.11)

⇓

V̂ (x, s) =
cos (β1l)

(1− ατs) cos (β1l)− γβ1 sin (βl)
(2.1.12)

where β1 = +
√

ατm − 1.

15



2.1.3 Perturbation Assumption

The eigenvalues are the poles of the Laplace Transform of the solution [6], and are

thus solutions to

cos(β1l)(1− ατs)− γβ1 sin(β1l) = 0.

Empirical evidence implies that τs << τm. Let τs = ετm for ε ≈ 0. Then it can be

shown that γ = εk for some constant k. Our eigenvalue equation is

cos(β1l)(1− ατs)− εkβ1 sin(β1l) = 0. (2.1.13)

2.1.4 Perturbation Scheme

If we let x = β1, the eigenvalues are solutions of f(x, ε) = 0 where

f(x) = (x2 + 1)ε cos(xl)− cos(xl) + kεx sin(xl).

We assume a power series expansion in x

x =
∞∑

n=0

anx
n

and note that since a0 is a solution of f(x, 0) = 0, this implies that a0 is a solution

to cos(xl) = 0, so a0 = nπ
2l

for odd n.

2.2 Estimate of Eigenvalues

2.2.1 Recursion Scheme

Using Maple c©, the expansion contains five terms and the coefficients for εn were

collected. The results were

16



a0 =
nπ

2l

a1 =
nπ

l

(
kl

4
− k

2l

)

a2 =
n2

π2
4l2 − k

l
.

Thus, to second order, the eigenvalues are

xn =
nπ

2l
+ ε

(
nπ

l

(
kl

4
− k

2l

))
+ ε2

(
n2

π2
4l2 − k

l

)

αn =
1

τm

(
x2

n + 1
)
.

These eigenvalues can be used to get the final solution of V by substituting into

(2.1.9).
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3 Equation of Interest

3.1 Hot-spot Model and Green’s Function

We use a modified cable model to represent a tapered equivalent cylinder model with

a single hot spot. In particular, if u(x, t) is the membrane voltage at a distance x

from the soma at time t, then u(x, t) satisfies

∂2u(x, t)

∂x2
+ k

∂u(x, t)

∂x
− τ

∂u(x, t)

∂t
− u(x, t) = y(t)δ(x− x0) (3.1.1)

ux(0, t) = 0

ux(l, t) = 0

u(x, 0) = 0

where y(t) is the voltage at the sodium channel hot spot. In order to solve this, we

need to find a Green’s Function satisfying the following:

∂2G(x, t)

∂x2
+ k

∂G(x, t)

∂x
− τ

∂G(x, t)

∂t
−G(x, t) = 0 (3.1.2)

Gx(0, t) = 0

Gx(l, t) = 0

G(x, 0) = δ(x− x0).

We assume G(x, t) is separable so that G(x, t) = Φ(x)T (t). Equation (3.1.2) then

becomes

18



Φ′′T + kΦ′ − τΦT ′ − ΦT = 0 (3.1.3)

Φ′(0) = 0

Φ′(l) = 0.

(3.1.4)

Separating variables yields

Φ′′ + kΦ′ − Φ

τΦ
= −β2 (3.1.5)

T ′

T
= −β2. (3.1.6)

The solution of (3.1.6) is clearly T (t) = e−β2t. The solution to (3.1.7) follows:

Φ′′ + kΦ′ − Φ

τΦ
= −β2

Φ′′ + kΦ′ − Φ = −β2τΦ

Φ′′ + kΦ′ − Φ
(
τβ2 − 1

)
Φ = 0. (3.1.7)

The characteristic equation for (3.1.7) is r2 + kr + (τβ2 − 1) = 0 which has roots

r =
−k ±

√
k2 − 4(τβ2 − 1)

2
.

We know that the discriminant k2−4(τβ2−1) < 0 so the roots of r in complex nota-

tion are r1 = 1
2

(
−k + 2ı

√
(τβ2 − 1)− −k2

4

)
and r2 = 1

2

(
−k − 2ı

√
(τβ2 − 1)−k2

4

)
.
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Using r = a ± bı we see that a = −k
2

and b =
√

(τβ2 − 1)− k2

4
. The solution to

(3.1.7) now has the general form

Φ(x) = eax (A cos(bx) + B sin(bx)) (3.1.8)

Φ′(0) = 0

Φ′(l) = 0.

The derivative of Φ is

Φ′(x) = eax {[−Ab sin(bx) + Bb cos(bx)] + a [A cos(bx) + B sin(bx)]} .

Here we make change of variable letting x → l − x so

Φ′(x) = eax {[−Ab sin(b(l − x)) + Bb cos(b(l − x))] + a [A cos(bx) + B sin(bx)]} .

Applying the boundary conditions, we see

Φ′(l) = 0 =⇒ A = −B
b

a

Φ′(0) = eal

[
B sin(bl)

(
−1− b2

a

)]
= 0.

The second condition above leads to an expression for β. If we consider the factor

sin(bl) = 0 then for n ∈ Z, we get b = nπ
l
. If we let β = βn then from above we see

b =
nπ

l√
(τβ2

n − 1)− k2

4
=

nπ

l
. (3.1.9)
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From (3.1.9) we get for βn

βn =

√
1

τ

4n2π2 + 4l2 + k2l2

4l2

and so Φ(x) is

Φ(x) = e
k(x−l)

2 [B sin (b(l − x))] .

The separated solution for the Green’s function at this point is

G(x, t) = Φ(x)T (t) = Be
− k(l−x)

2

[
sin

((√
(τβ2

n − 1)− k2

4

)
(l − x)

)]
e−β2

nt.

Thus, with an infinite sum over index n, the generated solution for the Green’s func-

tion which is of the form

G(x, t) = Φ(x)T (t) =
∞∑

n=1

bne
− kx

2

[
sin

((√
(τβ2

n − 1)− k2

4

)
(l − x)

)]
e−β2

nt

where βn = Be
− kl

2 . To find bn we note that G(x, 0) = δ(x−x0). For example, if k = 0

(i.e., the cylinder is not tapered), then

2

l

∫ l

0

G(x, 0) sin

[(
Nπ

l
(l − x)

)]
dx =

∞∑
n=1

bn

∫ l

0

sin

(
Nπ

l
(l − x)

)
sin

(nπ

l
(l − x)

)
dx

∫ ∞

0

δ(x− x0) sin

[(
Nπ

l
(l − x)

)]
dx = lbN

1

l
sin

[(nπ

l
(l − x0)

)]
= bN . (3.1.10)

21



Finally we get

G(x, t) =
2

l

∞∑
n=1

sin
[(nπ

l
(l − x0)

)]
sin

[(nπ

l
(l − x)

)]
e
−k(l−x)

2
−β2

nt

=
1

l

∞∑
n=1

{
cos

[(nπ

l
(l − x0)

)]
− cos

[(nπ

l
(2l − x− x0)

)]}
e
−k(l−x)

2
−β2

nt.

(3.1.11)

To get the full solution u(x, t) we use a convolution with the Green’s function.

u(x, t) =

∫ t

0

G(x, t− p)y(p)dp

=
1

l

∞∑
n=1

{
cos

[(nπ

l
(l − x0)

)]
− cos

[(nπ

l
(2l − x− x0)

)]}
×

e
−k(l−x)

2

∫ t

0

e−β2
nt−py(p)dp. (3.1.12)

As an application of the solution we can determine the voltage term V (t),

V (t) =

∫ t

0

G(x, t− p)y(p)dp

Vx =

∫ t

0

Gx(x, t− p)y(p)dp

Vxx =

∫ t

0

Gxx(x, t− p)y(p)dp

Vt = G(x, 0)y(t) +

∫ t

0

Gt(x, t− p)y(p)dp

Vxx − τVt − V = δ(x− x0)y(t) +

∫ t

0

(Gxx − τGt −G)(t− p)y(p)dp

Vxx − τVt − V = δ(x− x0)y(t) (3.1.13)

which has the solution
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V (t) =

∫ t

0

e−β2(t−p)y(p)dp.

3.2 Embedding Method and Recursion Scheme

A simplified model of the hot spot voltage y(t) is given by

y′ = ay + mb(y − VNa P)3.

To approximate the solution to the hot spot model we use a modified Carleman

scheme [2]. In particular let Vn(t) =
∫ t

0
e
−β2

n(t−u) y(u)n

n!
du. The change of variable w =

t− u =⇒ u = t− w leads to

Vn(t) =

∫ t

0

e
−β2

n(u) y
n
(t− u)

n!
du.

It follows that the derivative of Vn(t) is

V
′
n = e−β2

nt +

∫ t

0

e
−β2

nu yn−1

(n− 1)!
y′(t− u)du

= e−β2
nt +

∫ t

0

e
−β2

nu yn−1

(n− 1)!

[
ay + mb(y − VNa P)3

]
du

= e−β2
nt +

∫ t

0

e
−β2

nu yn−1

(n− 1)!

[
ay + mb

(
y3 − 3y2VNa P + 3yV 2

Na P − V 3
Na P

)]
du

= e−β2
nt + an

∫ t

0

e
−β2

nu yn

n!
du

+ mbn(n + 1)(n + 2)

∫ t

0

e
−β2

nu yn+2

(n + 2)!
du− 3mbn(n + 1)VNa P

∫ t

0

e
−β2

nu yn+1

(n + 1)!
du

+ 3mbnV 2
Na P

∫ t

0

e
−β2

nu yn

n!
du− V 3

Na P

∫ t

0

e
−β2

nu yn−1

(n− 1)!
du.
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The result is an infinite dimensional linear system of equations of the form

V
′
n = e−β2

nt +−mbV 3
Na PVn−1 +

(
n(a + 3mbV 2

Na P)
)
Vn

− 3mbn(n + 1)VNa PVn+1 + mn(n + 1)(n + 2)Vn+2.

We now have a recursive scheme for the derivative of Vn which can be used to set up

the system of equations needed to solve for V1.
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4 Conclusions and Future Work

The Carleman linearization worked well for a short period of time. The process

became unstable thereafter as the matrix solution produced nearly singular matrices.

The next step in this project is to adapt this work to Poznanski’s persistent sodium

channel model [10]. This model has been shown to be an accurate representation of

a large class of neurons. Currently, approximations are based on the solution to

an equivalent Volterra integral equation. Moreover, the original equation must be

linearized before transformed to a Volterra integral equation.

The embedding technique does not require a linearization. Moreover, adapting our

techniques to other models requires only a modification of the embedding equation.
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A Mathematica c© Code for the Eigenvalue Prob-

lem

� Computational Loop

Timing�For�i � 1, i � numMatr,
�� Choose the size��
useMatrix �
Take�workMatrix, �1, numMin � i � 1�, �1, numMin � i � 1��;
useForceMatrix � Take�forceMatrix, �1, numMin � i � 1��;
useIdentityMatrix � IdentityMatrix�numMin � i � 1�;
ttime � 0.0; �� Start time loop ��
inverseMatrix � Inverse�useMatrix � �2 useIdentityMatrix�;
For�kk � 1, kk �� numTimeSteps,

V � �MatrixExp�useMatrix ttime� � ���2 ttime

useIdentityMatrix	.inverseMatrix.useForceMatrix;
�� Here I need storage ��
soln��i, kk�� � V��1��;
ttime �� timeStep;
kk��;


�� end time loop ��
i��;



�� End for i � 0, choose matrix size ��

lavoies.nb 1

Printed by Mathematica for Students
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