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ABSTRACT 

Characterization of Commercial Pectin Preparations by 

 Spectroscopic and Chromatographic Techniques 

by 

Daniel Wayne Dixon, Jr. 

 

Pectin has a long history as a food additive.  However, elucidation of its fine structural and 

property relationships remains elusive.  Recent research has focused on pectin’s ability to 

complex with divalent heavy metals to aid in characterizing it.  Commercial pectins of unknown 

composition were obtained from local grocers.  Purified pectin samples from orange peel, 

lemon peel, and apple pomace, each of low and high levels of methyl esterification and of 

unknown distribution pattern were also purchased.  Instead of metal complexation, several 

highly absorbing dyes such as Ruthenium Red, Nile Blue, and Acridine Orange were used to 

complex with the pectins and their resulting UV-Vis spectral patterns were employed to 

determine if one can characterize the different pectins.  Chemometric methods are also 

included to aid in distinguishing them apart.  
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GLOSSARY 

Degree of Amidation.  Percentage of the C-6 carboxylate groups that are amide groups. 

Degree of Esterification.  Amount of esterification along the polymer backbone. 

Degree of Methylation.  1.   Moles of methanol present per 100 moles of galacturonic acid.  2.  

Percentage of the C-6 carboxylate groups that are esterified with methanol. 

High Methoxyl Pectin.  Pectin containing > 50% (of total ester groups) amount of methyl 

esterification (> 50 DM) along its backbone. 

Low Methoxyl Pectin.  Pectin containing < 50% (of total ester groups) amount of methyl 

esterification (< 50 DM) along its backbone. 

Protopectin.  Water insoluble parent pectic substance, which upon hydrolysis, yields pectinic 

acids. 

Pectic Substance.  Polyuronide composed mostly of anhydrogalacturonic acid residues. 

Pectinic Acids.  Colloidal polygalacturonic acid with very low methyl ester content. 

Pectic Acids.  Colloidal polygalacturonic acid devoid of methyl esterification. 

Pectates.  Mg, Ca, Na, or other Pectic acid salts. 

Pectin.  1.  A large, naturally occurring polymer contained within the middle lamella of plants.  

2.  Water soluble pectinic acid of varying methyl esterification- capable of forming gels under 

suitable conditions. 

Pectinates.  Mg, Ca, Na, or other Pectin salts. 
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CHAPTER 1 

INTRODUCTION 

History of Pectin 

  Pectin has a very long chemical history.  As early as 1750, apple, currant, and quince jelly 

recipes were published in the "London Housewife's Family Companion"1.  In 1790, Vauquelin 

reported2  pectin as a soluble substance in fruit juice.  Scientific study in 1825 by Henri 

Braconnot3 led to a detailed description of "Pectin-Acid", derived from Greek "pectos" which 

means to solidify, congeal, or curdle.  The commercial production of liquefied extract of pectin 

began in 1908 Germany and was quickly patented in the United States4. 

Sources of Pectin 

 General acceptance states that pectin comprises up to 35%5 of the cell wall of most 

terrestrial plants where alginates and carrageenans play a similar role for their marine 

counterparts.  All green land plants contain pectin to a certain degree.  Pectin content in 

dicotyledonous (flowering) plants far outweighs that contained in monocotyledonous (seed-

bearing) plants and grasses.  See Table 1 for a representation of the content of pectin in 

monocots versus dicots. 

Table 1.  Classes of pectin 

Components Monocots (%) Dicots (%) 
Cellulose 30 30 

Pectin 5 35 

Arabinoxylan 30 5 

Xyloglucan 4 25 

β-(1,3),(1,4)-Glucans 30 0 

Glycoprotiens 1 5 
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Classes of Pectin 

 Two main classes and several subclasses of pectin exist6.  High Methyl Ester (HM-) pectin 

is the first general class of pectin.  In this type of pectin, a high portion (>50%) of carboxyl 

groups exists as a methyl ester.  The remaining carboxyl groups exist as the free acid, 

ammonium, sodium, calcium, or other rarer salts.  Low Methyl Ester (LM-) pectin is the second 

general type.  For this type of pectin, less than 50% of the carboxyl groups exist as the methyl 

ester variant.  These are usually obtained from mild alkali or acidic treatment of HM-Pectin.  

Small quantities of acetylated pectin (small amount of acetyl esterification) can be found in all 

plant sources.  Amidated pectin7 is obtained from HM-Pectin when ammonia is used in the 

alkaline deesterification process.  During this process, some of the carboxyl groups are 

converted to the acid amide.  Small quantities of amidated pectin can be found naturally in 

sugar beets and certain other sources. 

Chemistry of Pectin 

 Pectins are a family of complex, anionic polysaccharides found in the primary cell wall 

and intercellular regions of higher plants8.  Pectins, as a compound, are linear polysaccharides 

composed primarily of D-galactopyranosyluronic acids joined via α(14) glycosidic linkages.  

This regular structure is intradispersed with L-rhamnopyranosyl units, or “hairy regions”, methyl 

ester groups and rarely, neutral-sugar side-chains.  The galacturonic acid units contained within 

pectins can be either partially methyl-esterified, acetylated or both.  Figures 1-3 are typical 

representations.  Pectins, as naturally found, generally have an average molecular weight (MW) 
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of approximately 200 kDa (with 300 kDa being a normal occurrence) and form strong gels in the 

presence of cations (divalent or monovalent) or small sugars.  
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Figure 1.  Naturally occurring forms of D-galacturonic acid residues where arrows indicate 
possible β-elimination in the ester form 
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Figure 2.  Alternative representations of D-Galacturonic Acid 

Pectin nomenclature includes many terms as defined by the Committee for the Revision 

of the Nomenclature of Pectic Substances9 and has seen many changes over the years.  A 

current definition for these molecules is lacking.  Effort will be made to maintain current 

commercial nomenclature within this text.  Pectins are employed in several different forms  
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Figure 3.  Overview of the pectin structure.  Homogalaturonan with partially methyl-esterified 
α-(1→4)-linked D-Galacturonic acids comprises the backbone in the smooth region 

such as pectinic acids, pectinates, pectic acids, and pectates, where pectin, as an over-arching 

term, encompasses all listed forms.   

 Pectic acids, with various degrees of neutralization, are poly(α-D-

galacturonopyranosyluronic) acids (poly-D-galacturonic acids for short) with no or very small 

amounts of methyl esterification.  Pectinic acids, on the other hand, contain appreciable levels 

of methyl esterification along its backbone.  Pectates and pectinates are salts of these 

molecules, respectively.  Pectins are generally classified based on their degree of esterification 

(DE) or degree of methylation (DM) of contained carboxyl groups with methanol.  High-

methoxyl, or HM-pectins, have a DE of 50% or greater while low-methoxyl (LM-) pectins have a 

DE of less than 50%.  
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 Commercially, about 17000 metric tons of combined HM- and LM-pectin were produced 

in 199810.  The most common industrial sources of pectins are apple pomace and citrus peel.  

However, other sources have been used, including sunflower heads, sugar beet pulp, and 

potato pulp, all depending on a given region’s agricultural base.  The commercial process for 

pectin isolation was first described by May in 19906 and followed in more detail by Voragen et 

al. in 199511.  The predominant commercial class of pectins includes fast-gelling pectins (DE > 

70%) or slow- to medium-set pectins (DE 60-70%).  Conversely, LM-pectins do not have a 

grading system because of the number of variables that affect gelation.  Pectins of all forms are 

typically sold as powders.  The major usage of pectins is in food applications.  Their main 

function in this role is as a thickening or gelling agent for jams and jellies, bakery glazing and 

fillings, fruit preparations for dairy products, confectionary, or as a stabilizer in milk or fruit 

beverages12.  An added characteristic of pectins is that they function as water-soluble dietary 

fibers.  In this utility, pectins are resistant to hydrolysis by human digestive enzymes and only 

partially broken down by intestinal bacteria to short-chain fatty acids, methane, carbon dioxide, 

and water.  In this light, new pectins have been developed as fat-substitutes13, 14. 

 Generally, pectins are soluble in water thereby making them insoluble in most organic 

solvents.  Further, pectic acids are only soluble when complexed with monovalent salts.  

Divalent salt complexes of pectic acids are of limited solubility while trivalent salts are insoluble.  

The typical solubility trend is observed as decreasing with increasing ionic strength and MW and 

decreasing DE.  If gelling conditions exist, pectins will not dissolve.  A gel is simply a system 

within which the contained polymer is in a state of flux between being fully dissolved and being 
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precipitated.  Flory15 describes gels as polymer molecules cross-linked to form an 

interconnected three-dimensional network immersed in a liquid medium.  In Pectins, as with 

most other food gels, cross-linking occurs as additive, weak, intermolecular interactions with no 

to very low kinetic activity, atypical to the covalent-linkages usually seen in synthetic polymer 

gels.  Therefore, pectin gels suffer from a temperature threshold above which no gelation can 

occur.  Generally, in polysaccharide gels changing either the temperature or counterionic pH 

variations induce cross-linking16.  In typical use, pectins form two types of gels: pH and sugar 

dependant and cation dependant.  In the first case, high DM pectin is required with an acidic pH 

(< 3.6) and a high concentration of simple sugar (> 55% w/w)17.  This particular gel system is 

widely seen in the manufacture of jams and jellies.  The other type of gel involves the use of 

lower DM pectin and the presence of a divalent cation (e.g. calcium).  This system has the 

advantage of gelation over a wide pH range without the presence of a sugar.  

 High-methoxyl pectins, as mentioned above, form gels with the presence of a high 

concentration of co-dissolved sugar and at an acidic pH.  The presence of the sugar as a co-

solute decreases water activity and effectively dehydrates the pectin (by robbing the pectin of 

needed solvent to induce precipitation) while the low pH hinders ionization of the carboxyl 

groups thereby decreasing electrostatic, intramolecular repulsion within the pectin chains.  

Pectin is inherently a complex, polyprotic, weak carboxylic acid with a pKa of approximately 3.5 

to 4.5.  By lowering the pH below this pKa, the molecule becomes less hydrophilic and thereby 

increasing the tendency to form gels.  These effects increase chain-to-chain interaction and lead 

to partial precipitation, or gelation.  Hydrogen bonding18 and hydrophobic interactions of the 
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ester groups19 stabilize the structure.  As previously mentioned, though these interactions are 

weak, their cumulative effects are sufficient to provide thermodynamic stability to the three-

dimensional network as shown in Figure 4 where interaction zones for High-methoxyl pectin is 

a typical representation.   

 

Figure 4.  Interaction zones for High-methoxyl Pectin.20  Source: Walkinshaw, M. D.; Arnott, S., 
Conformations and interactions of pectins. II. Models for junction zones in pectinic acid and 
calcium pectate gels. J. Mol. Biol. 1981, 153, 1075-1085. 
 
 Low-methoxyl pectins, as previously mentioned, form gels in the presence of a counter 

cation (most commonly calcium) with little or no co-solute sugar.  This occurs within a wide pH 

range and with higher temperature stability.  As is commonly known21, the lower the pectin DE 

the greater the tendency to precipitate in the presence of a cation, generally calcium.  Calcium 
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and d-orbital, divalent, transition metals (e.g. Cu2+, Co2+, Pb2+, etc.), use unfilled orbitals to form 

coordination complexes with neutral and acidic carbohydrates.  It is suggested that calcium’s 

radius (0.1 nm) is large enough to coordinate with the spatial arrangement of oxygen atoms in 

many sugars and can have extreme flexibility in the direction of its own coordinate bonds22.  A 

proposed structure for calcium-induced gelation is shown in Figure 5.  By cooperatively and 

 

Figure 5.  Low-methoxyl calcium pectate gel. 

consecutively “cross-linking” 7-14 oxygens of two adjacent chains a high degree of gel stability 

can be achieved23.  Clearly, in this case a blockwise distribution of carboxyl groups can be very 

sensitive to low calcium levels24.  As with high-methoxyl pectins, several factors influence 

gelation of low-methoxyl pectins.  As previously alluded to, the presence of methoxyl groups 

hinder gelation; therefore, low DM is desirable.  Also, the lower the DM the less calcium 

required to induce precipitation.  Conversely, the lower the MW of respective pectin chains the 

more calcium is required to induce gelation20.  Calcium typically will not precipitate pectins with 

a DE greater than 60%.  As with methoxyl groups, anything that disrupts the blockwise 

Calcium-bound “junction” 

Highly esterified 
chain 

Rhamnosyl “kink” 
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distribution of carboxyl groups will adversely affect gelation (e.g. acetyl groups, rhamnose side 

chains, etc.) other than when the disruption promotes chain association as occurs with amide 

groups.  Figure 6 shows a plot of calcium-concentration effects and the optimal calcium level for 

a given pectin as related by gel strength. 

 

Figure 6.  Calcium concentration effects on LM-pectin gels.  (pH=6, 30% sugar, 1% pectin)25 
Source: El-Nawawi, S. A.; Heikel, Y. A., Factors affecting the production of low-ester pectin gels. 

Carbohyd. Polym. 1995, 26, (3), 189-193. 

This optimum will shift as determined by interaction of previously listed variables.  Although 

LM-pectin can form gels over a wide pH range, optimal pH occurs above the pKa (~ 3.5).  From 

3.5 to 7.0 pH, carboxyl groups become ionized and consequently increase chain repulsion and 

have a greater tendency to interact with a cation.  Co-solute sugars are not necessary to induce 

gelation as with HM-pectins, but at levels up to 30% (w/w) gelation of LM-pectins is 

enhanced26.  
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 At a pH higher than neutral (about pH 8) pectins become unstable, being subjected to β-

elimination at the C-4 position when the C-6 carboxylate group is esterified.  The arrows shown 

in Figure 1 indicate this process.  Therefore, HM-pectin is very vulnerable to degradation even 

at room temperature and pH 527.  Pectins, HM and LM, are subject to limited hydrolysis at 

lower pH values.  However, this is miniscule when compared to depolymerization though β-

elimination at high pH ranges.  Chain stability at low pH remains high.  This feature is a very 

desirable pectin trait as food preparations are typically done at acidic pH.  In addition, pectins 

as a solid lose less than 5% of their grading level per year when stored at room temperature 

and low humidity, making them stable during long-term storage. 

 Jams and jellies remain the largest commercial outlet for pectins.  Prior to the 

commercial availability of pectins, jam (and jelly) manufacturing had to rely on the inherent 

pectin content of the given fruit and very high temperatures.  Under these harsh conditions, 

traditional jams were very limited on fruit selection.  In addition, jam color, aroma, and vitamin 

content were lacking.  Other commercial applications of pectins are listed vide infra.  The use of 

pectins in food is a rapidly expanding market- not only from a gelling perspective but as a 

thickening agent also.  Some of these new applications include reduced-sugar jams, heat-

resistant jam for baked goods, heat-reversible glazing, yogurt preparations, fruit jellied candies, 

etc.  In addition to these food preparations, pectins are becoming widely used for stabilization 

of oil-in-water emulsions28, fat-replacement food components29 and limited pharmaceutical 

uses (e.g. wound dressings30, gastric ulcer treatment31, acid reflux prevention32, etc.).  
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 Pectins are becoming a very important product derived from renewable resources.  The 

“Green Initiative” in many countries is pushing this type of research to the forefront.  Pectins 

have a variety of very important uses in more than just the food industry.  Unfortunately, as a 

class of compounds pectins are very complex polymers, difficult to analyze and ungainly to 

functionalize on a manufacturing scale.  Thankfully, interest in renewable chemistry is driving 

research in this area to new discoveries on a daily basis.  As a cheap and versatile raw material, 

pectin is poised for many great applications. 

Industrial Production of Pectins 

 As an abundant raw material, apple pomace and citrus peels are the sources from which 

most industrial pectins are derived.  However, raw materials are highly dependent upon local 

crop sources.  In some parts of the world, sugar beet pulp, sunflower heads, or potato pulp are 

used.  May6 and Voragen11 previously described, as summarized in Figure 7, the industrial 

process for pectin extraction in detail. 

 The source materials are refluxed with dilute mineral acid (~ pH 2) at 60-100°C for 1-10 

hours.  The hot pectin extract is separated from the solid residue and pectinase-free α-amylase 

is added to hydrolyze starch if the source is apple or peach pomace.  The clarified extract is 

concentrated under vacuum to ~ 4% pectin content and precipitated with 2-propanol.  The 

precipitate is washed, dried, and ground to a powder form.  Desired yield and DE determine 

extraction temperature and time (de-esterification proceeds faster than de-polymerization at 

lower temperatures).  Low DE types of pectin are produced via acidic treatments at various 

stages during the extraction process.  When ammonia is used for this purpose, amidated 
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pectins are obtained as a final product.  To get a product that is consistent over a range of 

properties, blending batches and dilution with sugars is customary6. 

 

 

 

Figure 7.  Industrial production of pectins 

Important Uses 

 Historically, Pectins have found use as general texture modifiers and gelling agents.  

Among the more common applications, pectin is used extensively in jams, jellies, 
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confectionaries, deserts, yogurts, and anti-diarrheal agents.  Some of the more important 

modern uses include: 1) Ca2+ sequestering agent in detergents, 2) fillers in low calorie food 

products, 3) edible acidifying agents, 4) rheology modification, 5) biodegradable surfactants and 

emulsifiers, 6) edible packaging, 7) dairy stabilizers, and 8) dietary fat replacements (e.g. 

Slendid™, GENU™, and Olestra™)33, 34.   

 Recently, new applications of pectin have become very important.  Most prominent is 

the treatment of wastewater effluents where pectin has found extensive use in treatment 

regimens involving contamination with heavy metals.  Pectins of most configurations show 

affinity for complexation with metal ions in aqueous solutions.  Also, as an excipient, pectin 

efficiently encapsulates many pharmaceutical actives that are expatriated in the human large 

intestine and colon thereby greatly increasing drug efficacy. 

Commercially Important Measurables 

 Years of pectin research have produced several important commercial analytical 

measures.  While not all-inclusive, discussions of seven methods are included below.    

Absolute, Relative, or Weight Average Molecular Weight 

 MW is a very important physical property of pectin.  It is the most important 

characteristic in determining the functional behavior of pectin.  Gelling abilities of individual 

pectins are tied very closely with MW. 



26 

 

Total % Galacturonic Acid (%GalA) 

 GalA content, as with MW measurement, is important to the gelling capabilities of given 

pectin.  For this measurement the polymer is degraded to monosaccharide via one of numerous 

chemical or enzymatic methods and subsequently analyzed. 

Degree of Esterification (DE, %DE) 

 DE is an important molecular index for pectin classification that describes the extent to 

which carboxyl groups in pectin molecules exist as the methyl ester.  Depending upon method 

of analysis, %DE can be expressed as either the ratio of esterified carboxyl groups to total 

carboxyl groups (100% theoretical maximum) or as percentage ester content (~ 16.3% 

theoretical maximum).  DE is measured through various techniques, but titrimetry is a long-

standing, classical method of DE determination35.  For the titrimetric method the free carboxyl 

groups are protonated via washing the pectin with acidic alcohol and then drying.  Subsequent 

dissolution in water and titration with a standard base, DE of the pectin sample is determined.  

Acetyl content of the pectin can lead to overestimation of DE content.  %DE can be calculated 

as shown in Equation 1. 

%𝐷𝐸 = 176 ×
176 × 𝐶𝐻3𝑂%

31 × 𝐴𝑈𝐴%
× 100 Equation 1 

 

where AUA (GalA) is anhydrouronic acid content.  In addition, 176 and 31 are MWs of AUA and 

MeO respectively. 

Degree of Methylation (%DM) 

 %DM is an important molecular index for pectin classification that describes the extent 

to which carboxyl groups in pectin molecules exist as the methyl ester in ratio to all esterified 
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groups.  Methoxyl content can be determined through enzymatic or alkaline demethylation.  

Analysis of methanol is achieved through various techniques.  Most notable of these is a 

spectrophotometric technique involving reaction with potassium permanganate or alcohol 

oxidase and subsequent condensation with pentane-2,4-dione to yield a colored product.  A 

common HPLC method36 provides simultaneous measure of methyl and acetyl content.  

Degree of Amidation (%DA) 

 %DA is another important molecular index for pectin classification that describes the 

extent to which carboxyl groups in pectin molecules exist as the amidated ester in ratio to all 

esterified groups.  This measure can be a fingerprint for pectin characterization. 

Neutral Sugars 

 Total acid hydrolysis of a pectin sample is typically used to determine total neutral 

monosaccharide content.  This modern standard of analysis involves methanolysis with 2M HCl 

prior to trifluoroacetic acid hydrolysis.  Subsequent monosaccharides are converted to alditol 

acetates and analyzed via GLC or HPLC with refractive index detection. 

Random or Blockwise Carboxyl Distribution 

 Distribution pattern of esterification greatly influences gelling power or complexing 

ability of a pectin polymer.  This is a very important property for the emerging pharmaceutical 

applications of pectin.  Several methods exist for this determination including measurement via 

UV-Vis with Ruthenium Red (RR), carbazole, or hydroxamic acid (hydroxylamine).  
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CHAPTER 2 

TECHNIQUES FOR STRUCTURAL ANALYSIS OF PECTINS 

 Current research includes numerous techniques for structural analysis of pectins.  No 

one current method is all-inclusive.  Therefore, analyses of pectins are a combination of many 

techniques.  Discussions of only the more common techniques are included in this chapter. 

Enzymatic Analysis 

 Enzymatic analysis is an old technique having been used in the 1880s for starch and 

sucrose in carbohydrates37.  Availability of spectrophotometers after World War II allowed 

widespread enzyme use in the analytical laboratory.  Enzymes are highly specialized proteins 

that exhibit catalytic activity towards specific substrates.  Enzymes produced in higher plants or 

microorganisms easily degrade pectic substances.  This degradation produces textural changes 

in fruits and vegetables during ripening, storage, and processing.  Pectic enzymes comprise two 

classes: esterases and depolymerases.  Pectinesterases include many forms, such as methyl 

esterase and acetyl esterase, which split off methoxyl and acetyl groups, respectively.  Pectin 

depolymerases, such as polygalacturonase and lyase, degrade the polymeric backbone by 

cleaving α-D-(1→4) linkages.  Another group of enzymes that achieve this same degradation via 

β-elimination are characterized as transeleminases38.  

 Enzymatic degradation precedes several analytical measures for pectin characterization.  

The enzymatic route of pectin analysis involves multiple steps and analyses of reactions or 

products.  This is conducive to real time, online analysis.  This route is shown below:  
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pectin
pectin esterase

demethylated pectin + CH3OH

demethylated pectin
polygalcturonase

galacturonic acid

galacturonic acid
D-glucuronate isomerase

D-tagaturonic acid

D-tagaturonate + NADH
tagaturonate reductase

D-altronate + NAD  

For pectins, GC and HPLC analysis can be used to analyze the methanol released during the 

reaction or the reduction of NADH can be spectrophotometrically measured at 340 nm. 

 Enzymes offer excellent specificity, high sensitivity, rapid sample preparation for 

analysis, low-cost equipment, and ease of automation.  Unfortunately, several enzymes used 

for pectin analysis can often be quite expensive due to supply and demand.  In addition, they 

are prone to degradation after prolonged reaction times under conditions necessary for some 

pectin analyses.  Another disadvantage is factors affecting enzymatic determination must be 

carefully controlled.  The most important factor is temperature as higher temperatures increase 

enzymatic activity but can quickly denature the enzyme.  Temperature control is typically within 

the range of +/- 0.1 °C37. 

 Most enzymes have a narrow pH range for optimal activity.  Outside their pH range, 

enzymes can be denatured and rendered ineffective.  Therefore, buffer solutions are necessary 

to maintain desirable conditions.  Unfortunately, some characteristics of pectins preclude the 

use of many common biological buffers.  In addition, due to pectin’s high affinity for heavy 

metals, it is common for some metal contamination to be present in a pectin preparation.  This 

cationic impurity can act as an inhibitor to the enzymatic catalysis and, thus, slow the desired 

modification of the pectin. 
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 Various techniques are used to measure the products of an enzymatic modification.  As 

hinted previously, spectrophotometric analysis is a common and preferred method.  For 

products that absorb appreciably in the ultraviolet, visible, or infrared region of the 

electromagnetic spectrum, concentrations can be directly measured.  Indicators are added to 

produce colored complexes when native absorbances of the analytes are low.  Pectins can 

interact with added indicators through numerous mechanisms and produce desirable or 

undesirable results. 

 Enzyme electrodes have also been commonly used to analyze specific carbohydrates.  

The choice enzyme is immobilized upon a membrane or film coated electrode.  For this system, 

amperometric detection is commonly employed.  Electrodes are available for the determination 

of glucose, maltose, sucrose, lactose, and most importantly (for pectin analysis) galactose.  

However, for the determination of galactose, galactose oxidase electrodes lack specificity.  

Stoecker and Yacynyeh immobilized galactose oxidase on a solid resin support to produce a 

column that catalyzes the oxidation of galactose to an aldehyde39.  Hydrogen peroxide 

produced in the reaction could be measured via amperometry or chemiluminescence. 

Ultraviolet-Visible Spectrophotometry 

 Spectrophotometry is the quantitative study of electromagnetic spectra.  A 

spectrophotometer measures light intensity as a function of the wavelength of light.  UV-Vis 

spectroscopy optimally deals with the spectrum between 190-750 nm.  The Beer-Lambert law 

states that the absorbance of a solution is directly proportional to its concentration.  Thus, UV-
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Vis spectroscopy can be used to determine the concentration of a solution.  The law is 

expressed mathematically in Equation 2: 

𝐴 = − log10(
𝐼

𝐼0
) = ℰ × 𝑐 × 𝐿 Equation 2 

 

where 𝐴 is measured absorbance, 𝐼0 is intensity of incident light at measured wavelength, 𝐼 is 

transmitted intensity through the sample, 𝐿 is the pathlength through the sample,  𝑐 the molar 

concentration of the absorbing species, and ℰ the molar absorptivity given in 𝑚𝑜𝑙 𝑑𝑚3 .  Molar 

absorptivity is a constant, fundamental molecular property in a given molecule at a given 

temperature and can easily be calculated using a solution of the compound with known 

concentration.  The Beer-Lambert Law is useful for characterizing many compounds but is not 

universal.  A second order polynomial relationship between absorption and concentration is 

sometimes encountered for very large, complex molecules such as organic dyes (e.g. Acridine 

Orange and Ruthenium Red).  Figure 8 highlights the basic components of a 

spectrophotometer.  When the spectrophotometer uses a photodiode array detector the 

monochromator is placed after the sample in order to disperse the light onto the detector.   

 

Monochromator
Sample cell

compartment
Radiation

Source

light

path

Display / 

Recorder

Detector

(Measurement

System)

 

Figure 8.  Basic construction of a spectrophotometer 

 Older spectrophotometers used phototubes and photovoltaic cells to provide an 

electrical signal proportional to the intensity of impinging radiation upon itself.  Many modern 
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instruments are constructed as multichannel systems.  This capability stems from the usage of a 

silicon photodiode array as the detector.  The diode arrays are an assembly of several hundred 

silicon diodes detectors in a linear pattern on a silicon chip.  These chips average 1 to 6 cm in 

length with the width of individual diodes being 0.015 to 0.050 mm.  The chip contains a switch 

and capacitor for each diode element.  A shift register closes each switch for a fraction of a 

second in order to charge its companion capacitor to -5V.  Impinging radiation on a diode 

surface causes partial discharge of its matched capacitor, proportional to the incident light flux.  

This lost charge is replaced during the next switching cycle.  The amount of current needed for 

this recharge is digitized into a useable signal.  With one or more diode arrays placed along the 

focal plane of a grating monochromator, the entire spectral wavelength can be measured 

simultaneously within a fraction of a second. 

 Due to advances in instrument design, numerous accessories are available to 

accommodate specialized functions.  Some of the more important add-ons are special cell 

holders, peristaltic pumps for continuous flow sample analysis, auto samplers, multi-cell 

transporters, Peltier temperature controllers for thermostating, and advanced software for 

time-series analysis. 

Colorimetric Spectrophotometry 

 Colorimetric analysis (colorimetry) is an old and proven analytical technique.  It is 

traditionally a subset of visible spectroscopy.  Colorimetry has the advantages of rapid analysis, 

small sample size, versatility, inexpensive equipment, and good sensitivity.  For pectins, total 

AUA content is a very important measure40.  While several analytical techniques40-43 currently 
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exist for this measure, due to the aforementioned traits (e.g. size of polymer and 

heterogeneous nature), colorimetry is the most common44.  In addition, industrial pectin 

preparations appear to be similar on gross analysis but exhibit differing physical properties that 

can be modeled, in part, through UV-Vis analysis.  Through colorimetric analysis, the original 

pectin polymer can be analyzed with minimal chemical modification45.  Several of the more 

common colorimetric methods follow. 

 First described by Bergman46, hydroxylamine has been used for many years as a 

colorimetric reagent in the determination of amides.  For this reaction, a concentrated aqueous 

solution of hydroxylamine hydrochloride converts esters to hydroxamic acids.  Red complex 

formation of hydroxamic acid is measured at 600 nm.  It is important to note PGA gives no 

reaction with hydroxylamine. 

 Dische developed a method for quantitating uronic acids using carbazole in sulfuric 

acid47.  This method was inadequate in distinguishing between uronic acid monomers; 

therefore,   Dische further refined the procedure48.  This newer method was able to distinguish 

between GalA and other polyuronides.  Exact timing of the reaction was critical to the 

determination.  In efforts to simplify the assay, numerous researchers have refined this method 

but all suffered from lack of specificity49-53.  An extensively modified version54 of this method 

involves purification and solubilization of pectin with EDTA, deesterification with sodium 

hydroxide and subsequent reaction with a pectinase.  Further treatment with carbazole and 

measurement at 530 nm determines AUA content.  This reaction has limited interference from 

organic acid, hydroxyl acids, and common sugars.  Unfortunately, it does not discriminate 
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between uronic acids and hexoses.  In addition, an amount of cross-reactivity occurs with 

aldose sugars. 

 Orcinol has been extensively used to determine total uronic acid content of 

polysaccharides55.  For this method, a polyuronide is reacted with a modified Tollens’/Bial 

reagent and the extinction coefficient measured at 650 nm.  This method is very labor 

intensive, lacks accuracy of other methods, and is highly sensitive to interferences such as 

pentoses and furfurals. 

 A common reagent, 3,5-dimethylphenol is used to determine total uronic acid content 

in polysaccharides56, 57.   When pectin is hydrolyzed and the reagent added, a colored complex 

is produced suitable for spectroscopic analysis.  Absorbance is measured at 400 and 450 nm.  

The calculated difference between these absorbances indicates amount of uronic acid in the 

sample. 

 Developed by Thibault58, m-Hydroxydiphenyl assay has been extensively used to 

determine total AUA content in pectin.  When uronic acid is heated in concentrated sulfuric 

acid/tetraborate and further treated with meta-hydroxydiphenyl, a chromogen develops.  This 

chromogen greatly reduces interferences of neutral sugars prevalent in other colorimetric 

methods.  In addition, specificity and increased sensitivity are enhanced versus other listed 

colorimetric methods.  

Metachromasy 

 Since the discovery of metachromasy in 1875, aggregation of cationic dyes with acid 

polysaccharides in aqueous solutions has been extensively studied59-63.  Higher MW 
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polysaccharides have been shown to produce metachromic shifts among popular cationic 

dyes62-67.  Metachromasy can occur through superposition of neighboring dye molecules caused 

by coiling of the polymer chain.  Also, Stone63 deduced that dye-dye interactions played a role 

in metachromasy.  Stoddart68 explained both a spectral shift and hyperchromic effect caused by 

interaction of RR and PGA.  Stoddart’s study postulated RR would continue to interact with 

pectin even after full protonation of the pectin carboxyl groups. 

Complexometric Analysis 

 Recent in vitro studies have shown varying levels of pectin complexation with divalent 

and trivalent metal cations69, 70.  These studies indicated different classes of pectin show high 

selectivity toward metal ions.  Thus, differentiation of unknown aqueous pectins can be 

achieved by targeted complexation and precipitation by select metal cations.  Binding affinity69, 

70 is generally in the order of Cu2+≈Pb2+ >> Co2+≈V2+≈Zn2+ > Cd2+≈Ni2+ > Ca2+ with several other 

metal cations known to form complexes with pectin.  Researchers have shown different classes 

of pectin (e.g. citrus, apple, sugar beet, etc.) to be highly selective within each of these 

categories. 

Molecular Weight Determination 

 'Molecular weight' (MW) or 'relative molecular mass' is a fundamental parameter in 

characterizing a macromolecule.  Despite this fundamental nature, polysaccharides have 

proven very difficult to analyze.  Theory and practice suggest numerous reasons for this but can 

be summarized within four basic categories that are true for all polysaccharides.  First is 

polydispersity where the polymer consists of chains of multiple and different MW species.  
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Next, the polymer can be thermodynamically non-ideal.  This results when high thermodynamic 

exclusion volumes result from high solvent affinity or asymmetry.  A further complication here 

is the polymer can exhibit polyelectrolyte behavior.  Analytical techniques whose results rely 

upon certain assumptions about chain conformation can be seriously affected by the polymer 

in solution (e.g. MW).  Finally, numerous polysaccharides aggregate in aqueous solutions giving 

rise to false MW determinations.  This is partly indicative of the large diversity of data reported 

in literature.   

 The performance of pectin as a gelling or thickening agent is diminished by the presence 

of low MW components in the MW distribution.  As mentioned, measuring MW of pectins and 

other naturally occurring polysaccharides is difficult due to their polydisperse nature and the 

tendency to form aggregates in aqueous solutions.  This lends to the diverse data recorded in 

literature for pectins.  All MW methods fit into one of three categories: absolute, relative, and a 

combination of both.  Absolute techniques include light scattering71, 72, membrane 

osmometry73, and sedimentation equilibrium74.  Being absolute, these methods do not require 

comparison to a known standard.  Light scattering is the most common technique for pectin 

analysis.  However, light scattering is very susceptible to error caused by chain aggregation. 

 Relative techniques include gel permeation chromatography (GPC)75, 76, viscometry76, 

and sedimentation velocity77.  These methods require standardization against a known MW 

compound.  For gel permeation, neutral, particulate gel media has been shown to give 

separations based upon size of components in a mixture.  It is important to note this method is 

both nondestructive and occurs under mild conditions.  In addition, for most separations, 
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composition of the mobile phase does not play a large role.  This gives the advantage of being 

able to choose a suitable mobile-phase based upon particular species of interest.  However, 

because of this phenomenon, gradient elutions are not available for this type of analysis.   

 As mentioned, particulate gels comprise the stationary phase within which the solute 

can penetrate through the entire volume of the compacted particles.  Adsorption is an 

undesirable trait for this type of analysis.  Therefore, conditions are chosen so that elution 

volumes depend only on the sizes of solutes.  Large solutes elute first due to lack of penetration 

into the particulate bed.  GPC, like other chromatographic techniques, are governed by the van 

Deemter equation. 

 Recent years have seen the introduction of new methods relying on a combination of 

absolute and relative measurements to provide a more complete MW profile of a complex 

carbohydrate78.  
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CHAPTER 3 

METHODOLOGY 

 The following sections describe historical techniques and proposed research and 

provide a cursory examination of the techniques and methods used to develop this study.  

Spectrophotometry 

 A  Hewlet Packard 8452A instrument was used for experimentation.  The HP 8452A 

Diode-Array Spectrophotometer is a single-beam, microprocessor-controlled 

spectrophotometer.   

 The 8452A spectrophotometer uses a photodiode array consisting of 316 elements each 

with a dimension of 18 x 0.5 mm.  The dispersion of the grating and the size of the diode 

elements are such that a resolution of 2 nm is realized throughout the UV-Visible range of 190 

to 820 nm.  With this installed photodiode array, few optical components are needed thus 

resulting in a radiation throughput much higher than that of traditional spectrophotometers.  

This throughput allows a single, low-noise deuterium lamp to be used as the source for not only 

the ultraviolet but for the visible region of the spectrum as well.  Additionally, sample 

photodecomposition is minimal, in comparison to traditional instruments, due to very short 

exposure times. 

 For experimentation, precisely matched, fused quartz, 1 cm path-length, low-volume 

cuvettes are used.  During analysis, the source polychromatic light is collimated and passes 

through the sample onto the monochromator entrance slit.  From there, the beam passes onto 

a fixed, aluminum-coated holographic grating to disperse onto the photodiode array.  Because 
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the system employs no moving parts, wavelength reproducibility from scan to scan is extremely 

high (± 0.05 nm) and a single scan only requiring 0.1 s.  To improve measurement precision, the 

instrument scans the spectra over a 3 s time interval and records the spectral mean and 

standard deviation at each wavelength.  Extreme stability of the source and electronic system is 

such that the signal of the blank only need be analyzed every 5 to 10 minutes. 

Gel-Permeation Chromatography 

 The origins of chromatography dates to 1906 when discovered by Russian botanist, 

Mikhail Tswett, while analyzing and separating vegetable pigments79.  Tswett named the 

process chromatography from the Greek words chroma and graphy translated as “color 

writing”.  For chromatography, the analyte must be dissolved into a liquid that is then passed 

into the chromatographic device containing fixed chromatographic particles.  Liquid 

Chromatography is a type of chromatography employing a liquid mobile phase and a finely 

divided, immobilized stationary phase.  Although many classical chromatographic techniques 

exist, modern HPLC did not come into existence until 1967 with the development of 

technologies allowing its advancement80.  The name High Performance Liquid Chromatography 

was coined to distinguish these newer techniques from their classical counterparts.  Several 

types of HPLC are commonly employed.  Gel-Permeation Chromatography (GPC) is a modern 

variation of High Performance Liquid Chromatography (HPLC) relying on size-exclusion 

principles for non-polar species.  Because of its wide versatility and applicability, HPLC is one of 

the most commonly used separation techniques today.      
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 Liquid-chromatographic columns are mostly constructed from stainless steel but heavy-

walled glass tubing is sometimes employed for specific analyses.  A typical column length is 10 

to 30 cm with an inner diameter of 4 to 10 mm.  Column packings are as diverse as the types of 

analyses performed but typically have particle sizes of 5 to 10 µm.  Sepharose™ is a common 

stationary phase used for polysaccharide analysis as it provides good separation for a wide 

range of these polymers.  Sepharose is a cross-linked, beaded form of agarose providing gel 

filtration in a broad fractionation range.  Agarose contents are available in 2%, 4%, and 6% and 

marketed as 2B, 4B, and 6B respectively. 

 No highly sensitive, universal detector system exists for GPC.  However, refractive index 

(RI) is used in this project as it has found considerable use in modern GPC and HPLC analysis in 

general.  Measurement is based upon changes in the refractive index of the solvent that is 

caused by analyte molecules.  Refractive index is a general rather than selective method as it 

reacts to the presence of all solutes in a solvent.  RI detectors are sensitive to temperature 

change, pressure, and solvent composition.  All solvents used for the mobile phase must be 

carefully degassed and the detector thermostated.  This detector suffers from limited sensitivity 

with a LOD of 100 ng to 1 µg.  However, refractive index has an order of magnitude higher 

sensitivity than light scattering detection.  

Colorimetry 

 Carboxyl substitution pattern and MW play a vital role in pectin's ability to form 

complexes especially with heavy metals69, 70, 81.  Ruthenium Red (RR) has been shown as an 
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acceptable indicator for measuring distribution patterns under controlled conditions45 (< 60% 

DE); however, numerous interferences occur with the measurement. 

 Acridine Orange (AO), Nile Blue (NB), and several other cationic dyes have traditionally 

been used as biological stains for polyanions in uncontrolled conditions62, 63, 82, 83.  It is unknown 

if these dyes will interact reproducibly with pectin of up to and beyond 60% DE nor suffer from 

the same interferences as RR. 

Hydroxylamine 

 Hydroxylamine has a long history of use in colorimetric analysis46.  The predominate 

method involves mixing 0.5 mL 2 N hydroxylamine hydrochloride (in 60% ethanol) with 0.5 mL 

of 3.5 N sodium hydroxide.  This solution is added to 2 mL of a 1% (w/v) solution of pectin and 

mixed gently at 25°C for 2 hours.  After reaction, add 1 mL of 3.5 N hydrochloric acid with 

mixing and follow with 1 mL of 0.74 M ferric chloride in 0.1 N hydrochloric acid.  Red complex 

formation is measured at 600 nm. 

Carbazole 

 Carbazole colorimetric methods continue to be a popular method for carbohydrate 

analysis.  The method as pertains to pectins is as follows.  Moisten 1.0 g of 70% ethanol-

extracted pectin in a 250 mL beaker with 95% ethanol.  To the beaker, add 200 mL of 0.5% 

EDTA in order to complex the divalent pectic cations and thereby dissolve.  Adjust to pH 11.5 

with 1 N sodium hydroxide and hold at 25°C for 30 minutes.  Adjust to pH 5.0 with acetic acid 

and add 0.1 g of pectinase with stirring.  Mix for 1 hour and dilute to 250 mL.  Discard initial 

small amount of filtrate but retain remainder for carbazole analysis.  For AUA analysis, cool 12 
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mL of conc. hydrochloric acid in a test tube to 3°C.  To this, add 2 mL aliquot of galacturonide 

solution and mix thoroughly at low temperature.  Heat for 10 min in boiling water, cool to 20°C, 

and add 1.0 mL 0.15% carbazole solution.  Let stand at room temperature for 25 min. and 

measure AUA at 520 nm using a standard curve. 

Proposed Research 

 The analysis of complex polysaccharides presents a challenge.  As previously mentioned, 

RR can be used as a colorimetric technique to characterize directly or indirectly several 

properties of Pectin.  However, in colorimetric analysis of carbohydrates, RR has been shown to 

lack specificity and suffer numerous interferences.  Researchers are beginning to explore 

relationships of complex biopolymers and carbohydrates as they relate to alternative cationic 

dyes84.  Cationic dye research, as it relates to the field of food science, is still yet relatively 

unexplored due to the numerous problems previously discussed.  While numerous analytical 

methods exist for food polysaccharide analysis11, 27, 35, 78, many are difficult, labor intensive, 

time consuming, suffer from interferences, or expensive.  Therefore, the primary focus of this 

research is to determine if several classes of laboratory grade pectins of known composition 

will show reproducible spectrophotometric performance, similar to RR, with a selection of 

cationic dyes.  Additionally, the analysis should be relatively quick, inexpensive, show good 

selectivity, and require little chemical modification of the pectin polymer.  The proposed 

objectives of this project are described below.  
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1. To investigate if any of the following metachromic, cationic dyes provide qualitative 

or quantitative interaction with pectin: Aniline Blue, Toluidine Blue, Congo Red, 

Coriphosphine O, Alcian Blue, Nile Blue, and Acridine Orange.   

2. To investigate if any of the listed dyes can be used alone or in conjunction with other 

dyes to differentiate spectrophotometrically between pectin of known and unknown 

composition including DE above ca. 70% (upper practical limit for RR).   

3. To investigate if lab grade or consumer grade pectins cause metachromic 

aberrations in the cationic dyes such that these provide a "fingerprint" for a 

particular pectin type at any concentration 

4. To investigate if MW (by GPC) has an effect on the above characterization 

techniques 
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CHAPTER 4 

EXPERIMENTAL PROCEDURES, RESULTS, AND DISCUSSION 

 The following sections describe the experimental procedures performed in order to 

develop a scientific understanding of pectin/cationic dye relationships.  

Reagents 

 The list of reagents used for this project, their grades, suppliers, information, and 

chemical structure (where applicable) is given below.  

 Deionized, ultrapure, filtered water was obtained from a Millipore Q™ distillation 

apparatus provided by Continental Water System (Millipore, Bedford, MA).  

 Copper II Sulfate, 100% purity was obtained from J.T. Baker (Phillipsburg, NJ).  

 Lead Acetate, 100% purity was obtained from EMD Chemicals Inc. (Gibbstown, NJ).  

 Ethanol, 95% purity, and Glacial Acetic acid, 99.5% purity was provided by Eastman 

Chemical Company (Kingsport, TN) and diluted to 50% (v/v) with Millipore Q distilled water.   

 Polygalacturonic acid (from Orange), 95% purity, lot 407261, was obtained from Fluka 

Chemical Corporation (Milwaukee, WI). 

 Consumer canning pectin SureGel #1: “Low Sugar” Lot #: 08 May 2005 D4 10:52, 

SureGel #2: “Normal Sugar” Lot #: 25 Nov 2005 D4 02:48Supplier: Kraft Foods Global, Inc.  

(Northfield, IL).   

 Coriphosphine O or 3-amino-6-(dimethylamino)-2-methylacridine monohydrochloride 

(Figure 9), 100% purity, was obtained from Trust Chemicals Industry (Port Said, Egypt).  
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Figure 9.  Chemical structure of Coriphosphine O 

 3-Morpholinopropanesulfonic acid (MOPS) (Figure 10), 100% purity, was obtained from 

Lancaster Synthesis, Inc. (Pelham, NH).  
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Figure 10.  Chemical structure of MOPS  

 The following compounds were obtained from Sigma-Aldrich (St. Louis, MO):  2-

propanol, 99% purity,  Pectinesterase enzyme, from orange peel, ammonium sulfate 

suspension, 50-350 units/mg protein,  Trichloroacetic acid, 99% purity,  Apple Pectin, 9.5% 

methyl esterification, 88% galacturonic acid content, 75% DE, lot 67H16351,  Citrus Pectin, 12% 

methyl esterification, 82% galacturonic acid content, 92% DE, lot 116H0569,  Ruthenium Red or 

ammoniated ruthenium oxychloride ([(NH3)5RuORu(NH3)4ORu(NH3)5]Cl6) (Figure 11), 100% 

purity, Sodium Titriplex™ Salt or trans-1,2-Diaminocyclohexane-N,N,N',N'-tetraacetic acid, 

monohydrate sodium salt (Na-CyDTA) (Figure 12), 100% purity,  Aniline Blue, a mixture of 

Methyl Blue and Water Blue (Figure 13), 100% purity,  Toluidine Blue or Tolonium Chloride 

(Figure 14), 87% purity,  Congo Red or benzidinediazo-bis-1-naphtylamine-4-sulfonic acid 

NN NH2

Cl

H
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sodium salt (Figure 15), 0.1 wt% solution,  Alcian Blue, a copper phthalocyanine dye (Figure 16), 

52% purity,  Nile Blue (Figure 17), 75% purity, Acridine Orange (Figure 18), 90% purity. 
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Figure 11.  Chemical structure of Ruthenium Red 
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Figure 12.  Chemical structure of Na-CyDTA 

     

Figure 13.  Chemical structure of Methyl Blue and Water Blue  
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Figure 14.  Chemical structure of Toluidine Blue  
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Figure 15.  Chemical structure of Congo Red 
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Figure 16.  Chemical structure of Alcian Blue 
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Figure 17.  Chemical structure of Nile Blue 
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Figure 18.  Chemical structure of Acridine Orange 

Instrumentation 

 For UV-Vis determination, a Hewlett Packard 8452A spectrophotometer (described 

earlier) with an installed photodiode array detector was the instrument of choice.  The installed 

Peltier temperature controller was set for 30°C.   

 For GPC measurements, the system used consisted of a Waters 510 LC pump, a Perkin 

Elmer ISS 200 autosampler, and a Perkin Elmer 200 series Refractive Index detector.  A 

Sepharose 2B column of 2.5 cm x 60 cm with a MW fractionation capability ranging from 70 to 

40,000 kDa was installed in the system.  The system had an injection volume of 50 microliters.  

Due to the nature of the analytes in this study, two mobile phases were employed.  The mobile 

phase for laboratory pectin standards consisted of 3 mM Na2CO3.  For unpurified, consumer 

grade materials it was necessary to employ 3 mM NaOH as the eluent.  After properly degassing 

the solvents, the RI detector, the column, and the solvents were thermostated to 40°C. 
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 The following miscellaneous equipment was also employed: Parafilm® (Pechiney Plastic 

Packaging, Chicago, IL), High Shear Omni Mixer homogenizer (Omni International, Marietta, 

GA), Eppendorf adjustable pipettes with removable tips and an Eppendorf micro-centrifuge 

(Westbury, NY), polypropylene, factory sterilized, snap-cap micro-centrifuge tubes (Bio Plas Inc, 

San Rafael, CA), and a Vortex-Genie® 2 (Scientific Instruments Inc., Bohemia, NY).   

Preparation of Reagents and Stock Solutions 

 The following reagents were prepared as described below.   

1. Sodium Hydroxide (1 M): In 50-mL volumetric flask, dissolved 2 g of solid sodium 

hydroxide in Millipore Q water.  

2. MOPS Buffer (0.10 M): In 1-L volumetric flask dissolved 20.92 g of 3-

morpholinopropanesulfonic acid in Millipore Q water and adjusted to pH 6.5 with 

sodium hydroxide from reagent 1 above.   

3. Copper II Sulfate (0.010 M): In 50-mL volumetric flask, dissolved 0.10 g of copper II 

sulfate and 0.75 mg of 2-propanol in MOPS buffer from reagent 2 above. 

4. Lead Acetate (0.60 M): In 50-mL volumetric flask, dissolved 11.38 g of lead acetate in 

MOPS buffer from reagent 2 above and refrigerated.  Solution has shelf life of 2 

days.  

5. CyDTA (0.020 M): In 500-mL volumetric flask, dissolved 45.28 g of sodium titriplex 

with MOPS buffer from reagent 2 above.  
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Preparation of Standard Solutions 

 Stock standard solutions were prepared for polygalacturonic acid (PGA), apple pectin, 

citrus pectin, ruthenium red, aniline blue, toluidine blue, congo red, coriphosphine o, alcian 

blue, nile blue, and acridine orange.  

 Dye standards were prepared as described below.  When not in use, these solutions 

were sealed with Parafilm and stored refrigerated.  

1. Ruthenium Red (0.25 mM): In 10-mL volumetric flask, dissolved 2 mg of ruthenium 

red in MOPS buffer.  

2. Aniline Blue (0.125 mM): In 10-mL volumetric flask, dissolved 1 mg of aniline blue in 

MOPS buffer.  

3. Toluidine Blue (0.0625 mM): In 10-mL volumetric flask, dissolved 0.57 mg of 

toluidine blue in MOPS buffer. 

4. Congo Red (0.125 mM): In 10-mL volumetric flask, diluted 1 mL of congo red in 

MOPS buffer. 

5. Coriphosphine O (0.25 mM): In 10-mL volumetric flask, dissolved 2 mg of 

coriphosphine o in MOPS buffer. 

6. Alcian Blue (0.25 mM): In 10-mL volumetric flask, dissolved 1.52 mg of alcian blue 

dye in MOPS buffer. 

7. Nile Blue (0.125 mM): In 10-mL volumetric flask, dissolved 1.25 mg of NB in MOPS 

buffer. 
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8. Acridine Orange (0.125 mM): In 10-mL volumetric flask, dissolved 1.1 mg of AO in 

MOPS buffer. 

 Pectin standards sample were prepared as described below.  When not in use, these 

solutions were sealed with Parafilm and refrigerated.  

1. The pectin source was dried in a standard laboratory vacuum oven in vacuo at 45°C 

for 24 hours. 

2. Dried pectin obtained in Step 1 was used to prepare a 2 wt% solution by slow 

addition of pectin powder, 2 g, to 100 mL room temperature Millipore Q water.  To 

prevent clumping, this addition was accompanied with homogenation.  

3. The solution in Step 2 was gently mixed for 1 hour to allow for complete dissolution 

of any impurities present in the pectin sample. 

4. From the solution in Step 3, pectin was precipitated by adding 7.5 mL of 10 mM 

copper II reagent. 

5. The precipitate in Step 4 was filtered onto a medium fritted funnel and washed with 

four 500 mL volumes of 5% ethanol. 

6. The solid in Step 5 was re-dissolved in 100 mL of 20 mM sodium titriplex (Na-CyDTA) 

reagent.  

7. The solution obtained in Step 6 was acidified to pH 5 with 50% acetic acid reagent. 

8. The acidified solution in Step 7 was placed into a 5000 MW-cutoff cellulosic 

membrane dialysis tube and dialyzed against a countercurrent flow of distilled water 

for 14 hours.  
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9. The purified pectin solution from Step 8 was slowly added to 300 mL of 95% ethanol 

to precipitate solid pectin. 

10. The precipitate from Step 9 was filtered on a medium fritted funnel and dried in a 

standard laboratory vacuum oven at 45°C in vacuo for 24 hours.  

11. Dried solid from Step 10 was used to prepare a 0.2 wt% solution by slow addition of 

0.02 g powder to 0.1M MOPS buffer reagent, with mixing, to a 10-mL volumetric 

flask.  This standard solution was sealed with Parafilm and refrigerated when not in 

use.  

Preparation of Commercial Samples 

 Consumer grade commercial samples in powder form were purchased from local 

retailers.  As discussed previously, consumer pectins are sold in two varieties: regular and low 

sugar.  Manufacturer information does not include pectin source or content of these materials.  

Only the moniker of “Low Sugar” infers a pectin of low %DM and high calcium content.  The 

“normal sugar” pectins are assumed high %DM material with low MW sugar content > 55% 

(w/w) based upon accepted prior scientific knowledge.  Each sample was prepared as described 

below without further purification.  

1. The source sample was dried in a standard laboratory vacuum oven in vacuo at 45°C 

for 24 hours. 

2. Dried solid from Step 1 was used to prepare a 0.2 wt% solution by slow addition of 

0.04 g powder (assumed 50% by weight to be low MW sugars) to 0.1 M MOPS buffer 

reagent, with mixing, to a 10-mL volumetric flask.   
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3. The solution in Step 2 was sealed with Parafilm and refrigerated when not in use. 

 Typical and accepted specifications of various agencies for consumer grade pectins are 

summarized in Table 2.  

Table 2.  Commercial pectin specifications 

Reference FAO FCC EEC 
Loss on Drying max.  12% max.  12% max.  12% 

Acid-insoluble ash max.  1% max.  1% max.  1% 

Sulfur dioxide max.  50 mg/kg max.  50 mg/kg max.  50 mg/kg 

Sodium methyl sulfate  max.  1%  

Methyl-, ethyl-, 2-propanol max.  1% max.  1% max.  1% 

Nitrogen content, amidated pectin   max.  2.5% 

Nitrogen content, pectins max.  2.5%  max.  0.5% 

Galacturonic acid min.  65%  min.  65% 

Total anhydrogalacturonides  min.  65%  

Degree of Amidation max.  25% max.  25% max.  25% 

Arsenic, ppm max.  3 max.  3 max.  3 

Lead, ppm max.  10 max.  5 max.  10 

Copper, ppm max.  50  max.  50 

Zinc, ppm   max.  50 

Other heavy metals, ppm  max.  20  

 

Preparation of Samples for Analysis 

 Prior to spectrophotometric analysis, the spectrophotometer was allowed to warm up.  

In addition, the quartz cuvettes were cleaned and prepared for use.  A series of five solutions 

were prepared for each pectin sample as described below in Table 3.  

Table 3.  Reagent volumes for preparation of spectrophotometric experiments 

Sample ID Pectin (µL) Pb2+ (µL) Dye (µL) MOPS (µL) 

Conc1 50.0 50.0 5.0 1395.0 

Conc2 50.0 50.0 10.0 1390.0 

Conc3 50.0 50.0 15.0 1385.0 

Conc4 50.0 50.0 20.0 1380.0 

Conc5 50.0 50.0 25.0 1375.0 
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 Using the appropriate Eppendorf pipette, 0.05 mL of pectin solution was pipetted into a 

1.8-mL micro-centrifuge tube.  To this was added the listed amount of dye solution as shown in 

Table 3.  The tube was capped and vortexed for 15 s.  The tube was then uncapped and 0.05 mL 

of Pb2+ reagent was added along with the specified amount of MOPS reagent.  Again, the tube 

was capped and shaken vigorously on the vortex for 30 s.  The sample was allowed to stand for 

30 minutes.  After standing, the sample was placed into the micro-centrifuge and spun at 7000 

RPMs for 10 min.  A transfer pipette was used to transfer the supernatant from the centrifuge 

tube to the quartz cuvette for spectroscopic analysis.  

UV-Vis Conditions 

 For UV-Vis analysis, the HP8452A diode array spectrophotometer was allowed to warm 

up for 1 hr prior to analysis.  The spectrophotometer was equipped with a peltier temperature 

controller thermostated at 30°C.  Once placed into the instrument sample holder, each sample 

was allowed to equilibrate for 5 minutes prior to analysis.  Two matched, quartz, low volume (2 

mL) cuvettes were used for analysis.  The cuvettes were cleansed with tepid Millipore Q water, 

rinsed with spectroscopic grade acetone, and dried with a thin stream of nitrogen between 

analyses. 

GPC Conditions 

 For GPC analysis, the GPC system was primed and allowed to purge for 1 hour when 

powering up from a cold state or changing solvent composition.  When starting from a low-

flow, inactive state, the system was allowed to purge for 30 minutes.  The system was further 

allowed to purge for 5 minutes between successive sample measurements.  The refractive 
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index detector, column, and solvents were thermostated to 40°C and allowed to equilibrate 

during instrument purging. 

Data Analysis 

For spectrophotometric methods, data were collected directly from the HP8452A 

spectrophotometer system with HP UV-Vis ChemStation software and later exported to 

Microsoft Excel with Microsoft Windows XP.  Data analysis and charting for this project were 

done with a combination of Microsoft Excel 2007, MathWorks MATLAB R2007a, and Minitab 

Release 14.12.  Chemical structures were drawn with CambridgeSoft BioDraw Ultra 10.0 and 

Bio3D 10.0.  After plotting, the raw data were processed using a Savitsky-Golay smoothing filter 

algorithm.  After that process, baseline correction was performed.  From this baseline spectral 

data, the corresponding blank was subtracted.  Finally, after correcting for the blank, the 

spectral absorbance data were autoscaled from 0 to 1.  Further analysis involved calculating 

Euclidean distance (ED) and correlation coefficients percentages (R2) between pectin standards 

and consumer unknowns for each of the above datasets.  Additionally, eigenanalysis was 

performed for each of the datasets by calculating eigenvalues and eigenvectors.  Finally, inner 

products (IP) were calculated between eigenvectors for pectin standards and consumer 

unknowns.  For GPC analysis, data were collected directly from the LC instrument with 

Turbochrom and exported to Microsoft Excel as resizable images.  

The data collected during the described experiments are discussed in the sections to 

follow.  In order to establish reproducibility, data were collected and analyzed in triplicates.  

The triplicate data indicates very stable and reproducible measurements. 
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Verification of Current Ruthenium Red Substitution Pattern Technique 

 The citrus standard of this study was subjected to a previously devised experiment by 

Hou et al.45 in order to verify RR does interact with the pectin.  The 92% DE citrus pectin 

standard was used to prepare two distinct carboxyl distribution patterns by the following 

methods.  The method of Thibault and Rinaudo85 was used to produce a random esterification 

pattern along the polymer backbone.  A 0.5 wt% solution of pectin was prepared in 0.5 M 

sodium hydroxide and stirred gently at 5°C.  Aliquots were taken and neutralized with 1 N 

hydrochloric acid.  The pectin was precipitated with three volumes of 2-propanol (isopropyl 

alcohol), filtered, washed with acetone, and dried overnight at 40°C in vacuo.  The method of 

Powell et al.86 was used to prepare a blockwise carboxyl distributed pectin.  A solution of 1.5 g 

citrus pectin in 0.1 M sodium chloride, at pH 6.8, was mixed with 40 mg/100 mL pectinesterase 

and digested at 25°C.  Aliquots were taken over the course of the reaction and quenched with 

0.1 wt% trichloroacetic acid, precipitated with three volumes of isopropyl alcohol, filtered, 

washed with acetone, and dried overnight at 40°C in vacuo.   

 For spectrophotometric analysis of each of the above samples, solutions of 0.1% (w/v) 

pectins were prepared in 100 mM MOPS buffer as previously described.  Each sample was 

doped with 0.5 mL of 0.02% RR, mixed, and allowed to stand for 5 minutes.  Upon standing, 0.5 

mL of 0.6 M lead acetate was added to each in order to precipitate pectin.  The mixtures were 

centrifuged at 1,400 g for 15 minutes.  The absorbances were measured at 534 nm and 

recorded.  A blank was prepared without pectin and subtracted from each of the measured 

absorbances with the results shown in Figure 19. 
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Figure 19.  Absorbance difference at 534 nm, against blank, of RR with pectin of known %DM 

The results show conclusively that RR does complex quantitatively with the citrus pectin used in 

this study up to a %DE of approximately 79 when the polymer is randomly substituted (NaOH).  

As shown, RR complexes quantitatively with a blockwise substituted (pectinesterase) pectin 

beyond 80 %DE up to about a 92 %DE when the fit is forecasted to x-axis intercept.  It is 

important to notice as the %DE goes up, the ability of pectin to complex RR drops as there are 

less reactive sites along the polymer backbone available. 

Results and Discussions 

Multiple cationic dyes were explored for this study.  Prior knowledge shows pectin can 

interact quantitatively with RR.  Experimentation shows limited interaction of NB and AO with 

pectin.  These are discussed below.  Alcian Blue and Coriphosphine O was dropped from this 

study as they exhibited solubility problems and gave erratic results.  Toluidine Blue was also 

discarded from the study as it exhibited large and inconsistent spectral shifts during sample 
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analysis.  Aniline Blue and Congo Red were also dropped from the study as they precipitated 

out of solution upon addition of other necessary reagents.  Numerous trials with RR, AO, and 

NB were attempted until the optimal concentrations for this study were determined. 

Optimization of Spectral Detail, Manipulation, and Analysis 

 The microprocessor evolution has enabled the chemist to collect vast amounts of 

information quickly.  The bottleneck has rapidly become data interpretation and processing.  

With the rise of computerized instrumentation, sequential digitized signals have become 

commonplace in analytical chemistry.  UV-Vis spectra are a perfect example of data series that 

are sequential in frequency.  Raw spectral information such as peak shifts, positions, and 

integrals is most often dependent upon how the information on the computer is first 

processed.  Several techniques for handling sequential series spectra are emphasized below.   

 In digital signal processing, a very important first step involves noise filtering.  For low 

concentrations, the analyte signal can be difficult to distinguish from background.  

Measurement noise is typically broken into two classes87: stationary and correlated noise.  

Stationary noise is applicable to spectroscopic analysis and can be further broken down into 

homoscedastic and heteroscedastic noise.  For homoscedastic noise, the noise mean and 

standard deviation typically remain constant across the entire signal.  In absence of detailed 

knowledge of a system, filters for homoscedastic noise provide good approximations.  

Heteroscedastic noise is dependent upon and is often proportional to signal intensity.  In 

spectroscopy, heteroscedastic noise typically arises when data are transformed prior to 
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processing in the case of converting transmittance to absorbance.  The transformed 

information distorts the true noise distribution in the raw data.   

 Due to the multitude of unknowns, it is not possible to create an all-inclusive noise filter 

for use in spectrophotometric analysis.  However, it is possible to create general smoothing 

functions that model spectrographic data well without causing much loss in spectral detail88.  

Moving average filters are popular for many types of digital signals but have the disadvantage 

of using linear approximations for the data.  Spectral data are better approximated by 

polynomial curves89, especially at the center of the peak where signal intensity and integrity are 

important.  Linear models will always underestimate peak intensity.  Prior to high-speed 

computers and sophisticated software packages90, cubic, quartic, and quintic polynomial 

regressions91 of full spectra would be prohibitively time consuming and computationally 

intensive92.  To address this problem, Savitsky and Golay93 developed a simplified method of 

calculating filtered datapoints along the frequency series of the spectrum.  The filter is moved 

along the frequency series and each datapoint is replaced successively by the corresponding 

filtered datapoint.  Performance of the filter is tied to the number of data points used in each 

successive calculation and is known as the ‘window’.  Savitsky-Golay filters are often 

represented in tabular form providing coefficients for window size, polynomial order, and 

normalization constants.  The coefficients obtained after selecting polynomial order and 

window size are used to multiply the raw data and summed to obtain the smoothed value.  

Figure 20 shows an example of Savitsky-Golay filtering on low concentration RR data.  This 

smoothing is especially important at low concentrations where the analyte signal can be 



60 

 

obscured by noise.  At high concentrations, the analyte signal is much greater than background 

noise; therefore, little is gained from smoothing.  Figure 20 and Figure 21 contrast the raw 

signal and smoothed spectra at the two concentration extremes.   

 

Figure 20.  Raw vs. Savitsky-Golay filtered data for Citrus at low concentration with RR 
 

 

Figure 21.  Raw vs. Savitsky-Golay filtered data for Citrus at high concentration with RR 
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To maintain consistency and data integrity, all data for this study were filtered using the 

Savitsky-Golay algorithm provided in MATLAB with 3rd order polynomial and 5-point window 

parameters.    

 Due to measurement error, noise, and a multitude of other possible causes, it is often 

necessary to adjust data for baseline shift and zero-level axis translation.  For these data 

manipulation techniques to be applied successfully, it is necessary to identify a region of the 

spectra where no chemical species absorbs.  This is known as the zero-component region.  By 

definition, these regions have a chemical rank of zero and spectral manipulation calculations 

are anchored on these points.  Any spectral shifts in these regions can be attributed to 

instrument and measurement noise that can be subsequently corrected.  As previously alluded 

to, the zero-component regions can also be used to calculate systematic background and 

baseline offsets.  For this project, spectral data were first translated such that the minimum 

‘zero’ absorbance fell at zero on the y-axis, filtered with a Savitsky-Golay function as previously 

discussed, and finally subjected to baseline correction.  In axis translation, the absorbance 

minimum is simply subtracted from each data point to yield a new, zero-corrected data vector.  

Next, data smoothing was performed as previously discussed.  Finally, baseline correction 

involved identifying two ‘zero’ points at opposite ends of the spectra and calculating the slope 

and intercept of a line connecting them.  This resulting linear equation was then used point-by-

point to recalculate old spectral data into ‘baseline’ corrected data.  While not necessary for 

this project, it is possible to calculate baseline corrections for multiple peaks realizing these 

multiple data sets must then be treated independently. 
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Chemometric Techniques 

 When a priori data are not available for a sample, numerous techniques can be 

employed to identify the compound.  In spectroscopic analysis, it is possible to use 

chemometric techniques to aid in identifying these compounds.  The first step in any 

chemometric analysis is to determine similarities with known compounds.  This process is 

known collectively as pattern recognition or pattern matching.  Many types of pattern 

recognition and pattern matching exist in chemometric analysis.  For online spectral searches of 

known compounds, pattern matching is an important tool for the spectroscopist in identifying 

unknowns under standard conditions.  Additionally, exploratory data analysis allows the 

extraction of useful data from samples.  Unfortunately, the 1-dimensional, nonlinear signal in 

spectral analysis limits the available techniques.  Of the available techniques, the more useful 

include Euclidian distance, Mahalanobis distance, simple correlation (r), and eigenanalysis.  In 

order to use these techniques, further preprocessing of the spectral data is necessary.  These 

preprocessing techniques include axes translation (previously discussed), vector normalization, 

scaling, range scaling, autoscaling, feature weighting, and rotation among others.  Good pattern 

recognition techniques are typically based upon normalized data set comparisons.  

Normalization sets the length of all the data vectors in the data set to equivalent lengths.  

Normalization removes the variance in the data set due to differences in the magnitude of 

measurements.  However, this effect on the data can be undesirable if variance in the data set 

is meaningful.  For this project, minute variance is important to data analysis.  Fortunately, 

range scaling can be used as a preprocessing technique as it does not obscure variance in the 
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data set and removes baseline-offset effects.  The calculation for range scaling is done by using 

Equation 3. 

𝑥𝑗
∗ =  

 𝑥𝑗 − 𝑀𝑖𝑛𝑥 

 𝑀𝑎𝑥𝑥 − 𝑀𝑖𝑛𝑥 
 Equation 3 

 

where 𝑥𝑗
∗ is the absorbance of the normalized spectrum 𝑥∗ and 𝑥𝑗  the absorbance of spectrum 

𝑥 at wavelength 𝑗.  𝑀𝑎𝑥𝑥  and 𝑀𝑖𝑛𝑥  are the maximum and minimum absorbances, respectively, 

of spectrum 𝑥.  Unfortunately, range scaling is sensitive to the presence of outliers.  These 

methods are the only preprocessing steps relevant to the current work. 

 Three categories of chemometric pattern-matching techniques were employed to 

characterize data for this study and further combined via feature weighting calculation.  These 

techniques included ED, r, and eigenanalysis (with eigenvalues and eigenvector IP calculations).  

After preprocessing was completed on the spectral data, MATLAB was used to calculate EDs 

between each of the standards and the unknowns.  ED uses simple geometry to evaluate the 

‘distance’ between two spectra.  A shorter calculated distance indicates a closer match 

between the spectra.  The distance between two samples k and l is defined by Equation 4: 

𝑑𝑘𝑙 =    𝑥𝑘𝑗 − 𝑥𝑙𝑗  
2

𝐽

𝑗=1

 Equation 4 

 

where there are j measurements and 𝑥𝑖𝑗  is the jth measurement on sample i.  The smaller this 

value, the more similar are the samples.  ED can also be represented in vector matrix format as 
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in  Equation 5:  

𝑑𝑘𝑙 =   𝑥 𝑘 − 𝑥 𝑙 × (𝑥 𝑘 − 𝑥 𝑙)′ Equation 5 

 

where the objects 𝑥 𝑘  and 𝑥 𝑙  are row vectors and (𝑥 𝑘 − 𝑥 𝑙)′ is the transpose of (𝑥 𝑘 − 𝑥 𝑙) to 

provide a square matrix.  After calculating, the results were tabulated in distance matrices and 

used for comparison purposes. 

 Next, Microsoft Excel was used to calculate correlations between the data vectors of the 

standards and the unknowns.  If the spectrum of an unknown is treated as a set of dependent 

variables, the standard spectrum can be used as a set of independent variables to perform a 

linear regression of the two.  The correlation coefficient, R2, is a measure of the spectral 

similarity in terms of peak positions, shapes, and intensities.  Further, the slope, 𝑚, of the 

regression line is a measure of the match of the baseline corrected absorption intensities.  The 

intercept, 𝑐, is a measure of baseline offsets between the spectra.  As spectral data have been 

baseline corrected, only the R2 values were tabulated in an abbreviated correlation percentage 

matrix and used for comparison purposes.  It is important to note the closer the R2 value to 1, 

the more similar are the objects.   

 Finally, MATLAB was used to calculate the eigenvalues and their associated eigenvectors 

for the standards and the unknowns.  Once the eigenvectors were obtained, IPs were 

calculated between the standard and unknown eigenvectors. 

 ED and correlation calculations were performed on one data vector.  It is possible for 

the samples in this study to contain more than one component.  The acquired spectra can be 

factor analyzed to determine how many potential components are contained.  Factor and 
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principal component analyses are powerful multivariate techniques.  The goal of factor analysis 

is to provide a spatial dimensional representation of the data vectors.  It expresses the original 

data matrix in terms of linear combinations of orthogonal vectors and contains the same 

information as the original data.  Reducing the measurement dimensionality to the smallest 

possible intrinsic dimensionality allows for efficient manipulation of the data and better 

understanding of the data under study.  This can be achieved by observing correlation between 

pairs of vectors.  Normally, the correlation between two unit-length vectors is the cosine of the 

angle between them.  For this study, it is more useful to determine vector correlation through 

calculation of IPs of two eigenvectors.  If an m × n data matrix is normalized (or range scaled in 

this case) and factor analyzed, n orthogonal vectors are obtained.  These are referred to as 

eigenvectors.  Eigenvectors are a set of vectors associated with a matrix equation that are also 

known as characteristic vectors94.  Associated with each eigenvector is a descriptor of its 

importance referred to as the eigenvalue.  Eigenvalues are a set of scalars associated with a 

matrix equation that are sometimes known as characteristics roots95.  If the eigenvalue is 

multiplied with its associated eigenvector, the original data magnitude is obtained.  The 

determination of the eigenvalues and eigenvectors of a system is known as matrix 

diagonalization.  Matrix diagonalization is the process of taking a square matrix and converting 

it into a diagonal matrix.  The diagonal matrix will share the same fundamental properties of 

the underlying matrix and is equivalent to transforming the underlying system into a set of 

coordinate axes in which the matrix takes a canonical form.  The entries of the diagonalized 

matrix represent the eigenvalues of the original matrix.  Similarly, the new set of axes 
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corresponding to the diagonal matrix is the eigenvectors of the original matrix.  This eigen 

decomposition of a square matrix 𝐴 is shown in Equation 6: 

𝐴 = 𝑃𝐷𝑃−1 Equation 6 
  
where 𝑃 is a matrix composed of the eigenvectors of 𝐴, 𝐷 is the diagonal matrix constructed 

from the corresponding eigenvalues, and 𝑃−1 is the matrix inverse of 𝑃.  The eigenvectors that 

account for the largest variance in the dataset are represented by large eigenvalues.  Because 

of experimental noise, the largest eigenvectors usually do not account for 100% of the data 

variance.  Therefore, smaller values are normally found.  An example of a spectral eigenvalue 

matrix is shown in Figure 22 and its associated eigenvectors are shown in Figure 23.  It can be 

seen that the first eigenvalue is much larger than the rest indicating the presence of only one 

spectral pattern in the data. 
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0 0 0 0 0 −6.32𝑥10−15 

 
 
 
 
 

 

Figure 22.  Eigenvalue matrix of RR Apple range scaled concentration 3 spectra 

This matrix and graph indicates only 1 component accounts for the total variance in the data 

set.  The other eigenvectors have no discernable spectral characteristics and are mostly noise.  

Factor and multicomponent analyses of the unknowns used in this study indicate the presence 

of more than 1 compound contained in each sample. 
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Figure 23.  Eigenvectors of RR apple range scaled concentration series 3 data 

 The command in Equation 7 is used to calculate eigenvalues and eigenvectors within 

MATLAB.    

 𝑉, 𝐷 = 𝑒𝑖𝑔𝑠 𝐴 ∗ 𝐴−1  Equation 7 
  
Equation 7 determines the six largest eigenvalues and eigenvectors of matrix A and assigns the 

resulting eigenvalue matrix to D and eigenvector matrix to V.  For this calculation, matrix A 

must be a square matrix (multiplying by the matrix transpose provides a square matrix).  The IPs 

of the eigenvectors were calculated in Excel using Equation 8. 

= 𝑀𝑀𝑈𝐿𝑇(𝑀𝐼𝑁𝑉𝐸𝑅𝑆𝐸 𝑀𝑀𝑈𝐿𝑇 𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑆𝐸 𝑒𝑉𝑒𝑐𝑡1 , 𝑒𝑉𝑒𝑐𝑡1  , 

𝑀𝑀𝑈𝐿𝑇 𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑆𝐸 𝑒𝑉𝑒𝑐𝑡1 , 𝑒𝑉𝑒𝑐𝑡2 ) 
Equation 8 

  
where MMULT returns the matrix products of two arrays, MINVERSE returns the inverse 

matrix of the array, TRANSPOSE shifts the vertical and horizontal orientation of the array, 

eVect1 is eigenvector 1, and eVect2 is eigenvector 2.  An IP value closer to 1 indicates a better 

match. 
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Examples of Single Dye Spectra Used for Calculation 

 Due to the large amounts of data, selected spectra that are informative are included to 

demonstrate the important features found.  These and similar spectra were used for 

subsequent data analysis.  Shown in Figure 24, Figure 25, and Figure 26 are baseline corrected 

data for the three standards, PGA, apple pectin, citrus pectin, the two unknowns, and an 

overlay of the complexation spectra of all three standards and the two unknowns at 

concentration level 4 of respectively, ruthenium red, nile blue, and acridine orange.  As can be 

seen in Figure 25 and particularly Figure 26, the spectra of NB and AO for all three standards 

and two unknowns are closely overlapped.  This portends that it would be difficult to 

distinguish them using NB and AO as complexing dyes.  In Figure 24 the spectra of the three 

standards are quite well separated and the two unknowns are somewhat discernable.  

Therefore, it would indicate that RR would work the best out of the three colorimetric reagents.  

Validation of Chemometric Techniques Employed and Standard 

An integral part of any pattern matching technique is to determine the resolving power 

of the standards in the data set.  For this purpose, the unknowns are subjected to the same 

mathematical treatments of the chemometric techniques as the standards.  These data indicate 

how well the calculated metric can distinguish between known and unknown sample spectra.  If 

the metric cannot reliably distinguish between its own standard spectra then it will not be able 

to provide unambiguous results when the techniques are used to determine unknowns.  For all 

subsequent calculations, the spectral wavelength ranges were:  
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Figure 24.  Baseline corrected spectra of RR complex of standards (a), unknowns (b), and 
(c) overlay of all at concentration level 4 
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Figure 25.  Baseline corrected spectra of NB complexation of standards (a), unknowns 
(b), and (c) overlay of all at concentration level 4 
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Figure 26.  Baseline corrected spectra of AO complex of standards (a), unknowns (b), 
and (c) overlay of all at concentration level 4 
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RR 320 nm to 650 nm, NB 400 nm to 750 nm, and AO 340 nm to 560 nm where the major 

spectral features are present. 

 First, Euclidean Distance values between different pectin standards were calculated.  

This was done for all concentrations of the colorimetric reagents used.  The ED values between 

any two datasets indicate how similar they are.  Smaller values equate to greater similarity 

between the two sets of data.  The interstandard Euclidean Distances of range scaled data 

among the pectin standards using the three colorimetric reagents RR, NB, and AO are tabulated 

in Table 4. 

For all reagents, the ED values calculated for identical datasets did give a value of zero 

indicating they were the same or no “distance” apart.  The ED values for all reagents at the 

lowest and highest concentrations tend to show little discrimination, while the best 

discrimination was observed for concentration levels 3 or 4.  There was a distinct reagent 

concentration dependence observed.  At too low a concentration, there were still many 

complexation sites available while at too high a concentration, saturation and excess reagent 

Table 4.  Interstandard ED of each dye at all concentrations 

Euclidean Distances 

 PGA to Apple PGA to Citrus Apple to Citrus 

Concentration RR NB AO RR NB AO RR NB AO 

1 1.583 0.279 0.224 1.485 0.213 0.219 0.945 0.264 0.267 

2 0.358 0.527 0.254 0.463 0.656 0.192 0.209 0.869 0.312 

3 1.867 0.374 0.163 1.755 0.269 0.065 0.499 0.372 0.134 

4 3.325 0.759 0.244 3.434 0.161 0.130 0.572 0.655 0.144 

5 0.738 0.910 0.098 1.487 0.282 0.078 2.032 0.679 0.091 

 PGA to PGA Apple to Apple Citrus to Citrus 

Concentration RR NB AO RR NB AO RR NB AO 

All 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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 “smear” the spectral features and obscure whatever small differences that might be present.  

For RR, one observes that the ED values were large between PGA and apple (3.325) and 

between PGA and citrus (3.434) at concentration level 4 and reasonably large at concentration 

level 3.  These indicate that RR seems to be able, at least from our knowledge of the pectins 

structures, to tell apart pectin structures that are distinctly different.  However, the NB and the 

AO spectral data gave ED values that are not as useful.  For instance, both dyes do not give ED 

values that clearly discriminate PGA pectin from the two other pectins as RR ED values can.  

Thus, it seems that NB and AO are not going to be reliable in the analysis of the unknown 

pectins.  The difference between apple and citrus pectin standards, however, are not as large as 

one would hope.  This may present difficulty in further analysis.  These results indicate the 

standards library should be adequate for discrimination of unknowns based upon ED.   

 The interstandard R2 values of range scaled data among the pectin standards using the 

three colorimetric reagents RR, NB, and AO are tabulated in Table 5.   

Table 5.  Interstandard R2 values of each dye at all concentrations 

R2 

 PGA to Apple PGA to Citrus Apple to Citrus 

Concentration RR NB AO RR NB AO RR NB AO 

1 0.913 0.998 0.998 0.928 0.999 0.998 0.973 0.998 0.998 

2 0.996 0.994 0.997 0.993 0.995 0.999 0.999 0.983 0.995 

3 0.872 0.997 0.999 0.898 0.999 1.000 0.996 0.998 1.000 

4 0.530 0.993 0.999 0.441 1.000 1.000 0.993 0.994 1.000 

5 0.980 0.988 1.000 0.927 0.999 1.000 1.000 1.000 1.000 

 PGA to PGA Apple to Apple Citrus to Citrus 

Concentration RR NB AO RR NB AO RR NB AO 

All 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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As shown previously in the calculation of ED values for RR, correlation data again indicated 

good discriminating power.  In particular, at concentration level 4 the correlation coefficients 

between PGA and apple (0.530) and between PGA and citrus (0.441) were sufficiently low to 

allow one to conclude that the pectins were quite different.  However, the same difficulty was 

evident in distinguishing apple from citrus.  The correlation coefficient indicated they were 

identical.  Unlike ED values, correlation date for NB and AO showed little to no discriminating 

power.  This correlation dataset by itself would not be adequate for determinations of 

unknowns of natural sources. 

 The interstandard inner products (IPs) for eigenvectors of range scaled data among the 

pectin standards using the three colorimetric reagents RR, NB, and AO are tabulated in Table 6.   

Table 6.  Interstandard eigenvector IPs of each dye at all concentrations  

Inner Products 

 PGA to Apple PGA to Citrus Apple to Citrus 

Concentration RR NB AO RR NB AO RR NB AO 

1 0.953 0.999 0.999 0.961 0.999 0.999 0.985 0.999 0.998 

2 0.998 0.996 0.998 0.996 0.993 0.999 0.999 0.989 0.997 

3 0.942 0.998 0.999 0.950 0.999 1.000 0.996 0.998 1.000 

4 0.797 0.991 0.999 0.790 1.000 1.000 0.995 0.993 1.000 

5 0.992 0.987 1.000 0.965 0.999 1.000 0.935 0.993 1.000 

 PGA to PGA Apple to Apple Citrus to Citrus 

Concentration RR NB AO RR NB AO RR NB AO 

All 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

 The inner product calculations for the standards library indicate poor resolving power 

among all the dyes.  RR, as with the previous mathematical treatments, shows the best 

discriminating power at concentration level 4 of pectins known to be very different.  The IP 
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values using RR spectral data are between PGA and apple (0.797) and between PGA and citrus 

(0.790), distinctly smaller than those between the other pectins.  While spectral data of NB and 

AO do not, again, show such discrimination as RR even for well-known, distinctly different 

pectins. 

 Overall, the IP values are similar to R2 values in their poor discriminating power between 

the different pectins that are not very different.  These values do not offer any discrimination 

for all concentrations of NB and AO spectral date.  Therefore, the IPs of NB and AO show these 

dyes are not suitable for unknowns.  The PGA is partially distinguished from the apple and citrus 

as the IP values with them are 0.797 and 0.790 respectively.  However, it is still difficult to 

distinguish between the apple and citrus pectin.   

Determination of Unknowns Using Single Dye System 

 The ED, R2, and IP data obtained from the use of RR, NB, and AO as “complexing” agents 

with pectin and unknowns 1 and 2 are tabulated in Table 7, Table 8, and Table 9 respectively.  

Pectin unknown prediction results based on the three factors listed in these tables are 

tabulated in Table 10. 

 From the data in Table 7, it can be again observed that at concentration levels of 1, 2, 

and 5, the results were ambiguous, inconsistent, and unsatisfactory.  The reasons being given 

previously that the degree of complexation of the dyes with the available sites on the pectin 

were either incomplete or saturated.  Thus, the discussion will focus on the results from dye 

concentration levels 3 and 4. 
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 For unknowns 1 and 2, at level 3, the R2 and IP values were distinctly the smallest with 

PGA, thus quite correctly hinting the absence of PGA structure in them for RR spectral data.  

However, this was not the case for dyes NB and AO spectral data.  The R2 and IP values were all 

close to one with PGA, apple, or citrus.  Even at concentration level 4, the R2 and IP values using 

these two dyes were all close to one.  Thus, no discrimination was possible using NB or AO.  In 

the case of RR, the results were more distinct at concentration level 4.  The R2 and IP values 

were clearly low for PGA, 0.493 and 0.799, and 0.504 and 0.796, respectively in unknown 1 and 

unknown 2, indicating the absence of PGA in both unknowns.  However, R2 and IP values were 

not able to allow one to discriminate the presence of apple or citrus features in both unknowns 

as their values were all very close to unity. 
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Table 7.  Tabulated results of RR comparison calculations 

Comparison Metric for RR 

 Concentration Comparison w/ PGA w/ Apple w/ Citrus 

U
n

kn
o

w
n

 1
 

1 

ED 7.386 6.965 6.557 

R2 0.301 0.041 0.052 

IP 0.584 0.651 0.703 

2 

ED 0.414 0.265 0.190 

R2 0.996 0.999 0.999 

IP 0.997 0.999 0.999 

3 

ED 1.762 0.329 0.608 

R2 0.886 0.996 0.995 

IP 0.949 0.998 0.994 

4 

ED 3.352 0.383 0.414 

R2 0.493 0.997 0.994 

IP 0.799 0.998 0.997 

5 

ED 2.991 2.489 3.887 

R2 0.624 0.753 0.362 

IP 0.862 0.906 0.755 

U
n

kn
o

w
n

 2
 

1 

ED 2.010 1.489 0.723 

R2 0.877 0.940 0.987 

IP 0.932 0.965 0.992 

2 

ED 0.476 0.201 0.289 

R2 0.993 0.999 0.998 

IP 0.996 0.999 1.000 

3 

ED 2.485 1.299 1.752 

R2 0.790 0.970 0.949 

IP 0.909 0.980 0.960 

4 

ED 3.349 0.312 0.494 

R2 0.504 0.997 0.993 

IP 0.796 0.998 0.996 

5 

ED 0.942 0.680 1.927 

R2 0.967 0.984 0.871 

IP 0.986 0.993 0.940 
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Table 8.  Tabulated results of NB comparison calculations 

Comparison Metric for NB 

 Concentration Comparison w/ PGA w/ Apple w/ Citrus 

U
n

kn
o

w
n

 1
 

1 

ED 0.174 0.302 0.228 

R2 0.999 0.998 0.999 

IP 0.999 0.998 0.999 

2 

ED 1.040 1.128 0.666 

R2 0.986 0.974 0.989 

IP 0.982 0.979 0.993 

3 

ED 0.249 0.414 0.130 

R2 0.999 0.997 1.000 

IP 0.999 0.997 1.000 

4 

ED 0.148 0.742 0.158 

R2 1.000 0.992 1.000 

IP 1.000 0.991 1.000 

5 

ED 0.196 0.904 0.283 

R2 0.999 0.986 0.998 

IP 0.999 0.987 0.999 

U
n

kn
o

w
n

 2
 

1 

ED 0.217 0.295 0.271 

R2 0.999 0.999 0.999 

IP 0.999 0.999 0.999 

2 

ED 0.491 0.703 0.392 

R2 0.997 0.990 0.996 

IP 0.996 0.993 0.997 

3 

ED 0.279 0.407 0.124 

R2 0.999 0.998 1.000 

IP 0.999 0.997 1.000 

4 

ED 0.169 0.714 0.144 

R2 0.999 0.993 1.000 

IP 1.000 0.992 1.000 

5 

ED 0.146 0.845 0.248 

R2 1.000 0.989 0.999 

IP 1.000 0.988 0.999 
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Table 9.  Tabulated results of AO comparison calculations 

Comparison Metric for AO 

 Concentration Comparison w/ PGA w/ Apple w/ Citrus 

U
n

kn
o

w
n

 1
 

1 

ED 0.268 0.171 0.283 

R2 0.997 0.999 0.997 

IP 0.998 0.999 0.998 

2 

ED 0.151 0.268 0.254 

R2 0.999 0.998 0.998 

IP 0.999 0.998 0.998 

3 

ED 0.143 0.103 0.117 

R2 0.999 1.000 0.999 

IP 0.999 1.000 1.000 

4 

ED 0.122 0.200 0.139 

R2 1.000 0.999 0.999 

IP 1.000 0.999 0.999 

5 

ED 0.095 0.086 0.084 

R2 1.000 1.000 1.000 

IP 1.000 1.000 1.000 

U
n

kn
o

w
n

 2
 

1 

ED 0.243 0.306 0.203 

R2 0.998 0.998 0.998 

IP 0.998 0.997 0.999 

2 

ED 0.225 0.391 0.270 

R2 0.999 0.995 1.000 

IP 0.999 0.996 0.998 

3 

ED 0.083 0.161 0.085 

R2 1.000 1.000 1.000 

IP 1.000 0.999 1.000 

4 

ED 0.263 0.066 0.158 

R2 0.999 1.000 1.000 

IP 0.998 1.000 0.999 

5 

ED 0.101 0.130 0.106 

R2 1.000 0.999 0.999 

IP 1.000 1.000 1.000 
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 For the pectin spectral data with NB and AO, and at concentration levels of 3 and 4, the 

ED values obtained for both unknowns were nondiscriminating and inconsistent from one 

concentration to another.  For instance, at concentration level 3, NB ED results indicated citrus 

features well in unknown 1, but at concentration 4 PGA was the choice.  From our knowledge of 

the pectins, PGA was quite surely not a component of the natural pectins.  For unknown 2, the 

ED values from NB data did indicate at both concentration levels 3 and 4 that the citrus feature 

seems to be the closest one, but the distinction was not as convincing.  The data for AO were 

more inconsistent and confusing.  However, the ED values from RR data were much more 

consistent.  At both concentration levels 3 and 4, for both unknowns, the apple features was 

closest with citrus features not that far apart.  The ED values were 0.329 and 0.383 for apple 

versus 0.608 and 0.414 for citrus, and 1.299 and 1.752 versus 0.312 and 0.494 respectively, in 

unknown 1 and unknown 2.  Therefore, the ED values of RR data seemed to indicate that both 

unknowns might have both apple and citrus features with the apple feature somewhat more 

prominent. 

 The predictions of these data were summarized in Table 10.  One can quite clearly see 

the conclusions that were arrived at from the above discussions.  The prediction using the RR 

spectral data consistently point to the apple feature being the dominant structure in pectin 

unknown 1 and 2 at concentration level 4. 
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Table 10.  Summarized predictions for all dyes and data 

Prediction Matrix for Data of all Dyes 

 Concentration Dye ED R2 IP 

U
n

kn
o

w
n

 1
 

1 

RR citrus pga citrus 

NB pga pga≈citrus pga≈citrus 

AO apple apple apple 

2 

RR citrus citrus citrus 

NB citrus citrus citrus 

AO pga pga pga 

3 

RR apple apple apple 

NB citrus citrus citrus 

AO apple apple apple≈citrus 

4 

RR apple apple apple 

NB pga pga≈citrus pga≈citrus 

AO pga pga pga 

5 

RR apple apple apple 

NB pga pga pga 

AO citrus ??? ??? 

U
n

kn
o

w
n

 2
 

1 

RR citrus citrus citrus 

NB pga ??? ??? 

AO citrus ??? citrus 

2 

RR apple apple citrus 

NB citrus pga citrus 

AO pga citrus pga 

3 

RR apple apple apple 

NB citrus citrus citrus 

AO pga ??? pga≈citrus 

4 

RR apple apple apple 

NB citrus citrus citrus 

AO apple apple≈citrus apple 

5 

RR apple apple apple 

NB pga pga pga 

AO pga pga ??? 
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Combined Factors as Predictors of Features in Unknowns 

 In an attempt to improve the predictive power of the obtained data, the three factors of 

ED, R2, and IP were combined into one quantitative quotient, Q, as given in Equation 9. 

𝑄 =
𝑅2 × 𝐼𝑃

𝐸𝐷2
      Equation 9 

 

The Q value attempts to expand the differences between the pectin data through adding 

weighting to ED.  The larger the Q value, the more specific standards feature is present in the 

unknown data.  The resulting values were tabulated in Table 11.  To highlight differences, the Q 

values from Table 11  were scaled by dividing each row data by the maximum value for that 

row.  The results were tabulated in Table 12 where 1.000 indicates the strongest match.  The 

predictions were summarized in Table 13.  Again, the discussions will focus only on data for 

these reagents at concentration levels 3 and 4.  Again, because the RR pectin spectral data at 

concentrations 3 and 4 have been shown previously to provide the best and most robust 

results, the discussion will focus on these sets of data.  The Q values at concentration 3 for RR 

spectral data gave a 1.000 for the apple standard in unknown 1 compared to 0.317 with citrus 

standard while at concentration 4, the values are 1.000 for the apple standard and 0.924 for 

citrus standard.  Thus, the Q value showed a greater distinction between the 2 standard 

features in the unknown.  For unknown 2, similar improvement is seen.  At concentration level 

3, the apple standard value of 1.000 is contrasted at 0.581 for the citrus standard.  At 

concentration 4, the values are now 1.000 compared to 0.430.  Again, the Q value seems to 

improve the predictive value and allow a clearer distinction to be observed. 
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Table 11.  Combined Q table of ED, R2, and IP values for all dyes 

Combined Comparison Matrix 

 Concentration Comparison w/ PGA w/ Apple w/ Citrus 

U
n

kn
o

w
n

 1
 

1 

RR 0.003 0.001 0.001 

NB 32.897 10.929 19.220 

AO 13.815 34.103 12.455 

2 

RR 3.389 9.253 19.397 

NB 0.911 0.764 2.227 

AO 43.863 13.894 15.398 

3 

RR 0.167 5.978 1.893 

NB 16.112 5.799 58.956 

AO 48.478 93.866 72.278 

4 

RR 0.026 4.413 4.076 

NB 45.622 1.798 39.944 

AO 66.614 24.975 51.344 

5 

RR 0.041 0.079 0.017 

NB 25.984 1.205 12.493 

AO 109.647 134.890 142.685 

U
n

kn
o

w
n

 2
 

1 

RR 0.127 0.276 1.328 

NB 21.183 11.466 13.568 

AO 16.821 10.653 24.289 

2 

RR 2.559 16.148 8.387 

NB 4.133 1.998 6.468 

AO 19.620 6.522 13.652 

3 

RR 0.075 0.374 0.217 

NB 12.810 6.002 64.650 

AO 145.826 38.758 139.516 

4 

RR 0.026 6.647 2.859 

NB 35.152 1.944 48.288 

AO 14.415 230.723 39.815 

5 

RR 0.636 1.385 0.165 

NB 46.984 1.383 16.258 

AO 98.173 59.077 88.068 
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Table 12.  Prediction Matrix using scaled Q-table values 

Combined Comparison Matrix 

 Concentration Comparison w/ PGA w/ Apple w/ Citrus 

U
n

kn
o

w
n

 1
 

1 

RR 1.000 0.170 0.266 

NB 1.000 0.332 0.584 

AO 0.405 1.000 0.365 

2 

RR 0.175 0.477 1.000 

NB 0.409 0.343 1.000 

AO 1.000 0.317 0.351 

3 

RR 0.028 1.000 0.317 

NB 0.273 0.098 1.000 

AO 0.516 1.000 0.770 

4 

RR 0.006 1.000 0.924 

NB 1.000 0.039 0.876 

AO 1.000 0.375 0.771 

5 

RR 0.514 1.000 0.213 

NB 1.000 0.046 0.481 

AO 0.768 0.945 1.000 

U
n

kn
o

w
n

 2
 

1 

RR 0.095 0.208 1.000 

NB 1.000 0.541 0.641 

AO 0.693 0.439 1.000 

2 

RR 0.158 1.000 0.519 

NB 0.639 0.309 1.000 

AO 1.000 0.332 0.696 

3 

RR 0.200 1.000 0.581 

NB 0.198 0.093 1.000 

AO 1.000 0.266 0.957 

4 

RR 0.004 1.000 0.430 

NB 0.728 0.040 1.000 

AO 0.062 1.000 0.173 

5 

RR 0.459 1.000 0.119 

NB 1.000 0.029 0.346 

AO 1.000 0.602 0.897 
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Table 13.  Predicted results from combined datasets 

 Concentration RR NB AO 

U
n

kn
o

w
n

 1
 1 pga pga apple 

2 citrus citrus pga 

3 apple citrus apple 

4 apple pga pga 

5 apple pga citrus 

U
n

kn
o

w
n

 2
 1 citrus pga citrus 

2 apple citrus pga 

3 apple citrus pga 

4 apple citrus apple 

5 apple pga pga 

 

Selection of Samples Based Upon Molecular Weight 

 To further aid in characterizing pectins, commercial samples were purchased and 

subjected to GPC analysis.  The unknown samples used in the study were selected from this list 

based upon proximity to one of the pectin standards used earlier.  A tabulated list of GPC 

results is included in Table 14 for commercial samples and Table 15 for samples used in this 

study. 
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Table 14.  MW results of GPC studies on diverse samples 

Manufacturer Mw Mn 𝒙 𝑴𝒘
 As Branded 

SureGel 931803 40124 N/A Low Sugar 

SureGel 1A 902542 49521 
884607 

Low Sugar 

SureGel 1B 866672 57450 Low Sugar 

SureGel 1269073 43785 N/A High Sugar 

SureGel  915064 19616 N/A High Sugar 

SureGel  829814 35822 N/A High Sugar 

SureGel 2A 785962 32957 

742409 

High Sugar 

SureGel 2B 677902 33174 High Sugar 

SureGel 2C 763364 45010 High Sugar 

Mrs. Wages 400355 2539 
395984 

Low Sugar 

Mrs. Wages 391614 2707 Low Sugar 

Ball 1A 1092706 121837 
1057638 

High Sugar 

Ball 1B 1022570 102155 High Sugar 

Ball 970401 66216 N/A High Sugar 

Ball 2A 2023990 783468 
1990572 

Low Sugar 

Ball 2B 1957155 699325 Low Sugar 

Ball 1740333 760892 N/A Low Sugar 

Kroger 1A 881469 28269 

877470 

High Sugar 

Kroger 1B 880487 27529 High Sugar 

Kroger 1C 870455 55952 High Sugar 

Aldrich 1578538 906765 N/A HM-Citrus 

Aldrich 305651 82102 N/A Citrus 

Aldrich 146601 59834 N/A 95% PGA 
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Table 15.  Chromatographic GPC results of samples used in this study 

Sample Mw Mn 𝒙 𝑴𝒘
 

Unknown #1 

845328 62143 
864568 

883808 64832 

720050 43340 outlier 

Unknown #2 

494380 36103 
492712 

491044 32216 

361973 33554 outlier 

PGA Standard 

383546 99885 

383932 384318 95499 

392133 102470 

Apple Standard 

708248 51437 

702726 700991 57336 

698939 61700 

Citrus Standard 

380486 85946 

382765 389263 78302 

378546 73533 

 

 The MW data show that apple pectin standard, on average, have lower MW compared 

to that of citrus pectin standard.  PGA pectin standard has the highest MW.  Thus, PGA is 

structurally much different from the others and thus quite easily distinguished.  Our data clearly 

bear this out.  Unknown 2 has lower MW than apple pectin standard and has the lowest MW 

compared to all pectin standards.  So unknown 2 should have structure closer to apple pectin 

more so than the other two standards.  For unknown 1, the average MW is quite similar to that 

of the apple pectin especially in Mn so this unknown should have structure very close to that of 

the apple pectin.  Although one of the three MW measurements seemed to be an outlier, if one 

omitted it from the mean calculation, the MW of unknown 1 is substantially higher than the 

MW of apple pectin but still quite distant from that of citrus pectin.  Therefore, it seems that 

our analysis using the Q value from RR spectral data is in line with the GPC MW results. 
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 As mentioned previously, euclidean distance, correlation coefficients, and eigenanalysis 

data failed to predict consistently with NB and AO.  When looking at MW data, it is readily 

apparent polymer size greatly influences spectral results as with %DE values.  MW of citrus and 

PGA standards are relatively small when compared to apple.  Pectin Unknown 2 was closer to 

PGA and citrus standards in MW.  Pectin Unknown 1 MW was closer to that of apple.  Further, 

%DE of the pectins 
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CHAPTER 5 

CONCLUSION 

Pectins are a family of abundant, naturally occurring, complex, anionic polysaccharides 

comprising up to 35% of the cell wall of most terrestrial plants.  Pectin has had a long and 

varied history in the food and more recently the pharmaceutical industry.  Incredibly, with this 

history, not much was known of pectin’s structural and chemical properties until recent years.  

Two main classes of pectin exist, low methoxyl and high methoxyl pectin.  These play very 

important roles in pectin’s chemical and physical properties and provide for a diversity of uses.  

The two main classes can be further subdivided into slow, medium, and rapid set gelation 

types.  The speed of gelation is directly proportional to the %DE of the molecule.  Pectin 

contains a very high percentage of galactouronides but can contain substantial amounts of 

other uronide impurities that further differentiate its properties. 

Numerous techniques exist for the analysis of pectin.  However, due to the complexity 

and heterogeneous nature of the pectin polymer, distinctive analyses are very difficult.  

Additionally, pectins are insoluble in most organic solvents and only soluble in water when 

complexed with a monovalent salt.  This adds to the complexity of analysis.  Two techniques 

often used for characterization of pectin are molecular weight determination through gel 

permeation chromatography and UV-Vis analysis with reactions producing colored complexes.  

Molecular weight (MW) has the second largest influence on pectin chemical and physical 

properties with %DE being the most important.  The MW of the polymer is a direct indication of 

the number of reactive sites available for complexation.  Larger sizes also increase polymer self-
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aggregation where the pectin will fold and crosslink inter- and intra-molecularly.  The size can 

also influence solution dynamics and viscosity (e.g. gelation).  For this reason, GPC analysis can 

be greatly influenced by how the sample matrix is prepared.  Only meticulous preparation and 

measurement conditions will provide accurate MW results. 

Spectrophotometric measurement techniques generally suffer from a lack of specificity 

in complex carbohydrate research.  Because pectin is not homogeneous, the reagents used to 

produce color in reactions with decomposed pectin suffer numerous interferences.  Even 

reagents targeted specifically to the galactouronides will show limited reactivity to other 

uronides in the system.  Due to these deficiencies, researchers have recently intensified 

research on complexation reactions rather than chemical modification to analyze pectins.  In 

complexation reactions, pectin has a very high affinity for divalent and trivalent ionic 

compounds.  Divalent salts of pectin have limited solubility while trivalent salts are insoluble.  

Pectin complexation with colored metal complexes or other ionic compounds that produce 

color in the UV-Vis region of the electromagnetic spectrum allow for low cost, rapid analysis 

through UV-Vis measurements.  Ruthenium Red is a metachromic, ionic dye that has shown 

quantitative interaction with pectin at lower %DE values.  Lower %DE pectin polymers provide 

numerous sites for complexing with RR.  MW and polymer solution dynamics will greatly 

influence pectin’s ability to form complexes.  Therefore, the best complexation will occur at 

moderate MW and in specifically controlled conditions. 

The first goal of this work was to define the best complexing conditions for the pectin 

under study.  Experimentation was conducted on pectins with a moderate range of molecular 
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weights in a slightly acidic biological buffer.  Most organic and inorganic buffers show varying 

levels of complexation with pectin and cause precipitation and experimental error.  Thus, it was 

necessary to choose the buffer carefully for this work.  The versatile biological buffer, 3-

morpholinopropanesulfonic acid, was chosen as it provides the needed pH buffering capacity 

and aids in the ionization of the pectin without complexation.  Low pH hinders ionization of 

carboxyl groups to decrease electrostatic intramolecular repulsion within the chains thus 

allowing gelation. We want to keep pH higher to keep chains available for reactions and to 

minimize chain-chain interactions. 

As previously discussed, RR complexes quantitatively with pectin up to roughly 80 %DE.  

The intent of this research is to devise a method whereby pectins of any range %DE can be 

characterized with RR or other metachromic dyes.  Additionally, the method should also 

characterize off-the-shelf pectin with minimal purification.  The standards used in this study fall 

within a high range of %DE.  PGA (pectin with very low %DE) was also employed as a standard 

to cover the full range of %DE.  Prior knowledge shows calcium is a good precipitating agent for 

lower %DE values but poor for higher levels of %DE.  Based upon a priori knowledge, Pb2+ was 

chosen as the best candidate for precipitating pectin under a variety of conditions and physical 

properties.  To develop the method, reagent grade pectins of known composition were 

acquired for study.  The standards were purified to remove as much interference as possible.  

Experimentation was done to determine optimal concentrations of buffer, dye, Pb2+ 

precipitating agent, and pectin to use for the study.  RR complexation with the standards was 

verified by replicating previous experimentation by other researchers.  The pectin was dissolved 
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in a dilute aqueous buffer solution, the dye of known concentration was added, allowed time to 

interact, the pectin-dye complex precipitated out of solution and the supernatant with residual 

dye analyze via UV-Vis.  Because of the minute concentrations used, the deltas in the 

absorbances were very small.  Differences in the spectra could be seen visually but in order to 

fully explain the results and validate the data, it was necessary to employ chemometric 

techniques.  As expected, RR did show quantifiable interactions (using euclidean distance, 

correlation coefficients, and eigenvector inner products) with the various pectin standards.  

Numerous other cationic dyes were tested but most showed no discernable results.  Nile Blue 

and Acridine Orange did, however, show some promise.  Although showing some interaction, 

when compared singularly with RR, these dyes failed to provide data of high confidence.  To 

increase predictive resolution, the chemometric factors were combined into a single quotient, 

Q, given by 𝑄 = (𝑅2 × 𝐼𝑃)/(𝐸𝐷)2.     

The range of concentrations used for this study was important.  The spectral features 

did show at too low of dye concentration, signal noise and lack of pectin complex interaction 

with the dyes gave results of poor precision.  Conversely, high dye concentrations saturated the 

pectin sites and excess amount in the solution led to the loss of resolution.  Mid-range dye 

concentration showed the most reproducible results. 

Commercial samples of both “low sugar” (low %DE) and “normal” (high %DE) were 

obtained from local grocers and classified as unknown 1 and unknown 2, respectively.  These 

samples were not further purified and analyzed under the same conditions as the standards.  

Using the same chemometric techniques, the unknowns were compared to the standards and 
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these data were used to predict which standard the unknown was closest to at the chosen 

concentration range.   

The results obtained showed that the pectins treated with NB and AO did not give the 

analysts any useful information or predictive value at all concentrations and employing any of 

the three chemometric factors chosen.  Even at the optimal concentration level 3 or 4, these 

dye data did not afford any robust consistent predictive values.   

Ruthenium red seemed to be able to provide discrimination when used as the 

colorimetric reagent for the different pectins.  Among the concentration range attempted, 

concentrations level 3 and 4, particularly the later, gave good results.  With the three 

chemometric treatments, the Euclidean Distance (ED) values were the greatest predictive 

factor.  The correlation coefficients (R2) and the inner product (IP) were useful in ruling out the 

feature, i.e. the feature not present, in the unknown rather than distinguishing among the 

features that might be present or similar to one another.  Thus, the quotient, Q, was conceived 

to include all these factors while amplifying the most predictively useful factor.  So, 𝑄 = (𝑅2 ×

𝐼𝑃)/(𝐸𝐷)2  was used and it indeed was able to separate the features apart consistently.  

Furthermore, the predictions of the Q values were corroborated by the gel permeation MW 

results. 

Thus, from all the results obtained and the discussions therein, the objectives of this 

research have been mostly achieved.  We have shown that, among several, the pectin spectral 

data of a colorimetric reagent, ruthenium red, coupled with the three chosen chemometric 
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factors, ED, R2, and IP, allowed one to distinguish the features in the unknown pectins.  These 

results were also further corroborated by GPC MW data. 

For further investigations, the predictive value of the dyes may be enhanced by 

combining 2 or 3 of them simultaneously in a single pectin.  Because of the structural features 

of the pectins and that of the colorimetric reagents, there will be a competition among the dyes 

for the sites in a given pectin.  Some dyes may be more competitive for a certain feature.  This 

competition can be used to enhance the distinction among the pectins studied. 
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