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ABSTRACT 
 

30S Ribosomal Subunit Assembly is a Target for Inhibition by Aminoglycoside Antibiotics in 

Escherichia coli 

by 

Roopal Mehta 

 

Antibacterial agents specific for the 50S ribosomal subunit not only inhibit translation but also 

prevent assembly of that subunit. I examined the 30S ribosomal subunit in growing Escherichia 

coli cells to see if antibiotics specific for that subunit also had a second inhibitory effect. I used 

the aminoglycoside antibiotics paromomycin and neomycin, which bind specifically to the 30S 

ribosomal subunit. Both antibiotics inhibited the growth rate, viable cell number, and protein 

synthesis. I used a 3H-uridine pulse and chase assay to examine the kinetics of ribosome subunit 

assembly in the presence and absence of each antibiotic. Analysis revealed a concentration 

dependent inhibition of 30S subunit formation in the presence of each antibiotic. Sucrose 

gradient profiles of cell lysates showed the accumulation of an intermediate 21S translational 

particle. Taken together this data gives the first demonstration that 30S ribosomal subunit 

inhibitors can also prevent assembly of the small subunit.  
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CHAPTER 1 

INTRODUCTION 

 

 Antibiotic chemotherapy is an important defense against infectious agents that target the 

human body.  However, many infectious microorganisms have acquired resistance to clinically 

used antibiotics and now pose a major health threat (Amabile-Cuevas et al.1995; Gold and 

Moellering 1996).  For this reason, it is increasingly important to identify both new drugs and 

also new cellular targets for anti-microbial agents (Chu et al. 1996). 

 Paromomycin and neomycin are aminoglycoside antibiotics that share many structural 

and functional properties (Kuryloowicz 1976).  Both antibiotics are effective against a number of 

aerobic and facultative anaerobic gram-negative bacilli as well as gram positive Staphylococci 

(Vazquez 1979; Mingeot-Leclercq et al. 1999).  Chemically, paromomycin and neomycin are 

four membered ring compounds consisting of a 2-deoxystreptamine ring linked to several amino 

sugars and hydroxyl- functional groups (Kotra et al. 2000) (Figure 1).  Although the basic 

structure of the two antibiotics is similar, the two compounds differ in the functional group 

attached at carbon-6 on ring I (Kotra et al. 2000).  Paromomycin possesses a hydroxyl group at 

the C-6� position while neomycin possesses an amino group (see Figure 1).  The polarity and 

hydrophilic properties of their structure enable them to penetrate the cell�s outer membrane and 

function as effective anti-microbial agents (Mingiot-Leclercq et al.1999).    

Paromomycin and neomycin specifically bind to the 30S ribosomal subunit (Vazquez 

1979).  The high positive charge of each antibiotic gives them a high affinity for the negative 

charge of the rRNA within the cell (Mingeot-Leclercq et al.1999; Fourmy et al.1999).  The 

antibiotics interact with the 16S rRNA of the 30S subunit causing a conformational change, 

which results in impaired proofreading, translocation (Moazed and Noller 1987; Recht et 

al.1999; Schroeder et al. 2000; Ogle et al. 2001) and subunit assembly. 
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Figure 1.  Structures of Aminoglycoside Antibiotics Paromomycin and Neomycin.  
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Paromomycin and neomycin bind the A-site of the decoding region of the 30S ribosomal 

subunit (Ogle et al. 2001). The decoding site is the region of the ribosome that discriminates 

between the cognate and non-cognate tRNAs (Recht et al. 1999).  Under standard conditions, 

there exists a codon/ anti-codon recognition step that facilitates discrimination between cognate, 

near-cognate and non-cognate aa-tRNA.  This discrimination enables correct addition of amino 

acids and, therefore, a correct amino acid sequence (Ogle et al. 2001). The non-cognate and most 

near-cognate tRNAs are rejected by the ribosome during the proofreading and selection step.  

However, the accuracy of proofreading and selection is altered once paromomycin or neomycin 

binds to the A-site of the decoding.  Binding to the decoding region results in a conformational 

change of the conserved bases in the loop of the A-site.  This change facilitates high affinity 

binding between the 16S rRNA and the internal loop and rings I and II of the aminoglycoside 

antibiotics (Fourmy et al. 1996; Fourmy et al. 1998; Schroeder et al. 2000; Ogle et al. 2001). The 

tightly bound antibiotic contributes to codon misreading and mistranslation of mRNA.  

 Previous work with a number of structurally different inhibitors of 50S subunit function 

has demonstrated that these antibiotics also inhibit 50S particle formation (reviewed in 

Champney (Champney 2001)).  These antibiotics halt 50S subunit assembly and cause 

accumulation of a precursor particle, which later becomes degraded by cellular ribonucleases 

(Usary and Champney 2001).  Inhibition of assembly is equivalent to inhibition of translation for 

most of these drugs (Champney and Burdine 1996; Champney and Burdine 1998; Champney and 

Tober 2001).  The present investigation examines the effect of paromomycin and neomycin on 

growing Escherichia coli cells.  The results indicate that these aminoglycoside antibiotics also 

have 2 inhibitory effects, preventing protein synthesis and preventing 30S particle assembly in 

cells. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

Materials 

 Escherichia coli strain SK901 has been described previously (Champney 1979). 

Paromomycin sulfate and neomycin sulfate were purchased from Sigma Chemical Corporation. 

Stock solutions of the antibiotics paromomycin and neomycin were made at 10 mg/ml in de-

ionized sterile water.  Lysozyme and RNAse free-DNAse were purchased from Sigma Chemical 

Corporation.  Tryptic soy broth (TSB), sucrose, and ScintiSafe Gel, scintillation fluid were 

purchased from Fisher. Subunit buffer was made using 10 mM TRIS-HCl (pH 8.0), 50 mM 

NH4Cl and 0.5 mM Mg Acetate.  A 5X solution of A-salts was made using 52.5g K2HPO2, 22.5g 

KH2PO4, 5.0g (NH4)2SO4, 2.5g Na citrate and 1ml 20% MgSO4(Miller 1972).  3H-uridine (44.50 

Ci/ mmol) and 35S-methionine and cysteine (TRANS35S-LABEL 1175 Ci/ mmol) was purchased 

from ICN Pharmaceuticals.   

 All calculations regarding gradient profile, subunit assembly, protein synthesis, and 

minimal inhibitory concentration curves were performed using computer software package, 

Cricket Graph III.  Structures were drawn using the computer software package CS ChemDraw 

Net. 

 

Measurements of Cell Growth 

 Cell cultures were grown at either 370 C or 270 C in TSB in the presence and absence of 

each antibiotic after the method of Champney and Burdine 1998.  Growth was initiated by 

adding 8.0 X 107 cells/ml to TSB growth media.  Growth rates were measured by following the 

increase in cell density in a Klett-Summerson colorimeter.  Cells were monitored for at least 2 

doublings.  A Klett of 20 corresponds to 1.6 X 108 cells/ ml and a Klett of 80 equals 5.4 X 108 
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cells/ ml.   The growth rate of the cells was based upon the time required for 1 cell doubling in 

the presence or absence of an antibiotic treatment.  

Measurements of Ribosomal Subunit Assembly   To examine ribosomal subunit 

assembly, cell culture growth was initiated by adding cells to a start flask containing 30 ml of 

TSB.  Cell density was monitored from a Klett of 10 to a Klett of 20. At a Klett of 20, the start 

flask was split into 6- 5 ml flasks, using sterile techniques.  Once separated, 1 flask received no 

antibiotic while the other 5 flasks received different concentrations of 1 antibiotic.  Thirty-

minutes after the cell culture was split and treated, cells were labeled with 3H-uridine (1 µCi/ ml; 

1 µg/ ml) and allowed to grow for 2 doublings each in the presence or absence of the drug. 

Isotope incorporation was halted by adding an excess of cold uridine to a final concentration of 

50 µg/ ml followed by a thirty-minute chase period. After the thirty-minute chase, cells were 

collected in 15 ml Fisher tubes and centrifuged in a Beckman low speed centrifuge (J2-21) at 

6,000 rpm for 15 min in a JA21 rotor.  Once pelleted, the radioactive media was discarded into 

isotope waste.  The pelleted cells were re-suspended and washed with sterile S-Buffer.  Once re-

suspended, the tubes were centrifuged at 6,000 rpm for 15 min.  The excess buffer was discarded 

and the cell pellets were stored in the �700C freezer. 

In order to determine subunit assembly, cells were lysed and centrifuged in a linear 

sucrose gradient.  Harvested cell cultures were removed from the deep freezer and allowed for 

thaw on ice.  Once the cells were completely thawed, 200 µl of S-buffer was added to each cell 

pellet and mixed using a vortex mixer. After mixing, 5 µl of a 10mg/ml solution of lysozyme 

was added to each culture.  Each tube was then hand mixed and warmed at room temperature.  

After a 15-minute incubation period, the cell culture began to get thicker and more opaque 

indicating that the cells had begun to lyse.  Once it was apparent that the cells had lysed, the cells 

underwent a freeze-thaw process 3 times.  During this processes, the cells were taken to the �

700C freezer and frozen for 5 min and then removed and thawed at room temperature.  This 

procedure ensured that the cells had indeed lysed.  Once the lysis process was complete, 1-2 
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units of RNase free-DNase I was added to each culture. Once the DNA was degraded, the tubes 

were centrifuged at 6,000 rpm for 15 min as before.   

The supernatant from the low speed centrifugation was loaded onto a 5-20 % linear 

sucrose gradient in S-buffer.  The gradients were then loaded into a SW40 rotor and centrifuged 

in a Beckman LE80K Ultracentrifuge at 39,000 rpm for 4.25 hours or at 20,000 rpm for 16 hrs.  

For some experiments, centrifugation times were increased to 5.25 hours (39,000 rpm) or to 16 

hrs (23,000 rpm) to better observe the 30S precursor region of the gradients. Gradients were 

pumped through an ISCO gradient fraction and the absorbance at 254 nm for each gradient was 

detected with an ISCO Model UA-5 absorbance monitor.  Gradient fractions were mixed with 3 

ml of ScintiSafe Gel and the incorporation of 3H-uridine into RNA was measured by liquid 

scintillation counting (Beckman LS 3801).   

 

Measurements of Translation Rates   The rate of protein synthesis was determined by 

treating the cells using the method described above.  Cells were grown for 2 doublings in the 

presence or absence of the antibiotic. At a Klett reading of 75, 35S-methionine and cysteine 

(TRAN335S-LABEL) was added to each culture to a final concentration of 1 µCi/ ml. After 

adding the label, 3 samples of 0.2 ml were collected at 5 min intervals and precipitated with 10% 

TCA at room temperature.  The TCA precepitible material was collected on glass fiber filters 

(Whatman GF/A) and measured by liquid scintillation counting.   

 

Measurements of Viable Cells   To measure the number of viable cells, cells were grown 

for 2 doublings in the presence or absence of the drug as described previously. Once the cells 

reached a Klett value of 80, 10 µl of sample was removed and added to 1 ml of A-salts (Miller 

1972). A serial dilution was performed to achieve a final dilution of 10-4 and 10-5 in A-salts 

(Miller 1972). Once the dilution procedure was complete, 10 µl of the 10-4 and 10-5 dilution was 
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plated on square TSB agar plates after the procedure of  (Jett et al.1997).  Colonies were counted 

after 24 hr incubation at 370C. 

 

Uridine Pulse and Chase Labeling   To examine ribosome subunit assembly kinetics, 12 

ml of TSB media were inoculated as described above. Each tube either received no antibiotic, 

paromomycin at a final concentration of 2.5µg/ ml or neomycin at a final concentration of 3.0µg/ 

ml.  The culture was grown to a Klett of 40.  At this cell density, the cells were pulse labeled 

with 3H-uridine (1µCi/ ml) for 90 sec and then chased with uridine at 25µg/ ml. At 5, 10, 15, 20, 

30, and 60-minute intervals, samples of 2 ml were removed, collected in 15ml Corex tubes and 

centrifuged in Beckman low speed centrifuge at 6,000 rpm for 15 min.  Once pelleted, the 

radioactive media was discarded into isotope waste.  The pelleted cells were re-suspended and 

washed with sterile S-Buffer.  Once re-suspended, the tubes were centrifuged at 6,000 rpm for 15 

min.  The excess buffer was discarded and the cells were stored in the �700C freezer.   

Subunit assembly was examined using the procedure descibed above. 

 

MIC Determination   The minimal inhibitory concentration (MIC) for paromomycin and 

neomycin was determined by a dilution method as described (Champney and Burdine 1998).  Six 

tubes each containing 1 ml of TSB received 25 µl of an overnight culture of E. coli cells and one 

antibiotic over a concentration range.  The tubes were incubated at 370C for 24 hr and the 

absorbance at 600 nm was read in an Eppendorf Biophotometer and recorded. 
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CHAPTER 3 

RESULTS 

 

Paromomycin and neomycin are structurally similar aminoglycoside antibiotics.  Each 

compound consists of a 2-deoxystreptamine ring linked to several amino sugars with hydroxyl 

functional groups (Vazquez 1979).  Paromomycin and neomycin differ in chemical structure on 

the functional group attached to the C�6 of ring 1.  Paromomycin has a hydroxyl group at this 

position while neomycin possesses and amino group.  The chemical structure of each antibiotic 

is shown in figure 1. 

The MIC for each antibiotic in E. coli cells growing in TSB was determined by 

measuring the absorbance of light, which passes through each 1 ml sample, depending on cell 

density. Once each absorbance value was measured and recorded, the values were plotted against 

the respective concentration value. The resulting graph demonstrates a relationship between 

increasing concentration of antibiotic and decreasing number of cells (Figure 2).  The MIC value 

is the value that represents the minimum concentration of antibiotic, which will affect the growth 

of the cells. Paromomycin had an MIC of 10µg/ ml and neomycin had an MIC of 15 µg/ml.   

After establishing the inhibitory concentration of antibiotic, I used sub-inhibitory 

concentrations of antibiotic in growing E. coli cells to investigate their effects on cell growth and 

protein synthesis.  Each antibiotic decreased the growth rate and reduced the cell viability in a 

similar way.  Figure 3A and 3B show the concentration dependent inhibition of the growth rate 

and viable cell number by each drug.  The IC50 values for paromomycin and neomycin inhibition 

are listed in Table 1.  Both antibiotics had similar 50% inhibitory concentration values for effects 

on growth rate and cell viability. 
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Figure 2.  Minimal Inhibition Concentration Assay for the Antibiotic Paromomycin and 

Neomycin.   

Increasing concentrations of antibiotic were added to 25 µl of E. coli cells.  The cells 

were grown overnight at 370C.  The amount of growth was measured in a spectrophotometer at a 

wavelength 600 nm. 

Paromomycin 
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Fig. 3.  Inhibition of Growth Rate and Viable Cell Number by Increasing Concentrations 

of Paromomycin and Neomycin in Cells Growing at 370C.  

(A).  Inhibitory effect of paromomycin on growth rate (black) and cell number (red).  

(B). Inhibitory effect of neomycin on growth rate (black) and cell number (red). Results are the 

means of duplicate experiments within a S.E. of +/- 13%. 
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Table 1.   IC50 values (µg/ ml) for paromomycin and neomycin inhibition of growth rate, 

viable cell number, protein synthesis rate and 30S subunit assembly. 

 

Viable Cell Count

Growth Rate

Protein Synthesis

Ribosomal Assembly

1.6

3.2

3.2

6.4

1.8

3.6

3.6

7.2

Paromomycin
 (µg/ml)

Neomycin 
(µg/ml)

50% Inhibition Concentration (IC 50)

Table 1.
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The rate of translation by growing E. coli cells was examined by measuring the 

incorporation of 35S amino acids into cellular proteins.  Figures 4A and 4C show the effect of 

increasing concentrations of each drug on the rate of protein synthesis.  As the concentration of 

antibiotic increases, the amount of protein synthesized decreases respectively.  The relationship 

between increasing drug concentrations and protein synthesis inhibition is displayed in Figures 

4B and 4D.  The IC50 for the inhibition of protein synthesis by each drug is shown in Table 1.  

Paromomycin and neomycin had similar IC50 values (3.2 and 3.6 µg/ ml). 

Previous studies had revealed that antibiotics that target the 50S ribosomal subunit for 

translational inhibition also prevented that subunit from being assembled (Champney, 2001).  

Paromomycin and neomycin were examined to see if they had a similar effect upon the 30S 

subunit.  Ribosome subunit assembly was examined by a 3H-uridine pulse and chase label 

procedure performed on cells growing at 270C.  Ribosome assembly times are proportional to the 

growth rate of cells (Michaels, 1972; Schlessinger, 1974).  Previous studies showed that subunit 

assembly kinetics can be seen most clearly in cells growing at a reduced rate at 270C (Usary and 

Champney, 2001).  The reduced temperature increases the doubling time of cells allowing 

slowed subunit assembly.  Figure 5 shows the sucrose gradient profiles for cells grown at 270C 

in the absence of drug (Figure 5A), in the presence of paromomycin (Figure 5C), or neomycin 

(Figure 5E).  The gradients of figure 5 (A, C and E) represent a 90 second 3H-uridine pulse 

followed by a 30-minute cold uridine chase. At this point in the chase period, there is reduction 

in accumulation of 30S subunit compared to the control. 

Figure 5 (B, D and F) also shows the kinetics of subunit assembly for the control (Figure 

5B), and for paromomycin (Figure 5D) and neomycin treated cells (Figure 5F).  In the absence 

of the antibiotics, 30S subunit formation was completed in 15 min and 50S particle synthesis was 

finished in 30 min (Figure 5B).  When the cells were treated with either paromomycin or
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Figure 4.  Inhibition of Protein Synthesis Rates by Different Concentrations of 

Paromomycin and Neomycin in Cells Growing at 370C  

(A) Protein synthesis inhibition by paromomycin at 0 µg/ ml  (black); 1 µg/ ml (red); 2 

µg/ ml (green); 2.5 µg/ ml (blue); 4 µg/ ml (cyan) and 5 µg/ ml (pink). (B) Concentration 

dependence of paromomycin inhibition of translation. (C) Protein synthesis inhibition by 

neomycin at 0 µg/ml (black); 2.5 µg/ ml (red); 3 µg/ ml (green); 4 µg/ ml (blue); and 5 µg/ ml  

(cyan). (D) Concentration dependence of neomycin inhibition of translation. The standard error 

of the mean is within +/- 7.18, which is based upon duplicate experiments.
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Figure 5. Sucrose Gradient Profiles and Pulse-Chase Labeling Kinetics for control and 

Cells Grown with Paromomycin or Neomycin at 270C.  

Gradient profiles are from cells chased with uridine for 30 min.  (A). Sucrose gradient 

profile of 3H-uridine labeled control cells. (B).  Pulse-chase labeling kinetics of 30S (black) and 

50S (red) subunits in control cells. (C). Sucrose gradient profile of 3H-uridine labeled cells 

grown with paromomycin at 2.5 µg/ ml  (D).  Pulse-chase labeling kinetics of 30S (black) and 

50S (red) subunits in cells grown with paromomycin. (E). Sucrose gradient profile of 3H-uridine 

labeled cells grown with neomycin at 3 µg/ ml.  (F).  Pulse-chase labeling kinetics of 30S (black) 

and 50S (red) subunits in cells grown with neomycin.  Results are the means of duplicate 

experiments with a S.E. of +/- 5%. 
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neomycin, 30S subunit formation was halted at approximately 50% of the control amount, while 

50S ribosomal subunit assembly was little affected. 

To further examine the inhibitory effects of paromomycin and neomycin on 30S 

assembly, the concentration dependence of subunit formation was tested on cells growing at 

370C. The increased temperature allows examination of subunit assembly under standard 

conditions.  Figure 6 shows a comparison of the sucrose gradient profiles of growing E. coli cells 

in the presence of paromomycin (Figure 6A) or neomycin (Figure 6B) at 5 µg/ml. These gradient 

profiles represent a 3H-uridine label present over two cell doublings followed by a 30 min 

uridine chase.  Such a labeling procedure enabled examination of ribosome assembly over a 

greater length of time in the presence or absence of antibiotic. Centrifugation was conducted for 

a more extended period of time allowing cell lysates to sediment further down the sucrose 

gradients allowing for the detection of 30S precursor particles.  The profiles show that in the 

presence of each antibiotic there was an accumulation of a 21S particle, suggestive of the 

accumulation of a precursor to the 30S subunit. 

 Figure 6C and 6D show the inhibitory effects of increasing concentrations of each 

antibiotic on 30S ribosomal subunit assembly in growing E. coli cells.  As the drug concentration 

increased, there was a decrease in 30S subunit amounts and the increased accumulation of a 21S 

particle.  This relationship exists with both paromomycin (Figure 6C) and neomycin (Figure 

6D).  Table 1 shows the IC50 values for 30S assembly inhibition for both antibiotics.  A decline 

in 50S subunit amounts was also observed.  This was most apparent at higher concentrations of 

neomycin.
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Figure 6. Concentration Dependence of Ribosomal Subunit Assembly Inhibition by 

Paromomycin and Neomycin in Cells Growing at 370C.  

(A) Sucrose gradient profiles of cells grown with paromomycin at 5 µg/ ml. (B) Sucrose 

gradient profiles of cells grown with neomycin at  5 µg/ ml.  (C) Inhibition of 30S (red) and 50S 

(green) subunit formation by increasing concentrations of paromomycin. Increase in 21S particle 

amounts (black).  (D) Inhibition of 30S (red) and 50S (green) subunit formation by increasing 
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concentrations of neomycin. Increase in 21S particle amounts (black). Results are the means of 

duplicate experiments with a S.E. of +/- 3.5%. 
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CHAPTER 4 

DISCUSSION 

 

Previous studies have identified the formation of the 50S ribosomal subunit in bacterial 

cells as a novel target for inhibition by a variety of large subunit translational inhibitors 

(Champney 2001).  These antibiotics bind to a precursor particle, which stalls the ribosome 

assembly sequence and permits ribonucleases to degrade the RNA in the incomplete subunit 

(Usary and Champney 2001).  The present study suggests that two aminoglycoside antibiotics 

act in a similar fashion on the 30S ribosomal subunit. 

Paromomycin and neomycin exhibited similar inhibitory effects within E.coli cells.  They 

show equivalent IC50 values for inhibition of cell growth rates and cell number.  These are 

expected results since these compounds differ in structure by only an amino (neomycin) or 

hydroxyl (paromomycin) group on the C�6 position of ring 1.  The MIC and IC50 values for 

growth inhibition found for each compound in this study are comparable to those found by other 

investigators for effects in E. coli (Mingeot-Leclercq et al. 1999; Kotra et al. 2000) 

For both antibiotics, the IC50 value for 30S particle formation is two-fold higher than the 

IC50 value for inhibition of translation (Table 1). When antibiotic is added at the IC50 values for 

the inhibition of translation, 50% of the cells are halted at the point of assembly due to the 

presence of the antibiotic. Of the remaining cells, 50% of those cells are halted in translation and 

are unable to make new protein for cell survival.  The percentage of functional ribosomes 

remaining in the presence of the antibiotic is only 25% of a control cell culture. This is the 

expected outcome for antibiotics with equivalent inhibitory effects on the two processes. This 

suggests that the interactions with the target site on the precursor particle and the mature 30S 

subunit are similar.  As documented with a number of 50S antibiotics, inhibition of translation 

and 50S formation are equivalent effects of these compounds (Champney and Burdine 1996; 

Champney and Burdine 1998; Champney and Tober 2001).  Direct binding of erythromycin to a 



26 

50S precursor particle has been demonstrated (Usary and Champney 2001), binding of 

paromomycin and neomycin to a 30S precursor is predicted. 

Inhibition of 50S particle assembly by 50S specific translational inhibitors does not affect 

30S particle synthesis (Champney 2001).  The opposite does not seem to be true.  Paromomycin 

and neomycin are aminoglycoside antibiotics specific for the 30S subunit. In theory, the 

presence of this antibiotic should only affect the smaller ribosomal subunit. However, at higher 

concentrations of both paromomycin and neomycin, an inhibition of 50S particle formation was 

observed.  This observation is likely due to a downstream effect of 30S particle assembly 

inhibition. Transcription of 16S rRNA precedes transcription of 23S and 5S rRNAs and 

concomitant 30S assembly precedes 50S particle formation (Nierhaus 1982; Nomura 1973).  

Stalling of 30S synthesis could have a non-specific downstream effect of slowing 50S synthesis 

without a direct effect of the antibiotic.  Both aminoglycoside antibiotics tested bind with 

specificity only to the 30S particle, both in vitro and in vivo, and stimulate misreading on this 

subunit (Kotra et al. 2000). 

Paromomycin has been documented to stimulate mistranslation by locking a particular 

conformation of the 30S particle so that base pair mismatches are stimulated in the presence of 

the antibiotic (Fourmy et al. 1996; Fourmy et al. 1998; Ogle et al. 2001).  Presumably, neomycin 

functions in a similar fashion.  This observation suggests that these antibiotics bind the 16S 

rRNA, limiting the number of ribosomal proteins associated with the rRNA and lock the 21S 

precursor particle in a non-functional conformation.  This locked conformation prevents 

maturation of the 30S subunit and in turn prevents 50S subunit synthesis and maturation.  

Conformational changes and progression through precursor particles are required during particle 

assembly both in vivo and in vitro (Nomura, 1973) in order for cell survival.  The accumulation 

and turnover of a stalled 30S precursor particle combined with translational inhibition could 

account for the bactericidal activity of these antibiotics in some cells (Vazques 1979). 
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In conclusion, this work represents the first demonstration of antibiotics that target the 

small ribosomal subunit and also function to inhibit its synthesis.  These results extend 

observations made with 50S antibiotics to include inhibitors of 30S particle activity.  This 

expands the generality of the effect of ribosomal antibiotics as having two modes of inhibitory 

activity in growing cells. 
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