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ABSTRACT 

New Test Set for Video Quality Benchmarking 

by 

Joaquin Raventos 

 

A new test set design and benchmarking approach (US Patent pending) allows a 

―standard observer‖ to assess the end-to-end image quality characteristics of video 

imaging systems operating in day time or low-light conditions. 

 

It uses randomized targets based on extensive application of Photometry, Geometrical 

Optics, and Digital Media. 

 

The benchmarking takes into account the target’s contrast sensitivity, its color 

characteristics, and several aspects of human vision such as visual acuity and 

dynamic response. The standard observer is part of the ―extended video imaging 

system‖ (EVIS). 

 

The new test set allows image quality benchmarking by a panel of standard observers 

at the same time. The new approach shows that an unbiased assessment can be 

guaranteed. 

 

Manufacturers, system integrators, and end users will assess end-to-end performance 

by simulating a choice of different colors, luminance levels, and dynamic conditions in 

the laboratory or in permanent video systems installations. 
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CHAPTER 1 

INTRODUCTION 

 

The convergence of technological advances in optics, semiconductors, 

electronics, and embedded processing has led video imaging systems to become an 

integral component in an enormous variety of electronic solutions. Markets that are 

currently benefiting from video imaging system technology include: 

 Security and Surveillance 

 Network / IP Cameras for broadband videoconferencing 

 Machine Vision 

Closed-Circuit Television (CCTV) is typically used for Security and Surveillance 

applications. It differs from broadcast television in that the signal is not openly 

transmitted though it may employ point to point (P2P), point to multipoint, or mesh 

wireless links. 

CCTV applications have blossomed in the last 2 decades. It is estimated that 

only in the U.K. more than 1.85 million CCTV systems are currently in operation 

(CCTV Image, 2011). At the same time, technology advances in video imaging has 

made it more difficult to compare the performance of various CCTV systems simply by 

looking at their specifications. 

Background 

Can Image Quality Be Usefully Quantified? One challenge faced by research 

scientists in the field of image quality is convincing product engineers, marketing 

personnel, management, and other scientists that image quality can be characterized 

in a quantitative fashion (Keelan, 2002). 
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Upon hearing a claim that image quality can be quantified, a skeptic is likely to 

cite certain factors that influence the satisfaction that different viewers derive from a 

particular image (Keelan, 2002). 

Although there is a range of opinions regarding what is aesthetically pleasing in 

an image, just as in other art forms such as music and painting, there actually is a 

good deal of agreement about desirable aspects of composition and lighting. For 

instance, contrast might be correlated with some average gradient of the system tone 

scale and because preferences vary, the optimal contrast must be described as a 

statistical distribution. 

Scientists and engineers, rather than psychologists, have sought to quantify 

various aspects of image quality. Keelan refers to some authors quantifying image 

quality, namely, Bartleson (1982) who modeled overall quality as a Minkowski sum (nth 

root of the sum of nth powers) of sharpness and the complement of graininess, each 

expressed on a 1-9 interval scale or De Ridder (1992) who combined digital encoding 

impairments expressed as fractions of maximum quality loss using a re-normalized 

Minkowski metric. But Engeldrum (1999) pointed out that none of these methods, nor 

others previously proposed, have proven to be extensible and generally applicable. 

Other scientists investigated the image structure to describe the ability to 

discriminate fine detail in images produced by optical instruments. In the case of 

astronomical observations, resolving power was useful because it accurately described 

the ability of a telescope to distinguish stars having small angular separations as seen 

from the earth. 

Image noise was first characterized in terms of blending distance (the viewing 

distance at which the noise became visually imperceptible), and later by root-mean 

square (RMS) granularity. Fourier theory began to permeate the field of optics in the 
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1940s, leading to the generalization of resolving power, a single-frequency metric, to 

the modulation transfer function (MTF), and of RMS granularity, an integrated 

quantity, to the noise power spectrum (NPS). 

In 1964 Crane proposed the system modulation transfer (SMT) metric that was 

based upon system component MTFs and an assumed visual frequency response and 

was stated to have Just Noticeable Difference (JND) units. In 1975 Zwick and Brothers 

enhanced the usefulness of the RMS granularity metric by the determination of its 

JND increment (Keelan, 2002). 

 The final survey relates to the study of color and tone reproduction. There was 

a great deal of work done in the 1960s involving scaling of perceived brightness as a 

function of light level (controlling direct adaptation) and type of surround (controlling 

lateral adaptation). 

The trichromatic nature of color vision was well known by the mid-1800s. Color 

matching functions and tristimulus values were standardized by the CIE in 1931, and 

subsequently more perceptually uniform color spaces were sought, leading to the 

definition of CIE L* u* v* and CIE L* a* b* coordinate systems (CIE Publication 15.2, 

1986). 

As mentioned in Keelan, recent studies - Buhr and Franchino, 1994, 1995; de 

Ridder, 1996; and Janssen, 2001 -have found a preference for overall color and tone 

reproduction that differs systematically from accurate reproduction in having higher 

contrast and colorfulness.  

With the emergence of digital imaging, a great deal of attention has been 

focused on the properties of digital components including image processing algorithms 

and their effects on image quality. 
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Areas of current interest include: 

 sampling, resampling, and reconstruction of images 

 compression of digital images 

 algorithms for correcting defects or enhancing images 

 digital encoding of color information 

 rendering of images for half-tone output 

 standardization of measurements (IS0 14524:1997; IS0 12233:1998) 

Recently some efforts have been made by the Image Quality Circle of 

Engeldrum, the Document Appearance Characterization (DAC) system used at Xerox 

or the European Adonis project to develop more integrated approaches based upon a 

general perceptually relevant framework. 

In order to equally assess different displays and display technologies, image 

quality must be carefully defined in tangible and measurable terms. When 

characterizing a display, sensory qualities such as luminance, contrast, color, and 

spatial frequency depend and interact with each other. In understanding image quality 

it is important that the limits of the display and that of the human-eye system are 

comprehended. 

It is important to understand how we process and perceive visual stimuli to 

understand how image quality is defined. The human eye is composed of two 

photoreceptors; rods and cones. Rods have greater sensitivity to light, can only "see" 

shades of grey, and are more sensitive to luminance and flicker. Cones have greater 

resolving capabilities. 

When the intensity of a multi-color display or image is lowered, the colors drop 

out sequentially into grey levels. The first colors to shift to grey are blues and reds 
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with the last being greens. This shifting of colors to grey is known as the Purkinje 

shift. 

The two primary measurements used in display image quality characteristics 

are luminance and spectral radiance. 

Resolution is also important in defining the interaction between the information 

density on the display and the resolving capability of the human visual system (Sharp 

Corporation, 1993). 

Problem Statement 

Hence, tests were developed that allowed comparison of different architectures 

such as the ASTM E2566-08 Standard Test Method that covers the measurement of 

end-to-end capability of Visual Acuity and the Field of View for remotely operated 

video systems: 

 Visual Acuity in Light and Dark Environments 

o at near distances 

o at far distances with both ambient lighting and lighting on-board 

o with zoom lens capability 

 Field of View of the camera system 

This test determines the visual acuity available to the operator at control unit 

when the camera on the robot is focused on distant objects (more than a few meters or 

so distant from the robot). 

The display on the screen at the operator control unit integrates the effects of 

camera; the sensor array within the camera; digitization of the signals; transmission of 

the data; reconstruction of the images; and resolution of the display screen. 
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There is no need from the user’s perspective to resolve these various 

contributing factors because the visual image as presented to the operator is the key 

issue in remote operation. 

Developers of robots and video imaging systems, on the other hand, may need 

to analyze each of these factors separately. 

The ASTM E2566-08 Standard is written from the standpoint of evaluation and 

procurement by the user. 

Nevertheless some characteristics of human vision need to be taken into 

account because measurement of end-to-end capability considers visual acuity that 

involves the human eye. 

In this sense, this standard has serious limitations and does not provide an 

effective comparison among modern CCTV systems. 

The ASTM E2566-08 basically compares system resolution without including 

contrast sensitivity or randomly generated characters (optotypes) to eliminate the 

possibility of bias in selecting the best CCTV system, see Figure 1 and Table 1. 

 

 

 

 
Figure 1. Tumbling Es Used in ASTM E2566 – 08 
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Table 1 

Tumbling Es Used in ASTM E2566 – 08. Main Characteristics 

Black Tumbling E’s: on White Background 

Different E-Chart for Day & Night: NO 

Contrast Sensitivity: Not Considered 

Color E’s: NO 

E-Chart Computer Generated: NO 

Tumbling E’s Randomly Generated: NO 

Standard Observer Dynamic Searching NO 

 

 

The purpose of this thesis is to develop a new test set for end-to-end video 

quality testing that takes into account all the factors that intervene in the 

benchmarking carried out by a ―standard observer‖ of video imaging systems in high 

light or low-light conditions. 

The ―standard observer‖ is defined in detail in CHAPTER 2 as the observer is an 

integral contributor to the EVIS. 

The main characteristics affecting ―standard vision‖ are visual acuity and 

normal color vision: 

 Visual acuity 

The spatial resolving capacity of the human visual system 

 Normal color vision 

The standard assumed to represent the average of the human population 

according to the standard developed by CIE. 
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CHAPTER 2 

METHOD 

Subjects: Extended Video Imaging Systems (EVIS) 

The subjects considered in this thesis are the Extended Video Imaging Systems 

(EVIS) that typically consist of the following, see Figure 2: 

a) Objective Lens 

b) CCD or CMOS camera 

c) LCD display 

d) Standard Observer (trained and with good or corrected 20/20 vision) 

 

 

Figure 2. Extended Video Imaging System (EVIS) 
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The performance of the whole system is subject to the characteristics of the 

human eye of the ―standard observer‖. Each component of the EVIS affects the quality 

of the image assessed by the observer. 

There are numerous Charged-Coupled Device (CCD) or Complementary Metal-

Oxide Semiconductor (CMOS) sensor arrays and objective lenses available to the 

market. 

Before proceeding to the installation in the permanent location, the selection 

and testing of an appropriate configuration requires a video quality benchmarking test 

set and a comprehensive approach that includes the multiple aspects affecting the 

end-to-end assessment of Extended Video Imaging Systems (EVIS). 

If an incorrect objective lens or CCD / CMOS video camera is selected because 

a limited benchmarking approach has been used, the overall performance of the EVIS 

will be drastically reduced. 

This is particularly noticeable when the video imaging system is used under 

low-light conditions, for instance full moon or quarter moon, because the 

benchmarking approach currently used in the market does not provide an accurate 

measure of testing the performance of video imaging systems in a simulated low-light 

environment. 

Image Quality 

The design of the new test and the definition of the new benchmarking 

approach developed in this thesis are based on extensive use of principles and key 

measurement units defined in the fields of Geometrical Optics, Radiometry, and 

Photometry. 
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Also the Modulation Transfer Function (MTF) and the Contrast Transfer 

Function (CTF) are considered. 

The main characteristics affecting the video image quality are: 

1) Visual Acuity 

2) Field of View 

3) F-Stop   

4) Solid Angle subtended by the source 

5) Luminance of a Lambertian source 

6) Illuminance on the sensor array 

7) Vignetting 

8) Lens Aberrations 

9) Standard Observer - Definition 

The next section discusses the various factors that reduce the visual acuity 

offered by the video imaging system to the ―standard observer‖ and how the different 

types of vignetting are the main contributors to reducing the field of view. 

Also, it is shown that if the luminance Ls of the radiant source can be 

approximated to a Lambertian radiator, useful approximate equations to calculate the 

illuminance Ed on the sensor array can be obtained. 

Apparatus (New Test Set) 

The new test set includes items already available in the market, such as a Dell 

Laptop Computer or Microsoft Windows 7 Professional Edition, and new items 

designed specifically for operation and calibration of the test such as Tumbling Cs 

Generator and Luminance Digital Filters. 

The items required for the new test set, see Figure 2 and Figure 3, used for 

video benchmarking are: 
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 Dell Latitude D620 Laptop Computer or similar 

 Windows 7 Professional Edition 

 Adobe Reader X 

 Adobe Photoshop CS3 or later 

 Tumbling Es Generator  

 Tumbling Cs Generator 

 Lux Meter LX1010B or similar 

 Photosensor Holder 

 Luminance Digital Filters to Calibrate the LCD Radiant Surface: 

100% 

85% 

75% 

70% 

65% 

60% 

55% 

50% 

40% 

 Measuring Tape 25’ x 1‖ 

 Metric Ruler 30 cm 

 Lens, 1X Magnification 

 C-CS Mount Adapter 

 LCL-217HS CCD video camera or similar 

 5‖ LCD Monitor 

 12 VDC Power Supply 

 Dark Room Environment 



 

27 

 

 

Figure 3. Layout for Benchmarking an Extended Video Imaging System (EVIS) 
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Procedure 

The basic configuration of a video imaging system starts with a light source that 

illuminates (illuminance) an object which then generates an image throughout the 

optical system projected onto the sensor array of a CCD or CMOS. It will convey a 

video signal to a display screen that transforms the signal into a visible image where 

finally it is processed by the human eye. 

It also should be noted that according to the ―standard observer‖ mentioned in 

ASTM 2855-08 and the principles of visual measurements in Photometry, the human 

eye is part of what can be described as an ―extended video imaging system‖ (EVIS), see 

Figure 2.  

An End-To-End Testing Method considers an EVIS composed of: 

a) Input LCD 

b) Objective Lens 

c) CCD or CMOS camera 

d) Output LCD 

e) Human Eye 

Each component of the EVIS affects the quality of the image assessed by the 

observer. The performance of the EVIS is not evaluated using laboratory instruments 

and mathematical models for objective video quality metrics but by a human observer 

who may introduce subjectivity and bias in the assessment of the image quality of the 

video imaging system. 

In order to minimize the impact of human errors in the EVIS benchmarking 

process, a discussion of the different variables affecting the image quality of EVIS 

follows.  
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This section describes the main units and definitions considered in Photometry, 

Geometrical Optics, and Human Vision, sometimes referred altogether as ―the 

language of light‖ see Figure 4 and also Appendix A. 

 

 

 

Figure 4. Terms Used in Radiometry and Photometry 

 

 

Figure 4 shows the photometric units: Lumen; Lumen/sr; Lumen/sr.m2; and 

Lumen/m2. Understanding the ―language of light‖ is essential to figure out the 

limitations, improvements, and validations of any image benchmarking methods: 
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a) Limitations: Of the ASTM 2855-08 standard and other standards such as 

the USAF1951 Bar Chart, see Figure 5, currently used for end-to-end video 

imaging testing; 

 

 

 

Figure 5. The USAF1951 Resolution Test Chart 

 

 

b) Improvements: That can be achieved with the new test set and 

benchmarking method described in this thesis;  

c) Validations: Of the design and calibration of the test set used to develop the 

new video quality benchmarking approach. 
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Color Capability 

Color capability feature is needed in low light conditions to compare video 

imaging systems as most of them have automatic color correction and back light 

compensation. 

To ascertain which one is the best video imaging system when the targets are 

illuminated by street lights or other types of artificial lights, a color target feature is 

needed. 

In some applications monochrome (black-and-white) processing is enough to 

assess the alarm condition, However, for other applications the ability to recognize the 

color of clothing, the color of vehicles, and so forth is often more important than a 

more detailed image. 

In surveillance (airports, car parks, industrial areas) shadow detection is 

critical. The goal of algorithms for shadows detection is to prevent moving shadows 

from being misclassified as moving objects or part of them, and all of these algorithms 

rely on color features (Lukac & Plataniotis, 2006). 

The measurement of luminous parameters, luminance and illuminance, is 

confusing due to the large numbers of new names for units and also because complex 

definitions are simplified by making reference to an ideal Lambertian source. For 

instance when discussing topics in photometry the term intensity has been found 

frequently misused in publications (Palmer, 1995). In addition, the totally arbitrary 

peak values of the standard photopic and scotopic curves used in photometry have 

been modified several times since they were initially adopted in 1924 and 1951. 

In addition, using some units such as foot-candle units when referring to 

luminous exitance may be confusing because candle is an old unit of intensity, not 

flux (Roberts, 1996). 
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So, in order to clarify the ―language of light‖ a description of the units and 

definitions regarding the technologies of radiometry and photometry used to elaborate 

this thesis are discussed. A complete set of the currently approved photometric terms 

and definitions can be found in the ANSI Standard ANSI/IES RP-16-1980. 

Standard Vision 

By definition in Geometrical Optics, it is considered that an angle measurement 

of 1 degree has 60 MOA (minute of arc). 

The standard vision of the human eye was defined in 1862 by Hermann 

Snellen, a Dutch Ophthalmologist, and he stated that standard vision is the ability to 

resolve (i.e. to identify) target features subtending an angle equal to 1 MOA. 

Standard vision depends on visual acuity. 

Visual Acuity. According to ASTM E2566-08, visual acuity is the ability to 

resolve features subtending some angle, as compared with ―standard vision‖ measured 

at the same distance. 

When benchmarking an EVIS, visual acuity is affected by both the video 

imaging system performance and the human vision characteristics of the ―standard 

observer‖. The main factors reducing the performance of the video imaging system or 

the response of the human eye are: 

 Video Imaging System (ASTM E2566-08): 

o objective lens 

o the sensor array within the CCD / CMOS camera 

o digitization of the signals 

o data transmission 

o reconstruction of the images and 

o resolution of the LCD monitor  
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 Human Eye: 

o Angular Threshold of Eye 

o Contrast 

o Perception 

o Visual Effectiveness 

 Relative brightness 

 Threshold detection 

 Recognition 

 Conspicuity 

 Reaction time 

 Visual performance 

In defining visual effectiveness, historically several options were considered 

(DiLaura, 2011), but at the time it was decided that visual effectiveness in photopic 

mode (luminance L > 10 cd/m2 what generates an illuminance E > 32 lux) was better 

represented in terms of the relative brightness (luminance) produced by radiant power 

at different wavelengths. 

In the photopic mode the light impinges the fovea, which is the very center of 

the human eye field of view. 

As a matter of fact, in the design of the new test set it has been estimated that 

when the EVIS operator is observing a scene in the LCD monitor at an approximate 

distance of 24 in. (60 cm), the mode of vision is photopic because the illuminance level 

on the eye Eeye generated by for instance, the display screen of a Dell Latitude D620 is 

about 32 lux. 

The Eeye figure of 32 lx can be determined by extrapolating the illuminance Ed 

on the detector (in this case the eye) between d = 0.30 m and d = 1.0 m in Table 6. 
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The ―standard vision‖ is based on the ophthalmologic analysis of the human 

emmetropic eye (a state in which the eye is relaxed and focused on an object more 

than 6 meters or 20 feet away). 

For the human eye entrance-pupil diameter is controlled by muscle fibers of the 

iris. In total darkness the iris is about 8 mm in diameter, whereas in bright light it is 

reduced to 2 mm in diameter (Laikin, 2007). 

According to the ASTM E2566-08, the visual image as presented to the operator 

is the key issue in remote surveillance, so in order to propose an alternative to the 

current ASTM E2566-08 standard itself, a review of the various factors affecting the 

visual acuity of the observer is required.  

Field of View 

Imaging optical systems have three main components—the object, the optic, 

and the image it forms. 

The object is considered as a set of points that emit light in all directions. The 

light (or part of it) from each point on the object is captured by the optical system and 

concentrated onto a point in the image. The distances between points on the image 

may be scaled relative to those on the object resulting in magnification (Chaves, 2008). 

Field of View is the maximum height (or width) of the object as seen from the 

position of the entrance pupil. 

It is the shooting range H that can be viewed by the video system if the distance 

d to the object is finite and is calculated as, see Figure 6: 

H = H’∙d/f        (01) 

H’: horizontal dimension of the CCD or CMOS sensor array 

f : focal length of the objective lens 
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Figure 6. Thin Lens Field of View (FOV): H ≈ H’·d/f for 1/d << 0 

 

 

When the object is located at a very far distance, in practice d ≥ 60 ft, it can be 

considered that the lens is focused at infinity and instead of the Field of View (FOV), 

another parameter, the Angle of View (AOV) θ is measured, see Figure 7. 

In this case the shooting range that can be covered by the video system is given 

a specified image size of the CCD sensor array (H’ = 1‖, 2/3‖, 1/2‖ or 1/3‖) and it is 

usually expressed in degrees. From Figure 7: 

tan (θ/2) = (H’/2)/f   θ = 2tan-1 H’/2f   (02) 
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Figure 7. Thin Lens Angle of View (AOV) θ for Target Located at Infinity 

 

 

In this case the shooting range that can be covered by the video system is given 

by a specified image size of the CCD sensor array (H’ = 1‖, 2/3‖, 1/2‖ or 1/3‖) and it is 

usually expressed in degrees. 

From Figure 7 the lens AOV θ is calculated by: 

tan 
 

 
 = 

  
  

 
  
         
      θ = 2· atan (

  
  

 
)   (02) 

The Field of View is an important characteristic of a video system, as it 

determines the ability of the operator to obtain information from a scene. 
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Looking at the world through a zoom lens is like ―looking through a soda 

straw.‖ Looking with a 30o or 40° FOV lens is like ―driving with blinders on.‖ 

On the other hand, using a very wide field of view lens (with a field of view of 

120 or 150°), the operator’s use of optic flow to cue depth perception is severely 

degraded and navigating in a tight environment is very difficult, ASTM E2566-08. 

Aperture Stop 

The aperture stop of an optical system is an aperture near the entrance that 

determines the size of the bundle of rays leaving the source that can enter the optical 

system, see Figure 8. 

 

 

Figure 8. Simple Lens System and Aperture Stop 
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Exit Pupil & Entrance Pupil. The image of the aperture stop in the region of the 

detector is the exit pupil. The image of the aperture stop in the region of the source is 

the entrance pupil, see Figure 9. 

 

Figure 9. Entrance Pupil 

 

 

In the left image of Figure 9 the entrance pupil is the aperture stop of the lens; 

in the right image the entrance pupil is reduced by the F-Stop  of the lens. 

 

Field Stop – System Field of View. The field stop is an aperture within the 

optical system. The field stop defines the solid angle within the optical system, called 

the system field of view, and is a useful radiometric concept because a complex optical 

system can often be approximated as an exit pupil having the same radiance as the 

object being imaged. 

F-Stop. The F-Stop also called f-number (abbreviated f#) or relative aperture is 

an indication of the brightness of a lens, namely its capacity to transfer luminous flux 

onto a detector or another lens. The smaller the value, the brighter the image 

produced by the lens. 
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The F-Stop   is the ratio between the diameter D of the entrance pupil of the lens 

and its focal length f (in image space) and can also be described as function of the 

maximum aperture angle as indicated by Zalewski (as cited in Bass, 1994) and that 

for small angle   the value of tan  can be approximated by sin  (Lenhardt & 

Kreuznach, 2005):     

F-Stop   = 
 

 
 = 

 

    
 =

 

        
  ≈ 

 

        
   (03) 

 max is half of aperture angle between the optic axis and the ray pencil from the on-

axis object point to the edge of the entrance pupil in the object space. 

The scale on the iris ring of the lens uses a ratio of    because the value of 

incident light (irradiance in Radiometry or illuminance in Photometry) transferred by a 

lens see Appendix F, is: 

Ed ≈ 
 

 
 

  

       
        (04) 

Thus, the irradiance or illuminance Ed in the film of a still camera or sensor 

array of a video imaging system, decreases by half each time the F-Stop   is increased 

by one F-Stop. 

For instance: F-Stop 2.8 incremented by one F-Stop 
          
    F-Stop = 2.8 x    = 4 

Ed (F/4) ≈ 
 

 
 

  

           
 = 1/2 

 

 
 
  

      
 = 1/2 Ed (F/2.8) 

Camera lenses are stopped in irradiance steps of 2, 4, 8, 16, 32, 64, 128 that 

correspond to F-Stop numbers of 1.4 ; 2 ; 2.8 ; 4 ; 5.6 ; 8 ; 11 so one stop change 

produces a factor increasing or decreasing by 2 the irradiance on the sensor array. 

See Table 2 for a complete chart of typical F-Stop scales and light transmittance 

percentages for objective lenses. 
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Table 2 

Light Transmittance. 

F-Stop measures the aperture of a given lens. Each F-Stop  jump indicates a 50%  

reduction in the amount of light a lens is able to transmit (transmittance). 

            Light Transmittance                                            F-Stop  

100% 0.8 1.2 1.3 1.4 2.8 

50% 1.1 1.7 1.8 2 4 

25% 1.6 2.4 2.6 2.8 5.6 

12.50% 2.3 3.4 3.7 4 8 

6.25% 3.2 4.8 5.2 5.6 11 

3.0% 4.5 7 7.4 8 16 

1.6% 6.4 10 10.4 11 22 

0.8% 9 14 15 16 32 

0.4% 12 19 21 22 45 

0.2% 18 27 29 32 64 

0.1% 25 38 41 45 90 

0.05% 36 54 59 64 128 

Transmittance Reduced by 1/10 

0.006% 102 154 166 181 362 

Transmittance Reduced by 1/10 

0.0007% 290 434 471 512 1440 
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Vignetting 

Benchmarking the image quality of video imaging systems, considers several 

factors affecting the Field of View and Visual Acuity. 

In optics vignetting refers to the effect of reducing an image's brightness or 

saturation at the periphery compared to the image center. It is an important factor 

affecting the field of view in video imaging systems. 

There are several types of vignetting: 

 Optical Vignetting 

 Mechanical Vignetting 

 Natural Vignetting 

Another type of vignetting that distorts the radiometric fidelity of video imagery 

is spectrum-related vignetting, and it is typically introduced at larger incident angles 

by an interference filter located in front of a lens, but this type of filter is mainly used 

in airborne video imagery (Edirisinghe, 2001) and is not common in CCTV systems. 

Optical Vignetting. It is caused by the reduction of the cross-sectional area of 

an oblique beam traversing the lens in comparison to that of an equivalent axial beam, 

see Appendix B. 

The result is (Thompson & Malacara, 2001) a gradual decrease in light intensity 

towards the image periphery due to physical length of the lens, the position of the 

aperture stop, and the diameter of the front and rear elements, see Figure 8. 

The amount of optical vignetting depends on the F-Stop in use; for an aperture 

with low F-Stop, the effect of optical vignetting may be high (Ray, 1988). It can be 

completely cured by a reduction in aperture of 2–3 stops, i.e.an increase in the F-Stop 

see Figure 10. 
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Figure 10. Optical Vignetting: Common Intersection Area of Three Lenses at an Angle 

 

Mechanical  Vignetting. It is caused by an obstruction of light in the corner area 

of the lens, see Figure 11 creating the effect shown in Figure 12 (Ray, 1988). 

 

 

Figure 11. Mechanical Vignetting Affects the Field of View 
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Figure 12. Image Affected by Mechanical Vignetting 

 

Mechanical Vignetting is sensitive to the lens aperture and can be completely 

cured by a reduction in aperture of 2–3 stops, i.e. an increase in the F-Stop: 

 

 

Figure 13. Mechanical Vignetting Avoided by Increasing the Lens F-Stop 
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Natural Vignetting. Most objective lenses exhibit natural vignetting to some 

degree. This term indicates an unintended darkening of the image corners and it is 

caused by the cosine-to-the-fourth power law, see Figure 14: 

 

 

 

Figure 14. Picture Showing Natural Vignetting 

 

Obliquely incident light is confronted with a smaller lens opening compared to 

the lens opening offered by light approaching the lens head-on. 

All types of vignetting are at their worst with the lens focused at infinity 

(Walree, 2011) and the lens aperture wide open. 

For practical purposes, a lens focused at a target farther than 60 feet, which is 

the usual condition for a CCTV system, is considered to be focused at infinity. 
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The effect is strongest when the lens is used wide open, i.e. for an aperture with 

low F-Stop. 

Thus a Zeiss F/2.8 lens is equivalent to an F/5.6 lens when looking at the 

borders, see Figure 15. 

 

 

 

Figure 15. Performance Diagram of Natural Vignetting for a Commercial Lens 

 

 

At full aperture the lens provides a corner illuminance of 20%. The center 

receives 100% namely five times the amount of light of the corner. 

The lens performance at F-Stop = F/11 & F/5.6 follows very closely, see 

Appendix C, the cosine-to-the-fourth power curve: 

cos(a)cos3(b) = cos4() 
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Lens Aberrations 

The most common types of thin lenses are: convergent and divergent. As the 

objective lenses used in CCTV systems are based on the convergent type, the focal 

length definition will consider the convergence lens. 

When a convergent lens is focused to infinity, it is considered that the light rays 

are parallel and they converge thru a convex lens to a point on the optical axis: the 

Focal Point, see Figure 16. 

 

 

 

Figure 16. Thin Lens Focal Point 

 

 

A thin lens is an ideal convergent lens without aberration. The rays are parallel 

when distance to the target is infinite. 
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In practice, rays are considered parallel when distance to the target is longer 

than 20 ft (6.1 m). This approximation is also used in human vision and then it is 

called emmetropic vision. 

Geometrical Optics is the study of First-Order Optics, namely perfect optical 

systems without light diffraction or interference. The analysis methods include 

Gaussian Optics and Paraxial Optics, which are extensively been used in this thesis. 

Aberration is a deviation from the ideal focusing of light by a lens. As a result, 

the image is not sharply focused. These aberrations are inherent to the design of the 

optical system, even when perfectly manufactured (Greivenkamp, 2204) and their 

study includes the Third-Optics and higher-order optics. 

Some of the problems may lie with the geometry of the lens in use. Other 

aberrations may occur because different wavelengths of light are not refracted equally 

at the same time. The latter problem is called dispersion of light. 

The spherical shape of any lens surface causes spherical aberration and the 

manufacturers of the lenses use multiple surfaces to overcome spherical aberration. 

There are several types of spherical aberrations that may be detected when 

evaluating a video imaging system with the Tumbling Es Test Method: 

 

 Spherical 

 Chromatic (Dispersion) 

 Astigmatism (Distorsion) 

 

Spherical Aberration. Light rays that are far from the principal axis focus at 

different focal points and produce spherical aberration. It can be minimized by using 
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an aperture to reduce the effective area of the lens as in most cameras equipped with 

an adjustable aperture to control the light intensity. 

Chromatic Aberration. Rays of different wavelengths (colors) do not refract at 

the same angle; there is no common focal point for all the wavelengths. Then, the rays 

focus at different points and chromatic aberration is formed.  

Chromatic aberration can be greatly reduced by the use of a combination of two 

different types of glass with differing indexes of refraction. 

Astigmatism. Is the imaging of a point offset from the axis as two perpendicular 

lines in different planes: The horizontal rays to a line called the primary image and the 

vertical rays to a second line, called the secondary image. 

First-Order Optical Systems image points to points, lines to lines, and planes to 

planes even if the lines or planes are not perpendicular to the optical axis. 

For a thin lens, the line of intersection lies in the plane of the lens, but for a 

tilted plane image even though the image is in focus, it will exhibit keystone distortion 

as the lateral magnification varies along the tilted object. This condition easily extends 

to a thick lens or system (Greivenkamp, 2004). 

The circle of least confusion (greatest convergence) appears between these two 

positions. The image of a straight line that does not pass through the optic axis may 

be curved. 

As a result, the image of a square with the axis through its centre may resemble 

a barrel (sides bent outward) or a pincushion (sides bent inward). 

This effect is called distortion and can be minimized by using properly designed, 

nonspherical surfaces or specific lens combinations (Al-Azzawi, 2007).
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Solid Angle (ω) – Steradian (sr) 

Whereas in Geometrical Optics a two dimensional system is used for the study 

of light without diffraction or interference (Greivenkamp, 2004), for instance to 

calculate a lens field of view, a three dimensional system is necessary to analyze the 

propagation of radiant energy through an optical system (Radiometry) or when visual 

measurements are considered (Photometry). 

Thus, instead of the planar angle θ used in Geometrical Optics, a new unit is 

defined: the Solid Angle ω and it is measured in Steradian, abbreviated sr. 

Solid Angle is the ratio of a portion of the area on the surface of a sphere to the 

square of the sphere radius R. The sphere is defined by the vertex (usually the center 

of a luminous body) and the center of the surface (usually an aperture detector), see 

Figure 17. 

 

 

 

Figure 17. Solid Angle Definition 
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The portion of the whole space of a sphere of radius R about a given point (the 

center of the sphere) bounded by a conical surface with its vertex at that point is 

measured by the area cut by the bounding surface from the sphere. 

If a unit radius is considered, a solid angle ω defines a sector of unit sphere (R = 

1) in analog manner a planar angle θ defines the length of an arc on a unit circle 

(Sharp Corporation, 1993), see Figure 18. 

 

 

Figure 18. Steradian Definition 

 

 

A cone with apex angle 2θ defines a solid angle ω and sets a spherical cap in a 

sphere of radius R in analog manner a planar angle   defines the length L of an arc in 

a circle of radius R. 

Planar Angle   = 
 

 
  
     
       = 

  

  
 = 1 radian;          Solid Angle ω = 

 

  
   
     
     ω = 

  

  
 = 1 Steradian 

  1 radian = 57.3o             Solid Angle ω = 
 

  
 = 
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The planar angle θ is measured in degrees or radians and the solid angle ω in 

Steradians (sr). 

A circumference of length L has a planar angle: 

  = L/R = 2πR/R = 2π radians    (05) 

and a sphere of area A has a solid angle: 

ω = A/R2 = 4πR2/R2 = 4π Steradians   (06) 

The solid angle ω of a cone with apex angle 2θ (planar angle), sets a spherical 

cap on the unit sphere with a solid angle: 

ω = 2π (1 – cosθ)      (07) 

where θ is half the apex angle (Greivenkamp, 2004) 

For R = 1 the following equivalent identities can be considered: 

ω = 2π (1 – cosθ) = 4πsin2(θ/2)    (08) 

The mathematical equivalence for the solid angle ω is demonstrated in 

Appendix D. 

For R ≠ 1 the area of the spherical cap is: 

A = 4πR2sin2(θ/2)      (09) 

although the solid angle is independent of the distance R as by definition: 

ω = A/R2 = 4πsin2(θ/2)     (10) 

A cone with apex angle 2θ (planar angle) sets in a sphere of radius R a spherical 

cap of area A = R2 ·2π(1 – cosθ) and the solid angle is defined as ω = 
 

  
 and given in 

steradians (sr) which is a dimensionless figure. 

When the cap area A = R2 then ω = 1 Steradian (sr). If the cap area A is 0.5 m2 

and the radius R is 1 m then ω = 0.5 Steradian (sr). 

Thus an entire sphere, regardless its radius’ size, has a solid angle: 

ω = 4π Steradians = 12.56 sr    (11) 
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Defining the solid angle ω by making reference to θ/2 (half angle) as indicated 

by Zalewski (as cited in Bass, 1994) or θ the entire angle (Ray, 2002), leads to two 

equivalent definitions, see Appendix D: 

considering a cone with apex angle 2θ 

ω = 4πsin2(θ/2)        (12) 

considering a cone with apex angle θ 

ω = πsin2(θ)         (13) 

In fact, when θ is small, ω = 4πsin2(θ/2) ≈ 4π(θ/2)2 = 4π(θ)2/4 = π(θ)2 and using 

the alternative definition: ω = πsin2(θ) ≈ π(θ)2. 

Both definitions are found in technical literature and when comparing 

mathematical derivations among different authors, the reference used for the apex 

angle θ in books or papers has to be figured out to avoid confusing the equations. 

Hemisphere Definition 

Figure 19 shows a cone with a planar angle increased up to θ = 90o and the 

ensuing planar surface rotated around its vertical axle, namely φ = 360o: 

 

 

Figure 19. Hemisphere Definition 



 

53 

 

and the three dimensional object obtained is called a hemisphere. 

Thus, when the planar angle increases up to a value θ = 90o (equal to π/2 

radians) and the ensuing planar surface is rotated around either its vertical or 

horizontal axle so φ = 360o (equal to 2π radians), a hemisphere is obtained and its 

solid angle is: 

ω = 4πsin2(θ/2) = 4πsin2(π/4) = 4π(
 

  
  )2 = 2π. 

If the planar angle θ = 180o (equal to π radians) the resulting object is the 

sphere and its solid angle is: 

ω = 4πsin2(θ/2) = 4πsin2(π/2) = 4π(1)2 = 4π. 

Thus the following general definition for the solid angle: 

ω =    
  

 
       
    
 

  where 0 ≤ θmax ≤ 180o 

If θ = 180o then the object is the sphere and ω = 4π. 

Thus the solid angles for the hemisphere and sphere are: 

Hemisphere  ω = 2π     (14) 

Sphere:  ω = 4π     (15) 

Luminous Flux (Φ) 

Once the solid angle is defined, radiometry and photometry units can be 

discussed. 

Radiometry units measure the electromagnetic radiation (EMR), whereas 

Photometry is actually an attempt to define the amount by which EMR stimulates the 

sensation of brightness in the human eye (Roberts, 1996). 

The transfer from radiometry to photometry requires only defining the Lumen, a 

unit of luminous flux. 



 

54 

 

Luminous Flux (or visible energy) is similar to Radiant Flux except that it only 

includes those wavelengths that are visible to the human eye and each wavelength is 

scaled by the photopic curve, see Figure 20, which considers the response of the 

human eye, see Figure 21. 

 

 

 

Figure 20. Photopic Luminous Efficiency is a Function of the Wavelength 

 

 

In Radiometry, radiant flux is synonymous of power, and as such it is 

measured in watts, thus in Photometry, Lumens is the unit for luminous power. In 

1980, the peak of the curve was set arbitrarily to 683 lm/W at 555 nm. 
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Figure 21. Photometry is a Subset of Radiometry in the Visible Spectrum 

 

 

Definition of Lumen. The Lumen (abbreviated lm), based on the photopic curve, 

is the power-like unit of brightness-sensation-producing ability (Roberts, 1996). 

In radiometry radiant flux is synonymous of power, and as such it is measured 

in watts, thus in photometry Lumens is the unit for luminous power. 

The definition of Lumen is derived from the Candela (the unit of I luminous 

intensity). 

Thus, to provide a more thorough understanding of the Lumen, the definition of 

Candela has to be introduced first (see definition below) and the following statement is 

applicable (Al-Azzawi, 2007): 
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A Lumen is equivalent to about 1.5 mW of radiant power generated by a source of 

yellow-green light of wavelength 555 nm. 

Light bulbs and projection devices are also characterized by Lumens to indicate 

how much luminous flux they can deliver to a screen (Palmer, 2003). 

The total number of Lumens (luminous flux) emitted from a source is usually 

not a concern, because a detector can collect only the luminous flux within a limited 

solid angle. Thus a new unit I luminous intensity it introduced. 

Luminous Intensity (I ) 

Total number of Lumens (luminous flux) emanating from a source in a specific 

direction. 

The unit of luminous intensity is the Candela and it is equivalent to: 

Candela = Lumen/sr 

The Candela is sometimes called new candle (Roberts, 1996). 

1 Candela = 0.98 candle 

An isotropic light source of one Candela has a constant Luminous Intensity in 

every direction of 1 Lumen/sr and thus a luminous flux Φ = 12.56 Lumens calculated: 

      Φ  = I • ω (sphere) = 1 Lumen/sr • 4π sr (solid angle of the sphere) = 

= 4π Lumens = 12.56 Lumens 

An aperture is used to limit the light for measurement and the size of the 

aperture and its distance from the source define a solid angle relative to the source. 

Definition of Candela. The ANSI standard defines the Candela as the luminous 

intensity, in a given direction, of a source emitting monochromatic radiation frequency 

540 THz and whose radiant intensity in this direction is 
 

   
W/sr. 

The constant 
 

   
W is based on the photopic curve’s peak value, which was set 

at 683 lm/W in 1980. 
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A radiation frequency of 540 THz has a wavelength of 555 nm and if emitting a 

radiant intensity of 
 

   
W/sr ≈ 1.5 mW/sr allows the definition of Candela be described 

in the following terms: 

Candela is the luminous intensity, in a given direction, of a source emitting 

monochromatic radiation wavelength of 555 nm (thus it is a photometric radiation as it 

falls within the visible spectrum) and whose radiant intensity (a radiometric unit) in 

this direction is ≈ 1.5 mW/sr. 

The definition of Candela includes a reference to radiant intensity (a radiometric 

unit) and a wavelength of 555 nm (yellow green color), located right in the middle of 

the visible spectrum, as it was shown in Figure 13. This way a link between 

Radiometry and Photometry was established, see Figure 22. 

 

 

Figure 22. The Definition of Candela Includes Units of Radiometry and Photometry 
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Isotropic Source Definition. Although luminous intensity is often associated 

with an isotropic point source, a small, uniform sphere comes very close. 

An isotropic light source of one Candela has a luminous flux Φ = 12.56 Lumens 

Furthermore, isotropic implies a spherical source that radiates the same in all 

directions, but still it is a valid specification for characterizing highly directional light 

sources such as LEDs, automotive lighting, and searchlights (Palmer, 2003). 

Extended Source Definition. To characterize an extended source, namely one 

that has appreciable area compared to R2 (the observation distance), a new unit is 

defined: Luminance L. 

Luminance (L) 

Luminance is a measure of the flux emitted or reflected from a surface and it is 

commonly referred to as brightness. Although the term brightness is inappropriate 

because it describes a sensation caused by the human eye and as such it has no 

measure units. 

Basically luminance is a simple measure (K-Light, 2011) of luminous intensity I  

per unit projected area, for instance candelas per m2 abbreviated 
  

  . 

The moon reflecting the sunlight has a luminance that varies between 2 cd/m2 

and 4200 cd/m2 depending on the altitude - the angle of the center moon above the 

horizon – (Conrad, 2000). 

By definition Candela = 
     

  
 so L can be given in (Greivenkamp, 2004):  

a) L in  
  

     

b) L in 
  

     
 because 

  

   = 
  

     
. 

Sometimes the nit is used instead of 
  

   which is an old unit to refer 
  

  . 
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In the past, luminance L has been typically measured in foot-lambert 

(abbreviated fL): 

fL = Lumen/ft2 

but nowadays 
  

   is more commonly used. 

Lambertian Source - Luminance. A Lambertian source is defined as a radiator 

that L is constant across its surface. 

Example is a surface painted with a good ―matte‖ or ―flat‖ white paint.  If it is 

uniformly illuminated, like from the sun, it appears equally bright from whatever 

direction you view it (Palmer, 2003), see Figure 23. 

 

Figure 23. Summary of Photometric Units 
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A surface painted with a good ―matte‖ or ―flat‖ white paint, uniformly 

illuminated from the sun, appears equally bright from whatever direction it is seen, 

and can be approximated by a Lambertian source; in this case on the surface: 

M (Exitance) = πL (Luminance) 

and a new Photometric unit: Luminous Exitance is introduced. 

Luminous Exitance (Emittance) (M) 

Luminous Exitance a new term replacing Luminous Emittance is defined as the 

luminous flux directly emitted by a radiant surface plus the reflected from and 

transmitted through the surface divided by that area. 

Exitance is measured in Lumen/m2. 

Using foot-candle (abbreviated fc) units when referring to luminous exitance 

may be confusing because ―candle is an old unit of intensity, not flux, and the term 

foot-candle can thus be very misleading‖ Roberts (1996). 

A Lambertian source with a luminance L of 1 Candela/m2 (by definition 

equivalent to 1 lm/m2·sr) has a luminous exitance M of πlm/m2. 

Thus, in the case of a Lambertian radiator: 

M (lm/m2) = π(sr) · L (lm/m2·sr) = πL (cd/m2) = πL (nit)  (16) 

Lambertian refers to a flat radiating surface; it can be an active surface or a 

passive reflective surface. 

The relationship M = πL contains π instead of the expected 2π because of the 

falloff (I = Io· cosθ) of the projected area with θ (Greivenkamp, 2004). 

Illuminance (E) 

It is the result of luminous flux striking a surface and it is commonly referred to 

as illumination (K-Light, 2011). It is the luminous flux incident on a surface per unit 

area, see Figure 24. It is the luminous flux incident on a surface from all directions. 
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Figure 24. Luminous Flux Φ and Illuminance E 

 

 

In SI units Illuminance is measured as: 

Lumen/m2 = 1 lux (abbreviated lx) 

and in English units it is measured as: 

Lumen/ft2 = 1 foot-candle 

Illuminance E and Luminous Exitance M have different interpretations: 

E refers to luminous flux striking a surface 

M refers to luminous flux leaving a surface 

Illuminance E and Luminous Exitance M are also related (Greivenkamp, 2004) 

by the reflectance ρ of the surface M (lm/m2) = ρ·E (lm/m2) = ρ·E (lx). 



 

62 

 

What indicates that only a percentage ρ of the flux striking (illuminance E) a 

surface is reflected (emitted luminous exitance M) by the surface. Thus: 

π(sr)L(lm/m2·sr) = M (lm/m2) = ρE(lm/m2) 

or in terms of candelas and lux: 

π(sr)L(cd/m2) = ρE(lx)   (17) 

Equation (17) is a fundamental relationship between Luminance L and 

Illuminance E and when applied to an ideal Lambertian radiator/reflector that by 

definition has ρ = 1 gives for the surface of the radiator the known equation: 

L(cd/m2) = 
     

     
    (18) 

Table 3 shows a summary of units in Radiometry and Photometry: 

 

 

Table 3 

Summary of Units Used in Radiometry and Photometry 

Radiometry Units Photometry Units 

Ф Flux W Luminous Power Lumens 

M Exitance W/m2 Luminous Exitance Lumen/m2 

I Intensity W/sr Luminous Intensity Lumen/sr = Candela (cd) 

L Radiance W/m2·sr Luminance (―Brightness‖) Lumen/m2·sr = cd/m2 

E Irradiance W/m2 Illuminance (―Illumination‖) Lumen/m2 = lux 
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Standard Observer Defined 

The standard observer is an integral contributor to the EVIS. Thus, the main 

characteristics: Visual Acuity and Normal Color Vision should be defined. 

Visual Acuity. It is the spatial resolving capacity of the human visual system 

and is a fundamental characteristic of the ―standard human vision‖. It is limited by 

diffraction, aberrations, and photoreceptor density in the eye (see also page 32). 

A number of factors affect visual acuity such as refractive error, illuminance, 

contrast, and the location of the retina being stimulated (Kalloniatis & Luu, 2007). 

Its measurement also depends on the type of test a person is asked to perform. 

In 1955 measurement of visual acuity was classified by Weymouth based on testing 

three main categories (Tyler, ―n.d.‖): minimum distinguishable, minimum separable, 

and minimum cognizable. 

 Minimum Distinguishable:  To see something as being distinguishable 

from the background. For instance asking what is the smallest dot one 

can see. 

 Minimum Separable: To determine if a group of targets are separate and 

distinct by using grating type charts: contrast sensitivity charts. 

 Minimum Cognizable: To be able to separate and distinguish forms, by 

testing in which a simple form as the letter E (or the letter C) depends on 

orientation identification to measure acuity. 

Equal Legibility of Letters. In 1862 a Dutch Ophthalmologist, Hermann Snellen 

devised a test chart consisting of a series of letters or letters and numbers with the 

largest at the top to assess human eye visual acuity. 

More recently, the British Standard BS 4274-1:2003 "Test charts for clinical 

determination of distance visual acuity — Specification" recommended only the letters 
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C, D, E, F, H, K, N, P, R, U, V, and Z to be used for the testing of vision based upon 

equal legibility of the letters. 

Other versions of the Snellen chart are used, for instance, the Tumbling Es that 

have the capital letter "E" facing in different directions and the person being tested 

must determine which direction the "E" is pointing, up, down, left, or right or the 

Landolt Cs. 

Tumbling Es Used in Optometry. The notation 20/20 or 6/6 is used in 

Optometry and refers to the set of fractions originally defined in the Snellen Chart. 

The original design of the Tumbling E Chart took into account the distribution 

of cone-shaped elements in the retina that are primarily responsible for acute vision, 

so the width of one black bar was set to have an angle of view of 1 MOA (abbreviation 

for minutes of arc) and each letter was enclosed in a square of 5 MOA, with the width 

of its arms and interstices subtending 1 MOA, see Figure 25. 

 

 

 

Figure 25. The 20/20 Tumbling E has a Spatial Frequency of 1.7 cy/mR 
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Snellen chose this design because of the belief that an individual could not 

separate images (minimum separable acuity) unless the images were at least 1 MOA in 

size. 

In addition, because the English alphabet has letters with a maximum of 5 

details in one orientation, 5 MOA was used for the Snellen optotype total size. 

Thus, if a person is able to resolve the "detail" of 1 MOA in an optotype that 

subtends 5 MOA at 20 feet, that person’s visual acuity would be 20/20 (Tyler, ―n.d.‖). 

There are 60 MOA in 1 degree, so 1 MOA = 1/60 = 0.017 degree (abbr. 0.017o) 

It has been determined that the eye effective focal length (EFL) is 16.63 mm and 

the spot radius on axis for a 3-mm pupil is 5 μm = 0.005 mm (in bright light the iris is 

reduced to 2 mm in diameter). Thus using equation (02): 

tanθ = (0.005/16.63) = 0.0003 
         
    θ ≈ 0.0003 radians = 0.017o = 1 MOA 

At 21o off-axis, the spot radius increases to 25 μm, yielding a resolution in 

photopic vision of θ = 5 MOA (Laikin, 2007): 

tanθ = (0.025/16.63) = 0.0015 
         
    θ ≈ 0.0015 radians = 0.086o = 5 MOA 

So off-axis the eye resolution is lower. 

Minimum Angle Resolution (MAR). The unit 1 MOA is also known as the 

Minimum Angle Resolution, abbreviated MAR and it can also be given in log10 form, 

abbreviated as logMAR that in this case for an angle θ = 1 MOA the associated logMAR 

= 0.0 (Kalloniatis & Luu, 2007). 

The Snellen fractions, 20/20; 20/40; etc. are measures of sharpness of sight 

and they relate to the ability to identify small letters with high contrast at a specified 

distance. 

If the magnification needed to identify the 20/20 optotype is 2x, then the visual 

acuity of that person is 1/2 namely 20/40, see Figure 26. 
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Figure 26. The 20/20 Tumbling E Scaled Up and Down 

 

The dimensions of the 20/20 Tumbling E in Figure 26 are scaled up to a 40 ft 

optotype and scaled down to 10 ft and 5 ft optotypes. 

The optotypes at 20 ft, 40 ft, 10 ft, and at 5 ft subtend the same 5 MOA angle. 

The stroke of the Es at 20 ft, 40 ft, 10 ft, and 5 ft subtends the same 1 MOA 

angle. 

The height of the E is: 

17.6mm at 40 ft 

  8.8mm at 20 ft 

  4.4mm at 10 ft 

  2.2mm at 5 ft 

Contrary to popular belief, 20/20 is not actually normal or average, normal 

acuity in healthy adults is one or two lines better, i.e. 20/15 or 20/10 (Strouse, 2003).  
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More recent work of Curcio et al., Miller et al., and Roorda and Williams (as 

cited in Kallionatis & Luu, 2007) on photoreceptor density and spatial resolution has 

shown that the receptor array in the human visual system can resolve in the order of 

20/3 (6/1) equivalent to 150 cycles/degree approx. 

Optical infinity is the distance at which no accommodation (focusing) is being 

used by a person to clear that distance and all distances further (Tyler, ―n.d.‖). 

In practice, 20 ft is the ideal test distance for determining a person’s visual 

acuity because rays of light emanating from a distance of 20 feet or more from the eye 

are considered to be coming from optical infinity in which the rays are parallel to each 

other, see Figure 16. This condition is called emmetropic vision. 

In emmetropic vision parallel rays coming from 20 feet or more focus clearly on 

the retina. 

The basic principle of the modern Snellen Chart is that if a person is placed at a 

distance of 20 ft, see Figure 26, he or she should be able to recognize the very same 

letter if it's twice the size when viewed at double distance of 40 ft (Weber, Humphrey, 

& Silver, 1998). 

Normal Color Vision. CIE stands for Commission Internationale de l’Eclairage, 

and one of the most useful CIE systems is CIE 1976 L*, a*, b*, with the official 

abbreviation of CIELAB. 

The CIE developed the concept of the ―standard observer‖ assumed to represent 

the average of the human population having normal color vision (Lukac & Plataniotis, 

2006). 

CIE color specification systems are scientifically proven, well-established 

methods of color measurement. 

There are three things that affect the way a color is perceived by humans: 
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 illuminance 

 the object 

 interpretation of this information in the eye/brain system 

The original primaries were transformed into new primaries called the color-

matching functions designated x¯, y¯, z¯ that allowed the measurement of color be 

derived from purely physical data (easily measured spectrophotometric data) and be 

based entirely on instrumental measurement. The starting point for all color 

specification is CIE XYZ. 

XYZ are known as tristimulus values.The CIE 1931 chromaticity diagram, 

called the x, y chromaticity diagram, and x, y are known as chromaticity coordinates. 

x = X/(X + Y + Z)      (19) 

y = Y/(X + Y + Z)      (20) 

The human eye is less sensitive to changes in lightness and more sensitive to 

changes in chroma. 

ICC is a regulatory body that supervises color management protocols between 

software vendors, equipment manufacturers, and users. 

The ICC profile is a data file that represents the color characteristics of an 

imaging device, for instance laptop computers, printers, and scanners. 

Dynamic Searching Time. The time required by the ―standard observer‖ to 

search a particular target may be computed analytically from knowledge of the eye’s 

fixation time and the angular size of the display. 

Three assumptions are made: 

(1) a single fixation requires approximately three-tenths of a second (0.3 sec) 

(2) the circular field of clear vision subtends 5 degrees (Simon, 1965) 
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In fact, it has been measured that at 21o off-axis, the spot radius in the eye 

increases to 25 μm, yielding a resolution in photopic vision of θ = 5 MOA much 

lower than θ = 1 MOA on axis at the fovea, the region of highest visual acuity in 

the center of the retina (Laikin, 2007). 

(3) the random target may remain static for a short period of time (3 sec or less) 

 

The length of time required to search an entire display field once through is 

computed by determining the number of nonoverlapping 5o fixations required to cover 

the field. 

A display subtending 16o x 16o at the eye would thereby be predicted to require: 

[(16o x 16o) / (5o x 5o)] x 0.3 sec = 3.1 sec 

Thus, in selecting the output LCD display for the Video Imaging System, its size 

must be small enough as to allow a low visual searching time. 

For instance, the new test set designed for this thesis uses an output LCD 

display of 5.5 in. 

The limited visual searching time may be simulated with tumbling Es or Cs by 

allowing the ―standard observer‖ to recognize their orientation in only 3 seconds. 

Target Detection & Recognition Model. Benchmarking the video imaging quality 

of an EVIS should also consider the effect of a target detection & recognition model to 

the observer suggested by Rand Corporation (Bailey, 1970): 

Pr = P1 P2 P3 ɳ     (24) 

Pr is the probability that a target will be recognized on the display 
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P1 is the probability that ―standard observers‖ searching an area that is known 

to contain a target looks with their foveal vision for a specified glimpse time (0.3s) in 

the direction of the target. 

P2 is the probability that if the displayed target image is viewed foveally for one 

glimpse period it will, in the absence of noise, have sufficient contrast and size to be 

detected. 

P3 is the probability that if a target is detected, there will be enough detail 

shown for it to be recognized (again during a single glimpse and in the absence of 

noise) 

ɳ is an overall degradation factor arising from noise 

An expression for the probability of detection alone (without recognition) is 

obtained by considering only three factors: 

Pd = P1 P2 ɳ      (25) 

ɳ = 1 – e-(SNR -1) ≈ 0.9 to 1.0 for SNR ≥ 3  (26) 

Thus Pd could be approximated by: 

Pd ≈ 0.9 P1 P2      (27) 

The probability of detection P2 at the threshold contrast C = CT is by definition 

50% and for C > CT it has a sharp increase, see Figure 27. 

A value of P2 ≥ 0.8 can be considered for most scenarios, with high contrast 

sensitivity values. 

Hence we approximate: 

Pd ≥ P1 x 0.8 x 0.9 = 0.72P1   (28) 
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Figure 27. Probability P2 of Detection 

 

The probability P1 is difficult to estimate because it is affected: 

1) by the solid angle presented to the eye of the search field 

2) by the time available to search it 

3) by the number of confusing elements within the scene, and 

4) by the availability of any ―cues‖ or a priori information as to where to look in the 

display 

The Rand model employs the relation:  

     P1 = 1 – exp [  
   

 
  

 

 
  ]    (29) 

where: 

a = area of target A = area to be searched t = time 

G = congestion factor, usually between 1 and 10. 
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Angular Threshold of the Human Eye. The probabilities P1, P2, and P3 of seeing 

an object are influenced not only by the field luminance, the contrast of the object 

with respect to the scene background, and the complexity of the scene, but also by the 

angle subtended by that object at the eye of the observer. 

Under ideal conditions the eye can resolve about 30 seconds of arc (there are 60 

seconds in 1 minute of arc) equivalent to 0.5 MOA. In most practical situations; 

however, the angular threshold of the eye is much larger than that. 

For example, it has been shown (Steedman & Backer, 1960) that a target 

appearing in a complex field of confusion elements must subtend about 12 MOA 

(minutes of arc) to enable a high (97 percent) probability of recognition. 

Tumbling Es Spatial Frequency 

To be consistent with a previous standard generally agreed in the field of 

Optometry, when using the Tumbling E Chart in the new method for testing video 

imaging systems the 20/20 reference will also be considered. 

The Tumbling E Chart used in the ASTM E2566-08 standard, is also used in 

the video imaging testing described in this thesis, but instead of using the 20/20 

Snellen fraction, more accurate units for the visual acuity measurement will be 

needed. This is due to the overall performance of a video imaging system. 

In testing a video imaging system, Visual Acuity should be measured in cy/mR. 

The spatial frequency for a 20/20 E optotype (6/6 in the European Snellen scale) is 

1.7 cy/mR and it is calculated as follows: 

1 degree has 60 MOA 
        
   1 MOA = 0.0175o 

        
   5 MOA = 0.0873o 

1 cycle has two consecutive bars (one black and one grey) thus: 

20/20 Tumbling E: 2.5 cycles (black/white bars; black/white bars; black) 
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therefore the 20/20 Tumbling E Spatial Frequency is: 

20/20 Tumbling E Angular Size: 5 MOA = 0.0873o = 2.5 cycles 

20/20 Tumbling E Spatial Frequency: 29 cycles/deg 

Nevertheless spatial frequencies are preferably indicated in cycles/milliradian 

(abbreviates cy/mR) units, so the figure for the 20/20 Tumbling E follows: 

There are 2π radians in 360 degrees, and 60 MOA in 1 degree, thus 6.2832 

radians in 21,600 MOA. Using the conversion factor 1,000 mR (milliradians) in 1 

radian, it can be stated that: 

6283.2 mR in 21,600 MOA 

what gives the conversion factor: 

0.291 mR/MOA 

The spatial resolution of 1 cycle (one black and one grey bar) for the 20/20 

Tumbling E shown in Figure 25 is: 2 MOA and applying the conversion factor 0.291 

mR/MOA it gives: 2 MOA = 0.582 mR thus: 

20/20 Tumbling E Spatial Frequency: 1.7 cy/mR 

For quick calculations, it is convenient to use the approximation that: 

1 MOA is just about 1 inch at 100 yards 

what in the metric system is: 2.54 cm at 9144 cm. The approximation is valid because 

in fact, θ in Figure 25 can be determined as: θ/2 = atan [(2.54/2)/9144] = 

atan [0.0001388] = 0.000139 radians = 0.139 mR   θ = 2 x 0.139 = 0.278 mR which 

is very approximated to the exact figure of 0.291 mR. 

The practical rule of 1 MOA equivalent to 1 inch at 100 yards has a low error 

because 1 MOA = 0.291 mR and it can be approximated to 0.278 mR that differs from 

the more precise figure (0.278/0.291 ≈ 0.96) less than 4%. 
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20/20 Tumbling E – LCD Monitor Calibration. To calibrate an LCD monitor, the 

practical rule 1 inch at 100 yards is very convenient, as in fact applying the definition 

of the Snellen Chart 1 MOA at 100 yards means that the 20/20 E optotype should be 

5 in. height and have 1 in. strokes. This approximate calibration has an error < 4%. 

If a shorter distance is needed, the exact calculation for 1 inch stroke Es should 

be used: 1 MOA = 0.000291 radians and for a distance D not equal to 100 yards (9144 

cm) the practical formula can be stated as : θ/2 = atan [(2.54/2)/D] = 

 

 
 MOA = 

 

 
 0.000291 radians   1.27/D = tan [0.0001455]   D = 1.27/tan [0.0001455] 

= 1.27/0.0001455 = 8,728 cm = 286.4 ft which is equivalent to 96 yd ≈ 100 yd. 

20/20 Tumbling E optotype Dimensions. The exact dimensions used in the 

practical rule are: 1 MOA is the angle subtended by 1 inch at 286.4 ft. Now the 20/20 

E can be scaled up or down as needed. 

The angle subtended by the 20/20 E is 5 MOA, and its height at 20 ft according 

to Figure 26 is: H = 5 MOA = 5 (
     

        
) x 20 ft = 0.349‖ ≈ 0.35‖ = 8.8mm 

To calibrate an LCD display with the E-Chart, the following figures will be used: 

20/20 Es of 8.8 mm height and 1.8 mm strokes placed at 20 feet distance 

One inch in a ruler is divided in 16 fractions of an inch, thus 1 division of the 

ruler, namely 1/16 inch will be equivalent to  
        

      
 

      

            
 = 17.9 ft/division. 

Thus, another practical rule for shorter distance can be developed stating that: 

1 MOA is the angle of view subtended by E optotypes with strokes of 1 inch seen at 

100 yards or of 1/16‖ in. seen at 17.9 ft ≈ 20 ft distance. 

The spatial frequency of the tumbling Es still is 1.7 cy/mR and the error in the 

estimate is 20 ft/17.9 ft   12% 
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Figure 28 shows the design of the Tumbling Es Chart including the spatial 

frequencies figures when different optotype Es are placed at 20 ft distance. 

 

 

 

Figure 28. Designing the Tumbling Es Chart 

 

 

The spatial frequency increases when the 5 ft E and the 10 ft E are moved 

forward to 20 ft distance from the observer and decreases when 40 ft E is moved 

backward to 20 ft distance. 
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Thus, the Tumbling Es Chart can be placed at 20 ft from the observer and the 

smallest size of the E will determine the spatial resolution of the human observer’s eye 

or the video imaging system. 

The height of the 40 ft, 20 ft, 10 ft, and 5 ft Es are 17.6mm, 8.8mm, 4.4mm, 

and 2.2mm respectively and when they are located at 20 ft distance, i.e. in the same 

plane, the spatial resolutions are 0.85; 1.7; 3.4; and 6.8 cy/mR respectively. 

Tumbling Es and USAF1951 Bar Chart 

The tumbling Es test can be compared to another measuring system with 

extended use: the USAF1951 bar chart according to MIL-STD-150A, see Figure 5. 

USAF1951targets consists of a series of elements having two sets of lines at 

right angles. 

Each set of lines consists of three lines separated by spaces equal to the line 

width and each bar has a length to width ratio of 5:1 (same ratio as for 20/20 

Tumbling E which is 5 MOA height and has 1 MOA strokes). 

Elements are arranged in groups of six each and Groups are arranged in pairs. 

Spatial frequencies in cycles/mm (cy/mm) increase between each Element by 

the sixth root of two (approximately 12.25% per step). 

The general formula (MIL-STD-150A, 1959) for the line frequency of any target 

Element can be expressed as 2Group + [(Element-1)/6] so for Group 1 and Element 1 line 

frequency is: 

21+[(1-1)/6] = 21 = 2 cy/mm 

The USAF1951 is typically used in determining the resolving power of optical 

systems and imaging materials at a close distance, such as the resolution power of a 

35mm film-camera system, and the spatial frequency is then indicated in line pairs 

per millimeter abbreviated lp/mm (where a line pair is equivalent to one cycle, i.e. one 
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black bar and one consecutive white bar), although the large spatial frequency range 

makes it applicable for the evaluation of almost any imaging system. 

When used for long distant targets, the calculations applied to determine the 

spatial frequency of the tumbling Es shown in the previous section, can also be 

considered. Namely, 1 MOA is the angle of view subtended by one bar of 1/16‖ in. 

seen at 20 ft distance. 

For instance the Group 1 Element 6 indicated in Figure 5, has a spatial 

frequency of 1.7 cy/mR provided the black bar in the computer screen measures 

1/16‖ in. 

Tumbling Cs versus Tumbling Es 

Tumbling Cs is a subset of the Landolt Cs and are similar optotypes to 

Tumbling Es. They can also be used to test a video imaging system. 

Tumbling Cs for video testing will only have four positions as the Tumbling Es: 

up, down, left, and right. 

In practice, the Tumbling Es may provide clues as to the orientation of the gap 

in the Es but the Tumbling Cs, because of their circular shape, do not allow any 

possibility for guessing where the gap is located. For that reason, the Tumbling Cs are 

the preferred optotypes in the new test set presented in this thesis. 

Contrast Sensitivity 

In addition to the factors affecting the measurement of visual acuity, the 

stimulus-response of a visual system is analogous to a filter function and the Snellen 

or similar traditional acuity charts such as the Black/White Tumbling Es, fail to 

adequately consider the concurrent effects of contrast sensitivity and spatial frequency 

on visual sensitivity (Ginsburg, 1982).  
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Contrast Sensitivity refers to the ability of the visual system to distinguish 

between an object and its background. Figure 29 shows Hue, Saturation and 

Luminance (HSL), the Tristimulus Colorimetric Values for different spots in the scene 

of the original photography taken with a digital color camera. 

 

 

 

Figure 29. Hue, Saturation, Luminance for Different Spots in a Scene 

 

 

The tristimulus colorimetric values at different spots are given for a sample 

picture taken to a rabbit on the grass. The original picture was in color. Later on it 

was rendered in grey scale and its brightness (luminance level) increased by 30% for a 

better printing, nevertheless the contrast level was not changed to preserve the 

contrast from the original picture. 
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The Average Contrast Index is C = 0.17, see Table 4, where C is defined as: 

C = 
         

         
 and its range is 0 ≤ C ≤ 1  (21) 

 

Table 4 

Contrast Index Based on HSL Measures of Snapshot in Figure 29  

HSL Rabbit * HSL Grass * /LR - LG/ LR + LG 
Contrast 

Index 

221, 17, 75 76, 65,109 34 184 0.19 

20, 34,71 61, 82,111 40 182 0.22 

247, 26, 75 68, 74, 105 27 180 0.15 

21, 29, 88 75, 75, 70 18 158 0.12 

 ∑ 119 704 0.17 

 

* Original Color Snapshot Tristimulus Values: HSL (Hue, Saturation, Luminance) 

 

  

Asphalt Reflectivity. Asphalt has a 5% reflectance factor ρ what considerably 

decreases its luminance as according to formula (17): 

π(sr)L(cd/m2) = ρE(lx) = 5%E(lx)    (22) 

The reduced asphalt reflectance and contrast levels have a significant impact in 

the amount of light that impinges the sensor array of a video imaging system. 
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Modulation Transfer Function. Any periodic waveform, from a square wave to a 

triangle wave can be represented by a sum of sine waves: the fundamental wave and 

the harmonics. 

The amplitude and phase relationship of each harmonic is determined by the 

mathematical principles of the Fourier series (Cowan, 1982). 

In particular the luminance L of a square wave can be represented by the 

following Fourier series, see Figure 30: 

 

 

Figure 30.  Square Wave Generated by a Fourier Series 
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The Luminance L may be represented as:  

L = L0 [sin γ + 
 

 
 sin 3γ + 

 

 
 sin 5γ + 

 

 
 sin 7γ + . . .]  (23) 

where: 

L0 = 4Lmax/π ≈ 1.27 Lmax and Lmax is the maximum value of the square-wave 

γ is the spatial frequency of the fundamental sine-wave 

3γ, 5γ, 7γ etc the spatial frequencies of the 3rd, 5th, 7th harmonic sine-waves 

The amplitude of the harmonics (
 

 
 ; 
 

 
; 
 

 
; . . . ) decreases as the frequency increases. 

Contrast Sensitivity Patterns. Contrast is the difference in luminance 

(commonly known as brightness) that separates an object from its background. 

Contrast Sensitivity is a person’s ability to identify an object from its 

background or a system’s capability to generate an image that differentiates the target 

from its background. 

There are two general types (Vision Sciences Research, 2002) of contrast 

sensitivity tests: 

 sine-wave gratings 

 low contrast letter tests 

A grating is a set of lines placed at various widths apart in order to determine if 

the observer can distinguish direction or separation of the lines (Tyler, ―n.d.‖). 

The Tumbling Es can also be considered as a particular case of the sine-wave 

gratings type because when the E-Chart is seen on a LCD monitor, the video imaging 

system introduces its own degradation of the imaging performance due to the 

Modulation Transfer Function (MTF). 

The bars of a sinusoidal grating do not change abruptly (Kalloniatis & Luu, 

2007) as with square wave gratings, see Figure 31. 
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Figure 31. Blurred Edges Generate a Sine-Wave Optotype Grating 

 

When the Tumbling Es shown in Figure 31 are used to test the image quality of 

a video imaging system, the Es may be considered low contrast letters. 

In addition, the Modulation Transfer Function (MTF) affects the image displayed 

in both the input and output monitors of the video imaging system under test. 

The MTF values at different spatial frequencies can be plotted as indicated in 

Figure 32. They are the actual MTF values for a commercial imaging device: 

MTF: 83% for γ = 1; MTF: 60% for γ = 3; MTF: 38% for γ = 6; MTF: 18% for γ = 10. 

Figure 32 shows the normalized spatial frequency γ considering that: 

γ = 1 refers to 2.5 lp/mm 

γ = 3 refers to 7.5 lp/mm 

 etc. 

The MFT values 45% and 34% respectively for γ = 5 and γ = 7 were determined by 

interpolating in the curve (dotted lines) the spatial frequencies γ = 3 and γ = 7. 
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Figure 32. MTF Curve for a Commercial Device 

 

Thus the Es displayed on the EVIS output LCD are no longer square waves but 

to some extend sine-wave gratings, see Figure 33 and Figure 34 

 

 

Figure 33. Output LCD Displays Tumbling Es as Sine-Wave Gratings 
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Figure 34. MTF for One Cycle Composed of One White Bar and One Black Bar 

 

Figure 34 shows a square-wave computer generated and displayed by the EVIS 

input LCD and the square-wave depicted in the output LCD see Figure 33, of the video 

imaging system.  

The MTF causes two effects: 

 decreases the slope of the output square-wave and thus the 

sharpness of the image and 

 decreases L1max (L’s maximum value) and increases L1min (L’s minimum 

value). Thus the Average Contrast Index defined in equation (21): 

    C = (Lmax-Lmin)/(Lmax+Lmin) ≈ (2-0)/(2+0) = 1 
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in the case shown in Figure 34 C will have a lower value: 

C = (1.88-0.12)/(1.88+0.12) = 0.88 

Therefore the contrast has been reduced by 12% as shown in Figure 35: 

 

 

 

Figure 35. MTF Reduces: Sharpness (Effect #1) and Image Contrast (Effect #2) 

 

The MTF reduces the image sharpness and contrast, see effects #1 and #2 in 

Figure 35 and makes it more difficult to the ―standard observer‖ to recognize a 

particular shape, see also Figure 36. 
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Figure 36. Input / Output Tumbling C-charts Used in the EVIS 

 

 

In summary there are several factors affecting the human vision of a ―standard 

observer‖ and they all should be considered when benchmarking end-to-end EVIS: 

 visual acuity 

 observer’s reaction time 

 maximum allowed dynamic searching time 

 probability of target detection and recognition 

 angular threshold of the human eye  

 system modulation transfer function 

 scene contrast sensitivity 
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Video Imaging System Analytics 

In this section, the most important optical parameters used in defining a video 

imaging system and the photometric equations applicable are considered. 

CCTV Camera Formats. CCTV cameras have installed either a CCD or CMOS 

sensor array with one of the following standard formats: 1‖, 2/3‖, 1/2", 1/3‖ or 1/4‖, 

see Figure 37. 

 

 

Figure 37. Different CCD Sensor Array Formats Available in the Marketplace 

 

An Objective Lens with 1‖ Format and Focal Distance 25mm on a 1‖ Format 

Camera has the same Angle of View as a 1/2‖ Format Objective Lens with Focal 

Distance 12.5mm on a 1/2‖ Format Camera, see Appendix E, because the Angle Of 

View θ = 2tan-1 H’/2f then the two relationships provide the same result: 

θ = 2tan-1 H’/2f = 2tan-1 (12.8/2*25) = 2tan-1 (6.4/2*12.5) 



 

88 

 

Throughout the years this relationship has been used to reduce the size of 

CCTV sensor arrays and objective lenses to get more compact and portable systems, 

but it also reduces the total amount of energy the lens is gathering, because for same 

Magnification 1X and F/1.2 characteristics of the objective lens it can be stated that: 

F-Stop = 1.2 = 
 

 
 = 
  

  
 (for 1‖ format) =  

    

  
 (for 1/2‖ format) 

so although the F-Stop is the same, the diameter of a 1/2” format lens is 

half the size of the 1” format lens and the amount of energy is smaller 

FOV, CCTV, and Objective Lens Format. An objective lens of 1’ format used in a 

1‖ CCTV camera provides the nominal angle of view indicated for the objective lens. 

If it is used with a different CCD format, the angle of view will be different from 

the lens nominal value and a change of the apparent video imaging system 

magnification will occur. 

For instance, when a 2/3‖ format objective lens is used with a 1/3‖ format CCD 

camera, the nominal magnification of the objective lens will double.  

In order for the same target to fill in the entire CCD chip, the objective lens 

should be moved further away, so the image size decreases and fits a smaller chip 

area. 

Thus there is an apparent increase of system magnification because for the 

target seen in the LCD monitor the distance from the target has been significantly 

increased. Figure 38 explains why the distance from the target has been increased. 
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Figure 38. Increased System Magnification: 2/3‖ Format Lens on a 1/3‖ CCD Sensor 

 

In Table 5 it is shown a list of CCD formats (1/3‖, 1/2‖, 1‖) and different focal 

length standards for lens available in the market. 

For instance, an objective lens 1‖ format and 25 mm focal length has an  

Horizontal x Vertical AOV (Angle of View) θ1” of 29o x 22o when used with a 1‖ CCD 

format and θ1/2” of 15o x 11o when used with a 1/2‖ CCD format. Thus θ1/2” = 0.5 θ1” 

what creates the effect of increasing the apparent magnification by a factor of 2X. 
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Table 5 

System Angle of View θ as Function of the CCD Format 

The Angle of View θ have been rounded to integer numbers 

1/3‖ CCD 1/2‖ CCD 1‖ CCD ANGLE OF VIEW 

Lens θ (degrees) Lens Focal Length (mm) 

9.4 12.5 25 29 x 22 

11.3 15 30 24 x 18 

13.1 17.5 35 21 x 16 

15 20 40 18 x 14 

18.8 25 50 15 x 11 

20.6 27.5 55 13 x 10 

22.5 30 60 12 x 9 

24.4 32.5 65 11 x 8 

26.3 35 70 10 x 8 

28.1 37.5 75 9 x 7 

30 40 80 9 x 7 

37.5 50 100 7 x 6 

41.3 55 110 7 x 5 

45 60 120 6 x 5 

48.8 65 130 6 x 4 

52.5 70 140 5 x 4 

56.3 75 150 5 x 4 

60 80 160 5 x 3 
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Lenses for Use with TV-Type Systems. These detectors are generally charge-

coupled devices (CCD). Resolution is often expressed as ―TV lines.‖ This represents the 

actual number of scan lines, not line pairs/mm, as in optical references. 

For example, consider a typical 1-in. vidicon (so called because the outside 

portion of the tube is 1 in. in diameter), it has a vertical height of 0.375 in. 

At 525 TV lines, its resolution would be: 

         
         

                        
= 28 lp/mm 

Therefore, one wants high MTF response at low spatial frequencies. This is 

accomplished by designing CCTV objective lenses that reduce image flare. 

The ray pattern is then adjusted to trace more rays at the outer portion of the 

pupil (Laikin, 2007 p30). 

Radiant Power Transfer from Source to Detector 

Non-imaging optics are used to describe some of the characteristics of the video 

imaging systems (Chaves, 2008) such as the radiant power transfer from the source to 

the sensor array. 

The intensity I of the radiation is defined as the flux per unit solid angle. The 

radiometric quantity is given in watts per steradian (W/sr). 

The photometric quantity is measured in candelas where 1 cd = 1 lm/sr. 

The radiant flux L per unit projected area and per unit solid angle is called 

radiance and is measured in watts per square meter per steradian (W/m2·sr). 

The corresponding photometric quantity is the luminance Ls measured in 

candelas per square meter: cd/m2 = 1 lm/m2·sr, see Table 3 for a summary of units 

used in Radiometry and Photometry. 
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Lambertian source. Consider the particular case in which the radiance L (or 

luminance Ls) of a surface A is uniform and constant throughout the whole area. 

A surface is called Lambertian (Chavez, 2008) if it emits or intercepts radiation 

with an intensity pattern following only the cosine law (see equation E01 Appendix E): 

I = LAcosθ       (30) 

where: 
LA = Is        (31) 

For a Lambertian source L is constant across its surface so the factor LA is 

constant and the intensity I is only function of the angle θ in a particular direction: 

I = Iscosθ       (32) 

In practice, if we consider a source located far enough from the observer and 

that the view angle θs varies in a small range from θ1 to θ2, as shown in Figure 39: 

 

 

Figure 39. Lambertian Source Approximation 
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the approximation to a Lambertian source is correct and the radiance exitance M ≈ πL 

where L is the radiance (or luminance) of the Lambertian source, see Appendix E. 

A radiant source seen from a small detector at a distance D ≥ 20 ft (6 m) as 

shown in Figure 39, can be approximated to a Lambertian source. 

Illuminance Ed – Exact & Approximate Figures. The power Φd from the Lambertian 

source falling on the detector, see equation (E13) in Appendix E, can be approximated 

by: 

Φd ≈ LsAdωs = LsAs ωd 

The exact value of the irradiance at the detector can be calculated using the 

equation (E11) in Appendix E: 

Ed = 
  

  
 = 

     

  
     

           
     

      
 
     

   
      

 

This is the fundamental equation to calculate the illuminance Ed on a detector 

from a Lambertian radiator of area As and luminance Ls located at distance d from the 

detector. 

The equation (E11) can be approximated by: 

Ed = 
  

  
 ≈ Lsωs = Lsωd

  

  
     (33) 

It is also demonstrated by comparing the exact calculated figures given by the 

equation (E11) with the actual readings of the LX1010B lux meter, that the lux meter 

is quite accurate when used at a distance d ≥ 1 m from the Dell Laptop D620. 

Table 6 shows the calculations and lux meter readings for the new test set, and 

the distance to the LCD screen: d = 240 in. = 20 ft has been included because it is the 

standard distance for benchmarking the EVIS using 20/20 Tumbling Es / Cs. 
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Table 6 

Illuminance Ed - Exact Calculation and Lux Meter LX1010B Actual Readings 

 



 

95 

 

The Cosine-To-The-Fourth Law. The amount of a viewed area diminishes as it is 

tilted with respect to the viewer. If the detector is moved off-axis by a distance x the 

ray from As to Ad will then be at an angle θs and θd with respect to the normal at both 

surfaces as follows:  

θs = θd = θx = atan 
 

 
      (34) 

The radiant power at a distance x away from the axis decreases by the fourth 

power of the cosine of the angle formed between the normal to the surface and the ray 

so the radiant power at a position x off-axis, according to Zalewski (as cited in Bass,  

1994): 

Φx ≈ 
      

  
cos4θx      (35) 

Thus, the irradiance at the detector using Φd and the cosine-to-the-fourth 

approximation as described in equation (E18) Appendix E will be: 

Ed = 
  

  
 ≈ Lsωscos4θx = Lsωd

  

  
cos4θx   (36) 

Reflectance of a Lambertian Source. In the particular case of a Lambertian 

emitter or reflecting source, with a reflection coefficient ρ = 
    

   
   Φout = ρΦin  

where Φin is the incoming radiant power and Φout is the reflected radiant power. 

The following equation between the Exitance M and the Irradiance E applies to 

a Lambertian source (Greivenkamp, 2004): 

M = ρE       (37) 

Thus, the more general equation for the Irradiance Ed at an image when a 

Lambertian source is tilted at angle θx with respect to the viewer and the reflectance of 

the surface has a coefficient ρ is: 

Ed = ρ
   

  
 ≈ ρLsωscos4θx = ρLsωd

  

  
cos4θx    (38) 



 

96 

 

Sensor Format SNR. The ratio between the areas Ad (mm2) for a 1‖ CCD format 

and a 2/3‖ CCD format sensor arrays is: 

Ad_2/3”/Ad_1” = 4/9 

The radiant power (watts) transferred from a Lambertian source to a 2/3‖ CCD 

format sensor array is 4/9 of the power transferred to a 1‖ format: 

Φd_2/3” / Φd_1” = 4/9 = 0.445 

considering that ωs_2/3” ≈ ωs_1” because d = 100m >> sensor array width (12.8mm). 

The SNR of a video imaging system if 2/3‖ CCD is used instead of 1‖ will be: 

SNR2/3‖ = 10log10(   
       
      

) = SNR1‖  – 3.52 dB 

where Psignal is the useful energy in watts and Pnoise also in watts is the noise internally 

created by the CCD, see equations (E20) to (E23) Appendix E. 

A similar comparison between the CCD sensor array of a 2/3‖ format and 1/3‖ format: 

SNR1/3‖ = SNR2/3‖ – 5.25 dB 

And if a 1/4" CCD format is used instead of 1/3‖ CCD there is a further reduction:  

SNR1/4‖ = SNR1/3‖ – 2.5 dB 

The cumulative SNR decrease for a 1/4‖ CCD compared to a 1‖ CCD format is: 

SNR1/4‖ = SNRCCD 1‖ – 11.27 dB 

These calculations have important implications when selecting the CCD format to 

use in the video imaging system (see Appendix E). 

Irradiance Levels at Different Stages of a Video Imaging System 

The radiant flux Φd falling on the detector equals the radiant flux Φlens falling on 

the lens considering an ideal lens without energy absorption. 

The radiant flux Φ either emitted or reflected from an approximated Lambertian 

source falling on a detector (CCD sensor) throughout an objective lens, see Figure 40: 
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Figure 40. Illuminance Ed Estimated at the Detector for d >> q ≈ f 

 

 

The radiant flux Φd falling on the detector is described by, see Appendix F: 

Φd = Φlens = LsAlensωs = LsAsωlens    (39) 

Ls: luminance of the Lambertian source; As is the area of the source; 

Alens is the cross section area of the objective lens; Ad is the area of the detector; 

Elens: Illuminance at the lens; Ed: Illuminance at the detector 

Фlens: luminous flux at the lens; Фd: luminous flux at the detector 

ωs: solid angle subtended by the source; ωlens: solid angle subtended by the lens; 

ωd: solid angle subtended by the detector; 

r: radius of the Lambertian source ; D: lens entrance pupil; r’: radius of the detector;  

u and u’ are the paraxial angles based on the approximation of small θ values for the 
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thin lens, in which case (Greivenkamp, 2004): 

  
 

  
 = 
  

 
 = 
 

 
   when n = n’   (n = n’ = 1 in the air) 

 
and the thin lens equation (F06) in Appendix F can be approximated as follows: 

 

 
 

 
 + 
 

 
 = 
 

 
   for d >> q 

         
    

 

 
 ≈ 
 

 
 
        
   q ≈f 

Now, the irradiance (or illuminance) Ed on the sensor array, see equation (F11) 

in Appendix F, can be easily calculated: 

Ed = 
  

  
 ≈

   

      
    

   

 
 
       (40) 

where 2r’ is the sensor array format and D is the lens entrance pupil. 

If the format of the sensor array equals the lens entrance pupil, as it is 

typically the case in video imaging systems for surveillance that include a 1/2-format 

fixed objective lens with 1X magnification and 1/2-inch format CCD, then 2r’ = D and 

according to equation (F12) in Appendix F: 

   Ed = 
  

  
 ≈ 

   

      
    

   

 
 
  = 

   

      
    

                (41) 

which is a fundamental equation for video imaging systems. 

Thus if the Lambertian source is located at a distance d ≥ 20 ft (6 m) and the 

area As has a constant intensity I across its surface, the irradiance Ed is reduced by 

the square power of the F-Stop  of the objective lens, what is consistent with the 

statement indicated in Table 2 for the F-Stop section: Each F-Stop  jump indicates a 

50% reduction in the amount of light a lens is able to transmit (transmittance).  
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Irradiance Ed in terms of Elens and lens FOV. Another useful equation for the 

irradiance (or illuminance) level Ed at the lens using Фd = Фlens will be deduced, see 

equation (F18) in Appendix F: 

Ed = 
  

  
  = Elens

     

  
 ≈ 

     

           
        (42) 

Calibration: The Need for Color Management 

There are differences between two Hewlett-Packard (HP) scanners of the same 

make and model and even bigger differences between an HP and a Umax scanner. At 

the scanner stage, the same color gets translated into different pixel values, due to 

camera or scanner characteristics. 

Color management systems seek to quantify the color characteristics of a device 

and use this to alter the pixel values that must be sent to a device to achieve the 

desired color. 

The same manufacturer would sell a color imaging suite that included the 

monitor, software, scanner, output, and so on. 

These were closed-loop systems in which all devices were designed and installed 

by one vendor; however, there are many instances in which the demands of the 

modern imaging industry make closed-loop color appear very expensive, inflexible, 

proprietary, and personnel dependent and are not recommended in many cases 

(Lukac & Plataniotis, 2006). 

Open-Loop Color Management. An open-loop environment, also known as a 

color management system, such as that specified by the ICC, provides an elegant 

solution to the issue of color control. 
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Microsoft Windows 7 Professional Edition allows selecting a particular color 

management profile or color gamut so the colors in the Tumbling Es or Tumbling Cs 

charts can be standardized between different computers. 

The profile selected for the New Test Set presented in this thesis is the 

sRGB_IEC61966-2.1.ICC, see Figure 41. 

 

 

Figure 41. Color Management Option in Windows 7 Professional Edition 

 

To activate in the computer, just click on ―Profiles‖ and select: 

sRGB_IEC61966-2.1.ICC 

then click in the ―Add‖ button and then select ―Use my settings for this device‖. 
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Color Gamut. It is the color range or the various levels of colors that can 

potentially be displayed by a device. A color gamut can be additive or subtractive. 

Additive refers to color that is generated by mixing together primary colors to 

generate a final color. This is the style used by computers, televisions, and other 

devices and more often referred to as RGB based on the red, green, and blue colors 

used to generate the colors. 

The most common of the RGB based color gamut is sRGB typically used in all 

computer displays. 

Another color gamut is AdobeRGB that was developed by Adobe to provide a 

wider range of colors than sRGB. 

NTSC was the color space developed for the widest range of colors that can be 

represented to the human eye. 

Device Calibration and Characterization. Color management can be described 

as consisting of three ―C‖s: 

 Calibration 

 Characterization 

 Conversion. 

The process of calibration involves establishing a fixed, repeatable condition for 

a device. 

For an LCD display, calibration includes adjusting the contrast and brightness 

controls, see Figure 42: 
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Figure 42. Luminance Adjustment of the Dell Latitude D620 Laptop Video Card 

 

 

The brightness (luminance) factory default setting  has been changed to maximum 

level 100% settings . 
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Characterization is the process of making a profile, sending a sampling of color 

patches (a test chart) to the device and recording the device’s response. 

For instance the sRGB_IEC61966-2.1.ICC profile can be used to test the color 

response of the LCD computer display. 

Conversion is a process in which images are converted from one color space to 

another using a CMM (Color Management Module). 

Laptop Screen Luminance. The center of the screen must be in the optical axis 

and in line with the objective lens to avoid unnecessary changes in the luminance level 

as the screen luminance varies with the angle of view. 

Apparatus Setup (New Test Set) 

The apparatus setup refers to the new test set presented in this thesis and the 

associated benchmarking procedures to test the video imaging system according to the 

new approach discussed in previous sections. 

Several steps indicated in the following set-up procedure will only be needed the 

first time that a computer is used. 

One of the most important steps is to ensure that the correct size of the 

Tumbling C is obtained in the screen of the particular laptop computer used for the 

benchmarking test. 

Once the screen is calibrated with the appropriate color settings and the 

Tumbling E or Tumbling C size is correctly determined for a particular screen, the 

procedures are quite straightforward. 

The size of the Tumbling C, see Figure 43, shown in the screen of the laptop, 

should be measured with a metric ruler and must read exactly 88 mm. 
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Figure 43. Tumbling C used for screen calibration / Tumbling Cs generator 

 

The Tumbling C shown in Figure 43 can be scaled down to issue all Cs at scale 

for a particular observation distance, using similar criteria as indicated in Figure 26 

for the Tumbling Es. 

The height of the Cs should be: 

17.6mm at 40 ft 

  8.8mm at 20 ft 

  4.4mm at 10 ft 

  2.2mm at 5 ft 
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If the direct measurement with a ruler on the screen differs from 88 mm, see 

Figure 44, a new Tumbling C calibrated for the appropriate LCD screen resolution 

should be designed. 

 

 

Figure 44. Display Setup Using the Calibrated C Optotype 
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The experimental apparatus setup is shown in Figure 2 and Figure 3. The set-

up should be carried out according to the following steps: 

 Place the laptop computer on a table 

 Turn on the computer and load a Tumbling Es or Tumbling Cs generator 

 Set the display luminance at maximum by pressing <Fn> and the up-arrow key 

to increase brightness in the Dell Latitude D620 (other computers may differ) 

 Use the Color Management option of Windows 7 to calibrate the monitor using 

a standard color gamut: as the sRGB_IEC61966-2.1.ICC (see Figure 41) 

 Load the Tumbling C to calibrate the display and get the correct size in the 

screen for the Tumbling C of reference ( Figure 44) 

 Select the correct size of Tumbling Es or Tumbling Cs for testing distance d 

 Turn off the lights 

 Place a lux meter at 2 m in front of the laptop and measure the illuminance Ed 

 Calculate the illuminance level Ed at 20 ft (6.1 m) 

 Estimate the maximum luminance Ls of the screen display and compare to the 

figure given by the computer manufacturer. If there is a significant discrepancy, 

review the specifications and see the Luminance Estimate in the Results section. 

 Place the lux meter, used in the previous steps, in front of the laptop at 0.3 m 

and secure the light sensor into a bracket or sensor holder. 

 Measure the illuminance level Ed and compare it with the exact theoretical 

value calculated following the method shown in Table 6. 

 Without moving the light sensor from its position at 0.3 m from the screen, vary 

the luminance levels using the luminance charts and determine the linearity of 

the lux meter at that distance and particular screen luminance 
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 Place the video camera at the appropriate distance of 20 ft (6.1 m) 

 Turn on the light 

 Adjust video camera settings to optimum performance (Table 7, Figure 45) 

 

Table 7  

LCL-217HS Settings  

AGC ON / OFF  

Gamma ON: 045            OFF: 1 

White Balance ON: AUTO         OFF: FIX 

Backlight Compensation ON: AUTO        OFF: DEACTIVATED 

 

 

 

Figure 45. LCL-217HS settings for video quality benchmarking 
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 Mount the objective lens onto the camera 

 Connect the video camera and its power supply 

 Turn off the light 

 Focus the objective lens for best image in the output monitor of the EVIS  

 Select the F-Stop  until capture a focused image on the card 

 Describe the characteristics of the image and check camera specs, see Table 8 

 

Table 8 

LCL-217HS CCD Camera Specifications 

Sensor Array 1/3‖ CCD 

Picture Elements 768 (H) x 494 (V) 

Lens Mount ―CS‖ mount 

Sync System Internal 

Scanning System 2:1 Interlace 

Video Output 1.0 Vp-p 75 Ω  Composite & YC 

Resolution 480 TV lines 

Min. Illuminance 0.1 lux @ F1.2 (AGC HI) 

SNR ≥ 50 dB (AGC OFF) 

Power Supply 12 VDC ± 10% ; 180 mA MAX 

Operating Temperature -100C +40oC (14oF + 104oF) 

Weight 85g 

Dimensions 1.34 in.*1.34 in.*1.81 in. 
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 Proceed with the Random Test of Tumbling Es or Tumbling Cs 

 Proceed with the Dynamic Test (limit observation time to 3 sec) 

 Select E-Chart or C-Chart of different contrast levels 

 Select a color E-Chart or C-Chart and test the EVIS 

 Load Luminance Filters, see Figure 46 and Figure 47 to reduce the screen 

luminance level to simulate quarter moon conditions 

 Repeat the previous steps as needed 

 

 

 

Figure 46. Digital Filter As 40% White/60% Black for Luminance Ls Adjustment 
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Figure 47. Digital Filter As 50% White/50% Black for Luminance Ls Adjustment 

The filters shown in Figure 46 and Figure 47 are digital filters that may be 

designed by using Adobe Photoshop CS or later version and allow to simulate different 

low light conditions. 

For instance, the filter 50% white / 50% black shown in Figure 47 that covers 

50% of the radiant surface of the input LCD, will reduce the maximum luminance of 

the EVIS by 50%. 

The maximum luminance for the Dell Latitude D620 is 220 nit (cd/m2), so 

when the filter 50% white / 50% black is loaded in the screen, the maximum 

luminance will be reduced to 110 cd/m2. 
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CHAPTER 3 

RESULTS 

The Tumbling Es and Tumbling Cs charts were used with grey Es and Cs 

(contrast 70% or 80%) over black background, instead of black Es over white 

background, as for instance originally used in the ASTM E2566-08. 

Traditional Optotypes vs New Optotypes 

The main characteristics considered for the tumbling E optotypes used in 

traditional video benchmarking methods as the ASTM E2566-08, see Figure 1 are: 

 Black Tumbling Es: on White Background 

 Different E-Chart for Day & Night: NO 

 Contrast Sensitivity: NO 

 Color E’s: NO 

 E-Chart Computer Generated: NO 

 Tumbling E’s Randomly Generated: NO 

 Standard Observer Dynamic Searching: NO – Unlimited Time 

In contrast the new testing approach used Tumbling Es and Tumbling Cs as follows: 

 Dark Tumbling Es or Cs: on Darker Background 

 Different E-Chart / C-Chart for Day & Night: YES 

 Contrast Sensitivity: Several levels at night 

 Color Es / Cs: YES 

 E-Chart / C-Chart computer generated: YES 

 Tumbling Es / Cs Randomly Generated: YES 

 Standard Observer Dynamic Searching: Limited to 3 sec max. 
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Grey Es / Cs 

At night there are not black targets on white background, but grey targets or 

color targets (if they are illuminated by artificial lighting) on a dark background. 

Day & Night E-Chart / C-Chart 

When comparing the performance of video imaging systems, the E-Chart used 

in ASTM E2566 – 08 for testing the day time Visual Acuity cannot be used to figure 

out the Visual Acuity in low-light conditions. Thus, when EVIS systems are compared, 

the new testing approach provides an accurate overall performance of Visual Acuity. 

Color Es / Cs 

The ASTM E2566 – 08 is used with static E-Charts on the wall. Hence it does 

not allow benchmarking of different color optotypes (Tumbling Es / Cs) against 

different backgrounds. 

If the objective lens used in a video imaging system has not been properly 

corrected, chromatic aberration may occur because the focal length in the lens varies 

according to the wavelength of light, thus the red, green, and blue color form three 

similar images very close in the display screen that reduces the overall image quality 

(Ray, 2002). Thus, color benchmarking is also a requirement in EVIS evaluation. 

Random Es/Cs 

The ASTM E2566 – 08 is intended to be used with static E-Charts, thus the 

optotypes are in the same position all the time. This test measures only end-to-end 

capability so the benchmarking evaluation is done by a ―standard observer‖ instead of 

a machine or optical instrument. 

Then the results of the evaluation are dependent on the operator’s subjectivity 

and sometimes biased judgment. For instance, the operator could memorize the 

orientation of the tumbling Es on the wall chart and figure out their position without 
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really seeing the gap in the tumbling Es, which would invalidate the results of the 

benchmarking. 

The new Test Set uses optotypes randomly generated, what prevents a learning 

curve on the Tumbling Es/Cs and makes impossible for the evaluator to memorize any 

particular position of the optotypes. Thus, the ―standard observer‖ cannot anticipate 

whether the gap of the next C or the limbs of the next E will be pointing up, down, left, 

or right. Figure 48 shows the main new features. 

 

 

Figure 48. Tumbling Es: Dark Optotypes on Dark Background 

 

Grey Tumbling Es/Cs Main Characteristics 

 
Grey Tumbling E’s: on Darker Background 

 
Different Es/Cs Chart for Day & Night: YES 

 
Contrast Sensitivity: Several levels at night 

 
Color E’s: YES 

 
Es/ Cs Chart Computer Generated: YES 

 
Tumbling Es/Cs Randomly Generated: YES 

 
Standard Observer Dynamic Searching: Limited to 3 sec max. 
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Dynamic Es / Cs 

The ASTM E2566 – 08 is intended to be used with static E-Charts, thus the 

optotypes are in the same position all the time, but in surveillance activities real 

targets are dynamic and only a limited time for identification and recognition is 

allowed. 

Thus, the time to ascertain the Es/Cs orientation should be limited. 

Figure 49 shows three series of Tumbling Cs that will be shown in the output 

LCD monitor for 3 sec. The ―standard observer‖ will be asked to identify the C-Gap 

orientation of a Tumbling C located in a different position every single time.  

 

 

 

Figure 49. 20/20 Tumbling Cs for C-Gap Identification 
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LCD Photometric Parameters - Measurements & Estimates 

This section illustrates the practical use of the equations and relationships 

developed in this thesis for the New Test Set and Benchmarking Approach. 

It will be demonstrated that when using the lux meter LX1010B at a distance 

from the LCD monitor d ≥ 2 m, the key photometric measurements can be obtained. 

Screen Display Luminance Ls – Estimate 

Let us consider, for instance, the case of a source such as a 14-inch LCD 

monitor of a laptop Dell Latitude D620 with the following specifications: 

Resolution:    1440 x 900 pixels 

Display WXGA+ Brightness:  220 nits 

Dimensions (W x H):  12 in. x 7.5 in. 

 
The effective screen height is the actual size of Windows 7 desktop screen as the 

task bar has zero luminance when the screen is the source for testing Ls. 

As = 12 in. x 7.25 in. (effective screen height) = 30.5 cm x 18.4 cm = 561 cm2 

As = 561 cm2 = 0.0561 m2 is a rectangular area that can be considered equivalent to a 

circular surface of 0.0561 m2 i.e. As = π r2 = 0.0561 m2 then: 

r2 = 0.0561/π = 0.018 m2 
       
   r = 13.4 cm 

Therefore, the formula obtained to calculate the illuminance Ed can be used. 

A lux meter model LX1010B can be used to estimate the luminance level Ls of 

the Dell D620 screen display because, see equation (F03) in Appendix F: 

ELX1010B(lx) = ELX1010B(lm/m2) = Ls(lm/m2·sr) 
  

     
 (sr)  (43) 

The ratio 
  

     
 is measured in sr because it is the solid angle ωs subtended by 

the source As, see for instance ωs in Figure 50. 
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Figure 50. Solid Angle ωs Subtended by a Lambertian Source 

 

The luminance Ls can be estimated using the approximate equation (43): 

Ls(cd/m2) = Ls(lm/m2·sr) = 
             

  

     
    

   (44) 

Exact calculations of the irradiance Ed (ELX1010B in this case) and some of the 

actual readings obtained with the lux meter LX1010B are shown in Table 6. 

Ls(lm/m2·sr) = 
             

  

     
    

 = 
    

        

           
    

 = 
       

        
 = 215 (lm/m2·sr) 

 d = 2 m is the recommended distance to estimate the luminance Ls because the 

source still provides an illuminance level ELX1010B(lx) = 3 lx that is still within the 

measuring range limits of the lux meter, see Table 6 for a lux readings list. 
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The nit unit was used long ago but this name is not in general use today 

(Roberts, 1996), nevertheless the specification of the Latitude Dell D620 indicates the 

luminance in nit. 

The nit is equivalent to a candle/m2 thus the screen display luminance is: 

Ls = 220 candle/m2 = 220 lm/m2·sr 

and the estimated luminance level Ls found using equation (44) was: 

Ls(cd/m2) = 215 cd/m2 

Thus the error when using the lux meter LB1010B to estimate the luminance 

level of the Dell Latitude D620 LCD Monitor compared to the nominal figure given by 

the manufacturer is: 

ε = 215/220 = 2% 

The 2% error could be considered a tolerance from the nominal measurement 

provided by the manufacturer of the laptop or within the ± 5% + 2d accuracy reading 

of the lux meter manufacturer, see the characteristics of the LB1010B indicated in 

Table 9. 

Consequently, it can be stated that the LCD screen luminance Ls can be 

measured by using the LX1010B, although it is an illuminance Ed measuring 

instrument. 

The condition is that the measurement is taken at a distance from the LCD 

monitor: 

a) d ≥ 2 m to consider valid the LCD approximation to a Lambertian source 

b) d < 3 m to get a significant digit reading in the lux meter (see Table 6) 

The characteristics of the LX1010B lux meter are indicated in Table 9 and in 

Figure 51 that shows the Spectral Relative Sensitivity matching the curve in Figure 20. 
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Table 9 

Digital Lux Meter LX1010B Specifications 

Display:  18mm (0.7‖) LCD 

Ranges:  0-50,000 lux; 3 ranges 

0-2,000 lux Resolution: 1 lux; Accuracy: ± 5% + 2d 

2,000 – 19,900 lux Resolution: 10 lux; Accuracy: ± 5% + 2d 

19,990-50,000 lux Resolution: 100 lux; Accuracy: ± 5% + 2d 

Lamp Correction Factor:   

 Mercury  x 1.1 

 Fluorescent x 1.0 

 Incandescent x 1.0 

 Daylight: x 1.0 

Figure 51. Spectrum Relative Sensitivity 

 

Sampling Time:  0.4 seconds 

Operating Temperature:  0o to 50oC (32o to 122oF) 

Operating Humidity:  less than 80% R.H. 

Dimensions:  118 x 70 x 29 mm  

  4.6 x 2.7 x 1.1 in. 

Weight (with battery):  200 g 

Power Supply:  9 VDC 

Current Consumption:  2 mA (approx.) 
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Screen Display Luminance Control. The luminance level of the Dell Latitude 

D620 monitor (or any other monitor) can be adjusted by pressing <Fn> and the up-

arrow key to increase brightness in the Dell Latitude D620 (other computers may 

differ) and the irradiance level reduced to Ed = 0.01 lx (quarter moon conditions). 

It just requires placing a lux meter at a distance d = 1 m from the LCD monitor 

and reducing the screen luminance by using the laptop keyboard and choosing a 

different option from the default settings in the computer until the lux meter reading 

is 10·
 

  
 lux = 1 lx, then the irradiance at 20 ft = 6.1 m will be 0.35·

 

  
 = 0.035 lx (what 

approximately simulates quarter moon lighting conditions). 

A more accurate method of reducing the luminance is using calibrated digital 

screen filters: 

100 % white / 0% black 

85 % white / 15 % black 

75 % white / 25 % black 

70 % white / 30 % black 

65 % white / 35 % black 

60 % white / 40 % black 

55 % white / 45 % black 

50 % white / 50 % black 

see Figure 52 and Figure 53. 

The size of the white area for each particular filter has been calibrated to 

amount a specific area of the total surface. 

For instance, As = 12 in. x 7.25 in. (effective screen height) = 30.5 cm x 18.4 cm 

= 561 cm2 thus the white area for filter 75 % white / 25 % black is 22.9 cm x 13.8 cm 
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Figure 52. Digital Filters 100% to 70% for a Lambertian Source As  
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Figure 53. Digital Filters 65 % to 50% for a Lambertian Source As  
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Screen Display Illuminance Ed – Estimate 

The equation (F03) in Appendix F and Figure 40 show that the illuminance 

Elens at the lens for θ small (2θ ≤ 94o   θ ≤ 47o) see equation (D14) in Appendix D can 

be approximated by: 

Elens ≈ Ls

  

      
     (45) 

The equation (F03) also gives the illuminance Ed at the detector, shown in 

Figure 50: 

Ed = Elens ≈ Ls

  

      
     (46) 

The illuminance ELX1010B measured at distance d1 and d2 when setting the LCD 

display luminance control at maximum intensity by acting on the keyboard and on the 

video card control panel, see Figure 42, will be compared with the theoretical values 

obtained using the approximate formula for Ed: 

ELX1010B_d1 = 220(lm/m2·sr) 
        

             
(sr) ≈ 220*0.0551= 12.1 lx  ;  d1 = 1.0 m (40 in.) 

ELX1010B_d2 = 220(lm/m2·sr) 
        

             
(sr) ≈ 220*0.0083 = 1.8 lx ;   d2 = 2.6 m (102 in.) 

ELX1010B_(1.0 m)  (calculated) = 12.1 lx;   d1 = 1.0 m ;  ELX1010B_(1.0 m)  (reading) = 10 lx 
 
ELX1010B_(2.6 m)  (calculated) = 1.8 lx;     d2 = 2.6 m;  ELX1010B_(2.6 m)  (reading) = 2 lx 

 
 
Thus the measurements obtained with the lux meter LX1010B are quite 

approximate to the nominal values given by the formula used to calculate Ed. 

In Table 6 it is shown that for d ≥ 1 m, the LX1010B is a valid instrument for 

measuring Ed. 

If the display screen is located at 20 ft = 6.1 m (d2 = 37.2 m2) the illuminance is: 

ELX1010B(lx) = 220(lm/m2·sr) 
           

                   
 (sr) ≈ 220(lm/m2·sr) 

           

         
 = 0.35 lx 
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The E reading of 0.35 lx is close to the illuminance level of 0.1 lx that defines 

full moon conditions, so when the screen display of the laptop Dell Latitude D620 is 

located at 20 ft (6.1 m) it is equivalent to measure the quality of the video imaging 

system in low light conditions: 

Dell Latitude D620: ELX1010B_(20 ft) = 0.35 lx (full moon conditions) 

Another example: 

Dell UltraSharp LCD Monitor 1708FP-BLK 17-inch shown in Figure 54: 

 

 

Figure 54. Dell UltraSharp 1708-BLK/1908-BLK Monitor  

has the following specifications: 

Luminance Ls = 300 cd/m2 

Radiant Surface As = 0.091 m2 (0.337 m x 0.270 m) 

Dell UltraSharp 1708-BLK can also be approximated to a Lambertian source 

having constant luminance across the area and used to test the image quality in low 

light conditions at 20 ft distance as: ELX1010B_(20 ft) ≈ 300 (lm/m2·sr) 
          

         
 = 0.74 lx 

Dell UltraSharp 1708FP-BLK: ELX1010B_(20 ft) ≈ 0.74 lx (full moon conditions) 
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A Flat Panel Monitor Dell UltraSharp 1708-BLK 17-inch or UltraSharp 1908-

BLK 19-inch has a typical brightness (luminance) Ls of 300 cd/m2. 

Both 17‖ and 19‖ has the same luminance Ls and it is constant across the area. 

The main characteristics of the LCD Dell UltraSharp monitor are: 

 

Preset Display Area (W x H) 1708-BLK: 337 mm (13.3‖) x 270 mm (10.6‖) 

     1908-BLK: 380 mm (14.96‖) x 300 mm (11.81‖) 

Maximum Resolution:   1280 x 1024 pixels 

Pixel Pitch 1708-BLK:    0.264 mm 

               1908-BLK:   0.294 mm  

Brightness (Typical):   300 cd/m2  

Color Gamut (Typical):   82% based on CIE1976 (82%) and 

CIE1931 (72%) test standard 

Contrast Ratio (Typical):   800:1 

Viewing Angle (Typical):   160o (horizontal) / 160o (vertical) 

Response Time (Typical):   5 ms black-to-white 

Panel Type & Surface:   TN (twisted nematic) 

Anti-glare with hard-coat 3H 

Illuminance Ed – Estimate for d ≥ 2m. According to equation (E12) in 

Appendix E the estimated Ed value is: Ed ≈ 
    

  
 and according to Figure 55 the 

fraction 
  

  
 is an approximation for the solid angle ωs see also (D14) in Appendix D. 

Thus for d ≥ 2 m: 

Ed (lux) ≈ Ls (cd/m2) · ωs (sr) 
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Example Dell Latitude D620 has: Ls = 220 cd/m2 ; As = 0.057 m2 

Ed (@ 2 m) ≈ 220 * 0.057 = 3.1 lux (as the exact value shown in Table 6 for d = 2 m). 

 

 

Figure 55. Approximation of a Sphere Cap by a Flat Surface for 2 Small ≤ 94o 

 

 

ωs Estimate Validation for d ≥ 2m. The approximation 
  

  
  ≈ ωs is based on the 

following derivation: By definition apex angle = 2θ, see   in Figure 18, thus: 

2θ = 
   

        
  

         
    θ = 

  

        
  

Replacing θ in the approximation ω ≈ πθ2 gives (see also (D14) in Appendix D): 

ωs ≈ 
    

      
= 
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where As is the flat area of the cone’s base shown in Figure 55. 

As is the area of a three dimensional cone cap but it can be approximated to a 

flat area (two dimensional) when θ is small, see also Appendix D. 

In addition d >> r is a valid approximation as the solid angle subtended by the 

source: ωs = 0.0083 is very small, see Figure 17. 

When d2 >> r2 then ω ≈ 
    

  
 (Greivenkamp, 2004) although this approximation 

is not always applicable. In the design of the new video imaging test set, the most 

accurate approximation ω ≈ 
    

     
= 
  

  
 has been used, see Appendix F. 

Luminous Intensity Is - Estimate for d ≥ 2 m  

The Dell Latitude D620 Monitor can be approximated to a Lambertian source, 

at a distance d ≥ 2 m see Figure 56 and has Ls = 220 cd/m2 ; As = 0.057 m2  

 

 

Figure 56. Estimated Ed, Is and Φs at d ≥ 2 m for the Test Set 
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A Lambertian source emits radiation with an intensity pattern following only the 

cosine law: 

Is = I0cosθ; where I0 = LsAs 
         
       Is ≈ LsAs 

θ small means θ ≤ 8.5o = 8.5o•
     

   
 = 0.15 rad 

sin θ = 
 

      
 and θ ≤ 0.15 

         
    sin θ ≈ θ 

          
     θ ≈ 

 

      
 ≤ 0.15 

In the previous section it was shown that the rectangular LCD screen of a Dell 

D620 is equivalent to a circular area of radius r = 0.134 m 
         
    r2 = 0.018 m2 

Therefore: 
     

         
  ≤ 0.15 

                
           d ≥ 0.9 m 

Thus for d ≥ 2 m the estimated Is for a Dell Latitude D620 screen display can be 

estimated using the approximated equation: 

Is ≈ LsAs = 220 (Lumens/sr•m2) x 0.057 m2 = 12.54 (Lumens/sr) 

Luminous Power Φs - Estimate for d ≥ 2 m 

The total luminous power over the radiant hemisphere (solid angle π sr) is: 

Φs (Lumens) = Is (Lumens/sr) • π (sr) = 12.54 x 3.1416 = 39.4 Lumens. 

Luminous Emittance M - Estimate 

A Lambertian source complies with the following equation at the surface (d = 0): 

M = π(sr) • L(Lumens/sr • m2) 

hence: 

M (Lumens/m2)  = π(sr) • L(Lumens/sr • m2) = 3.1416 x 220 = 691.2 Lumens/m2 

The value found for M provides an alternative method for calculating Φs: 

Φs (Lumens) = M (Lumens/m2) • As (m2) = 691.2 x 0.057 m2 = 39.4 Lumens 



 

128 

 

A summary of key photometric features measured with the lux meter LB1010B 

or estimated using the equations developed for the New Test Set follows: 

 Ld = 215 lm/m2·sr (estimated)  Ld = 220 lm/m2·sr (nominal value) 

Ed = 3.1 lux @ d = 2 m (estimated) Ed = 3 lux @ d = 2 m (measured) 

Is = 12.54 lm/sr (estimated) 

Φs = 39.4 lm (estimated) 

M = 691.2 lm/m2 @ d = 0 m (LCD surface) (estimated) 

The accuracy of the equations used to estimate the values of Ld and Ed is 

manifest after comparing them to the nominal and measured values respectively. 

Illuminance Ed in Terms of the Objective Lens F-Stop 

In Appendix F, equation (F11) there was shown the following approximation for 

Ed the irradiance at the detector: 

Ed = 
  

  
  ≈ 

   

      
    

   

 
 
       (47) 

where 2r’ is the sensor array format and D is the lens entrance pupil. 

If the format of the sensor array equals the lens entrance pupil, as it is 

typically the case in surveillance video systems that include a 1/2-format fixed 

objective lens with 1X magnification and 1/2-inch format CCD, then 2r’ = D and 

according to equation (F12) in Appendix F: 

   Ed = 
  

  
  ≈  

   

      
    

      (48) 

Thus using equation (F12): 

Ed (lx) = Ed (lm/m2) = 
  

  
  ≈  

        
  

  
    

      
    

  (49)  
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Ed = 
  

  
  ≈  

    

          
 = 
   

    
 = 78 lx 

that is the illuminance at 0.38 m approximately because using equation (46) to 

calculate Ed @ 0.378 m gives: 

Ed(lx) = 220(lm/m2·sr) 
           

                      
 (sr) ≈ 77 lx @ 0.378 m 

The lens used in the prototype of the video imaging system discussed in this 

document has the following characteristics: 

Objective Lens Ø 25 mm 

F/1.4 

Magnification: 1X 

FOV: 40o 

The Lambertian source has a radiant surface: 
 
    As = 30.5 cm x 18.4 cm (effective height) 

 

equivalent to a circular surface of .0561 m2 so: 
 

r2 = 0.018 m2 
       
   r = 13.4 cm 

According to Figure 7: 

FOV: 40o 

         
    θ/2 = 20o = 20o*

        

   
 = 0.35 radian 

tan20o = tan0.35rad = 
       

       
 = 0.35 rad 

 The FOV of the objective lens covers the whole Lambertian surface As, so the 

equation (48) provides the same result that the equation (46) used to calculate more 

accurate figures for Ed: 

Ed = 78 lx @ 0.378 m 
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Illuminance Ed in Terms of Elens and Lens FOV 

In Appendix F it is shown the derivation of equation (F18), another useful 

equation to calculate the illuminance Ed at the detector as a function of FOV and F-

Stop that are typically known parameters of any lens: 

Ed = Elens

     

  
 ≈ 

     

           
         (50) 

The lens used in the prototype of the video imaging system discussed in this 

document has the following characteristics: 

Magnification: 1X ;  FOV: 40o  ; Objective Lens Ø 25 mm ; F/1.4 

FOV: 40o 
         
    FOV = 40o*

        

   
 = 0.7 rad 

FOV* F-Stop  = 0.7 * 1.4 ≈ 1  

Thus for the prototype video imaging system: Ed ≈ Elens  

The illuminance measured at distances d1 and d2 with a lux meter LX1010B, 

see Table 9, and setting the LCD display luminance control at maximum is: 

ELX1010B_(1.0 m)  = 10 lx ; d1 = 1.0 m 
        
    Ed ≈ ELX1010B_(1.0 m)  = 10 lx ; d1 = 1.0 m 

 

ELX1010B_(2.6 m)  = 2 lx ; d2 = 2.6 m 
          
      Ed ≈ ELX1010B_(2.6 m)  = 2 lx ; d2 = 2.6 m 

Lux Meter LX1010B Linearity 

 The lux meter has been tested at a close distance to figure out its relative 

linearity response. 

Table 10 shows that linearity starts at distance d ≥ 11.4 cm (4.50 in.) for As = 

75% although according to the data in Table 6 to obtain correct Ed readings the 

minimum distance starts at d ≥ 1 m ≈ 40 in. 
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Table 10 

LX1010B Lux Meter - Ed (lx) Measurements Linearity Test. 

Ed has been measured for different percentages of white surface As on the LCD monitor 

The readings show that linearity starts at d ≥ 11.4 cm (4.50 in.) for As = 75% 

inch meter cm 100% 85% 75% 65% 60% 55% 50% 

0.00 0.000 0.0 165 163 163 163 163 163 163 

1.00 0.025 2.5 159 158 158 158 158 155 155 

2.00 0.051 5.1 153 152 148 146 146 135 127 

4.50 0.114 11.4 127 118 111     

   

Ed as 

function 
of As 

118/127 

= 93% 

111/127 

= 85% 
    

5.80 0.147 14.7 107 98 89     

   
Ed as 

function 

of As 

98/107 

= 92% 

89/107 

= 84% 
    

11.80 0.300 30.0 60 52 45     

   
Ed as 

function 
of As 

52/60 

= 87% 

45/60 

= 75% 
    

39.37 1.000 100.0 10 8 6     

   
Ed as 

function 
of As 

8/10 

= 80% 

6/10 

= 60% 
    

d: distance to the LCD screen 
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LCD Viewing Angle 

In Table 6 it is shown that Ed (measured) equals to Ed (exact calculation) at a 

distance d ≥ 2 m for a screen size with dimensions W x H = 30 cm x 19 cm such as the 

LCD monitor of the Dell Latitude D620. 

The solid angle  subtended by the radiant surface As (dimensions in cm) at a 

distance of 300 cm (3 m) is: 

s = As/d2 = (30 x 19)/3002 = 0.0067 

That means that the reading of the lux meter LX1010B is accurate provided the 

solid angle subtended by a radiant source is equal or lesser than 0.0067. 

The equivalence between surface and distance for a constant solid angle figure 

could be used as follows: 

s = As/d2 = (30 x 19)/3002 = (3 x 1.9)/302 = 0.0067 

Thus, the readings of the LX1010B obtained for the whole surface of the Dell 

Latitude D620, As = 30 cm x 19 cm at a distance of 300 cm should be the same as for 

a radiant cell Cs = 3 cm x 1.9 cm at a distance of 30 cm. 

The dimensions Cs = 3 cm x 1.9 cm can be approximated to 3 cm x 2 cm what 

allows the whole screen to be divided into 90 cells Cs of dimensions 3 cm x 2 cm. 

It also has been demonstrated that the illuminance Ed on the light sensor can 

be estimated, see equation (46), at a distance d >> r by Ed ≈ Ls

  

      
  

Thus the Ed reading obtained at 300 cm for the whole screen As should be also 

applicable to one cell Ci at 30 cm in the optical axis, see Figure 57. 
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Figure 57. The Geometrical Center in the Dell Latitude D620 Monitor 

 

 

It can be considered that any elemental cell in the screen shown in Figure 57 

could be measured with the LX1010B by only taking into account the cosine-to-the-

fourth law for the angle θx between the optical axis and the geometric center of the 

particular cell. 

Hence, according to equation (E18) the reading Edi of any cell will be: 

Edi ≈ Lsωscos4θx      (51) 

and the total illuminance: 

Ed ≈ Lsωscos4θ1 + · · · + Lsωscos4θ90 = Lsωs       
       (52) 

In Figure 58 it is shown that the radii r1, r21, r56, and r61 from the center have the 

same length, thus the cells #1, 21, 56, and 61 generate the same illuminance: 

Ed1 = Ed21 = Ed56 = Ed61 on the light sensor   (53) 
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Figure 58. Same Illuminance Edi for Symmetric Cells Around the Geometric Center 

 

 

Similar case occurs for cells #20, 40, 45 and 80: Ed20 = Ed40 = Ed45 = Ed80.  

Analog criteria applies to cells #a, f and cells #b, g. Thus: 

Ed ≈ Lsωs       
     = 4 Lsωs       

      + 2 Lsωs      
      (54) 

In Table 11 it is shown the value of cos4θi for each radius ri where the length 

has been measured directly, Figure 59, on the screen of the Dell Latitude D620 and 
 
calculated using the following equation: 

cos4θi =  
 

       
  
 

 

  = 
  

      
  
      (55) 

 
where d is the distance from the light sensor to the center of the screen and ri is the 

distance to the geometric center. 
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Table 11 

Cosine-To-The-Fourth Power - Ed Estimate at Short Distance 
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Figure 59. The Radii r1 to r20 and ra to rb Directly Measured on the Dell D620 Screen 

 

 

The method indicated in Table 11 gives a value for Ed = 109 lx that is very 

similar to the value Ed = 115 lx obtained using the exact formula as shown in Table 6 

but the actual reading with the LX1010B was Ed = 60 lx. 

Table 12 explains the reason for a lower Ed: the values calculated using 

equation (55) consider that their impact on the Ed value indicated in equation (54) 

from cells with ri ≥ 8.5 cm has been cancelled, namely ri ≥ 8.5 cm 
         
    FOV = 0 
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Table 12 

Cosine-To-The-Fourth Power - Ed Correct Readings at Short Distance 
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FOV = 0 for ri > 8.7 cm gives a Ed value of 57 lx, very similar to Ed = 60 lx 

calculated making FOV = 0 in the spreadsheet that was used to simulate the display-

detector properties at closer distance. 

FOV = 0 means, see Figure 60, that the influence of cell i on the reading of the 

light sensor is irrelevant. 

 

 

Figure 60. A Lux Meter Placed at d = 30 cm Is Not Affected by Corner Screen Cells 

 

Measuring E with the lux meter LX1010B at d = 30 cm is equivalent to 

deactivate some cells on the screen i.e. FOV = 0 for ri > 8.7 cm. 

It is due to the combined effects of: 

o a reduced field of view of the light sensor and 

o the viewing angle of the LCD (an important parameter to define in non-

emissive types of displays such as LCDs) 
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There are limitations inherent to the LCD technology and the viewing angle can 

help characterize the display more accurately. 

LCDs usually have their viewing angle defined as minimum contrast ratio over a 

certain angle (Sharp Corporation, 1993). 

For instance the Flat Panel Monitor Dell UltraSharp 1708-BLK, see Figure 54, 

has vertical and horizontal viewing angles of 160o. 

Thus, operating a lux meter must take into account that the measurements 

obtained with this device needs correction. 

The correction factor can be calculated by using the method described in this 

section, and a spreadsheet similar to the one shown in Table 12, for the particular 

monitor used in benchmarking EVIS has been created after ascertaining the: 

a) Correct As 

b) Equivalent s at a distance d; and 

c) Radii ri have been determined  

LCD refresh rate 

The refresh rate refers to how many times per second a frame is drawn in the 

screen. For an LCD monitor, the rate is typically 60 Hz or 120 Hz. 

A high refresh rate makes a real difference when watching a movie or sports, 

where a picture moves quickly as the image may show a defect called ―motion blur‖. 

Nevertheless, the benchmarking method developed for the New Test Set uses 

dynamic images lasting up to 3 sec in the screen. 

The time the Tumbling Es/Cs are shown is long enough for the motion blur 

effect not to be noticeable. 

Thus the refresh rate of 60 Hz that is the default value in Microsoft Windows 7 

operating system will suffice when using a laptop monitor in the new test set. 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

Limitations and Recommendations for Future Research 

Even though the new test set and the benchmarking approach has been 

extensively tested in order to derivate the mathematical formulae and physical 

principles applicable in its design, still a number of practical tests involving different 

―standard observers‖ have to be implemented. Basically the tests will consist of 

requesting that different users test several video imaging systems while random 

oriented Tumbling Cs or Es are shown for a brief period of time (2 or 3 seconds) and 

ascertaining the reliability of the observers responses. 

A Weibull probability function should be fitted to the data and the reliability of 

the observer responses statistically tested (Driggers, 2003). 

The threshold will be defined as the contrast level between the Cs or Es and 

their background at which the observers scores 75% correct. 

Conclusions 

It has been demonstrated that the proposed new test set that also includes a 

new benchmarking approach (US Patent pending) is more accurate and versatile than 

the current test sets and benchmarking methods used to test image quality and video 

imaging systems. 

Image quality can be quantified using the Extended Video Imaging System 

(EVIS) configuration defined in this manuscript and taking into account the 

photometric and visual parameters that characterize a ―standard observer‖. 

The New Test Set has several advantages over the current testing systems: 
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1) It is a very compact and portable system that can be used in any laboratory 

or in the field 

2) It allows benchmarking of video imaging systems with any lens fixed or zoom 

lens, as the objective lens does not require to be mounted in any special 

adapter to aim to a radiant source 

3) It allows all members of a ―standard observer team‖ to benchmark the system 

    at the same time, thus reducing the occurrence of biased diagnostics 

4) EVIS calibration is fast 

5) It is a very cost-effective approach as it can be implemented in any laptop 

once the appropriate set of Tumbling Es/Cs has been built for the particular screen 

display in use 

6) It allows color image benchmarking 

7) It allows contrast sensitivity benchmarking 

8) It allows dynamic detection and recognition benchmarking 

9) It also allows any of the traditional resolution charts such as the USAF1951 

    to be used in high-light and low-light level conditions 

10) It allows checking up the visual acuity of the ―standard observer‖ by using 

the 20/20 Tumbling Es/Cs before the observer proceeds to benchmarking 

the video imaging system 

11) It allows benchmarking two video imaging systems at the same time by 

      placing both systems in tandem and aiming at the same Tumbling Es/Cs 

12) It allows simulation in the laboratory of low-light conditions such as full 

       moon or quarter moon 

13) It is easy to use 

14) Training and qualifying a ―standard observer‖ takes less than 10 minutes. 
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APPENDIXES 

Appendix A 

Language of Light - Definitions 

Brightness Is a term commonly misused when specifying luminance. 

Brightness is purely a psycho-physiological attribute when the 

human eye has adapted to a particular radiation level. Brightness 

is not a measurable parameter. 

Chrominance Is the physical combination of the dominant wavelength (hue) 

and purity (saturation). 

CIE System The chart is based on the supersaturated primaries of red, blue, 

and green. Any color can be characterized by its x and y 

coordinates. The chart assumes all colors are generated by equal 

radiance sources, which puts white at the center of the chart. 

Color The CIE System describes the three dimensional color features: 

luminance, hue, and saturation in a two-dimensional chart. 

Contrast Ratio Is the defined as max. luminance / min. luminance 

All ambient and display parameters must be defined in order to 

calculate a meaningful ratio. Another factor is the area for the 

measurement. 

Entrance Pupil Is the image of the aperture stop seen through all lens elements 

in front of it and from a position on the optical axis 

Exit Pupil Is the image of the aperture stop that an observer sees when the 

observer  looks into the lens from the rear 
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Foot-candle (fc) The foot-candle is a unit to measure incident light. 

It is the illuminance on a surface one foot distant from a source 

of one Candela; 1 fc = 1 lm/ft2 (Lumens/sq. foot) 

Foot-lambert (fL) The unit used to measure the emitted light from a surface. 

For a perfect reflecting and diffusing surface, the number of foot-

lamberts will be equal to the number of foot-candles. 

F-Stop  It is the measure of the aperture of a given lens. Each F-Stop  

jump indicates a 50% reduction in the amount of light a lens is 

able to transmit (Transmittance). 

Typical F-Stop :     1.4       2       2.8       4          5.6       8      11 

Transmittance:  100%    50%    25%   12.5%    6.3%    3%   1.5%  

Gamma It is the measure of the grey scale in a television picture. 

A numerical factor used in the television system to indicate how 

the light values are expanded or compressed. A gamma with a 

value of 1 (one) indicates a linear characteristic. While a gamma 

with a value of less than 1 indicates that there is a compression 

in the level changes of the white components of the signal. 

Gamma Correction The introduction of a nonlinear output / input characteristic for 

the purpose of changing the effective value of the gamma. 

Grey Scale A series of tones that range from true black to true white; it is 

usually expressed in 10 steps 

Hue Is the dominant wavelength of the color as subjectively perceived 

by the human eye 

Illuminance Is the amount of light incident on a particular area 
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IRE Institute of Radio Engineers 

An IRE unit is 1% of the voltage from blanking to peak white in 

the video signal. 

IRE Scale An oscilloscope scale that applies to composite video levels. 

Typically there are 140 units in one volt 

(1 IRE = 1000 mV/140 IRE = 7.14 mV). 

Luminance Luminance is defined as the quantitative measure of brightness 

and is measured in English units as foot-lamberts (fL) and in SI 

(International System) units as Candela/m2. 

Luminance is also defined as the amount of light intensity 

perceived by the eye as brightness (referred to as ―Y‖). 

Luminance Signal The portion of the composite video signal that represents the 

brightness of the black and white information 

Lux 1 lux ≈ 0.1 fc  ;      1 fc = 10.764 lux ≈ 11 lux 

Pixel The smallest resolvable spatial-information element on any 

display. The pixel can be subdivided further to achieve color. 

Each red, green, and blue element is referred to as subpixel. 

The spatial dimension of pixel can be defined by the pixel size 

and pixel pitch. 

Fill factor is another parameter used when image quality 

measurements are taken over an area (more than one pixel). 

Radiance Is a measure of the rate of energy flow from an electromagnetic 

source usually measured in power units: watts or joules / second 
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Reflected Light The scene luminance (―brightness‖) reflected from a scene. 

Usually it represents 5 to 95 percent of the incident light, and it 

is expressed in foot-lamberts. 

Resolution There are numerous methods to measure resolution, and the 

same method must be used when comparing two displays to each 

other. 

When describing a LCD display, for instance, 640 x 480 is not 

the resolution. This should be referred to as the display format. 

For discretely addressed displays such as LCDs, resolution is 

usually measured in resolvable elements per unit measurement: 

pixels (dots/inch) 

For analog addressable displays such as CRTs, resolution can be 

defined as above or more accurately as the spatial frequency 

(lines/inch or lines/mm) at which an observer can no longer 

discriminate for instance the light and dark bars of a square 

wave pattern such as the USAF 1951 chart. 

Response Time Is the time it takes a pixel to charge state from on to off (―black‖ 

to ―white‖). This time includes all electrical and physical delays. 

It is defined as the transition time from the 10% level to the 90% 

level luminance output. 

In LCDs, because the rise and decay times are usually unequal, 

both are specified; τγ (10%-90%), τd (90%-10%) 

Rise and decay times may be combined to give a total response 

time. 
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Saturation It is the degree to which the hue of a color subjectively appears to 

be undiluted by its complimentary color to form white. 

If there is no trace of apparent white in the color, it is said to be 

fully saturated. 

Solid Angle (ɷ) ɷ = A/R2 A solid angle is the ratio of the sphere surface area 

enclosed to the square of the radius. Unit: Steradian : sr 

Viewing Angle Is an important factor in nonemissive display such as a LCD. 

This angle is specified by its x and y direction on the face of the 

display. LCDs usually have their viewing angle defined as 

minimum contrast ratio over a certain angle. 

Vignetting Indicates an unintended darkening of the image corners in a 

photographic image. Most photographic lenses exhibit optical 

vignetting to some degree. The effect is strongest when the lens is 

used wide open. Its origin relates to the simple fact that a lens 

has a length. Obliquely incident light is confronted with a smaller 

lens opening than light approaching the lens head-on. 

White light It is equal luminance level across the visible spectrum that gives 

white its color. 

Equal radiance levels across the visible spectrum, however, will 

give a magenta color. 
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Appendix B 

Optical Vignetting 

Optical Vignetting is a reduction in the size of the entrance pupil for off-axis 

objects due to physical constraints of lens diameters. 

Entrance Pupil 

It is the image of the aperture stop seen through all lens elements in front of it 

and from a position on the optical axis. See Figure 9. 

Exit Pupil 

It is the image of the aperture stop that an observer sees when he looks into the 

lens from the rear. 

There are two fundamental rays to consider in the geometric representation of a 

thin lens: on-axis meridional ray and principal meridional ray 

On-Axis Meridional Ray: A ray from the object plane, on the optical axis, to the 

image plane, also on the optical axis. 

Principal Meridional Ray: A meridional ray from the edge (or any other off-axis 

point) on the object to the corresponding point on the image. 

The planes on which the on-axis meridional ray crosses the optical axis are 

conjugates to the object and image planes (Thompson &  Malacara, 2001) 

Any thin lens at these positions does not affect the path of the on-axis 

meridional ray but affects the path of the principal ray. This lens is called a field lens 

and the diameter of the field lenses determines the diameter of the image (field). 

By stopping a principal ray with a certain height, we have an effect called 

vignetting, see Figure 8. In a multiple element lens, the rear elements are shaded by 

elements in front of them, what reduces the effective lens opening for off-axis incident 

light, see Figure 10.   
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Appendix C 

Natural Vignetting 

Compared with the image center, the irradiance (amount of light) getting in the 

corners of the sensor array is less than in the center of the image, see Figure 61. 

 

 

 

Figure 61. Natural Vignetting 

 

 

1) Light has longer way to travel to the corner 

2) Exit pupil seen by the off-axis is elliptical and has smaller apparent area 

3) Lambert’s law: light strikes the corner at an angle 
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There are three reasons (Walree, 2011) which lead to a cosine-to-the-fourth 

illuminance falloff: 

1) There is a cos2(b) factor due to the inverse square law: the light has a longer 

way to travel to the image corner. 

2) The pupil seen by the off-axis point is not round but elliptical and has a smaller 

area than the round pupil seen by the image center. 

This yields another cos(b) factor. Note however that this cosine factor is 

approximate. It needs refinement when the pupil diameter is not small 

compared to its distance from the sensor array. 

3) While the light hits the image center at normal incidence, it strikes the image 

corner at the angle b. This yields another cos(b) factor. 

The last effect relates to Lambert's law and can be compared with a late 

afternoon sun that heats the earth less than the sun at noon because the same 

beam of sunlight is spread over a larger area. 

The combined effect of all cosine factors is a: cosine-to-the-fourth illuminance falloff 

towards the image corners, as shown in Figure 61. 

The performance graphic shown in Figure 14 provided by Zeiss for one of its 

manufactured objective lenses, considering the relative illuminance of the center 

image to be the 1.0 value, shows at full aperture of the iris (F/2.8) the corner relative 

illuminance to the center is 0.2 what in terms of F-Stop  means the corner receives 

about 25% illuminance. 

Thus the F/2.8 lens is equivalent to an F/5.6 lens when looking at the borders of 

the image (see Appendix B) what is considerably lower F-Stop than the full aperture. 
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Appendix D 

Solid Angle Equations 

Solid Angle (ω) is defined as the ratio of a portion of the area on the surface of a 

sphere to the square of the sphere radius R. 

The sphere is defined by the vertex (usually the center of a luminous body) and 

the center of the surface (usually an aperture detector), see Figure 10. 

The portion of the whole space of a sphere of radius R about a given point (the 

center of the sphere) bounded by a conical surface with its vertex at that point is 

measured by the area cut by the bounding surface from the sphere. 

A solid angle ω defines a sector of unit sphere (R = 1) in analog manner a planar 

angle θ defines the length of an arc on a unit circle (Sharp Corporation, 1993), see 

Figure 11. 

The planar angle is measured in degrees or radians and the solid angle in 

Steradians (sr). 

The solid angle ω of a cone with apex angle 2θ (planar angle), sets a spherical 

cap on the unit sphere with a solid angle: 

ω = 2π (1 – cosθ)      (D01) 

where θ is half the apex angle (Greivenkamp, 2004). 

Solid Angle Equivalent Identities 

As indicated by Zalewski (as cited in Bass, 1994) for R = 1 the equivalence 

identity applies: 

ω = 2π (1 – cosθ) = 4πsin2(θ/2)    (D02) 

The equivalent representations for the solid angle ω can be demonstrated using 

the following trigonometric identity (Cowan, 1982): 

   
 

 
 (1 – cos2θ) = sin2θ      (D03) 
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Now, replacing θ by θ/2 gives: 

 

 
 (1 – cos2θ) = sin2θ 

           
      

 

 
 (1 – cosθ) = sin2(θ/2) 

           
      (1 – cosθ) = 2sin2(θ/2) 

Thus the equation (D03) can be rewritten as: 

(1 – cosθ) = 2sin2(θ/2)     (D04) 

and 2π (1 – cosθ) = 4πsin2(θ/2) as indicated in equation D02. 

For R ≠ 1 the area of the spherical cap is: 

A = 4πR2sin2(θ/2)      (D05) 

although the solid angle is independent of the distance R as by definition: 

ω = A/R2 = 4πsin2(θ/2)     (D06) 

thus an entire sphere, regardless the size of its radius, has a solid angle: 

ω = 4π Steradians = 12.56 sr    (D07) 

Solid Angle Identities Based on Planar Angle Definitions 

Defining the solid angle ω by making reference to θ/2 (half apex angle) as 

indicated by Zalewski (as cited in Bass, 1994) or setting θ as the entire apex angle 

(Ray, 2002), leads to two equivalent definitions. 

If apex angle = 2θ then the solid angle is: 

   ω = 4πsin2(θ/2)       (D08) 

If apex angle = θ   then the solid angle is: 

ω = πsin2(θ)       (D09) 

Both (D08) and (D09) are found alternatively in technical literature and the 

reference used for the apex angle θ has to be figured out first to avoid confusion when 

using derivations and formulae obtained in each reference system. 

The Taylor series (Cowan, 1982) for sinθ and cosθ provide the following 

approximations for small values of the apex angle θ: 
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sinθ = θ - 
  

  
 + 
  

  
 - ….      

        
       sinθ ≈ θ      (D10) 

cosθ = 1 - 
  

  
 + 

  

  
 - ….    

        
       cosθ ≈ 1 - 

  

  
 
          
        ≈ 2(1 - cos θ)   (D11) 

Thus for small apex angle values, the solid angle equations give the same results and: 

ω = 2π (1 – cosθ) ≈ π  = 
  

     
    (D12) 

ω = 4πsin2(θ/2) ≈ 4π(θ/2)2 = π   = 
  

     
   (D13) 

a) (D12) and (D13) are equivalent and  ≈ π()2 is valid for apex angle 2 < 94o 

b) for θ small:  θ2 (see Figure 55, Figure 62 and Table 13) is given by As/R2: 

2θ = 
   

      
  

         
     θ2 = π

   

     
 = 

  

     
 = 

  

  
 = ωs   (D14) 

 

 

Figure 62. The approximation  ≈ π()2 → A (cone cap) ≈ As (flat circle) = πr2 

d1 = 0.2 m   
          
       1 (sr) = 1.41   1 (rad) = 0.6831   ; 21 (o) = 78.3o 

d2 = 2.0 m   
          
       2 (sr) = 0.0141 2 (rad) = 0.0670   ; 22 (o) = 7.7o 

d3 = 20.0 m 
         
      3 (sr) = 0.000141 3 (rad) = 0.0067   ; 23 (o) = 0.77o 
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Table 13 

Solid Angle  - Apex Angle 2 - Validity of  ≈ π()2 Approximation 
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Appendix E 

Radiant Power Transfer from Source to Detector 

Nonimaging optical systems, instead of an object, have a light source and 

instead of an image they have a receiver. 

Instead of an image of the source, the optic produces a prescribed illuminance 

(or irradiance) pattern on the receiver. 

Nonimaging optics are used to describe some of the characteristics of the video 

imaging systems (Chaves, 2008) such as the radiant power transfer from the source to 

the sensor array. 

The intensity I of the radiation is defined as the flux per unit solid angle. The 

radiometric quantity is given in watts per Steradian (W/sr) and the photometric 

quantity in Candelas where 1 cd = 1 lm/sr. 

The radiation flux L per unit projected area and per unit solid angle is called 

radiance and is measured in watts per square meter per Steradian (W/m2·sr). 

The corresponding photometric quantity is the luminance Lv measured in 

Lumens per square meter per Steradian (lm/m2·sr) equal to Candelas per square 

meter (cd/m2). 

Lambertian Source – Uniformly Radiant Areas 

Consider the particular case in which the radiance L (or luminance Lv) of a 

surface A is uniform and constant throughout the whole area. 

A source having a radiance that is uniform across its surface and uniformly 

emits in all directions from its surface is called a Lambertian source as indicated by 

Zalewski (as cited in Bass, 1994). Such a surface (Chavez, 2008) emits or intercepts 

radiation with an intensity pattern following only the cosine law: 

I = LAcosθ       (E01) 
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where: 

LA = Is        (E02) 

θ is the angle in any particular direction with the axle of the surface and for a 

Lambertian source L is constant across its surface so the factor LA is constant. 

Thus the intensity I is only function of the angle θ in a particular direction: 

I = Iscosθ       (E03) 

In practice, if we consider a source located far enough from the observer and 

that the angle θs varies in a small range from θ1 to θ2, as shown in Figure 39 the 

approximation to a Lambertian source is correct. 

Radiant Transfer Between a Circular Source and Detector 

Considering the simpler case of a source and a detector, the radiant flux Φ is 

described by the following equation: 

Φ =  
           

  
dAsdAd      (E04) 

Radiant Transfer Between a Lambertian Source and Detector 

For a Lambertian source the equation (E04) can be simplified, as L = Ls constant 

across the surface and the radiant flux Φ of the source can be described as: 

Φs = Ls 
          

  
dAsdAd     (E05) 

where d is the distance between the source and the detector, and the subscripts s and 

d denote the source and detector, respectively. 

According to Zalewski (as cited in Bass, 1994), it is assumed the detector is 

cosine corrected, i.e. it responds equally to radiation at any point across its surface 

and from any direction. 

For a Lambertian source, the Radiant Exitance Ms is equivalent to: 

Ms[watt/cm2] = π[sr]Ls [watt/cm2·sr]   (E06) 
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so for the source-detector configuration shown in Figure 39, the angle θs = θ2 – θ1 ≈ 0 

then cosθs ≈ 1 where Ls is the Radiance of the Lambertian source. 

The units in the dimensional equations are: 

M by definition   [watt/cm2] 

π   [sr] 

L by definition   [watt/cm2 sr] 

thus: 

πL   [watt/cm2]      (E07) 

A distance source can be approximated to a Lambertian radiator, thus for a 

distance source: 
Ms ≈ πLs       (E08) 

The radiant transfer between a circular source and detector is a particular case 

in common configurations to many optical systems and it is assumed that the centers 

of the source and detector are located along the same optical axis. 

The radius of the Lambertian source and the detector are rs and rd respectively 

and the distance between centers is d, see Figure 50. 

In this case the exact solution of the equation for the radiant flux Φ of a 

Lambertian source is:  

Φs = Ls 
          

  
       = 

          
 

  
     

           
     

      
 
     

   
      

  (E09) 

but        
  = π  

    
  = AsAd thus the equation (E08) can be rearranged as: 

Φs = 
          

 

  
     

           
     

      
 
     

   
      

 = 
       

  
     

           
     

      
 
     

   
      

  (E10) 
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Considering an ideal system in the air (refraction index n = 1) and without 

energy absorption, the principle of energy conservation establishes that the radiance L 

and the Aω product or throughput are conserved (Greivenkamp, 2004). 

Thus the radiant flux Φd falling on the detector equals the radiant flux Φs 

emitted by the source, and the illuminance Ed on the detector can be written as: 

Ed = 
  

  
 = 

     

  
     

           
     

      
 
     

   
      

   (E11) 

This is the fundamental equation to calculate the illuminance Ed on a detector 

from a Lambertian radiator of area As and luminance Ls located at distance d from the 

detector. 

In Table 6 it is shown the calculations for the New Test Set. 

The equation (E11) provides exact figures, but if    
   
  <<    

     
        it can 

be approximated as follows: 

Ed ≈ 
    

  
     

    
 ≈ 
    

  
 ≈ Lsωs    (E12) 

if    >>   
    

  namely, the radii are completely negligible with respect to the distance. 

For a distance d ≥ 20 ft (6 meter) a radiant source seen from a small detector as 

shown in Figure 39 complies with cosθs ≈ 1 and    >>   
    

  so the configuration can 

be approximated to a Lambertian source. 

  

  
 is the solid angle ωs subtended by the area As of the Lambertian source 

having its vortex in the detector see Figure 50, thus: 

Φd ≈ LsAdωs 

Now considering other grouping: 
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 is the solid angle ωd subtended by the area Ad of the detector having its 

vortex in the source see Figure 63, thus: 

Φd ≈ LsAsωd 

which is an alternative equation to describe the radiant flux Φd falling on the detector. 

 

 

 

Figure 63. Solid Angle ωd Subtended by the Detector 

 

 

The detector shown in Figure 63 could be a 1‖ format CCD sensor array of 

dimensions W x H = 12.8 mm x 9.6 mm. 
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So in summary, the radiant flux Φd falling on the detector can be described by 

the following equations: 

Φd ≈ LsAdωs = LsAs ωd      (E13) 

Taking into account that the solid angle ωs subtended by the source at the 

detector is ωs = 4πsin2(θmax/2) the equation (E13) can be written as: 

Φd ≈ LsAsωd = LsAdωs = LsAd4πsin2(θmax/2)  

Thus the irradiance at the detector Ed is: 

Ed = 
  

  
 = Ls4πsin2(θmax/2)     (E14) 

and replacing the relationship LsAdωs = LsAs ωd from equation (E13) into (E14) gives the 

following formula for the irradiance Ed see Figure 56: 

Ed = 
  

  
 ≈ Lsωs = Lsωd

  

  
      (E15) 

If the detector is moved off-axis by a distance x, the ray from As to Ad will then 

be at an angle θx and θx’ with respect to the normal at both surfaces as follows:  

θx = θx’ = θ = atan 
 

 
      (E16) 

The radiant power at a distance x away from the axis decreases by the fourth 

power of the cosine of the angle formed between the normal to the surface and the ray 

so the radiant power at a position x off-axis, according to Zalewski (as cited in Bass, 

1994) can be described by: 

Φx ≈ 
      

  
cos4θx      (E17) 

Thus, the irradiance at the detector using Φd and the cosine-to-the-fourth 

approximation is: 
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Ed = 
  

  
 ≈ Lsωscos4θx = Lsωd

  

  
cos4θx    (E18) 

Consider for instance a geometrical configuration with: 

a) An extended source and a detector in the same axle so θx = 0 

b) The extended source has surface As = 10 cm x 10 cm 

Radiance Ls = 3 W/cm2·sr  

c) The detector is a 1‖ CCD format sensor array of Ad = 12.8 mm x 9.6 mm 

For ease of calculations the CCD dimensions will be approximated to 

 10 mm x 10 mm. 

The detector is located at an axial distance d of 20 ft (610 cm) or further 

from the source. 

These settings define a Lambertian source as θs = 2atan(
    

   

  

  
) = 0.016. 

It has been demonstrated that at if the distance d ≥ 20 ft the power density 

emitted by a radiating surface could be approximated Lambertian if its intensity I can 

be considered constant across the surface. 

Now, if the distance d is increased, for instance to 100 meters, how much power 

will fall on a 1‖ format CCD sensor array? 

First we calculate the solid angle ωd subtended by the area Ad of the detector 

having its vortex in the source, see Figure 63: 

Ad = (10 mm x 10 mm)2 = (10 mm x 10-3 
 

  
)2 = 10-4 m2 

 ωd = Ad/d2 = 10-4 m2/(100 m)2 = 10-8 sr 

We multiply the solid angle ωd by the area As of the source and the radiance Ls of 

the source to obtain the radiant power Φd on the detector: 

 Φd = LsAsωd = 3 (W/cm2sr) x 100 cm2 x 10-8 sr = 3 x 10-6 W = 3μW 
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The radiant power Φd can also be represented as a function of ωs as follows: 

 Φd = LsAsωd = LsAsAd/d2 = LsAdAs/d2 = LsAdωs 

 As = (10 cm x 10 cm) = (10 cm x 10-2 
 

  
)2 = 10-2 m2 

The solid angle ωs subtended by the extended source having its vortex in the 

detector is, see Figure 50: 

 ωs = As /d2 = 10-2 m2/(100 m)2 = 10-6 sr 

Ad = (10 mm x 10 mm) = (10 mm x 10-1 
  

  
)2 = 1 cm2 

Φd = 3 (W/cm2sr) x 1 cm2 x 10-6 sr = 3 x 10-6 W = 3 μW as calculated before. 

Thus, the power Φd from an approximated Lambertian source that falls on the 

detector can be represented as described in equation (E13) by: 

Φd = LsAdωs 

or alternatively by: 

Φd = LsAsωd 

A comparison between the CCD sensor array of a 1‖ format and 2/3‖ format 

shows that the areas Ad of the detectors have the following ratio: 

 Ad2/3 / A1 =  (
 

 
w * 

 

 
h) / (w * h) = 

 

 
  

Thus radiant power transfer from the Lambertian source to a CCD sensor array 

of 2/3‖ format is 4/9 of the power transferred to a 1‖ format: Φd_2/3” /Φd_1” = 4/9  = 

0.445 considering that ωs_2/3” ≈ ωs_1” because d = 100m >> detector width (12.8mm). 

The SNR of the video imaging system if 2/3‖ CCD is used instead of 1‖ will be: 

SNR2/3‖ = 10log10(   
       
      

)    (E19) 

SNR2/3‖ = 10log10(   
       
      

) =10log10(
       

      
) + 10log10(0.445) = SNR1‖ – 3.52 dB 



 

165 

 

SNR2/3‖ = SNR1‖ – 3.52 dB     (E20) 

where Psignal is the useful energy in watts and Pnoise is the noise internally created by 

the CCD and also indicated in watts. 

A comparison between the CCD sensor array of a 2/3‖ format and 1/3‖ format 

shows that the areas Ad of the detectors have the following ratio: 

 Ad_1/3” /Ad_2/3” =  (
 

  
w * 

 

  
h) / (w * h) = 

  

   
  

Radiant Power Transfer from source to a CCD sensor array of 1/3‖ instead of 

2/3‖ format: Φd_1/3” / Φd_2/3” = 36/121 = 0.298. 

The comparative SNR of the video imaging system if 1/3‖ CCD is used will be: 

SNR1/3‖ = 10log10(      
       
      

) = 10log10(
       

      
) + 10log10(0.298) = SNR2/3‖ – 5.25 dB 

SNR1/3‖ = SNR2/3‖ – 5.25 dB    (E21) 

Typical CCDs used for CCTV applications are 1/3‖ and 1/4". So, in this case: 

Ad_1/4 / Ad_1/3 = (
 

 
w * 

 

 
h) / (w * h) = 

 

  
 and Φd_1/4”/Φd_1/3” = 9/16 = 0.5625 

If both sensor arrays have the same fill factor and are manufactured with similar 

technologies, the SNR of the video imaging system using a 1/4‖ CCD will be: 

SNR1/4‖ = 10log10(    
       
      

) =  SNR1/3‖ – 2.5 dB 

SNR1/4‖ = SNR1/3‖ – 2.5 dB     (E22) 

The cumulative SNR decrease of 1/4‖ CCD compared to 1‖ CCD format will be: 

SNR1/4‖ = SNR1‖ - 3.52 - 5.25 - 2.5 dB = SNR1‖ – 11.27 dB 

 In summary, the cumulative SNR decrease between 1/4‖ CCD and 1‖ CCD is: 

SNR1/4‖ = SNR1‖ – 11.27 dB     (E23) 
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Appendix F 

Irradiance Levels at Different Stages of a Video Imaging System 

Considering an ideal lens in the air (refraction index n = 1) and without energy 

absorption, the principle of energy conservation establishes that the radiance L and 

the Aω product or throughput are conserved (Greivenkamp, 2004). 

Thus, in a video imaging system, see Figure 40, the radiant flux Φd falling on 

the detector equals the radiant flux Φlens falling on the lens which equals the radiant 

flux Φs emitted by the source. 

The following approximations (Greivenkamp, 2004) are considered: 

 First-order optics so optical systems are supposed without aberrations 

 Gaussian approximation and paraxial optics equations 

 Objectives are lens element combinations typically used to image distant 

objects and the simple objective is represented by a thin lens. 

 Thin lens is an approximation, so the thickness of the lens is negligible 

because the source is placed a distance d >> f (lens focal distance). 

Thus, a thin lens has optical power but no thickness and the image 

distance q ≈ f (the rear focal length). 

The paraxial equations are approximations based on first order relationships of 

an optical system (Greivenkamp, 2004) that assumes that all ray angles are small, so 

tan  ≈  . However, according to lens manufacturers the paraxial equations are 

sufficiently accurate for the vast majority of situations (Rolyn, n.d.) and are the 

approximations that will be used to derivate the equations for the irradiance levels at 

different stages of the video imaging system. 

It also can be argued that the Gaussian model of ray pencil limitations may not 

be applied in reality because in general the Entrance Pupil and Exit Pupil aberrations 
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are large, but indeed only the centers of the pupils to develop the projection model are 

used (Lenhardt & Kreuznach, 2005). 

Irradiance Elens at the Objective Lens 

The radiant flux either emitted or reflected from a source approximated to a 

Lambertian radiator, see Figure 64, and falling Φlens on the objective lens may be 

calculated by multiplying the radiance Ls of the source by the area of the source As and 

the solid angle of the lens ωlens to obtain: 

Φlens = LsAsωlens      (F01) 

 

 

Figure 64. Solid Angle ωlens Subtended by the Lens 

 

According to Figure 64 and Figure 65 the following equation applies: 

Asωlens = AsAlens/d2 = AlensAs/d2 = Alensωs 
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Figure 65. Solid Angle ωs Subtended by the Source 

 

Hence the radiant power on the lens can be stated as: 

Φlens = LsAsωlens = LsAlensωs = LsAlens4πsin2(θmax/2) (F02) 

because the solid angle ωs subtended by the source at the lens is ωs = 4πsin2(θmax/2) 

and the irradiance at the lens Elens = 
     

     
 = Ls4πsin2(θmax/2) can be approximated by: 

Elens 
       
       Elens ≈ Lsπθ2

max = Lsπ 
 

       
  

 
= Lsπ

  

      
 =Ls

  

      
 = Lsωs (see Figure 55) 

where As ≈ πr2 is the flat area of the circular source cross section instead of its cone 

cap (see earlier derivation of equation (D14) in Appendix D). 

Thus for θ small Elens is given by (see Figure 40): 

Elens ≈ Ls

  

      
     (F03) 
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Irradiance Ed in Terms of the Objective Lens F-Stop  

Taking into account the Lens Equation (Al-Azzawi, 2007) see Figure 66: 

 

 

Figure 66. Image Formation by a Converging Thin Lens 

 

  d: distance between the lens and the object 

  q: distance where the image is located 

The principal axis is calibrated in terms of f units being: 

   f: the lens focal distance 

2f : twice the lens focal distance, etc. 
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The basic equation for thin lenses is: 

 

 
  

 

 
 = 

 

 
 

and 

 

 
   

 

 
  
                 
          q   f 

Also: 

d = 2f 
          
    

 

 
 = 

 

 
 - 

 

  
 = 

 

  
 - 

 

  
 = 

 

  
 
        
   q = f 

then: 

2f ≤ d ≤ ∞ 
        
   2f ≥ q ≥ f 

Cases 1, 2, and 3 in Figure 66 illustrate that if the same object is placed farther 

away, then the image gets smaller and closer to f the focal point of the lens. 

In the limit d   ∞ 
        
   q   f. Optical infinity is considered for d ≥ 20 ft (6 m). 

The irradiance Ed can be described as a function of F-Stop  = 
 

 
 where f is the 

lens focal distance and D is the lens Entrance Pupil, see Figure 40, based on the thin 

lens approximation as follows: 

 Alens ≈ π(
 

 
 )2 then F-Stop  = 

 

 
 
           
     π 

 

 
 
 
= 

   

       
  
           
      

Alens ≈ 
   

       
      (F04) 

Considering that ωs = 4πsin2(θmax/2) the radiant power on the lens can be rewritten as: 

Φlens = LsAsωlens = LsAlensωs = Ls

   

       
4πsin2(θmax/2)  (F05) 

Now, taking into account the Lens Equation (Al-Azzawi, 2007), see Figure 66: 

     
 

 
  

 

 
= 

 

 
       (F06) 
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Considering the geometrical relationship 
  

 
 = 
 

 
 where r and   are the radii of 

the source and detector respectively, see Figure 40, the equation (F06) can be 

rewritten as: 

q = f (1 +
  

 
 ) ≈ f      (F07) 

Thus: 

    q  
       
      f 

 

when   << r the distance q can be approximated to f and the image plane is located at f  
 

Namely, the image plane is located at the focal distance f when the ratio 
  

 
 of 

the radii   and r of the detector surface and the source area is very small. 

Then using equation (F07) q ≈ f  for 
  

 
 << 1 the solid angle ωd, see Figure 40, 

can be approximated as follows: 

ωd ≈ 
  

        
 

 
        (F08) 

The exact equation, see Figure 17, for the solid angle is: ωd = 4πsin2(θmax/2) and 

ωd = 4πsin2(θmax/2) ≈ 
  

        
 

 
      (F09) 

Therefore it can be stated that: 

Ad ≈ (f2 + r’2) 4πsin2(θmax/2)     (F10) 

For a lossless lens: Фd = Фlens and replacing the previous equations in Ed: 

Ed = 
  

  
 = 
     

  
 ≈ 

  
   

       
              

                          
 = 

  
   

       

            
 = 

     

                 
 = 

= 
     

        
            

  = 
   

      
         

   

 
 
  = 
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where in the last part of the equation it has also been used the definition of F-Stop  = 
 

 
  

Thus for 
  

 
 << 1 the illuminance Ed can be approximated as follows: 

Ed = 
  

  
 ≈

   

      
    

   

 
 
       (F11) 

where 2r’ is the sensor array format and D is the lens entrance pupil. 

If the format of the sensor array equals the lens entrance pupil, as it is 

typically the case for surveillance video imaging systems which include a 1/2-format 

fixed objective lens with 1X magnification and 1/2-inch format CCD, then 2r’ = D and 

   Ed = 
  

  
 ≈

   

      
    

   

 
 
  = 

   

      
    

    (F12) 

Irradiance Ed in Terms of Elens and Lens FOV 

Another useful equation for the irradiance level Ed at the lens using Фd = Фlens will 

be deduced: 

Ed = 
  

  
 = 
  

  

     

     
 = 
     

  

     

     
 = 
     

     

     

  
 = Elens

     

  
   (F13) 

Using the thin lens approximation: 
 

Alens = π 
 

 
 
 
 =  

  

      
  

and 

Ad = π    

 
hence: 

    
     

  
 = 

 

      
  

 

  
 
 

= = 
 

 
   

 
      

      (F14)  

According to Figure 40: 

tan (θmax) = 
  

 
 
       
        tan (θmax) ≈ θmax = 

  

 
 
        
    

   

 
 = 2θmax  (F15) 
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and based on the definition of Angle of View, shown in Figure 7, the lens angle of view 

FOV in Figure 40 will be FOV: θ = 2θmax  

Thus: 

      
   

 
 = FOV      (F16) 

and replacing equation (F16) in equation (F14) it gives:  

    
     

  
 = 

 

 
   

 
      

  = 
 

           
     (F17) 

Thus the irradiance Ed at the detector can be indicated as follows: 

Ed = Elens

     

  
 ≈ 

     

           
         (F18) 
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Appendix G 

Summary of Key Equations and Relationships 

Following is a list of key equations and relationships from Appendixes D, E, and F: 

apex angle = θ    ω = πsin2(θ)       (D09) 

apex angle = 2θ  ω = 4πsin2(θ/2)       (D08) 

2θ small (≤ 94o) ωs ≈  θ2 = 
  

  
 = 

  

     
 As (flat) =  r2   (D14) 

Ed = 
  

  
 = 

     

  
     

           
     

      
 
     

   
      

   (E11) 

Ed ≈ 
    

  
     

    
 ≈ 

    

  
 ≈ Lsωs    (E12) 

Φ ≈ LsAdωs = LsAs ωd      (E13) 

Ed = 
  

  
 ≈ Lsωscos4θx = Lsωd

  

  
cos4θx   (E18) 

     Elens ≈ Ls

  

      
      (F03) 

Ed = 
  

  
 ≈

   

      
    

   

 
 
       (F11) 

   Ed = 
  

  
 ≈

   

      
    

   

 
 
  = 

   

      
    

    (F12) 

Ed = Elens

     

  
 ≈ 

     

           
         (F18) 
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