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Dose-dependent Effects of Salmon Calcitonin on Bone Turnover in Ovariectomized Rats 

by 

Beatrice H. Owens 

In the United States, osteoporosis results in about 1.5 million annual fractures, costing 

approximately $15 billion. Calcitonin is safe and effective in slowing osteoporotic bone 

loss, but its effect is transient.  The current studies were designed to explore the dose-

dependent effects of salmon calcitonin on bone turnover in ovariectomized rats and to 

determine if the decrease in therapeutic effectiveness of calcitonin demonstrated over 

time with higher doses is due to oversuppression of bone turnover.  Doses of 5, 15, & 50 

IU/kg BW/day of calcitonin were compared to placebo in 12-week-old ovariectomized 

and sham-ovariectomized Sprague-Dawley rats for 24 weeks.  The spinal bone mineral 

content (BMC) as measured by DXA in ovariectomized subjects receiving 5 & 15 IU/kg 

of calcitonin was not significantly different from sham-ovariectomized subjects, while 

spinal BMC of subjects receiving 50 IU/kg was significantly lower than sham-

ovariectomized subjects (p<0.05).  Femoral BMC of ovariectomized subjects was 

significantly lower than sham-ovariectomized subjects (p<0.05), but no significant 

differences were noted between treatment groups.  Scanning electron microscopy (SEM) 

demonstrated a decrease in number and density of trabeculae and in cortical thickness 

when comparing femurs from ovariectomized with sham-ovariectomized subjects.  SEM 

of subjects receiving 50 IU/kg displayed greater bone loss than other groups. No 

significant differences were noted between groups for levels of urinary helical peptides or 

serum pyridinoline [ELISA], indicators of bone resorption.  Urinary calcium excretion 

[capillary ion electrophoresis] was significantly higher in subjects receiving 50 IU/kg of 
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calcitonin than other ovariectomized subjects (p<0.05). Serum levels of osteocalcin 

[RIA], an indicator of bone formation, were significantly higher in subjects receiving 5 

IU/kg of calcitonin than control subjects and those receiving 50 IU/kg (p<0.05).  

Production of antibodies to calcitonin [ELISA] by subjects in this study did not correlate 

with changes in bone turnover or bone density.  The results of this study do not provide 

evidence higher doses of calcitonin result in oversuppression of bone turnover.  However, 

urinary calcium excretion affected bone resorption in a reverse dose-dependent manner, 

suggesting the calciuric effect may be responsible for less effective outcomes seen with 

higher doses of calcitonin. 
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CHAPTER 1 

INTRODUCTION 

 

 Bone is a complex, dynamic tissue of the human body with both structural and 

metabolic functions.  Structurally the bony skeleton provides a protective framework for 

the vital internal organs as well as allowing for sophisticated bodily motions and 

facilitation of locomotion.  The metabolic function of bone involves its provision of a 

mineral reservoir for many of the body’s vital functions such as muscle contraction, 

transmitting nerve impulses, blood clotting, and cell adhesion (Paulsen 1993; Rubin and 

Rubin 1996). Bone contains 99% of the body’s total calcium, 85% of its phosphorous, 

and 66% of its magnesium.  Another vital physiological function of bone is seen in the 

role of bone marrow as host to precursors of blood cells (Glimcher 1990).  Skeletal tissue 

is constantly adapting to balance these functions. 

 Balance of these functions occurs through the processes of bone resorption and 

bone formation.  In adults these processes are linked together to provide for continuous 

bone homeostasis.  Bone is constantly being resorbed by osteoclasts in order to release 

minerals essential for the metabolic functions of life.  As bone is resorbed osteotropic 

factors stored in the bone matrix are released resulting in activation of osteoblasts.  These 

osteoblasts proceed with formation of new bone to restore the bone mineral necessary for 

the structural functions of bone.  While the osteoblasts are forming bone they secrete 

more osteotropic factors into the newly formed bone matrix.  Due to this coupling 

mechanism between osteoclasts and osteoblasts the body is able to maintain both its 
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structural and metabolic functions.  If these processes become uncoupled and bone 

resorption exceeds bone formation, disorders of bone remodeling, such as osteoporosis, 

occur. The most common cause of osteoporosis in humans is estrogen deficiency. 

 Calcitonin is one of the medications used to treat osteoporosis in postmenopausal 

women.  By binding to the calcitonin surface receptors of the osteoclasts calcitonin 

inhibits osteoclast activity and limits estrogen-deficient bone loss.  However, many 

patients become resistant to the effects of calcitonin, and over time calcitonin appears to 

become less effective at limiting the increased bone resorption induced by estrogen 

deficiency.  It is possible that oversuppression of bone turnover may be responsible for 

this resistance to calcitonin. It is our hypothesis that high doses of salmon calcitonin can 

result in oversuppression of bone turnover. 

  

 

Description of Bone 

The human adult skeleton consists of two types of bones, cortical or compact 

bone and cancellous or trabecular bone.  Cortical bone constitutes approximately 80% of 

the total skeletal mass.  It is characterized by a low surface:volume ratio and is found 

primarily in the shafts of the long bones of the appendicular skeleton and the outer layer 

of most bones.  The remaining 20% of the skeletal mass is cancellous and is found 

primarily in the axial skeleton and in the ends of the long bones.  Cancellous bone, which 

is sometimes referred to as spongy, has a much higher surface:volume ratio than cortical 

bone.  Due to this greater surface:volume ratio, cancellous bone is more responsive to the 
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metabolic needs of the body for calcium and other minerals, and cancellous or trabecular 

bone mass is lost much earlier than cortical bone mass (Edelson and Kleerekeper 1996). 

 Proportions of cortical and cancellous bone vary at different sites of the body and 

may play a role in susceptibility of certain skeletal regions to osteoporotic fracture.  After 

menopause, for instance, there is an increased incidence of Colles fracture in the distal 

1/3 of the wrist in subjects between the ages of 40 and 50.  The most frequent site of 

osteoporotic fracture in subjects ranging from 50-60 years of age is the vertebral column, 

which is predominantly composed of cancellous bone.  More than 66% of the total bone 

of the lumbar spine is cancellous.  In contrast, loss of cortical bone is the major 

predisposing factor for fractures occurring in the hip.  Hip fractures occur more 

commonly in patients older than 60 years of age.  Assessment of the femur reveals a ratio 

of 50% cortical and 50% cancellous bone at the intertrochanteric region, while the neck is 

75% cortical and 25% cancellous.  The mid radius is calculated to be more than 95% 

cortical in nature, the distal 1/3 of the radius is primarily trabecular in nature, with the 

area between these two locations being a mixture of approximately equal portions of 

cortical and trabecular bone (Melton 1997; Mundy 1999).   

These differences are likely due to the differing environments of bone cells in 

cortical vs. cancellous bone.  Cells responsible for bone remodeling on the surfaces of 

cancellous bone are in close contact with the cells producing potent osteotropic cytokines 

in the bone marrow cavity.  Cells in the cortical bone, however, are located more distant 

from the influence of these cytokines and are more susceptible to the influence of 

systemic osteotropic hormones, including parathyroid hormone (PTH) and 1,25-

dihydroxyVitamin D3 (Mundy 1999). 
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 The microstructure of adult compact bone consists primarily of Haversian canals, 

irregular cylindrical units, containing blood vessels, lymph vessels, nerves, and some 

loose connective tissue.  Thin solid layers of concentric bone, referred to as lamellae, 

surround these canals.  A number of small almond-shaped spaces, called lacunae, are 

bound between these lamellae.  These lacunae, which contain the bone cells or 

osteocytes, are connected to one another and to the central Haversian canal system by 

numerous fine radiating channels called canaliculi.  Volkmann’s canals, which house 

blood vessels and nerves, extend transversely through compact bone and connect 

Haversian canals with one another and with the bone surfaces of the marrow cavity 

(Dawson 1974; and Gray’s Anatomy 1980). 

Cancellous bone has a fine 3-dimensional lattice composition resulting in many 

open spaces.  These spaces are connected by branching and anastamosing slips of bone 

called trabeculae or spindles.  These are aligned along the lines of stress of the bone, 

allowing for maximization of the weight-bearing capacity of this type of bone (Paulsen 

1993).  The trabeculae of cancellous bone consist of superimposed fragments of lamellae 

with intervening cement lines and sometimes have small islands of calcified cartilage.  

These trabeculae typically do not have Haversian systems and are not penetrated by 

blood vessels but are literally surrounded by blood.  They receive their nutrients from the 

blood vessels in the marrow around them (Gray’s Anatomy 1980).  

 Bone contains both organic and inorganic (mineral) constituents.  Calcium 

phosphate and calcium carbonate are the most abundant mineral components, with 

calcium fluoride and magnesium chloride being present in smaller quantities.  These 

inorganic components account for about 2/3 of the total weight of mature bone and give 
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the bone its hardness and rigidity (Dawson 1974).  Bone mineral contains numerous 

components making it more soluble than geological hydroxyapatite.  This allows bone to 

act as a reservoir for calcium, phosphate, and magnesium ions (Lian and others 1999). 

The remaining 2/3 of the weight of the bone is composed of organic constituents 

that give the bone its flexibility and elasticity (Dawson 1974).  The predominant 

component of the organic matrix is type I collagen that helps to determine the structural 

organization of bone.  This collagen and the proteins associated with it influence the 

process of bone mineralization.  The constraints of the collagen matrix help to govern the 

growth of the bone mineral crystals as they are deposited onto the matrix.  The size and 

shape of these mineral crystals are regulated in part by the proteins that bind them.  These 

proteins also play a role in recruitment of osteoclasts to the crystal surface (Lian and 

others 1999).  

 

Osteoclasts 

 Osteoclasts are unique and highly specialized cells that are derived from the 

hematopoietic granulocyte-macrophage colony-forming unit lineage.  They are large 

multinucleated cells formed by the fusion of mononuclear cells, resulting in increased 

efficiency per cell at removing bone during the bone remodeling process.  These cells 

have indented nuclei, with prominent nucleoli, abundant mitochondria with large cristae, 

very little rough endoplasmic reticulum, numerous lysosomes, and a large ruffled border 

surrounded by a clear zone.  This clear zone contains actin filaments and tightly attaches 

to the resorption surface anchoring the ruffled border area to the bone surface undergoing 

resorption.  This produces an enclosed space which functions as an extracellular 
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lysosomal space and may be critical to the osteoclast becoming polarized when activated 

just prior to resorption (Rodan and Rodan 1995; Mundy 1999).  Another unique feature 

of mature osteoclasts is their possession of receptors for calcitonin.  Exposure to 

calcitonin causes osteoclasts to retract and loosen from the bone surface (Rubin and 

Rubin 1996). 

 

Osteoblasts 

 Osteoblasts, which are derived from pleuripotent mesenchymal stem cells, 

represent a heterogeneous family of cells that includes mature osteoblasts, osteocytes, 

and the bone lining cells.  Mature osteoblasts are cuboidal in shape and have a single 

large nucleus with several nucleoli, an abundant amount of rough endoplasmic reticulum, 

and a well developed Golgi apparatus (Raisz and Rodan 1990).  Mature osteoblasts form 

a dense layer of cells and work in conjunction with one another to synthesize Type I 

collagen and the proteins of the bone matrix, including osteocalcin, osteopontin, bone 

sialoproteins, and osteonectin.  They are clearly polarized with matrix being produced 

and secreted only on their basal aspect.  Mitotic figures are rarely identified in mature 

secreting osteoblasts, suggesting that they are nondividing cells (Rodan and Rodan 1995).  

Functions of mature osteoblasts include production of the proteins of the bone matrix, 

secretion of growth factors that are stored in the bone matrix, and mineralization of newly 

formed bone matrix.  Through interactions with osteoclasts osteoblasts play a role in 

allowing normal bone resorption to occur (Mundy 1999). 

 When osteoblasts are not actively involved in the formation of bone matrix, they 

are referred to as bone-lining cells.  As bone turnover decreases with age the number of 
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bone-lining cells also appears to decrease.  These are likely to be the most common cells 

found in trabecular bone of adult mammals (Holtrop 1990).  Bone-lining cells are flat, 

thin elongated cells with few organelles and have numerous gaps and spaces between one 

another. 

 

Osteocytes  

 Buried within the mineralized matrix of bone are the stellar-shaped osteocytes.  

These are the most abundant of the bone cells and communicate with one another and 

with cells on the bone surface through dendritic processes in canaliculi (Mundy 1999).  

While the precise function of osteocytes remains unknown, they are ideally located to 

detect changes in bone stress.  Possible functions attributed to osteocytes include 

osteocytic osteolysis, bone formation, and response to mechanical stimuli (Rodan and 

Rodan 1995).  Osteocytes are connected by gap junctions to the osteoblasts allowing for 

communication between bone cells.  Such communication helps explain the coordinated 

activity of teams of osteoblasts during the remodeling cycle (Rodan and Rodan 1995).  

When signaled to do so, the protective bone-lining cells retract from the bone surface in 

order to allow for the attachment of osteoclasts to begin the process of bone resorption 

(Lian and others 1999). 

   

Functions of Bone     

 Although cortical and trabecular bone contain the same cells and matrix elements, 

there are structural and functional differences between these two types of bone.  The 

primary structural difference is due to the amount of calcified substance found in each 
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type of bone.  While 80-90% of the volume of compact bone is calcified, only 15-25% of 

trabecular bone is calcified.  These structural differences predispose each type of bone for 

their specific functional roles.  Functionally, cortical bone fulfills both mechanical and 

protective roles, while the primary function of trabecular bone is metabolic mineral 

exchange (Goodman 1998; Baron 1999). 

 

Bone Physiology 

The skeletal system’s ability to balance structural and metabolic responsibilities is 

made possible by the complex and tightly regulated processes of bone formation and 

bone resorption.  Bone, blood, skin, and intestinal mucosa are tissues that regenerate 

continuously and have the ability to accelerate regeneration after trauma (Raisz and 

Rodan 1990).  Bone is under a constant state of flux with remodeling occurring along 

bone surfaces in focal and discrete packets known as basic multicellular units.  

Remodeling within these packets is separated from other packets geographically and 

chronologically.  Completion of the remodeling process in each packet takes about 3-4 

months, with the process taking longer in cancellous bone than cortical bone (Mundy 

1999). 

Initiation of this remodeling process occurs when osteoclasts on the bone surface 

are activated.  This activation may occur as a result of microdamage to the bone, 

following mechanical stress, or at random. Once activated the osteoclasts create a cavity 

in the bone surface by the production of proteolytic enzymes and hydrogen ions under the 

ruffled border of the cell.  A proton pump transports hydrogen ions across the ruffled 

border and lysosomal enzymes are released by the osteoclasts.  The hydrogen ions 
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produce an environment that is optimal for degradation of the bone matrix by these 

lysosomal enzymes (Mundy 1999). This process of bone resorption lasts about 2 weeks at 

any one spot on the bone surface.  Once this activity is completed, osteoclasts signal 

osteoblasts to travel to the site of bone resorption.  The osteoblasts will be activated to 

produce Type I collagen, which is called an osteoid and begin to fill in the bone cavity.  

When the osteoid is about 6 microns thick, it will begin to mineralize, the process of 

which is partially mediated by subcellular particles known as matrix vesicles enriched in 

alkaline phosphatase. Once the osteoid has mineralized, the new bone formation process 

is complete.  The density of this newly formed bone will continue to increase for months 

after the cavity has been filled as the crystals of mineral are packed more closely (Ott 

03/01/02). 

 

Regulation of Bone Remodeling 

Numerous systemic hormones, as depicted in Fig. 1, including parathyroid 

hormone (PTH), 1,25-dihydroxy Vitamin D, calcitonin, glucocorticoids, estrogens, and 

androgens, as well as local factors such as Interleukin 1(IL-1), Interleukin 6 (IL-6), 

Transforming growth factor (TGF), prostaglandins, Tumor necrosis factor (TNF), 

lymphotoxin, colony stimulating factors, and gamma interferons play a role in regulation 

of the complex bone remodeling process.  PTH, 1,25-dihydroxy Vitamin D, and 

calcitonin are involved in the process of homeostasis and assist in regulating serum 

calcium levels by their actions.  These systemic hormones are under negative feedback 

control and are regulated by concentrations of calcium in extracellular fluid.  Other 
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systemic hormones, such as estrogen and androgen, also influence bone cell function but 

are not under negative feedback control by extracellular fluid calcium (Mundy 1999). 

 

Figure 1  Schematic diagram of select factors that play a role in the bone remodeling 
process 
 

 

Role of Systemic Hormones in Regulation of Bone Remodeling 

 A primary function of PTH is to assist in maintaining serum calcium levels within 

a narrow physiological range, as demonstrated in Fig. 2.  If serum calcium levels tend to 

drop, the parathyroid gland secretes PTH.  Within seconds of being released PTH 

stimulates bone resorption resulting in release of calcium and phosphate for mineral 

homeostasis (Rubin and Rubin 1996).  Minutes after being released PTH increases renal 

tubular calcium reabsorption in attempts to elevate serum calcium levels back to normal.  

A subsequent decrease in serum phosphate concentration occurs as well due to effects of 

PTH on the kidneys (Juppner and others 1999).  If serum PTH levels are low, the kidneys 

hydroxylate 25-hydroxy-cholecalciferol at either the 23 or 24 position resulting in 

production of 23,25 (OH)2 Vitamin D or 24,25 (OH)2  Vitamin D, which are both inactive 

forms.  If PTH blood levels increase, renal 1α-hydroxylase is activated to hydroxylate 
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25-hydroxy-cholecalciferol to create the active 1,25 (OH)2 Vitamin D compound.  By this 

action PTH indirectly regulates the intestinal absorption of calcium.  When active 

Vitamin D is circulating, any calcium in the presence of the gastrointestinal tract is 

quickly reabsorbed (Glowacki 1996).  By each of the above actions PTH will restore 

serum calcium to appropriate levels.  PTH has been shown to have varying effects on 

bone resorption and bone formation depending on the mode of administration.  If 

administered continuously, PTH acts to increase bone resorption by stimulating 

osteoclast activity as described above.  However, if given in intermittent, low doses, its 

stimulatory effects on osteoclasts are less significant, while osteoblast activity remains 

unchanged, or even increases, resulting in a net increase in bone formation (Mundy 

1999). 

 

 

Figure 2  Diagram of the role of PTH to maintain serum calcium levels constant 
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Vitamin D is another systemic hormone that plays a critical role in bone 

remodeling and calcium homeostasis.  Vitamin D is introduced into the body by diet or 

through the skin by the action of ultraviolet rays in sunlight.  In this form Vitamin D is 

biologically inert and must undergo successive hydroxylations in both the liver and the 

kidneys to become the biologically active 1,25-dihydroxy Vitamin D (Holick 1999).  The 

major function of 1,25-dihydroxy Vitamin D is to stimulate renal reabsorption and 

intestinal absorption of calcium resulting in increased serum calcium concentrations 

(Rubin and Rubin 1996). Bone cells also possess receptors for this hormone; however, its 

direct effect on bone remains uncertain.  While it acts to promote differentiation of 

osteoclasts, its effect on osteoblasts is more complex, increasing some osteoblast 

functions such as osteocalcin and alkaline phosphatase synthesis while decreasing other 

osteoblast functions such as collagen synthesis (Glowacki 1996).  While used in the 

treatment of bone disorders, it is not clear whether Vitamin D is effective in treating these 

disorders due to a direct action on bone or by indirect effects via increasing calcium 

availability (Rodan and Rodan 1995). 

 Calcitonin is a peptide hormone secreted by the parafollicular cells or “C” cells of 

the mammalian thyroid gland.  Its secretion is regulated by extracellular fluid calcium 

concentrations so that as serum levels of calcium increase, an increased amount of 

calcitonin is secreted.  Mammalian osteoclasts possess abundant, specific, high-affinity 

receptors for calcitonin (Nicholson and others 1986).  Osteoclasts are the primary, and 

possibly only, target cells for calcitonin in bone (Goodman 1998).   
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Calcitonin inhibits bone resorption by inhibiting osteoclast formation and by 

inhibiting the activity of the mature osteoclast (Mundy 1999).  At the cellular level 

calcitonin causes disappearance of the ruffled border as well as contraction and shrinkage 

of the osteoclasts (Rodan and Rodan 1995).  The kidneys also possess calcitonin 

receptors, with calcitonin acting to inhibit renal tubular reabsorption of calcium 

(Glowacki 1996).  Osteoclasts have a large number of calcitonin receptors, making 

calcitonin a powerful inhibitor of osteoclast activity and thus bone resorption.  However, 

the effects of calcitonin on calcium homeostasis are usually short-lived, lasting only 24-

48 hours.  The physiological role of calcitonin is to regulate the bone resorptive process 

and thus prevent bone loss, at times of stress on calcium conservation, such as pregnancy, 

lactation, and growth (Sexton and others 1999). 

 Glucocorticoids have varying actions depending on the cells involved.  The action 

of glucocorticoids on osteoblasts may be indirect by altering the expression or activity of 

osteoblastic growth factors, or osteoblasts may be directly affected by activating or 

repressing osteoblast gene expression (Kessenich and Rosen 1996).  Glucocorticoids 

directly inhibit osteoblast bone formation while osteoclast bone resorption is stimulated 

indirectly.  This indirect effect of increased bone resorption is due to the actions of 

glucocorticoids to inhibit intestinal calcium absorption and increase urinary calcium 

excretions resulting in increasing PTH levels and concomitant removal of calcium from 

bone.  The deleterious effects of steroids on bone metabolism appear to be both dose- and 

duration-dependent (Edelson and Kleerekoper 1996).  Glucocorticoids also inhibit the 

secretion of gonadotropins, estrogen, and testosterone.  The absence to these hormones 

results in further acceleration of glucocorticoid-induced bone loss (Lukert 1999). 
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 The sex hormones, estrogen and androgen, also play a critical regulatory role in 

bone cell metabolism.  These hormones can affect the skeleton both directly and 

indirectly.  Osteoblasts have estrogen receptors, and elevated estrogen levels lead to an 

increase in osteoblast production (Rubin and Rubin 1996).  Estrogen upregulates insulin-

like growth factor production and TGF-β resulting in osteoblast stimulation.  It also 

downregulates IL-6 expression resulting in a decrease in osteoclast generation (Rodan 

and Rodan 1995).  Bone mass is associated with levels of bioavailable estrogen in both 

men and women.  Estrogen receptors are found in both males and females, and an 

increase in osteoblast-like cell number is induced in both sexes by estrogen.  Removal of 

estrogen causes an increase in bone resorption followed by incomplete restitution of the 

removed bone tissue (Lanyon and others 2004).  While estrogen may be important in 

both men and women, androgen receptors have been found in male osteoblasts and affect 

these cells in a manner similar to estrogen (Rubin and Rubin 1996). 

 Aromatase is a critical enzyme involved in the conversion of androgens into 

estrogen.  Inhibition of the aromatization of androgens into estrogen results in increased 

bone resorption and bone loss.  This bone loss attributed to aromatase inhibition is similar 

to that observed after complete removal of androgens (Vanerschueren and others 1996).  

Selective aromatase inhibitors can suppress estrogen in men.  Also, dual sites of negative 

feedback for estrogen have been identified at the hypothalamus and the pituitary in 

human males (Hayes and others 2000).  Estrogen is critical to bone metabolism.  In fact, 

study of a man with genetic mutation of the P-450 aromatase gene showed that estrogen 

plays a crucial role in skeletal maturation.  In this case estrogen therapy was more 
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effective than androgen therapy for skeletal growth and bone maturation (Carani and 

others 1997).  

 

Role of Local Factors in Regulation of Bone Remodeling 

 Local factors also play an important role in the regulation of bone homeostasis, as 

depicted in Fig. 3.  Lymphotoxin, TNF, IL-1, and IL-6 are potent stimulators of 

osteoclast bone resorption (Mundy 1999).  TGF along with other growth factors are 

powerful stimulators of bone formation (Rodan and Rodan 1995; Mundy 1999) and are 

thus critical for bone formation, remodeling, and repair (Rubin and Rubin 1996).  Gamma 

interferon and IL-4 act to inhibit osteoclast bone resorption (Mundy 1999).  

Prostaglandins can stimulate both bone formation and resorption (Glowacki 1996; Rubin 

and Rubin 1996). 
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Figure 3  Schematic diagram of stimulatory (+) and inhibitory (-) factors that influence 
osteoclasts (OC) and osteoblasts (OB) 
 

 TNF and lymphotoxin are related multifunctional cytokines that stimulate 

osteoclastic bone resorption.  Both stimulate formation of new osteoclasts from 

precursors as well as indirectly activate mature osteoclasts (Mundy 1999).  IL-1 is a 

powerful and potent stimulator of osteoclastic bone resorption.  The effects of IL-1 on 

OC 

+
+ 

+ 
+ 

+

_ 

_ 

OB +
+

+

+
_ 



 30

osteoclastic bone resorption occur at multiple sites in the osteoclast lineage.  It stimulates 

osteoclast formation, influences differentiation of osteoclast progenitor cells, and may 

also activate mature osteoclast cells.  IL-1, when administered for short periods of time, 

stimulates osteoblast cells as well.  However, prolonged exposure probably causes 

inhibition of new bone formation by inhibiting osteoblast differentiation (Raisz and 

Rodan 1990).  IL-6 enhances bone resorption by increasing formation of new osteoclasts 

from precursors (Mundy 1999). 

 Growth factors are polypeptides that have multiple effects on their target cells.  

However, their precise role in bone repair and remodeling remains uncertain.  Growth 

hormone is produced in the pituitary gland and is essential for skeletal longitudinal 

growth (Rodan and Rodan 1995).  Deficiency of growth hormone in children results in 

impaired skeletal growth, but its role in maintenance of skeletal mass in adults is not well 

established (Raisz and Rodan 1990). TGF-β is one of the most abundant of the known 

bone growth regulatory factors.  Bone is the major storage site for this growth regulatory 

factor that is a powerful stimulator of bone formation.  TGF-β causes a significant 

increase in new bone formation, although its stimulatory effects on bone formation are 

most pronounced when exposure to TGF-β is transient (Mundy 1999). 

 Gamma interferon is a powerful inhibitor of osteoclastic bone resorption.  It acts 

to inhibit formation and differentiation of osteoclasts from their precursor cells.  

However, use as an inhibitor in vivo has been limited due to its toxicity.  IL-4 also 

inhibits bone resorption by inhibiting formation of osteoclasts from their precursors 

(Mundy 1999). 
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 Prostaglandins have multiple effects of bone cells.  Studies have shown 

Prostaglandin E2 (PGE2) plays a role in a variety of aspects related to bone metabolism.  

It has been implicated to react as a modulator in response to mechanical stimuli, fracture 

repair, inflammatory responses, and possibly in normal remodeling (Rodan and Rodan 

1995).  Other researchers have assessed that the nature of the effect of prostaglandin may 

depend on its location.  PGE2 produced in the bone marrow has its greatest effect on 

osteoclast precursors resulting in increased bone resorption.  In contrast, when produced 

in the periosteum PGE2 acts to stimulate bone formation due to a greater effect on 

preosteoblasts (Raisz and Rodan 1990).  

 

Chronological Changes in Bone 

 Bone is dynamic tissue, being continually broken down and reformed in discrete 

packets throughout the skeleton by the coordinated actions of osteoblasts and osteoclasts 

(Mundy 1999).  During early skeletal development and throughout adolescence the net 

activity of osteoblasts is greater than that of osteoclasts allowing for skeletal growth and 

maturity (Puri 08/13/04).  Once peak bone mass is reached in adulthood, the rate of 

overall activity of bone formation is equal to bone resorption.  At this stage of 

development the processes of bone formation and bone resorption are homeostatically 

linked resulting in rates of formation and resorption changing in the same direction and 

bone mass remaining constant.   If both processes are accelerated, there is a high 

remodeling rate, and if both processes are decelerated, there is a low remodeling rate 

(Greenfield 1986). 
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 This homeostatic linkage is a result of bone resorption, in the process of bone 

remodeling, being precisely coupled with bone formation, as depicted in Fig. 4.  The 

sequence of events in remodeling typically is initiated when osteoclasts are activated 

resulting in bone resorption followed by osteoblast activation resulting in bone formation. 

 
Figure 4  Schematic diagram of the coupling mechanism linking osteoclasts and 
osteoblasts 
  

Although osteoclasts appear to initiate the process of bone remodeling, they are 

substantially influenced by the activity of osteoblasts (Lanyon and others 2004).  

Osteoblasts secrete a variety of osteotropic factors including autocrine and paracrine 

growth factors during the process of osteogenesis.  These osteotropic factors are trapped 

and stored in the bone matrix and subsequently released by osteoclasts as they resorb the 

bone matrix.  Once these factors are released, they promote differentiation of osteoblasts 

and activate quiescent osteoblasts (Goodman 1998).  Although the precise chemical 

composition of the agents responsible for coupling is unknown, osteotropic factors that 

may be involved in the coupling phenomenon of bone remodeling include TGF-β, BMPs, 

IGF-I and II, platelet-derived growth factor, and heparin-binding fibroblast growth 

factors (Greenfield 1986; Mundy 1999). 

.
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As shown in Fig. 5, at about age 35 bone mass begins to gradually decrease as a 

result of the rate of bone resorption exceeding the rate of bone formation.  This decrease 

in bone mass is gradual prior to menopause and is accelerated in the postmenopausal state 

due to estrogen deficiency (Greenfield 1986).   

Figure 5  Graph depicting age-associated changes in bone mass 

 

An age-related increase in PTH levels, along with osteoblast senescence, contributes to 

the slow phase of bone loss seen with aging in both men and women.  In some 

postmenopausal women there is a rapid phase of bone loss lasting about 5 years due to 

estrogen deficiency.  These patients are referred to as “fast losers” and experience up to 

5% bone loss per year for about 5 years followed by continued loss of about 1-2% per 

year thereafter.  Other postmenopausal patients undergo a continued, gradual loss of bone 

at a rate of about 1-2% per year.  The major effect of estrogen deficiency is to increase 

the rate of initiation of new bone remodeling cycles, also known as activation frequency.  

This increase in activation frequency results in magnification of the remodeling 

imbalance already produced by the normal aging process (Eastell 1999). 
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Disorders of Bone Remodeling 

During the process of remodeling, if the amount of bone resorbed equals the 

amount of bone formed, bone mass remains at a stable level.  This balance is maintained 

primarily by the coupling effect between osteoclasts and osteoblasts.  As shown in Fig. 6, 

if the cycle of the remodeling process is uncoupled, because of enhanced recruitment of 

osteoclasts or impairment of osteoblastic activity, bone resorption exceeds bone 

formation (Kessenich and Rosen 1996).  A variety of disorders including Paget’s disease, 

osteopenia, osteomalacia, osteopetrosis, and osteoporosis can result from such disorders 

of bone homeostasis. 

Paget’s disease is an interesting focal disorder affecting predominantly weight-

bearing bones and the skull. It is characterized initially by focal excessive bone resorption 

followed by rapid and excessive bone formation and disordered bone remodeling.  The 

deformity is the result of mechanical stress. The tibia, for instance, bends anteriorly while 

the femur bends in the lateral direction because the abductor muscles are weaker in 

comparison to the other muscle groups surrounding the femur.  When the skull is 

affected, bony enlargement may trap the nerves as they cruise through bony foramina.  

Particularly susceptible are cranial nerves II, V, VII, and VIII (Hamdy 1981).  Rates of 

remodeling can be increased by as much as 100-fold with imperfect coupling between 

bone resorption and bone formation.  This results in focal bony enlargement.  The bones, 

however, are mechanically weak and may fracture readily.  Overt fractures are often 

preceded by stress fractures.   The newly formed bone in Paget’s disease is disorganized 

and often described as mosaic in orientation.  It has an irregular pattern of immature 

woven collagen matrix (Singer and Krane 1990; Mundy 1999).   
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Figure 6  Schematic description of the balance between osteoclast (OC) activity and 
osteoblast (OB) activity in normal vs. osteoporotic states.  When levels of active 
osteoclasts and osteoblasts are equal, bone remodeling remains homeostatic.  However, if 
osteoclast activity exceeds osteoblast activity, development of osteoporosis occurs.  
 

Osteopenia is a term that denotes a decrease in bone formation relative to bone 

resorption.  Clinically bone densitometry using dual energy x-ray absorptiometry (DXA) 

is used to measure bone mass and assess effects of such an imbalance between bone 

formation and bone resorption.  T-scores are used to designate the standard deviation 

below the bone density of a “healthy” young adult of the same sex, body build, and often 

ethnicity of the tested subject.  Similarly, Z-scores are used to designate the standard 

deviations the tested subject would be below the bone density of an average human of the 

same age, sex, body mass index, and often ethnic group (Messinger-Rappaport and 

Thacker 2002).  The World Health Organization (WHO) has defined a normal 

measurement to be a T-score less than 1 standard deviation from a “normal” young adult 

mean value.  Osteopenia is defined as a T-score between 1 and 2.5 standard deviations 

below a “normal” young adult mean value.  Those with a T-score at or below 2.5 

Osteoporosis 
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standard deviations less than a “normal” young adult mean value are considered 

osteoporotic (Kanis and others 1997).  The measurements referred to in the WHO 

definition are obtained by DXA of the hips and spine and cannot automatically be applied 

to other bone sites or other measurement techniques (WHO 1994).  Histologically, 

osteoporosis is characterized by a decrease in number and density of the trabeculae in 

relation to the total area of the histological section, while the ratio of mineral to organic 

matrix approximates that of normal bone, and architectural deterioration of the bone 

tissue is noted.  In contrast, osteomalacia results in a low ratio of mineral to organic 

matrix, while total bone mass may be normal, decreased, or even increased (Avioli and 

Lindsay 1990). 

 

Osteoporosis 

 

Description of Osteoporosis 

The disorder of bone homeostasis known as osteoporosis can occur as a result of 

calcium deficiency, immobilization, or estrogen deficiency (Hartke 1998).  Osteoporosis 

is defined as ‘a progressive systematic skeletal disease characterized by low bone mass 

and microarchitectural deterioration of bone tissue, with a consequent increase in bone 

fragility and susceptibility to fracture’ (Consensus Development Conference 1993).  

There is a significant decrease in cortical thickness as well as a decrease in the number 

and size of the trabeculae with osteoporosis; however, there is no defect in mineralization 

or abnormality in the organic matrix structure noted (Lavine 1998).  In humans 

osteoporosis occurs most frequently in postmenopausal women due to estrogen 
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deficiency.  Peak bone mass is attained between the ages of 18 & 35 years.  Once peak 

bone mass has been reached, women lose 0.25-1% of bone per year prior to menopause 

and 2-5% per year after menopause while men lose 0.25-1% per year.  Therefore, men 

will experience a skeletal bone loss of 20-30% over their lifetime, while postmenopausal 

women suffer approximately a 15% loss every 10 years.  The greater surface:volume 

ratio of cancellous bone causes it to be more susceptible to the deleterious effects of bone 

remodeling.  Therefore, cancellous bone mass is lost much earlier than cortical bone mass 

(Edelson and Kleerekoper 1996).   

 In 1947 Albright described two types of osteoporosis; one related to 

postmenopausal gonadal deficiency and a second type related to a senile decrement of 

adrenal androgen production (Albright 1947).  Riggs and others also described two 

distinct types of osteoporosis that they prefer to refer to as Type I and Type II 

osteoporosis.  They describe Type I osteoporosis as “high turnover”, which occurs in 

postmenopausal women who are 51-62 years of age, and is due to estrogen deficiency.  In 

this subset of osteoporotic women, bone resorption and bone formation are both 

occurring rapidly in a coupled fashion; however, there is a greater increase in bone 

resorption as compared to bone formation.  The greatest loss in bone with Type I 

osteoporosis is seen in cancellous or trabecular bone, and it is characterized by increased 

incidence of vertebral and wrist fractures (Riggs and Melton 1983). 

 Type II osteoporosis is referred to as senile-type osteoporosis and is due to age-

related bone changes including impaired bone formation and secondary 

hyperparathyroidism.  Bone loss with Type II osteoporosis is due to a relative deficiency 

of bone formation while the rate of bone resorption remains normal.  While bone loss 
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with Type II or senile-type osteoporosis is relatively universal, occurring in both cortical 

and cancellous bone, Riggs and others, found it to be characterized by increased 

frequency of hip fractures along with fractures of the proximal humerus, proximal tibia, 

and the pelvis (Riggs and Melton 1983). 

 

Factors Affecting Osteoporosis 

 Several risk factors associated with development of osteoporosis have been 

identified and can be categorized as either non-modifiable or modifiable, as indicated in 

Fig. 7.  The modifiable risk factors can be further categorized as lifestyle risks, diseases, 

and medications that contribute to the development of osteoporosis.  The ability of these 

clinical risk factors to predict fractures due to osteoporosis is good (Cummings and others 

1995; Klotzbuecher and others 2000). 

 

Figure 7  Select common risk factors for osteoporosis 

 

Osteoporosis Risk Factors

Medications:
Corticosteroids
Loop diuretics
Cytotoxics,

immunosuppressants
Anticonvulsants

Non-modifiable:
Sex  Race
Age  Family history
Menarche  Menopause
Body Frame  Fracture

Modifiable:
Calcium intake      Exercise
Smoking        Caffeine
Alcohol abuse        Sodas
Low body weight (< 127 lbs)

Diseases:
Hyperparathyroidism
Cushing’s disease
Anorexia nervosa
Female athlete syndrome
Hyperthyroidism
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Non-modifiable Factors Affecting Osteoporosis.  Several non-modifiable primary 

factors, including gender, advancing age, Caucasian or Asian race, early or premature 

menopause, thin/petite body size, low body mass index (height/weight), and family 

history of a first degree relative with osteoporosis have been associated with an increased 

risk of osteoporosis. The physical characteristics of the subject’s bone, including density 

(mass), size, geometry, microarchitecture, and composition also impact the relative risk 

for development of osteoporosis (Wasnich 1999).  The ages at which females begin 

menstruation and menopause are also factors that influence the development of 

osteoporosis.  The shorter the period of time between menarche and menopause, the 

higher the subject’s risk for development of osteoporosis (Kenny and Raisz 2002). 

 

Modifiable Factors Affecting Osteoporosis. Modifiable factors that contribute to 

development of osteoporosis include calcium deficiency, cigarette smoking, excessive 

alcohol consumption, and lack or decrease in physical activity (Edelson and Kleerekoper 

1996).  The relative contribution of these individual risk factors is greatly influenced by 

the age at which they are expressed.  Environmental factors affecting the development or 

progression of osteoporosis, such as diet and exercise, have been of interest to many 

researchers.  Deficiencies of dietary calcium and Vitamin D are associated with an 

increased risk of bone loss premenopausally and an increased risk of developing 

osteoporosis postmenopausally (Edelson and Kleerekoper 1996).  Calcium rich dairy 

products and soy, a rich source of phytoestrogens, have been studied for possible 

beneficial effects in persons with osteoporosis.  However, Muhlbauer and others found a 

mixture of vegetables to be more effective for inhibition of bone resorption.  Rats that 
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ingested a mixture of vegetables showed less bone resorption than did those ingesting 

soybeans or even milk powder.  They also demonstrated onion to be especially beneficial 

in inhibiting bone resorption and, therefore, increasing bone mass.  The mechanisms 

responsible for these benefits were not identified by the authors (Muhlbauer 1999).   

Several diseases and use of certain medications are correlated with increased risk 

of developing osteoporosis.  Deficiency of endogenous hormones (estrogen or androgen) 

and chronic diseases such as gastrectomy, cirrhosis, hyperthyroidism, hypercortisolism, 

and rheumatoid arthritis are considered risk factors for osteoporosis (Wasnich 1999). 

Other disorders associated with osteoporosis include stroke, hyperparathyroidism, and 

osteoarthrosis (Johansson and others 2004).  A study of patients with alcoholic liver 

disease revealed a decrease in osteoblast activity in persons consuming 100 grams of 

ethanol or more per day versus a control group.  Their findings showed that ingestion of 

ethanol causes osteoblastic dysfunction resulting in diminished bone formation and 

reduced bone mineralization and may, therefore, play a role in the development and/or 

progression of osteoporosis in alcoholic patients (Diamond and others 1989).  Calcium 

poor diets and long term use of anti-epileptics or corticosteroids are also associated with 

an increased risk of osteoporosis (Wasnich 1999). 

 

Histological Analysis of Bone Turnover 

After processing and sectioning of bone specimens, various cells can be identified 

by use of histochemical staining.  The number of osteoclasts present can be counted in a 

bone section by identifying the red cytoplasmic staining of cells expressing TRAP.  The 

number of osteoblasts in a processed bone section can be estimated by counting the 
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number of cells stained with Von Kossa (Amling and others 1999).  Histomorphometry 

can also give insight into the cellular activity associated with bone remodeling.  The 

Osteomeasure histomorphometry system (Osteometrics, Inc., Atlanta, GA) analyzes bone 

turnover (%), bone volume (%), osteoid volume (%), osteoid surface (%), osteoid width 

(microns), trabecular width (microns), trabecular number (per mm), trabecular spacing 

(microns), osteoblast surface per bone surface (%), osteoblast number per bone perimeter 

(per mm), osteoclast surface per bone surface (%), osteoclasts number per bone perimeter 

(per mm), and growth plate thickness (microns) in undecalcified specimens embedded in 

methyl methacrylate (Parfitt and others 1987).  Scanning electron microscopy is also 

beneficial to observe gross histological differences between specimens. 

 

Analysis of Bone Quality 

Bone mass and biomechanical strength are gross measurements of changes in 

bone quality and may provide data to predict risk of fractures. Current means available 

for measurement of bone mass and strength include geometric measurements of bone 

length and/or width, bone ash measurements, and three-point bending analysis.  

Anatomical length of the femur can be measured with a micrometer.  To measure bone 

ash bones are ashed in a muffled furnace, the bone ash weighed, and the weight/length 

(mg/mm) calculated (Yamamoto and others, 1998).  Bone can also be secured into a 

cantilever bending test device and loaded at a constant rate until failure of the bone is 

achieved.  Bending force to failure and maximum displacement can then be determined 

by displacement curves (Amling and others 1999; Ducy and others 2000). 
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 Each of these measurement techniques is useful and commonly used to assess 

bone quality in experimental animals.  Other measurement techniques, including 

biochemical markers and bone densitometry, are also used in studies involving 

experimental animals as well as studies involving human subjects.  Bone biochemical 

markers help to assess the balance between bone resorption and bone formation.  They 

are not valuable for prediction of bone mass for a given subject.  The ability of clinical 

risk factors to predict bone mass is also poor and risk factor assessment cannot replace 

measurement of bone density for diagnosis of osteoporosis (Ribot and others 1995; Watts 

and others 2001).  DXA and quantitative computed tomography (qCT) are two methods 

currently available for generation of data measuring bone density.   

DXA is a convenient way to monitor bone mass changes.  Accuracy is a reflection 

of how well a measurement technique predicts the true value.  The true value of bone 

mineral is ash weight, and DXA is able to predict ash weight with >95% accuracy 

(Genant and others 1996).  Precision is a reflection of reproducibility of results.  In 

experienced hands, precision of DXA can be as high as 97%.  Knowledge of the 

precision error is essential for determining if a follow-up measurement shows evidence of 

a statistically significant change (Blake and Fogelman 2001).  Direct measurement of 

bone mineral density (BMD) by DXA is, therefore, extremely effective for diagnosis of 

bone disorders and assessment of bone mass (Khosla and Kleerekoper 1999).   

Due to its accuracy and cost effectiveness DXA is the most widely used method 

for bone density measurement (Gertner 1999).  DXA can be used to determine whole-

body composition (lean body mass, fat, and mineral) as well as the bone mineral content 

(BMC) of multiple skeletal sites.  Analysis of absorption at two different energies and 
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determination of the ratio of attenuation of the high and low energies allows for 

calculation of the amount of bone mineral, soft tissue, and fat without need of a constant 

body-part thickness (Shore and Poznanski 1999). 

Use of bone mineral measurements to estimate fracture risk is comparable to use 

of blood pressure readings to assess risk of stroke or serum cholesterol levels to predict 

coronary artery disease.  Just as a patient is diagnosed as hypertensive if their blood 

pressure exceeds a cut-off level, so the diagnosis of osteoporosis is based on a bone 

mineral value that is below a cut-off threshold.  Although these thresholds are unable to 

discriminate absolutely who will suffer a stroke or fracture, they are useful for prediction 

of risk of these incidents occurring (Kanis and others 1997).  

In assessing response to treatment, research studies have typically used 

densitometry scans of the spine and hips because of the clinical importance of fractures at 

both of these sites, while some studies have also included total-body BMD to show 

effects of treatment across the whole skeleton (Blake and Fogelman 2001).  Due to the 

high correlation between changes in BMD and fracture reduction in clinical trials of 

antiresorptive agents, BMD is widely used to monitor response to therapy (Altkorn and 

Vokes 2001).  Response between skeletal sites varies with antiresorptive therapy with 

greater changes in bone densitometry measurements being noted at the lumbar spine than 

the femoral neck or forearm.  This difference in response between skeletal sites is partly 

explained by the greater effect of antiosteoporotic agents on trabecular bone, which has a 

higher turnover rate, than on cortical bone, which has a lower turnover rate (Kanis and 

others 1997). 
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Clinically benefits of DXA include low radiation dose, usefulness in evaluating 

multiple sites, and ease of use (Kenny and Raisz 2002).  One of the major advantages of 

DXA is its ability to measure skeletal density at sites other than the extremities.  The 

lumbar spine and proximal femur are the most common sites of osteoporotic fractures; 

therefore, measurement of bone density in these areas is especially beneficial (Shore and 

Poznanski 1999).  DXA scans are beneficial for identifying patients at high risk of 

fragility fracture as well as providing information necessary for diagnosis of osteoporosis 

(Blake and Fogelman 2001).  BMD is measured by DXA and fracture risk is increased 

when BMD is decreased (Cefalu 2004). DXA scans are beneficial for monitoring the 

response of patients undergoing treatment in longitudinal studies (Blake and Fogelman 

2001).  Finally, DXA is able to measure overall changes in bone mineral status by its 

ability to assess both the cortical and trabecular components of bone. Due to the 

differences in bone mineralization of cortical and trabecular bone examination of both 

types of bone is necessary for adequate evaluation of overall bone mineral status (Shore 

and Poznanski 1999). 

DXA has been shown to provide precise, accurate, and valid measurements of 

bone mineral by a variety of researchers.  The PIXImus Mouse Densitometer is a device 

that allows for accurate and precise measurement of Bone Mineral Content (BMC) and 

Bone Mineral Density (BMD) for small animals or bone pieces weighing less than 50 

grams.  As well as total body analysis, specific regional analysis can be separated out for 

the spine or femur (Coleman and others 1999; Donahue and others 1999; Nagy and others 

1999; Samuels and others 1999).  Adaptive computer software is also available for 
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analysis of bone densitometry scans on small animals when performed on other 

densitometers. 

QCT uses computed tomography (CT) scanning to measure bone mineral.  A 

phantom with known concentrations of hydroxyapatite is scanned simultaneous to the 

subject, and attenuation numbers for specific regions of interest from the CT scan of the 

subject is compared to this control.  The region of interest of bone mineral measurement 

with qCT is a well-defined volume and can allow for measurement of trabecular bone 

without including measurement of cortical bone.  QCT measures bone mineral as a true 

volume density (g/cm3) and is, therefore, less influenced by the size of the bone (Shore 

and Poznanski 1999).  While qCT gives a true bone density measurement (mass/unit 

volume), it is more costly than DXA and fewer normative data are available for reference 

(Gertner 1999).   

 

Measurement of Urinary Calcium Excretion 

Dietary calcium intake varies widely among individuals.  However, the average 

diet should include a recommended daily intake of 1000-1200 mg/day of calcium.  Only 

about 1/3 of the calcium ingested is absorbed from the gastrointestinal tract, with the 

remainder being excreted in the feces.  The calcium absorbed by the gastrointestinal tract 

is eventually eliminated primarily via urine.  However, only about 1% of the calcium 

filtered through the kidneys is actually excreted.  The remaining 99% is reabsorbed in the 

proximal and distal tubules as well as the loop of Henle.  This reabsorbed calcium is then 

returned to the plasma.  Regulation of urinary calcium excretion occurs primarily at the 

distal tubule.  PTH is an important regulator of plasma calcium concentration.  When 
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serum calcium levels are too low, PTH stimulates calcium reabsorption in the distal 

tubules.  By stimulating calcium reabsorption PTH lowers urinary calcium concentration 

(Rhoades and Tanner 1995). 

The concentration of calcium in the urine will vary as demands for calcium 

reabsorption fluctuates during the bone remodeling process.  Levels of calcium excreted 

in the urine can be measured by capillary ion analysis (CIA).  CIA is ‘an adaptation of 

capillary ion electrophoresis to a particular electrophoretic analysis of highly mobile, low 

molecular weight ions.’  Improvements in CIA have made it a desirable technique for 

analysis of minute ion concentrations in biological specimens (Creson and others 1998; 

Ferslew and others 1998).  When performing CIA, an aqueous solution of electrolytes is 

drawn by hydrostatic sampling into a capillary and voltage is applied resulting in 

migration of ions toward the oppositely charged electrodes via electroosmotic flow.  The 

mobility or migration of ions in this electrolyte solution is directly proportional to the 

ion’s conductance and is, therefore, related to the ratio of the ion’s net charge to ionic 

size in solution.  Due to differences in ionic mobility, ions will be separated as they 

migrate through the capillary.  Preestablished concentrations of an ion with known 

migration time are added to the solution for use as controls.  Ions are identified by their 

relative migration time and interpolation of the relative peak size for each ion is used for 

quantitation (Ferslew and Hagardorn 2000). 
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Measurement of Bone Turnover 

 

Biochemical Analyses of Bone Resorption 

Biochemical analysis of bone resorption is possible through various serum and 

urinary markers.  Osteoclasts contain an acid phosphatase, which is resistant to inhibition 

by tartrate and is released into the circulation.  This tartrate resistant acid phosphatase 

(TRAP), a reflection of bone resorption, can be measured by ELISA in serum samples 

(Hughes and others 1995; Hughes and others 1996). However, TRAP found in serum is 

not stable in frozen samples and is not entirely specific for the osteoclast.  These 

limitations have hindered the effectiveness of TRAP as a clinical determinant for 

assessment of bone resorption.  However, recent advancements in development of 

immunoassays utilizing monoclonal antibodies specific for the bone isoenzyme of TRAP 

may assist in improving its clinical utility (Khosla and Kleerekoper 1999). 

Pyridinoline and deoxypyridinoline are the two major types of amino acids found 

in the stabilizing crosslinks of collagen fibers in bone.  When bone matrix is degraded by 

osteoclasts, pyridinoline and deoxypyridinoline are released from mature collagen into 

the circulation and excreted into the urine.  The ratio or proportion of free:total crosslinks 

appears to be constant in healthy individuals as well as those with metabolic bone 

disorders and arthritis (Gomez and others 1996).  Improvements in immunoassay 

sensitivity have allowed for measurement of free pyridinoline levels in serum and, 

therefore, provide a method of analyzing collagen degradation in bone and cartilage 

(Urena and others 1995; Visor and others 1996).  A peptide derived from the helical 
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region of the α1 chain containing residues 620-633 has been isolated from the urine of a 

patient with Paget’s disease.  A synthetic version of this peptide has been utilized as an 

immunogen, allowing for production of monoclonal antibodies.  A competitive 

immunoassay has been developed to measure this helical peptide and is a good marker of 

bone resorption and a sensitive indication of efficacy of antiresorptive effects of a 

bisphosphonate (Kamel and others 1995; Ju and others 1997). 

 

Biochemical Analyses of Bone Formation  

Osteocalcin is a 50 amino acid peptide and has been identified as the major 

noncollagenous protein found in bone.  It contains three gamma carboxyglutamic acid 

(GLA) residues and is sometimes referred to as bone gla-protein or BGP.  These GLA 

residues enable osteocalcin to bind with strong affinity to hydroxyapatite and calcium.  

Osteocalcin is primarily found in osteoblasts and, after synthesis, is partly incorporated 

into the bone matrix and partly released into the circulatory system.  In a study by Ducy 

and others (1996) using osteocalcin-deficient mice, it was determined that the absence of 

osteocalcin leads to an increase in bone formation without impairing bone resorption.  

Their findings support the evidence that measurement of circulating osteocalcin is a 

determinant and specific marker of bone formation.  Although widely accepted as a 

marker for bone formation one should keep in mind that osteocalcin is incorporated into 

the bone matrix and released into the circulation during bone resorption.  Therefore, at 

any point in time the serum concentration of osteocalcin contains components of both 

bone formation and bone resorption (Khosla and Kleerekoper 1999). 
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Limitations of Biochemical Markers of Bone Turnover  

Although biochemical markers are commonly used for measurement of bone 

formation and bone resorption, there are several major limitations for their use in this 

capacity.  Currently available urinary markers for bone resorption are generally 

normalized to creatinine excretion.  Therefore, variability in creatinine measurements 

contributes to overall variability in measurement of the urinary markers.  Artifactual 

changes in urinary markers may potentially occur based on alterations in muscle mass.  

The timing of sampling is important to many bone-turnover markers having circadian 

rhythms.  All urinary bone resorption markers have significant circadian patterns; 

therefore, it is best to obtain a 24-hour urine collection.  Finally, biochemical markers of 

bone turnover are subject to technical variability due to intra and interassay variability as 

well as biological variability of individual subjects.  Changes in markers of bone 

resorption occur prior to measurable changes in bone formation markers.  Despite these 

limitations, in postmenopausal women biochemical markers of bone turnover correlate 

with histomorphometric indices of bone turnover, rates of bone loss, and fracture risk.  

Currently these markers are used as an adjunct to Dual-energy densitometry (DXA) for 

estimation of fracture risk, to assist with the evaluation of unexplained osteoporosis, and 

to monitor the response to therapy. (Khosla and Kleerekoper 1999). 

 

Tetracycline Double Labeling 

While a variety of techniques are available for measurement of bone formation 

and bone resorption, double labeling of bone with fluorochrome labels is a useful 

technique for assessment of dynamic bone growth. Tetracycline HCl and calcein green 
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are fluorochromes commonly used for double-fluorochrome labeling.  When 

administered intramuscularly or subcutaneously these labels bind to newly formed bone 

at the bone/osteoid interface.  If these labels are administered at interval time periods, 

bone biopsies can be used to assess dynamic bone growth.  Biopsies are processed and 

thinly sliced sections analyzed under fluorescent microscopy.  In the presence of 

fluorescent light each marker will appear as a fluorescent line.  Measurement of the 

distance between the two lines will indicate the amount of bone formation that has 

occurred during the time elapsed between drug administrations (Weinstein and others 

1998; Mundy and others 1999; Recker 1999).  Tetracyclines are advantageous in that 

they are less toxic than other fluorochromes and can be safely administered for human 

analyses (Jowsey 1977). 

  

 

Treatment Options for Osteoporosis 

 

Prevention of Osteoporosis 

While much research has been focused on measurement of bone turnover to 

improve diagnostic accuracy of osteoporosis, establishing the diagnosis needs to be 

accompanied by investigation of effective methods of preventing and treating the disease.  

Many of the previously discussed diagnostic tools are also used to monitor progression of 

osteoporosis and/or the effectiveness of various treatment techniques.  One must consider 

prevention to be of primary importance in the treatment of osteoporosis.  Prevention of 

osteoporosis must include measures to ensure patients achieve the maximum level of 
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their genetically determined peak bone mass.  Once peak bone mass has been reached, 

preventive measures must be taken to restore bone loss that will occur throughout the 

remainder of the patient’s life span.  Because women reach their maximum BMD in their 

mid-thirties, it is of vital importance that women maintain appropriate dietary intake of 

calcium throughout their lives.  It is recommended that females ingest 1000-1200 mg/day 

of calcium either through diet or with additional supplements, such as calcium citrate or 

calcium carbonate, if needed.  Total calcium intake in postmenopausal women should be 

increased to 1500 mg/day, if not taking estrogen (Rhoades and Tanner 1995).   

Avoidance of excessive intake of alcohol or caffeine and cessation of smoking has 

been shown to have a favorable effect in prevention of osteoporosis (Andrews 1998).  

Diamond and others (1989) found consumption of ethanol was associated with osteoblast 

dysfunction resulting in decreased mineralization and decreased bone formation rates.  

They propose that avoidance of intake of alcohol may result in an improvement in 

osteoblast function and numbers.  Cigarette smoking directly impairs the bone-cell repair 

process by inhibiting the proliferation of osteoprogenitor cells and differentiation of 

osteoprogenitor cells toward osteoblast-like cells.  An increase in concentration of free 

radicals, which may be involved in bone resorption, is also associated with cigarette 

smoking (Notelovitz 2002).  Caffeine consumption and smoking are considered 

secondary causes of generalized osteoporosis.  Avoidance of these activities would, 

therefore, lessen a subject’s likelihood of developing osteoporosis (Kanis and others 

1997; Jergas and Genant 1999). 

 

Effectiveness of Exercise in the Treatment of Osteoporosis 
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 Lifestyle changes and behavior modification are also beneficial in preventing 

osteoporosis.  Consistent performance of an appropriate exercise program, including 

weight bearing exercises, is effective in increasing bone mass.  Exercise is a key element 

in adolescence and early adulthood to increase development of peak bone mineral 

density.  Strenuous exercise throughout life is also suggested to be valuable for 

improvement of bone mineral density (Marcus 1999).   

Although exercise has been shown to be beneficial in preventing osteoporosis, the 

level and intensity of exercise must be appropriate to prevent development of a clinical 

problem referred to as female athlete triad syndrome.  This is a “serious syndrome 

consisting of disordered eating, amenorrhea, and osteoporosis” found among a small 

number of young female elite athletes who follow overly vigorous and rigid training 

programs (ACSM 2000). 

In postmenopausal women, fracture risk is associated with history of falls, low 

physical function, and decreased strength.  Therefore, exercise to improve strength and 

balance are of great importance for this population (Notelovitz 2002).  Load bearing 

exercises such as walking, weight training, and high impact aerobics are more effective in 

increasing bone mass than other forms of exercise (Delmas 2002).  However, osteocytes 

are only affected by bone loading in the presence of estrogen (Notelovitz 2002).  For 

greatest benefits, exercise should be performed for 30-60 minutes at least 3 times per 

week (South-Paul 2001). 
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Medications for Treatment of Osteoporosis 

The Food and Drug Administration has approved a limited number of medications 

for treatment of osteoporosis.  Estrogen, hormone replacement therapy (HRT), has been 

widely used for both prevention and treatment of osteoporosis.  If initiated at the onset of 

menopause, HRT decreases the risk of osteoporotic fractures and increase vertebral bone 

mass (Messinger-Rapport and Thacker 2002).  However, the reduction in fracture risk is 

lost after withdrawal of HRT regardless of the duration of treatment (Delmas 2002).  Side 

effects of HRT include an increased risk of deep vein thrombosis and pulmonary 

embolism as well as a significant increase in risk of breast cancer.  These effects make its 

use less desirable for treatment of osteoporosis (South-Paul 2001). 

The largest study of risks and benefits associated with HRT was performed by the 

Women’s Health Initiative (WHI).  From 1993 to 1998, the WHI studied the effects of 

HRT on 161,809 postmenopausal women.  Although estrogen plus progestin was found 

to increase BMD and reduce risk of fracture in healthy postmenopausal women as 

compared to control placebo, it also led to an increased risk of invasive breast cancer.  

The WHI determined after 5.2 years follow-up that the overall health risks exceeded 

benefits from use of estrogen plus progestin for postmenopausal women and 

subsequently discontinued this component of their study (WHI 2002; Cauley and others 

2003). 

To assess the possible association between postmenopausal estrogen 

supplementation and lower risk of dementia, the WHI further investigated the effects of 

conjugated equine estrogens and estrogen plus progestin on dementia and mild cognitive 

impairment.  A randomized, double-blind placebo-controlled study involving 7479 
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women aged 50-79 years at baseline was conducted from June 1995 to February 2004 in 

39 WHI clinical centers.  Results of this study showed that estrogen therapy alone did not 

reduce dementia or the incidence of mild cognitive impairment and increased the risk for 

both end points combined.  When assessing the combined data for estrogen alone and 

estrogen plus progestin they found an increased risk for both end points.  Therefore, they 

concluded that hormone therapy is not recommended for prevention of dementia or 

cognitive decline in women 65 years of age or older (Shumaker and others 2004).  

Bisphosphonates, including Alendronate, Risedronate, Pamidronate, Ibandronate, 

and Etidronate, inhibit bone resorption and are effective in treating osteoporosis.  A 

phosphorous-carbon-phosphorous bond characterizes these stable analogues of 

pyrophosphate.  The two phosphoric acids in bisphosphonates cause them to adsorb to the 

bone surface and the compound is resistant to enzymatic degradation due to the central 

carbon component.  The antiresorptive potency of each bisphosphonate is determined by 

its side chains (Watts 1999).  Bisphosphonates prevent bone resorption by inhibiting 

osteoclast activity and increasing osteoclast apoptosis (Delmas 2002).  Some 

bisphosphonates inhibit osteoclast activity by limiting the activation of osteoclast 

precursors, inhibiting precursor cells from differentiating into mature osteoclasts, 

interfering with chemotaxis, and blocking the attachment of osteoclasts to bone (Watts 

1999).  Bisphosphonates help to reduce vertebral fracture rates with the greatest benefits 

occurring in patients with short-term fracture risk.  Side effects of Bisphosphonates 

include gastrointestinal irritation, esophagitis, esophageal ulceritis, and esophageal 

perforation.  These effects can be reduced by taking the medication with a full glass of 

water after overnight fasting at least 30 minutes prior to ingesting any food or beverage 
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and maintaining an upright posture for 30-60 minutes after taking the medication 

(Altkorn and Vokes 2001; Messinger-Rapport and Thacker 2002). 

Raloxifene, a selective estrogen-receptor modulator, is also effective for reducing 

bone loss.  Selective estrogen-receptor modulators may act as agonists or antagonists on 

estrogen depending on the target tissue.  Raloxifene is a benzothiaphene that 

competitively inhibits estrogen action in the breast and uterus while acting as an estrogen 

agonist on bone and lipid metabolism.  Results of the MORE study (Multiple Outcomes 

of Raloxifene Evaluation), which evaluated 7705 osteoporotic women, indicates a 30-

50% reduction in incidence of vertebral fractures.  However, side effects of Raloxifene 

include increased risk of venous thrombosis and pulmonary embolism (Delmas 2002; 

Messinger-Rapport and Thacker 2002).  Raloxifene has not been found to have any 

beneficial effect on postmenopausal symptoms including hot flashes and may even 

increase them (Altkorn and Vokes 2001). 

Other drugs being studied for effectiveness in treatment of osteoporosis include 

Calcitriol, a potent form of Vitamin D; PTH; and slow release sodium fluoride.  Sodium 

fluoride and PTH research has been of particular interest because they stimulate bone 

formation rather than inhibiting bone loss (Kiplinger Washington Editors 1996; Andrews 

1998; Mundy 1999).  Although not approved by the US FDA, sodium fluoride has been 

used in other countries for treatment of osteoporosis.  Fluoride alters the crystallization 

sequence of bone leading to formation of hydroxyapatite and replaces hydroxyl groups 

with a compound that is more resistant to resorption (Watts 1999).  One aspect that must 

be considered with use of sodium fluoride is the ability of the subject to excrete the 

substance.  If creatinine clearance is low, renal excretion may be problematic.  Therefore, 
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patients with renal failure should not be treated with fluoride (Kanis and others 1997).  

Another disadvantage is that fluoride has a narrow therapeutic window, and 

administration of toxic doses can lead to production of bone that is histologically 

abnormal, undermineralized, more dense, but less strong than normal.  Therefore, until 

further studies ensure the safety and efficacy of use, sodium fluoride is not recommended 

for routine treatment of osteoporosis (Watts 1999). 

Calcitonin is a remarkedly safe drug used in slowing osteoporotic bone loss.  

Produced by the parafollicular (“C”) cells of the thyroid gland, calcitonin secretion is 

dependent on serum calcium levels.  As serum calcium levels diminish, the C cells begin 

to store up calcitonin within their granules.  When serum calcium is elevated, these stores 

are readily discharged.  Three classes of calcitonin have been identified: 1) artiodactyl 

(porcine, bovine, and ovine); 2) human; and 3) teleost (salmon and eel).  The teleost 

calcitonins have been found to be 20 to 50 times more potent than those of other species. 

 

Salmon: H2N-CYS-SER-ASN-LEU-SER-THR-CYS-VAL-LEU-GLY-LYS-LEU-SER-GLN-GLU-LEU- 
HIS-LYS-LEU-GLN-THR-TYR-PRO-ARG-THR-ASN-THR-GLY-SER-GLY-THR-PRO-NH2  

 
Human: H2N-CYS-GLY-ASN-LEU-SER-THR-CYS-MET-LEU-GLY-THR-TYR-THR-GLN-ASP-PHE- 

ASN-LYS-PHE-HIS-THR-PHE-PRO-GLN-THR-ALA-ILE-GLY-VAL-GLY-ALA-PRO-NH2 
 
Porcine: H2N-CYS-SER-ASN-LEU-SER-THR-CYS-VAL-LEU-SER-ALA-TYR-TRP-ARG-ASN-LEU- 

ASN-ASN-PHE-HIS-ARG-PHE-SER-GLY-MET-GLY-PHE-GLY-PRO-GLU-THR-PRO-NH2 
 
Figure 8  Amino acid structure of the calcitonins. Adapted from Calcitonin by Deftos and 
others (Deftos and others 1999).  Italicized amino acids in the salmon and porcine classes 
of calcitonins differ from the amino acids in the human class of calcitonin at the same 
position.  
 
 
 
  

Calcitonin is quickly degraded by the liver and kidney and has a half-life of only a 

few minutes in blood.  Teleost calcitonins are considered more resistant than mammalian 
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calcitonin to breakdown by tissue and serum enzymes.  The most obvious chemical 

difference of teleost calcitonin to the other classes is their greater hydrophilicity.  Another 

characteristic that contributes to the higher affinity of teleost calcitonin are the amino 

acids located in the carboxy-terminal half with critical binding regions found at residues 

22-32 (Sexton and others 1999).  This higher potency is necessary physiologically for the 

rapid metabolic changes required for salmon to transition from fresh water to salt water 

environments.  Due to the greater affinity for receptors, salmon calcitonin has a greater 

biological potency in vivo and is currently the most used class for treatment of 

osteoporosis (Martin and Moseley 1990). 

Calcitonin can be administered intramuscularly, subcutaneously, or intranasally.  

Calcitonin has been used for nearly 30 years for treatment of bone disorders with limited 

adverse effects.  Nausea and flushing are the most commonly noted side effects with 

rhinitis and epistaxis occurring occasionally with intranasal administration (The Medical 

Letter on Drugs and Therapeutics 2000).  A variety of clinical uses for calcitonin in 

humans have been cited including treatment of fracture pain, prevention of fractures, and 

prevention of bone loss in the early postmenopausal period.  The effects of calcitonin in 

preventing early postmenopausal bone loss in humans have thus far only been assessed 

for relatively short durations, up to 5 years.  Studies suggest that bone density reaches a 

plateau or may actually decrease after years of calcitonin therapy (Siminoski and Josse 

1996).   

 Inhibition of osteoclastic bone resorption is the main biologic effect of calcitonin.  

Osteoclasts have receptor sites specific for calcitonin, and a number of direct effects are 

noted once calcitonin binds to the osteoclast.  Deftos reports within minutes of 
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administering calcitonin, osteoclasts shrink in size, cyclic adenosine phosphate (cAMP) is 

produced, and there is an increase in cytosolic calcium found in the osteoclast (Deftos 

and others 1999).  However, in support of the above mentioned plateau of the effects of 

calcitonin, T. J Martin (1999) describes an “escape” phenomenon which has been 

observed in vitro and in vivo after long-term administration of calcitonin for treatment of 

patients with excessive bone resorption such as Paget’s disease.  He defines “escape” as 

an increase in resorption in bones stimulated by a resorptive agent, despite the continued 

presence of maximally inhibitory concentrations of calcitonin.  He further reports 

evidence suggesting this “escape” is due to a change in responsiveness to calcitonin as 

opposed to a decrease in hormone activity.  

While the exact biochemical mechanism by which calcitonin induces decreased 

responsiveness of osteoclasts to calcitonin is not fully known, several theories have been 

proposed to explain this resistance.  The most widely theorized possibility is that long-

term administration of calcitonin results in the down-regulation of cell surface receptors 

on the osteoclasts (Mundy1999).  Generation of osteoclasts that are deficient in calcitonin 

receptor mRNA and protein but yet capable of resorbing bone would lead to a response 

similar to that described in the “escape” phenomenon (Sexton and others 1999).  This 

theory suggests the resistance to the effects of calcitonin may be due to reduced 

calcitonin sensitivity of osteoclasts (Martin 1999; Pondel 2000).   

A second theory is that after long-term administration calcitonin may begin to 

influence osteoblast function through cell coupling.  Although the main action of 

calcitonin is to inhibit the activity of osteoclasts, osteoclasts that are quiescent in the 

presence of calcitonin in vitro regain activity when osteoblasts are added to the culture 
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(Sexton and others 1999).  As calcitonin inhibits the activity of osteoclasts, the 

osteoclasts are unable to release the osteotropic factors stored in the bone matrix.  

Because these factors act to promote osteoblast differentiation and to activate osteoblasts 

by inhibiting osteoclastic release of the factors, calcitonin may indirectly inhibit 

osteoblastic activity.   

Finally, it has also been suggested that a population of calcitonin-resistant 

osteoclasts emerge following long-term administration of calcitonin.  Circulating 

antibodies to calcitonin develop in about 50% of subjects with long-term use of 

calcitonin, and it has been postulated that these antibodies may neutralize the effects of 

calcitonin (Watts 1999).  An interesting feature of this theory is that the resistance to the 

effects of calcitonin in vitro has been prevented by concomitant treatment with 

glucocorticoids (Martin and Moseley 1990). 

Development of calcitonin antibodies can be readily detected by various methods.  

Immunoassays are a powerful technique available for detection and measurement of 

antigens and antibodies.  In this type of method the antigen (calcitonin) is first bound to a 

microtiter plate.  Next, serum samples proposed to contain the anti-calcitonin antibodies 

are added to the wells and allowed to bind.  A second antibody, specific for anti-

calcitonin antibody and labeled for detection, is then added to the well and allowed to 

bind.  The second antibody is enzyme conjugated to catalyze formation of a colored 

substance which can be quantified to calculate the amount of calcitonin antibody present.  

While calcitonin antibodies have been detected in >50% of subjects receiving calcitonin 

for treatment of osteoporosis, the relationship of calcitonin antibody to the escape 

phenomenon remains unclear.  Gruber and others (1994) found no apparent relationship 
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between the presence of calcitonin antibodies and change in levels of total body calcium.  

Likewise, Overgaard and others (1990) suggest the formation of calcitonin antibodies 

does not affect the clinical responsiveness of calcitonin.     

As previously mentioned, nasal spray is an effective means of administering 

appropriate doses of salmon calcitonin for treatment of osteoporosis and has fewer 

reported side effects than other forms of administration.  A dosage of 200 IU/day via 

nasal spray is an appropriate therapeutic dosage for adults and has been widely used for 

treatment of osteoporosis in studies with human subjects.  In a randomized double blind, 

placebo-controlled study of postmenopausal women, calcitonin was shown to be effective 

in increasing bone mineral density.  After 2 years of administration 76% of patients 

receiving 200 IU/day of nasal spray salmon calcitonin demonstrated a 2% to 3.6% 

increase in bone mineral density while 73% of the placebo group experienced a loss of 

bone mass.  These researchers noted the effects to be more pronounced in women who 

were more than 5 years postmenopausal (Overgaard and others 1995 as reported in 

Andrews 1998).  Although fewer studies have assessed the effects of calcitonin in men, 

Trovas and others (2002) found 200 IU/day of salmon calcitonin to be safe and effective 

in increasing lumbar bone mineral density and in reducing bone turnover in men with 

idiopathic osteoporosis. 

A large, randomized, double-blind study comparing the effectiveness of different 

doses of salmon calcitonin in the treatment of postmenopausal women is the PROOF 

study (Prevention Recurrence of Osteoporotic Fractures Study) published in 2000.  In this 

study the researchers observed 1255 postmenopausal osteoporotic women over a period 

of 5 years.  They found use of a therapeutic dosage of 200 IU/day of nasal spray salmon 
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calcitonin resulted in a significant reduction in the risk of new vertebral fractures.  

Reduction in vertebral fractures in patients receiving lower doses of 100 IU/day was not 

significantly different from patients receiving a placebo.  However, patients receiving 

400 IU/day of nasal spray salmon calcitonin demonstrated a lower reduction in vertebral 

fractures than either of the groups receiving lower doses (Chesnut and others 2000). 

Bone mineral density of the lumbar spine as measured by DXA increased 

significantly from baseline in all treatment groups as compared to placebo.  However, 

there was no clinically significant effect on BMD at the femoral neck or trochanter with 

treatment.  Biochemical markers of bone turnover, including measurement of serum 

levels of C-telopeptide, bone-specific alkaline phosphatase, and osteocalcin, showed only 

a modest decrease with treatment.  Despite these disappointing findings for BMD and 

biochemical markers, the risk of new vertebral fractures was significantly reduced in 

postmenopausal patients receiving a dose of 200 IU/day of salmon calcitonin nasal spray 

(Chesnut and others 2000). 

An interesting observation from the PROOF study is the apparent dose 

discrepancy in the action of salmon calcitonin for reduction of new vertebral fractures.  

While the treatment group receiving 200 IU/day of nasal spray salmon calcitonin showed 

a significant decrease in the risk of new vertebral fractures as compared to the placebo, 

the treatment groups receiving 100 IU/day and 400 IU/day did not show a significant 

difference in reduction of risk of vertebral fracture as compared to placebo.  Surprisingly, 

the treatment group receiving 400 IU/day was less effective in reducing vertebral fracture 

risk than either of the groups receiving lower doses (Chesnut and others 2000).  This 



 62

observation has led to the postulation that higher doses of salmon calcitonin may actually 

lead to oversuppression of bone turnover.  

Some researchers have criticized the PROOF study because of the high dropout 

rate of subjects (60%), the inconsistent data for biochemical markers of bone turnover, 

and questionable fracture risk data (Colman and others 2002).  Other criticisms include 

that the trial was only partly blinded due to doctors and patients seeing results of bone 

density testing during the trial, and that data regarding pain or disability were not 

included (Cummings and Chapurlat 2000).  Chesnut refuted these criticisms by noting 

that high dropout rates are inherent to most long-term studies.  He also notes further 

investigation is needed for the hypothesis that the effect of antiresorptive osteoporotic 

treatments to reduce fracture may be exhibited in bone quality involving 

microarchitecture and may not be evident in bone mineral density.  He also concludes 

calcitonin’s effect on reducing vertebral fracture rate has been well confirmed, although 

its mechanism of action needs further definition (Chesnut 2002).   

 

Animal Models for Study of Osteoporosis 

In humans osteoporosis occurs most frequently in postmenopausal women as a 

result of estrogen deficiency.  When assessing animal models of bone disease, Geddes 

documents that the ovariectomized rat is the most commonly used model to investigate 

the loss of cancellous bone due to estrogen deficiency (Geddes 1996).  Numerous authors 

have documented the use of ovariectomized rats as models to study postmenopausal bone 

loss and osteopenic changes.  While other ovariectomized animals, including ferrets, 
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mice, canines, pigs, and sheep, have been used to study osteoporosis, the rat has emerged 

as the most common estrogen deficiency model used (Geddes 1996; Hartke 1998).   

 Initial studies by Wronski and others (1991) indicate that ovariectomy of rats 

induces marked bone loss and accelerated skeletal metabolism.  Nakamuta and others 

(1993) found that ovariectomy of rats induced acute and focal osteopenia within 2 weeks.  

Similar results were found by Wronski and others (1988) in a study that documented 

osteopenia and increased indices of bone resorption and formation were detected in 

ovariectomized rats as early as 14 days after surgery.  They found that osteopenia 

progressively increased with time up to 100 days in these animals and then appeared to 

plateau.  Results of a study by Thompson and others (1995) indicated that the 

ovariectomized rat model mimics postmenopausal cancellous bone loss when examined 

over relatively short periods of time, which they defined as less than 12 months. Li and 

others (1996) found that ovariectomy resulted in statistically significant cancellous bone 

loss in the femoral neck of rats as early as 30 days post ovariectomy; however, cortical 

osteopenia was not evident until 12 months post ovariectomy.  It is evident from the 

available research that the ovariectomized rat qualifies as a practical and cost-effective 

animal model for exploring the aspects of pathogenesis and treatment of postmenopausal 

bone loss. 

 

Rationale and Aims 

 Osteoporosis is a metabolic bone disorder that currently affects 25-30 million 

Americans.  The major complication of the disease is fragility fractures, with vertebral 

and hip fractures being most common.  Treatment of these fractures results in substantial 
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financial burden and they are associated with pronounced morbidity and excess mortality 

(Delmas 2002).  Hip fractures are one of the most devastating manifestations of 

osteoporosis.  Within one year of suffering a hip fracture, 5-24% of patients will die, 50% 

of those who survive will continue to be incapacitated, and 20% of hip fracture survivors 

will require long-term nursing home care (Chrischilless and others 1991; Consensus 

Development Conference 1993; Col and others 1997; Ray and others 1997).  Spinal 

fractures are significantly painful and can also lead to permanent deformity and long-term 

debility.  As many as 1.3 million fractures are reported annually in osteoporotic patients 

with cost for treatment exceeding 15 billion U.S. dollars (Consensus Development 

Conference 1993).  

Calcitonin is one of a limited number of medications approved for use in the 

treatment of osteoporosis.  When therapeutic dosages of calcitonin are given to humans 

diagnosed with osteoporosis, there is evidence of an initial increase in bone formation, 

followed by a plateau in which bone formation equals bone resorption, followed by a 

period in which bone resorption exceeds bone formation (Gruber and others 1984; Deftos 

and others 1999; Martin 1999; Cummings and Chapurlat 2000; Colman and others 2002).  

However, if dosages are given that exceed the therapeutic level, the period of plateau and 

decline are achieved more rapidly and the level of overall improvement is less than that 

seen in patients receiving therapeutic dosages (Chesnut and others 2000).  Even when 

administered at therapeutic dosages, when given for extended periods of time the 

beneficial effects of calcitonin on osteoporosis begin to decline and one is unable to 

continue to prevent bone loss.  The most widely accepted explanation for this 

phenomenon is down-regulation of calcitonin receptors on osteoclasts.  Other possible 
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explanations for this phenomenon include production of osteoclasts made resistant to 

calcitonin by antibodies and inhibition of osteoblast functions by coupling (Overgaard 

and others1990; Martin 1999; Pondel 2000).  However, the exact reasons for this 

phenomenon are unclear at this time.  Further information regarding the mechanisms of 

action of calcitonin would be beneficial in determining the optimum therapeutic use of 

calcitonin in the treatment of osteoporosis. 

 Results of a recently completed pilot study have given us pertinent data regarding 

the dose response curve of salmon calcitonin as well as the most therapeutic dose when 

administered continuously over time to ovariectomized rats (Owens and others 2003).  

Sixty female, Sprague-Dawley rats, 12 weeks of age were randomly assigned to one of 5 

treatment groups.  Groups 1-4 underwent bilateral ovariectomy and received doses of 5, 

10, 25, or 50 IU/kg BW/day of salmon calcitonin.  The fifth group of animals underwent 

a sham ovariectomy and received saline.  At periods of 4 weeks, 8 weeks, and 16 weeks, 

four animals from each group were euthanized by CO2 inhalation.  Twenty-four hour 

urine samples were collected in metabolic cages prior to sacrifice.  At the time of 

sacrifice, serum samples were obtained by cardiac puncture and bilateral femurs were 

dissected for analyses.  Serum and urine samples were used for biochemical assessment 

of markers of bone turnover including osteocalcin, serum pyridinoline, and urinary 

helical peptides.  The dissected right femur of each subject was used in three-point 

bending tests to assess biomechanical strength.  Computer generated load displacement 

curves, bone caliper measurements, and photo images of bone cross section were then 

used to calculate the ultimate stress and elasticity of each specimen.  The dissected left 
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femur of each subject was analyzed by DXA for in vitro assessment of bone 

mineralization via the PIXImus densitometer.   

Due to this pilot study being cross-sectional by design and the limited number of 

subjects in each group, the information obtained with biochemical analyses and 

biomechanical strength measurements did not produce significant findings related to our 

hypothesis.  Due to difficulty in applying force at consistent locations in dissected bones, 

validity of the results obtained with the three-point bending tests was questionable.  

However, significant and compelling results, as shown in Figure 9, were noted in the 

measurements of BMD among our subjects. 
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Figure 9  Effects of salmon calcitonin on in vitro bone mineral density in ovariectomized 
rats vs. saline in sham ovariectomized rats.  n=4 in each group at each time point.  * = 
p<0.05 for 50 mg vs. control. 

   

Following ovariectomy, animals in our study showed an initial decrease in BMD in each 

treatment group.  Animals receiving lower doses of calcitonin (5, 10 and 25 IU/kg 

BW/day) were associated with an increase in BMD after 8 weeks of treatment to a level 

similar to the non-treated control group.  This increase in BMD was maintained in these 

treatment groups until termination of the study at 16 weeks.  The animals receiving 

*indicates 
significant 
findings 

*
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higher doses of calcitonin (50 IU/kg BW/day) were associated with a similar increase in 

BMD at week 8 followed by a statistically significant reduction in BMD at week 16 

suggesting a relative increase in resorption compared to formation.  These findings were 

indicative of possible oversuppression of bone turnover with higher doses of calcitonin. 

 The current study is designed to further examine the effects of calcitonin on bone 

turnover and help to determine if the decrease in therapeutic effectiveness of calcitonin 

demonstrated over time with higher doses is due to oversuppression of bone turnover.  It 

is hypothesized that high doses of salmon calcitonin can result in oversuppression of 

bone turnover in ovariectomized rats.  In order to test this hypothesis we will use the 

ovariectomized rat as an estrogen deficient animal model for study of Type I 

osteoporosis. Varying doses of calcitonin will be compared to placebo (saline) in 

ovariectomized and sham-ovariectomized animals.  Ovariectomy will be confirmed by 

pathological tissue evaluation and further verified with analysis of serum estradiol and 

follicle-stimulating hormone (FSH). The effects of varying doses of salmon calcitonin on 

bone turnover will be detected by measurement of changes in BMD by DXA scans.  The 

gross anatomical changes in bone quality will be examined by SEM of samples from each 

group.  The level of calcium excreted into the urine will be determined by capillary ion 

electrophoresis.  Furthermore, the activity level of osteoclasts and osteoblasts in each 

group of subjects will be investigated with ELISA and IRMA for measurement of 

biochemical markers of bone turnover. Finally, direct ELISA will be used for detection of 

the development of calcitonin antibodies which will provide information to support (or 

refute) the theory that antibodies may play a role in the development of resistance to the 

effects of calcitonin observed with long-term administration. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

Experimental Subjects 

Female, Sprague Dawley rats, 12 weeks of age, were purchased from Charles 

River Laboratories (Wilmington, MA).  The experimental subjects were housed 

according to Standard Operating Procedure of the Division of Laboratory Animal 

Resources at East Tennessee State University (Johnson City, TN) accredited by the 

American Association for Laboratory Animal Care.  The rats were housed in 

polycarbonate cages (Allentown Caging Equipment Company, Inc., Allentown, NJ) with 

wire tops and wood chip bedding.  Room temperature was maintained at approximately 

22°C (720F +/- 40), and a 12 hour light cycle was used.  Experimental subjects were 

allowed a diet of TEKLAD Rodent Diet #8604 (Harlan Teklad, Madison, WI) and water 

ad libitum.  All procedures and animal protocols used in this study were approved by the 

Committee of East Tennessee State University on Animal Care as well as the Research 

and Development, Biosafety and Infection Control Committees of the Veteran’s 

Administration.  Once delivered to East Tennessee State University, the experimental 

subjects were allowed approximately 1 week to acclimate to their new environment prior 

to initiation of experiments. 

 

Interventions 

 Interventions for each experimental subject were performed as listed in Table 1 

and described below. 
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Table 1  Timeline of Interventions 

Intervention BL 1 wk 4wk 8wk 12wk 16wk 20wk 23wk 24wk 
Ovariectomy    +     -    -    -    -    -    -    -    - 
Urine Collection    +     -    +    +    +    +    +    -    + 
Serum Collection    +     +    +    +    +    +    +    -    + 
DXA scans    +    -    +    +    +    +    +    -    + 
Med pump 
(re)placement 

 
   + 

 
   - 

 
   + 

 
   + 

 
   + 

 
   + 

 
   + 

 
   - 

 
   + 

Tetracycline inj.    +    -    -    +     -    -    -    +    - 
SEM    -    -    -    -    -    -    -    -    + 
 

 

Randomization 

The experimental subjects were randomly assigned to one of the following 

groups:   

• Group 1 – sham ovariectomy and saline only  

• Group 2 – ovariectomized and saline only 

• Group 3 – ovariectomized and received 5 IU/kg BW/day of salmon CT 

• Group 4 – ovariectomized and received 15 IU/kg BW/day of salmon CT 

• Group 5 – ovariectomized and received 50 IU/kg BW/day of salmon CT   

Experimental subjects were identified by cage card and ear punch methods. 

 

Urine Collection 

Urine samples were collected over a 24-hour period by placing each experimental 

subject into a metabolic cage 24-48 hours prior to each surgical procedure.  While in the 

metabolic cages, experimental subjects were restricted from food to decrease risk of 

contamination of urine specimens; however, water remained available ad libitum.  Once 
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collected, urine samples were centrifuged 10 minutes at high speed using an IEC Model 

HN-S II centrifuge (International Equipment Company, Needham Heights, MA). Two 1-

mL aliquots of clean urine were separated off and stored at -700C until ready for analyses.  

The remainder of clean urine was stored in sterile 15-mL tubes and stored at –700C for 

future study.  Following urine collection, subjects were returned to their storage cages.  

Urine specimens were used for analyses as listed in Table 2. 

 

Table 2  Analyses of Urine Samples 

Analysis BL 4 wk 8 wk 12wk 16 wk 20wk 24wk 
Helical Peptides    +    +    +    +    +    +    + 
Creatinine    +    +    +    +    +    +    + 
Calcium Excretion    +    +    +    +    +    +    + 
   

 

Transportation of Subjects 

The caged experimental subjects were placed into plastic totes, covered with 

sheets and transported by electric cart to Building 8, Room 126-127 of the Veteran’s 

Administration Medical Center for surgical procedures.  Temperature was checked 

during transport and did not vary > 30F (-16.1°C) while the experimental subjects were 

away from the climate-controlled facilities of the Division of Laboratory Animal 

Resources. 

 

Serum Collection 

Each subject was anesthetized by intraperitoneal (IP) injection of 50 mg/kg 

Ketamine HCl and 5 mg/kg of Xylazine.  Blood samples were obtained by clipping the 
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tip of each subject’s tail and milking out 1mL of blood into a sterile vial.  Pressure was 

then applied with a clean cotton ball until bleeding subsided.  We found use of non-latex 

gloves during this procedure to be essential for the prevention of excessive irritation and 

peeling of the skin on the tail of the animals.  Blood samples were centrifuged 10 minutes 

at 10,000g in a Biofuge A Model 1217 centrifuge (Heraeus Separations Technik, West 

Germany).  Clean serum samples were then pipetted off and stored in sterile vials at -

700C until ready for analysis. Serum samples were utilized for analyses as listed in Table 

3. 

 

Table 3  Analyses of Serum Samples 

Analysis BL 1 wk 4 wk 8 wk 12 wk 16wk 20wk 24 wk
Estradiol    -    +    +    -    -    -    -    + 
FSH    -    +    +    -    -    -    -    + 
Pyridinoline    +    -    +    +    +    +    +    + 
Osteocalcin    +    -    +    +    +    +    +    + 
Calcitonin Antibodies    +    -    +    +    +    +    +    + 
  

  

Ovariectomy Procedures 

 The dorsal surface of each experimental subject was shaved and prepped for 

surgery by cleansing with betadine and alcohol.  Experimental subjects were then secured 

onto procedure trays in prone position by padded plastic cords attached to each of their 

extremities.  Sterilized instruments and sterile technique were used during all surgical 

procedures.  A small midline incision was made dorsally on each experimental subject 

and connective tissue was bluntly dissected to the muscle level.  A small incision was 

made through the muscle layer approximately 1 cm lateral to midline and half way 
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between the caudal most rib and the superior rim of the pelvis to expose each ovary.  In 

those subjects receiving a sham ovariectomy the ovaries were exposed, grossly examined 

for intactness and adequate blood flow, and then replaced to their original location.  The 

remaining subjects underwent an ovariectomy in which the ovaries were exposed, tied off 

with suture thread, and surgically excised.  The excised ovarian tissue from each 

experimental subject was placed into a sterile vial with 10% buffered formalin at room 

temperature until ready for microscopic examination.  After completion of ovariectomy 

or sham-ovariectomy procedure, the muscle tissue was repaired with silk sutures. 

 

Densitometry Scans 

 While sedated, each experimental subject was placed in a prone position on a 

procedure tray and secured with padded plastic cords, which bound each of their 

extremities to the four corners of the procedure tray.  Each animal then underwent a Dual 

X-ray Absorptiometry (DXA) scan using the GE Lunar Prodigy Bone Densitometer 

(Serial #DF+13539, Lunar Corporation, GE Medical Systems).  Each scan was then 

analyzed with software designed for small animal measurements. 

 

Medication 

A sterile 2ML4 Alzet osmotic medication pump (Durect Corporation, Cupertino, 

CA) containing either saline or appropriate dosage of salmon calcitonin (Cat. # H-2260, 

Bachem Bioscience Inc., King of Prussia, PA) dissolved in saline was inserted 

subcutaneously.  The skin was then closed with interrupted suture technique using 4-0 

silk sutures.  The medication or vehicle was delivered at a constant rate of 2.5 µg/hr.  
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Alzet osmotic pumps were removed and replaced with new, sterile pumps every 4 weeks.  

The concentration of calcitonin was adjusted for weight at these 4-week intervals.   

 

Euthanasia 

 Twenty-four weeks after initial surgical procedures each animal was euthanized 

by CO2 inhalation and 4-5 mL of blood was collected by cardiac puncture.  Blood was 

processed and serum stored as previously described.  Twenty-four to 48 hours prior to 

euthanasia animals were placed into metabolic cages for collection of 24-hour urine 

samples.  Urine samples were processed and stored as previously described.  After 

termination and blood collection each animal received a final bone densitometry scan.  

The right femur, 10th rib, and right pelvis were dissected and stored in 4% 

paraformaldehyde; the left femur, left pelvis, 11th rib, and a tail segment were dissected 

and stored dry at 4°C; the left tibia was dissected and stored in formalin at room 

temperature; and the lumbar spine, right tibia, and 12th rib were dissected and frozen at -

70°C until ready for further analysis.  The remaining parts of each experimental subject 

were placed into a cold storage freezer (Room 4-50, Building VA 119), as regulated by 

East Tennessee State University Department of Laboratory Animal Resources, until 

picked up by a contractor for incineration and disposal. 

 

Estrogen-deficient Animal Model 

 

Pathological Tissue Assessment 

 Tissue excised during initial ovariectomy surgical procedures was stored in 10% 

buffered formalin at room temperature.  The samples were then dehydrated with graded 
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alcohol, cleared with xylene, infiltrated with paraffin, and embedded in paraffin.  Tissue 

sections (5µm) were cut, mounted onto slides, and stained with routine H&E stain.  Dr. 

George Youngberg, pathologist, then examined these slides under a light microscope to 

identify the tissue type. 

 

Serum Estradiol Measurements 

 Serum samples obtained from 1 week, 4 weeks, and 24 weeks were thawed on ice 

for measurement of Estradiol-17b with an Estradiol ELISA kit #1920 (Alpha Diagnostics 

International, San Antonio, TX).  Standards, controls, and serum samples were pipetted 

into anti-mouse IgG coated wells in duplicate.  Estradiol enzyme conjugate was then 

added to each well and allowed to incubate at room temperature for 60 minutes on a plate 

shaker.  The wells were then aspirated and washed three times with wash buffer.  

Horseradish peroxidase substrate was then added to each well and allowed to incubate for 

10 minutes at room temperature.  The reaction was stopped by adding a stop solution, and 

absorbancy was measured at 450nm with an EL312e microplate reader (Bio-Tek 

Instruments, Inc., Winooski, VT).  Average absorbancy for each sample was then 

calculated. 

 

FSH Measurements 

 Serum samples from 1 week, 4 weeks, and 24 weeks were thawed on ice for 

analysis with Follicle-stimulating Hormone (FSH) ELISA kit # 0200 (Alpha Diagnostic 

International, San Antonio, TX).  Standards, controls, and serum samples were pipetted 

into antibody coated wells.  Antibody-enzyme conjugate was then added to each well and 

allowed to incubate 60 minutes at room temperature.  Contents were then aspirated and 
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washed with distilled water.  Horseradish peroxidase (HRP) substrate was then added and 

allowed to incubate at room temperature for 30 minutes.  Stop solution was then added 

and absorbancy read at 450nm with an EL312e microplate reader (Bio-Tek Instruments, 

Inc., Winooski, VT).  Samples were tested in duplicate and average absorbancy 

calculated. 

 

Scanning Electron Microscopy 

 The dissected left femurs were each cut cross-sectionally at midline.  Each of 

these pieces was then cut longitudinally at midline.  Any residual soft tissue was cleared 

off by placing the bones in 5% KOH for 24 hours followed by rinsing and 24 hour water 

bath for three cycles.  The samples were then dehydrated with graded alcohol (50%, 95%, 

and 100%; 24 hours in each grade).  Each sample was lyophilized with Samdri-PVT-3B 

critical point dryer (Tousimis Research Corporation, Rockville, MD).  The bones were 

then mounted with colloidal carbon graphite #60790 (Ladd Research Industries, 

Burlington, VT) onto one-inch circular metal stubs and sputter coated with a thin layer of 

gold using the Denton Vacuum Desk II Cold Sputter/Etch Unit (Denton Vacuum, Inc., 

Moorestown, NJ).  Samples were then viewed at 20 kV with Digital Scanning 

Microscope 940 (Zeiis, West Germany) and images were captured digitally for 

photographs. 
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Bone Quality 

 

Bone Densitometry 

 DXA scans were performed using the GE Lunar Prodigy Bone Densitometer and 

analyzed with software designed for small animal measurements.  Values were obtained 

for total body bone mineral density (BMD).  Specific regions of interest, including the 

spine, right femur, and left femur, were analyzed for BMD, Bone Mineral Content 

(BMC), and Area.  

 

Precision Study  

To ensure that any observed change in bone mass was a true change and not due 

to poor reproducibility of the technique, a precision study was conducted.  Three 

successive densitometry scans were taken on a representative set of individual subjects.   

To properly include the effects of positioning errors, the subject was completely removed 

from the exam table, unstrapped, removed from the procedure tray, then repositioned and 

scanned again.  The values obtained for the bone mass of the spine and both hips were 

compared for each measurement to determine precision of the examiner. The mean and 

standard deviation of the repeated measures for each individual were calculated.  

Precision was then expressed as the % coefficient of variation (%CV), which was 

determined by calculating the standard deviation as a percentage of the mean. 
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Urinary Calcium Excretion 

 Frozen collected urine samples (as previously described) were thawed, vortexed 

with a Vortex Genie (Serial #29802), and diluted 1:100 with 18 MΩ water.  Fifty µL of 

Barium 2% HNO3 was added to each 1-mL aliquot of diluted urine samples and vortexed.  

One hundred µL of this mixture was pipetted into 0.5-mL tubes for analysis.  Samples 

were analyzed with Water’s Quanta 4000 Capillary Electrophoresis System with a 745 

Data Module (Waters Corporation, Milford, MA).  A Water’s Accusep Capillary (75 µ X 

60 cm) was used for these analyses.  Analytical conditions were as follows: hydrostatic 

sampling time, 10 sec; run time, 18 sec; voltage, 20 kV; autopurge between samples, 1 

min; absorbance range 0.02 sec; time constant, 0.3 sec.  The 745 Data Module settings 

were: attenuation 4; chart speed 2 cm min-1; peak width 3; time function now (TFN); and 

peak marker (PM) ON.  Specimen concentrations were determined by their 

calcium/barium peak area ratios and divided by creatinine values to correct for variations 

in urine concentration. 

 

Creatinine 

 Levels of creatinine in frozen collected urine samples were measured by MetraTM 

Creatinine Assay kit (Cat #8009, Quidel Corporation, Mountain View, CA).  Samples 

were processed according to manufacturer’s instructions to determine levels of creatinine.  

Urine samples were thawed on ice and vortexed for about 5 seconds with a Vortex Genie.  

Creatinine standards (5, 20, and 40 mmol/L), controls, and samples were diluted 1:40 

with deionized water.  Fifty µL of the diluted standards, controls, and samples were 

pipetted into non-coated strip wells along with 150 µL of Working Color Solution 
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(0.14% Picric acid in sodium borate and SDS; reconstituted with 1N NaOH) and allowed 

to incubate 30 minutes at room temperature (18-280C).  The absorbancy was then read at 

490nm with a TECAN GENios microplate reader #94636 (Phenix Research Products).  

Results were then analyzed with a linear regression equation.  Concentrations of samples 

and controls were determined from the standard curve.  All samples were tested in 

duplicate and the average concentration determined. 

 

Bone Resorption 

 
Helical Peptides 

 Levels of helical peptide 620-633α1 of Type I collagen present in each sample 

were determined by use of an enzyme immunoassay kit (Cat. #8022, Quidel Corporation, 

Mountain View, CA).  Frozen collected urine samples were thawed on ice and vortexed 

with a Vortex Genie.  Twenty µL of standards, controls, and urine samples were added to 

room temperature strips coated with purified murine monoclonal anti-helical peptide 

antibody.  Reconstituted enzyme conjugate containing lyophilized synthetic helical 

peptide conjugated to alkaline phosphatase with buffer salts and stabilizers was then 

added to each well.  Strips were then covered and allowed to incubate overnight at 2-80C.  

Strips were then emptied and washed three times with diluted wash buffer (non ionic 

detergent in a buffered solution containing 0.05% sodium azide as a preservative).  

Working substrate solution (p-Nitrophenyl phosphate dissolved in a diethanolamine and 

magnesium chloride solution containing 0.05% sodium azide as a preservative) was then 

added to each well and allowed to incubate 60 minutes at room temperature (18-280C).  

The reaction was the stopped by adding 1N NaOH to each well and the absorbancy was 
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read at 405nm in a TECAN GENios microplate reader #94636 (Phenix Research 

Products).  A 4-parameter calibration curve fitting equation was then used to analyze the 

helical peptide assay results.  A standard curve was plotted using A405 values for each 

helical peptide standard on the Y-axis and the assigned helical peptide concentration for 

each standard on the X-axis. The concentration of urine samples and controls was then 

determined from the standard curve.  All samples were tested in duplicate and the 

average concentration of helical peptide determined.  Results obtained from the helical 

peptide assay were then divided by creatinine values to correct for variations in urine 

concentration. 

 

Serum Pyridinoline 

 The excretion of pyridinoline crosslinks in serum was measured with MetraTM 

Serum Pyridinoline enzyme immunoassay kit #8019 (Quidel Corporation, Mountain 

View, CA).  Frozen collected serum samples (as previously described) were thawed on 

ice, pipetted into 30k MWCO spinfilters, and centrifuged for 30 minutes at 10,000xg with 

an Eppendorf Centrifuge #5415D (Brinkmann Instruments, Inc., Westbury, NY).  

Reagent, a glycine solution containing indicator dye and a preservative, was added to 

each well of the coated strips followed by standards, controls, or filtered samples. 

Pyridinoline antibody was then dispensed into each well and incubated overnight in the 

dark at 2-80C.  The strips were then thoroughly washed and an enzyme conjugate 

containing lyophilized goat anti-rabbit antibody conjugated to alkaline phosphatase was 

added and allowed to incubate 60 minutes at room temperature.  Strips were again 

washed and working substrate solution (p-Nitrophenyl phosphate) was added and allowed 
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to incubate 40 minutes at room temperature.  Stop solution of 1N NaOH was then 

dispensed into each well and the Optical Density (OD) was read at 405nm with a TECAN 

GENios microplate reader #94636 (Phoenix Research Products).  The results were then 

analyzed with a 4-parameter calibration fitting curve equation to determine pyridinoline 

levels in each sample. 

 

Bone Formation 

 

Osteocalcin 

 Rat osteocalcin levels in serum were quantitatively determined by 

immunoradiometric assay (IRMA) using Rat Osteocalcin IRMA kit #50-1500 

(Immunotopics, Inc., San Clemente, CA).  Serum samples were allowed to thaw on ice 

and then centrifuged for 5 minutes at 10,000 g to ensure a clean sample.  Controls and 

serum samples were then diluted 1:21 with zero standard.  125I labeled rat osteocalcin 

antibody was added to standards, diluted controls, and diluted samples and vortexed 

briefly with a Vortex Genie.  One polystyrene bead coated with antibody to rat 

osteocalcin plus desiccant was added to each specimen.  Tubes were then covered and 

allowed to incubate at room temperature overnight.  The content of each tube was 

aspirated and the beads thoroughly washed with wash solution containing a surfactant in 

0.01 M phosphate buffered saline with 0.05% sodium azide.  After aspiration of wash 

solution beads were counted in an LKB 1282 Compugamma Universal Gamma Counter 

(Wallac Oy, Finland) for 1 minute.  The average counts per minute (CPM) for each pair 

of duplicate assay tubes was calculated.  The average CPM of the 0 ng/ml standard was 
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then subtracted from the average CPM of all other average CPMs to obtain the corrected 

CPM.  A standard curve was then generated by plotting the values obtained for the 

standards on a log:log linear regression curve. The rat osteocalcin concentration of the 

diluted controls and diluted samples were then read from the standard curve using their 

respective corrected CPM.  Final rat osteocalcin concentrations were then obtained by 

multiplying the observed value from the above-mentioned curve by the dilution factor. 

 

Calcitonin Antibodies 

 Direct ELISA was used for measurement of the production of serum calcitonin 

antibody titer.  Serum samples were thawed on ice, briefly centrifuged, diluted with BSA, 

and briefly vortexed with a Vortex Genie.  Microtiter plates were coated with calcitonin 

diluted in 20 mM Tris-HCl, pH 8.5 and incubated for 1 hour at room temperature.  The 

wells were thoroughly washed with PBS-T and remaining adsorption sites were blocked 

by adding BSA/PBS-T to each well.  The plates were allowed to incubate for 1 hour at 

room temperature and washed thoroughly with PBS-T. Calcitonin Antibody F-13 (Cat 

#sc-9174, Santa Cruz Biotechnology, Santa Cruz, CA) was used as a positive control 

while BSA/PBS-T served as a negative control.  Controls and diluted serum samples 

were pipetted into each well and allowed to incubate overnight at 4°C. Plates were then 

emptied and washed thoroughly.  Anti-goat IgG-HRP was added to wells containing the 

positive control samples while anti-rat IgG-HRP was added to the remaining wells and 

allowed to incubate for 1 hour at room temperature.  Wells were washed and substrate 

solution of 1-StepTM Ultra TMB-ELISA (Product #34028, Peirce, Rockford, IL) was 

added.  Following a 30-minute incubation period absorbancy was read at 405nm in a 
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TECAN GENios microplate reader #95636 (Phoenix Research Products).  Samples were 

tested in duplicate and the average amount of antibody was calculated for each subject at 

each time point. 

 

Material for Future Studies 

 Due to the magnitude of information available from this study, a select group of 

experiments were chosen for completion for this dissertation project.  Due to the 

extensive time and resources invested in this study, we did not want to dispose of any 

materials that might be beneficial for further analyses.  Therefore, various materials were 

preserved for future possible studies.   

  

Tetracycline Labeling 

After completion of procedures at baseline and 8 weeks, while experimental 

subjects were still sedated, each subject received an IP injection of 20 mg/kg BW of 

Tetracyline HCl (Cat #T-7660, Sigma-Aldrich, St. Louis, MO). A final dosage of 

Tetracyline HCl was administered for each subject 1 week prior to euthanasia.  The right 

femur, 10th rib, and right pelvis of each animal were stored in 4% paraformaldehyde until 

ready for further processing and evaluation.  The right femurs were then embedded in 

methyl methacrylate and processed for cutting and further analysis. 

 

Bones Available for Future Studies 

 The bones listed in Table 4 were dissected and stored as indicated for possible 

analysis in future studies. 
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Table 4  Bones Dissected for Possible Analysis 

Bone Storage Condition Storage Temperature 
Right Femur 4% Paraformaldehyde 4oC 
Left pelvis Dry 4oC 
11th rib Dry 4oC 
Left tibia Formalin Room Temperature 
10th rib 4% Paraformaldehyde 4oC 
Right pelvis 4% Paraformaldehyde 4oC 
Tail segment Dry 4oC 
Lumbar 
spine 

Dry -70oC 

Right tibia Dry -70oC 
12th rib Dry -70oC 

    

 

 

Statistical Analysis 

 One way ANOVA was used to determine statistical differences between groups.  

This was followed by Tukey’s or Fisher’s multiple comparison tests if there were 

significant differences noted between groups.  Differences at p<0.05 were considered 

significant.  Values are expressed either as mean ± SEM or % change from baseline.  

Precision to determine significance of results for BMC measurements is expressed as 

%CV and indicated by double lines within the applicable graphs.  GraphPad 4.0 

statistical program was used for calculation of area under the curve (AUC). 
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CHAPTER 3 

RESULTS 

 

Experimental Subjects 

Forty-two female Sprague-Dawley rats were randomized to one of five groups.  

Group 1 underwent a sham ovariectomy and received saline.  Group 2 was 

ovariectomized and received saline.  Group 3 was ovariectomized and received 5 IU/kg 

BW/day of calcitonin.  Group 4 was ovariectomized and received 15 IU/kg BW/day of 

calcitonin.  Group 5 was ovariectomized and received 50 IU/kg BW/day of calcitonin. 

After randomization 8 subjects were included in groups 1, 2, and 4.  Nine subjects 

were included in groups 3 and 5.  Five subjects were unfortunately unable to complete the 

24-week study.  Subject #4 (Group 1) died at week 12, #18 (Group 3) at week 16, and 

#40 (Group 5) at week 4 after receiving an appropriate dosage of anesthesia during the 

preparatory process for surgery.  Technical error in needle placement during 

administration of anesthesia may have been a factor in their otherwise unexplained 

deaths.  Subject #19 (Group 3) was euthanized at week 15 at the request of the director of 

the Department of Laboratory Animal Research of East Tennessee State University due 

to excessive skin breakdown and resulting complications in the area of the Alzet osmotic 

pump.  Likewise, subject #31 (Group 4) was euthanized at week 16 due to similar 

problems with skin breakdown and signs of necrosis.  All data collected from these 

animals prior to termination were included in the results.  However, due to differing time 

frames of completion, the bones from these animals were not included in final analyses. 
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Estrogen-deficient Animal Model 

 

Examination of Ovaries 

 Ovaries were identified bilaterally in 100% of the subjects used in this study.  

Both ovaries were completely resected in experimental animals randomized to 

ovariectomized treatment groups.  The tissue samples excised during the initial OVX 

surgical procedures were analyzed under light microscopy by Dr. George Youngberg, 

pathologist, and were identified in all ovariectomized instances as ovarian tissue (Fig. 

10).  Visualization of primary oocytes surrounded by follicular cells confirmed the nature 

of the excised tissue to be ovarian.  Observation of the presence of the oviduct, also 

referred to as the fallopian or uterine tube, provided evidence of successful excision of 

the entire ovary. 

 

                    

    

Figure 10  Light microscopy images of excised ovarian tissues.  A.  Depicts a primary 
oocyte (PO) surrounded by follicular cells (FC).  B.  An oviduct with longitudinal folds 
of mucosa subdividing the lumen into labyrinthine spaces. 
 

A B

PO 

FC 
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Serum Estradiol Levels 

Levels of Estradiol and FSH were measured in each animal by ELISA.  While 

there were no significant differences in levels of FSH between the sham ovariectomized 

and ovariectomized groups as measured by this kit, levels of estradiol were significantly 

lower in the ovariectomized group at week 24 as compared to the sham ovariectomized 

animals.  As seen in Fig. 11, at week 24 the ovariectomized treatment groups (n=28) had 

a mean Estradiol level of 3.645±0.495 pg/ml, which was significantly lower than the 

control sham group (n=7) which had an Estradiol level of 8.922± 3.543 pg/ml (P<0.05). 

 

 

 

Figure 11  Levels of Estradiol measured in subjects at week 24. aP<0.05 vs. control sham 
subjects.  Control sham n=7, control ovx n=8, 5 IU/kg group n=7, 15 IU/kg group n=5, 
50 IU/kg group n=8. Ovx groups n=28. 
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Scanning Electron Microscopy 

 

The SEM images depicted in Fig. 12 illustrate the deleterious effects of 

ovariectomy on bone tissue.  When compared to the bones from the control sham 

animals, the bones from the control ovariectomized animals have fewer trabeculae.  Also, 

the trabeculae that are present in the control ovariectomized animals are less dense 

overall than those pictured in the control sham specimen.  The cortical walls of the 

control sham animals are thicker than the corresponding walls depicted in the control 

ovariectomized specimens.   

When comparing the ovariectomized subjects, the control ovariectomized subjects 

have fewer and less dense trabeculae than the groups receiving treatment with calcitonin.  

Many more trabeculae and more dense trabeculae are visualized in the subjects receiving 

5 and 15 IU/kg BW/day of calcitonin as compared to the control ovariectomized subjects. 

Also, the subjects receiving 50 IU/kg BW/day of calcitonin have a comparable number 

of, if not fewer, trabeculae than the control ovariectomized subjects.     

Differences are also depicted between the groups of subjects receiving varying 

doses of calcitonin.  The subject receiving the smallest dosage of calcitonin (5 IU/kg 

BW/day) has fewer and less dense trabeculae than the groups receiving higher doses of 

calcitonin.  Decreased trabecular density is seen in the subject receiving 50 IU/kg 

BW/day as compared to the subject receiving 15 IU/kg BW/day.  Thinning of the cortical 

wall is noted in the subject receiving the highest dose of calcitonin (50 IU/kg BW/day) as 

compared to the groups receiving lower doses of calcitonin.  
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Figure 12  Scanning Electron Microscopy (SEM) Images 
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Bone Quality 

 

Bone Densitometry 

BMD is a measurement derived from division of the BMC by the area of the 

bone.  Due to the increased weight gain induced by ovariectomy and thus a difference in 

the overall size of animals in each group, the BMC rather than the BMD of selected 

regions was used to analyze the amount of bone formation for each subject.  Furthermore, 

these measurements were then divided by the weight of the subject at the time of 

measurement to adjust for differences in size.   

As seen in Fig. 13, there were no significant differences between levels of weight 

adjusted BMC of the spine between groups at baseline.  At week 4 the weight adjusted 

BMC of the spine for the control sham group was higher than all ovariectomized groups.  

Initially after the ovariectomy each treatment group has a significant decrease in BMC of 

the spine as indicated at week 4 (P<0.05).  At week 8 the groups receiving calcitonin 

were able to partially compensate for this initial change in BMC in a dose-dependent 

manner.  The spinal BMC of subjects receiving 50 IU/kg BW/day of calcitonin plateaus 

and even begins to decrease after 8 weeks of treatment.  The BMC of the subjects 

receiving lower doses of calcitonin (5 and 15 IU/kg BW/day) were continuing to 

gradually increase throughout the 24-week period of our analyses. At week 24 the BMC 

of the control sham group is significantly higher (P<0.05) than both the control 

ovariectomy group and the group receiving 50 IU/kg BW/day of calcitonin but not 

significantly different from the subjects receiving 5 and 15 IU/kg BW/day of calcitonin.  
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The precision of this method, in our study is 5.28%.  Two parallel lines are included in 

the graph in Fig. 13 to represent the precision range.  

 

  

Figure 13  Weight adjusted BMC of the spine. aP<0.05 vs. Control ovx, 5 IU/kg, 15 
IU/kg, and 50 IU/kg groups. bP<0.05 vs. Control ovx, 5 IU/kg, and 15 IU/kg groups. 
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cP<0.05 vs. Control ovx. dP<0.05 vs. Control ovx, 15 IU/kg, and 50 IU/kg groups. 
eP<0.05 vs. Control ovx and 50 IU/kg groups. Control sham BL, 4wks, 8wks, and 12wks 
n=8, 16wks, 20wks, and 24wks n=7.  Control ovx n=8 at each time point.  5IU/kg group 
BL, 4wks, 8wks, and 12wks n=9, 16wks n=8, 20wks and 24wks n=7.  15 IU/kg group 
BL, 4wks, 8wks, 12wks, and 16wks n=8, 20wks and 24wks n=7.  50 IU/kg group BL and 
4wks n=9, 8wks, 12wks, 16wks, 20wks, and 24wks n=8.  Precision error is 5.28% as 
indicated by lines within the graph. 
 
 

In the right femur no significant differences were noted in the weight adjusted 

BMC between control sham and control ovariectomy subjects at baseline (Fig. 14).  

However, following ovariectomy the weight adjusted BMC of the right femur of the 

control ovariectomized subjects was significantly lower than the control sham subjects 

(P<0.05) and remains significantly lower throughout the 24-week study. Similarly, the 

weight adjusted BMC of the right femur of the subjects receiving calcitonin was not 

significantly different from the control sham subjects at baseline.  The weight adjusted 

BMC of the right femur of the treated groups remained significantly lower than the 

control sham subjects throughout the 24-week study (P<0.05) with the exception of the 5 

IU/kg BW/day subjects at week 20.  At this time point the weight adjusted BMC of the 

right femur for subjects receiving 5 IU/kg BW/day remained lower than the control sham 

subjects but not with significance of P<0.05.  The precision of this method was 6.64% in 

our study.  Two parallel lines are drawn in the graph of Fig. 14 to show this precision 

range.     
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Figure 14  Weight adjusted BMC of right femur. aP<0.05 vs. Control ovx, 5 IU/kg, 15 
IU/kg, and 50 IU/kg groups. bP<0.05 vs. Control ovx, 15 IU/kg, and 50 IU/kg groups. 
Control sham BL, 4wks, 8wks, and 12wks n=8, 16wks, 20wks, and 24wks n=7.  Control 
ovx n=8 at each time point.  5IU/kg group BL, 4wks, 8wks, and 12wks n=9, 16wks n=8, 
20wks and 24wks n=7.  15 IU/kg group BL, 4wks, 8wks, 12wks, and 16wks n=8, 20wks 
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and 24wks n=7.  50 IU/kg group BL and 4wks n=9, 8wks, 12wks, 16wks, 20wks and 
24wks n=8.  Precision error is 6.64% as indicated by the lines within the graph. 

 

In the left femur (Fig. 15) the weight adjusted BMC of the control ovariectomized 

subjects was significantly higher than the control sham group at baseline (P<0.05).  This 

difference is reversed following ovariectomy, as seen at week 4, when the weight 

adjusted BMC of the left femur of the control ovariectomized subjects is significantly 

lower than the control sham group and remains significantly lower for 20 weeks of this 

study (P<0.05).   

At baseline the weight adjusted BMC of the left femur for the control sham group 

is significantly lower than the control ovariectomized, 15 IU/kg BW/day, and 50 IU/kg 

BW/day subjects (P<0.05).  At 4 weeks the weight adjusted BMC of the left femur of the 

ovariectomized subjects is significantly lower than the control sham group (P<0.05) 

except for the subjects receiving 5 IU/kg BW/day and 15 IU/kg BW/day.  Again, at this 

time point the weight adjusted BMC of the left femur for subjects receiving 5 IU/kg 

BW/day and 15 IU/kg BW/day remained lower than the control sham subjects but not 

with significance of P<0.05.  A similar response is seen at week 24 for the subjects 

receiving 5 IU/kg BW/day as compared to the control sham group.  Treatment of the 

ovariectomized groups for 24 weeks did not yield a significant difference between groups 

for weight adjusted BMC of the right and left femur.  The precision of this method, in our 

study was 7.26%. 
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Figure 15  Weight adjusted BMC of left femur. aP<0.05 vs. Control ovx, 15 IU/kg, and 
50 IU/kg groups. bP<0.05 vs. Control ovx and 50 IU/kg groups. cP<0.05 vs. Control ovx, 
5 IU/kg, 15 IU/kg, and 50 IU/kg groups. dP<0.05 vs. 15 IU/kg and 50 IU/kg groups. 
Control sham BL, 4wks, 8wks, and 12wks n=8, 16wks, 20wks, and 24wks n=7.  Control 
ovx n=8 at each time point.  5IU/kg group BL, 4wks, 8wks, and 12wks n=9, 16wks n=8, 
20wks and 24wks n=7.  15 IU/kg group BL, 4wks, 8wks, 12wks, and 16wks n=8, 20wks 
and 24wks n=7.  50 IU/kg group BL and 4wks n=9, 8wks, 12wks, 16wks, 20wks, and 
24wks n=8.  Precision error is 7.26%. 
 

 

Urinary Calcium Excretion 

 Capillary Ion Electrophoresis was used to measure the amount of calcium 

excreted into the urine. Mean levels of urinary calcium measured for each group were 

graphed for each time point.  The area under the curve of each graph was used to 

determine the cumulative effects of treatment over the period of 24 weeks on levels of 

calcium excreted in the urine.  Fig. 16 depicts the area under the curve of each treatment 

group.   
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The control sham group exhibits a significantly higher level of calcium excreted 

into the urine than the control ovariectomized subjects (P<0.05).  The levels of calcium 

excreted in the urine for the groups of subject receiving lower doses of calcitonin (5 and 

15 IU/kg BW/day) were not significantly different from either of the control groups.  

However, the experimental subjects who received higher doses of calcitonin (50 IU/kg 

BW/day) had a significantly higher level of calcium excreted into the urine than the other 

ovariectomized subjects (P <0.05) 
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Figure 16  Area under the curve for levels of calcium excreted into the urine. aP<0.05 vs. 
Control ovx, 5 IU/kg/day, and 15 IU/kg/day groups. Control sham n=7, Control ovx n=8, 
5 IU/kg/day n=7, 15 IU/kg/day n=8, 50 IU/kg/day n=8. 
 

 

Bone Resorption 

 

Helical Peptides 

 The levels of helical peptide 620-633α1, a marker of bone resorption, were 

measured by ELISA.  No consistent significant differences were noted between groups in 
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the measurement of helical peptides during the 24 weeks observed in this study to support 

or refute our hypothesis. 

 

Serum Pyridinoline 

 Levels of pyridinoline, a marker for bone resorption, measured by ELISA in 

serum samples of each subject at each indicated time point are depicted in Fig. 17.  As 

evidenced in Fig. 17, there is increased bone resorption for the first 16 weeks following 

ovariectomy.  At week 4 the subjects receiving 5 IU/kg BW/day had significantly higher 

levels of serum pyridinoline than the control sham subjects at P<0.05. This difference is 

not noted at other time points.  At week 12 the level of serum pyridinoline measured in 

the control sham subjects was significantly higher (P<0.05) than subjects in the control 

ovariectomized group and those receiving 50 IU/kg BW/day of salmon calcitonin.  At 

week 16 subjects receiving 50 IU/kg BW/day of salmon calcitonin had significantly 

lower levels of serum pyridinoline than the subjects receiving 5 IU/kg BW/day (P<0.05).   

Again, these differences were not noted at other time points.  Therefore, no consistent 

significant differences were noted to support or refute our hypothesis. 
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Figure 17  Levels of serum pyridinoline. aP<0.05 vs. Control sham. bP<0.05 vs. Control 
ovx and 50 IU/kg group. cP<0.05  vs. 5 IU/kg group. Control sham BL, 4wks, 8wks, and 
12wks n=8, 16wks, 20wks, and 24wks n=7.  Control ovx n=8 at each time point.  5IU/kg 
group BL, 4wks, 8wks, and 12wks n=9, 16wks n=8, 20wks and 24wks n=7.  15 IU/kg 
group BL, 4wks, 8wks, 12wks, and 16wks n=8, 20wks and 24wks n=7.  50 IU/kg group 
BL and 4wks n=9, 8wks, 12wks, 16wks, 20wks, and 24wks n=8.  
 

 

 

Bone Formation 

 

Osteocalcin 

Mean levels of osteocalcin measured for each group were graphed for each time 

point.  The area under the curve of each graph was used to determine the cumulative 

effects of treatment over the period of 24 weeks on osteocalcin levels and is depicted in 

Fig. 18.  The group receiving 5 IU/kg BW/day of calcitonin had a significantly higher 

level of osteocalcin over the 24-week period than the control sham group (P<0.05).  The 

group receiving 15 IU/kg BW/day also had a higher level of osteocalcin over the 24-week 
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period than the control sham, control ovariectomized and 50 IU/kg BW/day groups but 

not with significant difference.  No significant difference in the cumulative level of 

osteocalcin over the 24-week period was detected between the control sham, control 

ovariectomized, and 50 IU/kg BW/day groups. 

 

 Figure 18  Bar graph of area under the curve measurements for osteocalcin. aP<0.05 vs. 
Control sham, Control ovariectomized, and 50 IU/kg BW/day groups.  Control sham n=7, 
Control ovx n=8, 5 IU/kg/day n=7, 15 IU/kg/day n=7, 50 IU/kg/day n=8.   
 

 

 

Calcitonin Antibodies 

Serum samples were analyzed by Direct ELISA for detection of production of 

antibody titer to calcitonin.  As depicted in Fig. 19, there were no significant differences 

noted in the level of calcitonin antibodies detected between groups of subjects over a 

period of 24 weeks.  
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Figure 19  Serum levels of calcitonin antibody as detected by Direct ELISA.  No 
significant differences were noted between groups at any time point. Control sham BL, 
4wks, 8wks, and 12wks n=8, 16wks n=6, 20wks and 24wks n=7.  Control ovx BL n=6, 
4wks n=7, 8wk, 12wks, 16wks, 20wks, and 24wks n=8.  5IU/kg group BL, 8wks, and 
12wks n=9, 4wks and 16wks n=8, 20wks n=6, 24wks n=7.  15 IU/kg group BL, 8wks, 
and 12wks n=8, 4wks, 20wks, and 24wks n=7, 16wk n=6.  50 IU/kg group BL and 4wks 
n=9, 8wks, 12wks, 16wks, 20wks, and 24wks n=8.    
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CHAPTER 4 

DISCUSSION 

 

 Bone is a dynamic tissue that is constantly balancing its structural and metabolic 

functions.  Bone is continuously undergoing turnover to allow these functions to occur.  

Bone turnover is a result of the combined processes of bone resorption and bone 

formation.  Bone is constantly being resorbed by osteoclasts resulting in release of 

essential minerals to perform its metabolic functions.  Osteoblasts form new bone to 

restore the bone mineral necessary to provide adequate strength for its structural function. 

 In adult humans these processes of bone resorption and bone formation are linked 

together.  As osteoclasts resorb bone, osteotropic factors stored in the bone matrix are 

released.  These factors are responsible for activating osteoblasts to begin the process of 

bone formation.  As the osteoblasts proceed with bone formation, they secrete more 

osteotropic factors into the newly formed bone matrix.  Because of this coupling 

mechanism in adults, the processes of bone resorption and bone formation change in the 

same direction and the bone mass remains constant.  It these processes become 

uncoupled, disorders of bone remodeling such as osteoporosis occur whenever bone 

resorption exceeds bone formation.   

Estrogen deficiency is the most common cause of osteoporosis in humans.  

Calcitonin is one of the medications used to combat the increase in bone resorption 

induced by estrogen deficiency in postmenopausal women.  Calcitonin binds to calcitonin 

receptors on the surface of the osteoclast.  By inhibiting osteoclast activity, calcitonin is 

effective in limiting estrogen-deficient bone resorption.  However, many patients become 
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resistant to the effects of calcitonin and over a period of time, calcitonin appears to lose it 

efficacy.  Furthermore, increases in BMD following the administration of calcitonin are 

transient and continued calcitonin administration is sometimes associated with lower 

BMD.  Oversuppression of bone turnover may be responsible for this resistance to 

calcitonin.  It is our hypothesis that high doses of salmon calcitonin can result in 

oversuppression of bone turnover.  We chose to test this hypothesis in female 

ovariectomized rats.   

The ovariectomized rat has emerged as the most common estrogen-deficient 

animal model used for study of postmenopausal bone loss. A study by Kalu (1991) found 

many metabolic similarities between ovariectomized rats and postmenopausal women 

including: increased rate of bone turnover with resorption exceeding formation, greater 

loss of cancellous than cortical bone, decreased intestinal absorption of calcium, some 

protection against bone loss by obesity, and similar skeletal response to therapy.  Studies 

by Wronski and others (1991) support the ovariectomized rat as an appropriate animal 

model for the preclinical evaluation of prophylactic treatments for postmenopausal bone 

loss. It is evident from the available research that the ovariectomized rat is an appropriate 

animal model for study of the pathogenesis and treatment of postmenopausal bone loss. 

 

Estrogen-deficient Animal Model 

In this study the ovaries were identified bilaterally in each subject.  The ovaries of 

each subject in the control sham group were identified and noted to have adequate blood 

supply.  For the remaining groups bilateral ovaries were successfully excised in each 

subject and prepared for examination.  Microscopic evaluation of excised tissue samples 
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by an independent pathologist provided confirmation that ovariectomy surgical 

procedures were properly performed.  Additionally, levels of Estradiol, as measured by 

ELISA, were significantly lower in subjects who were ovariectomized as compared to 

sham ovariectomized subjects.  The differences in levels of Estradiol between 

ovariectomized and sham ovariectomized subjects along with the confirmation of tissue 

type excised during the ovariectomy procedures are evidence of the production of an 

estrogen-deficient animal model appropriate for the study of Type I osteoporosis.  

  

Scanning Electron Microscopy 

 Bone strength, and ultimately protection against fracture, is dependent on both 

bone quantity and bone quality.  Density and size of bone determine bone quantity.  

Together these factors constitute mass and determine the strength of bone.  Bone mass is 

measurable by DXA scans.  The association between low BMD as detected by DXA, and 

increased fracture risk has been established, but there is also an association between 

decreased cortical thickness and increased fracture risk (Cefalu 2004). Although BMD is 

an important factor for prediction of fractures, it is not the only factor available for 

assessment of fracture risk. 

 There is evidence to show that in humans with osteoporosis changes in BMD 

induced by medications do not parallel changes in fracture risk reduction.  For instance, a 

review of various vertebral fracture trials, as shown in Table 5, shows a range of 1.2-

8.3% increase in spine BMD correlating with a 36-49% decrease in vertebral fractures 

(Faulkner 2000).  In addition to BMD other factors may play an important role in 

decreasing fracture risk. It is indeed noteworthy that in the PROOF study treatment with 
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calcitonin resulted in an increase in spinal BMD by only 1.2% but reduced vertebral 

fracture risk by 36% (Chesnut and others 2000), whereas in the FIT II study increases in 

BMD of 8.3% were associated with a reduction in vertebral fracture of 44%. This 

suggests that there is no linear correlation between bone mineral density and bone 

strength and that factors other than BMD may be responsible for the reduced fracture 

risk. 

 

Table 5  Data from Vertebral Fracture Trials 
 

Vertebral Fracture Trials 
 

     Increase in        Decrease in 
          Drug (Trial)       Spine BMD       Vertebral fx 
          Alendronate (FIT II)            8.3%            44% 
          Alendronate (FIT I)            7.9%            47% 
          Risedronate (RVE)            7.1%            49% 
          Risedronate (RVN)            5.4%            41% 
          Raloxifene (MORE)            2.6%            40% 
          Calcitonin (PROOF)            1.2%            36% 

 
 

 
      
Bone architecture plays an important role in the structural quality of bone and 

must also be considered.  Other factors independent of bone mass that influence bone 

strength include mineralization density, material properties of the organic matrix, and 

damage state.  Remodeling may alter these factors that contribute to bone quality (Trovas 

and others 2002).  Review of data led Trovas and others (2002) to hypothesize that 

mechanisms other than those associated with an increase in bone mass attribute to the 

decrease in fracture risk observed with antiresorptive treatments.  With accelerated bone 

turnover bone resorption by osteoclasts exceeds bone formation by osteoblasts.  This 

results in thinning of the trabeculae and even disappearance of some trabeculae resulting 
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in increased fracture risk (Cefalu 2004).  Thinning of the trabeculae can be assessed by 

BMD measurements and will be addressed at a later point in this study.  The 

disappearance of trabeculae leads to a structurally weak bone, but there are no means 

presently available to assess these changes in bone architecture.  

Evidence of the deleterious effects of ovariectomy on bone is illustrated in the 

SEM pictures obtained in this study.  A decrease in the thickness of the cortical walls is 

observed in control ovariectomized subjects when compared to control sham subjects.  

Disappearance of trabeculae results in formation of cavities in the trabecular lattice of the 

bone.  Visual inspection of the bones of control sham subjects reveals a thick, evenly- 

spaced lattice of trabecular bone.  In comparison, obvious cavities and a decrease in the 

number and density of trabeculae are noted when observing the same area of bone from 

the control ovariectomized subjects. 

The ability of varying doses of calcitonin to attenuate the effects of estrogen 

deficiency is also evident.  The cortical walls of the subjects receiving 5 & 15 IU/kg 

BW/day of calcitonin are thicker than the cortical walls of the bone of the subjects 

receiving 50 IU/kg BW/day of calcitonin.  Subjects receiving 50 IU/kg BW/day of 

calcitonin have bone with sparsely displaced, thinner trabeculae than the subjects 

receiving 5 & 15 IU/kg BW/day.  Large cavities are also noted within the trabecular 

structure of subjects receiving 50 IU/kg BW/day of calcitonin.  These observations 

indicate that smaller doses of calcitonin are more effective than larger doses at preventing 

estrogen induced bone loss. 

With the naked eye similarities are noted between control ovariectomized subjects 

and subjects receiving 50 IU/kg BW/day of calcitonin.  They have thin cortical walls and 
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decreased number and density of trabeculae.  Cavities indicative of disappearance of 

trabecular bone are also evident and comparable in control ovariectomized subjects and 

subjects receiving 50 IU/kg BW/day of calcitonin. 

Similarities are also visually evident between control sham subjects and those 

subjects receiving 5 & 15 IU/kg BW/day of calcitonin.  The ovariectomized subjects 

receiving 5 & 15 IU/kg BW/day of calcitonin do not display thinning of the cortical walls 

and in comparison to the control sham subjects may even show an increase in thickness 

of the cortical walls.  The number and density of trabeculae, as observed with SEM, in 

the subjects receiving 5 & 15 IU/kg BW/day of calcitonin are more similar to the control 

sham subjects than the control ovariectomized subjects.   

A discrepancy in the ability to prevent or reduce bone loss induced by estrogen 

deficiency is noted between doses of calcitonin.  Larger doses are less efficient than 

smaller doses at reducing the increased bone resorption.  Similarly, smaller doses appear 

to induce a larger bone mass than larger doses. 

One possible reason for this discrepancy between groups is that calcitonin may 

indirectly inhibit bone formation when given in larger doses.  Although the main effect of 

calcitonin is inhibition of osteoclasts, osteoblasts may be indirectly inhibited as well with 

administration of calcitonin due to the coupling of osteoclasts and osteoblasts.  While this 

may not be observed with lower doses of calcitonin, this may take place when larger 

doses of calcitonin are administered, resulting in a reduced bone mass. 
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Another possible reason for the difference in response with different doses of 

calcitonin is increased calcium loss induced by the direct physiological effects of 

calcitonin on the renal tubules as depicted in Fig. 20. By increasing the urinary calcium 

loss calcitonin may induce a negative calcium balance thus activating the parathyroid 

glands to produce more PTH.  PTH then directly stimulates the recruitment of osteoclasts 

and their activity thus increasing the rate of bone resorption and mobilization of calcium 

from the bones to the circulation to compensate for the negative calcium balance.  The 

activation of the renal-parathyroid-bone axis may be responsible for the reduced efficacy 

of large doses of calcitonin to protect bones from the estrogen deficiency induced 

increased rate of bone resorption by directly increasing resorption. 

Figure 20  The renal-parathyroid-bone-axis 
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The direct renal effect of calcitonin is very important in some species of animals.  

Although in mammals this action is of marginal importance, compared to other factors, in 

the salmon it is crucial to survival. In the salmon, calcium filters from the water to the 

blood stream as seawater passes through the gills.  When migrating from fresh water to 

salt water, salmon experience an excessive calcium load.  One mechanism salmon use to 

rid the system of this excessive calcium is calcitonin, which increases the renal calcium 

loss and, therefore, prevents the accumulation of calcium and the increase in serum 

calcium. 

When administered pharmacologically calcitonin stimulates increased renal 

calcium excretion probably leading to a negative calcium balance, especially if given in 

larger doses for long periods of time. In response to this negative calcium balance PTH 

stimulates osteoclastic bone resorption to restore normal levels of serum calcium.  The 

details of this process will be further discussed in the section regarding urinary calcium 

excretion.  Bone resorption is more evident in the SEM images of subjects receiving 50 

IU/kg BW/day of calcitonin than the subjects receiving the lower 5 & 15 IU/kg BW/day 

doses. 

The discrepancy between doses of calcitonin may also be due to production of 

antibodies to calcitonin.  A final possibility for the discrepancy between different doses 

of calcitonin and the resulting bone mass is that calcitonin may directly stimulate bone 

formation when given in low doses.  The mechanism for this possible action is unknown 

at this time because osteoblasts do not have calcitonin receptors. 

The SEM photographs nevertheless provide proof that larger doses (50 IU/kg 

BW/day) of calcitonin administered continuously over a 24-week period to 
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ovariectomized rats are associated with a bone mass not dissimilar from that of 

ovariectomized subjects receiving placebo.  Conversely, smaller doses (5 & 15 IU/kg 

BW/day) are associated with a bone mass not that dissimilar from sham ovariectomized 

subjects receiving placebo. 

 

Bone Quality 

 

Bone Densitometry 

 BMD is a derived measurement calculated by dividing the BMC of the bone 

scanned by the surface area of the bone.  In clinical practice the BMD is the preferred 

measurement because it adjusts for the size of the bone and makes it possible to compare 

an individual patient with a cohort reference population of the same sex or same age and 

sex.  While monitoring the patient’s response to therapy the BMD also is taken into 

account rather than the BMC because very little to no change is expected in the bone 

surface area.  In humans there is no further bone growth once the peak bone mass is 

reached in adulthood.   

The experimental subjects used in this study do not reach peak bone mass but 

continue to grow throughout life provided they remain healthy and receive adequate 

nourishment.  Indeed, they showed continual skeletal growth and weight gain throughout 

the 24-week study. This increase in weight gain and overall size of subjects may impact 

on the significance of observed bone mineral density changes.  Therefore, the weight 

adjusted BMC rather than the BMD was chosen for analysis between subjects thus 

eliminating any variation differences in the area and size of subjects may have produced.   
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As expected, following 24 weeks of treatment with saline the weight adjusted 

spinal BMC of the control sham group is significantly higher than the control 

ovariectomized subjects (P<0.05).  At baseline no significant differences were noted in 

weight adjusted spinal BMC measurements between control sham and control 

ovariectomized subjects.  However, at 4 weeks the weight adjusted spinal BMC of 

control ovariectomized subjects is significantly lower than the control sham subjects 

(P<0.05) and remains significantly lower throughout the 24 weeks of this study.  This is 

expected because of the reduced inhibitory activity of osteoclasts and subsequent increase 

in bone resorption that occurs as a result of estrogen deficiency following ovariectomy.   

The weight adjusted spinal BMC of the subjects receiving lower doses of 

calcitonin (5 and 15 IU/kg BW/day) showed an initial decrease following ovariectomy.  

These groups then showed a gradual increase in weight adjusted spinal BMC which was 

not significantly different from the control sham group after 24 weeks of treatment.  This 

response is indicative of the ability of salmon calcitonin in doses of 5 and 15 IU/kg 

BW/day to reduce bone loss caused by estrogen deficiency.  

In contrast, the weight adjusted spinal BMC of the subjects receiving 50 IU/kg 

BW/day of calcitonin shows a similar initial decrease at 4 weeks following ovariectomy 

with a smaller gradual increase at 8 weeks of treatment.  The weight adjusted spinal BMC 

of this group plateaus and even begins to decrease after 8 weeks of treatment.   At week 

24 the weight adjusted spinal BMC of the subjects receiving 50 IU/kg BW/day of salmon 

calcitonin remains significantly lower than the control sham group and the 5 IU/kg group 

but not significantly different from either the 15 IU/kg subjects or the control 

ovariectomized subjects (P<0.05).   
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The higher doses of calcitonin (50 IU/kg BW/day) unlike the lower ones (5 & 15 

IU/kg BW/day) were not able to compensate for the increased bone loss induced by 

estrogen deficiency.  As a result, instead of the bone mass gradually increasing in the 

subjects receiving higher doses of calcitonin over the 24-weeks observation period, as 

happened with the lower doses, it was not significantly different from the control 

ovariectomized subjects.  Thus, after an initial increase in week 8, the BMC then 

gradually decreased in the subjects receiving higher doses of calcitonin.  This may be due 

to oversuppression of bone turnover; increased renal calcium excretion resulting in a 

negative calcium balance, and subsequent stimulation of PTH secretion and bone 

resorption; or production of neutralizing antibodies to calcitonin. 

In analysis of BMC in this study, the femurs responded differently than the spine.  

Following ovariectomy experimental subjects also showed a significant decrease in 

weight adjusted BMC for the femurs as compared to the control sham subjects.  After 

baseline measurements the weight adjusted BMC of the right and left femur of the control 

ovariectomized subjects remains significantly lower than the subjects in the control sham 

group (P<0.05).   The ovariectomized groups receiving varying doses of calcitonin 

showed a gradual decrease and subsequent plateau in weight adjusted BMC of the right 

and left femur after ovariectomy.  Treatment of the ovariectomized subjects in this study 

with calcitonin did not yield a significant difference in weight adjusted BMC of the right 

or left femur between treatment groups during the 24 weeks these subjects were 

observed.   

The differences in response between bone mass in the vertebrae and the femurs 

are most probably due to the different nature of the bones in both anatomical sites.  The 
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spine is composed primarily of trabecular or cancellous bone that is lost much earlier and 

more rapidly than cortical bone.  This occurs due to trabecular bone being more vascular 

and more responsive to the body’s metabolic needs than cortical bone.  Trabecular bone 

is also more responsive to various therapeutic modalities than cortical bone.  Therefore, it 

is not surprising that in this study the largest differences in BMC between treatment 

groups is noted in the spine, while the differences found in the right and left femur were 

less notable. 

This data are in agreement with clinical findings. Trovas and others (2002) found 

treatment with nasal spray salmon calcitonin of men with idiopathic osteoporosis over 12 

months led to an increase in lumbar BMD in the calcitonin treatment groups that was 

significantly greater than that of the group receiving placebo treatment.  However, no 

significant changes were noted in BMD of the femoral neck or greater trochanter between 

groups after 12 months of treatment.  Clinical experience shows that in virtually all 

studies the vertebral BMD changes are faster and of larger magnitude than femoral BMD 

changes. 

Similarly, data published by Chesnut and others (2000) showed significant 

increases in BMD of the lumbar spine from baseline in all treatment groups as compared 

to placebo, but they did not find any clinically significant effect on BMD at the femoral 

neck or trochanter with treatment over 5 years.  In their study involving treatment of 

postmenopausal women with nasal spray salmon calcitonin, these researchers found a 

significant decrease in risk of new vertebral fractures in patients receiving 200-IU dose of 

salmon calcitonin nasal spray as compared to placebo but no difference in hip fractures.  

Also, no significant difference in vertebral fracture risk was found in patients receiving 
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the larger 400-IU dose, thus indicating that the lower dose of 200-IU of calcitonin was 

more effective than the larger 400-IU dose for prevention of new vertebral fractures 

(Chesnut and others 2000).  However, as mentioned earlier, BMD is not the only factor 

related to increased fracture risk.  The architectural structure of the bone also plays an 

important role in fracture risk.     

Other clinical studies have documented that the effect of calcitonin is transient 

and when continued over a period of time the bone mass may actually decrease.  

However, in these studies the dose effect of calcitonin was not studied.  Furthermore, in 

many studies there was a high withdrawal rate of patients.  For instance, the withdrawal 

rate of subjects in the PROOF study was 59%.  Also, in clinical practice, researchers are 

unable to control for other variables that may have contributed to the results such as 

dietary calcium intake, exercise, cigarette smoking, excessive alcohol consumption, and 

genetics (Chesnut and others 2000).  Due to the controlled environment and experimental 

subjects used, many of these external variables were eliminated in our study.   

The subjects receiving 50 IU/kg BW/day of calcitonin were less effective at 

diminishing the bone resorption effects of post-ovariectomy estrogen deficiency than the 

subjects receiving 5 & 15 IU/kg BW/day.  This is in agreement with SEM findings 

already discussed and provides further proof that differing doses of calcitonin result in 

different responses. These significant dose differences noted in this study could be due to 

several factors including: oversuppression of bone turnover; increased renal loss of 

calcium leading to a negative calcium balance; or production of neutralizing antibodies to 

calcitonin.   
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Urinary Calcium Excretion 

 Our results show a dose-dependent effect of calcitonin on urinary calcium 

excretion with the amount of calcium excreted increasing with increased doses of 

calcitonin.  While the ovariectomized treatment groups receiving lower doses of 

calcitonin did not show a significant difference in total calcium excretion measured in the 

24-hour urine samples, the subjects receiving higher doses of calcitonin had a 

significantly higher total calcium excretion than those receiving lower doses and than the 

control ovariectomized subjects.  This increase in calcium excreted into the urine may be 

an indicator of increased bone resorption in this group or a direct effect on the renal 

tubules.  

 Although calcitonin has a direct inhibitory effect on the osteoclasts, its renal 

effect of increasing urinary calcium excretion can result in increased PTH mediated bone 

resorption.  As depicted in Fig. 21, along with inhibiting osteoclasts, calcitonin also has a 

direct effect on the renal tubules to increase urinary calcium excretion.  Therefore, 

continuous calcitonin administration may lead to a negative calcium balance.  This 

negative calcium balance may then lead to an excessive rate of bone resorption in order 

to maintain the serum calcium level constant.  This increased bone resorption may be 

mediated by the action of PTH released in response to the negative calcium balance.  

PTH is able to activate osteoclasts and recruit precursors to osteoclasts in order to 

increase bone resorption and ensure that the serum calcium levels remain within the 

normal range necessary physiological functions. 
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Figure 21  Diagram of multiple dose effects of calcitonin.  Calcitonin directly inhibits 
osteoclast functions and directly stimulates the kidneys to excrete excess calcium.  By 
this direct effect on the kidneys, calcitonin may also cause indirect stimulation of 
osteoclasts. 

 

The direct effect of calcitonin on urinary calcium excretion could also be 

responsible for the less effective outcomes seen with higher doses of calcitonin. Indeed, 

in this study there is evidence of smaller bone mass in the BMC measurements and SEM 

images of the subjects receiving 50 IU/kg BW/day of calcitonin than the subjects 

receiving 5 & 15 IU/kg BW/day of calcitonin.  

 

Bone Resorption 

Estrogen deficiency is a contributing factor to the development of osteoporosis 

after menopause (Hartke 1998).  With osteoporosis the rate of bone resorption exceeds 

the rate of bone formation. Use of biochemical markers of bone resorption and bone 
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formation is a good means to monitor response to antiresorptive therapies such as 

calcitonin (Delmas 2002).  Biochemical markers of bone resorption found in blood and 

urine are products of collagen breakdown, which reflect bone resorption (Cefalu 2004).  

 

Helical Peptides & Serum Pyridinoline 

Amino acids from the stabilizing crosslinks of collagen are released into the blood 

and urine as bone matrix is degraded (Ott 03/01/02).  Thus, levels of helical peptides 

were measured to assess the amount of bone resorption occurring in the experimental 

subjects in this study.  No consistent significant differences were noted between groups in 

the measurement of urinary helical peptides.  No evidence was obtained from these 

measurements to support or refute our hypothesis that higher doses of calcitonin resorb 

bone to a different degree than smaller doses.  In fact, no significant change could be 

observed in any of the groups studied, including 2 control groups and 3 treatment groups. 

Pyridinoline is one of the amino acids released from mature collagen into the 

circulation as bone is degraded and thus serves as a marker for bone resorption (Gomez 

and others 1996).  Results of this study showed fluctuations in serum pyridinoline levels 

between subjects indicating a slight increase in bone resorption for the first 16 weeks 

after ovariectomy.  However, similar to the findings seen with measurement of urinary 

helical peptides, no consistent significant differences were noted between groups for 

measurement of levels of serum pyridinoline during the 24 weeks observed in this study. 

In our study, this lack of significant differences between subjects for levels of 

biochemical markers of bone resorption is not due to the subjects studied.  The rat has 

been established as an appropriate model for evaluation of treatments for postmenopausal 
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bone loss and has shown many metabolic similarities to postmenopausal women (Kalu 

1991; Wronski 1999).  It is possible that the quantities of these markers released in the 

smaller rat subjects were too minute to accurately assess changes.  It is evident from the 

changes in BMC that bone has been resorbed in these subjects, but this resorption was not 

detected by the assays used for biochemical markers of bone resorption.  

Temporary fluctuations in levels of markers of bone turnover can occur without 

resulting in an overall anatomical change in bone quality or strength. Measurement of 

biochemical markers of bone turnover to monitor response to therapy is controversial 

because of high variability (Altkorn and Vokes 2001).  Artifactual changes in urinary 

markers, circadian patterns, and biological variability of individual subjects are 

limitations associated with measurement of biochemical markers of bone turnover 

(Khosla and Kleerekoper 1999).  Despite collection of a 24-hour urine specimen, 

normalization for creatinine excretion, and repeated serum collections at 4-week 

intervals, the possibility of temporary fluctuations in these biochemical markers cannot 

be eliminated.  

Levels of urinary helical peptides and serum pyridinoline are biochemical markers 

of bone resorption and have been used successfully for assessment of bone resorption in 

previous studies involving human subjects (Kamel and others 1995; Urena and others 

1995; Gomez and others 1996; Visor and others 1996;  Ju and others 1997). These 

markers have been shown to have questionable clinical relevance due to high variability.  

Chesnut and others (2000) documented only a modest decrease in biochemical markers of 

bone turnover in the PROOF study despite their findings of relevant changes in spinal 

BMD and fracture risk between treatment groups. Currently, these markers are most 
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beneficial as an adjunct to DXA for estimation of fracture risk and should not be used 

alone for diagnosing osteoporosis or monitoring the long-term response to therapy 

(Khosla and Kleerekoper 1999).  Indeed, these markers are mainly used in large 

population studies and are not very useful for individual patients.  Due to the high 

variability of these markers, any changes <40% in human subjects are not considered 

clinically significant.  Also, the precision of the measurement of these markers is 

unknown for this study. 

 

Bone Formation 

 

Osteocalcin 

Serum levels of osteocalcin, a product of osteoblasts and a biochemical marker of 

bone formation, as measured by radioimmunoassay, were not significantly different when 

comparing area under the curve for control sham and control ovariectomized subjects.  

However, levels of osteocalcin in this study were significantly higher in subjects 

receiving 5 IU/kg BW/day of calcitonin as compared to control sham subjects and control 

ovariectomized subjects (P<0.05).  Subjects receiving 5 IU/kg BW/day of calcitonin had 

osteocalcin levels that were significantly higher than the subjects receiving 50 IU/kg 

BW/day (P<0.05) with subjects receiving 15 IU/kg BW/day showing osteocalcin levels 

between these two groups of subjects but not significantly different from either.  This is 

indicative of an inverse dose-dependent response.   

From these findings we conclude that lower doses of calcitonin (5 IU/kg BW/day) 

may be able to increase the rate of bone formation in ovariectomized subjects after 24 
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weeks of treatment.  The experimental subjects receiving the higher dose of calcitonin, 50 

IU/kg BW/day, on the other hand, had lower levels of osteocalcin as compared to 

treatment groups receiving 5 & 15 IU/kg BW/day, indicating less bone formation in this 

group of subjects.  These subjects had a cumulative measurement similar to and not 

significantly different from that of the ovariectomized subjects receiving saline.   

Previous studies involving use of calcitonin for treatment of osteoporosis have 

shown decreases in indices of both bone resorption and bone formation.  Trovas and 

others (2002) observed treatment with nasal spray salmon calcitonin over a 12-month 

period of time resulted in a significant suppression of bone resorption markers and to a 

lesser extent of bone formation markers in men with idiopathic osteoporosis.  A study 

using human calcitonin for treatment of bone loss in ovariectomized dogs also found 

lower levels of osteocalcin, a biochemical marker of bone formation, in subjects 

receiving calcitonin as compared to placebo after 4 months of treatment (Monier-Faugere 

and others 1996).  Chesnut and others (2000) measured significant decreases in serum 

osteocalcin levels in active treatment groups as compared to baseline but found no 

significant differences as compared to placebo after 3 years of treatment with salmon 

calcitonin in postmenopausal women.   

Our findings are not in agreement with these results.  The differences between our 

results and the results of the studies by Monier-Faugere and others (1996) and Trovas and 

others (2002) mentioned above may be attributed to the fact that these studies did not 

incorporate a dose-response method for analysis of effects of calcitonin.  Secondly, the 

subjects in our study received calcitonin continuously throughout the 24-week study, 

while the subjects in the above mentioned studies were administered calcitonin 
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intermittently.  Also, whereas most clinical trials involving calcitonin are of short 

duration, we observed changes in levels of osteocalcin for about 1/6 of the expected 

lifespan of the subjects utilized in our study.  This is equivalent to about 12-13 years in 

humans.  In comparison, the above mentioned studies observed their subjects for a much 

smaller portion of the expected normal lifespan.  Changes in biochemical markers are 

detected earlier in markers of bone resorption than markers of bone formation.  This may 

explain the lower levels of osteocalcin noted by these researchers after intermediate 

periods of time. 

 The cumulative measurements for serum levels of osteocalcin in subjects of this 

study correlate well with the BMC measurements and SEM observations. The subjects in 

this study receiving lower doses of calcitonin (5 & 15 IU/kg BW/day) had higher levels 

of osteocalcin indicating increased bone formation as compared to the subjects receiving 

50 IU/kg BW/day of calcitonin.  Temporary fluctuations in levels of markers of bone 

turnover can occur without resulting in an overall anatomical change in bone quality or 

strength.  However, the increase in bone formation found in the subjects receiving 5 and 

to a lesser extent 15 IU/kg BW/day of calcitonin corresponds with our findings of higher 

spinal BMC in these subjects as compared to the subjects receiving 50 IU/kg BW/day of 

calcitonin.  This also corresponds with the thicker cortical walls and less trabecular 

thinning noted with SEM of the subjects receiving 5 and 15 IU/kg BW/day of calcitonin 

as compared to the subjects receiving the higher 50 IU/kg BW/day dose.  This is an 

indication that the changes in bone formation detected by osteocalcin in this study are 

related to changes in bone mass.  
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  Our study evaluated only the effects of salmon calcitonin.  Other types of 

calcitonin, including human, porcine, and eel calcitonin, may affect bone turnover 

differently and produce results different from this study.  The magnitude of the renal 

calciuric effect of calcitonin may be different in other types of calcitonin.  Unlike the 

salmon, which is dependent for its survival on the ability to quickly dispose of larger 

doses of sodium and calcium, mammals do not have to face this challenge.  The calciuric 

effect of different types of calcitonin may therefore be different.   

Another major difference between the methodology of our study and that of 

studies involving humans is the method of calcitonin administration.  The most common 

use of calcitonin for treatment in human subjects is by nasal spray or injection.  Due to 

the short half-life of calcitonin, these administrations would be considered intermittent.  

The main action of calcitonin is to inhibit osteoclasts.  However, due to the short half-life 

of calcitonin, intermittent dosing in humans results in short spikes of osteoclastic 

inhibition.  Conversely, the subjects used in our study were administered calcitonin 

continuously via medication pumps.  Continuous administration of calcitonin results in a 

constant level of calcitonin being present in the bloodstream and continuous inhibition of 

osteoclasts.  In this study, ovariectomized treated subjects received continuous calcitonin 

for a period of 24 weeks.  This could be a further explanation of the differences in 

response seen with our subjects from other published data involving human subjects. 

 There is other evidence to support the differences between continuous and 

intermittent administration of medications.  A differential effect is seen with PTH 

depending on whether administration is continuous or intermittent.  If given continuously 

PTH acts to stimulate osteoclasts resulting in an increase in bone resorption.  Indeed, 
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osteoporosis is a main manifestation of hyperparathyroidism.  In comparison, if given 

intermittently the stimulatory effects on osteoclasts are reduced, while osteoblast activity 

is increased resulting in a net increase in bone formation and increased bone mass.  This 

paradoxical action has in fact been translated into a therapeutic indication for use of PTH 

in the management of osteoporosis.  It is possible that the paradoxical effects of 

calcitonin on bone turnover may differ depending on the method of administration and 

whether the blood levels are continuously or intermittently elevated. 

 

Calcitonin Antibodies 

 Production of antibodies to calcitonin may play a role in the observed resistance 

seen with long-term administration of calcitonin for treatment of disorders of bone 

remodeling (Watts 1999).  No significant differences were noted in this study in the level 

of calcitonin antibodies measured in subjects receiving calcitonin as compared to subjects 

receiving saline over a period of 24 weeks.  Similarly, there was no significant difference 

in the level of calcitonin antibodies measured between groups regardless of the dosage of 

calcitonin administered or the length of time calcitonin was administered.  This would 

suggest that in our study production of antibodies to calcitonin does not play a significant 

role in the reduced ability of larger doses of calcitonin to lessen the impact of estrogen 

deprived increased bone resorption.   

These findings are in agreement with other researchers who found no apparent 

relationship between the presence of calcitonin antibodies and changes in levels of total 

body calcium or clinical responsiveness to calcitonin (Gruber and others 1984; Overgaard 

and others 1990).  Similarly, Chesnut and others (2000) detected high titers of antibodies 
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to calcitonin among treatment groups receiving calcitonin but the presence of these 

antibodies did not influence the effect of salmon calcitonin on risk reduction of new 

vertebral fractures. 

 The formation of antibodies against heterologous calcitonin occurs frequently 

with use of calcitonin for treatment of osteoclast-mediated bone resorption.  However, 

not all subjects expressing antibodies to calcitonin develop a secondary resistance to 

calcitonin.  Therefore, the clinical significance of antibodies to salmon calcitonin is 

controversial (Grauer and others 1995).  Antibodies to salmon calcitonin have been 

detected in human subjects but did not interfere with the efficacy of long-term therapy for 

treatment of Paget’s disease (Singer and Krane 1990).  In review of the clinical course of 

nine patients with Paget’s disease treated with salmon calcitonin, Grauer and others 

(1990) documented 3 patients with 125I-salmon calcitonin binding antibodies but no 

neutralizing antibodies and no clinical resistance.   

Similar results were found by Hosking and others (1979) who observed 

development of antibodies to salmon calcitonin in 8 of 20 patients treated for 6 months 

with salmon calcitonin.  Despite the presence of these antibodies, the acute hypocalcemic 

response to salmon calcitonin was not diminished in relation to bone turnover.  These 

findings indicate that antibodies that develop in response to salmon calcitonin therapy do 

not necessarily have a neutralizing action that is functionally effective. Similarly, 

findings from this study indicate that production of antibodies to calcitonin does not play 

a significant role in the development of resistance to calcitonin.  
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Conclusions 

 In this study lower doses of calcitonin were more effective at reducing the impact 

of estrogen deficiency on bone mass as evidenced by SEM and DXA.  SEM provided 

evidence that lower doses of salmon calcitonin are more effective than higher doses in 

attenuating the architectural changes in bone structure induced by estrogen deficiency.  

At the end of the study weight adjusted spinal BMC of subjects receiving lower doses of 

calcitonin were not significantly different from control sham subjects.  However, subjects 

receiving higher doses of calcitonin had significantly lower weight adjusted spinal BMC 

measurements than control sham subjects and not dissimilar from the ovariectomized 

nontreated subjects, indicating that lower doses are more effective than higher doses for 

reduction of bone loss caused by estrogen deficiency. 

 Results of our study do not support the hypothesis that higher doses of calcitonin 

oversuppress bone turnover.  There were no significant differences noted in the markers 

of bone resorption in any of the studied groups, and larger doses of calcitonin did not 

have a different effect than lower doses on bone resorption.  Calcitonin, therefore, did not 

oversuppress bone resorption. 

 There is also no evidence to support that higher doses of calcitonin reduce bone 

formation.  Indeed, subjects receiving higher doses of calcitonin had similar levels of 

markers of bone formation as sham operated subjects.  Calcitonin, therefore, did not 

oversuppress bone formation. 

 The decrease in therapeutic effectiveness, therefore, cannot be due to 

oversuppression of bone resorption, bone formation, or bone turnover.  The lack of 
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significant increase in antibodies mitigates against these antibodies being responsible for 

the reduced effectiveness of higher doses of calcitonin or of prolonged treatment in 

humans.   

 This study on the other hand has documented a well-known effect of calcitonin to 

increase renal calcium excretion.  Larger doses of calcitonin resulted in an increase in 

urinary calcium excretion in a dose-dependent manner.  This increase in urinary calcium 

excretion results in a negative calcium balance.  In response, PTH is increased resulting 

in increased osteoclast recruitment and activity.  It is probable that this excessive 

recruitment, mobilization, and activity of osteoclasts cannot be counteracted by 

calcitonin.  In these subjects not only are the osteoclasts released from the inhibitory 

activity of estrogen, but they are actively recruited and energized by the increase in PTH 

secretion.  It is likely in these subjects that the life-preserving importance of maintaining 

calcium homeostasis takes precedence over the relatively less important function of 

maintaining bone mass. 

    

Future Directions 

 This study has shown that higher doses of calcitonin are less efficient at 

protecting ovariectomized rats from the deleterious effects of estrogen deprivation and 

increased rate of bone resorption.  Indicators of bone quality, including weight adjusted 

BMC and SEM images, provide evidence that although lower doses of calcitonin are 

effective in attenuating the effects of estrogen deficiency, higher doses of calcitonin are 

detrimental to bone mass and quality.  Our results show that in ovariectomized rats 

salmon calcitonin affects renal calcium excretion in a dose-dependent manner.  It is, 
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nevertheless, not known whether other classes of calcitonin, such as human, porcine, and 

eel, have a similar effect.  Different types of calcitonin may affect the renal calcium 

excretion in differing magnitudes resulting in different impacts on calcium homeostasis. 

Each class of calcitonin would need to be assessed to determine if the effects of 

calcitonin on renal calcium excretion are similar or if the renal-parathyroid-bone axis 

responds differently with different types of calcitonin.  Therefore, it may be worthwhile 

to further explore the differences that would occur with different species of calcitonin. 

To complement these findings further examination of the effects of intermittent 

vs. continuous administration of calcitonin may yield beneficial clinical information. Due 

to calcitonin being administered intermittently for clinical use further investigation of the 

differences between continuous and intermittent administration of calcitonin would be 

important.  It is also not known whether there are differences in renal calcium excretion 

with continuous vs. intermittent administration of calcitonin.  Indeed, it is possible that 

when administration is intermittent the renal calcium excretion is more limited resulting 

in lesser ability to activate the renal-parathyroid-bone axis.  We need further studies to 

clarify if the renal calcium excretion response elicits a differential effect depending on 

whether calcitonin administration is continuous or intermittent.   

To further assess the renal-parathyroid-bone axis levels of ionized serum calcium 

need to be monitored.  Further assessment of the renal-parathyroid-bone axis response to 

calcitonin would include monitoring of serum PTH levels and visual examination of the 

parathyroid glands to determine response to treatment. Due to the limitations with 

biochemical markers of bone turnover measurement of bone resorption was difficult.  
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The use of different markers of bone resorption would be useful to determine a more 

appropriate marker for use with experimental animals. 

Further measurement of bone formation can be achieved by analysis of 

tetracycline double-labeled bones.  The right femur of each subject that completed this 

24-week study has been processed for analysis of dynamic bone growth by measurement 

of double tetracycline labels.  Results of these measurements may provide further 

evidence of the effects of calcitonin on osteoblastic activity.  We plan to perform these 

studies in the future. 

 Bone strength is the ultimate proof of the efficacy of therapeutic interventions in 

treatment of osteoporotic bone loss.  Initially, we had planned to assess bone strength 

with three-point bending analysis.  However, difficulty achieving consistent placement of 

stress during three-point bending tests in long bones during the pilot study preceding this 

study led us not to include biomechanical strength testing in the current study.  Due to 

prevention of fracture being one of the primary benefits of calcitonin in the treatment of 

osteoporosis patients investigation of more consistent techniques and apparatus for these 

measurements would be beneficial.  Establishment of equipment that would allow for 

consistent placement of stress for three-point bending tests is essential. Ability to center 

the samples precisely for placement of central force exactly at midline would improve the 

reliability of the results of this type of testing.  Assessment of the amount of compressive 

force required to produce vertebral fractures would also lead to probable beneficial 

clinical information.  Equipment that would apply measurable forces along consistent 

areas of the bone until compression resulted in fracture would yield valid results of bone 

strength.  Bones of the lumbar spine, the right tibia, and the 12th rib of subjects 
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completing this 24-week study have been stored to allow for performance of these tests in 

the future. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

1. Successful bilateral ovariectomy produces an estrogen deficient animal model 

appropriate for study of Type I osteoporosis. 

2. Changes in bone densitometry measurements with treatment after ovariectomy are 

evident more rapidly in the spine than the femurs. 

3. Weight adjusted increase in spinal BMC of control ovariectomized subjects and 

ovariectomized subjects receiving higher doses (50 IU/kg BW/day) of calcitonin were 

significantly lower that of control sham subjects. 

4. Subjects receiving lower doses (5 & 15 IU/kg BW/day) of calcitonin were not 

significantly different from the control sham subjects after 24 weeks of treatment.  

These findings suggest that lower doses of calcitonin are more effective for treatment 

of estrogen deficient bone loss than higher doses. 

5. Salmon calcitonin resulted in increased bone formation when administered over 24 

weeks in ovariectomized rats with this response occurring in an inverse dose-

dependent manner.  

6. Biochemical markers of bone resorption used in this study (urinary helical peptides 

and serum pyridinoline) are inconclusive in experimental rats. 

7. Production of antibodies to calcitonin does not correlate with changes in bone 

turnover or bone density, and, therefore, increased production of calcitonin antibodies 

is not responsible for the blunting effect of larger doses seen with administration of 

calcitonin over 24 weeks in rats.  
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8. Anatomical changes in bone quality are evident with SEM following ovariectomy.  

Differing doses of calcitonin are able to attenuate these changes in varying degrees.  

Subjects receiving higher doses of calcitonin display bones with fewer and less dense 

trabeculae as well as thinner cortical walls than subjects receiving lower doses of 

calcitonin.  This is also indicative of lower doses of calcitonin being more effective 

than higher doses in treatment of bone loss due to estrogen deficiency. 

9. Calcitonin appears to affect calcium homeostasis in a dose-dependent manner. The 

direct effect of calcitonin on urinary calcium excretion may be responsible for the less 

effective outcomes seen with higher doses of calcitonin, probably through a PTH-

mediated increase in renal calcium excretion. 

10. Calcitonin does not oversuppress bone turnover. 
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APPENDICES 

APPENDIX A 

Data Tables 

Appendix A-1: Estradiol (pg/ml) 
Control sham 50 IU/kgBW/day  
Subject #           1 wk          4 wks         24 wks Subject #                  1 wk 4 wks     24 wks

1 27.725            20.50 0.088 33 83.32 24.04 1.495
2 57.77              6.91 17.555 34 15.005 27.975 2.165
3 19.21            19.86 2.97 35 126.75 100.28 1.13
4 73.275            50.59                  * 36 71.025 13.54 2.42
5 24.515            36.95 5.96 37 73.23 56.835 1.165
6 19.245            16.39 26.315 38 46.535 15.795 2.22
7 62.52            11.41 4.02 39 54.26 14.93 2.245
8 32.92            19.24 4.755 40 54.345 113.13               * 

Mean 39.6475            22.73 8.809 41 36.055 12.38 6.22
SD 21.4899      14.25416 9.4920 Mean 62.2856 42.1 2.3825
SEM 7.59786         5.03961   3.5876 SD 31.8067 39.213 1.6327
Control ovx SEM 10.6022 13.071 0.5772
Subject #   

9 77.49 21.585 2.165   
10 49.35 5.04 0.89   
11 66.29 6.315 1.57   
12 36.66 11.24 4.14   
13 59.32 107.755 0.2   
14 49.535 26.79 4.22   
15 57.76 121.29 6.495   
16 11.965 23.52 9.345   

Mean 51.0463 40.44188 3.6281   
SD 19.9451 46.54716 3.0970   
SEM 7.05165 16.45691 1.095   
5 IU/kgBW/day   
Subject #   

17 89.86 7.48 6.36   
18 35.205 20.055 *   
19 47.625 32.84 *   
20 104.915 13.235 3.015   
21 120.895 19.565 5.525   
22 48.33 21.37 3.825   
23 86.445 66.495 2.8   
24 27.805 15.09 2.905   
42 15.805 131 5.22   

Mean 64.0983 36.34778 4.2357   
SD 37.1806 39.48274 1.4511   
SEM 12.3935 13.16091 0.5485   
15 IU/kgBW/day   
Subject #   

25 94.2 33.33 1.97   
26 16.9 25.3 0.965   
27 59.09 37.53 9.695   
28 35.975 17.54 *   
29 108.955 15.505 *   
30 21.36 47.28 8.64   
31 113.375 8.275 *   
32 33.53 17.33 3.055   

Mean 60.4231 25.26125 4.865   
SD 39.7187 13.12954 4.0139   
SEM 11.8547 6.12708 1.3662   
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Appendix A-2: FSH (mIU/ml) 
Control sham 1 weeks 4 weeks 24 weeks 

1 5.315 6.11 4.815
2 4.86 9.335 4.32
3 4.08 5.06 4.24
4 4.37 5.24                *
5 4.08 5.24 4.155
6 4.03 4.775 4.365
7 4.17 5.94 4.565
8 4.37 6.065 4.24

Mean 4.409375 5.970625 4.385714
SD 0.454269 1.447889 0.229808
SEM 0.160608 0.511906 0.086859
Control ovx  

9 4.485 5.23 4.205
10 4.36 5.525 4.605
11 4.975 6.53 4.565
12 4.405 6.065 4.525
13 4.25 3.955 4.775
14 4.48 4.565 5.065
15 4.77 4.44 4.485
16 4.94 4.69 5.065

Mean 4.583125 5.125 4.66125
SD 0.274798 0.875834 0.295003
SEM 0.097156 0.309654 0.104299
5 IU/kgBW/day  

17 5.73 4.775 4.485
18 4.975 5.52                *
19 4.71 5.785                *
20 4.28 4.77 4.85
21 4.275 6.32 10.295
22 4.61 5.445 4.525
23 4.32 6.57 4.36
24 4.98 5.025 3.95
42 4.605 6.53 4.155

Mean 4.720556 5.637778 5.231429
SD 0.464996 0.713806 2.250984
SEM 0.154999 0.237935 0.850792
15 IU/kgBW/day  

25 4.07 6.87 4.24
26 4.855 5.27 4.195
27 5.15 6.52 4.695
28 4.735 4.935 4.155
29 4.445 5.905 4.61
30 4.235 5.68 4.61
31 4.605 5.52                *
32 4.855 5.695 4.08

Mean 4.61875 5.799375 4.369286
SD 0.355796 0.633276 0.25777
SEM 0.125793 0.223897 0.097428
50 IU/kgBW/day  

33 4.66 8.14 4.075
34 5.275 6.28 4.4
35 4.48 4.65 4.61
36 4.11 5.36 4.565
37 4.155 5.985 4.69
38 4.9 5.655 4.57
39 4.61 5.1 4.855
40 4.44 6.74                *
41 4.815 5.27 4.405

Mean 4.605 5.908889 4.52125
SD 0.366308 1.050306 0.232805
SEM 0.122103 0.350102 0.082309
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Appendix A-3: Total body BMD (g/cm2) 
Control sham   Baseline       4 wks        8wks      12wks      16wks     20 wks      24wks

1 0.195 0.181 0.187 0.205 0.202 0.214 0.212
2 0.225 0.191 0.199 0.184 0.2 0.219 0.191
3 0.163 0.192 0.194 0.203 0.202 0.22 0.203
4 0.176 0.186 0.193 0.189               *               *               *
5 0.162 0.19 0.189 0.202 0.2 0.221 0.217
6 0.194 0.185 0.21 0.196 0.194 0.206 0.215
7 0.196 0.179 0.202 0.2 0.197 0.195 0.219
8 0.192 0.2 0.19 0.182 0.192 0.192 0.201

Mean 0.187875 0.188 0.1955 0.195125 0.198143 0.209571 0.208286
SD 0.020629 0.006719 0.007728 0.008983 0.003934 0.012122 0.010242
SEM 0.007293 0.002375 0.002732 0.003176 0.001487 0.004582 0.003871
Control ovx   

9 0.191 0.193 0.197 0.21 0.202 0.212 0.219
10 0.208 0.177 0.204 0.214 0.209 0.202 0.212
11 0.16 0.194 0.181 0.208 0.21 0.2 0.201
12 0.174 0.186 0.189 0.223 0.208 0.22 0.218
13 0.166 0.192 0.179 0.199 0.199 0.231 0.22
14 0.196 0.203 0.209 0.208 0.219 0.216 0.206
15 0.195 0.2 0.182 0.201 0.206 0.213 0.216
16 0.186 0.182 0.197 0.195 0.216 0.231 0.211

Mean 0.1845 0.190875 0.19225 0.20725 0.208625 0.215625 0.212875
SD 0.01644 0.00879 0.011222 0.00894 0.006632 0.0116 0.006728
SEM 0.005813 0.003108 0.003968 0.003379 0.002345 0.004101 0.002379
5 IU/kgBW/day   

17 0.174 0.201 0.202 0.188 0.201 0.197 0.202
18 0.189 0.192 0.19 0.2 0.202               *               *
19 0.174 0.195 0.204 0.192               *               *               *
20 0.195 0.191 0.195 0.214 0.201 0.202 0.219
21 0.195 0.195 0.21 0.207 0.196 0.211 0.206
22 0.197 0.208 0.2 0.209 0.207 0.201 0.223
23 0.172 0.188 0.197 0.2 0.201 0.201 0.206
24 0.271 0.179 0.192 0.214 0.2 0.203 0.21
42 0.178 0.196 0.191 0.199 0.207 0.196 0.205

Mean 0.193889 0.193889 0.197889 0.202556 0.201875 0.201571 0.210143
SD 0.030629 0.0081 0.006698 0.009167 0.003643 0.004894 0.007862
SEM 0.01021 0.0027 0.002233 0.003056 0.001288 0.00185 0.002972
15 IU/kgBW/day  

25 0.173 0.182 0.191 0.195 0.19 0.199 0.206
26 0.188 0.2 0.197 0.227 0.226 0.202 0.208
27 0.178 0.192 0.193 0.197 0.198 0.208 0.215
28 0.18 0.19 0.191 0.197 0.205 0.201 0.206
29 0.19 0.207 0.195 0.21 0.211 0.219 0.22
30 0.182 0.199 0.195 0.2 0.216 0.197 0.21
31 0.201 0.182 0.204 0.193 0.201               *               *
32 0.198 0.182 0.191 0.196 0.202 0.209 0.217

Mean 0.188143 0.193143 0.195143 0.202857 0.208429 0.206 0.212667
SD 0.008877 0.009424 0.004488 0.011936 0.009914 0.007797 0.005502
SEM 0.003139 0.003332 0.001587 0.00422 0.003505 0.002947 0.002079
50 IU/kgBW/day  

33 0.186 0.204 0.194 0.185 0.211 0.218 0.211
34 0.203 0.18 0.186 0.207 0.2 0.212 0.215
35 0.194 0.2 0.193 0.207 0.204 0.201 0.201
36 0.187 0.199 0.193 0.199 0.212 0.193 0.208
37 0.195 0.202 0.2 0.189 0.2 0.195 0.205
38 0.18 0.189 0.178 0.187 0.2 0.192 0.206
39 0.191 0.188 0.188 0.191 0.2 0.195 0.193
40 0.189 0.192               *               *               *               *               *
41 0.186 0.205 0.188 0.2 0.193 0.202 0.207

Mean 0.190625 0.194375 0.189429 0.197143 0.201286 0.198571 0.205
SD 0.006906 0.008501 0.006876 0.008295 0.005736 0.007044 0.006758
SEM 0.002302 0.002834 0.002431 0.002933 0.002028 0.00249 0.002389
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Appendix A-4 Total body BMD % change from baseline 
Control sham            4 wks          8 wks        12 wks        16 wks       20 wks     24 wks

1 -7.17949 -4.10256 4.878049 3.589744 9.74359 8.717949
2 -15.1111 -11.5556 -22.2826 -11.1111 -2.66667 -15.1111
3 17.79141 19.0184 19.70443 23.92638 34.96933 24.53988
4 5.681818 9.659091 6.878307                   *                 *               *
5 17.28395 16.66667 19.80198 23.45679 36.41975 33.95062
6 -4.63918 8.247423 1.020408 0 6.185567 10.82474
7 -8.67347 3.061224 2 0.510204 -0.5102 11.73469
8 4.166667 -1.04167 -5.49451 0 0 4.6875

Mean 1.165075 4.994128 3.313258 5.76743 12.02019 11.3349
SD 12.13434 10.43403 13.60364 13.07959 16.72536 15.47412
SEM 4.290138 3.688987 4.809614 4.943619 6.321593 5.848667
Control ovx  

9 1.04712 3.141361 9.047619 5.759162 10.99476 14.65969
10 -14.9038 -1.92308 2.803738 0.480769 -2.88462 1.923077
11 21.25 13.125 23.07692 31.25 25 25.625
12 6.896552 8.62069 21.97309 19.54023 26.43678 25.28736
13 15.66265 7.831325 16.58291 19.87952 39.15663 32.53012
14 3.571429 6.632653 5.769231 11.73469 10.20408 5.102041
15 2.564103 -6.66667 2.985075 5.641026 9.230769 10.76923
16 -2.15054 5.913978 4.615385 16.12903 24.19355 13.44086

Mean 4.242184 4.584408 10.85675 13.8018 17.79149 16.16717
SD 11.00422 6.287803 8.456776 9.947929 13.24878 10.7208
SEM 3.89058 2.223074 3.196361 3.517124 4.68415 3.790375
5 IU/kgBW/day  

17 15.51724 16.09195 7.446809 15.51724 13.21839 16.09195
18 1.587302 0.529101 5.5 6.878307                 *               *
19 12.06897 17.24138 9.375                   *                 *               *
20 -2.05128 0 8.878505 3.076923 3.589744 12.30769
21 0 7.692308 5.797101 0.512821 8.205128 5.641026
22 5.583756 1.522843 5.741627 5.076142 2.030457 13.19797
23 9.302326 14.53488 14 16.86047 16.86047 19.76744
24 -33.9483 -29.1513 -26.6355 -26.1993 -25.0923 -22.5092
42 10.11236 7.303371 10.55276 16.29213 10.11236 15.16854

Mean 2.019148 3.973839 4.517366 4.751846 4.132042 8.523628
SD 14.70094 14.09904 12.00077 14.03599 13.87863 14.34906
SEM 4.900313 4.699681 4.000257 4.962472 5.24563 5.423436
15 IU/kgBW/day 

25 5.202312 10.40462 12.71676 9.82659 15.0289 19.07514
26 6.382979 4.787234 20.74468 20.21277 7.446809 10.6383
27 7.865169 8.426966 10.67416 11.23596 16.85393 20.78652
28 5.555556 6.111111 9.444444 13.88889 11.66667 14.44444
29 8.947368 2.631579 10.52632 11.05263 15.26316 15.78947
30 9.340659 7.142857 9.89011 18.68132 8.241758 15.38462
31 -9.45274 1.492537 -3.9801 0                 *               *
32 -8.08081 -3.53535 -1.0101 2.020202 5.555556 9.59596

Mean 3.220062 4.682694 8.625784 10.86479 11.43668 15.10206
SD 7.554924 4.420476 7.79596 7.122893 4.428313 4.068693
SEM 2.671069 1.562874 2.756288 2.518323 1.673745 1.537822
50 IU/kgBW/day 

33 9.677419 4.301075 -0.54054 13.44086 17.2043 13.44086
34 -11.33 -8.37438 1.932367 -1.47783 4.433498 5.91133
35 3.092784 -0.51546 6.280193 5.154639 3.608247 3.608247
36 6.417112 3.208556 6.030151 13.36898 3.208556 11.22995
37 3.589744 2.564103 -3.1746 2.564103 0 5.128205
38 5 -1.11111 3.743316 11.11111 6.666667 14.44444
39 -1.57068 -1.57068 0 4.712042 2.094241 1.04712
40 1.587302                    *                  *                   *                 *               *
41 10.21505 1.075269 7 3.763441 8.602151 11.29032

Mean 2.964298 -0.05283 2.65886 6.579668 5.727208 8.26256
SD 6.52786 3.974925 3.710294 5.453737 5.336909 4.958123
SEM 2.175953 1.405348 1.311787 1.928187 1.886882 1.752961
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Appendix A-5: Weight adjusted spinal BMC (g/kg) 
Control sham Baseline    4 weeks     8 weeks   12 weeks   16 weeks          20 weeks       24 weeks

1 0.0063 0.0069 0.0064 0.00715 0.0074 0.00675 0.0082
2 0.0029 0.0068 0.0066 0.0074 0.0072 0.00725 0.0065
3 0.0073 0.0075 0.00755 0.00805 0.00715 0.0072 0.0071
4 0.0064 0.00705 0.00825 0.0076                *                       *                    *
5 0.0073 0.0079 0.0077 0.0082 0.0081 0.007 0.0074
6 0.0076 0.00765 0.008 0.00775 0.00855 0.0074 0.0079
7 0.0065 0.0073 0.0068 0.0065 0.0075 0.00675 0.007
8 0.0055 0.00735 0.00675 0.00655 0.0071 0.00725 0.0068

Mean 0.006225 0.007306 0.007256 0.0074 0.007571 0.007085714 0.007271
SD 0.001507 0.000377 0.000702 0.000635 0.000549 0.000257737 0.000605
SEM 0.000533 0.000133 0.000248 0.000224 0.000208 9.74156E-05 0.000229
Control ovx   

9 0.0064 0.00625 0.0062 0.00635 0.00645 0.0069 0.0064
10 0.0068 0.0064 0.00675 0.00695 0.00775 0.007 0.0063
11 0.0072 0.0067 0.00605 0.0063 0.0065 0.00675 0.0064
12 0.0075 0.0059 0.0063 0.0062 0.006 0.0062 0.0064
13 0.0079 0.0063 0.006 0.0062 0.0065 0.0064 0.0066
14 0.0072 0.00475 0.00625 0.00645 0.00675 0.0064 0.0058
15 0.0066 0.006 0.00595 0.0074 0.0069 0.00605 0.0071
16 0.007 0.0061 0.00625 0.00665 0.0068 0.00665 0.0069

Mean 0.007075 0.00605 0.006219 0.006563 0.006706 0.00654375 0.006488
SD 0.000486 0.000581 0.000251 0.000422 0.000505 0.000336407 0.000394
SEM 0.000172 0.000206 8.86E-05 0.000149 0.000179 0.000118938 0.000139
5 IU/kgBW/day   

17 0.0074 0.0066 0.0062 0.00605 0.00635 0.00635 0.0063
18 0.0066 0.006 0.00655 0.0068 0.0068                       *                    *
19 0.0065 0.00585 0.0069 0.00645                *                       *                    *
20 0.0076 0.0066 0.0069 0.007 0.0068 0.00705 0.0071
21 0.0069 0.00655 0.00635 0.0063 0.00725 0.00695 0.0072
22 0.0075 0.0063 0.00675 0.0077 0.0079 0.00755 0.0077
23 0.0078 0.0051 0.0064 0.0066 0.0069 0.0067 0.0067
24 0.0034 0.007 0.0067 0.0072 0.00725 0.0074 0.0077
42 0.0073 0.00625 0.0067 0.0065 0.0067 0.00615 0.0068

Mean 0.006778 0.00625 0.006606 0.006733 0.006994 0.006878571 0.007071
SD 0.005111 0.004522 0.004321 0.004172 0.004364 0.004406026 0.004356
SEM 0.001704 0.001507 0.00144 0.001391 0.001543 0.001665321 0.001646
15 IU/kgBW/day   

25 0.007 0.0066 0.0063 0.0064 0.00575 0.00655 0.0066
26 0.0072 0.0066 0.0063 0.0069 0.00705 0.00665 0.0061
27 0.007 0.00655 0.0068 0.007 0.00625 0.00675 0.0074
28 0.0075 0.0067 0.0065 0.0062 0.0068 0.0069 0.0069
29 0.0068 0.00655 0.00635 0.00635 0.0065 0.0065 0.0066
30 0.0071 0.00665 0.0069 0.007 0.0068 0.00695 0.0072
31 0.0074 0.0068 0.00715 0.0074 0.0068                       *                    *
32 0.0054 0.00665 0.0069 0.0062 0.00625 0.0063 0.0072

Mean 0.006925 0.006638 0.00665 0.006681 0.006525 0.006657143 0.006857
SD 0.000656 8.35E-05 0.000328 0.00045 0.000423 0.000229907 0.000454
SEM 0.000232 2.95E-05 0.000116 0.000159 0.00015 8.68966E-05 0.000172
50 IU/kgBW/day   

33 0.0061 0.00665 0.0074 0.0071 0.0069 0.00665 0.007
34 0.0073 0.0064 0.0073 0.00625 0.00715 0.0062 0.0072
35 0.0068 0.00635 0.0072 0.0071 0.00625 0.0065 0.0066
36 0.0066 0.0061 0.00725 0.0073 0.0078 0.0065 0.0068
37 0.0082 0.00695 0.00675 0.00685 0.00755 0.00655 0.0064
38 0.0065 0.00625 0.0073 0.0071 0.0063 0.00615 0.0061
39 0.0074 0.0058 0.00605 0.0064 0.0064 0.0066 0.0067
40 0.006 0.0061                *                *               *                       *                    *
41 0.0073 0.0069 0.00635 0.0062 0.00645 0.0071 0.0071

Mean 0.006911 0.006389 0.00695 0.006788 0.00685 0.00653125 0.006738
SD 0.000704 0.000384 0.000508 0.000438 0.000599 0.000292694 0.00037
SEM 0.000235 0.000128 0.00018 0.000155 0.000212 0.000103483 0.000131
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Appendix A-6: Weight adjusted spinal BMC % change from baseline 
Control sham %chg4wk    %chg 8wk %chg12wk %chg16w

k 
%chg20wk %chg24wk

1 9.52381 1.587302 13.49206 17.46032 7.142857 30.15873
2 134.4828 127.5862 155.1724 148.2759 150 124.1379
3 2.739726 3.424658 10.27397 -2.05479 -1.36986 -2.73973
4 10.15625 28.90625 18.75               *                 *                 *
5 8.219178 5.479452 12.32877 10.9589 -4.10959 1.369863
6 0.657895 5.263158 1.973684 12.5 -2.63158 3.947368
7 12.30769 4.615385 0 15.38462 3.846154 7.692308
8 33.63636 22.72727 19.09091 29.09091 31.81818 23.63636

Mean 26.46546 24.94871 28.88523 33.08797 26.38517 26.88612
SD 44.77639 42.66834 51.49638 51.62434 55.87286 44.53939
SEM 15.83085 15.08554 18.20672 19.51217 21.11796 16.83431
Control ovx  

9 -2.34375 -3.125 -0.78125 0.78125 7.8125 0
10 -5.88235 -0.73529 2.205882 13.97059 2.941176 -7.35294
11 -6.94444 -15.9722 -12.5 -9.72222 -6.25 -11.1111
12 -21.3333 -16 -17.3333 -20 -17.3333 -14.6667
13 -20.2532 -24.0506 -21.519 -17.7215 -18.9873 -16.4557
14 -34.0278 -13.1944 -10.4167 -6.25 -11.1111 -19.4444
15 -9.09091 -9.84848 12.12121 4.545455 -8.33333 7.575758
16 -12.8571 -10.7143 -5 -2.85714 -5 -1.42857

Mean -14.0916 -11.705 -6.65289 -4.6567 -7.03268 -7.86046
SD 10.49405 7.461026 11.0297 11.33118 9.19584 9.309353
SEM 3.710206 2.637871 3.899589 4.006178 3.25122 3.291353
5 IU/kgBW/day  

17 -10.8108 -16.2162 -18.2432 -14.1892 -14.1892 -14.8649
18 -9.09091 -0.75758 3.030303 3.030303                 *                 *
19 -10 6.153846 -0.76923               *                 *                 *
20 -13.1579 -9.21053 -7.89474 -10.5263 -7.23684 -6.57895
21 -5.07246 -7.97101 -8.69565 5.072464 0.724638 4.347826
22 -16 -10 2.666667 5.333333 0.666667 2.666667
23 -34.6154 -17.9487 -15.3846 -11.5385 -14.1026 -14.1026
24 105.8824 97.05882 111.7647 113.2353 117.6471 126.4706
42 -14.3836 -8.21918 -10.9589 -8.21918 -15.7534 -6.84932

Mean -0.80541 3.654382 6.168366 10.27478 9.679478 13.01277
SD 10.26791 13.33185 15.65735 12.86607 12.33223 12.83838
SEM 3.422636 4.443951 5.219116 4.548842 4.661145 4.852453
15 IU/kgBW/day  

25 -5.71429 -10 -8.57143 -17.8571 -6.42857 -5.71429
26 -8.33333 -12.5 -4.16667 -2.08333 -7.63889 -15.2778
27 -6.42857 -2.85714 0 -10.7143 -3.57143 5.714286
28 -10.6667 -13.3333 -17.3333 -9.33333 -8 -8
29 -3.67647 -6.61765 -6.61765 -4.41176 -4.41176 -2.94118
30 -6.33803 -2.8169 -1.40845 -4.22535 -2.11268 1.408451
31 -8.10811 -3.37838 0 -8.10811                 *                 *
32 23.14815 27.77778 14.81481 15.74074 16.66667 33.33333

Mean -3.26466 -2.9657 -2.91034 -5.12407 -2.21381 1.217547
SD 10.87069 13.12889 9.171151 9.753428 8.600702 15.67421
SEM 3.843368 4.641764 3.242492 3.448358 3.25076 5.924294
50 IU/kgBW/day  

33 9.016393 21.31148 16.39344 13.11475 9.016393 14.7541
34 -12.3288 0 -14.3836 -2.05479 -15.0685 -1.36986
35 -6.61765 5.882353 4.411765 -8.08824 -4.41176 -2.94118
36 -7.57576 9.848485 10.60606 18.18182 -1.51515 3.030303
37 -15.2439 -17.6829 -16.4634 -7.92683 -20.122 -21.9512
38 -3.84615 12.30769 9.230769 -3.07692 -5.38462 -6.15385
39 -21.6216 -18.2432 -13.5135 -13.5135 -10.8108 -9.45946
40 1.666667                    *                    *               *                 *                 *
41 -5.47945 -13.0137 -15.0685 -11.6438 -2.73973 -2.73973

Mean -6.89225 0.051267 -2.34837 -1.87594 -6.37951 -3.35386
SD 9.044456 14.89051 13.78089 11.55459 8.966567 10.44796
SEM 3.014819 5.264589 4.872281 4.085164 3.17016 3.693913
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Appendix A-7: Weight adjusted right femur BMC (g/kg) 
Control sham   Baseline      4 weeks          8 weeks   12 weeks      16 weeks          20 weeks      24 weeks 

1 0.0018 0.0024 0.00245 0.0027 0.00245 0.00255 0.0028 
2 0.0014 0.0026 0.0023 0.0024 0.0024 0.0023 0.0024 
3 0.0027 0.0028 0.003 0.00275 0.0025 0.0027 0.0025 
4 0.0025 0.0028 0.00295 0.0028                   *                       *                   * 
5 0.0029 0.0028 0.0027 0.0027 0.0025 0.00235 0.0026 
6 0.0024 0.0026 0.00295 0.00275 0.0032 0.0026 0.0027 
7 0.0023 0.0028 0.0024 0.0023 0.0024 0.0026 0.0025 
8 0.0023 0.0023 0.0026 0.0024 0.00245 0.0023 0.0026 

Mean 0.002288 0.002638 0.00266875 0.0026 0.00255714 0.002485714 0.002586 
SD 0.000482 0.0002 0.000275081 0.000198 0.0002864 0.000165112 0.000135 
SEM 0.000171 7.06E-05 9.72559E-05 7.01E-05 0.00010825 6.24064E-05 5.08E-05 
Control ovx   

9 0.0026 0.00225 0.0023 0.00245 0.0023 0.0026 0.0024 
10 0.0023 0.0023 0.0023 0.0021 0.0023 0.0022 0.0025 
11 0.0024 0.00235 0.00215 0.0023 0.00215 0.0022 0.0021 
12 0.0022 0.0021 0.002 0.0022 0.00205 0.00195 0.0021 
13 0.0023 0.0019 0.0019 0.00215 0.0023 0.0024 0.0021 
14 0.0027 0.0022 0.00205 0.0021 0.0023 0.0021 0.0022 
15 0.0025 0.0023 0.00215 0.0024 0.0021 0.0022 0.0024 
16 0.0023 0.0019 0.0022 0.0022 0.00225 0.0021 0.0026 

Mean 0.002413 0.002163 0.00213125 0.002238 0.00221875 0.00221875 0.0023 
SD 0.000173 0.000179 0.000141263 0.000133 0.00010329 0.000199888 0.0002 
SEM 6.11E-05 6.32E-05 4.99442E-05 4.7E-05 3.652E-05 7.06712E-05 7.07E-05 
5 IU/kgBW/day   

17 0.00262 0.002303 0.002125 0.001882 0.00205 0.00195 0.0019 
18 0.00203 0.00212 0.002273 0.002254 0.0022                       *                   * 
19 0.002597 0.002181 0.002108 0.002102                   *                       *                   * 
20 0.002521 0.002572 0.002457 0.002285 0.00215 0.0026 0.0021 
21 0.002304 0.002128 0.002065 0.002055 0.00205 0.0021 0.0024 
22 0.002358 0.002219 0.002246 0.002367 0.0026 0.0025 0.0025 
23 0.002427 0.001761 0.00219 0.002143 0.00245 0.002 0.002 
24 0.001442 0.002623 0.002424 0.002457 0.0023 0.00255 0.0022 
42 0.002913 0.002422 0.002128 0.002408 0.00225 0.0022 0.002 

Mean 0.002357 0.002259 0.002224 0.002217 0.00225625 0.002271429 0.002157 
SD 0.000421 0.000262 0.00013968 0.000187 0.00019168 0.000273644 0.000223 
SEM 0.00014 8.75E-05 4.656E-05 6.23E-05 6.7769E-05 0.000103428 8.41E-05 
15 IU/kgBW/day   

25 0.0023 0.0021 0.00225 0.002 0.002 0.00205 0.0019 
26 0.0027 0.0022 0.0022 0.0023 0.0023 0.0022 0.0019 
27 0.0026 0.00265 0.00205 0.00225 0.0022 0.0022 0.0024 
28 0.0026 0.00265 0.00225 0.00205 0.00205 0.0023 0.0021 
29 0.0027 0.00205 0.00205 0.002 0.0022 0.00195 0.002 
30 0.0029 0.0024 0.00235 0.00245 0.0022 0.0022 0.0024 
31 0.0022 0.0025 0.00235 0.00235 0.0023                       *                   * 
32 0.0025 0.0023 0.0025 0.00245 0.00215 0.0026 0.0026 

Mean 0.002563 0.002356 0.00225 0.002231 0.002175 0.002214286 0.002186 
SD 0.000226 0.000234 0.00015353 0.000191 0.0001069 0.000205577 0.000279 
SEM 8E-05 8.26E-05 5.4281E-05 6.74E-05 3.7796E-05 7.77008E-05 0.000106 
50 IU/kgBW/day   

33 0.0022 0.0027 0.0026 0.0025 0.00245 0.0023 0.0023 
34 0.0019 0.0022 0.00235 0.00205 0.0021 0.0018 0.0025 
35 0.0029 0.002 0.00225 0.00225 0.00205 0.0019 0.0023 
36 0.0024 0.0024 0.0024 0.0022 0.0022 0.0022 0.0021 
37 0.0026 0.00245 0.0023 0.0023 0.00245 0.00245 0.0021 
38 0.0028 0.0025 0.0024 0.0023 0.0021 0.0021 0.0022 
39 0.0029 0.00225 0.0021 0.0021 0.00215 0.00215 0.0023 
40 0.0023 0.0021                     *                  *                   *                       *                   * 
41 0.0027 0.0025 0.0021 0.0021 0.0024 0.0024 0.0021 

Mean 0.002522 0.002344 0.0023125 0.002225 0.0022375 0.0021625 0.002238 
SD 0.000346 0.000223 0.000166369 0.000146 0.0001685 0.000227957 0.000141 
SEM 0.000115 7.43E-05 5.88202E-05 5.18E-05 5.9574E-05 8.05949E-05 4.98E-05 
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Appendix A-8: Weight adjusted right femur BMC % change from baseline 
Control sham               4wks                8wks             12wks               16wks                  20wks                 24wks 

1 33.33333 36.11111 50 36.11111 41.66667 55.55556 
2 85.71429 64.28571 71.42857 71.42857 64.28571 71.42857 
3 3.703704 11.11111 1.851852 -7.40741 0 -7.40741 
4 12 18 12                        *                           *                          * 
5 -3.44828 -6.89655 -6.89655 -13.7931 -18.9655 -10.3448 
6 8.333333 22.91667 14.58333 33.33333 8.333333 12.5 
7 21.73913 4.347826 0 4.347826 13.04348 8.695652 
8 0 13.04348 4.347826 6.521739 0 13.04348 

Mean 20.17194 20.36492 18.41438 18.64887 15.48053 20.49586 
SD 29.0675 21.8045 27.55746 29.97015 28.25628 31.12282 
SEM 10.27691 7.709056 9.743033 11.32765 10.67987 11.76332 
Control ovx   

9 -13.4615 -11.5385 -5.76923 -11.5385 0 -7.69231 
10 0 0 -8.69565 0 -4.34783 8.695652 
11 -2.08333 -10.4167 -4.16667 -10.4167 -8.33333 -12.5 
12 -4.54545 -9.09091 0 -6.81818 -11.3636 -4.54545 
13 -17.3913 -17.3913 -6.52174 0 4.347826 -8.69565 
14 -18.5185 -24.0741 -22.2222 -14.8148 -22.2222 -18.5185 
15 -8 -14 -4 -16 -12 -4 
16 -17.3913 -4.34783 -4.34783 -2.17391 -8.69565 13.04348 

Mean -10.1739 -11.3574 -6.96542 -7.72025 -7.82686 -4.2766 
SD 7.464141 7.457351 6.648169 6.453312 8.104215 10.48853 
SEM 2.638972 2.636572 2.350483 2.28159 2.865273 3.708255 
5 IU/kgBW/day   

17 -12.0992 -18.8931 -28.1679 -21.7557 -25.5725 -27.4809 
18 4.433498 11.97044 11.03448 8.374384                           *                          * 
19 -16.0185 -18.8294 -19.0605                        *                           *                          * 
20 2.023007 -2.53868 -9.36136 -14.7164 3.133677 -16.6997 
21 -7.63889 -10.3733 -10.8073 -11.0243 -8.85417 4.166667 
22 -5.89483 -4.74979 0.381679 10.26293 6.022053 6.022053 
23 -27.4413 -9.76514 -11.7017 0.947672 -17.5937 -17.5937 
24 81.90014 68.09986 70.38835 59.50069 76.83773 52.56588 
42 -16.8555 -26.9482 -17.3361 -22.76 -24.4765 -31.3423 

Mean 0.267605 -1.33636 -1.62559 1.103654 1.35665 -4.33743 
SD 32.14023 28.36036 29.26448 26.82318 35.53924 28.89943 
SEM 10.71341 9.453452 9.754826 9.483428 13.43257 10.92296 
15 IU/kgBW/day   

25 -8.69565 -2.17391 -13.0435 -13.0435 -10.8696 -17.3913 
26 -18.5185 -18.5185 -14.8148 -14.8148 -18.5185 -29.6296 
27 1.923077 -21.1538 -13.4615 -15.3846 -15.3846 -7.69231 
28 1.923077 -13.4615 -21.1538 -21.1538 -11.5385 -19.2308 
29 -24.0741 -24.0741 -25.9259 -18.5185 -27.7778 -25.9259 
30 -17.2414 -18.9655 -15.5172 -24.1379 -24.1379 -17.2414 
31 13.63636 6.818182 6.818182 4.545455                           *                          * 
32 -8 0 -2 -14 4 4 

Mean -7.38089 -11.4412 -12.3873 -14.5635 -14.8896 -16.1588 
SD 12.63161 11.43241 10.3797 8.612799 10.40239 11.30668 
SEM 4.465948 4.041966 3.669778 3.045084 3.931735 4.273525 
50 IU/kgBW/day   

33 22.72727 18.18182 13.63636 11.36364 4.545455 4.545455 
34 15.78947 23.68421 7.894737 10.52632 -5.26316 31.57895 
35 -31.0345 -22.4138 -22.4138 -29.3103 -34.4828 -20.6897 
36 0 0 -8.33333 -8.33333 -8.33333 -12.5 
37 -5.76923 -11.5385 -11.5385 -5.76923 -5.76923 -19.2308 
38 -10.7143 -14.2857 -17.8571 -25 -25 -21.4286 
39 -22.4138 -27.5862 -27.5862 -25.8621 -25.8621 -20.6897 
40 -8.69565                      *                      *                        *                           *                          * 
41 -7.40741 -22.2222 -22.2222 -11.1111 -11.1111 -22.2222 

Mean -5.27979 -7.02255 -11.0525 -10.437 -13.9095 -10.0796 
SD 16.80414 19.24063 14.87892 15.8006 13.14564 19.05 
SEM 5.601379 6.80259 5.260493 5.586356 4.647686 6.735193 
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Appendix A-9: Weight adjusted left femur BMC (g/kg) 
Control sham    Baseline            4 weeks            8 weeks   12 weeks          16 weeks          20 weeks   24 weeks 

1 0.0023 0.0026 0.0024 0.003 0.0029 0.00255 0.0025 
2 0.001 0.0024 0.0027 0.00295 0.0029 0.0026 0.0024 
3 0.0027 0.0026 0.00285 0.00275 0.0025 0.00255 0.0028 
4 0.002 0.0028 0.0029 0.0028                       *                       *                * 
5 0.0024 0.0026 0.0029 0.0027 0.003 0.00265 0.0026 
6 0.0024 0.0026 0.0031 0.0029 0.0031 0.00275 0.0027 
7 0.0023 0.0026 0.0026 0.00245 0.0029 0.0026 0.0025 
8 0.0023 0.0027 0.0026 0.0027 0.0026 0.0026 0.0029 

Mean 0.002175 0.0026125 0.00275625 0.002781 0.002842857 0.002614286 0.002629 
SD 0.000512 0.000112599 0.000222707 0.000175 0.00021492 6.90066E-05 0.00018 
SEM 0.000181 3.98098E-05 7.87387E-05 6.19E-05 8.1232E-05 2.6082E-05 6.8E-05 
Control ovx   

9 0.0026 0.00225 0.0024 0.00245 0.00265 0.0026 0.0026 
10 0.0027 0.0023 0.00245 0.00265 0.00295 0.0025 0.0025 
11 0.0029 0.0022 0.0023 0.00245 0.0026 0.0022 0.0024 
12 0.0022 0.00195 0.00215 0.0022 0.0022 0.0023 0.0024 
13 0.0028 0.00235 0.0022 0.0023 0.0025 0.00225 0.0024 
14 0.0027 0.002 0.0022 0.0023 0.0023 0.002 0.0022 
15 0.0025 0.00235 0.0023 0.0021 0.0024 0.00255 0.0026 
16 0.0028 0.0023 0.00235 0.0023 0.0025 0.0024 0.0026 

Mean 0.00265 0.0022125 0.00229375 0.002344 0.0025125 0.00235 0.002463 
SD 0.00022 0.000155265 0.000105009 0.00017 0.000231069 0.000201778 0.000141 
SEM 7.79E-05 5.48944E-05 3.71261E-05 6.01E-05 8.16952E-05 7.13392E-05 4.98E-05 
5 IU/kgBW/day   

17 0.0026 0.00245 0.00215 0.0022 0.0023 0.0022 0.0022 
18 0.0026 0.0025 0.00255 0.0024 0.0025                       *                * 
19 0.0026 0.00215 0.00225 0.0024                       *                       *                * 
20 0.0025 0.0026 0.00245 0.00255 0.0026 0.00245 0.0024 
21 0.0023 0.0025 0.0024 0.0022 0.0026 0.0025 0.0024 
22 0.0028 0.0027 0.00255 0.00285 0.0029 0.00265 0.0028 
23 0.0029 0.00215 0.00215 0.0023 0.00245 0.0023 0.0026 
24 0.0014 0.0026 0.00225 0.00245 0.0027 0.0024 0.0025 
42 0.0029 0.0024 0.00225 0.0023 0.0022 0.0022 0.0023 

Mean 0.002511 0.00245 0.002333333 0.002406 0.00253125 0.002385714 0.002457 
SD 0.000459 0.000192029 0.000158114 0.000202 0.000221903 0.000165112 0.000199 
SEM 0.000153 6.40095E-05 5.27046E-05 6.74E-05 7.84547E-05 6.24064E-05 7.51E-05 
15 IU/kgBW/day   

25 0.0028 0.0024 0.0024 0.0023 0.0022 0.0025 0.0022 
26 0.0027 0.00255 0.00235 0.0024 0.00255 0.0024 0.0025 
27 0.0026 0.0025 0.0025 0.0025 0.00235 0.0022 0.0024 
28 0.0026 0.0025 0.0024 0.0022 0.0024 0.0024 0.0024 
29 0.0027 0.0024 0.0023 0.0022 0.0025 0.0021 0.0022 
30 0.0029 0.0028 0.0025 0.00245 0.0024 0.0025 0.0021 
31 0.0026 0.00265 0.0025 0.0025 0.0023                       *                * 
32 0.0021 0.0023 0.00265 0.00245 0.0023 0.00253 0.0026 

Mean  0.002625 0.0025125 0.00245 0.002375 0.002375 0.002375714 0.002343 
SD 0.000238 0.000157548 0.000110195 0.000125 0.000113389 0.000164708 0.000181 
SEM 8.4E-05 5.57017E-05 3.89597E-05 4.43E-05 4.00892E-05 6.22536E-05 6.85E-05 
50 IU/kgBW/day   

33 0.0026 0.00275 0.0029 0.0025 0.0026 0.0023 0.0026 
34 0.0024 0.0024 0.0025 0.0022 0.0025 0.0022 0.0028 
35 0.0029 0.0023 0.0026 0.0024 0.0025 0.0023 0.002 
36 0.0024 0.0024 0.0027 0.0025 0.0028 0.0025 0.0024 
37 0.0026 0.0026 0.0023 0.0025 0.0026 0.0021 0.0021 
38 0.0028 0.0025 0.0024 0.0026 0.00255 0.00235 0.0022 
39 0.0029 0.00225 0.0021 0.0024 0.0023 0.00275 0.0023 
40 0.0023 0.0021                       *                *                       *                       *                * 
41 0.0027 0.0025 0.00245 0.0024 0.00255 0.0027 0.0024 

Mean 0.002622 0.002422222 0.00249375 0.002438 0.00255 0.0024 0.00235 
SD 0.000222 0.000193828 0.000245586 0.000119 0.000138873 0.000231455 0.000262 
SEM 7.41E-05 6.46095E-05 8.68278E-05 4.2E-05 4.9099E-05 8.18317E-05 9.26E-05 
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Appendix A-10: Weight adjusted left femur BMC % change from baseline 
Control sham               4wks           8wks        12wks         16wks           20wks        24wks

1 13.04348 4.347826 30.43478 26.08696 10.86957 8.695652
2 140 170 195 190 160 140
3 -3.7037 5.555556 1.851852 -7.40741 -5.55556 3.703704
4 40 45 40                  *                   *                *
5 8.333333 20.83333 12.5 25 10.41667 8.333333
6 8.333333 29.16667 20.83333 29.16667 14.58333 12.5
7 13.04348 13.04348 6.521739 26.08696 13.04348 8.695652
8 17.3913 13.04348 17.3913 13.04348 13.04348 26.08696

Mean 29.55515 37.62379 40.56663 43.13952 30.91442 29.71647
SD 46.30222 55.13018 63.61128 65.99827 57.33025 49.14212
SEM 16.37031 19.49146 22.48998 24.945 21.6688 18.57398
Control ovx  

9 -13.4615 -7.69231 -5.76923 1.923077 0 0
10 -14.8148 -9.25926 -1.85185 9.259259 -7.40741 -7.40741
11 -24.1379 -20.6897 -15.5172 -10.3448 -24.1379 -17.2414
12 -11.3636 -2.27273 0 0 4.545455 9.090909
13 -16.0714 -21.4286 -17.8571 -10.7143 -19.6429 -14.2857
14 -25.9259 -18.5185 -14.8148 -14.8148 -25.9259 -18.5185
15 -6 -8 -16 -4 2 4
16 -17.8571 -16.0714 -17.8571 -10.7143 -14.2857 -7.14286

Mean -16.2041 -12.9916 -11.2084 -4.92573 -10.6068 -6.43812
SD 6.516082 7.094242 7.422948 8.171512 12.09613 10.12227
SEM 2.303783 2.508193 2.624409 2.889066 4.276628 3.578761
5 IU/kgBW/day  

17 -5.76923 -17.3077 -15.3846 -11.5385 -15.3846 -15.3846
18 -3.84615 -1.92308 -7.69231 -3.84615                   *                *
19 -17.3077 -13.4615 -7.69231                  *                   *                *
20 4 -2 2 4 -2 -4
21 8.695652 4.347826 -4.34783 13.04348 8.695652 4.347826
22 -3.57143 -8.92857 1.785714 3.571429 -5.35714 0
23 -25.8621 -25.8621 -20.6897 -15.5172 -20.6897 -10.3448
24 85.71429 60.71429 75 92.85714 71.42857 78.57143
42 -17.2414 -22.4138 -20.6897 -24.1379 -24.1379 -20.6897

Mean 2.756887 -2.98163 0.254372 7.304033 1.793554 4.64288
SD 32.97091 25.89529 29.28665 36.57848 32.74962 33.73732
SEM 10.9903 8.631764 9.762217 12.93245 12.37819 12.75151
15 IU/kgBW/day  

25 -14.2857 -14.2857 -17.8571 -21.4286 -10.7143 -21.4286
26 -5.55556 -12.963 -11.1111 -5.55556 -11.1111 -7.40741
27 -3.84615 -3.84615 -3.84615 -9.61538 -15.3846 -7.69231
28 -3.84615 -7.69231 -15.3846 -7.69231 -7.69231 -7.69231
29 -11.1111 -14.8148 -18.5185 -7.40741 -22.2222 -18.5185
30 -3.44828 -13.7931 -15.5172 -17.2414 -13.7931 -27.5862
31 1.923077 -3.84615 -3.84615 -11.5385                   *                *
32 9.52381 26.19048 16.66667 9.52381 20.47619 23.80952

Mean -3.83076 -5.63134 -8.67678 -8.86941 -8.63449 -9.50226
SD 7.337598 13.64264 11.75835 9.167629 13.63562 16.68919
SEM 2.594233 4.823401 4.157205 3.241246 5.153779 6.30792
50 IU/kgBW/day  

33 5.769231 11.53846 -3.84615 0 -11.5385 0
34 0 4.166667 -8.33333 4.166667 -8.33333 16.66667
35 -20.6897 -10.3448 -17.2414 -13.7931 -20.6897 -31.0345
36 0 12.5 4.166667 16.66667 4.166667 0
37 0 -11.5385 -3.84615 0 -19.2308 -19.2308
38 -10.7143 -14.2857 -7.14286 -8.92857 -16.0714 -21.4286
39 -22.4138 -27.5862 -17.2414 -20.6897 -5.17241 -20.6897
40 -8.69565                 *                 *                  *                   *                *
41 -7.40741 -9.25926 -11.1111 -5.55556 0 -11.1111

Mean -7.12795 -5.60117 -8.07446 -3.51669 -9.60867 -10.8535
SD 9.693649 13.87046 7.209352 11.49594 8.978209 15.48758
SEM 3.231216 4.90395 2.548891 4.06443 3.174276 5.475686
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Appendix A-11: Urinary calcium excretion (ppm) 
Control sham    Baseline     4 weeks     8 weeks   12 weeks   16 weeks   20 weeks   24 weeks

1 24.7 21.5 62 63.1 116 81.2 53.4
2 17.9 15.4 26.7 74.9 203.1 46.8 62.5
3 24.1 32.8 73.9 77.8 146.3 89.8 61.3
4 20.7 32.9 62.5 26.7                *                *                *
5 14 35.7 29 56.1 116 108.5 73.04
6 36.4 20.7 62.6 41.9 72.03 109.3 73.02
7 24.5 68.8 108.5 64.3 42.95 134.3 114.9
8 30.6 35.2 75.4 57.8 116 94.9 73

Mean 24.1125 32.875 62.575 57.825 116.0543 94.97143 73.02286
SD 7.031244 16.41861 26.23105 16.84236 51.27401 27.30065 19.94538
SEM 2.48592 5.804855 9.274076 5.954673 19.37975 10.31868 7.538644
Control ovx  

9 17.3 35.1 22.8 61.5 64.7 30.2 35.3
10 19.7 10.2 17.1 53.3 34.6 64 26.3
11 23 58.4 70.6 61.6 45.9 67.9 53.3
12 12.6 23.6 28.3 72.9 81.9 90.9 83.2
13 26 28.5 70.5 60.4 77.1 33.4 119.2
14 46.7 21 31.1 67.1 58.8 63 50.8
15 66.7 28.5 23.4 78.2 49 103.4 28.1
16 40.8 22.9 52.9 37.6 58.9 37.9 82.2

Mean 31.6 28.525 39.5875 61.575 58.8625 61.3375 59.8
SD 18.35009 14.06147 21.85527 12.42023 15.81762 26.71404 32.57589
SEM 6.487736 4.971481 7.727004 4.391215 5.592372 9.444839 11.51732
5 IU/kgBW/day  

17 36.05 45.4 49.3 77.7 46.6 29.2 28.8
18 24.6 47.9 63.6 60.6 100.4                *                *
19 45.2 16.1 92 16.1                *                *                *
20 39.9 21.2 48 66.2 92 35.3 58.8
21 40.4 78.6 46.9 47.2 91 85 52.8
22 47.7 24.5 36.8 38.9 28 51.4 45.9
23 27.5 44.8 29.3 56.5 91.6 96.3 31
24 27.9 13.4 54.1 55.3 132 87.3 41.6
42 35.2 75.5 23.5 50.1 151 98.4 43.1

Mean 36.05 40.82222 49.27778 52.06667 91.575 68.98571 43.14286
SD 8.097376 24.31871 20.24894 17.51521 40.19317 29.52408 10.81324
SEM 2.699125 8.106235 6.749646 5.838403 14.21043 11.15905 4.087021
15 IU/kgBW/day  

25 15 30.5 76 18 83.2 61 35.8
26 15 45.9 21.4 63.4 110.2 57.8 39.95
27 26.9 60.8 23.9 50.9 41.7 75.96 40
28 49.1 39.8 106.2 63 110 100 39.95
29 21.3 58.2 66.9 43.4 123.8 54 20.4
30 30 42.6 63.2 54.3 141.6 107 38.2
31 47.4 18.3 63.2 43 110.4                *                *
32 14.1 71.7 84.8 48 160.7 75.96 65.4

Mean 27.35 45.975 63.2 48 110.2 75.96 39.95714
SD 14.13961 17.26232 28.74722 14.42429 36.13961 20.72531 13.22997
SEM 4.999107 6.103153 10.16368 5.099755 12.77728 7.833433 5.000457
50 IU/kgBW/day  

33 23.2 86 83.4 65.9 99.1 80.16 60
34 9.4 33.4 64.3 59.5 103.2 125.9 30.9
35 47.6 29 47.6 51.6 277.1 90.9 74.6
36 36.3 100.2 44.4 63.2 266.7 74.79 59.6
37 24.3 64.1 99 57.9 78.1 58.2 78.7
38 29.64 84.1 105.2 45.2 136.6 22.8 40.1
39 41.8 21.1 60.6 72.3 235.9 132.3 47.3
40 24.9 50.9                *                *                *                *                *
41 29.64 61.3 64.7 74.2 189.9 13.3 55.89

Mean 29.64222 58.9 71.15 61.225 173.325 74.79375 55.88625
SD 11.2744 27.71516 22.53594 9.857811 79.75131 43.0402 16.25084
SEM 3.758134 9.238386 7.967658 3.485262 28.19634 15.21701 5.74554
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Appendix A-12: Urinary calcium excretion % change from baseline 
Control sham %chg 4wk %chg 8wk %chg12wk %chg16wk  %chg20wks %chg24wk

1 -12.9555 151.0121 155.4656 369.6356 228.7449 116.1943
2 -13.9665 49.16201 318.4358 1034.637 161.4525 249.162
3 36.09959 206.639 222.8216 507.0539 272.6141 154.3568
4 58.9372 201.9324 28.98551                 *                    *                 *
5 155 107.1429 300.7143 728.5714 675 421.7143
6 -43.1319 71.97802 15.10989 97.88462 200.2747 100.6044
7 180.8163 342.8571 162.449 75.30612 448.1633 368.9796
8 15.03268 146.4052 88.88889 279.085 210.1307 138.5621

Mean 46.979 159.6411 161.6088 381.3034 293.868 202.8423
SD 81.31891 92.93748 114.6856 346.9464 184.524 128.9011
SEM 28.75058 32.85836 40.54749 131.1334 69.74351 48.72004
Control ovx  

9 102.8902 31.79191 255.4913 273.9884 74.56647 104.0462
10 -48.2234 -13.198 170.5584 75.63452 224.8731 33.50254
11 153.913 206.9565 167.8261 99.56522 195.2174 131.7391
12 87.30159 124.6032 478.5714 550 621.4286 560.3175
13 9.615385 171.1538 132.3077 196.5385 28.46154 358.4615
14 -55.0321 -33.4047 43.68308 25.91006 34.90364 8.779443
15 -57.2714 -64.9175 17.24138 -26.5367 55.02249 -57.8711
16 -43.8725 29.65686 -7.84314 44.36275 -7.10784 101.4706

Mean 18.6651 56.58026 157.2295 154.9328 153.4207 155.0557
SD 84.31352 99.59532 157.4645 186.3717 206.0563 204.6383
SEM 29.80933 35.21226 55.67211 65.89236 72.85191 72.35055
5 IU/kgBW/day  

17 25.9362 36.75451 115.534 29.26491 -19.0014 -20.111
18 94.71545 158.5366 146.3415 308.1301                    *                 *
19 -64.3805 103.5398 -64.3805                 *                    *                 *
20 -46.8672 20.30075 65.91479 130.5764 -11.5288 47.36842
21 94.55446 16.08911 16.83168 125.2475 110.396 30.69307
22 -48.6373 -22.8512 -18.4486 -41.2998 7.756813 -3.77358
23 62.90909 6.545455 105.4545 233.0909 250.1818 12.72727
24 -51.9713 93.90681 98.20789 373.1183 212.9032 49.10394
42 114.4886 -33.2386 42.32955 328.9773 179.5455 22.44318

Mean 20.08305 42.17592 56.42052 185.8882 104.3219 19.77876
SD 73.67791 63.59566 68.72495 149.0842 113.0747 25.63527
SEM 24.5593 21.19855 22.90832 52.70922 42.73822 9.689222
15 IU/kgBW/day  

25 103.3333 406.6667 20 454.6667 306.6667 138.6667
26 206 42.66667 322.6667 634.6667 285.3333 166.3333
27 126.0223 -11.1524 89.21933 55.01859 182.3792 48.69888
28 -18.9409 116.2933 28.30957 124.0326 103.666 -18.6354
29 173.2394 214.0845 103.7559 481.2207 153.5211 -4.22535
30 42 110.6667 81 372 256.6667 27.33333
31 -61.3924 33.33333 -9.2827 132.9114                    *                 *
32 408.5106 501.4184 240.4255 1039.716 438.7234 363.8298

Mean 122.3465 176.7471 109.5118 411.7791 246.7081 103.143
SD 147.3725 185.7576 114.9842 325.153 112.0558 134.339
SEM 52.10405 65.67522 40.65305 114.9589 42.35312 50.77536
50 IU/kgBW/day  

33 270.6897 259.4828 184.0517 327.1552 245.5172 158.6207
34 255.3191 584.0426 532.9787 997.8723 1239.362 228.7234
35 -39.0756 0 8.403361 482.1429 90.96639 56.72269
36 176.0331 22.31405 74.10468 634.7107 106.0331 64.18733
37 163.786 307.4074 138.2716 221.3992 139.5062 223.8683
38 183.7382 254.9258 52.49663 360.8637 -23.0769 35.29015
39 -49.5215 44.97608 72.96651 464.3541 216.5072 13.15789
40 104.4177                 *                 *                 *                    *                 *
41 106.8151 118.2861 150.3374 540.6883 -55.1282 88.56275

Mean 130.2446 198.9293 151.7013 503.6483 244.9608 108.6417
SD 113.8271 195.6136 164.4026 237.852 415.0175 84.31847
SEM 37.94235 69.15985 58.1251 84.09339 146.7308 29.81108
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Appendix A-13: Urinary helical peptides (µg/L) 
Control sham     Baseline      4 weeks         8 weeks    12 weeks    16 weeks    20 weeks   24 weeks

1 188 91 44 80.5 198.3 31 37
2 219 59.5 28.5 79.5 213.5 90.5 102.25
3 147.5 90.5 37 80.5 251 54 126
4 170 85.6 42.5 97.5                 *                 *                *
5 103 48.5 46 54 151 61 57
6 215 111 47 30.5 222.5 33.5 51.5
7 166.5 80 46 98.5 212 51.5 131.5
8 172.7 118.5 105.5 115.5 140 101 122.5

Mean 172.7125 85.575 49.5625 79.5625 198.3286 60.35714 89.67857
SD 37.23656 23.51205 23.43142 26.81742 39.61867 26.65476 40.00852
SEM 13.16511 8.312764 8.284257 9.48139 14.97445 10.07455 15.1218
Control ovx  

9 121 95.5 23.5 35.5 70.5 20 28
10 120.5 75.5 61.5 34.5 57.5 37.5 48.5
11 118 111 71 78.5 204.5 101 115.5
12 162.5 117 74 63 85.5 43.5 35.5
13 171 193 65 84.5 255.5 81.5 60
14 120 129 51.5 62.5 91 74.5 104.5
15 121.5 108 35.5 52.5 143.5 29 62.5
16 153 86.5 74 90 221.5 29 65

Mean 135.9375 114.4375 57 62.625 141.1875 52 64.9375
SD 22.27016 36.05397 18.7959 21.07597 76.67321 29.62142 30.82953
SEM 7.873689 12.747 6.645353 7.45148 27.10807 10.47275 10.89988
5 IU/kgBW/day  

17 177 106 91 110 109 51.5 75
18 180.5 51 96.5 67.5 189                 *                *
19 83.5 143 77 203                 *                 *                *
20 186.5 50 57 94.5 129.6 55.5 88.5
21 96 89.5 70 78.5 130 45.5 68
22 192 169.5 56.5 43.5 59 36.5 218.5
23 139.5 99 96.5 87 129 60.5 131.5
24 236.5 125 72.5 67.5 135 72.5 81
42 95 238 147.5 101 156 109 188.5

Mean 154.0556 119 84.94444 94.72222 129.575 61.57143 121.5714
SD 53.10746 59.31642 27.94687 45.31219 37.15549 23.788 60.21035
SEM 17.70249 19.77214 9.315625 15.10406 13.13645 8.99102 22.75737
15 IU/kgBW/day  

25 114 122.5 86 78.5 93 32.5 71
26 109 60.5 90 61.5 133.5 58 155
27 117 69 86.5 104.5 164 46 161
28 155.5 90.5 74.5 72.5 204.4 61.5 87
29 197.5 179 125.5 92.5 177.5 78 111
30 211.5 196.5 119 105 235 59.5 72
31 315 299 170.5 141 358                 *                *
32 259.5 210.5 110.5 115.5 270 57.5 93

Mean 184.875 153.4375 107.8125 96.375 204.425 56.14286 107.1429
SD 75.23285 82.49478 31.01145 25.68595 83.34542 14.05262 37.31143
SEM 26.59883 29.16631 10.9642 9.081354 29.46706 5.311392 14.1024
50 IU/kgBW/day  

33 175.5 131.5 73.5 93.5 166 143 125
34 161.5 82 44.5 100.5 210.5 67.5 45
35 91.5 165 59 60 166.4 63.5 89.5
36 100.5 140 45 50.5 179 67 63.5
37 122.1 151 87 59 183.5 77.5 89
38 90 128.8 66.5 64 146 111 87
39 125.5 119 71.5 61.5 188 100 106
40 120.5 120                    *                 *                 *                 *                *
41 111.5 122 72 78 90.5 45 86.4

Mean 122.0667 128.8111 64.875 70.875 166.2375 84.3125 86.425
SD 29.50364 23.30764 14.66714 17.92793 35.93538 31.64529 24.28761
SEM 9.834548 7.769214 5.185617 6.338481 12.70507 11.1883 8.586966
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Appendix A-14: Urinary helical peptides % change from baseline 
Control sham     %chg 4wk     %chg 8wk      %chg12wk    %chg16wk      %chg20wk     %chg 24wk

1 -51.5957 -76.5957 -57.1809 5.478723 -83.5106 -80.3191
2 -72.8311 -86.9863 -63.6986 -2.51142 -58.6758 -53.3105
3 -38.6441 -74.9153 -45.4237 70.16949 -63.3898 -14.5763
4 -49.6471 -75 -42.6471                    *                      *                      *
5 -52.9126 -55.3398 -47.5728 46.60194 -40.7767 -44.6602
6 -48.3721 -78.1395 -85.814 3.488372 -84.4186 -76.0465
7 -51.952 -72.3724 -40.8408 27.32733 -69.0691 -21.021
8 -31.3839 -38.9114 -33.121 -18.9346 -41.5171 -29.0677

Mean -49.6673 -69.7826 -52.0374 18.80284 -63.0511 -45.5716
SD 12.03271 15.27894 16.64048 31.02275 17.75059 25.92506
SEM 4.254204 5.401921 5.883298 11.7255 6.709091 9.798751
Control ovx  

9 -21.0744 -80.5785 -70.6612 -41.7355 -83.4711 -76.8595
10 -37.3444 -48.9627 -71.3693 -52.2822 -68.8797 -59.751
11 -5.9322 -39.8305 -33.4746 73.30508 -14.4068 -2.11864
12 -28 -54.4615 -61.2308 -47.3846 -73.2308 -78.1538
13 12.8655 -61.9883 -50.5848 49.4152 -52.3392 -64.9123
14 7.5 -57.0833 -47.9167 -24.1667 -37.9167 -12.9167
15 -11.1111 -70.7819 -56.7901 18.107 -76.1317 -48.5597
16 -43.4641 -51.634 -41.1765 44.77124 -81.0458 -57.5163

Mean -15.8201 -58.1651 -54.1505 2.503694 -60.9277 -50.0985
SD 20.31916 12.84271 13.48852 49.86021 24.27864 28.17755
SEM 7.183906 4.540582 4.768911 17.62825 8.583796 9.962269
5 IU/kgBW/day  

17 -40.113 -48.5876 -37.8531 -38.4181 -70.904 -57.6271
18 -71.7452 -46.5374 -62.6039 4.709141                      *                      *
19 71.25749 -7.78443 143.1138                    *                      *                      *
20 -73.1903 -69.437 -49.3298                    * -70.2413 -52.5469
21 -6.77083 -27.0833 -18.2292 35.41667 -52.6042 -29.1667
22 -11.7188 -70.5729 -77.3438 -69.2708 -80.9896 13.80208
23 -29.0323 -30.8244 -37.6344                    * -56.6308 -5.73477
24 -47.1459 -69.3446 -71.4588 -42.9175 -69.3446 -65.7505
42 150.5263 55.26316 6.315789 64.21053 14.73684 98.42105

Mean -6.43693 -34.9898 -22.7804 -7.71169 -55.1397 -14.0861
SD 73.07951 40.18218 67.52178 51.30107 32.24373 57.41232
SEM 24.35984 13.39406 22.50726 20.94358 12.18698 21.69982
15 IU/kgBW/day  

25 7.45614 -24.5614 -31.1404 -18.4211 -71.4912 -37.7193
26 -44.4954 -17.4312 -43.578 22.47706 -46.789 42.20183
27 -41.0256 -26.0684 -10.6838 40.17094 -60.6838 37.60684
28 -41.8006 -52.09 -53.3762 31.44695 -60.4502 -44.0514
29 -9.36709 -36.4557 -53.1646 -10.1266 -60.5063 -43.7975
30 -7.0922 -43.7352 -50.3546 11.11111 -71.8676 -65.9574
31 -5.07937 -45.873 -55.2381 13.65079                      *                      *
32 -18.8825 -57.4181 -55.4913 4.046243 -77.842 -64.1618

Mean -20.0358 -37.9541 -44.1284 11.79443 -64.2329 -25.1255
SD 19.9096 14.23714 15.79339 19.86749 10.33814 45.68887
SEM 7.039106 5.033588 5.583806 7.024218 3.907449 17.26877
50 IU/kgBW/day  

33 -25.0712 -58.1197 -46.7236 -5.41311 -18.5185 -28.7749
34 -49.226 -72.4458 -37.7709 30.34056 -58.2043 -72.1362
35 80.32787 -35.5191 -34.4262 81.85792 -30.6011 -2.18579
36 39.30348 -55.2239 -49.7512 78.10945 -33.3333 -36.8159
37 23.66912 -28.7469 -51.679 50.28665 -36.5274 -27.1089
38 43.11111 -26.1111 -28.8889 62.22222 23.33333 -3.33333
39 -5.17928 -43.0279 -50.996 49.8008 -20.3187 -15.5378
40 -0.41494                    *                      *                    *                      *                      *
41 9.41704 -35.426 -30.0448 -18.8341 -59.6413                      *

Mean 12.88191 -44.3276 -41.2851 41.0463 -29.2264 -26.5561
SD 38.87492 16.18067 9.584143 36.85582 26.16807 23.9536
SEM 12.95831 5.720731 3.388506 13.0305 9.251812 9.053611
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Appendix A-15: Serum pyridinoline (nmol/L) 
Control sham Baseline     4 weeks    8 weeks  12 weeks  16 weeks   20 weeks  24 weeks 

1 3.466 3.5 4.45 9.37 4.18 4.37 1.975
2 2.8705 5.465 6.605 11.365 9.945 8.895 6.165
3 2.8415 5.865 6.89 10.575 8.53 4.745 6.055
4 4.1155 4.36 5.765 9.89                    *                 *                   *
5 2.858 3.18 2.53 5.47 5.455 4.53 3.275
6 3.6 3.185 3.475 6.205 5.71 2.65 2.77
7 2.5595 4.795 6.695 5.56 6.595 7.56 3.53
8 4.0975 5.7 7.05 5.44 5.68 4.315 3.875

Mean 3.301063 4.50625 5.4325 7.984375 6.585 5.295 3.949286
SD 0.604388 1.122013 1.733759 2.550379 1.988228 2.152131 1.595197
SEM 0.213683 0.396691 0.612976 0.901695 0.751479 0.813429 0.602928
Control ovx  

9 7.201 8.52 3.18 2.965 6.14 5.21 2.345
10 2.798 10.235 5.165 4.315 3.405 3.725 1.73
11 4.4185 6.08 3.08 5.11 6.855 8.87 3.86
12 4.4305 6.49 6.485 6.87 7.415 5.095 1.94
13 3.151 7.72 7.025 6.07 4.185 4.62 3.41
14 3.592 8.305 5.295 4.7 5.375 4.47 3.655
15 2.8855 11.635 5.305 6.64 7.66 5.695 3.275
16 3.3425 7.93 5.59 8.965 9.31 3.72 4.015

Mean 3.977375 8.364375 5.140625 5.704375 6.293125 5.175625 3.02875
SD 1.444658 1.83457 1.399072 1.843755 1.934501 1.645584 0.894546
SEM 0.510764 0.648618 0.494647 0.651866 0.683949 0.581802 0.31627
5 IU/kgBW/day  

17 2.7545 3.065 4.555 5.03 4.775 3.805 5.97
18 4.5865 5.52 5.455 6.885 7.435                 *                   *
19 8.647 8.79 7.07 3.84                    *                 *                   *
20 7.8435 7.79 8.84 10.35 7.38 9.91 3.59
21 8.8735 6.19 6.425 8.575 9.525 5.35 2.28
22 4.0935 7.87 5.255 9.855 8.085 3.905 4.555
23 2.864 5.75 4.995 5.375 6.17 5.055 5.43
24 4.59 5.12 9.69 5.13 7.48 7.9 7.105
42 6.2545 5.62 5.54 3.945 6.71 5.82 6.19

Mean 5.611889 6.190556 6.425 6.553889 7.195 5.963571 5.017143
SD 2.381171 1.732784 1.786872 2.485289 1.390596 2.215242 1.661094
SEM 0.793724 0.577595 0.595624 0.82843 0.49165 0.837283 0.627834
15 IU/kgBW/day  

25 3.863 5.885 3.605 6.23 6.635 3.675 3.465
26 3.52 6.685 4.065 7.635 5.51 3.505 6.145
27 2.737 6.24 5.83 5.2 6.435 4.56 6.1
28 7.6835 8.105 7.555 8.62 6.465 4.685 4.18
29 8.349 6.635 6.345 5.685 5.245 4.435 5.366
30 3.507 4.505 6.05 4.02 9.12 6.63 7.685
31 2.729 3.755 4.935 5.57 7.53                 *                   *
32 5.0815 6.97 6.165 5.57 7.695 2.92 4

Mean 4.68375 6.0975 5.56875 6.06625 6.829375 4.344286 5.277286
SD 2.191357 1.38946 1.294071 1.44345 1.25722 1.195566 1.491901
SEM 0.774762 0.491248 0.457523 0.510337 0.444495 0.451882 0.563886
50 IU/kgBW/day  

33 4.7935 5.09 4.255 5.795 7.795 5.79 5.115
34 4.402 5.025 3.255 9.205 5.41 6.34 3.01
35 3.363 3.885 2.61 3.14 3.845 3.51 3.525
36 4.092 7.04 2.965 3.09 2.65 3.87 2.91
37 3.67 4.79 5.33 3.295 3.115 3.75 3.365
38 3.203 5.915 4.45 3.35 5.335 4.145 4.3
39 4.675 8.175 8.44 5.17 5.77 3.905 2.35
40 3.537 8.115                    *                   *                   *                 *                   *
41 3.502 8.455 16.745 6.36 7.275 3.615 4.04

Mean 3.915278 6.276667 6.00625 4.925625 5.149375 4.365625 3.576875
SD 0.591923 1.70832 4.713856 2.167471 1.85519 1.076238 0.880105
SEM 0.197308 0.56944 1.6666 0.766317 0.655909 0.380508 0.311164
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Appendix A-16: Serum pyridinoline % change from baseline 
Control sham    %chg 4wk  %chg 8wk  %chg 12wk %chg16wk %chg20wk %chg24wk

1 0.980958 28.39008 170.3405 20.60012 26.08194 -43.0179
2 90.38495 130.0993 295.9241 246.4553 209.8763 114.7709
3 106.4051 142.4776 272.1626 200.1936 66.98927 113.0917
4 5.940955 40.08018 140.311                 *                 *                 *
5 11.26662 -11.4766 91.39258 90.86774 58.50245 14.59062
6 -11.5278 -3.47222 72.36111 58.61111 -26.3889 -23.0556
7 87.34128 161.5745 117.2299 157.6675 195.3702 37.91756
8 39.10921 72.05613 32.76388 38.62111 5.308115 -5.43014

Mean 41.23766 69.96612 149.0607 116.1452 76.5342 29.83817
SD 46.81458 67.52588 93.34949 86.46476 91.76974 62.97101
SEM 16.55145 23.874 33.00403 32.68061 34.6857 23.80081
Control ovx  

9 18.3169 -55.8395 -58.8252 -14.7341 -27.6489 -67.4351
10 265.797 84.59614 54.2173 21.69407 33.13081 -38.1701
11 37.60326 -30.2931 15.65011 55.14315 100.7469 -12.64
12 46.4846 46.37174 55.06151 67.3626 14.99831 -56.2126
13 145.0016 122.9451 92.63726 32.81498 46.62012 8.219613
14 131.2082 47.41091 30.84633 49.63808 24.44321 1.753898
15 303.223 83.85029 130.1161 165.4653 97.36614 13.49853
16 137.2476 67.24009 168.2124 178.534 11.29394 20.11967

Mean 135.6103 45.78521 60.98948 69.48976 37.61881 -16.3583
SD 104.512 60.34149 70.3843 68.06458 43.57952 33.4685
SEM 36.95059 21.33394 24.88461 24.06446 15.40769 11.8329
5 IU/kgBW/day  

17 11.27246 65.36577 82.61027 73.3527 38.13759 116.7362
18 20.35321 18.93601 50.11447 62.10618                 *                 *
19 1.653753 -18.2375 -55.5915                 *                 *                 *
20 -0.68209 12.70479 31.9564 -5.90935 26.34666 -54.2296
21 -30.2417 -27.5934 -3.36395 7.342086 -39.7081 -74.3055
22 92.25602 28.37425 140.7475 97.50824 -4.60486 11.27397
23 100.7682 74.40642 87.67458 115.433 76.5014 89.59497
24 11.54684 111.1111 11.76471 62.96296 72.11329 54.79303
42 -10.1447 -11.4238 -36.9254 7.282756 -6.947 -1.03126

Mean 21.86466 28.18263 34.33189 52.50982 23.11985 20.40455
SD 44.80256 46.84539 63.0965 44.91003 43.0231 71.1018
SEM 14.93419 15.61513 21.03217 15.87809 16.2612 26.87395
15 IU/kgBW/day  

25 52.34274 -6.67875 61.27362 71.7577 -4.86668 -10.3029
26 89.91477 15.48295 116.9034 56.53409 -0.42614 74.57386
27 127.9868 113.0069 89.98904 135.1114 66.60577 122.8718
28 5.485781 -1.67241 12.18846 -15.8587 -39.0252 -45.5977
29 -20.5294 -24.0029 -31.908 -37.1781 -46.8799 -35.7288
30 28.45737 72.51212 14.62789 160.0513 89.05047 119.1332
31 37.59619 80.83547 104.1041 175.9252                 *                 *
32 37.16422 21.32244 9.613303 51.43166 -42.5367 -21.2831

Mean 44.80231 33.85074 47.09897 74.72184 3.131674 29.09518
SD 46.60335 48.86407 53.5632 78.17434 54.54598 73.9826
SEM 16.47677 17.27606 18.93745 27.6388 20.61644 27.96279
50 IU/kgBW/day  

33 6.185459 -11.234 20.89288 62.61604 20.78857 6.706999
34 14.15266 -26.0563 109.1095 22.89868 44.02544 -31.622
35 15.52186 -22.3907 -6.63098 14.33244 4.371097 4.817128
36 72.04301 -27.5415 -24.4868 -35.2395 -5.42522 -28.8856
37 30.51771 45.23161 -10.218 -15.1226 2.179837 -8.31063
38 84.67062 38.93225 4.589447 66.5626 29.40993 34.24914
39 74.86631 80.53476 10.58824 23.42246 -16.4706 -49.7326
40 129.4317                 *                    *                 *                 *                 *
41 141.4335 378.1553 81.61051 107.7384 3.226728 15.36265

Mean 63.20253 56.95392 23.18185 30.90107 10.26322 -7.17687
SD 50.22455 135.8381 47.18299 46.39705 19.73996 27.88208
SEM 16.74152 48.02602 16.6817 16.40384 6.979129 9.857805
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Appendix A-17 Osteocalcin (ng/mL) 
Control sham    Baseline     4 weeks     8 weeks   12 weeks   16 weeks   20 weeks       24 weeks

1 34.385 3.485 3.7 13.015 11.87 10.18 9.275
2 54.675 2.42 3.2 16.605 19.41 11.125 18.06
3 49.955 2.73 3.79 14.79 12.25 10.47 11.085
4 53.667 5.89 3.15 5.105                *                *                    *
5 51.705 5.385 4.125 14.245 11.08 4.375 13.445
6 50.68 5.935 3.18 10.535 10.155 9.885 13.61
7 52.08 5.82 15.595 17.37 12.09 10.48 10.265
8 60.68 2.385 15.85 17.34 12.965 14.745 12.005

Mean 50.97838 4.25625 6.57375 13.62563 12.83143 10.18 12.535
SD 7.495077 1.647699 5.657582 4.156903 3.036948 3.046621 2.906121
SEM 2.64991 0.58255 2.000257 1.469687 1.147859 1.151515 1.098411
Control ovx  

9 55.23 4.69 19.765 13.76 3.595 7.22 17.685
10 9.4 4.425 2.63 5.065 2.945 7.78 13.51
11 53.08 5.025 14.47 17.725 12.845 14.07 18.875
12 44.15 3.555 2.55 14.915 9.405 10.305 15.54
13 10.9 20.04 19.16 17.69 14.935 14.845 11.285
14 17.28 13.6 34.21 14.2 16.99 15.58 17.245
15 36.455 16.225 18.46 14.645 13.44 13.095 15.045
16 26.05 16.575 16.835 13.185 5.765 10.305 11.265

Mean 31.56813 10.51688 16.01 13.89813 9.99 11.65 15.05625
SD 18.35378 6.75247 10.17359 3.950732 5.374908 3.203061 2.866176
SEM 6.48904 2.387359 3.596907 1.396795 1.900317 1.132453 1.013346
5 IU/kgBW/day  

17 46.12 12.44 12.74 37.775 15.335 18.795 18.47
18 32.67 28.8 16.37 27.515 16.635                *                    *
19 12.51 16.375 15.675 12.53                *                *                   * 
20 14.575 27.3 26.12 17.68 13.01 14.795 15.1
21 13.83 19.315 17.4 18.29 14.165 11.02 13.53
22 32.78 5.925 17.5 7.55 15.24 13.485 18.04
23 19.09 42.01 27.78 26.275 11.48 11.945 19.785
24 51.415 44.785 35.16 35.62 18.06 18.115 19.79
42 17.26 48.35 16.875 28.205 17.985 17.74 18.41

Mean 26.69444 27.25556 20.62444 23.49333 15.23875 15.12786 17.58929
SD 13.83076 14.25276 6.925515 9.617042 2.171077 2.903424 2.203602
SEM 4.610253 4.750919 2.308505 3.205681 0.767591 1.097391 0.832883
15 IU/kgBW/day  

25 35.64 41.475 19.125 27.155 12.145 15.655 14.18
26 15.04 5.305 15.445 17.415 13.25 12.975 17.56
27 16.895 10.47 10.655 16.04 14.395 11.3 16.07
28 16.71 3.665 12.745 15.09 11.005 5.085 17.605
29 15.32 3.905 14.56 20.725 13.375 14.75 10.915
30 15.405 39.325 15.565 11.225 34.14 15.28 18.125
31 44.46 5.26 12.82 19.1 16.56                *                    *
32 31.565 44.655 15.585 16.785 16.83 3.085 16.345

Mean 23.87938 19.2575 14.5625 17.94188 16.4625 11.16143 15.82857
SD 11.61487 18.85282 2.542606 4.666773 7.418038 5.09072 2.536832
SEM 4.106478 6.66548 0.898947 1.649953 2.622673 1.924111 0.958832
50 IU/kgBW/day  

33 37.805 5.275 13.055 19.49 3.235 15.385 17.38
34 10.4 10.945 3.15 19.43 18.615 20.225 15.25
35 12.325 39.92 2.87 11.44 7.82 17.95 20.645
36 12.705 5.71 4.335 14.73 5.975 17.83 35.36
37 16.105 48.395 20.64 11.185 10.51 5.23 20.515
38 15.9 28.72 12.36 16.42 20.545 14.245 16.965
39 18.105 7.775 18.725 16.655 16.78 12.25 15.97
40 19.515 49.445                *                *                  *                *                    *
41 36.32 3.935 13.03 20.51 11.825 7.39 18.48

Mean 19.90889 22.23556 11.02063 16.2325 11.91313 13.81313 20.07063
SD 10.14505 19.40266 6.917235 3.586658 6.238272 5.269703 6.478099
SEM 3.381682 6.467555 2.445612 1.268075 2.205562 1.863121 2.290354
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Appendix A-18: Osteocalcin % change from baseline 
Control sham    %chg 4wk     %chg 8wk   %chg 12wk   %chg 16wk  %chg 20wk %chg24wk

1 -89.8648 -89.2395 -62.1492 -65.4791 -70.3941 -73.026
2 -95.5738 -94.1472 -69.6296 -64.4993 -79.6525 -66.9684
3 -94.5351 -92.4132 -70.3934 -75.4779 -79.0411 -77.81
4 -89.0249 -94.1305 -90.4876                    *                    *                 *
5 -89.5851 -92.022 -72.4495 -78.5707 -91.5385 -73.9967
6 -88.2893 -93.7253 -79.2127 -79.9625 -80.4953 -73.1452
7 -88.8249 -70.0557 -66.6475 -76.7857 -79.8771 -80.2899
8 -96.0695 -73.8794 -71.4239 -78.6338 -75.7004 -80.2159

Mean -91.4709 -87.4516 -72.7992 -74.2013 -79.5284 -75.0646
SD 3.308294 9.741845 8.644804 6.460707 6.372366 4.759291
SEM 1.169659 3.444262 3.0564 2.441918 2.408528 1.798843
Control ovx  

9 -91.5082 -64.2133 -75.086 -93.4909 -86.9274 -67.9794
10 -52.9255 -72.0213 -46.117 -68.6702 -17.234 43.7234
11 -90.5332 -72.7393 -66.607 -75.8007 -73.4928 -64.4405
12 -91.9479 -94.2242 -66.2174 -78.6976 -76.6591 -64.8018
13 83.85321 75.77982 62.29358 37.01835 36.19266 3.53211
14 -21.2963 97.97454 -17.8241 -1.67824 -9.83796 -0.20255
15 -55.4931 -49.3622 -59.8272 -63.1326 -64.079 -58.7299
16 -36.3724 -35.3743 -49.3858 -77.8695 -60.4415 -56.7562

Mean -44.5279 -26.7725 -39.8464 -52.7902 -44.0599 -33.2069
SD 58.37193 72.48156 44.88159 45.54956 42.70662 42.67185
SEM 20.63759 25.6261 15.86804 16.1042 15.09907 15.08678
5 IU/kgBW/day  

17 -73.0269 -72.3764 -18.0941 -66.7498 -59.2476 -59.9523
18 -11.8457 -49.8929 -15.779 -49.0817                    *                 *
19 30.89528 25.29976 0.159872                    *                    *                 *
20 87.30703 79.21098 21.3036 -10.7376 1.509434 3.602058
21 39.66016 25.81345 32.24873 2.42227 -20.3181 -2.1692
22 -81.925 -46.6138 -76.9677 -53.5082 -58.8621 -44.9664
23 120.0629 45.52122 37.63751 -39.8638 -37.428 3.64065
24 -12.8951 -31.6153 -30.7206 -64.8741 -64.7671 -61.5093
42 180.1275 -2.23059 63.41251 4.200463 2.780997 6.662804

Mean 30.92891 -2.98706 1.466762 -34.7741 -33.7618 -22.0988
SD 82.16028 47.70006 39.93935 27.36415 26.76482 29.41446
SEM 27.38676 15.90002 13.31312 9.674689 10.11615 11.11762
15 IU/kgBW/day  

25 16.37205 -46.3384 -23.8075 -65.9231 -56.0746 -60.2132
26 -64.7274 2.692819 15.79122 -11.9016 -13.7301 16.75532
27 -38.029 -36.934 -5.06067 -14.7973 -33.1163 -4.8831
28 -78.067 -23.7283 -9.69479 -34.1412 -69.5691 5.356074
29 -74.5104 -4.96084 35.28068 -12.6958 -3.72063 -28.7533
30 155.2743 1.038624 -27.134 121.6164 -0.81142 17.6566
31 -88.1691 -71.1651 -57.04 -62.753                    *                 *
32 41.46998 -50.6257 -46.824 -46.6815 -90.2265 -48.218

Mean -16.2983 -28.7526 -14.8111 -15.9096 -38.1784 -14.6142
SD 83.69052 27.04776 30.7242 59.66092 34.69302 31.43076
SEM 29.58907 9.562828 10.86265 21.09332 13.11273 11.87971
50 IU/kgBW/day  

33 -86.0468 -65.4675 -48.446 -91.4429 -59.3043 -54.0272
34 5.240385 -69.7115 86.82692 78.99038 94.47115 46.63462
35 223.8945 -76.714 -7.18053 -36.5517 45.63895 67.50507
36 -55.0571 -65.8796 15.93861 -52.9713 40.33845 178.3156
37 200.4967 28.15896 -30.5495 -34.7408 -67.5256 27.3828
38 80.62893 -22.2642 3.27044 29.21384 -10.4088 6.698113
39 -57.0561 3.424468 -8.00884 -7.31842 -32.3391 -11.7923
40 153.3692                    *                    *                    *                    *                 *
41 -89.1657 -64.1244 -43.5297 -67.4422 -79.6531 -49.1189

Mean 41.81157 -41.5722 -3.95983 -22.7829 -8.5978 26.44971
SD 125.6412 39.56395 43.04322 55.10143 62.8138 74.83013
SEM 41.8804 13.98797 15.21808 19.4813 22.20803 26.45645
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Appendix A-19: Calcitonin antibodies (absorbance at 450nm)  
Control sham        Baseline      4 weeks         8 weeks    12 weeks    16 weeks    20 weeks   24 weeks

1 0.44725 0.2736 0.17085 0.1754 0.18425 0.252 0.1695
2 0.1913 0.2214 0.1226 0.5884                 * 0.38475 0.60685
3 0.26515 0.33335 0.2254 0.2035 0.26985 0.18055 0.2276
4 0.25615 0.22005 0.1251 0.14335                 *                 *                *
5 0.20135 0.17625 0.137 0.165 0.1273 0.2181 0.2354
6 0.1851 0.1832 0.11735 0.1286 0.133 0.1555 0.1526
7 0.1488 0.1905 0.1265 0.20345 0.15765 0.19405 0.20245
8 0.22055 0.2207 0.11325 0.14885 0.3145 0.3234 0.1959

Mean 0.239456 0.227381 0.142256 0.219569 0.197758 0.24405 0.255757
SD 0.092133 0.05268 0.038077 0.151454 0.077169 0.082868 0.157575
SEM 0.032574 0.018625 0.013462 0.053547 0.029167 0.031321 0.059558
Control ovx  

9 0.21745 0.1853 0.12775 0.1376 0.1369 0.3494 0.187
10                    * 0.2187 0.12095 0.12345 0.16055 0.14585 0.2195
11 0.2075 0.22665 0.1354 0.14965 0.14455 0.67435 0.24155
12                    *                 * 0.1471 0.18645 0.12045 0.1687 0.1813
13 0.2131 0.15985 0.14485 0.19705 0.1985 0.20185 0.19975
14 0.72605 0.89115 1.4923 1.1152 0.5583 0.83325 0.2328
15 0.28265 0.18555 0.14915 0.196 0.1642 0.1772 0.3343
16 0.2361 0.2049 0.1264 0.17235 0.2133 0.16985 0.2215

Mean 0.313808 0.296014 0.305488 0.284719 0.212094 0.340056 0.227213
SD 0.203804 0.2634 0.479658 0.336672 0.143233 0.266392 0.048219
SEM 0.083203 0.099556 0.169585 0.119031 0.050641 0.094184 0.017048
5 IU/kgBW/day  

17 0.382 0.25895 0.6064 0.2503 0.23415 0.40845 0.19
18 0.44645 0.2687 0.1812 0.2279 0.1897                 *                *
19 0.1694 0.22085 0.17575 0.1873                 *                 *                *
20 0.24045 0.22835 0.1364 0.1613 0.1683 0.13575 0.1544
21 0.1969 0.26335 0.1605 0.20555 0.3039 0.14615 0.2174
22 0.87995 0.60905 0.1598 0.38455 0.3126                 * 0.3158
23 0.1951 0.16225 0.12075 0.137 0.15825 0.1378 0.16335
24 0.2721 0.22975 0.12295 0.1473 0.1531 0.1301 0.1702
42 0.12805                 * 0.3539 0.62385 0.52855 0.52205 0.2239

Mean 0.323378 0.280156 0.224183 0.258339 0.256069 0.246717 0.205007
SD 0.232426 0.137154 0.159673 0.156053 0.126767 0.173122 0.055556
SEM 0.077475 0.048491 0.053224 0.052018 0.044819 0.070677 0.020998
15 IU/kgBW/day  

25 0.19675 0.185 0.1251 0.14745 0.1225 0.21155 0.2086
26 0.2096 0.1562 0.10935 0.1394                 * 0.3309 0.48605
27 0.26715 0.32555 0.1282 0.13195 0.1566 0.2072 0.22395
28 0.2255 0.1823 0.3107 0.5164                 * 0.2706 0.23595
29 0.18655 0.1717 0.1182 0.16845 0.45455 0.2995 0.1919
30 0.15175 0.19175 0.25165 0.1955 0.19125 0.16055 0.2534
31 0.35865 0.3401 0.18005 0.4024 0.1406                 *                *
32 0.18345                 * 0.5611 0.4033 0.38615 0.2663 0.22675

Mean 0.222425 0.2218 0.223044 0.263106 0.241942 0.249514 0.260943
SD 0.064577 0.0768 0.154522 0.152422 0.141695 0.059154 0.101159
SEM 0.022832 0.029028 0.054632 0.053889 0.057847 0.022358 0.038235
50 IU/kgBW/day  

33 0.16905 0.15445 0.1209 0.1633 0.34675 0.2846 0.34235
34 0.4693 0.18255 0.1043 0.12795 0.1772 0.1601 0.1492
35 0.56935 0.32605 0.204 0.41995 0.17845 0.17075 0.1887
36 0.56525 0.3367 0.17355 0.1251 0.31235 0.21275 0.20715
37 0.1427 0.13935 0.13625 0.30045 0.15215 0.1295 0.16065
38 0.6238 0.18485 0.17385 0.16285 0.16555 0.14105 0.18585
39 0.29995 0.22555 0.292 0.33325 0.466 0.3282 0.31545
40 0.1305 0.1398                    *                 *                 *                 *                *
41 0.226 0.1817 0.114 0.1723 0.23145 0.13935 0.1823

Mean 0.3551 0.207889 0.164856 0.225644 0.253738 0.195788 0.216456
SD 0.201615 0.074929 0.061943 0.110362 0.111651 0.073857 0.071959
SEM 0.067205 0.024976 0.0219 0.039019 0.039475 0.026113 0.025442
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Appendix A-20: Calcitonin antibodies % change from baseline 
Control sham     %chg 4wk     %chg 8wk     %chg 12wk     %chg 16wk %chg 20wks %chg24wk

1 -38.8262 -61.7999 -60.7826 -58.8038 -43.6557 -62.1017
2 15.73445 -35.9122 207.5797                      * 101.1239 217.2243
3 25.72129 -14.9915 -23.251 1.772582 -31.9065 -14.1618
4 -14.0933 -51.1614 -44.0367                      *                    *                 *
5 -12.4659 -31.9593 -18.0531 -36.7768 8.318848 16.91085
6 -1.02647 -36.6018 -30.524 -28.1469 -15.9914 -17.5581
7 28.02419 -14.9866 36.72715 5.947581 30.40995 36.05511
8 0.068012 -48.6511 -32.5096 42.59805 46.63342 -11.1766

Mean 0.392019 -37.008 4.393725 -12.2349 13.5618 23.59886
SD 22.53832 16.6778 86.82713 36.21498 50.47572 90.70499
SEM 7.9685 5.896494 30.69803 14.7847 19.07803 34.28326
Control ovx  

9 -14.785 -41.2509 -36.7211 -37.043 60.68062 -14.0032
10                    *                    *                      *                      *                    *                 *
11 9.228916 -34.747 -27.8795 -30.3373 224.988 16.40964
12                    *                    *                      *                      *                    *                 *
13 -24.9883 -32.0272 -7.53168 -6.85124 -5.27921 -6.26466
14 22.73948 105.5368 53.59824 -23.1045 14.76482 -67.9361
15 -34.3534 -47.2316 -30.6563 -41.907 -37.3076 18.27348
16 -13.2147 -46.4634 -27.0013 -9.65693 -28.0601 -6.18382

Mean -9.22884 -16.0305 -12.6986 -24.8167 38.29774 -9.95078
SD 21.39638 59.86743 33.93097 14.33558 97.90456 31.29849
SEM 8.735036 24.44077 13.85226 5.852478 39.96937 12.77755
5 IU/kgBW/day  

17 -32.212 58.74346 -34.4764 -38.7042 6.924084 -50.2618
18 -39.8141 -59.4131 -48.9529 -57.5092                    *                 *
19 30.3719 3.748524 10.56671                      *                    *                 *
20 -5.03223 -43.273 -32.9174 -30.0062 -43.5434 -35.7871
21 33.7481 -18.4865 4.393093 54.34231 -25.7745 10.41138
22 -30.7858 -81.8399 -56.2987 -64.4753                    * -64.1116
23 -16.8375 -38.1087 -29.7796 -18.8877 -29.3696 -16.2737
24 -15.5641 -54.8144 -45.8655 -43.7339 -52.1867 -37.4495
42                    * 176.3764 387.1925 312.7684 307.6923 74.85357

Mean -9.51573 -6.34081 17.09576 14.22427 27.29038 -16.9455
SD 27.92491 79.93006 140.6446 126.0899 138.8526 47.05662
SEM 9.872948 26.64335 46.88153 44.57953 56.68635 17.78573
15 IU/kgBW/day  

25 -5.97205 -36.4168 -25.0572 -37.7382 7.522236 6.022872
26 -25.4771 -47.8292 -33.4924                      * 57.87214 131.8941
27 21.86038 -52.012 -50.6083 -41.3812 -22.4406 -16.1707
28 -19.1574 37.78271 129.0022                      * 20 4.634146
29 -7.96033 -36.639 -9.70249 143.6612 60.54677 2.867864
30 26.35914 65.83196 28.83031 26.02965 5.799012 66.98517
31 -5.17217 -49.7979 12.19852 -60.7974                    *                 *
32                    * 205.8599 119.8419 110.4933 45.16217 23.60316

Mean -2.21708 10.84747 21.37658 23.37788 24.92311 31.40523
SD 19.49421 90.50623 68.38224 86.1146 30.8231 51.41922
SEM 7.368119 31.99878 24.17677 35.15614 11.65004 19.43464
50 IU/kgBW/day  

33 -8.6365 -28.4827 -3.40136 105.1168 68.35256 102.514
34 -61.1016 -77.7754 -72.736 -62.2416 -65.8854 -68.208
35 -42.7329 -64.1697 -26.2404 -68.6572 -70.0097 -66.8569
36 -40.4334 -69.2968 -77.8682 -44.7413 -62.3618 -63.3525
37 -2.34758 -4.51997 110.5466 6.622285 -9.25018 12.57884
38 -70.3671 -72.1305 -73.8939 -73.461 -77.3886 -70.2068
39 -24.8041 -2.65044 11.10185 55.35923 9.418236 5.167528
40 7.126437                    *                      *                      *                    *                 *
41 -19.6018 -49.5575 -23.7611 2.411504 -38.3407 -19.3363

Mean -29.211 -46.0729 -19.5316 -9.94892 -30.6832 -20.9625
SD 26.44982 30.43635 62.53108 64.76127 50.57513 60.49469
SEM 8.816607 10.76088 22.10808 22.89657 17.88101 21.3881
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Appendix A-21: Area under the curve measurements 
Subject #    BMC Sp   BMC RF   BMC LF            OC             HP          PYD           Uca

1 0.1674 0.0594 0.0634 256.3 2229 114.4 1531
2 0.161 0.0556 0.061 356.5 2529 187.2 1628
3 0.1786 0.0654 0.064 298.2 2599 164.2 1853
4                *                *                *                *                *                *                *
5 0.185 0.0632 0.0654 287.1 1762 96.93 1555
6 0.1884 0.0666 0.068 287.3 2311 97.64 1445
7 0.1664 0.0596 0.0622 370.1 2548 137 1954
8 0.1646 0.058 0.0632 398.5 2912 128.7 1724

Mean 0.173057 0.061114 0.063886 322 2412.857 132.2957 1670
SD 0.010816 0.004045 0.002277 52.69589 361.326 33.76249 183.483
SEM 0.003824 0.00143 0.000805 19.91717 136.5684 12.76102 69.35004

    
9 0.1542 0.0576 0.0598 342 1278 123.2 962.4

10 0.1656 0.0544 0.0618 137.2 1404 116.4 808.8
11 0.1564 0.0536 0.0576 400.5 2731 136.5 1370
12 0.1502 0.0498 0.0524 282.3 1928 142.2 1382
13 0.1534 0.0514 0.0568 391.1 3180 131.6 1370
14 0.1484 0.0528 0.053 447.4 2083 127.1 1159
15 0.1566 0.0544 0.057 406.5 1842 160.1 1320
16 0.1576 0.0524 0.0582 325.3 2440 156.8 1087

MEAN 0.1553 0.0533 0.057075 341.5375 2110.75 136.7375 1182.4
SD 0.005247 0.002327 0.003159 97.75098 647.6081 15.558 216.0645
SEM 0.001855 0.000823 0.001117 34.56019 228.964 5.500582 76.39034

    
17 0.1536 0.05028 0.0548 517.5 2374 102.4 1123
18                *                *                *                *                *                *                *
19                *                *                *                *                *                *                *
20 0.1668 0.0575 0.0604 455 2054 199.9 1248
21 0.1618 0.051 0.0582 375.5 1982 166.6 1581
22 0.1752 0.05744 0.0658 340.4 2281 157.2 905.6
23 0.1558 0.05103 0.0564 555.7 2430 126 1391
24 0.164 0.0567 0.0574 763.1 2525 164.7 1507
42 0.1574 0.05546 0.0558 588 3573 135.4 1751

MEAN 0.162086 0.054201 0.0584 513.6 2459.857 150.3143 1358.086
SD 0.007432 0.003288 0.003731 142.64 528.6226 31.85312 288.5188
SEM 0.002477 0.001096 0.001244 47.54667 199.8005 12.03935 109.0499

    
25 0.1536 0.05 0.0572 561.9 2020 118.8 1176
26 0.1606 0.054 0.0594 322.8 2142 128.9 1305
27 0.1622 0.0554 0.0582 317.4 2436 130.7 1147
28 0.1612 0.0546 0.0576 321.7 2499 165.4 1854
29 0.1558 0.0504 0.0558 321.7 3227 140.8 1469
30 0.1658 0.057 0.0606 529.2 3427 143.7 1771
31                *                *                *                *                *                *                *
32 0.1544 0.0582 0.05832 483.6 3761 135.4 1924

MEAN 0.159086 0.054229 0.05816 408.3286 2787.429 137.6714 1520.857
SD 0.004553 0.003097 0.001545 111.3942 678.5197 14.72998 327.6326
SEM 0.00161 0.001095 0.000546 39.3838 256.4563 5.56741 123.8335

    
33 0.165 0.0592 0.0626 336.1 3031 134.7 1825
34 0.1622 0.0508 0.0576 340.8 2433 131.8 1626
35 0.1604 0.0522 0.0582 385.9 2418 81.74 2229
36 0.1666 0.0546 0.0612 290.5 2254 92.46 2389
37 0.1678 0.0572 0.0578 457.1 2654 95.19 1635
38 0.1576 0.0556 0.0596 434.9 2419 107.8 1715
39 0.1532 0.0534 0.0576 356.9 2623 139.9 2267
40                *                *                *                *                *                *                *
41 0.1604 0.0556 0.0606 336.4 2026 141.9 1785

MEAN 0.16165 0.054825 0.0594 367.325 2482.25 115.6863 1933.875
SD 0.004852 0.002703 0.001906 55.57062 297.9097 24.10909 309.665
SEM 0.001617 0.000901 0.000635 19.64718 105.327 8.523851 109.4831
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