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ABSTRACT

The Effects of Nicotine Conditioned Place Preference in D2 Primed Adolescent Rats:

Age-Related and Gender Effects

by

Yoko E. Ogawa

This study investigated nicotine conditioned place preference (CPP) in two different ages 

of adolescence using a rodent model of schizophrenia. Both 2- and 3-chambered CPP 

apparatuses were used to test whether the CPP was due to an aversion to the white 

chamber. Animals were neontally treated with the dopamine D2/D3 agonist, quinpirole, or 

saline and raised to either early postweanling age (P 22) or adolescence (P 29). Rats were 

conditioned to prefer the white chamber using nicotine. Results showed that nicotine 

induced CPP and appeared to alleviate an increased stress response in D2 primed animals, 

which appeared to diminish over time. Additionally, adult D2 and non-D2 primed rats 

were tested on the elevated T-maze. Results revealed that D2 primed rats demonstrated a 

significant increase in unconditioned fear. This study showed that nicotine induced CPP 

in D2 and non-D2 primed rats regardless of age, and D2 primed rats appear to demonstrate 

an increase in stress levels that was alleviated by nicotine.
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CHAPTER 1

INTRODUCTION

Schizophrenia

Schizophrenia is a widely known chronic and severe brain disorder characterized 

by hallucinations, delusions, cognitive deficits, and behavioral impairments. The term 

schizophrenia was first coined by Eugene Bleuler in 1911, who concluded that a mental 

dysfunction caused schizophrenia (Wilson, 2003). After Bleuler’s initial identification of 

schizophrenia, it became a well-known mental disorder all over the world. Journals and 

articles began to widely use the term schizophrenia in 1949 (Cohen, 1949; Gottfried & 

Willner, 1949; Lipton, 1949; Torkildsen, 1949). 

Current statistical data indicates that approximately 2.4 million American adults, 

or about 1.1 % of the population age 18 and older suffer from schizophrenia (National 

Institute of Mental Health, 2006). The Diagnostic and Statistical Manual of Mental 

Disorders, Fourth Edition [DSM-IV], has reported that schizophrenia occurs equally in 

both men and women (American Psychiatric Association [APA], 1994). However, the 

estimated age of onset for men and women differs. For men, it is in the late teens to early 

20s, and for women, the typical onset is in the 20s to early 30s (APA).

In order to be diagnosed, schizophrenic patients must exhibit two or more of the 

following characteristic symptoms for at least a month: delusions, hallucinations, 

disorganized speech or behavior, blunted mood, and apathy (APA, 1994). These 

characteristic symptoms are separated into subtypes called positive and negative 

symptoms. Positive symptoms are behaviors including hallucinations, delusions, and 

disturbed thinking, while negative symptoms are behaviors including apathy, blunted 
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mood, and poverty of speech (APA). Because of these symptoms, patients with 

schizophrenia are usually behaviorally impaired and experience social dysfunction (Ujike 

& Morita, 2004). As a result, they usually require social support to live, such as 

consistent treatment with mental health providers, or living in temporary housing 

managed by the government or non-profit organizations.

Recent clinical studies on schizophrenic patients have revealed that the disease 

results in significant structural brain abnormalities (Ferrari, Kimura, Nita, & Elkis, 2006; 

Hulshoff Pol et al., 2002; Nugent et al., 2007; Velakoulis et al., 2006; Yamada et al., 

2007). Through magnetic resonance imaging (MRI) and computed tomography (CT), it 

has been shown that schizophrenics have significantly reduced cerebral and prefrontal 

gray matter, prefrontal white matter and enlarged lateral and third ventricles, as well as 

increased peripheral cerebrospinal fluid volumes compared to control groups (Ferrari et 

al.; Hulshoff Pol et al.). Also, findings have shown that the hippocampal tissue volumes 

of schizophrenic patients are significantly reduced, which is significant because the 

hippocampus is known to play an important role in cognitive impairment observed in the 

disorder (Breier et al., 1992; Gothelf et al., 2000; Nugent et al.; Velakoulis et al.). 

Furthermore, the volumes of the prefrontal cortical grey matter and the amygdala have 

been shown to be smaller compared to control subjects (Breier et al.; Premkumar, Kumari, 

Corr, & Sharma, 2006). These significant structural abnormalities found in the brain are 

thought to be responsible for many of the exhibited behavioral symptoms of patients with 

schizophrenia.
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Possible Causes of Schizophrenia

NMDA Receptor Hypofunction Hypothesis. Several hypotheses have been 

posited to describe the possible underlying mechanisms of schizophrenia. One hypothesis 

has focused on hypofunction of the glutamatergic N-methyl-D-asparate (NMDA) 

receptor, commonly called the NMDA receptor hypofunction hypothesis. This hypothesis 

originates from a clinical study using an NMDA receptor antagonist, phencyclidine 

(PCP) (Luby, Cohen, Rosenbaum, Gottlieb, & Kelly, 1959). Luby et al. revealed that 

PCP produces similar symptoms to those observed in schizophrenics. Similarly, Holcomb, 

Lahti, Medoff, Cullen, and Tamminga (2005) conducted a clinical study on schizophrenic 

and non-schizophrenic patients to measure blood flow through positron emission 

tomography (PET). They injected a NMDA receptor antagonist, ketamine, to both groups 

and found that patients with schizophrenia exhibited increased blood flow in the anterior 

cingulate cortex when compared to non-schizophrenic subjects. NMDA receptors are 

reported to be involved in synaptic activity of the anterior cingulate cortex, which is 

responsible for cognition (Liauw, Wang, & Zhuo, 2003). Therefore, it can be concluded 

that glutamate transmissions of NMDA receptors in schizophrenics are more sensitive to 

NMDA receptor antagonists. Furthermore, Holcomb et al. found that all of the subjects 

obtained higher scores in the Brief Psychiatric Rating Scale when blood flow in the 

anterior cingulate cortex increased. In other words, a decrease in NMDA receptor 

function in the anterior cingulate cortex produces psychotic symptoms. Therefore, 

NMDA receptor hypofunction in the anterior cingulate cortex may be involved in 

schizophrenia.
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Cannabinoid Hypothesis. Two other models have been used to analyze 

neurochemical and behavioral mechanisms of schizophrenia. The cannabinoid hypothesis 

posits that schizophrenia results in part from dysfunction of the endogeneous cannabinoid 

system, which is caused by cannabis sativa (marijuana) use. The endogeneous 

cannabionoid system is involved in anxiety, fear, attention, memory, learning, and

inhibitory regulatory mechanisms (Chhatwal & Ressler, 2007; Solowij & Michie, 2007). 

This hypothesis is based on the clinical observation that the heavy use of marijuana 

produces schizophrenia-like symptoms including paranoia, depersonalization, 

derealization, and deficits in perceptual processes (Favrat et al., 2005; Leweke, Schneider, 

Thies, Munte, & Emrich, 1999). Skosnik, Krishnan, Aydt, Kuhlenshmidt, and O’Donell 

(2006) performed a clinical study on current marijuana users. They found deficits in the 

electroencephalogram (EEG) neural synchronization and early-stage sensory function in 

marijuana users. In addition, marijuana users exhibited schizotypal personality 

characteristics significantly more than controls (Skosnik et al.). Furthermore, De Marchi 

et al. (2003) revealed that the amount of endocannabinoid anandamine in the blood was 

higher in schizophrenic patients than the control group. This increased endocannabinoid 

anandamine causes dysfunction in the peripheral and the central nervous system 

including hallucinations and cognitive deficits (De Marchi et al.). Thus, these two clinical 

studies suggest that the cannabinoid system may be involved in the development of 

schizophrenia.

The Diathesis-Stress Hypothesis. The diathesis-stress model posits that 

schizophrenia is caused by stressful environments, stressful life experiences, and genetic 

deficits that produce increased stress sensitivity in humans (Rosenthal, 1970). The 
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hypothalamic-pituitary-adrenal (HPA) axis, which releases cortisol, is activated under 

stressful conditions in humans. Increased cortisol levels eventually over-activate the 

mesolimbic dopamine system and cause a significant release of dopamine in the brain

(Walker & Diforio, 1997). This increased dopamine level is thought to control positive 

symptoms of schizophrenia (Carlsson & Lindqvist, 1963). A clinical study on 

schizophrenia and healthy patients done by Yilmaz et al. (2007) showed that the cortisol 

level in schizophrenic patients is higher than in healthy individuals. Furthermore, they 

found that the longer the duration of the disease, the higher the cortisol level in 

schizophrenic patients (Yilmaz et al.). Interestingly, D’Souza et al. (2004) showed a 

relationship between the major psychoactive component of marijuana, delta-9-

tetrahydrocannabinol (Delta-9-THC), stress, and schizophrenia. Healthy individuals 

injected with Delta-9-THC exhibited increased cortisol levels and schizophrenia-like 

symptoms, including cognitive dysfunctions and increased anxiety levels (D’Souza et al.). 

According to these studies, both stress and marijuana use may play a role in 

schizophrenia.

Dopamine Hyperfunction Hypothesis. One of the more researched hypotheses of 

schizophrenia is the dopamine hyperfunction hypothesis. Carlsson and Lindqvist (1963) 

found that schizophrenic patients suffer from increased dopamine levels, which is thought 

to be involved in the positive symptoms of schizophrenia. Cocaine and amphetamine are 

found to increase dopaminergic activity. Amphetamine and cocaine users exhibited 

schizophrenia-like symptoms, believed to be produced by their increased dopaminergic 

activity (Berger, 1981). The classic study that demonstrated the involvement of dopamine 

in schizophrenia was published by Randrup and Munkvad in 1967. In this study on
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schizophrenic patients, they showed that dopamine agonists that activate the activity of 

dopamine receptors produce schizophrenia symptoms. On the other hand, dopamine 

antagonists that block the action of dopamine receptors have been shown to reduce 

positive symptoms in schizophrenic patients (Randrup & Munkvad).

Increased dopaminergic activity in schizophrenics may be due to their 

significantly increased density of dopamine D2 receptors compared to control subjects 

(Pearce, Seeman, Jellinger, & Tourtellotte, 1990; Seeman, 1985). This finding indicates 

increased neural activity in response to a normal amount of released dopamine (Wilson, 

2003). A study in patients with schizophrenia revealed increased presynaptic activity of 

dopamine neurons at D2 receptors in the striatum (Abi-Dargham et al., 2000). In addition, 

through PET, Seeman and Niznik (1990) found that D2 receptor density in patients with 

schizophrenia is increased in postmortem brain putamen and caudate nucleus. Therefore, 

there is an increased density of D2 receptors, which helps to explain why schizophrenic 

patients may have increased sensitivity to dopamine (Seeman et al., 2005). However, one 

caveat to these studies is that all schizophrenics are typically medicated with 

antipsychotic drugs, which all block the dopamine D2 receptor with some affinity, and are 

known to increase the dopamine levels and the number of dopamine D2 receptors (Risch, 

1996; Seeman, 2006; Seeman, Corbett, & Van Tol, 1997; Seeman, Lee, Chau-Wong, & 

Wong, 1997 as cited in Kapur, Zipursky, Jones, Remington, & Houle, 2000; Tollefson, 

1996).
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Substance Abuse

Substance Abuse and Schizophrenia

The rate of substance abuse is one of the most serious public health problems that 

most nations are struggling to reduce because it easily affects communities. One group of 

people who are at an especially high risk for abusing substances is schizophrenia patients. 

It has been reported that there are higher rates of substance abuse among schizophrenics 

compared to the normal population (LeDuc & Mittleman, 1995). Drugs that are used in 

this population include cannabis, cocaine, and nicotine (Winklbaur, Ebner, Sachs, Thau, 

& Fischer, 2006). Schizophrenic patients are two to five times more likely to use 

psychoactive drugs than non-schizophrenics (LeDuc & Mittleman). Some studies have 

reported that abuse of psychoactive substances in the schizophrenic population produces 

increased memory impairment, isolation, early life stress, and depressive symptoms 

(Scheller-Gilkey, Thomas, Woolwine, & Miller, 2002; Sevy, Kay, Opler, & van Praag, 

1990).

Nicotine

Nicotine is one of the substances most commonly abused by people who are 

diagnosed with mental disorders including depression, anxiety disorder, panic disorder, 

eating disorder, and schizophrenia (Anzengruber et al., 2006; Breslau, 1995; Hughes, 

Hatsukami, Mitchell, & Dahlgren, 1986; Isensee, Wittchen, Stein, Hofler, & Lieb, 2003). 

It is a reinforcing drug that increases dopaminergic activity in the nucleus accumbens 

(Miyasato, 2001). Due to these properties, nicotine is highly addictive, and people 

become nicotine-dependent rapidly. Withdrawal typically produces increased anxiety 

(Nerin, Beamonte, Gargallo, Jimenez-Muro, & Margueta, 2007). The DSM-IV 
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recognizes nicotine as an addictive substance that is abused by the population (APA, 

1994). Small rapid doses of nicotine can be delivered to the brain within a few seconds, 

and nicotine binds to nicotinic acetylcholine receptors (nAChRs), which are found in 

both the peripheral and the central nervous system (Goodman, 1995 as cited in Uneri, 

Tural, & Cakin Memic, 2006; Uneri et al.). Nicotinic acetylcholine receptors are reported 

to be highly concentrated in the hippocampus, where they regulate glutamate release, and 

also in the ventral tegmental area (VTA), where they play a role in regulating dopamine 

release (Fallon & Loughlin, 1995; Vizi & Kiss, 1998). The hippocampus plays a major 

role in cognition, and the VTA sends projections to the nucleus accumbens and plays a 

major role in positive reinforcement and drug addiction. In addition, Cao, Surowy, and 

Puttfarcken (2005) found that nAChRs are responsible for dopamine release in the 

hippocampus. Furthermore, nAChRs are reported to control several neurotransmitter 

levels including norepinephrine, GABA, and acetylcholine in several brain areas (Clarke 

& Reuben, 1996; Wilkie, Hutson, Sullivan, & Wonnacott, 1996; Yang, Criswell, & 

Breese, 1996). Finally, nAChRs are found in high concentrations at the neuromuscular 

junction in the periphery, which indicates that they play a role in motor function 

(Bernheim, Hamann, Liu, Fischer-Lougheed, & Bader, 1996). Therefore, nAChR 

dysfunction is thought to be involved in neurodegeneration and cognitive deficits of 

schizophrenia.

Nicotine Exposure in Schizophrenia. There are two groups of people who are at 

higher risk of being nicotine dependent. It has been reported that between 74 % and 92 % 

of the schizophrenic population in America is nicotine dependent (de Leon et al., 1995; 

Hughes et al., 1986; O’Farrell, Connor, & Upper, 1983). The reason for the high rate of 
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nicotine abuse in this population is thought to be for self-medication purposes and to 

alleviate symptoms of the disorder (Araki, Suemaru, & Gomita, 2002; Krystal et al., 

2006; Kumari & Postma, 2005; Punnoose & Belgamwar, 2006). Several studies have 

supported this explanation. Nicotine has been shown to alleviate several commonly 

exhibited symptoms of schizophrenia such as cognitive impairment, processing of 

auditory stimuli, and anxiety (Larrison-Faucher, Matorin, & Sereno, 2004; Lyon, 1999; 

Salas, Pieri, Fung, Dani, & De Biasi, 2003). Furthermore, Zhang et al. (in press) found 

that positive symptoms are alleviated in smoking schizophrenics compared to non-

smoking schizophrenics, and negative symptoms are more fully alleviated the more 

cigarettes patients smoke. 

Nicotine Exposure in Adolescence. Another group of people who are at higher 

risk of abusing nicotine is adolescents. A report has shown that 42 % of middle and high 

school students have experimented with smoking (U.S. Department of Health and Human 

Services, 1993 as cited in Wang et al., 1999). In addition, Stanton (1995) conducted a 

longitudinal study using 937 adolescents as subjects and found that 19.3 % of the subjects 

met the criteria for being nicotine dependent. Several findings have shown that smokers 

who develop their habits in adolescence have a lesser likelihood of quitting smoking later 

in life (DiFranza et al., 2000; Smith et al., 2006). These findings are supported by other 

studies that indicate adolescent rats have a higher sensitivity to nicotine than adult rats 

(Belluzzi, Lee, Oliff, & Leslie, 2004; Rezvani & Levin, 2004). Therefore, it is believed 

that adolescence may be the most critical time in developing nicotine dependence. 

Rodent models of adolescent nicotine exposure have revealed that nicotine 

exposure causes long-term changes in the central nervous system including dopaminergic 
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and catecolaminergic functioning and damage in the hippocampus, midbrain, and 

cerebral cortex (Abreu-Villaca, Seidler, Tate, & Slotkin, 2003; Trauth, Seidler, Ali, & 

Slotkin, 2001). Trauth et al. found that nicotine infusion from P 30 to P 47.5 activated 

midbrain catecholaminergic pathways, resulting in increased dopamine metabolism. 

However, during the post-infusion period (P 50 to P 60) midbrain catecholamine turnover 

decreased in male rats. On P 80, midbrain catecholaminergic pathways were activated 

again in males (Trauth et al.). In another study, Abreu-Villaca et al. chronically injected 

three different doses of nicotine (0.6, 2, and 6 mg/kg/day), and all of these doses resulted 

in a decreased density, number, and size of cells, meaning that nicotine produced cell 

death. Nicotine decreased neuron projection in the midbrain, hippocampus, and cerebral 

cortex, and these brain alterations were still observed 1 month after nicotine treatment. 

On the other hand, 6 mg/kg/day of nicotine injection in adult rats did not produce any 

brain alterations (Abreu-Villaca et al.). In conclusion, these critical neuronal damages and 

changes caused by nicotine are thought to be key elements in causing lifetime nicotine 

addiction in adolescents.

Sex Difference in Adolescent Nicotine Exposure. There are some reports 

indicating that there may be sex differences in adolescent nicotine exposure. Piko, Wills, 

and Walker (in press) used 1,225 U. S. high school students as participants to analyze 

whether sex differences exist in cigarette smoking. The results showed that there is no 

significant difference between the rate of smoking in boys and girls. However, around 15 

years ago, it was reported that the smoking rate was higher among boys (Johnston, 

O’Malley, & Bachman, 2000 as cited in Piko et al.). Piko et al. have concluded that the 

rate of smoking among girls has increased since that time, and the currently equal 
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occurring rates of smoking are due to increased acceptance of female smoking in public 

places. 

In contrast to Piko and colleagues’ study, Stanton, McClelland, Elwood, Ferry, 

and Silva (1996) found gender differences in the number of adolescent daily smokers (15 

to 18 year-olds) in New Zealand in a longitudinal study. They found that the daily 

smoking rate increased from 15 % (15 year-olds) to 31 % (18 year-olds). Among girls, 

there was a greater number of daily smokers than boys. Two factors can possibly explain 

the reasons for these sex differences. Perkins, Donny, and Caggiula (1999) reported that 

males are more sensitive to the reinforcing effect of nicotine. Furthermore, Crisp, 

Sedgwick, Halek, Joughin, and Humphrey (1999) found that teenage females have higher 

social anxiety from weight gain and body image. Females are shown to be more sensitive 

to the anxiolytic effect of nicotine than males. Therefore, Crisp et al. concluded that 

teenage girls smoke in order to receive the calming and anxiolytic effects of nicotine.

Sex differences have been shown in the behavioral response to nicotine in 

adolescent mice (Klein, Stine, Vandenbergh, Whetzel, & Kamens, 2004). Mice were 

given 24 hour access to either saccharin solution or one of the following amounts of 

freebase nicotine: 10 ug/ml, 25 ug/ml, 50 ug/ml, 75 ug/ml, 100 ug/ml, or 200 ug/ml 

dissolved in saccharin solution. The results showed that there is no sex difference in 

serum cotinine (a nicotine metabolite) levels, according to the liver weights of male and 

female mice. However, female adolescent mice consumed more nicotine than males. The 

authors reasoned that this sex difference is observed due to one of two possible reasons: 

either female mice are less sensitive to nicotine than males, or females metabolize 

nicotine more quickly than males. Therefore, Klein et al. concluded that the rate of 
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nicotine metabolism, absorption, distribution, and excretion processes among females and 

males may be different.

Neuroanatomically, there are sex differences in response to nicotine. Xu, Seidler, 

Ali, Slikker, and Slotkin (2001) found that chronic administration of nicotine produces 

suppression in 5-HT activity and damage to 5-HT projection in adolescent rats. In 

addition, Xu, Seidler, Cousins, Slikker, and Slotkin (2002) found that female adolescent 

rats exhibited reduced 5-HT receptor binding due to nicotine in the cerebral cortex. 

Furthermore, Viveros, Marco, and File (2006) reported that females exhibited a greater 

change in 5-HT receptors than males that may have contributed to 5-HT receptor 

dysregulation. This 5-HT receptor change in adolescent females may have contributed to 

sex differences in behavioral responses to nicotine.

To sum up these studies, there may be sex differences in nicotine consumption 

and behavioral responses to nicotine in adolescence because females may be less 

sensitive to nicotine, and nicotine damages 5-HT functions more in females. However, 

there are only a limited number of articles indicating sex differences in adolescent 

animals. Thus, the explanations for why there may be sex differences in behavioral 

response to nicotine and nicotine consumption are still unclear. Further research on 

gender differences in nicotine exposure is needed.

Animal Models of Disease and Disorder

The use of animal models is vital for scientific research because it allows for the 

possibility of finding interventions or treatments for certain diseases and also a better 

understanding of how they develop in humans. Animal models have been shown to be 

especially useful in the development of novel medications and manipulations to help treat 
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disorders. According to McKinney and Bunney (1969), in order to validate an animal 

model of disease, there are three criteria that need to be reached: the similarity of 

conditions, behavioral states, and common mechanisms. These are all critical if an animal 

model is said to be valid for a particular disorder. However, even if all of the criteria are 

not met, and only one criterion is met, the information gathered from using the “invalid” 

animal model can still be useful (Woodruff & Baisden, 1994). Use of animal models met 

with any of the criteria raised by McKinney and Bunney allows analysis mechanisms that 

may be important for the progression of disease. In addition, the animal models can be 

used to see whether treatment works for those diseases before administering them to 

human subjects (Wilson, 2003).

Another reason is that animal models of disease can be correlative, analogous, or 

homologous to the diseases or symptoms observed in humans (Gage, Bjorklund, Isacson, 

& Brundin, 1985). For example, untreated animals used in a correlative animal model 

behave like they have been given certain drug treatments. In other words, the correlative 

animal model can duplicate the conditions that various different drugs would have on 

humans. Animals used in an analogous animal model are given lesions in the central 

nervous system to model certain neuropathologies that occur in the particular targeted 

disorder in humans. In this way, the analogous animal model can produce 

neurodegenerative disorders in animals such as Parkinson’s disease, Alzheimer’s disease, 

and schizophrenia, which normally only occur in humans. Finally, animals used in a 

homologous animal model exhibit all aspects of the disease as humans (Gage et al.). In 

other words, a homologous animal model is a complete duplication of human disease in 
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animals. Therefore, the use of animal models is very important for humans’ physical and 

mental health.

Several animal models of disease have been produced, especially for mental 

disorders such as schizophrenia, major depressive disorder, anxiety disorders, and alcohol 

and drug addiction. Hitzemann (2000) explained that animal models of mental disorders 

could be used across several different behavioral tasks that accurately test observed 

dysfunctions of the disease and may help to identify how mental disorders are involved in 

particular human behaviors. Scientists primarily use animal models of mental disorders to 

explore possible treatments or therapeutic approaches, and certain aspects of mental 

disorders can be easily modeled in rodents (Hitzemann).

Rodent Models of Schizophrenia

Amphetamine Model of Schizophrenia. Several rodent models such as the 

amphetamine model, PCP model and neonatal hippocampal lesion model have been used 

to model schizophrenia symptoms in rodents. The oldest rodent model of schizophrenia 

that has been prevalently used was created by the acute administration of amphetamine, 

which has been reported to increase dopamine release (Leyton et al., 2002; Oswald et al., 

2005). This model is designed to produce analogous symptoms to the disease by 

producing a hyperactive dopaminergic system. The reason this model has been 

questioned is that the large dose administration of amphetamine in rats creates a 

temporally robust dopamine release, and the dopamine system is hyperactive throughout 

the lifetime of schizophrenics. Castner, Vosler, and Goldman-Rakic (2005) circumvented 

this problem by analyzing the effects of chronic administration of amphetamine on 

dopamine levels and behavior over a 6-week period in monkeys. They found that a 
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chronic administration of amphetamine produces symptomology that is similar to the 

positive and negative symptoms of schizophrenia, which is thought to be a result of a 

decreased level of dopamine turnover in the prefrontal cortex and striatum (Castner et al.). 

Furthermore, Haber et al. (1981) found that after several low doses of amphetamine were 

administered, monkeys spent a longer period of time in “sit tense” postures and showed 

an increased number of agonistic behaviors as well as an increased frequency of 

reorienting their position. 

PCP Model of Schizophrenia. Another well used rodent model of schizophrenia is 

based on the pharmacological action of the drug PCP. The PCP model of schizophrenia is 

based on chronic administration of PCP, which is an antagonist at the NMDA receptor 

(glutamatergic receptor) and produces locomotor hyperactivity, cognitive deficits, 

prepulse inhibition (PPI) impairment, and impairment in social novelty discrimination in 

rodents (Harich, Gross, & Bespalov, 2007; Nabeshima et al., 2006; Rasmussen, O’Neil, 

Manaye, Perry, & Tizabi, 2007; Sams-Dodd, 1998). Schizophrenics also demonstrate 

significant hypoactivity at the NMDA receptor. Additionally, behaviors exhibited under 

the influence of PCP are similar to the positive and negative symptoms of schizophrenia. 

For example, rats chronically administered PCP demonstrate schizophrenic symptoms 

such as stereotypical behavior and social isolation (Sams-Dodd, 1996). Also, chronic 

PCP administration reduces N-acetylaspartate and increases N-acetylaspartylglutamate, 

which are both thought to be involved in fluid balance and energy production (L. M. 

Reynolds, Cochran, Morris, Pratt, & G. P. Reynolds, 2005). 

Furthermore, rats treated with PCP also exhibit deficits in the central 

oxytocinergic system, which is thought to play an important role in social interaction 
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deficits observed in schizophrenia (Lee, Brady, Shapiro, Dorsa, & Koenig, 2005). 

Because these observed symptoms from PCP administration are hypothesized to be 

produced due to insufficient glutamate transmission, several studies have analyzed the 

effect of chronically administered PCP in rodents to model behavioral deficits observed 

in schizophrenia using this model (Harich et al., 2007; Nabeshima et al., 2006; Wass et 

al., 2006). Nabeshima et al. reported that decreased glutamate transmission caused by 

PCP administration resulted in cognitive impairments in mice tested in the Morris water 

maze (MWM). The primary criticism of this rodent model of schizophrenia is that the 

PCP model requires chronic administration to be effective. The effects of chronic PCP 

administration are temporary in that the behavioral deficits that are consistent with 

schizophrenia are demonstrated only when the drug is in the bloodstream (Sams-Dodd, 

1996).

Neonatal Hippocampal Lesion Model of Schizophrenia. The most well-studied 

rodent model of schizophrenia is the neonatal hippocampal lesion model. One of the 

major differences observed through functional imaging studies among schizophrenics and 

non-schizophrenics is that in schizophrenics there is decreased volume of the

hippocampus and frontal cortex compared to healthy subjects (Breier et al., 1992; Nugent 

et al., 2007; Tanskanen et al., 2005; Toulopoulou et al., 2004; Velakoulis et al., 2006; 

Yamasue et al., 2004). Hippocampal dysfunction presumably plays an important role in 

cognitive impairment and deficits in social interaction known to be present in 

schizophrenia (Sprick, von Wilmsdorff, Bouvier, Schulz, & Gaebel, 2006). Therefore, the 

purpose of this model is to try to replicate the hippocampal neuropathology that occurs in 

schizophrenia.



24

To create neonatal hippocampal lesions, rats are administered ablation of the 

ventral hippocampus (VH) on P 7. This type of lesion produces an increase in 

mesolimbic dopamine transmission (Wan, Giovanni, Kafka, & Corbett, 1996). Results 

have shown that lesioned rats exhibit a significant increase in activity after saline 

injection as well as after d-amphetamine treatment as adults. More importantly, they have 

reported that rats neonatally given VH lesions demonstrated increased sensitivity to stress 

compared to the group that was VH lesioned in adulthood (Lipska, Jaskiw, & Weinberger, 

1993). This observed difference may be due to increased dopamine transmission (Lipska 

et al.). Also, Becker, Grecksch, Bernstein, Hollt, and Bogerts (1999) have found that 

neonatally lesioned rats exhibited less time in social interaction and increased aggressive 

behaviors. Furthermore, it is reported that neonatal hippocampal lesions produce memory 

and cognitive deficits in rats (Lipska, Aultman, Verma, Weinberger, & Moghaddam,

2002; Chambers, Moore, McEvoy, & Levin, 1996).

These behavioral changes are strengths of the model. On the other hand, there are 

a few weaknesses found in the model as well. In schizophrenia, observed brain 

abnormalities and neurochemical changes are due to alteration of connectivity; however, 

in this model these changes are produced by cell death. Also, behavioral changes 

produced by VH lesions differ depending on the age of the rodents (Wood, Lipska, & 

Weinberger, 1997).

Dopamine D2 Receptor Priming Model of Schizophrenia. A final model of 

schizophrenia is one that has been created in our laboratory. Quinpirole is a dopamine 

D2/D3 agonist when it is neonatally administered. It has been shown to produce long-term 

supersensitization of the dopamine D2 receptor (referred to as dopamine D2 receptor 
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priming) (Kostrzewa, 1995; R. M., Kostrzewa, J. P., Kostrzewa, Nowak, R. A. Kostrzewa, 

& Brus, 2004; Brown et al., 2004a). 

Several consistent features have been found between the neonatal quinpirole 

model of schizophrenia and data from human schizophrenia literature. First, 

amphetamine administration to adult rats neonatally treated with quinpirole produced a 

robust increase in the release of dopamine in the striatum (Nowak, Brus, & Kostrzewa, 

2001). Consistently, studies using MRI and PET have shown that amphetamine 

administration produces a large increase in dopamine release in the striatum of 

schizophrenic patients (Lavalaye et al., 2001; Soares & Innis, 1999). 

Second, neonatal quinpirole treatments have been shown to produce deficits in 

auditory sensorimotor gating using PPI (Smith, Perna, & Brown, n.d.). PPI of the startle 

response refers to attenuation in response to a strong stimulus (pulse) if this is preceded 

shortly by a weak non-startling stimulus (prepulse). PPI provides a simple operational 

measure of sensorimotor gating, which is often disrupted in schizophrenia (Kumari & 

Sharma, 2002; Geyer et al., 2001). It has been shown that adult rats that received neonatal 

quinpirole treatment demonstrated PPI deficits compared to controls using different 

prepulse auditory intensities (73, 76, and 82 dB) and different interstimulus intervals 

between the prepulse and pulse (50, 100, and 150ms) (Smith et al.). 

Third, neonatal quinpirole treatments have been shown to produce long-term 

cognitive impairment (Brown, Gass, & Kostrzewa, 2002; Brown et al., 2004a; Brown et 

al., 2004b; Brown, Perna, Schaefer, & Williams, 2006). It has been well-documented that 

severe cognitive impairments are present in schizophrenia and suggested that cognitive 

impairment is a core feature of the disorder (Adler et al., 1998; Adler, Freedman, Ross, 
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Olincy, & Waldo, 1999; Elvevag & Goldberg, 2000). Cognitive deficits have also been 

hypothesized to be associated with sensorimotor gating in patients with schizophrenia 

(Geyer, Krebs-Thomson, Braff, & Swerdlow, 2001). 

Fourth, chronic treatment with the atypical antipsychotic, olanzapine, (Trade 

name: Zyprexa) has been shown to alleviate cognitive deficits and long-term priming of 

the D2 receptor, which is produced by neonatal quinpirole treatment. Thacker et al. 

(2006) have shown that chronic olanzapine treatment given twice daily in adulthood 

alleviated cognitive deficits produced by neonatal quinpirole treatment. Yawning is a 

behavior mediated by the D2 receptor and produced by neonatal quinpirole treatment. 

Importantly, this treatment also alleviated the significant increase in yawning to control 

levels, essentially reversing the D2 priming effect. These data demonstrate that not only is 

D2 priming likely primarily responsible for these behavioral effects, but also that 

antipsychotic treatments are effective in alleviating these effects. In vitro analyses 

showed that significant decreases in nerve growth factor (NGF) in the hippocampus that

was produced by neonatal quinpirole treatment, was reversed by olanzapine, and brain 

tissue was not taken until after an 8-day washout (Thacker et al.). 

Fifth, neonatal quinpirole treatments in rats have been shown to produce 

neurochemical abnormalities in adulthood that are similar to observations made in human 

schizophrenics. Results from this laboratory have shown that neonatal quinpirole 

treatment produced a 36 % decrease in choline acetyltransferase (ChAT) and significant 

decreases in NGF expression in the hippocampus compared to saline controls in both 

early postweanling and adult rats (Brown et al., 2004a; Brown et al., 2004b; Brown et al., 

2006). Consistently, studies in non-medicated schizophrenic patients have demonstrated a 
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decrease in overall NGF expression, which has been suggested to account for 

neurodevelopmental abnormalities (Aloe, Iannitelli, Angelucci, Bersani, & Fiore, 2000; 

Parikh, Evans, Kahn, & Mahadik, 2003).

Sixth, the polymerase chain reaction (PCR) analyses from our laboratory have 

shown a significant decrease of alpha7 nicotinic receptor genetic expression in the 

hippocampus of D2 primed animals. Consistently, studies have shown decreases in 

density of the alpha4beta2 nicotinic receptor in the hippocampus, decreases in the alpha7 

nicotinic receptor subunit gene, as well as a reduction in muscarinic receptor availability 

in vivo in human schizophrenic patients (Durany et al., 2001; Leonard et al., 2002; 

Raedler et al., 2003).

Finally, neonatal quinpirole treatment in rats produced significant decreases in the 

regulator of G-protein signaling (RGS) 9, the genetic transcript that codes for the G-

protein that couples to the D2 receptor, when D2 primed animals are adults. This has also 

been shown to be consistent with the microarray experiments in postmortem 

schizophrenic patients (Mirnics, Middleton, Stanwood, Lewis, & Levitt, 2001). Mirnics 

et al. found that RGS 4 expression was significantly decreased in the prefrontal cortex of 

the schizophrenic patients. Therefore, neurochemically and behaviorally, it can be 

concluded that the dopamine D2 priming receptor model is the most consistent with 

symptoms of schizophrenia in humans.

Conditioned Place Preference

The conditioned place preference (CPP) is a paradigm that was developed to 

measure the associative effects of drugs and distinctive environmental cues (Carr, Fibiger, 

& Phillips, 1981). This relationship has been developed in rodents (Bienkowski, Kuca, 
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Piasecki, & Kostowski, 1996). The CPP behavioral apparatus usually consists of either 

two or three chambers. For the two-chambered CPP apparatus, usually one chamber is 

painted black, and the other chamber is painted white. In the three-chambered CPP

apparatus, the chambers are generally painted black, white, and gray. Regardless of the 

apparatus used, each chamber has a different texture so that rodents can discriminate 

between the chambers with tactile stimuli as well as through the different color of each 

chamber.

Pavlov (1927) explained that classical conditioning involves a conditioned 

stimulus (CS) and an unconditioned stimulus (UCS) and defined reinforcement as strong 

association between the CS and UCS. The CPP is based on classical conditioning 

principles and involves a temporal pairing of a CS, a particular compartment, and a UCS, 

the drug, to measure reinforcement. In the drug-induced CPP, the conditioned response 

(CR) and unconditioned response (UCR) are the amount of time the animals stay in each 

chamber or the amount of locomotor activity that the animals exhibit after the CS is 

exposed. Subjects’ CR and UCR are measured in order to understand drug reinforcement.

The CPP procedure requires repeated pairings of a UCS and CS. This repeated 

pairing has been shown to develop a CR in animals (Carew & Rudy, 1991; Shippenberg 

& Heidbreder, 1995). After conditioning, when allowed to freely access all chambers 

after removing the dividers of the CPP apparatus, animals usually prefer the environment 

paired with the drug. This preference is the indicator of drug-induced CPP in animals. 

Also, developed CS and CR relationships have been shown to block animals’ ability to 

become habituated to a new CS (Carew & Rudy). Although CPP was developed to test 

the associative effects of drugs, it has also been reported to be a useful device for 
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measuring the degree to which drugs alleviate anxiety (anxiolytic effect) (Matsuzawa, 

Suzuki, & Misawa, 2000; Torrella, Badanich, Philpot, Kirstein, & Wecker, 2004). 

In general, the CPP procedure usually consists of three major steps: pretest, 

conditioning, and posttest. The pretest is an initial test conducted on animals without any 

pre-drug exposure to the apparatus. During the pretest, animals are individually placed in 

the center of the shuttle box, and their initial compartment preference is obtained by 

measuring the amount of time they spend in each compartment. During the conditioning 

phase, one compartment is repeatedly paired with a psychoactive drug and the other 

compartment is paired with saline. The posttest is typically conducted the day after the 

final conditioning trial to record the strength of conditioning and which compartment is 

preferred by the animal. Therefore, the CPP is used to measure associative and 

reinforcing effects of positively reinforcing drugs, using classical conditioning principles. 

Biased and Unbiased Designs

There are two different designs in the CPP: biased and unbiased (R. W. Brown, 

personal communication, February 26, 2007). The biased design allows animals to freely 

access any of the compartments to see which compartment they prefer when they are first 

exposed to the apparatus. Then, the animals are conditioned to the initially non-preferred 

compartment that is paired with a drug. In contrast, in the unbiased design, the animals’ 

initial chamber preference is not taken into account for chamber assignment, so half of 

the animals are randomly assigned to one compartment and the rest of the animals to 

another compartment. In this case, both compartments are paired with reinforcing drugs

(R. W. Brown, personal communication).
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Even though both CPP designs have been shown to develop several 

psychostimulant drug-induced CPP, it has been claimed that the biased design should be 

used over the unbiased to measure the reinforcing effect of nicotine (Le Foll & Goldberg, 

2005). Le Foll and Goldberg analyzed which nicotine dose and which CPP design (biased 

or unbiased) would produce nicotine-induced CPP in rats. They found that when rats are 

injected with 0.1 to 1.4 mg/kg of nicotine and placed in their non-preferred compartment 

(biased design), nicotine induced CPP. Also, they reported nicotine induced conditioned 

place aversion when rats were given 2.0 mg/kg of nicotine and initially placed in their 

preferred compartment (Le Foll & Goldberg). A possible explanation is that the biased 

design is able to detect differences between before versus after conditioning because rats 

are initially placed in the non-preferred chamber (Schenk, Ellison, Hunt, & Amit, 1985; 

Scoles & Siegel, 1986). 

The Two- Versus Three-Chambered CPP

In general, most CPP used studies use either the two- or the three-chambered CPP 

apparatus. In both paradigms, reinforcing drugs including amphetamine, apomorphine, 

morphine, cocaine, and nicotine have been shown to induce CPP (Belluzzi et al., 2004; 

Brielmaier, McDonald, & Smith, 2007; Le Foll & Goldberg, 2005; Nazarian, Russo, 

Festa, Kraish, & Quinones-Jenab, 2004; Parker, 1992; Vastola, Douglas, Varlinskaya, & 

Spear, 2002). However, Torrella et al. (2004) reported that the use of the two-chambered 

CPP apparatus may produce confounding results. They concluded that obtained results 

from the two-chambered CPP could reflect either animal’s preference for a particular 

chamber or the animals’ aversion to another chamber. This aversion to a particular 

chamber means that they avoid the other chamber rather than prefer the chamber they are 
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in. Therefore, it is difficult to determine whether the animal’s preference for a particular 

chamber is due to the reinforcing effect of the drugs or the anxiolytic effect of the drugs 

because CPP can measure the anxiolytic effect of the drugs when it follows the biased 

design (Davis, Roma, Dominguez, & Riley, 2007; Torrella et al.).

Torrella et al. (2004) conducted a three-chambered CPP study with nicotine in 

adolescent and adult rats to see if the two-chambered CPP may be measuring the aversion 

to the other compartment. They reported that after conditioning sessions with nicotine, 

the anxiolytic effect of nicotine was observed in P 39 rats but not in P 69 rats (Torrella et 

al.). In addition, Vastola et al. (2002) showed that nicotine-induced CPP was observed in 

adolescents but not in adults when they used the two-chambered CPP apparatus and 

followed a similar procedure as Torrella and colleagues’ study. In contrast, it has been 

reported that nicotine does not induce CPP in adolescent rats when using the three-

chambered CPP apparatus but does in the two-chambered CPP apparatus (A. Rauhut, 

personal communication, June 12, 2006). Therefore, others have reported that the two-

chambered CPP apparatus may be preferred when testing nicotine-induced CPP in 

adolescent rats (A. Rauhut, personal communication; Torrella et al.). 

In conclusion, nicotine-induced CPP is an elusive and difficult finding because it 

can be easily affected by age and the apparatus. Even though nicotine is a reinforcing 

drug, reinforcements from nicotine are not as strong as from such highly addictive drugs 

as morphine and cocaine. In general, the features of the two- and the three-chambered 

CPP apparatuses are very similar because they contain either black/white boxes or 

black/gray/white boxes. However, as Torrella et al. (2004) explain, the three-chambered 

CPP apparatus may be somewhat more sensitive in detecting nicotine-induced CPP than 
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the two-chambered CPP. Therefore, it can be concluded that the three-chambered CPP 

apparatus is a better way to assess nicotine-induced CPP.

In addition to Torrella and colleagues’ claim, there are a few additional 

advantages reported to using the three-chambered CPP apparatus rather than the two-

chambered CPP apparatus. First, Tzschentke (1998) reported that having a third 

compartment provides a neutral environment that can serve as a starting point. As a result, 

the three-chamber CPP paradigm allows the subject to decide which chamber it prefers 

(Torrella et al., 2004). 

Secondly, Parker (1992) performed a study using the three-chambered CPP

paradigm in rats to see if outcomes of the CPP are due to novelty interference with 

habituation. Several psychoactive drugs were paired (amphetamine, apomorphine, and 

morphine) to one compartment, and saline was paired to the other compartment. The 

results showed that rats preferred a compartment paired with psychoactive drugs more 

than the other compartments. Interestingly, the results also showed that rats repeatedly 

preferred a novel chamber more than a compartment paired with saline (Parker). 

Therefore, it appears that the three-chambered CPP has the advantage of measuring 

outcomes in the CPP on the drug-free test that the two-chambered CPP apparatus

presumably cannot measure (Tzschentke, 1998). However, there is not much literature 

that discusses the two- versus three-chambered CPP issue, so further research on this 

topic is required.

Adolescent Animals and the CPP

Several studies have shown that nicotine only induced CPP consistently in 

adolescent animals but not in adults. Brielmaier et al. (2007) used the two-chambered 
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CPP paradigm and biased design in early adolescent and adult rats. They found that acute 

injection of nicotine induced CPP in early adolescent animals but not in adult rats. 

Furthermore, Belluzzi et al. (2004) have shown that early adolescent rats (P 28) showed 

nicotine-induced CPP when they are given acute nicotine administration of 0.5 mg/kg but 

not late adolescent (P 38) or adult rats (P 90). In addition, when late adolescent and adult 

rats were given nicotine repeatedly, late adolescent rats exhibited more tolerance and 

sensitization to nicotine than adult rats. Both studies concluded that adolescents are more 

sensitive to the reinforcing effect of nicotine, especially early adolescent animals 

(Belluzzi et al.; Brielmaier et al.)

Furthermore, Vastola et al. (2002) found that even relatively lower doses of 

nicotine administration induced CPP in adolescent rats but not in adult rats when they 

used the two-chambered CPP apparatus and biased design. They hypothesized that this is 

because adolescents are more likely to be nicotine dependent and sensitive to nicotine 

than adults, so adolescent rats showed nicotine-induced CPP even with relatively lower 

doses of nicotine (0.6 mg/kg) (Vastola et al.). Furthermore, neuroanatomically, it has 

been reported that adolescent and adult rats differ. Kalsbeek, Voorn, Buijs, Pool, and 

Uylings (1988) found that rats’ dopamine containing fibers keep developing until rats are 

60 days old. These results appear to show that only adolescent rats may demonstrate 

nicotine-induced CPP. 

To sum up these studies, it can be concluded that the biased design should be used 

to measure nicotine-induced CPP and the dose should be in the range of 0.1 to 1.4 mg/kg 

(Belluzzi et al., 2004; Brielmaier et al., 2007; Le Foll & Goldberg, 2005; Vastola et al., 

2002). Also, it is important to note that adolescents should be used to measure nicotine-
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induced CPP because adults are less likely to exhibit nicotine-induced CPP. In other 

words, nicotine-induced CPP appears to be very age specific (Belluzzi et al.; Vastola et 

al.).

Sex Differences and the CPP

Several studies have reported that there may be sex differences in 

psychostimulant-induced CPP (Balda, Anderson, & Itzhak, 2006; Nazarian, Russo, Festa, 

Kraish, & Quinones-Jenab, 2004; Russo et al., 2003a; Russo et al, 2003b). Balda et al. 

showed that even though cocaine-induced CPP appears in both female and male adult rats, 

females exhibited cocaine-induced CPP to a stronger degree. Females preferred the 

compartment paired with cocaine more than males. This is thought to be because females 

are more sensitive to cocaine due to hormonal effects (Balda et al.).

Other studies have supported this hypothesis, and also that male rats take more 

sessions to show cocaine-induced CPP (Russo et al. 2003a; Russo et al. 2003b). To 

determine whether this result is due to hormonal differences, Russo et al. (2003a) 

gonadectomized both male and female rats. This gonadectomy procedure did not 

influence cocaine-induced CPP in males or females. However, ovariectomized female 

rats spent less time in the cocaine paired chamber than non-ovariectomized female rats, 

although cocaine-induced CPP was observed in both groups of female rats. Russo et al. 

(2003a) concluded that these sex differences in cocaine-induced CPP may be due to 

decreased levels of dopamine and 5-HT produced by ovariectomy. Furthermore, Nazarian 

et al. (2004) found that cocaine-induced CPP was observed in female rats and reasoned 

that this sex difference in cocaine-induced CPP resulted from different sensitivities to 

cocaine in the dopamine D1 receptor. In conclusion, these studies suggest that sex 
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differences in D2 primed adolescent rats may be observed in nicotine-induced CPP. 

However, there are not any reports of sex differences observed in nicotine-induced CPP 

in current published literature. If sex differences are observed in nicotine-induced CPP, it 

would mean that nicotine-induced CPP may be mediated by hormonal effects. Also, 

dopamine and 5-HT may be involved in nicotine-induced CPP differently in males and 

females.

Stress, the Elevated T-Maze, and the CPP

Some studies have reported that in patients with schizophrenia, dopamine and 

stress levels are increased, as stress and dopamine levels are reported to be positively 

correlated (Cabib & Puglisi-Allegra, 1996; Carlsson & Lindqvist, 1963; Finlay & 

Zigmond, 1997; Yilmaz et al., 2007). In addition, Rodgers, Nikulina, and Cole (1994) 

reported that when mice were treated with 0.5 mg/kg of a D2 receptor agonist, they 

experienced increased stress and anxiety responses. On the other hand, treatment with 

2.5-20.0 mg/kg of a D2 receptor antagonist decreased those responses (Rodgers et al.). 

Therefore, there is a possibility that the dopamine D2 receptor priming model of 

schizophrenia, which is produced by neonatal quinpirole treatment, increases stress and 

anxiety levels. 

The increased stress and anxiety levels could possibly influence the result of the 

CPP. When rats are experiencing increased stress and anxiety levels, their preference for 

the darker colored environment increases because rats are nocturnal. Because the CPP 

apparatus contains black and white chambers, increased stress and anxiety levels could 

drastically differentiate the results among D2 and non-D2 primed animals. Therefore, it is 
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important to determine whether D2 primed animals have higher stress and anxiety 

responses than non-D2 primed animals.

The elevated T-maze (ETM) was developed to test the animal model of anxiety 

and fear (Graeff, Viana, & Tomaz, 1993). It tests fear and stress responses in four 

consecutive trials: baseline, avoidance 1, avoidance 2, and escape (Trivedi & Coover, 

2004). Because this experiment is conducted in 1 day, the ETM measures the acute stress 

and fear responses of rodents, rather than chronic stress and fear levels. The ETM has 

three arms: one enclosed arm and two open arms (Zangrossi & Graeff, 1997). The open 

arms are located facing each other, and the enclosed arm is located perpendicular to the 

two open arms (Graeff, Netto, & Zangrossi, 1998; Zangrossi & Graeff). The ETM is 

capable of measuring two different types of fear or anxiety in animals: conditioned and 

unconditioned fear (Graeff et al., 1998; Viana, Tomaz, & Graeff, 1994). Conditioned fear 

is determined in the first three of the four consecutive trials based on how long the animal 

takes to leave the enclosed arm to enter either of the two open arms (Zangrossi & Graeff). 

On the fourth trial, unconditioned fear is measured. It is determined by how long the 

animal takes to leave the open arm to enter the enclosed arm (Zangrossi & Graeff). In 

conclusion, because the ETM is capable of measuring both conditioned and 

unconditioned fear, the ETM results of D2 and non-D2 primed animals can determine 

whether results obtained in the CPP are influenced by D2 priming, or not.

Focus of the Study

Nicotine is a widely abused psychostimulant drug, especially in adolescents. Also, 

clinical studies have shown that schizophrenic patients are two to five times more likely 

to abuse psychoactive drugs, especially nicotine (de Leon et al., 1995; Hughes et al., 
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1986; LeDuc & Mittleman, 1995; O’Farrell et al., 1983). Therefore, this study will use 

the D2 receptor priming model of schizophrenia to analyze nicotine-induced CPP in both 

early postweanling (P 22-P 40) and adolescent (P 29-P 47) rats.

Adolescents demonstrate a significantly different response to nicotine than adults 

on several behavioral and neurochemical measures. A report indicated that around 42 % 

of teenagers have some experience with smoking cigarettes (U.S. Department of Health 

and Human Services, 1991 as cited in Wang et al., 1999). The initiation of smoking in 

adolescence leads to a lesser likelihood of termination of smoking in adulthood (DiFranza 

et al., 2000; Smith et al., 2006). Furthermore, rodent studies have shown that adolescents 

have higher sensitivity to nicotine than adults (Belluzzi et al., 2004; Brielmaier et al., 

2007; Rezvani & Levin, 2004). Therefore, it is not surprising that there are age 

differences in the neurochemical and behavioral responses to nicotine in adolescence 

compared to adulthood (Abreu-Villaca et al., 2003; Belluzzi et al.; Brielmaier et al.; 

Trauth et al., 2001). However, there is no defined mechanism as to why this age 

difference in drug effects exists. 

The CPP is an excellent measure of the associative effects of drugs and 

environmental context (Bienkowski et al., 1996; Carr et al., 1981). There are several 

advantages to using CPP to study drug addiction. First, it is easily applicable to situations 

by measuring how environmental cues can trigger relapse. Second, it measures 

behavioral outcomes when the drug is not present (Tzschentke, 1998). Third, CPP has 

been reported to be effective for testing the anxiolytic or anxiogenic effects of drugs 

(Torrella et al., 2004). Finally, the CPP may be especially effective at testing the effects 

of nicotine in adolescent rats. Findings have shown that nicotine-induced CPP can 
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generally be produced in adolescent rats, but this has not been the case in adults 

(Brielmaier et al., 2007; Vastola et al., 2002). Studies have shown that early postweanling 

rats (P 28) and adolescent rats (P 39) demonstrated nicotine-induced CPP, whereas adult 

rats (P 69 or P 90) did not demonstrate nicotine-induced CPP (Belluzzi et al., 2004; 

Torrella et al.). 

Rodgers et al. (1994) found that quinpirole treatment produced increased stress 

and anxiety responses in mice on the elevated plus-maze test. Therefore, in the present 

study, rats neonatally treated with quinpirole may demonstrate a significant increase in 

stress levels on the CPP tests. In order to confirm this hypothesis, an ETM behavioral 

task was added as Experiment 2b to the behavioral tasks used in the present study. The 

ETM is a task that has been used to test behavioral stress in animals (Graeff et al., 1993). 

In Experiment 2b, a separate group of adult rats at P 60, which were neonatally treated 

with either quinpirole or saline, was tested on the ETM.

The aim of this study was to investigate the interaction of nicotine with different 

ages of adolescent D2 primed rats using both the two- and three-chambered CPP 

apparatuses. Essentially, the experimental design for these CPP experiments was the 

same, with the only difference between the two being the different apparatuses utilized.

Hypotheses

Hypothesis 1. Neonatal quinpirole treatment (D2 priming) will produce higher 

stress and anxiety levels in rats; therefore, D2 primed animals will prefer the darker 

colored compartment. This hypothesis is based on the following findings. First, a 

microdialysis study in rats has shown that when mild stressors were present, dopamine 

and norepinephrine levels in the medial frontal cortex significantly increased (Cenci, 
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Kalen, Mandel, & Bjorklund, 1992). In addition, an elevated plus-maze study by Rodgers 

et al. (1994) reported that mice injected with 0.5 mg/kg of quinpirole demonstrated an 

increase in freezing behavior and showed less exploratory behaviors. Furthermore, rats 

are nocturnal, so they naturally prefer a darker colored environment, especially when they 

are stressed and have a high anxiety level.

Hypothesis 2. Animals that are conditioned with nicotine will show nicotine-

induced CPP regardless of neonatal treatment. This is based on findings that have shown 

nicotine induced CPP in adolescent rats (Janhunen, Linnervuo, Svensk, & Ahtee, 2005; 

Le Foll & Goldberg, 2005).

Hypothesis 3. Animals neonatally treated with quinpirole and conditioned with 

nicotine will produce a higher preference for the white compartment compared to animals 

neonatally treated with saline and conditioned with nicotine. The basis for this hypothesis 

is that neonatal quinpirole treatment produces a rodent model of schizophrenia, and 

approximately 85 % of the schizophrenic population in America is nicotine dependent (de 

Leon et al., 1995; Hughes et al., 1986; O’Farrell et al., 1983). Also, D2 priming increases 

dopamine activity that reinforces the effects of nicotine.

Hypothesis 4. Nicotine will enhance CPP in younger animals due to possible 

withdrawal effects from chronic quinpirole treatments. This hypothesis is based on 

observations from past studies. Adult rats tend to become sick after nicotine injections 

and take longer to build tolerance to nicotine than younger animals. The possible reason 

for this age difference may be because adult rats experience withdrawal effects from 

chronic quinpirole treatments more severely than younger animals. 
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Hypothesis 5. Animals neonatally treated with quinpirole will demonstrate a 

significant increase in behavioral stress on the ETM. This increase in stress will be 

manifested as a significant increase in freezing behavior, which is the species-specific 

response for fear in rats, on the escape trial of the ETM. This hypothesis is based on the 

finding showing that mice treated with quinpirole demonstrated increased stress response 

on the elevated plus-maze (Rodgers et al., 1994).
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CHAPTER 2

METHODS

Experiment 1: The Two-Chambered CPP 

Subjects

In this study, two age groups were used: early postweanling (P 22-P 40) and 

adolescent (P 29-P 47). Female and male Sprague-Dawley (SD) rats were obtained from 

Harlan Laboratories, Inc (Indianapolis, ID) and mated in order to produce offspring that 

were used as subjects. A total of 67 SD male and female rats (early postweanling group n 

= 36; adolescent group n = 31) were used for Experiment 1. After neonatal drug 

treatment was complete, all animals were weaned at P 21 and assigned to their respective 

groups. All of the animals were assigned to either saline or nicotine (experimental group: 

Male Saline Nicotine, Male Quinpirole Nicotine, Female Saline Nicotine, and Female 

Quinpirole Nicotine; control group: Male Quinpirole Saline, Male Saline Saline, Female 

Quinpirole Saline, and Female Saline Saline). The animals were socially housed in cages 

in groups of two to three in a climate-controlled vivarium with food and water available 

ad libitum with a 12 hour on/off light/dark cycle. All procedures are approved by the 

University Committee on Animal Care (UCAC) at East Tennessee State University 

(ETSU) and the vivarium is fully accredited by the Association for the Assessment and 

Accreditation of Laboratory Animal Care (AAALAC).

Apparatus

The two-chambered CPP paradigm was constructed of plywood (30 inch long x 

18 inch wide x 20 inch high) and consisted of a black colored chamber and a white 

colored chamber. These chambers were separated by a removable painted wooden 
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divider. The walls of the chambers were painted with a flat finish. The bottom of the 

white colored chamber was painted flat white and covered with studded plastic. The 

bottom of the black colored chamber was painted with a textured black paint. The 

different textures were used so that the animals could better discriminate between the 

black and white chambers. The apparatus was located in a room surrounded with several 

electric fans, which helped to eliminate background noise. A video camera was located 

on the ceiling approximately 10 feet above the CPP chamber for recording purposes. The 

overhead lights were turned on during the conditioning sessions and testing trials.

Procedure

Neonatal Injection. All of the animals were injected intraperitoneally (i.p.) with 

either quinpirole HCl (1 mg/kg) or saline (0.9 %, 1 mg/kg) from P 1 to P 21. The animals 

were injected at approximately 9:00 AM every day.

Early postweanling/Adolescent Injection. On pretest, posttest1, and posttest 2 all 

of the animals were injected i.p. with saline only (0.9 %, 1 mg/kg). During the mornings 

of conditioning days (approximately 9:00 AM daily), all of the animals were i.p. injected 

with the drug they were assigned, which was either nicotine (0.8 mg/kg free base) or 

saline (0.9 %, 1 mg/kg), 10 minutes prior to being placed into the CPP apparatus. In the 

afternoons (approximately 1:00 PM daily), all of the animals received only saline (0.9 %, 

1 mg/kg), 10 minutes prior to being placed into the CPP apparatus.

Pretest. Pretests were given at two different ages. For the early postweanling rats, 

the pretest was administered 1 day after weaning at P 22. In the adolescent rats, the 

pretest was given at P 29. All animals were given a pretest trial to determine initial 

preference. The dividers between each chamber were removed before the pretest, in order 
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to allow the animals to have free access to all chambers in the apparatus. Each animal 

was released on the dividing line of the black and white chambers in the two-chambered 

CPP apparatus. Animals were left in the box for 5 minutes (300 seconds) and the video 

camera recorded all animals’ movements on videotape, which was later scored by the 

experimenter. For each subject, the amount of time spent in each chamber was recorded. 

Additionally, the number of shuttles made by each animal, which were defined as the 

movement from one chamber to the other, was also recorded.

Conditioning. The early postweanling rats were conditioned from P 23 to P 39, 

while adolescent rats were conditioned from P 30 to P 46. Conditioning sessions began 

the day after the pretest. For all conditioning trials, the removable wooden dividers were 

placed back into each chamber. All animals were given two conditioning sessions 

(morning and afternoon) per day. In the morning session (started at approximately 9:00 

AM daily), the animals injected with nicotine were placed in the white compartment 10 

minutes after the injection and spent 300 seconds in the chamber. Animals injected with 

saline were placed into the black chamber. In the afternoon session (started at 

approximately 1:00 PM daily), animals that were injected with saline in the morning and 

were also injected with saline in the afternoon session were placed in the white chamber. 

Rats that were injected with nicotine in the morning and saline in the afternoon were 

placed in the black chamber. After each conditioning session, all of the animals were 

placed back in their home cage. All animals were given a total of 16 days of conditioning. 

There was a posttest given after the first 8 conditioning days, and another posttest given 

after 16 days of conditioning. This procedure is based on that of Torrella et al. (2004), 

which showed that this procedure produced nicotine-induced CPP in adolescent rats.
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Posttests. There were two posttests; posttest 1 was administered in early 

postweanling rats at P 31, and posttest 2 at P 40. Adolescent rats were given posttest 1 at 

P 38 and posttest 2 at P 47. On each posttest, all of the animals were given saline. The 

dividers between the chambers were removed in order to let the animals freely explore 

the CPP apparatus. The animals were released into the center of the CPP box and left in 

the box for 300 seconds. The video camera recorded movement, and the experimenter 

later recorded the amount of time each rat spent in each chamber as well as the number of 

shuttles. After the sessions were administered and recorded, the animals were placed back 

in the cages and returned to the animal colony. 

Experimental Design. An initial 2 (age: early postweanling or adolescence) x 2 

(neonatal drug treatment: quinpirole or saline) x 2 (early postweanling/adolescent drug 

treatment: nicotine or saline) x 2 (repeated measure: posttest 1 or 2) four-way analysis of 

variance (ANOVA) was performed and a robust significant age main effect was revealed 

F(1, 59) = 45.88, p < .001. Based on this significant age difference, it was decided to 

analyze the two age groups separately. For each age, A 2 (neonatal drug treatment) x 2 

(early postweanling/adolescent drug treatment) x 2 (repeated measure) three-way 

ANOVA was used. The dependent measure, which was calculated in seconds, was the 

amount of time spent in each chamber. It was expressed as the amount of time spent in 

the white chamber subtracted from the amount of time spent in the black chamber.

Experiment 2

Subjects

Experiment 2a: The Three-Chambered CPP. Like in Experiment 1, two age 

groups were used: early postweanling and adolescent. A total of 62 SD male and female 
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rats (early postweanling group n = 36; adolescent group n = 26) were used. All of the 

animals were assigned to either saline or nicotine (experimental group: Male Saline 

Nicotine, Male Quinpirole Nicotine, Female Saline Nicotine, and Female Quinpirole 

Nicotine; control group: Male Quinpirole Saline, Male Saline Saline, Female Quinpirole 

Saline, and Female Saline Saline). After neonatal drug treatment was complete, all 

animals were weaned at P 21 and assigned to their respective groups. 

Experiment 2b: The ETM. In this study, adult rats (P 60) were used as subjects. A 

total of 38 SD adult male and female rats (Female Quinpirole Saline group n = 7; Female 

Saline Saline group n = 10; Male Quinpirole Saline group n = 9; Male Saline Saline 

group n = 12) were used. All of the animals were assigned to saline only (experimental 

group: Female Quinpirole Saline and Male Quinpirole Saline; control group: Male Saline 

Saline Female Saline Saline). After neonatal drug treatment was complete, all animals 

were weaned at P 21 and assigned to their respective groups. 

The animals were socially housed in cages in groups of two to three in a climate-

controlled vivarium with food and water available ad libitum with a 12 hour on/off 

light/dark cycle. All procedures are approved by the UCAC at ETSU and the vivarium is 

fully accredited by the AAALAC.

Apparatus 

Experiment 2a. The three-chambered CPP apparatus was constructed of plywood 

(30 inch long x 12 inch wide x 24 inch high) and consisted of a black colored chamber on 

one end, a white colored chamber on the other end, and a gray colored chamber in 

between the black and white chambers. All of the chambers were separated by a 

removable painted wooden divider. The walls of the black, white, and gray chambers and 
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the bottom of the gray chamber were painted with a flat finish. The bottom of the white 

colored chamber was painted a glossy white, and the bottom of the black colored 

chamber was painted with a textured black paint to help the animals discriminate between 

the black and white chambers. The three-chambered CPP apparatus was in the same room 

as the two-chambered CPP apparatus and was also surrounded by electric fans that 

helped to eliminate background noise. A video camera was located on the ceiling 

approximately 10 feet above the three-chambered CPP paradigm. The overhead lights 

were turned on during the conditioning sessions and testing trials.

Experiment 2b. The ETM was constructed of wood and Plexiglas. It consisted of 

three arms (20 inch long x 5 inch wide): one enclosed arm and two open arms, which 

were painted black. One arm (enclosed arm) was enclosed by a 16 inch tall piece of 

Plexiglas. The other two arms (open arms) were enclosed by 0.4 inch tall pieces of 

Plexiglas for fall prevention. The whole ETM was elevated 20 inches above the floor. An 

experimenter was present to record the results. The overhead lights were turned off 

during the testing trials, and the only illumination was a dim light (75 watts). 

Procedure

Experiment 2a. All of the early postweanling and adolescent animals used in 

Experiment 2a were given neonatal injections, early postweanling/adolescent injections, 

conditioning, pretest, and posttests, identical to the procedures of Experiment 1. 

Experiment 2b. There were a total of four consecutive ETM trials, and all testing 

was administered at P 60. In the first three trials, each animal was released facing towards 

the center of the two open arms at the end of the enclosed arm. Each animal was given 

300 seconds, and the experimenter recorded the amount of time the animal took to fully 
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exit the enclosed arm with all four paws. If an animal did not leave the enclosed arm 

within 300 seconds, it was removed from the ETM by the experimenter, and the session 

was ended. On the fourth trial, the animal was released at the end of the right open arm 

facing towards the center of the maze and given 300 seconds. The experimenter recorded 

the amount of time the animals took to fully exit the open arm with all four paws. After 

300 seconds, the session was ended. After the sessions were administered and recorded, 

the animals were placed back in the cages and returned to the animal colony. This 

procedure is based on that of Trivedi and Coover (2004).

Experimental Design

Experiment 2a. Experimental design used in the three-chambered CPP study was 

identical to Experiment 1.

Experiment 2b. A 2 (gender: female or male) x 2 (neonatal drug treatment: 

quinpirole or saline) x 4 (repeated measure: baseline, avoidance 1, 2, and escape) three-

way ANOVA was used. The dependent measure is the amount of time animals take to 

fully leave either the open arm or the enclosed arm, which is expressed in seconds.
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CHAPTER 3

RESULTS

Experiment 1

Early Postweanling Group

The results for the early postweanling group are presented in Figure 1. A 2 x 2 x 2 

three-way ANOVA revealed a significant main effect of neonatal drug treatment F(1, 31) 

= 4.53, p < .04 and early postweanling drug treatment F(1, 31) = 9.05, p < .005. Animals 

neonatally treated with saline and conditioned with nicotine (S-N Group) visited the 

white compartment more often than controls at posttest 1, as a lower mean on the figure 

indicates a stronger preference for the white chamber than the other groups. At posttest 2, 

both S-N and Q-N Groups visited the white chamber more often compared to controls (S-

S and Q-S Groups). In addition, at both posttests, animals neonatally treated with 

quinpirole and conditioned with saline (Q-S Group) demonstrated a strong preference for 

the black chamber compared to controls. Interestingly, animals neonatally treated with 

quinpirole and conditioned with nicotine (Q-N Group) visited the white chamber more at 

both posttests compared to Q-S Group, although Q-N Group did not visit the white 

chamber as much as S-N Group at posttest 1. Thus, it appears that D2 priming produced a 

black chamber preference, and nicotine may have alleviated the black compartment 

preference at both posttests.
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Figure 1. The Two-Chambered CPP: Early Postweanling Group.

** indicates greater than all other groups, p < .05. * indicates significant difference, p < 

.05. 

Adolescent Group

The results for the adolescent group are presented in Figure 2. A 2 x 2 x 2 three-

way ANOVA revealed a significant main effect of adolescent drug treatment F(1, 27) = 

10.55, p < .001, and significant interaction of Adolescent Drug Treatment x Posttest Day 

F(1, 27) = 5.26, p < .03. Unlike the results from the early postweanling groups in the 

two-chambered CPP study, there was no significant difference between Q-N and S-N 

Groups at posttest 1. Both Q-N and S-N Groups visited the white compartment more 

often compared to Q-S Group and S-S Group, which was the group neonatally treated 

and conditioned with saline. Also, at posttest 2, there were no significant differences 

between the groups, and all groups demonstrated a significant preference for the white 

chamber. Thus, adolescent Q-S Group did not demonstrate a preference for the black 
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chamber after an additional 8 days of conditioning, as they did at a younger age in the 

two-chambered CPP study.

Figure 2. The Two-Chambered CPP: Adolescent Group. 

* indicates significant difference, p < .05.

Experiment 2a

Early Postweanling Group

The results for the early postweanling group are presented in Figure 3. A 2 x 2 x 2 

three-way ANOVA revealed a significant main effect of early postweanling drug 

treatment F(1, 32) = 9.1, p <.005, day of testing F(1, 32) = 7.75, p <.009, and significant 

two-way interactions of Neonatal Drug Treatment x Day of Testing F(1, 32) = 3.95, p

<.05 and Early Postweanling Drug Treatment x Day of Testing F(1, 32) = 7.30, p <.01. 

Although Q-N Group did not equal S-N Group, both Q-N and S-N Groups visited the 

white chamber more often compared to Q-S and S-S Groups at posttest 1. However, at 

posttest 2, this nicotine-induced CPP in S-N and Q-N Groups diminished. In fact, all of 

animals showed a preference for the black compartment at posttest 2. Furthermore, at 
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both posttests, Q-S Group showed a preference for the black chamber, as younger 

animals had shown in Experiment 1, and nicotine appears to have alleviated this 

preference.

Figure 3. The Three-Chambered CPP: Early Postweanling Group.

** indicates greater than all other groups, p < .05. * indicates significant difference, p < 

.05.

Adolescent Group

The results for the adolescent group are presented in Figure 4. A 2 x 2 x 2 three-

way ANOVA revealed a significant main effect of neonatal drug treatment F(1, 26) = 

4.36, p < .05 and adolescent drug treatment F(1, 26) = 6.63, p < .02. Similar to the results 

observed in early postweanling groups in the three-chambered CPP study, Q-N and S-N 

Groups visited the white chamber more than Q-S and S-S Groups at posttest 1. In 

contrast, at posttest 2, this effect diminished, and there were no significant differences 

across groups. In addition, the black compartment preference observed in Q-S Group at 
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posttest 1 was not persistent at posttest 2. It appears that nicotine alleviation of the black 

compartment preference in D2 primed animals was not persistent to posttest 2.

Figure 4. The Three-Chambered CPP: Adolescent Group.

** indicates greater than all other groups, p < .05. * indicates significant difference, p

< .05.

Experiment 2b

Baseline and Avoidance Trials

The results of baseline and avoidance trials in both D2 and non-D2 primed groups 

are presented in Figure 5. A 2 x 2 x 4 three-way ANOVA revealed a significant main 

effect of gender F(1, 34) = 5.60, p < .03, but no other main effects or interactions were 

statistically significant. Female animals took significantly less time to enter one of the 

open arms than the male animals in the first three trials. There was no effect of neonatal 

drug treatment on baseline and avoidance trials. This result demonstrated the lack of 

statistical effect on conditioned fear between D2 and non-D2 primed animals.



53

Figure 5. Elevated T-maze: Baseline and Avoidance Trials.

Escape Trial

The results of escape trials in both D2 and non-D2 primed groups are presented in 

Figure 6. A 2 x 2 ANOVA revealed a significant main effect of neonatal drug treatment, 

but no significant main effect of sex or significant interaction of Neonatal Drug 

Treatment x Sex. D2 primed animals remained in the open arm for a longer period of time 

than non-D2 primed rats. This result appears to indicate that neonatal quinpirole treatment 

produced significant increases in stress and possibly unconditioned fear response in D2

primed rats. 
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Figure 6. Elevated T-Maze: Escape Trial.

* indicates significant difference, p < .05.
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CHAPTER 4

DISCUSSION

The aim of this study was to investigate how nicotine-induced CPP develops in 

both D2 and non-D2 primed early postweanling and adolescent animals using both the 

two- and three-chambered CPP paradigms. Overall, consistent results were observed in 

early postweanling and adolescent animals at posttest 1 (P 31 and P 38) in both studies. 

First, nicotine induced CPP in both early postweanling and adolescent rats neonatally 

treated with either saline or quinpirole. Also, neonatal quinpirole treatment produced an 

aversion to the white compartment and a preference for the black chamber in D2 primed 

animals. Third, nicotine appeared to alleviate this preference for the black compartment. 

In addition to the two- and three-chambered CPP studies, D2 and non-D2 primed rats 

were behaviorally tested on the ETM to investigate whether D2 primed rats demonstrated 

an increased stress response. Indeed, results showed that D2 primed animals exhibited 

significantly elevated fear compared to non-D2 primed animals on the ETM. Based on 

this result, D2 priming appears to elevate stress and fear levels. This is especially true of 

unconditioned fear, but not conditioned fear. 

There were significant age differences observed in both the two- and three-

chambered CPP studies. At posttest 1 early postweanling S-N Groups visited the white 

compartment more than the adolescent S-N Groups. This effect may stem from different 

dopamine D2 densities. Another age difference is that at posttest 2, none of the adolescent 

animals showed a significant preference for the black compartment, while early 

postweanling animals did show a preference for the black compartment. This may be due 

to an age-related difference in stress levels. As rats approach adulthood, there is a 
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reduction in the fear response to a stressful stimulus such as the white compartment. This 

finding also demonstrates that behavioral performance differed based on the apparatus 

used and the age of the animal. 

Experiment 1

Early Postweanling Group

In Experiment 1, results revealed that early postweanling Q-S Group showed a 

significant preference for the black chamber at both posttests (P 31 and P 40). This result, 

combined with the results from Experiment 2b, appears to show that D2 primed animals 

have increased stress levels that may produce a preference for the darker colored 

compartment. On the other hand, Q-N Group did not show a significant conditioned place 

aversion at both posttests (P 31 and P 40). This effect is hypothesized to occur because 

nicotine alleviated the increased anxiety and stress levels in D2 primed animals. This 

hypothesis is supported by Brioni, O’Neill, Kim, and Decker (1993), who reported that 

nicotinic receptor agonists such as nicotine and lobeline have anxiolytic effects in rodents 

behaviorally tested on the elevated plus-maze. They found that mice that were injected 

either with nicotine or lobeline showed reductions in their stress and fear levels by 

spending significantly longer in the open arms of the elevated plus-maze. Interestingly, 

when nicotine-treated mice were injected with a nicotinic receptor antagonist, either 

mecamylamine or chlorisondamine, the mice exhibited an increased stress and fear 

response (Brioni et al.). Therefore, it appears that nicotine has anxiolytic properties that 

are mediated by the nicotinic receptor. In conclusion, the results obtained from the Brioni 

and colleagues’ study and the current study showed that neonatal quinpirole treatment 

consistently produced a significant preference for the black compartment, and nicotine 
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has alleviated this preference for the black chamber at both posttests in early 

postweanling rats.

An additional finding was that the early postweanling S-N Group visited the white 

chamber more often than controls, which means nicotine induced CPP in S-N Group at 

posttest 1. This finding is partially consistent with the findings of Brielmaier et al. (2006)

that showed that early postweanling animals (P 28) demonstrated nicotine-induced CPP 

when they were given a single acute injection of nicotine in the two-chambered CPP 

apparatus. In the current study, nicotine-induced CPP observed at posttest 1 in S-N Group 

remained at posttest 2, and, in fact, S-N and Q-N Groups visited the white compartment 

equivalently after extended conditioning. Therefore, with further conditioning in the two-

chambered CPP apparatus, nicotine is apparently able to induce CPP or alleviate stress 

levels completely in D2 primed early postweanling rats.

Adolescent Group

In the two-chambered CPP study, both D2 and non-D2 primed adolescent rats 

administered nicotine (Q-N and S-N Groups) visited the white compartment more than 

controls at posttest 1 (P 38). This finding was consistent with Vastola et al. (2004), who 

reported that after 12 days of conditioning, nicotine induced CPP in 40-day old 

adolescent animals in the two-chambered CPP apparatus. Interestingly, in the current 

study, all of the adolescent groups showed a preference for the white chamber at posttest 

2 (P 47). In fact, D2 primed adolescent rats actually showed an equivalent preference for 

the white chamber as controls did. One of the possible reasons for this finding is that all 

animals were habituated to the white chamber by posttest 2. Also, the D2 primed animals 

may have had more of an opportunity to visit the white chamber and were not able to 
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avoid the white chamber easily in the two-chambered CPP apparatus because in the two-

chambered CPP apparatus, rats are given only two chambers to choose from. This 

interesting result was not expected; however, it is assumed that extended training and 

increased animal age interacted in the two-chambered CPP study to produce the increased 

preference for the white compartment in adolescent rats at posttest 2. In summary, it 

appears that in adolescence, neonatal quinpirole treatment does not have a significant 

effect on CPP performance, at least with the two-chambered paradigm as it was used in 

this experiment.

Experiment 2a

Early Postweanling Group

In the three-chambered CPP study, results revealed that at posttest 1 (P 31), early 

postweanling rats behaved in a similar manner as they did in the two-chambered CPP 

apparatus. However, unlike the results from the two-chambered CPP study, at posttest 2 

(P 40), nicotine-induced CPP observed at posttest 1 in Q-N and S-N Groups diminished. 

In fact, at posttest 2, all of the animals showed a preference for the black compartment. 

This is precisely the opposite effect that was found in adolescent rats using the two-

chambered apparatus. Interestingly, these animals began to avoid the white chamber with 

extended training, whereas adolescent rats began to prefer the white chamber with 

extended training. As previously mentioned, this curious result was found possibly 

because animals had more opportunity to avoid the aversive chamber in the three-

chambered CPP paradigm. Also, it could be because nicotine-treated animals developed 

tolerance to nicotine, or the positive reinforcing effects of the drug have diminished. 
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Adolescent Group

Regarding adolescent rats in the three-chambered CPP study, results at posttest 1 

(P 38) were similar to the results from the two-chambered CPP study; nicotine induced 

CPP, and nicotine appears to have reduced the preference for the black compartment in 

D2 primed rats. In contrast, at posttest 2 (P 47), the significant preference for the black 

compartment observed in Q-S and S-S Groups dissipated, although neither group showed 

a significant preference for the white compartment, as occurred in Experiment 1 using the 

two-chambered CPP apparatus. Furthermore, at posttest 2, nicotine-induced CPP 

observed at posttest 1 in Q-N and S-N Groups diminished. As previously indicated, these 

findings may be due to increased tolerance to nicotine and habituation to the chamber. 

Also, as animals approach adulthood, the aversive properties of the white chamber appear 

to diminish regardless of drug treatment. 

Age Differences in the Two- and Three-Chambered CPP

There were significant age differences in both the two- and three-chambered CPP 

studies. In each of these studies, the early postweanling S-N Group showed a greater 

degree of CPP compared to adolescent S-N Group at posttest 1. A possible explanation is 

that, as previously indicated, younger rats have higher sensitivity to nicotine than older 

rats (Belluzzi et al., 2004; Brielmaier et al., 2007; Rezvani & Levin, 2004). 

Neurochemically, this increased nicotine sensitivity in younger rats may be due to brain 

development, especially dopamine D2 receptor density development, which takes place 

during the early postweanling period. D2 receptor density reaches maximum number and 

density at P 28 and begins to decrease until adulthood (O’Boyle & Waddington, 1984; 

Srivastava, Morency, & Mishra, 1991; Tarazi & Baldessarini, 2000). Furthermore, a 
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clinical PET study in smokers has shown that nicotine activates dopamine D2

transmissions in the ventral basal ganglia that is responsible for reward and emotion 

(Scott et al., 2007). Therefore, nicotine increases the amount of dopamine in the brain, 

and dopamine binds to the increased number of D2 receptors in early postweanling rats, 

which produces positive reinforcement. Thus, early postweanling animals may 

experience an increased positive reinforcement from nicotine than older animals, so this 

may help to explain why animals at this age have a tendency to show nicotine-induced 

CPP.

Another age difference observed in this study was that at posttest 2, none of the 

adolescent animals in either the two- or three-chambered CPP studies showed a 

significant preference for the black compartment, while early postweanling animals did. 

In the two-chambered CPP study, D2 priming did not produce a significantly increased 

preference for the black compartment in adolescent rats at posttest 2, but it did in early 

postweanling rats at both posttests. In addition, in the three-chambered CPP study at 

posttest 2, all of the early postweanling animals showed a preference for the black 

compartment, but none of the adolescent animals showed a preference for either the white 

or black compartment. These curious results may reflect an age-related change that 

interacts with the type of behavioral apparatus used. One conclusion to draw would be 

that D2 primed adolescent animals may demonstrate a less robust increased stress 

response than their younger counterparts, or they may have less of an aversion to fearful 

stimuli as they grow older in both the two- and three-chambered CPP apparatuses. It is 

important to note that nicotine-induced CPP is difficult to achieve in adult rats, and this 
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may be because in part adult controls do not show as strong of an aversion to the white 

compartment as adolescents.

Contradicting this claim were the results of the ETM that showed adult D2 primed 

animals demonstrated unconditioned fear on the escape trial, although they did not 

demonstrate conditioned fear on the baseline and avoidance trials on the ETM. From this 

finding, it can be hypothesized that as rats grow older, they experience less conditioned 

fear than younger rats. Thus, at posttest 2, both the CPP apparatuses may have measured 

only conditioned fear and resulted in adolescent animals not showing a significant 

preference for the black compartment.

Also, baseline and avoidance trials of the ETM study can be applied to explain 

why all of the adolescent animals showed a preference for the white compartment in the 

two-chambered CPP apparatus. When adolescent rats must visit one of the two areas, as 

they are forced to do in the two-chambered CPP study, the white chamber may not be as 

aversive as when they have more choices, as in the three-chambered CPP apparatus. In 

other words, adolescent D2 primed rats visit the white compartment if they have less 

opportunity to avoid that stimulus. It is important to note that D2 priming typically 

produces an increase in activity, and if D2 primed animals are demonstrating an increase 

in locomotion, it may essentially be less possible for these animals not to spend a 

significant amount of time in the white compartment.

The problem with the two-chambered CPP study is that D2 primed adolescent rats 

actually showed an equivalent preference for the white chamber as controls in the two-

chambered CPP apparatus, rather than the predicted preference for the black chamber. 

The claim has been made that the two-chambered CPP apparatus tests an aversion to one 
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chamber over another due to a lack of alternative choices. However, in this study, it 

appears that when animals are given chamber choices as in the three-chambered CPP 

apparatus, animals tend to more easily avoid the white chamber. This may be why none 

of the adolescent animals showed any preference in the three-chambered CPP.

Experiment 2b

Baseline and Avoidance Trials

The ETM results of Experiment 2b revealed that as opposed to the current study’s 

hypothesis, there was no significant difference between D2 and non-D2 primed animals 

on baseline and avoidance trials that measured conditioned fear. This finding suggests 

that D2 priming does not produce increased conditioned fear. 

There was a significant difference observed among female and male rats. Female 

animals entered one of the open arms significantly more rapidly than male animals on the 

baseline and avoidance trials. This is possibly because female animals have been reported 

to have higher activity levels in the open-field test than males, which may induce females 

to leave the walled area more rapidly than males in the ETM task (Blizard, Lippman, & 

Chen, 1975). Consistent with the current ETM study, studies using the elevated plus-

maze have reported that male rats did not prefer the open arms as strongly as female rats, 

and female rats exhibited more exploratory behaviors than males (Johnston & File, 1991; 

Lucion, Charchat, Pereira, & Rasia-Filho, 1996). A study by Zimmerberg and Farley 

(1993) further investigated these gender differences. They reported both female animals 

that received chemical castration in the neonatal period and female animals that received 

ovariectomy in the prepuberty period did not enter the open arms as often as control 

female rats. On the other hand, gonadectomy in the prepuberty period and chemical 
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castration in the neonatal period did not affect male rats’ preference for the open arms 

(Zimmerberg & Farley). Thus, elevated gonadal hormones play an important role in 

increased stress and anxiety levels only in females. In contrast, Lucion et al. reported that 

to reduce anxiety levels in males, gonads need to be removed during the perinatal period. 

In conclusion, it is hypothesized that the current study’s gender differences may have 

originated from different periods of elevation of gonadal hormones in both males and 

females.

Escape Trial

Results revealed that D2 primed animals took significantly longer to enter the 

enclosed arm than non-D2 primed animals on the escape trial that measured 

unconditioned fear. It is hypothesized that D2 primed rats took longer because they 

exhibited increased freezing behavior on the escape trial, which is rats’ natural response 

to high in anxiety and stress. Therefore, this may indicate that D2 primed animals showed 

significantly higher anxiety levels than non-D2 primed animals. This hypothesis leads to 

the conclusion that D2 priming, as produced by neonatal quinpirole treatment, increases 

stress and fear levels that may in part account for the overall preference for the black 

chamber in D2 primed animals. This finding is consistent with the studies reporting that 

stress hormones and dopamine levels are often positively correlated and both are elevated 

in schizophrenics (Cabib & Puglisi-Allegra, 1996; Carlsson & Lindqvist, 1963; Cenci et 

al., 1992; Finlay & Zigmond, 1997; Yilmaz et al., 2007). Additionally, Rodgers et al. 

(1994) reported that D2 receptors play a crucial role in the development of stress and 

anxiety levels. Therefore, these findings and the present study’s escape trial results 

support the hypothesis that D2 primed animals have higher stress and fear levels than 
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non-D2 primed animals. In conclusion, D2 primed animals conditioned with saline, 

regardless of age, showed a significant conditioned place aversion in both the two- and 

three-chambered CPP studies.

Conditioned and Unconditioned Fear in the ETM and CPP

Experiment 2b results revealed that D2 priming produced increased unconditioned 

fear but not conditioned fear on the ETM trials. This result suggests that D2 primed rats 

do not exhibit fear and stress responses if they are conditioned or habituated to the 

environment. This hypothesis can be applied to finding observed in both the two- and 

three-chambered CPP studies. At posttest 2, in both the two- and three-chambered CPP 

apparatuses, early postweanling and adolescent Q-S Group animals and controls were not 

significantly different; Q-S Groups did not show a significantly increased preference for 

the black compartment compared to controls except in early postweanling Q-S Group in 

the two-chambered CPP study. In contrast, at posttest 1, all of the early postweanling and 

adolescent Q-S Groups showed a stronger preference for the black compartment 

compared to controls in both the two- and three-chambered CPP studies. Therefore, it can 

be hypothesized that at posttest 1, the CPP apparatuses measured rats’ unconditioned fear 

levels. After 8 days of conditioning, D2 primed rats may not yet have been conditioned or 

habituated to the environment, so Q-S Groups showed increased unconditioned fear 

compared to the rest of the groups that resulted in their significant preference for the 

black compartment. At posttest 2, on the other hand, the CPP apparatuses may have 

reflected rats’ conditioned fear. After 16 days of conditioning sessions, D2 primed rats 

were conditioned to the environment, so D2 primed animals and control groups may have 

not been significantly different.
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Application to the Human Schizophrenic Population

The current CPP and ETM results did not support the hypothesis that D2 primed 

rats were more likely to develop nicotine-induced CPP than non-D2 primed rats. In fact, 

non-D2 primed rats showed a greater degree of nicotine-induced CPP. Also, this study 

showed that D2 primed animals experienced increased anxiety and fear levels than non-

D2 primed animals, and their increased anxiety and stress levels appeared to be reduced 

by the effects of nicotine. Thus, a conclusion that can be drawn is that the reason why 

around 74 % to 92 % of the schizophrenic population in America is nicotine dependent 

(de Leon et al., 1995; Hughes et al., 1986; O’Farrell et al., 1983) may be because 

schizophrenics smoke cigarettes in order to reduce their anxiety and stress levels. At a 

cursory glance, a recommendation for partial treatment for schizophrenics may be to 

encourage them to keep smoking cigarettes because their schizophrenic symptoms are 

alleviated. However, smoking cigarettes produces multiple consequences, such as lung 

cancer, heart and blood vessel diseases, and respiratory diseases (U.S. National Library of 

Medicine, 2007a). Especially when smoking habits begins in adolescence, people have a 

lesser chance of quitting smoking later in life (DiFranza et al., 2000; Smith et al., 2006). 

Thus, smoking cigarettes should not be used to reduce stress and anxiety levels in 

adolescent schizophrenics. Currently, there are other ways to consume nicotine such as 

nicotine patches and nicotine gum. Although nicotine itself produces side effects such as 

high blood pressure, vomiting, difficulty breathing, and agitation (U.S. National Library 

of Medicine, 2007b), these methods of ingestion are thought to be less harmful to humans. 

Thus, these methods should be encouraged to the schizophrenic population rather than 

cigarette smoking. However, it is ideal that future research can lead to other nicotine 
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consumption methods that do not produce addiction to nicotine, or side effects from 

nicotine, or prove that other nicotinic receptor agonists can be substituted for nicotine.

Future Studies

Several interesting results were obtained from the current study. One of the most 

interesting findings was nicotine induced CPP and appeared to alleviate stress produced 

by D2 priming. Based on these findings, several possible future studies can be proposed. 

Mecamylamine, a nicotinic receptor antagonist, could be used to block nicotine’s ability 

to alleviate stress in D2 primed animals to verify whether nicotinic receptors mediate 

stress alleviation. Additionally, because D2 priming increases stress levels, a future study 

could remove the adrenal glands, which regulate the stress hormone corticosterone, from 

the D2 primed animals to verify whether corticosterone mediates the stress response in D2

primed rats. A third possible study could use a D2 receptor antagonist and focus on 

whether injection of a D2 receptor antagonist in D2 primed animals reverses the effect of 

neonatal quinpirole treatment. Another possible study can focus on neuroanatomy. The 

nucleus accumbens shell has been reported to be a mediator of CPP (Spina, Fenu, 

Rongoni, Rivas, & Di Chiara, 2006). Therefore, a study could focus on the CPP results 

after destruction of dopaminergic neurons in the nucleus accumbens shell by a specific 

neurotoxin such as 6-hydroxydopamine to determine how crucial a role the nucleus 

accumbens shell plays in the CPP task.

In conclusion, the present study revealed that nicotine has effects on both D2 and 

non-D2 primed early postweanling and adolescent rats. Overall, nicotine has been shown 

to induce CPP in rats neonatally treated with saline or quinpirole regardless of age. Also, 

this study showed that D2 priming produces a significant preference for the black 
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compartment due to increased stress and anxiety levels, but this effect was alleviated by 

nicotine treatment. Interestingly, there was a significant difference in performance based 

on the type of apparatus used and animal age, pointing to the importance of behavioral 

methodology and age when using the CPP paradigm. Furthermore, D2 priming did not 

appear to drastically elevate the positive reinforcing effects of nicotine compared to 

saline-treated groups, indicating that D2 priming does not elevate the associative effects 

of the drug in the CPP apparatus. In addition, this study showed that there is a 

relationship between nicotine addiction, adolescence, and schizophrenia. Further studies 

should be conducted related to this matter, which may help us to understand why this 

relationship exists.
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