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ABSTRACT

Using Domination to Analyze RNA Structures

by

Travis Reves Coake

Understanding RNA molecules is important to genomics research. Recently re-

searchers at the Courant Institute of Mathematical Sciences used graph theory to

model RNA molecules and provided a database of trees representing possible sec-

ondary RNA structures. In this thesis we use domination parameters to predict

which trees are more likely to exist in nature as RNA structures. This approach

appears to have promise in graph theory applications in genomics research.
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1 INTRODUCTION

1.1 Genomics Background

‘RNA molecules are integral components of the cellular machinery for protein

synthesis and transport, transcriptional regulation, chromosome replication, RNA

processing and modification, as well as other fundamental biological functions ’[3].

Due to current research, scientists are finding more and more functional RNAs; thus,

the need for a method of cataloging the existing and novel RNAs as well as devel-

oping a better understanding of RNA is justified and is part of the motivation for

this thesis. However, the number of known RNAs found in nature though increasing

is still limited. Current research has not found a concrete method for determining

which RNAs are likely to exist in nature. Nevertheless, enough data exists to provide

researchers a means to develop a method of predicting RNA structures.

A secondary RNA structure typically denoted as 2D-RNA is a single-stranded

RNA molecule made up of four nucleotide bases denoted by the letters A,C,G,and

U that have been “folded” to form a more stable structure. For example, a single

stranded RNA molecule will not be stable unless some of its exposed bases are pro-

tected from water or solvent; thus, the best way to protect these bases is to pair

them with another base [3]. However, not all pairs within the molecule are suitable

for such a pairing, so some choices of pairs are better than others. Therefore, a pre-

diction method must find the most stable pairing of the bases to form the secondary

RNA structure. Figure 1, illustrates a small stable 2D-RNA structure.



Figure 1: 2D-RNA Example

In Figure 1, we see not only complementary base pairs but also what seems to be

loops as well. The stem is made up of two or more complementary base pairs, thus

in Figure 1, we have four stems. However, in the structure we also find a number

of unpaired bases between the stems which we call a loop. In this next example we

see that not all stems are necessarily perfect like Figure 1 suggests, rather, stems can

contain unpaired bases as well which we call bulges. Figure 2 illustrates part of a

2D-RNA structure where the stem contains a bulge.
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Figure 2: 2D-RNA Illustration

In Figure 2, we notice that the stem contains a base G that is not paired with any

other base which creates a bulge. In addition, this illustration also defines where the

stem stops and where the loop begins.

In a paper entitled “Exploring the repertoire of RNA secondary motifs using

graph theory; implications for RNA design” Tamar Schlick et al. defined a method of

modeling 2D-RNA structures as a particular family of graphs called trees. Graphical

trees have also been used in the past to represent chemical structures where the

individual atoms were vertices and their bonds were the edges; however, the RNA

model is different. Schlick et al. define how to represent a RNA structure as a tree

such that vertices (•) represent the bulges and loops, and edges (−) represent the

stems.
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If we consider the secondary RNA structure in Figure 1, we can see that the

corresponding tree graph by Schlick’s definition is illustrated in Figure 3.

G:

Figure 3: Corresponding 2D-RNA Tree to Figure 1

Two ways exist to count the total number of possible trees for any given number

of vertices in a graph. One labels the vertices and the other does not. Our research

pertains only to unlabelled vertices, and Harary and Prins obtained the counting

polynomial t(x) whose coefficient Nv is the number of distinct graphs with N vertices

[3].

t(x) =
∞

∑

N=1

Nvx
v

= T (x) −
1

2

[

T 2(x) − T (x2)
]

, (1)

where

T (x) = x exp

[

∞
∑

r=1

1

r
T (xr)

]

(2)

The counting polynomial up to the first 10 terms is
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t(x) = x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 + 23x8 + 47x9 + 106x10

We can see that given a particular order N , the number of total possible trees

increases rather quickly when considering the total number of known 2D-RNA trees

that exist in nature which is about 35. This suggests that there are a number of RNA

trees that are still not found, yet could possibly exist in nature [10]. Thus, Schlick

et al. developed a couple ways of predicting which trees are potential candidates to

represent RNA structures that exist in nature. As a result they have categorized

all possible topological trees into three classes: red, blue, and black. Red represents

known RNA, blue represents theoretical RNA structures that based on their predic-

tion method, they can expect to exist in nature. Finally, black represents hypothetical

RNA structures they do not expect to see in nature. However, because we are dealing

with nature, the possibility always exists.

As stated earlier, a better understanding of RNA is important in genomics re-

search. As researchers today find more functional RNAs in nature, the need for a

method of cataloging existing as well as novel RNA also becomes important. There-

fore, with this application in mind, we are using graph theory as a method of predict-

ing novel RNA in nature. In the next section, we will discuss the various domination

parameters that we found useful in predicting 2D-RNA structures that could possibly

exist in nature.
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1.2 Domination

The concept of domination in graphs began in the 1850s with the game of chess.

The goal of the problem was to use certain chess pieces to dominate the squares of

a chessboard. In the game of chess, a queen can move horizontally, vertically, or

diagonally. De Jaenish, in 1862, considered the problem of finding the minimum

number of queens that can be placed on a chessboard such that every square is either

occupied by a queen or can be occupied by a queen in a single move. It turns out

that the minimum number of queens needed is five, and this became known as the

Five Queens Problem [5, 8].

The connection between the Five Queens Problem and domination can be seen if

we let each vertex of a graph represent a square of the 64 squares of a chessboard.

Then, two vertices are adjacent in G if each corresponding square can be reached

by a queen on the other square in a single move. This graph is referred to as the

Queens graph. Hence, the minimum number of queens that can dominate the entire

chessboard forms a dominating set in G [8]. We now consider the formal definitions

and concepts of domination.

A set S of vertices of a graph G = (V,E) is a dominating set of G if every vertex in

V −S is adjacent to some vertex of S. The domination number γ(G) is the minimum

cardinality of a dominating set of G. In a tree, a vertex of degree one is referred to as

a leaf and a vertex which is adjacent to a leaf is a support vertex. If a support vertex

is adjacent to two or more leaves, it is called a strong support vertex. Consider the

example of a spider shown in Figure 4.
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T :

Figure 4: Domination of a Spider

Notice that if we let our set S be the five darkened vertices, then each of the

remaining vertices is adjacent to a vertex in S. Hence γ(T) ≤ 5. Cause at least one

of each leaf and its support must be in S, we have γ(T) ≥ 5. Therefore, it follows

that γ(T) = 5.

Consider a different example, suppose we have the following graph shown in Fig-

ure 5.

a

b

cd

e

H:

Figure 5: Domination Example

Then the set S = {a, c} forms a dominating set of H, and because no single vertex

is adjacent to all other vertices, we have γ(H) = 2.

A vertex u is said to be connected to a vertex v in a graph G if there exists a
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u − v path in G. A graph G is connected if every pair of its vertices is connected. A

tree T is a connected graph with no cycles. In many cases, we look at instances of

domination of trees. For example, consider the tree shown in Figure 6.

T :

Figure 6: Domination of a Tree

Notice that, in this case, γ(T ) = 5 because the five darkened vertices dominate T

and we must include at least the number of support vertices to dominate the leaves.

In order for a set of vertices S to be dominating every vertex not in the set must

be adjacent to at least one vertex in the set. If we tighten the condition and require

every vertex of a graph G to be adjacent to some vertex in S, then we have a total

dominating set of G. Formally, a set S of vertices of a graph G = (V,E) is a total

dominating set of G if every vertex in V is adjacent to some vertex in S. The minimum

cardinality of a total dominating set of G is the total domination number γt(G). Note

that γt(G) is defined only for graphs with no isolated vertices. Cause every total

dominating set is a dominating set, we have γ(G) ≤ γt(G) for all graphs G with no

isolated vertices.

Consider again the spider shown in Figure 4. The darkened vertices form a dom-
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inating set S of T , but each of these five vertices need to be adjacent to a vertex in

S. A total dominating set S ′ of T is illustrated in Figure 7.

T :

Figure 7: Total Domination of a Spider

Letting S ′ represent the darkened vertices, notice that every vertex of T is now

adjacent to a vertex of S ′. Hence, γt(T ) ≤ 6. Cause five vertices are necessary to

dominate the leaves and none of the supports are adjacent to each other, it follows

that a sixth vertex is needed and hence, γt(T ) ≥ 6. Therefore, we conclude that

γt(G) = 6.

Consider again the graph shown in Figure 5. The set S = {a, c} forms a dominat-

ing set of H and we have γ(H) = 2. Cause these two vertices are not also adjacent to

each other, S is not a total dominating set of H. However, the set S ′ = {b, c} forms

a total dominating set of H shown in Figure 8 below.
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a

b

cd

e

H:

Figure 8: Total Domination Example

Therefore, γt(H) ≤ 2. Cause 2 = γ(H) ≤ γt(H), we have γt(H) = 2. Notice this

is an example of a graph for which the domination and total domination numbers are

equal.

Finally, consider again the tree shown in Figure 6. The support vertices of the tree

are a dominating set of T . However, because the support vertices are not adjacent,

this cannot also be a total dominating set of T . A total dominating set of T is shown

below by the set of darkened vertices and it can be shown that γt(T ) = 8.

T :

Figure 9: Total Domination of a Tree Example
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In general, we follow the terminology of [5]. A more extensive study of domination

in graphs can be found in [5, 6].

18



1.3 Locating, and Differentiating Dominating Sets

Consider the floor plan of a building as modelled by a graph where a vertex represents

a room in the building and two vertices are adjacent if the corresponding rooms are

adjacent. Suppose we wish to install expensive sensors in the building which will

transmit a signal at the detection of an intruder (fire, burglar, etc.). Cause the sensors

are expensive we wish to optimize their usage. This safeguards facility analysis of the

corresponding graph motivated the concept of locating sets and further the idea of

locating-dominating sets.

Let S = {v1, v2, ..., vk} be a set of vertices in a connected graph G = (V,E) and

let v ∈ V . The k-vector (ordered k-tuple) cs(v), of v with respect to S is defined by

cs(v) = (d(v, v1), d(v, v2), ..., d(v, vk))

where d(v, vi) is the distance between v and vi (1 ≤ i ≤ k). The set S is called a

locating set if the k-vectors cs(v), for all vertices v ∈ V , are distinct. This concept is

studied in [12, 13].

For example, suppose we have the graph H given in Figure 10.

a

b

cd

e

H:

Figure 10: Locating Domination Example
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In order for the set S = {b, e} to be a locating set of H, the 2-vectors cs(v) must

be distinct for all v ∈ V . Notice

cs(a) = {1, 1}

cs(b) = {0, 1}

cs(c) = {1, 2}

cs(d) = {2, 1}

cs(e) = {1, 0}

Cause all of the 2-vectors are distinct, we conclude that S is a locating set of H.

Slater [13, 14] defined a locating-dominating set in a connected graph G to be a

dominating set S of G such that for every two vertices u and v in V (G) − S,

N(u)∩ S 6= N(v)∩ S. The minimum cardinality of a locating-dominating set of G is

the location-domination number γL(G). Notice that the location-domination number

is defined for every connected graph G since V is such a set. This concept is studied in

[1, 2, 9, 13, 14, 15] and elsewhere. To illustrate, suppose we have G = K4, a complete

graph on four vertices, as shown in Figure 11 below.

K4:

Figure 11: Complete Graph, K4

20



Notice that to dominate this graph, we need only one vertex, say vertex a, since

all edges are present between any pair of vertices. Therefore γ(K4) = 1. However, the

dominating set S = {a} is not a locating-dominating set since the remaining vertices

are all adjacent to a, and hence N(b)∩ S = {a}, N(c)∩ S = {a}, N(d)∩ S = {a}. In

fact, any locating-dominating set of a complete graph must include all the vertices,

except one. For instance S ′ = {a, b, c} is a locating-dominating set of K4 as illustrated

in Figure 12.

K4:

Figure 12: Complete Graph, K4

Hence γL(K4) ≤ 3. Notice that because K4 is a complete graph, any locating-

dominating set must include all the vertices except one, and so γL(G) ≥ 3. Therefore,

γL(G) = 3. In general, for all complete graphs Kn, γL(Kn) = n − 1.

In order for a set S to be a locating set, every vertex in V (G) − S must be

distinguished in terms of its open neighborhood intersecting S. If we require all of

the vertices of G to be distinguished, then we have a differentiating set of G. Gimbel

et al. [4] defined a set S to be a differentiating dominating set if S is a dominating set

and for every pair of vertices u and v in V , N [u] ∩ S 6= N [v] ∩ S. The differentiating

domination number γD(G) is the minimum cardinality of a differentiating dominating

21



set of G. Cause every differentiating dominating set is a dominating set, we have

γ(G) ≤ γD(G). Consider the tree T of order 9 shown in Figure 13.

a

b c

d

ef

g

h

i

T :

Figure 13: Tree of Order 9

Notice that the set S = {g, i} forms a dominating set of T , and it can be easily

seen that γ(T ) = 2 and γt(T ) = 3. However, notice that N [a] ∩ S = {g} and

N [b] ∩ S = {g}, and so S is not differentiating.

a

b c

d

ef

g

h

i

T :

Let S = {b, c, e, f, g, i}. Thus any pair of distinct vertices u and v in V can be

differentiated and so γD(T ) ≤ 6. Cause it can be shown that no five vertices is a

differentiating dominating set for T , γD(T ) ≥ 6. Therefore, γD(T ) = 6.

Now any pair of distinct vertices u and v in V can be differentiated and so
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a

b c

d

ef

g

h

i

T :

γD(T ) ≤ 6. Cause no five vertices is a differentiating dominating set for T , γD(T ) ≥ 6.

Therefore, γD(T ) = 6.
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1.4 Paired-Dominating Sets

Consider a police force where each police officer is adjacent to all the people

in which he/she is responsible for protecting in a given area. Naturally cases will

exist in which an individual officer can be overrun. However, if each officer was

assigned a partner, the chances of overrunning either or both officers is less likely.

This is an application of paired-domination. Paired-domination was introduced by

Haynes and Slater [5] where a dominating set S with matching M is a dominating

set S = {v1, v2, · · · , v2t−1, v2t} with independent edge set M = {e1, e2, · · · , et} where

each edge ei is incident to two vertices of S, that is, M is a prefect matching in 〈S〉

[5]. The paired-domination number γpr(G) is the minimum cardinality of a paired

dominating set S in G.

For example, for the graph Q3 in Figure 14, notice that the set S = {a, g} forms

a dominating set of Q3, and it can be shown that γ(Q3) = 2.

a b

cd

Q3:
e f

gh

Figure 14: Hypercube Q3

Notice vertices a and g are not adjacent and, therefore, do not form a paired-

dominating set. However, because S = {a, g} is a dominating set, suppose we add

24



any two vertices to S such that at least one vertex added to the dominating set is

adjacent to another vertex already in S.

a b

cd

Q3:
e f

gh

Cause vertices a and g already form a dominating set, the addition of vertices b

and h now form a paired-dominating set because each element in S = {a, b, g, h} has

a perfect matching. For instance, a is paired with b since a is adjacent to b in Q3,

and g is paired with h since g and h are adjacent in Q3. Thus it can be shown that

the paired-domination number γpr(Q3) = 4.
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2 NEW RESULTS

In this chapter, I will present the new results we have obtained for predicting

2D-RNA structures using only domination parameters.

Recall from [3] Schlick et al. categorized all possible topological trees of a given

order into three classes: red, blue, and black where red represents known RNA struc-

tures. Blue represents theoretical RNA, structures we expect to exist in nature. Black

represents hypothetical RNA, structures we expect not to exist in nature. However,

because we are dealing with nature, it is always possible that a structure can exist

despite what our results suggest.

Our prediction method of secondary RNAs is based upon domination parameters.

We discovered that by taking the sum or quotient of a few select parameters resulted

in a strong correlation between known RNA trees and hypothetical trees. Specifically,

we found the following three parameters useful in the prediction of secondary RNA

motifs:

1. γL + γD

2. γ + γt + γpr

3.
γ

γL + γD



2.1 Trees of Order 2 through 6

The following figure illustrates all topological trees of orders two through six which

we obtained from [11]. The colors represent the classes predicted in [11].

Figure 15: Trees of Order 2 through 6

As you can see in Figure 15, most of the RNA trees from order two through six

have already been found in nature. Cause the order of these trees is small, we did

not find the corresponding parameter values for these trees helpful in developing our
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prediction method. However, once the order of the trees reached seven, we discov-

ered a significant relationship between known RNA trees and our three domination

parameters. In Figure 16 below, all topological trees of order seven are listed. As you

can see, as the order of the trees gets larger the number of trees grows significantly.

Therefore, for the remainder of this thesis we will reference the RNA trees by the

number by which they are listed. A complete list of trees used in our research is

attached in the appendix.

2.2 Trees of Order 7

Figure 16: Trees of Order 7
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Table 1: Table of Trees of Order 7

γL + γD γ + γt + γpr

γ

γL + γDTree

4

5

7

8

9

10

11

9

9

8

7

10

10

12

9

9

10

13

6

6

5

.22

.22

.38

.43

.20

.20

.08

1

2

3

7 11 .43

9

7

10

11

.22

.43

6 8 10 .38

Consider Table 1 above where the values listed in the table correspond to the

graphs in Figure 16. The trees that represent known RNA structures are highlighted

in red. We notice that most of the values for the first parameter γL + γD that

correspond to known RNAs are less than the other trees. In fact, all the red trees are

less than the others with the exception of tree 2. Moreover, if we study the range of

these values for the first parameter, we notice that these values are between seven to

twelve inclusive; however, when we consider the range of values for the red trees we

can see that these values span only from seven to nine which are at the lower end of

the overall range.

In the second parameter γ + γt + γpr we see a similar pattern except the values

for the red trees are typically larger than the rest. Furthermore, we note that the
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values for the second parameter range from five to thirteen where the values for the

red trees are at the higher end of the scale. Though a little more difficult to see, we

also notice that the values for the the red trees for the third parameter γ/(γL + γD)

are generally larger than the other values in the table, where the overall values vary

from 0.08 to 0.43.

Because all of the values for the known RNA trees tend to be either higher or

lower than the rest of the hypothetical trees, this suggests a bound may exist within

the range for each parameter. Furthermore, this may also suggest that the farther

away the value of the tree is from the bound, the more likely it is to exist. If we look

at the values for the first parameter, it is clear that the median is nine, where the

median is defined by ignoring repetition. Examining the values for the first parameter

again, we find that the existing RNA trees have values that are less than the median.

Studying the values of the second parameter, we find that the median is also nine and

all the existing RNA tress have values that are greater than or equal to the median.

When we calculate the median of the third parameter we find the median is 0.275,

and all the red trees have values larger than the median except for tree 2 which has a

value of 0.22. Because using the median is only a starting point for determining the

bound then we simply change the value of the bound to 0.22 to accommodate tree

2. Because we are using the known RNA trees to develop a prediction method for

novel RNA, then for any given order where there are known RNA trees we change

the bound to accommodate them, if any, that contradict that bound.

Now, we have determined bounds for all three parameters for trees of order seven,

we can now distinguish which RNA trees are likely to exist and are not likely to

30



exist. Table 2, illustrates these results where red circles represent RNA trees already

found in nature, blue circles represent RNA trees that we expect to see in nature, and

black circles represent hypothetical RNA trees we do not expect to see in nature. In

addition, because such remarkable similarities in the end result with our prediction

method and that used by Schlick et al. arised, we have included their results as well

and have denoted them by squares.

Table 2: Results for Trees of Order 7

We determined a tree to be blue for the first parameter if its value is less than

or equal to the median, for the second and the third parameter if its value is greater

than or equal to the median, and black otherwise. As you can see, each parameter
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makes the same prediction for the trees of order seven as that of Schlick et al. Thus,

if we were to make a prediction on order seven, the final result would be the same as

that of Schlicks et al.; however, though remarkably similar, this is not so for orders

greater than seven at this time.

2.3 Trees of Order 8

Table 3: Table of Trees of Order 8

γL + γD γ + γt + γpr

γ

γL+γDTree

4
5

7
8
9
10
11

1
2
3

6

12
13
14
15
16
17
18
19
20
21
22
23

9 11 .33
9
9
10
8
10
9
9
11
9
8
9
10
11
10
9
10
12
12
8
10
12
14

11
11
10
14
10
11
11
9
14
12
11
10
9
10
13
10
6
6
14
10
6
5

.33

.33

.20

.38

.20

.33

.33

.18

.33

.50

.33

.30

.18

.30

.33

.30

.13

.13

.50

.30

.13

.07

Table 3 corresponds to the graphs of trees of order eight. Again the trees that
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represent known RNA structures are highlighted in red. We notice the same pattern

in parameter values for trees of order eight that we found in trees of order seven. For

example, we notice that the range of values for the first parameter γL +γD is between

eight to fourteen inclusive, and that the values of the known RNA structures span

only eight to ten. Note that these values are at the lower end of the range compared

to the other trees.

In the second parameter γ + γt + γpr most of the values for the red trees are

typically larger than the rest. The values for the second parameter vary from five to

fourteen where the values for the red trees are at the higher end of the scale. The

values for the the red trees for the third parameter γ/(γL + γD) are usually larger

than the other values in the table, where the values extend from 0.07 to 0.5.

We looked for bounds in trees of order eight following the same procedure as

described for trees of order seven. If we examine the values for the first parameter

for trees of order eight, we see that the median is ten. We also find that the values

for the first parameter for existing RNA trees are less than or equal to the median.

The median for the second parameter is also ten, and all the existing RNA trees have

values that are greater than or equal to the median. We calculated that the median

of the third parameter is 0.28, and all the red trees values are greater. Thus, these

are the same results we found for order seven.

Because we have calculated bounds for all three parameters for trees of order

eight, we can determine which RNA trees are likely to exist and are not likely to

exist. Again, we have compared our results from our prediction method to Schlick et

al, indicating their results with squares.

33



Table 4: Results for Trees of Order 8
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Consider the results we obtained with both orders seven and eight and notice how

remarkably similar our results are to those produced by Schlick’s method. Based on

these results, we make predictions for the existence of trees for order nine.

2.4 Making a Prediction for Order 9

Table 5: Table of Trees of Order 9

1

16
17
18
19
20
21
22
23
24

47
46
45
44
43

41
40
39
38
37
36
35
34
33
32
31
30
29
28

26
259 14 .33

11
10
10
10
11
10
11
12
10

11
14
15
14
11
11
11
9
12

.27

.30

.30

.30

.27

.30

.27

.17

.40

13
11

12
9
10
11
13
11
11
12
12
12
10
12
14
14

10
11
12
14
16

9
14

10
15
12
11
9
13
13
10
10
10
14
10
6
6

14
11
10
6
5

.15

.27

.25

.44

.40

.27

.15

.27

.27

.25

.25

.25

.40

.25

.14

.14

.40

.27

.25

.14

.06

Tree γL + γD γ + γt + γpr

γ

γL + γD
Tree γL + γD γ + γt + γpr

γ

γL + γD

2
3
4
5
6
7
8
9
10
11
12
13
14
15

11
11

11
9

9
10
10
12
10
9
9
10
9
12

11
11
12
11
14
11
11
10
14
15
12
11
15
10

.27

.27

.44

.27

.33

.30

.30

.17

.30

.44

.44

.30

.44

.17

27 9 15 .44

42 9 17 .44

Table 5, listed above shows parameter values for trees of order nine. We already
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know of four RNA structures that exist in this order, which are highlighted in red.

We test our prediction method developed using trees of order seven and order eight to

accurately predict the four known RNA structures as well as the possibility of other

trees in order nine.

Because we have assumed that we do not know which trees are red, our final result

will contain only blue and black circles. Unfortunately, Schlick et al. did not publish

their findings for order nine; thus, we are unable to compare our results with theirs.

The range of values for the first parameter γL + γD are between 9 to 16 inclusive

with a median value of 12. Therefore, all trees with values less than or equal to 12

will be denoted by a blue circle. In the second parameter γ + γt + γpr, values range

from 5 to 17 with a median value of 11; thus, trees with values greater than or equal

to 11 will be denoted by a blue circle. The third parameter γ/(γL + γD) contains

trees with values from 0.06 to 0.44 with a median value of 0.27 where all trees with

values greater than or equal to 0.27 will be denoted as a blue circle as well. Three

predictions for each tree of order 9, one from each parameter, are illustrated in Table

6. Our final result is the intersection of these three results.

Studying the results on the next page, we see that all four known RNA trees

numbered 6, 11, 13, and 27 are blue according to our predictions. Thus, we believe

using our method we can accurately predict the existence of other trees of order nine.
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Table 6: Results for Trees of Order 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
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3 TAKING A CLOSER LOOK

Furthermore, if we take another look at the list of values for trees of order seven

that we have determined to be good candidates for novel RNA, we notice that some

trees are better candidates than others. For instance, all values for known trees seem

not only to be greater than or less than the median for a given parameter but also

to be significantly greater than or less than in several cases. This is particularly true

for known trees of order eight. For example, looking back at Table 3, we can see that

all trees that represent known RNA have values that are significantly greater than or

less than the median for a given parameter have already been found. For instance,

notice trees 5, 11, and particularly 20. This suggests that not only can we predict

which RNA trees we can expect to see in nature, but also we can determine which

trees are better candidates than others.

The following determines which trees are best, good, and fair candidates. As

stated before, the more extreme the values within the bounds for each parameter a

tree has the better its possibility of existing. Therefore, a tree is the best candidate if

all three of its parameters are extremes within the bounds. A tree is a good candidate

if two of its parameters are extremes, or are near the extreme values, and trees with

values that are close or equal to the bounds are considered fair candidates.

For example, tree 42 of order nine, highlighted in dark-blue, is the best candidate

within this entire order because all three of its parameter values are extremes within

the given bounds. Tree 42 has a value of 9 for the first parameter, the smallest value

in this bound. For the second and third parameters tree 42 has values of 17 and .44,

respectively, the largest values in each of these parameters’ bounds.



Table 7: Best Candidates of Order 9

16
17
18
19
20
21
22
23
24

47
46
45
44
43

41
40
39
38
37
36
35
34
33
32
31
30

28

26
25

11
10
10
10
11
10
11
12
10

11
14
15
14
11
11
11
9
12

.27

.30

.30

.30

.27

.30

.27

.17

.40

13
11

12

10
11
13
11
11
12
12
12
10
12
14
14

10
11
12
14
16

9
14

10

12
11
9
13
13
10
10
10
14
10
6
6

14
11
10
6
5

.15

.27

.25

.40

.27

.15

.27

.27

.25

.25

.25

.40

.25

.14

.14

.40

.27

.25

.14

.06

Tree γL + γD γ + γt + γpr

γ

γL + γD
Tree γL + γD γ + γt + γpr

γ

γL + γD

2
3

5
6
7
8
9
10
11

13

15

11
11

11
9
10
10
12
10
9

10

12

11
11

11
14
11
11
10
14
15

11

10

.27

.27

.27

.33

.30

.30

.17

.30

.44

.30

.17

27 9 15 .44

42 9 17 .44

29 9 15 .44

1 9 14 .33

12 9 12 .44

14 9 15 .44

4 9 12 .44

Now consider trees 14 and 29, they too are good candidates; however, by this

method they are not as likely to exist as tree 42. These trees, highlighted in light-

blue, only have extreme values for the first and third parameters. Moreover, tree 1,

for example, is only a fair candidate since the first parameter is the only extreme

value. Recall that using our prediction method, the red trees 6, 11, 13, and 27 are

included in the set of expected trees.



4 CONCLUSION

Although relatively few RNA trees exist in nature, the fact that we were able to

accurately predict four of the existing RNA trees of order nine using only domination

parameters suggests that this approach has promise in graph theory applications in

genomics research. In addition, since our results for orders seven and eight were

remarkably close to the results from the RAG database, then this suggest that other

parameters may also be useful in predicting novel RNA structures. Furthermore,

since there exists polynomial time algorithms for finding the domination number of

a tree, then this new application of graph theory, and domination in particular, is an

exciting avenue for future research.
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List of trees for orders 2 through 9
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