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ABSTRACT

A Complete Characterization of Maximal Symmetric Difference Free Families on

{1, . . . n}

by

Travis Gerarde Buck

Prior work in the field of set theory has looked at the properties of union-free families.

This thesis investigates families based on a different set operation, the symmetric

difference. It provides a complete characterization of maximal symmetric difference-

free families of subsets of {1, . . . n}
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1 INTRODUCTION

This thesis will provide a complete characterization of maximal symmetric difference-

free families of subsets of {1 . . . n}. The work presented here was inspired by an invited

one-hour presentation given by Professor Dwight Duffus of Emory University at the

2005 Graph Theory Conference in Boone, NC. In this talk, Duffus introduced the

union closed Frankl conjecture that states that in any union closed family of subsets

of {1, 2, . . . , n} there exists an element a that belongs to at least half the sets in the

collection1. Union-free families were defined by Frankl and Furedi to be those families

where there does not exist A, B, C,D in the family such that A ∪B = C ∪D.2

We adopted an approach and a definition slightly different than those used by

the above authors, in particular delta free families were not defined analogously with

union free families. For this thesis, if a family of sets is delta free, then for any A, B

in the family, A∆B is not in the family. The symmetric difference operation, denoted

by ∆ , of two sets constructs a set that contains all the elements that are in exactly

one of the sets. For example, given the sets A = {1, 2, 3} and B = {2, 3, 4}, their

symmetric difference, or A∆B would be {1, 4}. Because both A and B contain the el-

ements 2 and 3, neither of these elements can be in the symmetric difference; because

1 and 4 are each in only one of the sets, they are in the symmetric difference. Another

way to describe the symmetric difference of sets is the union of the sets minus their

intersection, i.e. A∆B = (A ∪B) \ (A ∩B).

One application of constructing ∆-free families of sets would be to let each set

1uiuc
2FF
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represent a person and each element of the set represent a task which that person

can do. Let us also assume that each person can only perform one task at a time. If

the family is ∆-free, then for any three people we pick from it, each person is useful

in his or her own right for completing a task and isn’t simply back-up for the other

two people. For example, as a ∆-free family we could have the sets {1, 2}, {1, 3}, and

{1, 2, 3}. The symmetric difference of the first two sets is {2, 3}, that of the last two

is {2}, and that of the first and last is {3}. None of these symmetric differences are

in the family and each person is useful for completing a task. For example, while the

first person does task 1, the second can do task 3, and the third person can do task 2.

If the first person does task 2, the second can do task 1 and the third task 3 or vice

versa. If we were limited to the family being union-free, we would not be able to have

{1, 2, 3} in the same family as {1, 2} and {1, 3}, since the union of {1, 2} and {1, 3}

is {1, 2, 3}. Considering the same definition of sets and elements, union-free would

represent avoiding redundancy if all possible tasks were performed simultaneously by

each person. In the above example, the person represented by {1, 2, 3} would not be

needed since {1, 2} and {1, 3} can perform all the possible tasks that {1, 2, 3} can

perform. Another application of ∆-free families would be to let each set represent a

person and each element represent a language that person speaks. If the family is ∆-

free, then there is no person who can translate for two other people all the languages

those two do not share and yet not understand the languages those two other people

do share.
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2 EARLY EFFORTS

Besides trying to find a non-trival application, most of the early efforts were put

towards trying to find bounds for symmetric difference-free families, as well as explor-

ing the limitations for the potential members of such families. The first important

observation came regarding the empty set, ∅. The second key observation dealt with

the form of sets that could be guaranteed to be part of a ∆-free family if no other

sets were present.

Lemma 2.1 If a family F contains the empty set, F cannot be ∆-free.

Proof: Assume F is ∆-free and contains the empty set. Since A∆∅ = A for any A in

F we reach a contradiction, so F cannot be ∆-free and still contain the empty set.

Similarly, if F is ∆-free, then for any A ∈ F, A∆A = ∅ so ∅ cannot be ∈ F.�

Early exploration also showed that sets consisting of only odd members from the

power set were ∆-free. For example, if n = 3, then the family {1}, {2}, {3}, {1, 2, 3}

could be constructed. Since this family doesn’t contain {1, 2}, {1, 3}, or {2, 3} it is ∆-

free. Similarly, if n = 4 , the family {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

can be constucted and this family is ∆-free as well. This led to the second lemma.

Lemma 2.2 Any family F that contains only sets of odd cardinality is ∆-free.

Proof: If the cardinality of the union of two sets of odd cardinality is even, then the

cardinality of the intersection of those two sets is also even, so the cardinality of their

symmetric difference would be even. If the cardinality of the union of two sets of odd

cardinality is odd, then the cardinality of the intersection of those two sets would be

odd and, again, the cardinality of their symmetric difference would be even. In either

9



case, the cardinality of the symmetric difference of two odd sets is even. The family

F consists of only sets with odd cardinalty, so for any A, B ∈ F, A∆B is even, so

A∆B /∈ F since F consists only of sets of odd cardinality. Therefore, any family F

that consists of only sets of odd cardinality is ∆-free. �

This lemma is interesting and useful because, of the 2n elements of the power set

of {1, . . . n} exactly half, or 2n−1 of the elements are of odd cardinality. Since, from

Lemma 2.2, we know that we can create a ∆-free family by selecting all of these odd

sets, we know that a maximal ∆-free family of subsets of {1, . . . n} has to have at

least 2n−1 members since we can construct a ∆-free family with 2n−1 members. With

this, we have established a lower bound.

10



3 AN UPPER BOUND AND CLASS OF MAXIMAL FAMILIES

A ∆-free family can, however, contain sets with even cardinality. For example,

for n = 3, the family {1}, {1, 2}, {1, 3}, {1, 2, 3} contains sets with both even and odd

cardinality. The family is ∆-free as it does not contain {2}, {3}, or {2, 3}. Being

∆-free, the family definitely cannot contain the empty set. It is worth noting that

this family has 23−1 i.e. 22 = 4 members which is half the members of the power

set. In fact, since half (2n−1) of the members of the power set of {1, . . . n} are odd,

in order to have more than 2n−1 members in a family we would need to have at least

one set of even cardinality which leads to our third lemma.

Lemma 3.1 A maximal ∆-free family that contains at least one even set contains at

least half the even sets and half the odd sets. The cardinality of this family is 2n−1.

Proof: Let F be a maximal ∆-free family on {1, . . . n} that contains at least one even

set, call it Fe. We know that the cardinality of F is at least 2n−1. Let O be any of

the 2n−1 odd members of the power set. Fe∆O = O∆ is an odd set that is distinct

from O. If O ∈ F, then O∆ /∈ F since F is ∆-free. So, if F contains an even set, each

odd set in F rules out another odd set as a potential member of F . Therefore, if F

contains an even set, it can contain at most half, or 22−2, of the odd sets from the

power set.

Similarly, let E be any of the 2n−1 even members of the power set. If E ∈ F , then

we know that E 6= ∅. If E = Fe then E∆Fe = ∅ /∈ F , so let us just consider if E

is different from Fe. E∆Fe is even so each even set in F rules out another even set

as a potential member of F . So, again, if F contains an even set, it can contain at
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most half, or 2n−2 of the even members of the power set, including the original even

set. Since a ∆-free family on {1, . . . n} that contains at least one even set can have

at most 2n−2 of the odd sets from the power set and 2n−2 of the even sets from the

power set, it can contain at most 2n−2 + 2n−2 = 2n−1 sets. Since a maximal family

would have the maximum number of sets possible, we know that it will contain this

maximum of 2n−1 sets. �

Since we know that a maximal ∆-free family contains at least 2n−1 elements from

our lower bound and at most 2n− 1 elements from the above result, we know that

a maximal ∆-free family contains exactly 2n−1 sets and is either all the odd sets or

is half the even sets and half the odd sets. This is a very interesting result because

this means we must pick exactly half the possible elements from the power set when

constructing a maximal ∆-free family. The difficult question is ”Which half?”. It was

decided that we would try to find all of the maximal ∆-free families for n = 3, n = 4,

and n = 5 in order to see if some pattern was discernable.

A brute force analysis by hand of the 4 element subsets of the power set of {1, 2, 3}

yielded the following ∆-free families:

{1}, {2}, {3}, {1, 2, 3}

This is the family with all of the odd elements.

{1}, {1, 2}, {1, 3}, {1, 2, 3}

{2}, {1, 2}, {2, 3}, {1, 2, 3}

{3}, {1, 3}, {2, 3}, {1, 2, 3}

12



These three are essentially isomorphic to each other.

{1}, {2}, {1, 3}, {2, 3}

{1}, {3}, {1, 2}, {2, 3}

{2}, {3}, {1, 2}, {1, 3}

These three are essentially isomorphic to each other.

There are 7 = 23 − 1 families. Checking the results for n = 4 and n = 5 were deemed

to be too time consuming to perform by hand, so a program was constructed for

Maple that would check all the subsets of appropriate size in order to see if they were

∆-free. Even though the empty set could be discounted, it was still a very processor-

intensive, brute force investigation with a large number of comparisons required at

each step. In fact, checking with this procedure for n = 5 proved to be too much for

the memory of the computers available. Fortunately, the computer was able to sift

through the options and find the ∆-free families for n = 4, and a pattern was detected.

The ∆-free families for n = 4 are:

{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

This is the family with all of the odd elements.

{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}

There are three more families isomorphic to this one.
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{1}, {2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 3, 4}, {2, 3, 4}

There are five more families isomorphic to this one.

{1}, {2}, {3}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}

There are three more families isomorphic to this one.

There are a total of 15 = 24 − 1 families. The pattern that emerged was based

on what symbols were not represented as singletons. Let S be the set of singletons

in F , so let SC be the set of elements not represented by singletons in family F . We

can construct a family by taking from the power set all of the odd sets with an even

intersection with SC (which includes the singletons) and all of the even sets with an

odd intersection with SC . Consider n = 5. If we know that {1} and {2} are in F

but {3}, {4}, and {5} are not, then SC is {3, 4, 5}. Based on this, the one-element

sets in F are {1} and {2} since they have an evem, albeit empty, intersection with

SC . The two-element sets are {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, and {2, 5}, while the

three-element sets are {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, and {2, 3, 5}. The four-element sets

are {1, 3, 4, 5} and {2, 3, 4, 5} and there are no five-element sets in F in this case.

This particular family is ∆-free, but the question arises of whether this method of

construction works in general.

Theorem 3.2 Given a set SC which consists of a subset of {1, . . . n}, we can con-

struct a maximal ∆-free family F on {1, . . . n} by taking all the odd members of the

power set with an even intersection with SC and the even members of the power set

with an odd intersection with SC.

14



Proof: Let F be a family on {1, . . . n} that consists of the odd members of the power

set whose intersection with a subset SC of {1, . . . n} is even combined with the even

members of the power set whose intersection with SC is odd. Let A and B be ∈ F .

Case 1: A and B are both odd

If A and B are both odd, then their symmetric difference would be even. A and B

each have an even intersection with SC , so the symmetric difference of their intersec-

tions with SC would be even, as well as a subset of A∆B. Thus, A∆B would be an

even member of the power set with an even intersection with SC . Since F does not

contain even members of the power set with an even intersection with SC , we know

that A∆B /∈ F .

Case 2: A and B are both even

If A and B are both even, then their symmetric difference would be even. A and B

each have an odd intersection with SC , so the symmetric difference of their intersec-

tions with SC would be even. Since F does not contain even members of the power

set with an even intersection with SC we know that A∆B /∈ F .

Case 3: WLOG A is even and B is odd

Since A is even and in F it has an odd intersection with SC . Since B is odd and

in F it has an even intersection with SC . A∆B is an odd member of the power

set. The symmetric difference of the intersection of A with SC and the intersection

of B with SC is a subset of A∆B and is odd. Therefore, A∆B is an odd member
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of the power set with an odd intersection with SC . Since F does not contain odd

members of the power set with an odd intersection with SC , we know that A∆B /∈ F .

In any case, for A and B ∈ F, A∆B /∈ F so F is ∆-free. Of the 2n−1 odd members of

the power set, 2n−2 have an odd intersection with SC and, of the 2n−1 even members of

the power set, 2n−2 have an even intersection with SC . Combined, 2n−2 +2n−2 = 2n−1

which is the maximal size of a ∆-free family, so we have constructed a family that is

∆-free and is of maximal size. �

From the above proof, we know that this method will constuct a ∆-free family of

maximal size. A family consisting of all the odd members of the power set can be

constructed by letting SC be the empty set. Since every odd set has a trivially even,

empty intersection with SC, that can all be included. Since every even set also has a

trivially even, empty intersection with SC , none of them can be included. The above

examples of ∆-free families for n = 3 and n = 4 fit the pattern as well.
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4 UNIQUENESS

We know the method outlined in Theorem 3.2 will construct maximal ∆-free

families, but in order to completely characterize maximal ∆-free families, we need to

make sure that those families are the only such maximal ∆-free families. For instance,

for some similarly defined SC can we find an even member if the power set with an

even intersection with SC in a maximal ∆-free family F?

Theorem 4.1 The procedure outlined in Theorem 3.2 generates all the possible max-

imal ∆-free families on {1, . . . n}.

Proof: Let us assume that there is some maximal ∆-free family F on {1, . . . n} that

is not generated by taking the odd sets with even intersections with SC and the even

sets with an odd intersection with SC .

Case 1: F contains an even set with an even intersection with its corresponding

SC .

For a two element set to have an even intersection with SC it must contain either

no elements or two elements from SC . WLOG, let the proposed two element set be

{1, 2}. If {1, 2} ∩ SC = ∅ then {1} /∈ SC so {1} ∈ S so, by definition, {1} ∈ F .

Similarly, {2} /∈ SC so {2} ∈ F . However, {1}∆{2} = {1, 2}, so if {1, 2} ∩ SC = ∅,

then {1, 2} /∈ F , a contradiction to our assumption that {1, 2} ∈ F . If {1, 2} contains

exactly two elements from SC , then {1} /∈ F and {2} /∈ F since they are both ∈ SC .

However, in order to be maximal, if {1, 2} ∈ F , then exactly one of {1} and {2} must

be in F as well, which is a contradiction. So, if F contains a two element set with an

17



even intersection with its corresponding SC , it cannot be maximal.

A four element set, like all even sets, limits us to having at most half of the other

even sets and half the odd sets if we are to have a ∆-free family. If, WLOG, {1, 2, 3, 4}

has an even intersection with SC , then there are at least two two-element sets each

with an even intersection with SC whose symmetric difference is {1, 2, 3, 4}. In order

to be a maximal ∆-free family, for each pair of two-element sets exactly one would

need to be in F . However, as shown above, neither can be in F since F cannot

contain a two-element set with an even intersection with its SC , so we cannot have a

four-element set with an even intersection with its SC in a maximal ∆-free family.

From here, we can use induction. We know we cannot have a two-element set with

an even intersection with the SC in a maximal ∆-free family. Suppose we cannot

have any 2k-element set with an even intersection with the SC in a maximal ∆-free

family. A 2(k+1)-element set with an even intersection with the SC is the symmetric

difference of a 2k-element set with even intersection and a 2-element set with even

intersection. In order for F to be maximal, exactly one of these two sets would need

to be in F . However, neither are in F by our assumption so we cannot have an even

set with an even intersection with the corresponding SC in a maximal ∆-free family.�

Case 2: F contains an odd set with an odd intersection with its SC.

We now know that in a maximal ∆-free family the only even sets possible are those

with an odd intersection with the corresponding SC and that there are 2n−2 such sets.

The symmetric difference of an even set with an odd intersection with the SC and an

odd set with an odd intersection with the SC is an odd set with an even intersection

18



with the SC . Therefore, if the family under consideration contains all the even sets

with an odd intersection with the SC and an odd set with an odd intersection with the

SC , it cannot contain an odd set with an even intersection with the SC including the

singletons we used to define S and thus SC , which leads to a contradiction. Therefore,

if a family contains an odd set with an odd intersection with its corresponding SC , it

cannot be a maximal ∆-free family. �

Since a maximal ∆-free family cannot contain an even set with an even inter-

section with its SC or an odd set with an odd intersection with its SC , then our

assumption that can construct a maximal ∆-free family that is not constructed by

Theorem 3.2 is contradicted. Therefore, Theorem 3.2 constructs all possible maximal

∆-free familes. �.

If SC = {1, . . . n} for a family, then we cannot have any even sets in the proposed

maximal family. Also, we cannot have any one-element sets in the family, so the

cardinality of a family constructed from such an SC is less than 2n−1.

Alternate proof: If the result does not hold, then for some maximal family F , there

exists a corresponding, non-empty set SC and a set A∗ such that A∗ is an even set

such that A∗ ∩ SC is even. The other sets in the maximal F are either even or odd

and have either an even or odd intersection with the SC that corresponds with F .

Let J be the class of odd sets from the power set with an odd intersection with SC ,

K be the class of odd sets from the power set with an even intersection with SC , L

be the class of even sets from the power set with an odd intersection with SC , and M

be the class of even sets from the power set with an even intersection with SC . The
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cardinality of each of these classes is 2n−2. We have supposed that there is a maximal

∆-free family F that contains a set A∗ from class M . The symmetric difference of

any set A with a set from class M is another set from the same class as A. So, since

F contains a set from class M it can contain at most half, or 2n−3 members from

classes J , K, and L. This is because of the important fact that C 6= D implies that

C∆E 6= D∆E. Let M consist of sets M1, M2, etc. Note that if we are to remain

∆-free, M cannot contain the empty set and so there are at most 2n−2 − 1 options

for membership in F from class M . Excluding A∗, we get 2n−2 − 2 sets in M . Since

A∗∆M1, A
∗∆M2 etc. cannot be in F if M1, M2 etc. are in F , we are left with the

fact that F has at most 2n−3−1 elements from M . In a similar fashion A∗ causes the

elimination of one set from the collection for each set in J, K, L so J, K, L can have

at most 2n−3 members in F . Thus, F is not maximal, a contradiction.�
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5 CONCLUSIONS

We know that all maximal ∆-free families on {1, . . . n} have 2n−1 members. Addi-

tionally, given a set SC ⊂ {1, . . . n} we can construct a corresponding maximal ∆-free

family consisting of all the odd members of the power set with an even intersection

with SC and all the even members of the power set with an odd intersection with SC ,

and this method of construction generates all possible maximal ∆-free families. Due

to the isomorphisms from the arbitrary assignment of elements, there are a total of

2n − 1 maximal ∆-free families of {1, . . . n} with SC being not allowed.
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