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ABSTRACT 

Comparing the Statistical Tests for Homogeneity of Variances 

by 

Zhiqiang Mu 
 

Testing the homogeneity of variances is an important problem in many applications since 

statistical methods of frequent use, such as ANOVA, assume equal variances for two or 

more groups of data. However, testing the equality of variances is a difficult problem due 

to the fact that many of the tests are not robust against non-normality. It is known that the 

kurtosis of the distribution of the source data can affect the performance of the tests for 

variance. We review the classical tests and their latest, more robust modifications, some 

other tests that have recently appeared in the literature, and use bootstrap and permutation 

techniques to test for equal variances. We compare the performance of these tests under 

different types of distributions, sample sizes and true variance ratios of the populations. 

Monte-Carlo methods are used in this study to calculate empirical powers and type I 

errors under different settings. 
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1 INTRODUCTION 
 

 

Testing equality of variances is a fundamentally harder problem than comparing means or 

measures of location. There are two reasons for this. First, the standard test statistics for 

mean comparisons are naturally standardized to be robust to non-normality due to the 

central limit theorem. In contrast, normal-theory test statistics for comparing variances 

are not suitably standardized to be insensitive to non-normality.  Asymptotically, these 

statistics are not distribution-free, but depend on the kurtosis of the parent distributions. 

Second, for comparing means, a null hypothesis of identical populations is often 

appropriate. For variance comparisons, a null hypothesis of identical populations is rarely 

reasonable. [2] 

 

As stated in [2], there are three basic approaches that have been used to obtain procedures 

robust to non-normality:  

 

“ 1. Adjust the normal theory test procedure using an estimate of kurtosis [5, 18]. 

 

2. Perform an analysis of variance (ANOVA) on a data set in which each 

observation is replaced by a scale variable such as the absolute deviation from 

the mean or median [6, 13].  

 

3. Use resampling to obtain p-values for a given test statistic [3, 5].” 

 

A new simple test, Count Five [15], recently appeared in the literature. It is also 

interesting to apply and compare computer intensive technology such as the bootstrap test 

and the permutation test. Through this study, we will compare all those tests for powers 

and type I errors obtained by simulations. In chapter one, the tests to be compared will be 

discussed. The distributions and experimental details will be discussed in chapter two and 

in chapter three. The results and conclusions of this study will be reported in chapter four. 
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2 TESTS FOR EQUAL VARIABILITY 
 

In this chapter, we will briefly introduce tests for equality of variances, including the F 

test, (and its modified version,) Levene’s tests, Barletts’s test, (and its modified version) 

Count-five test, and computer intensive tests (Bootstrap test and Permutation test). 

 

 

2.1 F Test 

An F-test is a statistical test in which the test statistic has an F-distribution if the null 

hypothesis is true. Great varieties of hypotheses in applied statistics are tested by F-tests. 

Examples are given below: [10] 

• The hypothesis that the means of multiple normally distributed populations, all 

having the same standard deviation, are equal. This is the simplest problem in the 

analysis of variance.  

• The hypothesis that the standard deviations of two normally distributed 

populations are equal, and thus that they are of comparable origin. 

 

We know that   F = 

2

1

r
V
r
U

 , where U and V are independent Chi-square variables with 

 and  degrees of freedom, respectively, has an F distribution with degrees of freedom 

 and . 

1r 2r

1r 2r
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In the F test for equal variances, the null and alternative hypotheses are 

0H :     =  2
1σ

2
2σ

1H :    <  for a lower one-tailed test  2
1σ

2
2σ

   >  for an upper one-tailed test  2σ 1 2
2σ

   ≠  for a two-tailed test  2
1σ

2
2σ

The test statistic: 
  2

2

2
1

s
sF =  

where  and  are the sample variances of two equal-sized

samples from the same population. The more this ratio deviates 

from 1, the stronger the evidence for unequal population variances.  

2s1 2
2s

Notice that if the equality of variances (or standard deviations) is being tested, the F-test 

is extremely non-robust to non-normality. That is, even if the data display only modest 

departures from the normal distribution, the test is unreliable and should not be used. This 

is discussed further in chapter 4.  

 

 

2.2 F-Test Improved Version  – Shoemaker's Adjustment 

 

One of the desirable features of the F test is that it has a natural measure of spread, the 

sample variance. In addition, confidence interval estimates can be calculated for the ratio 

of population variances. Shoemaker [18] proposed two adjustments to the F test that 

improve its robustness properties and that have superior power as compared to the 

Levene/Brown-Forsythe test for light-tailed distributions and heavy-tailed distributions. 

We implemented the Shoemaker’s adjustment about degrees of freedom in our study. 
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If one takes samples of size  and  from two independent normal populations having 

variances  and  that F = 

1n 2n

2
1σ

2
2σ 2

2
2
1

2
1

2
2

s
s

σ
σ

, has F distribution with  =  -1,  =  -1 

degrees of freedom. 

1r 1n 2r 2n

 

Shoemaker [18] used the matching-of-moments technique to approximate the degrees of 

freedom. The sample variance is approximately the average of independent and 

identically distributed random variables. By central limit theorem, it should approximate 

a normal random variable for large n. However, due to the skewness of the exact 

distribution of , n would have to be quite large. “By using a log transformation for , 

much of the asymmetry can be removed.” [18] 

2s

2s 2s

 

Let . Under assumption of normality, lnF is 

approximately normally distributed with 

2
2

2
1

2
2

2
1 lnlnlnlnln σσ +−−= ssF

21

22)(ln
rr

FVar +≅ . 

 

More generally, if one samples from two independent distributions which are similarly 

distributed with possible different locations and spreads, lnF will behave approximately 

as a normal random variable. . Set )()()(ln 2
2

2
1 sVarsVarFVar +≈ )(ln2 2

i
i

sVar
r
=  and 

solve for  to get: is

)1(
)3(

2

4
4

−
−

−
=

i

i

i
i

n
n
n

r

σ
μ

 

where 4μ  is the 4th moment about the population mean and  is the standard deviation. 

Hence, the term 

σ

4
4 σμ is associated with the kurtosis of the distribution. 
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2.3 Levene Test 

 

Levene [13] proposed using the one-way ANOVA F statistic on new variables  

.|..| YYZ ijij −=   

where could be mean, median or trimmed mean of  subgroup. ..Y thi

 

The statistic is defined as: 

∑ ∑

∑

= −

−
=

−−

−−

−−
=

k

i

N

j iij

k

i
ii

i ZZk

ZZNkN
W

1 1
2

..

2

1
...

)()1(

)()(
 

 

where .iZ are the group means of   andijZ ..Z  is the pooled mean of . ijZ

 

Levene's original paper only proposed using the mean as the center. Brown and Forsythe 

[6] extended Levene's test to use either the median or the trimmed mean to substitute for 

the mean. They performed Monte Carlo studies that indicated that using the trimmed 

mean performed best when the underlying data followed a Cauchy distribution (i.e. 

symmetric heavy-tailed) and the median performed best when the underlying data 

followed a Chi-Square(4) (i.e. skewed) distribution. Using the mean as the center 

provided the best power for symmetric, moderate-tailed, distributions. [16] 

 

Levene's test is an alternative to the Bartlett test. The Levene test is less sensitive to 

departures from normality than the Bartlett test. Generally, if strong evidence presents 

that the data do in fact come from a normal, or nearly normal, distribution, Bartlett's test 

performs better since it gives higher power than Levene’s. 
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2.4 Bartlett's Test 

 

Bartlett’s statistic is designed to test for equality of variances across groups against the 

alternative that variances are unequal for at least two groups, assuming the populations 

are normally distributed.  Bartlett's test is sensitive to departures from normality. That is, 

if the samples come from non-normal distributions, then Bartlett's test may simply be 

testing for non-normality. [16] 

 

Some statistical tests, for example the analysis of variance, assume that variances are 

equal across groups or samples. Bartlett's test can be used to verify that assumption. 

 

Bartlett's test and Levene’s test are the only tests considered in this study that are able to 

test homogeneity of variances for more than two groups. The other tests could be adapted 

by working with the two groups that have the maximum and minimum variances. 

 

In Bartlett’s test, the ’s in each of the treatment classes need not be equal. However, no 

’s should be smaller than 3, and most ’s should be larger than 5. This is discussed in 

[20]. 

in

in in

 

The test statistic is defined as: 

)1)
1

1((
)1(3

11

ln)1(ln)(

1

1

22

kNNk

sNskN
T k

i i

k

i
iip

−
−

−−
+

−−−
=

∑

∑

=

=  

  

where:  )/()1( 2

1

2 kNsNs i

k

i
ip −−= ∑

=

  = Sample variance of the  group.  2
is thi
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2.5 Bhat’s Version of Bartlett's Test 

 

Bhat proposed a simple test based on Gini’s mean difference to test the hypothesis of 

equality of population variances. Bhat claims “the test compares favorably with Bartlett’s 

and Levene’s test for the normal population. Also, it is more powerful than Bartlett’s and 

Levene’s tests for some alternative hypotheses for some non-normal distributions and 

more robust than the other two tests for large sample sizes under some alternative 

hypotheses”. [1] 

 
The mean difference as proposed by Gini is given by  
 

∑
<

−
−

=
lj

lj xx
nn

G )(
)1(

2
)()(    for a sample { } of size n. jx

 
The null hypothesis is : = . The test statistic proposed is  0H 2

1σ
2
2σ

 

1

2

)(
)(

)(
)(

p
p

TET
TVar

TVar
TET

T
ww

w

g

gg
G ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

Under , the mean of reduces to σ and Var( ) =0H wT wT ∑ 22 / NDn iiσ .  Hence, 

)( gw

g
G TET

T
T

σ
= . The definition of and  could be found in [1]. When compared to 

Bartlett’s test, one got 

gT wT

 

⎟
⎠
⎞

⎜
⎝
⎛ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−−

+

−−−
=

∑

∑

=

=

2
1)1)

1
1((

)1(3
11

ln)1(ln)(

1

1

22

v
kNNk

sNskN
T

k

i i

k

i
iip

. 

 
v is the adjustment for kurtosis, and 
 

[ ] 3
)1( 22

4~

−
−

⎟
⎠
⎞

⎜
⎝
⎛ −

=
∑

∑ ∑

i ii

i j iij

sn

xxN
v  
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2.6 Count Five Test 

 

McGrath and Yeh [15] proposed a simple compact dispersion test, Count Five. This test 

compares absolute deviations of one sample to another.  

 

Let  …  and …  be independent random samples with E( ) = 1X nX 1Y nY iX xμ , Var( ) = 

, E( ) = 

iX

2
xσ iY yμ  and Var( ) = .  Assume  and  are similarly distributed, with iY 2

yσ iX iY

xμ  and yμ  known. The absolute deviations | - iX xμ  | and |  - iY yμ  | are independent 

and identically distributed (i.i.d.) random variables under : = . Let  be the 

extreme count for the X sample, i.e. the number of |  - 

0H 2
xσ 2

yσ xC

iX xμ  | that exceeds the maximum 

yiY μ−  with  being defined analogously: yC

 

xC  = Number of {i : | - iX xμ  | > max |  - iY yμ  |  } 

 

To find appropriate tail probabilities under , an application of the hypergeometric 

distribution is used. Let P(  > m| ) be the probability given  that a random 

sample of m observations from +  observations all come from the  observations: 

0H

xC 0H 0H

xn yn xn

 

P(  > m| Ho) = xC ∏
−

= −+
−1

0

m

k yx

x

knn
kn  

 

if  =  =n = N/2, then: xn yn

∏
−

= −
−

=>
1

1

2
2
1)|(

m

k
mox kN

kNHmCP  

    

Thus, a two-sided test could have critical value of m = 5 and have significance level 

< .0625 for finite n regardless of distribution. 
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2.7 Introduction to Randomization Test  

 

A randomization test is defined in [14] as “A procedure that involves comparing an 

observed test statistic with a distribution that is generated by randomly reordering the 

data value in some sense”. Many hypotheses of interest in science can be regarded as 

alternatives to null hypotheses of randomness. That is, the hypothesis suggests that there 

will be a tendency for a certain type of pattern to appear in data. Randomization test is an 

option for determining whether the null hypothesis is reasonable in this type of situation. 

 

A statistic S is chosen to measure the extent to which data show the pattern in question. 

The value s of S for the observed data is then compared with the distribution of S that is 

obtained by randomly reordering the data. The claim made is that if the null hypothesis is 

true, then the probability of possible orders for the data was equally likely to occur. The 

observed data are just one of the equally likely outcomes and s should appear as a typical 

value from the randomization distribution of S. If this does not seem to be the case, then 

the alternative hypothesis is regarded reasonable. The significance level of s is the 

proportion or percentage of values that are as extreme as, or more extreme than this value 

(s) in the randomization distribution.  

 

In comparison with more standard statistical methods, randomization tests have two 

advantages. First, they are valid even with non-random samples. Second, it is relatively 

easy to take into account the peculiarities of the situation of interest and use non-standard 

test statistics. The disadvantage of the randomization test is that it is not always possible 

to generalize the conclusion from a randomization test to a population of interest. What a 

randomization test tells us is that a certain pattern in data is or is not likely to happen by 

chance.  This is less serious than it might seem at first sight since the generalization that 

is often made with conventional statistical procedures is based upon the unverifiable 

assumption that non-random samples are equivalent to random samples. 
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2.8 The Bootstrap Test 

 

Bootstrapping is a statistical method for estimating the sampling distribution of an 

estimator by sampling with replacement from the original sample, most often with the 

purpose of deriving robust estimates of standard errors and confidence intervals of a 

population parameter like a mean, median, proportion, odds ratio, correlation coefficient 

or regression coefficient [14]. It may also be used for constructing hypothesis tests. 

Bootstrapping is often used as a robust alternative to inference based on parametric 

assumptions when those assumptions are in doubt, or where parametric inference is 

impossible or requires very complicated formulas for the calculation of standard errors. 

 

The technique of bootstrapping was first considered in a systematic manner by Efron. [7] 

The essence of bootstrapping is the idea that, in the absence of any other knowledge 

about a population, the distribution of the values found in a random sample of size n from 

the population is the best guide to the distribution in the population. Therefore, in order to 

approximate what could happen if the population was resampled, it is logical to resample 

the sample. The sampling is with replacement, which is one of the differences between 

bootstrap and permutation. 

 

Much of the research on bootstrapping confidence has been aimed at developing reliable 

methods for constructing confidence limits for population parameters. However, recently 

bootstrap tests of significance have been attracting more interest. 

 

The standard bootstrapping confidence limits are calculated as the estimate ± 2αZ  

(bootstrap standard deviation), where the standard deviation is estimated by resampling 

the original data values. 

 

The Standard bootstrap confidence interval: 
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With the standard bootstrap confidence interval σ is estimated by the standard 

deviation of estimates of a parameter θ that are found by bootstrap resampling of 

the values in the original sample of data. The interval is 

  

 Estimate ± 2αZ  (bootstrap standard deviation)   

 

Using  = 1.96 gives the standard 95% bootstrap interval. 025.Z

 

The requirements for this method to work are that: 

1.  has an approximately normal distribution; θ̂

2.  is unbiased so that its mean value for repeated samples from the 

population of interest is θ;  

θ̂

3. Bootstrap resampling gives a good approximation to σ. 

 

The first percentile method (Efron [8]): 

 

Bootstrap resampling of the original sample is used to generate the empirical 

sampling (bootstrap) distribution of the parameter of interest. (It is σ in our study.) 

The 100(1 - α) % (95% by default) confidence interval of the true value of the 

parameter is then given by the two values that encompass the central 100(1 - α)% 

of this distribution. 

 

Hall [9] suggested that the percentile confidence interval is analogous to looking up the 

wrong statistical table backwards. The reasoning was based upon the concept that a 

bootstrap distribution should imitate the particular distribution of interest. This implies 

that the distribution of error in , ε =  – θ, should be approximated by the error in the 

bootstrap distribution, 

θ̂ θ̂

Bε  =  – . Thus, a bootstrap distribution of Bθ̂ θ̂ Bε  can be 

generated to find two errors Lε  and Hε  such that: 

 

 Prob( Lε  <  –  < Bθ̂ θ̂ Hε ) = 1 - α, 
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The second percentile method (Hall [9]): 

 

Bootstrap resampling is used to generate a distribution of estimates  for a 

parameter θ. The bootstrap distribution of difference between the bootstrap 

estimate and estimate of θ in the original sample 

Bθ̂

Bε  =  –  is then assumed to 

approximate the distribution of errors for  itself. On this basis, the bootstrap 

distribution of 

Bθ̂ θ̂

θ̂

Bε  is used to find limits Lε  and Hε  for the sampling error such 

that 100(1-α) % of errors are contained by the interval of these limits. The 100(1-

α) % confidence interval for θ is ( –θ̂ Hε ,  –θ̂ Lε ). 

 

The number of bootstrap samples: Manly [14] recommended that 1000 is the minimum 

number of bootstrap samples. We used 5000 bootstrap samples in this study. 

 

We applied the first percentile method in this study and could implement the second 

percentile method for further investigation. Bootstrap resamplings of the original data of 

two groups are used to generate the bootstrap distributions of . The 100(1 - α)% (95% 

by default) confidence interval of the true value of the parameter is then given by the two 

values that encompass the central 100(1 - α)% of this distribution.  

2σ

 

Initial experiments showed strong evidence that the bootstrap test of individual 

resampling of two groups of original observed data points had bad power under all 

conditions. (sample size, ratio of variance) Therefore, a pooled data set was incorporated. 

That is, we mixed the observed data points from two groups into one group, then 

bootstrap resampled from the pool and re-constructed two groups with corresponding 

sample sizes. We are going to compare both methods. The former bootstrap method is 

named the Bootstrap, and the latter bootstrap method is named the Bootstrap2 through the 

simulations of this study. 
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2.9 The Permutation Test 

 

Statistical tests use observed data to calculate a test statistic, which (in well-constructed 

tests) assesses a hypothesis of interest. The value of the test statistic is compared to a 

reference distribution, the distribution of the test statistic assuming the null hypothesis is 

true. The p-value is the proportion of the distribution that is at least as extreme as the 

observed statistic. If the p-value is too small, then the null hypothesis is rejected and an 

alternative hypothesis is rendered more plausible. Contrary to intuition, the alternative is 

not said to be accepted when the null is rejected, except in trivial examples. 

 

A permutation test (also called a randomization test, re-randomization test, or an exact 

test) is a type of statistical significance test in which a reference distribution is obtained 

by calculating all possible values of the test statistics. This is done by permuting the 

observed data points across all possible outcomes, given a set of conditions consistent 

with the null hypothesis.  

  

Boos and Brownie [3] implemented the permutation approach implied by Box and 

Andersen [5]. They used the permutation distribution based on drawing samples without 

replacement from S = {  =  − ije ijX iη̂ , j = 1, . . . , , i = 1, . . . , k}, where the in iη̂  are 

location estimates such as the sample mean or trimmed mean. They implemented the 

approach in the two-sample ANOVA (F = 2
2

2
1

s
s  ) and for a ratio of robust scale estimators. 

Note that because the residuals  − ijX iη̂ from different samples are not exchangeable, 

such a permutation procedure is not exact.  

 

Instead of using a permutation distribution based on S defined above, we randomly 

permuted observed data points (not residuals) between two groups, since the total 

permutation may take too long to execute. We did 5000 random permutations. 
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3 EXPERIMENTAL CONDITIONS/DESIGN 

 

3.1 Introduction to Distributions 

 

First we introduce a few moments and ratios of moments to describe a statistical 

distribution. 

 

Variance: For a single variate X having a distribution P(x) with known population mean μ, 

the population variance Var(x), commonly also written , is defined as  2σ

22 )( μσ −≡ X , 

Where μ is the population mean and < X > denotes the expectation value of X. For a 

continuous distribution, it is given by  

dxxxP∫ −= 22 ))(( μσ  

 

Skewness: A measure of the degree of asymmetry of a distribution. If the left tail (tail at 

the small end of the distribution) is more pronounced than the right tail (tail at the large 

end of the distribution), the function is said to have negative skewness. If the reverse is 

true, it has positive skewness. If the two are equal, it has zero skewness.  

The skewness of a distribution is defined to be  

2
3

2

3
1

μ

μγ =  

where iμ  is the ith central moment.  
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Kurtosis: The degree of peakedness of a distribution, defined as a normalized form of the 

fourth central moment 4μ of a distribution. There are several measures of kurtosis 

commonly encountered, 2β  defined by Pearson in 1905 or 4α   

2
2

4

μ
μβ ≡  

where iμ denotes the ith central moment (and in particular, 2μ is the variance). 

 

 

3.2 Systems of Distributions 

 

Some families of distributions have been constructed to provide approximations to as 

wide a variety of observed distributions as possible. Such families are often called 

systems of distributions (or system of frequency curves) [12].  

 

Pearson system 

 

Pearson designed a system such that, for every member, the probability density function 

p(x) satisfies a differential equation of form: 

 

2
210

)(
xcxcc

xap
dx
dp

++
+

−=                    (3.1) 

 

The shape of the distribution depends on the values of the parameters , ,  and  

[12].  The form of solution of (3.1) evidently depends on the nature of the roots of the 

equation 

a 0c 1c 2c

 

02
210 =++ xcxcc  
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Note that if  =  = 0, equation (3.1) becomes  1c 2c

0

)(log
c

ax
dx

xpd +
−= . 

Whence 

⎥
⎦

⎤
⎢
⎣

⎡ +
−=

0

2

2
)(exp)(

c
axCxp  

where C is a constant, which makes . ∫
+∞

∞−
=1)( dxxp

  

As a result, the corresponding distribution is normal with mean –  and variance . a 0c

 

Pearson classified the different shapes into a number of types. A brief summary is listed 

here, see details in [12]. 

0. Normal distribution.  

I. Beta distribution.  

III. Gamma distribution. This case is intermediate to cases I and VI.  

V. Intermediate to cases IV and VI.  

VI. Beta prime distribution.  

VII. Student's t-distribution.  

 
 

 23



3.3 Transformed Distributions 

 

If the distribution of a random variable X is such that a simple explicit function ƒ(x) has a 

well-known distribution, it becomes possible to use the results of research of the well-

known distribution in studying the distribution of X. A well-known example is the 

lognormal distribution where log(X – μ) has a normal distribution. Other widely used 

families of distributions in this case include  or cX )( ξ− )(exp ξ−− X  have exponential 

distributions. 

 

Johnson [11] described the following transformations: 

 

),
1

log(
Y

YZ
−

+= δγ     This is  BS

 

),(sinh 1 YZ −+= δγ      This is  US

 

where Z has a normal distribution. The subindex B and U denote whether the domain of x 

is bounded or unbounded. 

 

Some typical probability density functions (pdfs) belonging to  and  families are 

shown in figure 1 and 2.  

BS US
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Figure 1 Sample pdfs of  Distributions BS

Adapted from [11] 

 

 

 

 

 

 

 

 

Figure 2 Sample pdfs of   Distributions US

Adapted from [11] 
 

All  curves are unimodal;  may be unimodal or bimodal, with an antimode between 

two modes. For all lognormal,  and  distributions, not only does the probability 

density function tend to zero as the extremity is approached, but also do all the 

derivatives. This applies as Y -> ∞, as well as when the extremities are finite. This 

property is not shared by all person system distributions. 

US BS

BS US

 

 

Next, we introduce the distributions involved in our experiments. Figures of distributions 

are adapted from [16]. 
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3.4 Laplace Distribution 

 

 
Figure 3 pdf and cdf of Laplace Distribution. Adapted from [16] 

The Laplace Distribution [12] is also called the double exponential distribution. It is the 

distribution of differences between two independent variates with identical exponential 

distributions.  

bxe
b

xP /

2
1)( η−−=  

[ ])1)(sgn(1
2
1)( bxexxD ημ −−−−+=  

The mean, variance, skewness, and kurtosis excess are  

 μ= μ 
2σ =2 2b

01 =γ  

32 =γ  

 

 

3.5 Extreme Value Type I Distribution/Gumbel 

 

The extreme value type I distribution has two forms. One is based on the smallest 

extreme and the other is based on the largest extreme. [16] We call these the minimum 
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and maximum cases, respectively. Formulas and plots for both cases are given. The 

extreme value type I distribution is also referred to as the Gumbel distribution.  

The general formula for the probability density function of the Gumbel (minimum) 

distribution is  

 
β
μ

β
μ

β

−

−
−

=
x

e
x

eexf 1)(  

where μ is the location parameter and β  is the scale parameter. The case where μ = 0 and 

β = 1 is called the standard Gumbel distribution. The equation for the standard Gumbel 

distribution (minimum) reduces to  

xexeexf −=)(  

The following is the plot of the Gumbel probability density function for the minimum 

case.  

 

Figure 4 pdf of Extreme Value Type 1 Minimum Distribution. Adapted from [16] 

The general formula for the probability density function of the Gumbel (maximum) 

distribution is  
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β
μ

β
μ

β

)(
1)(

−−

−
−

−
=

x

e
x

eexf  

where μ is the location parameter and β is the scale parameter. The case where μ = 0 and 

β = 1 is called the standard Gumbel distribution. The equation for the standard Gumbel 

distribution (maximum) reduces to  

xexeexf
−−−=)(  

The following is the plot of the Gumbel probability density function for the maximum 

case.  

 

Figure 5 pdf of Extreme Value Type 1 Maximum Distribution. Adapted from [16] 

The variance, skewness, and kurtosis are  

2σ = 22

6
1 βπ  

13955.11 =γ  

4.22 =γ  
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3.6 Chi-Square Distribution 

 

If , i=1,…n, has normal independent distributions with mean 0 and variance 1, then  iY

∑
=

≡
r

i
iY

1

22χ  

is distributed as with r degrees of freedom. [10] It makes a distribution a gamma 

distribution with θ = 2 and α = r/2.  

2χ 2χ

More generally, if are independently distributed according to a distribution with , 

, ..., degrees of freedom, then   

2
iχ

2χ 1r

2r kr ∑
=

k

j
j

1

2χ

is distributed according to with 2χ ∑ =
=

k

j jrr
1

degrees of freedom.  

 

Figure 6 pdfs and cdfs of  Distribution. Adapted from [16] 2χ

The variance, skewness, and kurtosis of  are  2χ

2σ =2r 

r221 =γ  

r/1232 +=γ  
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3.7 Weibull Distribution 

 

The Weibull distribution is given by   

γ

α
μ

γ

α
η

α
γ ⎟

⎠
⎞

⎜
⎝
⎛ −

−
−−

=
)(

)1()()(
x

exxP  

)(1)(
γxexD −−=  

x ≥ μ, α, γ >0. 

Where γ is the shape parameter, μ is the location parameter and α is the scale parameter. 

The case where μ = 0 and α = 1 is called the standard Weibull distribution. [12] 

The following is the plot of the Weibull probability density function.  

 

Figure 7 pdfs of Weibull Distribution. Adapted from [16] 
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3.8 Tukey-Lambda Distribution 

 

The Tukey-Lambda density function does not have a simple, closed form. It is computed 

numerically. [16] 

The Tukey-Lambda distribution has the shape parameter λ. As with other probability 

distributions, the Tukey-Lambda distribution can be transformed with a location 

parameter, μ, and a scale parameter, σ. 

The following is the plot of the Tukey-Lambda pdfs for four values of λ.  

 

Figure 8 pdfs of Tukey-Lambda Distribution. Adapted from [16] 

 

The formula for the percent point function of the standard form of the Tukey-Lambda 

distribution is  

λ

λλ )1()( pppG −−
=  

 

 31



The Tukey-Lambda distribution is actually a family of distributions that can approximate 

a number of common distributions. For example,  

 

λ = -1 approximately Cauchy 

λ = 0 exactly logistic 

λ = 0.14 approximately normal 

λ = 0.5 U-shaped 

λ = 1 exactly uniform (from -1 to +1) 

The most common use of this distribution is to generate a Tukey-Lambda Probability Plot 

Correlation Coefficient (PPCC) plot of a data set. Based on the PPCC plot, an appropriate 

model for the data is suggested. For example, if the maximum correlation occurs for a 

value of λ at or near 0.14, then the data can be modeled with a normal distribution. 

Values of λ less than this imply a heavy-tailed distribution (with -1 approximating a 

Cauchy). That is, as the optimal value of λ goes from 0.14 to -1, increasingly heavy tails 

are implied. Similarly, as the optimal value of λ becomes greater than 0.14, shorter tails 

are implied.  

 

 

3.9 Logistic Distribution

 

 

Figure 9 pdf and cdf of Logistic Distribution. Adapted from [16] 
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The Logistic distribution [12] with parameters m and b > 0 has probability and 

distribution functions  

( )

( )[ ]2/

/

1
)(

bmx

bmx

eb
exP

−−

−−

+
=

( ) bmxe
xD /1

1)( −−+
=  

The mean, variance, skewness, and kurtosis are  

μ= m 

2σ = 22

3
1 bπ

01 =γ  

2.12 =γ  

 

 

3.10 Student's T-Distribution 

 

 

Figure 10 pdf and cdf of Student's T-Distribution. Adapted from [16] 

The Student’s T (A.K.A. student t) is a statistical distribution published by William 

Gosset in 1908. His employer, Guinness Breweries, required him to publish under a 

pseudonym, so he chose "Student.".[10] Given N independent measurements , let  ix
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Ns
xt μ−

≡  

The mean, variance, skewness, and kurtosis of Student's t-distribution are  

μ= 0 

2σ =
2−r

r  

01 =γ  

4
6

2 −
=

r
γ  

 

 

3.11 Half-Normal Distribution 

 

 

Figure 11 pdf and cdf of Half-Normal Distribution. Adapted from [16] 

The half-normal distribution is a normal distribution with mean 0 and parameter θ limited 

to the domain . [16]  It has probability and distribution functions given by  [ )∞∈ ,0x

πθ

π
θ /222)( xexP −=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
θxerfxD )(  
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where erf(x) is the error function ( )∫ −=
x t dtexerf

2

2)( π
0

.  

Giving the mean, variance, skewness, and kurtosis excess as  

μ= 
θ
1  

2σ = 22
2

θ
π −  

( ) 231 2
)4(2

−
−

=
π

πγ  

22 )2(
)3(8

−
−

=
π
πγ  

 

 

3.12 Log Normal Distribution 

 

 

 

Figure 12 pdf and cdf of Log Normal Distribution. Adapted from [16] 

The Log Normal Distribution is a continuous distribution in which the logarithm of a 

variable has a normal distribution. [12] A log normal distribution results if the variable is 

the product of a large number of independent, identically-distributed variables in the 

same way that a normal distribution results if the variable is the sum of a large number of 

independent, identically-distributed variables.  
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The probability density and cumulative distribution functions for the log normal 

distribution are  

( ) ( )22 2/ln

2
1)( SMxe

S
xP −−=

π
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The mean, variance, skewness, and kurtosis are given by  

μ= 2
2SMe +  

2σ = ( )122 2 −+ SMS ee  

( )22
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SS ee +−=γ  
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222 234

2 −++= SSS eeeγ  

 

 

3.13 The Experimental Design/Simulations 

 

An empirical experiment was conducted in order to compare the powers and type I errors 

of the tests for equality of variances under various conditions. Each simulation was 

conducted as many as 10,000 iterations. Two samples of various sizes from a particular 

distribution were taken in each iteration. The Levene’s test, Levene/Med test, Count Five, 

Bartlett’s test, Bhat’s modification of Bartlett’s test, F test, Shoemaker’s modification of 

F test, two bootstrap tests, and permutations test statistics were calculated and equality of 

variances were tested at significance level α = 0.05. When the two samples from a 

population have the same variance, the type I error of tests were produced. Each 

simulation was conducted under one combination of sample size and ratio of variances. 

Four ratios of population variances were used in this study: 1:1, 1:2, 1:3, and 1:4. The last 

three cases simulate samples from the populations with different variances. The sample 

sizes used in this experiment were  = = 20, 40, 60.  1n 2n
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The distributions considered in this experiment are: 

Table 1 The Experiment Design 

  Distributions Kurtosis 
    

Normal 3.00 Low Kurtosis 
logistic 4.20 
Student T3 (0,1) N/A  
Lambda(0, .55, .2, .2)  

   
High Kurtosis Tukey(10) 5.38 

Laplace 6.00  

US ( .9) 82.9 

Symmetric 

   

BS (.533, .5) 2.13 Low Kurtosis 

Half Normal() 3.78 
 Extreme 5.40 
 Location Contaminated (.05, 7) 10.40 

2χ  (1) 15.00 

Weibull(.5) 87.70 

Skewed 

High Kurtosis 

Log Normal  113.90 
 

There are two criteria that we are concerned with in this study in order to compare the 

performances of the tests for equality of variances – power and capability to control type 

I error. Type I error in our experiment is the probability of false rejection of equality of 

variance. This is calculated by counting the number of rejections of when the 

underlying populations have equal variances. The power of a statistical test is the 

probability of rejecting the null hypothesis when  is true, therefore  should be 

rejected. The power of the test is calculated by counting the number of rejections of  

when the underlying populations have unequal variances. 

0H

1H 0H

0H

 

 

3.14 The Computations 

 

The computation of probability of type I error and power of 10 statistics under 12 

different configurations (3 sample sizes and 4 ratios of variances) were completed using 

Gauss. The structure of the program is as follows: 
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1. Population distribution from underlying distributions 

Every distribution of population was created in our Gauss program either by 

implementing its built-in functions (normal distribution) or by utilizing the 

transformed distribution technique that was discussed in chapter 3. Two equal-sized 

random samples were drawn following the distribution. 

 

2. Proportion of sample variance 

The sample variances of two groups sampled from two populations were in ratio 1:1 

(  is true); 1:2, 1:3 and 1:4 (  is true). This is implemented by multiplying the 

second sample with a scalar (1.414, 1.732 and 2).  

0H 1H

 

3. The test statistics and power 

The ten test statistics (Levene’s test, Levene/Med test, Count Five, Bartlett’s test, 

Bhat’s modification of Bartlett’s test, F test, Shoemaker’s modification of F test, two 

bootstrap tests and permutations) were calculated using the definitions in chapter one. 

We conducted 10,000 iterations under each configuration. The proportion of rejection 

of among a total of 10,000 iterations is the power of the test when  is true, 

otherwise it is the type I error. 

0H 1H

 

 Table 2 the Experiment Plan 

Population 
Distributions 

Sample 
Size   1n 2n

Population 
variances ratio 0H  1H  Result 

20, 20 1:1 
1:2 
1:3 
1:4 

2
1σ :  = 1:1 2

2σ 2
1σ :  ≠ 1:1 2

2σ Type I error 
Power 
Power 
Power 

40, 40 1:1 
1:2 
1:3 
1:4 

2
1σ :  = 1:1 2

2σ 2
1σ :  ≠ 1:1 2

2σ Type I error 
Power 
Power 
Power 

Normal 

60, 60 1:1 
1:2 
1:3 
1:4 

2
1σ :  = 1:1 2

2σ 2
1σ :  ≠ 1:1 2

2σ Type I error 
Power 
Power 
Power 

Other 
Distributions 

… … … … … 
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4 SIMULATION RESULTS 

 

Figure 13 – Figure 26 show the type I errors and powers when various distributions were 

studied under different sample sizes and variances. The parameters of the distributions 

were listed in chapter three. 

 
2χ  Distribution (Figure 13) 

When the underlying population distribution is the  distribution, most tests do not 

work well under smaller sample sizes ( < 40) and smaller variance ratios (1:2, 1:3). 

Lev/Med and Bootstrap2 give slightly higher powers than other tests. When sample size 

is small ( ≤ 20), Lev and Bootstrap2 are recommended since they are more powerful than 

all others. Bootstrap2 has slightly higher type I error and power than Lev/Med. The 

modified tests lost power compared to original tests. Permutation has higher power than 

Count Five. Lev/Med works better when larger sample size is considered.  

2χ

 

US  Johnson Distribution (Figure 14) 

When the underlying population distribution is the  Johnson distribution, Levenes, 

Bootstrap2 and Permutation perform well under larger sample sizes ( > 20) and larger 

variance ratios (1:3, 1:4). The F test shows type I error above 0.25; in the mean time, 

Count Five gives much less than average power. Bootstrap2 shows slightly higher power 

than the other tests when the sample size is small ( ≤ 20). When the sample size is large 

( > 20), Levene and Lev/Med are recommended since they are powerful and control type 

I error better than Bootstrap2. The modified tests lose power again compared to original 

tests. Permutation has better performance (power) than Bhat, F-Shoemaker and Count 

Five. 

US

 

Extreme Value Distribution (Figure 15) 

When the underlying population distribution is the extreme value distribution, most tests 

perform well under larger sample sizes ( > 20) and larger variance ratios (1:3, 1:4). The F 

test, Levene and Bootstrap2 are the most powerful tests among them. However, the F test 
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has larger type I error, 0.14 – 0.17, than Lev and Bootstrap2. Lev/Med, Bhat and F-

Shoemaker lose power against their original version, which could be considered as a 

tradeoff between type I error and power of tests. All modified editions – Lev/Med, Bhat 

and F-Shoemaker – have lower type I error than their original versions. Permutation has 

low type I error (0.05) and relatively high power. When type I error is considered, the 

Permutation test is preferred. Count Five has the lowest power among all tests, thus it is 

not recommended. 

 

Half Normal Distribution (Figure 16) 

When the underlying population distribution is the Half Normal distribution, most tests 

perform well under larger sample sizes ( > 20) and larger variance ratios (1:3, 1:4). The F 

test, Levene and Bootstrap2 give slightly higher powers than other tests, however they 

produce higher type I error (0.05 vs. 0.1). When sample size is small ( ≤ 20), the F test, 

Levene and Bootstrap2 are recommended since they are 10% more powerful than all 

others. The modified tests lost power again compared to original tests. Permutation has 

the best balance between power and type I error when sample size is less than 40. 

Lev/Med works better when larger sample size is considered. Count Five works almost 

identically as other common tests. It presents slightly lower power when the sample size 

is small. 

 

Lambda Distribution (Figure 17) 

When the underlying population distribution is the Lambda distribution, most tests 

perform well under larger sample sizes ( > 20) and larger variance ratios (1:3, 1:4) except 

the F test and Count Five. The F test shows type I error above 0.25; in the meantime, 

Count Five gives much less than average power. Bootstrap2 shows slightly higher power 

than other tests but produces a higher type I error (0.1 vs. 0.05) when sample size is small. 

When the sample size is large ( > 20), Lev and Lev/Med are recommended since they are 

10% more powerful than all others and control type I error better than Bootstrap2. The 

modified tests lose power again compared to original tests. Permutation has better 

performance (power) than Bhat and F-Shoemaker.  
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Laplace Distribution (Figure 18) 

When the underlying population distribution is the Laplace Distribution, most tests 

perform well under larger sample sizes ( > 20) and larger variance ratios (1:3, 1:4) except 

the F testand Count Five. The F test shows type I error about 0.2; in the mean time, Count 

Five gives much less than average power. Bootstrap2 shows slightly higher power than 

other tests but produces a higher type I error (0.1 vs. 0.05) when sample size is less than 

40. When sample size is greater than 40, Lev, Lev/Med and permutation tests are 

preferred. 

 

Location Contaminated Distribution (Figure 19) 

When the underlying population distribution is the Location Contaminated Distribution, 

most tests perform well under larger sample sizes ( > 20) and larger variance ratios (1:3, 

1:4) except Count Five, since this distribution is pretty much normal. Bootstrap2 delivers 

the most power especially when sample size is small, but its type I error is still larger than 

5%. When type I error is considered, Permutation and Lev are recommended. 

 

Logistic Distribution (Figure 20) 

The simulation result of Logistic Distribution is similar to that of Location Contaminated 

Distribution. The F test is as powerful as Bootstrap2 and all other tests perform almost 

identically except Count Five. The Count Five test is far less powerful than others. The 

modified versions of tests lose power compared to their original ones. 

 

Log Normal Distribution (Figure 21) 

When the underlying population distribution is the Log Normal Distribution, the F test 

and Lev failed to control type I error. Bootstrap2 has better power when sample size is 

less than 40. Lev/Med is preferred when type I error should be seriously controlled. 

Lev/Med gains power faster than Bootstrap2 as sample size increases.  All other tests 

control type I error well but lack power. This distribution has an extremely large kurtosis.  

 

BS  Johnson Distribution (Figure 22) 
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When the underlying population distribution is the  Johnson Distribution, most tests 

perform well under larger sample sizes ( > 20) and larger variance ratios (1:3, 1:4). Bhat 

and F-Shoemaker tests are conservative and have relatively low power. The F test, Lev, 

Bootstrap2 and Count Five show the best performance when sample size is small. We 

were surprised to see the F test controls type I error well and Count Five test shows high 

power also under this distribution. The  distribution under these parameters is skewed 

with low kurtosis. 

BS

BS

 

Student T Distribution (Figure 23) 

When the underlying population distribution is the Student T Distribution, once again 

Lev, Lev/Med and Bootstrap2 show the best performance. Type I error is under control 

and high power is presented. Bhat and Permutation give moderate results; they show 

moderate power under all situations. F-shoemaker and Count Five give the lowest power 

and they are not preferred. The F test presents much higher type I error than all other tests. 

(0.25 vs. 0.05) 

 

Tukey Distribution (Figure 24) 

When the underlying population distribution is the Tukey T Distribution, Bootstrap2 

shows the best performance. The F test shows highest power and also the highest type I 

error. Bootstrap2 has a slightly higher type I error and higher power than the others.  

 

Weibull (0.5) (Figure 25) 

When the underlying population distribution is the Weibull(0.5) distribution, the F test, 

Lev and Bootstrap2 are the most powerful tests among ten tests under all situations. 

However, the F test and Lev have larger type I errors (0.25 – 0.6) than Bootstrap2. All 

other tests show low power in this simulation. Lev/Med, Bhat and F-Shoemaker lose 

power against their original versions.  No test provides a satisfactory performance under 

this high kurtosis distribution. 

 

Normal (Figure 26) 

Simulation result of Normal distribution is provided as a reference to all distributions.
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Type I Error and Power of tests. X axis shows variance ratios and sample sizes. 
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Figure 13 Simulation Result  Distribution 2χ
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Figure 14 Simulation Result  Distribution US
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Figure 15 Simulation Result Extreme Distribution 
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Figure 16 Simulation Result Half Normal Distribution 
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Lambda
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Figure 17 Simulation Result Lambda Distribution 
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Figure 18 Simulation Result Laplace Distribution 
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Figure 19 Simulation Result Location Contaminated Distribution 
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Figure 20 Simulation Result Logistic Distribution 
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Log Normal 
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Figure 21 Simulation Result Log Normal Distribution 
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Figure 22 Simulation Result  Distribution BS
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Figure 23 Simulation Result Student T Distribution 
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Figure 24 Simulation Result Tukey Distribution 
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Weibull 
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Figure 25 Simulation Result Weibull Distribution 
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Figure 26 Simulation Result Normal Distribution 
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5 CONCLUSIONS 
 

 

 The Bootstrap method shows a consistent performance. For the nominal type I 

errors of 0.05 in the simulation, the empirical type I errors are at most 0.1 and 

its power is always among the highest.  

 

 Levene’s test achieves its best performance when the underlying distribution 

has low kurtosis. 

 

 All modified editions – Lev/Med, Bhat and F-Shoemaker – have lower type I 

error than their original versions. 

 

 Except F test and Bartlett’s test, all other tests control type I error pretty well. In 

the meantime, the F test and Bartlett’s test present exceptionally high power in 

simulations. However, they cannot be compared with the others because of their 

poor control of type I error. Considering their high probability of type I error, 

these two tests actually reject most situations.  

 

 Bootstrap and Lev/Med keep the best balance between type I error and power of 

the test. Bootstrap works slightly better at smaller sample sizes ( ≤20), Lev/Med 

has a better control of type I error (4% vs. 10%). 

 

 The Permutation test and Lev/Med are the two best choices when strict control 

of type I error is required. Lev/Med has a slightly higher power than the 

Permutation test. 

 

 No tests work well under high kurtosis distribution. 

 

 The Count Five method is simple but its performance is very poor when kurtosis 

of distribution is not very small (< 3.0). 
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