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ABSTRACT

An Analysis of Nicotine Exacerbation of Reductions in PPI in a Rodent Model of   

Schizophrenia

by

Amanda M. Maple

Prepulse inhibition (PPI) is an operational measure of sensorimotor gating and is known to be 

reduced when the dopamine D2 receptor is activated. We used a rodent model of psychosis in 

which increases in dopamine D2 receptor sensitivity are produced through neonatal quinpirole (a 

dopamine D2 / D3 agonist) treatment to rats. Rats were administered quinpirole (1mg/kg) or 

saline from postnatal day (P) 1-21. Rats were raised to adulthood and tested on PPI. Results 

showed that neonatal quinpirole treatment produced a significant reduction in PPI, and nicotine 

exacerbated this reduction. This reduction was partially blocked by the nicotinic antagonist 

mecamylamine. Brain tissue was analyzed for regulators of G-protein signaling (RGS) and 

results showed that neonatal quinpirole significantly decreased RGS9, but increased RGS17 as 

compared to controls. These results appear to indicate that the G-protein couples more efficiently 

to the D2 receptor, and nicotine exacerbates PPI deficits in D2 receptor-primed rats.
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CHAPTER 1

INTRODUCTION

Schizophrenia

      Schizophrenia is a complicated disease that has puzzled scientists since its first classification 

by Emil Kraepelin in 1896. The disease, which he named dementia praecox, was characterized 

by an early onset and was followed by progressive deterioration of the mind. In 1911, Eugen 

Bleuler introduced the term schizophrenia, meaning “split mind.” Bleuler believed that 

schizophrenia was a split between the emotional and intellectual aspects of the person. He also 

concluded that the four main symptoms of schizophrenia were impaired association of ideas, 

disorder affectivity, marked ambivalence, and autism (Stotz-Ingenlath, 2000). Today, 

approximately one percent of the general population is diagnosed with schizophrenia. This 

disease has been difficult to study because there are many different aspects and characteristics of 

the disease. Of those patients diagnosed with schizophrenia, it would be difficult to find one 

common behavioral characteristic in every patient (Andreasen, 1999). The DSM-IV has six 

diagnostic criteria, with many different subtypes within those six criteria. For an individual to be 

diagnosed with schizophrenia, a person must display two or more of the characteristic symptoms 

for a 6-month period. It is rare to find a person who displays all of the symptoms of the DSM-IV 

symptomology for schizophrenia (Berenbaum & Oltmanns, 1992). However, an extensive body 

of research has shown that humans with schizophrenia show a significant deficit in their 

sensorimotor gating of auditory stimuli (Braff et al., 1978; Swerdlow et al., 2005).

      Disruptions in cognition and processing of sensory information are two of the characteristics 

of schizophrenia.  Since the sensory and attention deficits were clinically observed in humans 

with schizophrenia by Bleuler and Zinken in 1952 (as cited in Geyer, Krebs-Thomson, Braff,  & 
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Swerdlow, 2001), researchers have been attempting to determine the specific brain regions and 

underlying mechanisms responsible for the behavioral disruptions known to be present in 

schizophrenia. Researchers have also explored how different drugs interact with specific 

mechanisms and brain regions that are known to be involved in the disease (2001). The 

experiments described will focus on a rodent model of schizophrenia and will analyze auditory 

sensorimotor gating deficits and how nicotine, a commonly abused drug in the population of 

humans with schizophrenia, affects auditory sensorimotor gating deficits. Finally, we will 

analyze genetic mechanisms of these behavioral impairments through analysis of genetic 

transcripts known to regulate G-proteins, which are involved in dopaminergic cell signaling.

Sensory Disruption in Schizophrenia

      McGhie and Chapman (1961) were the first to find that early onset of humans with 

schizophrenia had difficulties with sensory perception and attention. One way in which 

perception and attention is analyzed in humans with schizophrenia is through sensorimotor 

gating. Sensorimotor gating is the ability of neurobiological networks to transmit selectively 

incoming auditory stimulus to the brain and by filtering out irrelevant stimuli (Birbaumer & 

Schmidt, 1996). This mechanism protects the brain from too much information entering the 

sensory system and possibly overloading sensory systems, which would produce deficits in 

attention and sensory perception. In humans with schizophrenia, one of the more prevalent 

findings in this research literature is that auditory sensorimotor gating is not functioning 

properly, therefore, causing sensory overload in the auditory sensory system (Geyer et al., 2001). 

Interestingly, auditory sensorimotor gating deficits have not only been shown in humans with 

schizophrenia but also in the relatives of humans with schizophrenia, suggesting a hereditary 

basis of this type of sensory impairment (Ringel, Heidrich, Jacob, & Fallgatter, 2004). Ojeda et 
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al. (2002) concluded that although specific behavioral deficits in schizophrenia improve with 

treatment, auditory sensorimotor gating deficits remain persistent in humans with schizophrenia. 

Therefore, it has been suggested that auditory sensorimotor gating deficits are a fundamental 

characteristic of the disease (Geyer et al., 2001).

      The deficit in auditory sensorimotor gating may be related to the dysfunction in the 

dopaminergic system known to be present in schizophrenia (Leonard et al., 2000) because other 

diseases that are related to dopaminergic dysfunction such as Huntington’s disease, Parkinson’s 

disease, Tourette’s syndrome, and obsessive-compulsive disorder are also all known to produce 

deficits in auditory sensorimotor gating (Geyer et al., 2001; O’Neill, Rieger, Kem, & Stevens,

2003; Swerdlow et al., 2002).

Animal Models of Psychosis

      One of the most common ways of researching a disease is to model the same aspects of the 

disorder in animals. Animal models may be used to study the cause of a disease or to compare 

treatments for a particular disease but may not be able to predict the progression of the disease 

over a lifetime.  However, animal models may be useful for development and discovery of new 

and more effective treatments for neurological disorders (Woodruff & Baisden, 1994).  In many 

cases, animal models of neurological disease and dysfunction are used to model one aspect of the 

disorder, whether it be behavioral, neurochemical, or neuropathological. This can be extremely

useful because it can be informative about the contribution of this behavioral or neurochemical 

abnormality to the disease or disorder, although the entire disorder is not modeled in the animal. 

McKinney and Bunney (1969) proposed three different criteria for validating animal models of 

human psychopathology. The three criteria are similarity of inducing conditions, similarity of 

behavioral states, and similarity of common mechanisms in an animal model. They concluded 
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that the higher number of criteria the model has means that the model has increased validity.  

Regardless, a rodent model may still be informative even without meeting all the criteria 

(Woodruff & Baisden, 1994). Therefore, an animal model of psychopathology could be used for 

examination of the disease even though it did not contain all aspects of the disease.

      The importance of animal research is evident in the ability to generalize findings using

animal subjects to the human health condition. Generalization of research on schizophrenia from 

animal to human is possible through using similar behavioral tasks with specific task demands, 

testing parameters, and mechanisms of the behavioral deficits involved in the disorder. Gage, 

Bjorklund, Isacson, and Brundin (1985) defined animal models of diseases as correlative, 

analogous, or homologous. A correlative animal model is one in which the animal would respond 

in a similar way to a drug treatment. When dealing with neurological disorders, an analogous 

animal model is used in which one or more anatomical regions of the central nervous system are 

damaged similar to those in the human disease. A homologous animal model is when the same 

disease is found in the animal as in the human, but it is often difficult to find with most diseases. 

One of the advantages of using auditory sensorimotor gating is that the testing parameters used 

on human patients can easily be modeled in rats.

Rodent Models of Schizophrenia

      The primary animal models of schizophrenia that have been used are the neonatal 

hippocampus excitotoxic lesion model, the phencyclidine (PCP) model, the amphetamine model, 

and the dopamine agonist model. The most prolific rodent model of schizophrenia that has been 

studied is the neonatal hippocampal lesion model, which has been used in both rats and 

monkeys. One reason this model has been so heavily used is because the functional and 

structural changes produced by neonatal hippocampal lesions in both the rodent and primate 
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hippocampus are similar to the neuropathology found in humans with schizophrenia. The goal of 

this model is to damage regions of the hippocampus that project to the prefrontal cortex, 

primarily the ventral hippocampus (VH) and ventral subiculum (Lipska, 2004). In rats, neonatal 

VH lesions produce relatively small behavioral changes in young adolescents (postnatal day [P] 

35); however, increases in behavioral changes are observed as they reach adolescence and 

adulthood. Younger adolescents VH lesioned rats are less social than controls but otherwise do 

not demonstrate any other behavioral deficits. However, later in adults, VH lesioned rats display 

behaviors thought to be linked to an increase in mesolimbic and nigrostrial dopamine 

transmission, resulting in motor hyperresponsiveness to stress and stimulants and enhanced 

stereotypic motor behavior (Lipska). They exhibit enhanced sensitivity to glutamate antagonists 

such as MK-801 (dizoclipine) and PCP. In addition, they demonstrate deficits in sensorimotor 

gating, latent inhibition, social behaviors, and working memory (Chambers, Moore, McEvoy, & 

Levin, 1996; Flores, Barbeau, Quirion, &  Srivastava, 1996; Lipska, Jaskiw, & Weinberger, 

1993; Wan, Hartman, & Corbett, 1998). Appearance of these abnormalities in later adolescence 

and adulthood highly parallels the experiences of human patients with schizophrenia, who 

generally do not experience deficits until adolescence (Lipska).

      Neonatal Hippocampal Lesion Model. One problem with the neonatal hippocampal lesion 

model is that to successfully lesion an area of the hippocampus a drug such as N-methyl-D-

aspartic acid (NMDA) is injected into the brain causing excitotoxicity. In excitotoxicity, high 

levels of calcium ions enter the cell increasing the number of enzymes; these enzymes go on to 

damage the cell structures, therefore, causing apoptosis of the cell. Although a valuable model of 

schizophrenia, actual apoptosis is not found in humans with schizophrenia (McGlashan, 2006). 

However, there are physiological abnormalities in the brain of humans with schizophrenia such 
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as an increase in ventricles (Antonova, Sharma, Morris, & Kumari, 2004). While there are many 

anatomical similarities between the VH lesioned rats and those persons who have schizophrenia, 

there are physiological differences. For example, in the VH lesioned rat’s prefrontal cortex there 

are increases in synaptic densities, number of branches, and dendretic lengths. However, human 

patient with schizophrenia have decreases in dendritic connectivity because of a decreases in 

synaptic densities, number of branches, and dendretic lengths. The neonatal VH model can be 

hypothesized as a partial analogous rodent model of schizophrenia from which valuable 

information has been obtained.

      PCP Model. Phencyclidine (PCP) was first developed in 1956 and was used as an anesthetic 

in humans before being abandoned because of serious psychiatric reactions. These serious 

reactions included agitation, excitement, delirium, disorientation, and hallucinatory phenomena. 

These reactions mimic several aspects of schizophrenic symptomology in normal volunteers. 

Sams-Dodd (1999), in a series of studies, administered PCP to rats to attempt to replicate both 

positive and negative symptoms of schizophrenia. In a social interaction test, it was concluded 

that PCP dose-dependently induces stereotyped motor behavior and social withdrawal, which 

positively correlates with both negative and positive symptoms of schizophrenia. PCP interacts 

in the brain by blocking the PCP binding site located on the glutametergic NMDA receptor, 

acting as an inverse agonist. In this animal model, PCP causes a hypoactivity of the NMDA 

receptor that is also found in human schizophrenics. The effects of PCP were selectively reduced 

with antipsychotic drug treatment; however, drugs lacking antipsychotic effects have not been 

shown to alleviate PCP-induced behaviors (Sams-Dodd).

      Amphetamine Model. The rat amphetamine (AMPH) induced model of schizophrenia

depends on the ability of a high dose of amphetamine or withdrawal from amphetamine to causes 
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increased sensitization of dopamine receptors in the brain. The decision to administer AMPH to 

rats to produce a rodent model of schizophrenia was concluded after the reaction of AMPH in 

humans. Furthermore, humans who were given AMPH displayed persistent movement patterns, 

sudden outbursts of aggression and violence, and paranoid delusions (Julien, 2003). Therefore, in 

rats administration of AMPH generally causes increased psychomotor activity. These behaviors 

appear to be mediated by dopamine receptors in the mesolimbic dopamine system. These 

behaviors appear to involve dopaminergic activity in the caudate nucleus and putamen of the 

basal ganglia (Julien). In humans, during withdrawal from amphetamines persistent paranoid 

symptoms and disruptions in latent inhibition (LI) have been reported.

      LI is a behavioral task in which a participant or animal is tested on responding to a 

conditioned stimulus (CS) that was repeatedly presented without reinforcement prior to the CS-

unconditioned stimulus (US) pairing. In the AMPH induced animal model of schizophrenia, 

disrupted LI mediated by dopamine produces and exacerbates increases in locomotor activity, 

which can be reversed by typical and atypical antipsychotic drugs. LI disruption is also found in 

humans with schizophrenia (Zuckerman, Rehavi, Nachman, & Weiner, 2003).  This LI 

disruption animal model produced by AMPH with positive symptoms is considered to have face, 

construct, and predictive validity (Zuckerman et al.).

      Dopamine D2 Receptor Priming Model. Finally, the dopamine (DA) agonist animal model of

schizophrenia has been used because it is considered to be both a correlative and analogous 

model of the disease. One proposed cause for schizophrenia is an increase in dopamine activity 

at the dopamine receptor. Many animal models of schizophrenia have attempted to create 

dopamine hyperactivity by acute administrations of pharmacological agents that produce 

dramatic increases in dopamine release such as phencyclidine or cocaine (Lacroix, Broersen, 



14

Feldon, & Weirner, 2000; Tilson & Rech, 1973). Although useful information is gained about 

the acute robust increase of dopamine in the brain and behavior, these models give little 

information about the long-term increases in dopamine activity, which is observed in the disease.

      Specific to the dopamine system, increased activation of the D2 receptor has been shown to 

play a major role in abnormal behaviors observed in schizophrenia, also drugs that enhance 

dopaminergic receptor function produce similar symptomology in humans (Castaneda, Becker, 

& Robinson, 1998; Davis, Kahn, Ko, & Davidson, 1991; Kokkindis & Anisman, 1980). 

Furthermore, effective antipsychotic drugs such as risperidone and olanzapine are antagonists of 

the D2 receptor. Research from Kostrzewa, Kalbfeisch, Perry, and Fuller (1994) has

demonstrated that quinpirole, a dopamine D2/D3 agonist, administered to rats from postnatal day 

(P) 1-11, 1-21, or 21-35 produces priming of the D2 receptor that persists throughout an animal’s 

lifetime. It is recognized that schizophrenia appears to be more than an abnormality in dopamine 

system functions, as other neurotransmitter systems have been implicated in this disease. 

However, several studies have shown that dopamine hyperactivity modulates other 

neutoransmitters including serotonin, norepinephrine, and acetylcholine as well as 

neurohormonal activity via the hypothalamic-pituitary axis (Cotter & Pariante, 2002; Crook, 

Tomaskovic-Cook, Copolov, & Dean, 2000; Leonard et al., 2002). This suggests that 

hyperactivity of the dopamine system produces modulation of other neurotransmitter or 

neurohormone systems that may also play a role in the behavioral deficits of the disease.

      Quinpirole induced long-term D2 receptor priming can be considered a valid animal model of 

schizophrenia because of the several consistencies found between the effects of neonatal 

quinpirole and data from the human schizophrenia literature:
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      1) Amphetamine administration to adult rats neonatally treated with quinpirole produce a 

robust increase in release of dopamine in the striatum (Nowak, Ryszard, & Kostrzewa, 2001). 

Also, studies using MRI and positron emission tomography (SPECT) imaging have shown that 

amphetamine administration produces a large increase in dopamine release in the striatum of 

humans with schizophrenia (Lavalaye, Booij, Linszen, Reneman, & Van Royen, 2001; Soares & 

Innis, 1999).

      2) Neonatal quinpirole treatments have been shown to produce long-term cognitive 

impairments (Brown, Gass,  & Kostrzewa, 2002). It has been well documented that mild to 

severe cognitive impairments are present in humans with schizophrenia; it has been suggested 

that cognitive impairment is a core feature of the disorder (Adler et al., 2000; Elvevag & 

Goldberg, 2002).

      3) Chronic treatment with the atypical antipsychotic olanzapine (trade name: Zyprexa) has 

been shown to alleviate cognitive deficits and long-term priming of the D2 receptor produced by 

neonatal quinpirole treatment in rats. Brown et al. (2004) have shown that chronic olanzapine 

treatment given twice daily in adulthood alleviates cognitive deficits produced by neonatal 

quinpirole treatment.

      4) Neonatal quinpirole treatments have been shown to produce neurochemical abnormalities 

in adulthood that are similar to observations made in humans with schizophrenia. Results from 

this laboratory have shown that neonatal quinopirole treatment produced a 36% decrease in 

choline acetyltransferase (ChAT) and significantly decreased nerve growth factor (NGF) 

expression in the hippocampus compared to saline controls in both early postweaning and adult 

rats (2004).
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      5) Neonatal quinpirole treatments have been shown to produce deficits in auditory 

sensorimotor gating using prepulse inhibition (PPI), different prepulse auditory intensities (73,

76, and 82 dB), and different interstimulus intervals between the prepulse and pulse (50, 100, 

and 150ms). Previous studies from this laboratory have shown that adult rats that received 

neonatal quinpirole treatment demonstrated PPI deficits as compared to controls. As previously 

mentioned, sensorimotor gating can be measured in humans and deficits in PPI, prepulse 

inhibition of perceived stimulus intensity (PSIPSI), and auditory P50 are considered hallmark 

characteristics of schizophrenia (Swerdlow et al., 2002).

      Nowak et al. (2001) have provided both the ability of quinpirole to induce long-term 

sensitization and insight into its mechanism of action. Long-term sensitization to DA is 

hypothesized to cause psychopathologies such as psychosis, mania, post-traumatic stress 

disorder, panic disorder, and addiction (Einat & Szechtman, 1993). Nowak et al. (2001) 

produced DA “priming” by administering neonatal treatments of quinpirole (50 μg/kg/day) to 

rats, from the 1st to 11th days after birth. DA sensititzation was confirmed behaviorally by an 

increase in quinpirole-induced yawning in adulthood. They concluded that AMPH (1.0 mg/kg, 

ip) acutely induced a five-fold increase in DA in the neostriatal in vivo microdialystate of those 

quinpirole- primed rats. It is believed that the behavioral sensitization to AMPH is because of

subsensitization of the ventral tegmental area (VTA) (A10) presysnaptic D2 autoreceptors, 

AMPH-induced enhancement of DA release, up-regulation of the DA transporter, and 

supersensitization of postsynaptic D2 receptors (2001). These are all areas that are primed by 

neonatal administration of quinpirole then activated by adulthood AMPH injections. The 

proposed study is an example of how quinpirole induced DA sensitization can increase dopamine 

levels when stimulants such as APMH are introduced in adulthood. These stimulant induced 
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dopamine increases can be generalized to human psychopathologies, which are believed to also 

have a sensitized dopamine system. A sensitized dopamine system would be a system that would 

have an increase in reaction to dopamine, specifically at the postsynaptic dopamine receptor 

(Kostrzewa et al.,1994).

Sensorimotor Gating Testing

      Three different types of behavioral tasks have been used to test sensorimotor gating: Prepulse 

inhibition (PPI), Prepulse inhibition of perceived stimulus intensity (PPIPSI), and the P50 

auditory evoked potential conditioning testing paradigm (Braff et al., 2001; Mickey & Dalack, 

2005; Swerdlow et al., 2005).

Prepulse Inhibition

      The prepulse inhibition (PPI) task has been performed in both humans and animals using 

very similar parameters.  When used for auditory sensorimotor gating, PPI is a task in which the 

subject is given a startling auditory stimulus (115-120dB) that is preceded by a weaker intensity 

auditory stimulus (73-82dB). The dependent measure is the subject’s ability to inhibit a startle 

response to the startling stimulus when the prepulse precedes the startling stimulus.  A startle 

response is defined as any movement that happens as a result of the auditory stimulus. This 

inability has been determined to be an adequate measurement of sensorimotor gating deficit 

because the task involves the inhibition of the startle response (Swedlow et al., 2001). PPI 

deficits, such as the inability to inhibit the startle response, have been associated with thought 

disorder, distractibility, positive and negative symptoms, and early onset of schizophrenia (Braff

et al., 2001). Braff et al.(1978) were among the first researchers to demonstrate that humans with 

schizophrenia have a deficit in PPI when compared to controls. Therefore, PPI is both an animal 

and human behavioral task of sensorimotor gating.
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PPIPSI and the Auditory P50

      Helen Peak (1939) first developed “pre-pulse inhibition of perceived stimulus intensity” 

(PPIPSI) for testing auditory gating deficits (Swerdlow et al., 2002). PPIPSI is a direct report of 

the perceived intensity of a second stimulus in the presence and absence of a pre-stimulus. Under 

correct conditions, participants report that they perceive an intense abrupt stimulus e.g. a 118 dB 

noise burst, a 40-psi air puff, or a 170 V cutaneous shock to be less intense if it is preceded by a 

weak prepulse (2002). Humans with schizophrenia will react to the second shock or pulse to be 

at its actual dB or V level, therefore, not factoring the first prepulse as does a control (2002). The 

PPIPSI testing has not been drastically modified since its original conception in 1939. Whereas 

the PPIPSI test for sensory gating is self-assessment, the P50 paradigm is a more precise 

physiological assessment of the sensory gating deficits.

      The dual click P50 paradigm is an electrophysiological technique used to examine gating 

mechanisms (Adler et al., 1982). The P50 is mediated by the first (conditioning) stimulus (S1), 

which activates an inhibitory system that reduces the response to the second (test) stimulus (S2). 

Therefore, the magnitudes of these electrical signals are measured by the P50 event- related 

potential (ERP). The ERP is a positive-going auditory component that appears approximately 50 

ms after presentation of the stimulus. The ERP is measured by using an electroencephalograph 

(EEG) in humans. In a healthy participant, Adler et al. (1982) found a significant reduction in the 

ERP after the second test stimulus. Similar results corroborated the evidence for high 

suppression in healthy participants and a lack of suppression of the ERP in humans with 

schizophrenia (Waldo, Myles-Worsley, Madison, Byerley, & Freedman, 1995). Therefore, the 

lack of the inhibitory second ERP signal in the P50 paradigm has been suggested to result from 

too much information being sent to the somatosensory cortex in patients with schizophrenia, thus 
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strengthening the evidence for the sensory gating deficits found in schizophrenic patients.  The 

reduced sensory gating in the dual click paradigm seems to be a phenotypic marker for a genetic 

deficit because the deficit was also found in one half of the first-degree relatives of humans with 

schizophrenia (Waldo et al., 1995). The P50 dual click paradigm has also been used in rodent 

models of the schizophrenia where the dopamine system is increased in activity. Recordings 

from electrodes placed the in the animal’s brain have shown similar results because of the lack of 

suppression of the ERP after the second stimuli (Geyer et al., 2001).

Brain Involvement in Prepulse Inhbition

Brain Circuitry Mediating PPI

      PPI functioning has been shown to be mediated by complex circuitry in the brain. Recent 

research suggests that PPI is regulated by both sequential and parallel neural connections 

between the limbic cortex (including temporal cortex and medial prefrontal cortex), the ventral 

striatum, the ventral pallidum, and the pontine tegmentum (Swerdlow et al., 2001). Swerdlow et 

al. (2002) determined the areas and pathways of the brain involved in PPI functioning by 

producing chemical or physical lesions in specific areas of the brain. The two main neural 

elements that control PPI can be divided into those that mediate PPI and those that regulate PPI. 

The brain circuitry that mediates PPI is activated by the prepulse and then transmits the neural 

consequences of the prepulse in such a way as to inhibit some of the neural and behavioral 

results of the startling pulse (2002).  This mediating circuitry seems to be activated by the 

product of the velocity with which the prepulse or its neural consequences travel across the 

neural tissue, and the time period (prepulse interval) in which reflex inhibition is first observed. 

This time period seems to be 20 ms in the rat, depending on specific testing conditions (Ison, 

Taylor, Bowen, & Schwarzkopf, 1997; Swerdlow et al., 2001). Fendt, Li, and Yeomans (2001) 
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describe the “primary” mammalian acoustic startle response (ASR) circuit that mediates PPI as 

including several connections linking the auditory nerve, brain stem, and the spinal motor 

neurons.

      Currently, there are no studies that provide convincing evidence for or against any one 

specific pathway that mediates PPI. However, there is evidence that whatever path is traveled by 

the prepulse signal, it is capable of inhibiting the startle by neural elements contained within the 

pons or brainstem (Davis & Gendelman, 1977). Therefore, the brain circuitry mediating PPI is 

involved with the uptake of the neural impulse of the prepulse and the subsequent startle to the 

prepulse.

Brain Circuitry Regulating PPI

      The brain circuitry that regulates changes in PPI involves the mediating circuitry’s impact of 

the prepulse on the pulse. This regulating circuitry can best be described as a tonic “thermostat” 

influence on the mediating circuitry. This “thermostat” can be adjusted by changes in the 

regulatory circuitry imparted by affective or attentional states, by pharmacological influences, or 

by neuropathological changes (Swerdlow et al., 2001). There is a substantial amount of 

information about the regulation of PPI by the forebrain circuitry; however, there is still 

disagreement in the precise regulating circuitry of PPI because so much of the brain is involved 

(Geyer et al., 2001; Soares & Innis, 1999; Swerdlow et al., 2001).

      Changes in regulating PPI functioning are observable after experimental manipulation of 

three “limbic cortical” subregions in the rat: the hippocampus (HPC), the prefrontal cortex 

(PFC), and the amygdala. Activity in these limbic cortical areas regulates PPI behavior in part 

because of their subcortical projections to the nucleus accumbens (NAC). Lesions of these brain 

areas disrupt PPI and may be relevant to the neonatal hippocampal lesion model of schizophrenia
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in that there is pathology amongst these connections in schizophrenia. Therefore, the functioning 

of these areas determines the animal’s ability or inability to inhibit the startle response to the 

pulse in PPI task.

Brain Areas in PPI

      Hippocampus. Findings have shown that PPI is significantly reduced in patients with 

temporal lobe epilepsy with psychosis compared to temporal epiletpic patients without psychosis 

(Morton et al., 1994). The hippocampus is a structure in the temperoral lobe. In animal studies, 

carbachol, a cholinergic agonist, infusion into the hippocampus disrupts PPI of both acoustic and 

tactile startle suggesting that the hippocampus modulation of PPI is not modality-specific (Caine 

et al., 1991). Along with the hippocampal cholinergic substrate, hippocampal glutamatergic 

activity appears to regulate PPI; infusion of the glutamate agonist NMDA into the ventral 

hippocampus profoundly reduces PPI in rats, and this effect is reversed by co-infusion of the 

NMDA agonist AP5 (Wan et al., 1998). The hippocampal regions that affect PPI performance 

through the gluatamatergic system appear to be more localized to the regions of the ventral 

subiculum and entorhinal cortex (Cain, Geyer, & Swerdlow, 1991). The areas of the 

hippocampus that affect PPI performance through the cholinergic system seem to include the 

dentate gyrus, ventral subiculum, and regions of the hippocampus proper.

      Swerdlow et al. (2001) suggest that hippocampal damage can modify the PPI-disruptive 

effects of dopaminergic activation. Specifically, ibotenic acid lesions of the ventral hippocampus 

in adult rats result in the delayed development of “supersensitivity” to the PPI-disruptive effects 

of the DA agonist apomorphirne. When hippocampal lesions are made in 7-day-old rats, 

apomorphine-supersensitiviy is not evident until post-puberty, consistent with existing 

developmental models for the delayed emergence of the underlying pathophysiology of 
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schizophrenia (Weinberger, 1987). These findings suggest strong evidence for PPI functioning in 

the hippocampus and specific neurotransmitters in the hippocampus.

      Prefrontal Cortex. The prefrontal cortex (PFC) in rats seems to regulate PPI in a manner that 

parallels the proposed role of reduced prefrontal cortex dopaminergic activity in schizophrenia 

(Csernansky, Murphy, & Faustman, 1993). PPI functioning is reduced by manipulations that 

decrease frontal cortex dopaminergic  “tone,” such as depletion of frontal cortex dopamine by 

infusion of 6-hydroxydopamine or intra-PFC infusion of D1 or D2 agonists (Ellenbroek, Budde, 

& Cools, 1996). Furthermore, it has been proposed that reduced prefrontal cortex dopamine 

transmission disrupts PPI via disinhibition of descending glutamatergic fibers that result in 

subcortical increases in DA transmission in the nucleus accumbens. Zavitsanou et al. (1999) 

concluded that the cognitive disturbances observed in schizophrenia are mediated by functional 

over activity of the mesolimbic DA projection system and/or functional under activity of the 

mesocortical DA system, which both involved the PFC area of the brain.

      Amygdala. The amygdala was considered important in PPI functioning after Decker, Curzon,  

and Brioni, (1995) found that a large radio frequency lesion of the amygdala significantly 

reduced PPI in rats. This finding was confirmed by Wan and Swerdlow (1996) who 

demonstrated that small cell-specific quinolinic acid lesions of the basolateral amygdala potently 

reduced PPI. It has also been discovered that electrical kindling or intra-basolateral amygdala 

infusions of either picrotoxin or the NMDA receptor antagonist dizocilpine also disrupt PPI 

functioning in the amygdala (Fendt & Yeomans, 2001). This PPI disruption by intra-basolateral 

amygdala activation via either picrotoxin or dizocilpine appaear to be dopamine-dependent 

because the disruptions can be reversed by a high potency D2 antagonist haloperidol. Dopamine 

reduces PPI performance via direct effects on the subcortical dopamine transmission [e.g. in the 
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nucleus accumbens core subregion, which is innervated by both medial prefrontal cortex and 

basolateral amygdala] (2001).

      Nucleus Accumbens. The nucleus accumbens is directly involved in PPI functioning, 

possibly because of the projections received from the hippocampus, amygdala, and prefrontal 

cortex. Within the nucleus accubmens, this is a convergence of glutamatergic fibers from the 

hippocampus, medial prefrontal cortex, amygdala, and cingulate gyrus, and of dopaminergic 

fibers from cells in the ventral tegmentum (Swerdlow et al., 2001). The nucleus accumbens 

seems to be an integrated connection center connecting forebrain and limbic structures that 

control PPI. Also, several researchers have suggested that some of the effects of dopamine 

agonists on PPI may be mediated by increased dopamine activity in the nucleus accumbens

(Swerdlow et al.). First, low doses of apomorphine that do not decrease PPI in control rats 

potently disrupt PPI in rats that are altered to have “supersensitive” DA receptors in the NAC 

(Swerdlow et al.). Second, DA increase disrupts PPI functioning, which can then be reversed by 

depletion of DA in the NAC. Finally, PPI is disrupted in rats by D2 agonist quinpirole or DA into 

the NAC or anteromedial striatum (Swerdlow et al.). The effects of intral-NAC quinpirole, 

amphetamine or DA infusion on PPI are reversed by systemic treatment with D2 antagonist 

(Swerdlow et al.). Therefore, one can conclude that NAC appears to be an important area for the 

DA agonist-induced loss of PPI in rats and the main “hub” for PPI projects in the brain.

Neurotransmitters Mediating Prepulse Inhibition

      Although different neurotransmitters have been shown to mediate PPI performance, 

researchers have demonstrated that both dopamine and serotonin play primary roles in mediating 

a subject’s performance in PPI testing (Geyer et al., 2001). Norepinephrine (NE) or 

noradrenaline-along with dopamine has come to be recognized as also playing a large role in 
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attention and focus, which are a large part of PPI functioning. Swerdlow et al. (2006) have 

concluded that PPI is regulated by both norepinephrine and dopamine substrates that are 

neurochemically separable. However, the majority of the literature on PPI testing and sensori-

motor gating has focused on the role of dopamine in PPI.

Dopamine

      In the brain, there are five types of dopamine receptors: D1, D2, D3, D4, and D5. All dopamine 

receptors are G-protein coupled metabotropic receptors and can be excitatory or inhibitory to the 

post-synaptic neuron. Furthermore, the dopaminergic neurotransmitter consists of two families of 

receptors: the D1 and the D2.  The D1 and D5 receptors are members of the D1-like family, 

whereas the D2, D3, and D4 receptors are members of the D2-like family. A difference between 

the two families of receptors can be found in the mechanism of the G-protein. The activation of 

the D1-like family receptors is coupled to increases in cAMP and is typically excitatory, whereas 

D2-like activation reduces cAMP and is typically inhibitory (Zimmerberg & Weston, 2002). D1

receptors also activate adenylyl cyclase (AC) via their coupling to Gs/Golf , while D2 recptors are 

Gi/o linked and release Gαi/o and Gβγ subunits (Bonci & Woodward, 2005).  D2 receptors also alter 

intracellular signaling through Gβγ subunits, which can act at a number of intracellular targets 

(Neve, Seasmans, & Trantham-Davidson, 2004). The activity of the D2 receptor is regulated by 

desensitization, where continuous agonist application results in phosphorylation of the D2

receptor (e.g. by the G-protein receptor kinase GRK2), leading to uncoupling of receptors from 

G-protein activation and promotion of binding of arrestin and receptor internalization 

(Gainetdinov, Premont, Bohn, Lefkowitz, & Caron, 2004).

      Researchers have determined that the D2 receptor is perhaps the most sensitive to deficits in 

PPI by administering drugs that either act as agonists or antagonists at the D2 receptor (Geyer et 
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al., 2001; Mansbach et al., 1988; Ralph, Paulus, & Geyer, 2001; Swerdlow et al., 2001). Results 

have shown that blockade of the D2 receptor reduced PPI performance, and, interestingly, D2 

agonists have also been shown to disrupt PPI performance. The D2 receptor family has been 

determined to be the more influential on PPI performance than the D1 receptor family. This was 

concluded after administration of D1 agonists or antagonists such as SCH23390 had little effect 

on sensorimotor gating performance in rats (Ralph et al., 2001).

      Drugs that act as potent dopamine D2 agonists such as apomorphine produce reductions in 

PPI, and dopamine antagonists such as haloperiodol have been shown to eliminate PPI deficits 

produced by apomorphine (Mansbach, Braff, & Geyer, 1989). Also, atypical antipsychotics-such 

as clozapine, olanzapine, quetiapine, and risperiodone-also reduced the impairments of PPI 

testing (Sipes & Geyer, 1997; Swerdlow et al., 2001; Varty,  Baksi, & Geyer, 1999; Zhang, Bast, 

Feldon, & White, 2000). It is believed these typical and atypical antipsychotics are alleviating 

deficits because of their high affinity for the D2 receptor (Geyer et al., 2001). Mice genetically 

engineered to lack the DA transporter, the DA protein that aids in the reuptake of DA into the 

presynaptic neuron, have significantly more DA in the synaptic cleft and, therefore, also show 

deficits in PPI performance (Serdlow et al., 2001).

      Functionally, the D2 receptor can be located presynaptically acting as an autoreceptor 

regulating release of dopamine. Postsynaptically, the D2 receptor can exert a variety of functions, 

ranging from inhibiting of long-term depression at midbrain excitatory synapses, inhibiting of 

calcium channels, and controlling pacemaker activity and resting potential through activation of 

GIRK channels. These channels are G-protein-coupled inward rectifier potassium channels, 

which are activated by G-proteins (Hopf, Cascini, Gordon, Diamond, & Bonci, 2003). 

Physiologically, the D2 receptor is located in many areas of the central nervous system but is 
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primarily located in the substantia nigra, ventral tegmental, and striatum, which include the 

nucleus accumbens shell and core and the dorsal striatum, olfactory tubercule, and the pituitary 

gland (Missale, Nash, Robinson, Jaber,  & Caron, 1998).

      Interestingly, humans with schizophrenia have been shown to have changes in D2 receptor 

activity in the brain (Zimmerberg & Weston, 2002). It has been shown that dopaminergic 

hypoactivity in the frontal cortex and dopaminergic hyperactivity in the subcortical regions are 

major contributing factors to both positive and negative symptoms of schizophrenia (Haber & 

Fudge, 1997 as cited in Tizabi, Copeland, Brus,  & Kostrzewa, 1999). Schizophrenia is 

associated with enhanced dopamine receptor sensitivity (Seeman et al., 2005). Also, antagonism 

of the D2 plays a role in antipsychotic action. It is now well known that every antipsychotic drug 

must block D2 receptors with some affinity to be clinically effective for schizophrenia 

(Tollefson, 1996).

      Involvement of G-protein in Dopamine Receptor Signaling. The G-protein is a fundamental 

part in how the dopamine receptor works. A G-protein –linked receptor is named a G-protein 

because ligand binding causes a change in receptor conformation that activates a particular G-

protein. The activated G-protein then binds to a target protein such as an enzyme or a channel 

protein that changes the target’s activity. Exactly how the G-protein is activated is also a precise 

procedure that is essential to how the dopamine system functions. The major components of 

activation of a G -protein receptor is the conversion of GTP to GDP that determines the on or off 

state of the protein respectively.  The G-protein can be separated into two classes: the large 

heterotrimeric G-proteins and the small monomeric G-proteins. The large heterotrimic G proteins 

contain three different subunits, G alpha (Gα), G beta (Gβ), and G gamma (Gγ).
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      RGS Proteins. The G-protein is first activated when the ligand binds to a metabotropic 

receptor that activates a G-protein by causing the Gα subunit to release GDP and obtain GTP. 

The Gα and Gβγ subunits then separate and initiate signal transduction events. Subsequently, the 

GTP-Gα subunit hydrolyzes its bound GTP, converting the subunit back to its inactive GDP-Gα 

form. This entire process is regulated by regulators of G-protein signaling, referred to by the 

acronym (RGS). These RGS proteins negatively regulate G-protein signaling by accelerating the 

rate of GTP hydrolysis catalyzed by G-proteins. There are at least 20 well-characterized RGS 

proteins in humans (Traynor and Neubig, 2005), and more than 30 mammalian RGS proteins that 

have been identified (Shelat et al., 2006).  In the present study, we analyzed three different RGS 

proteins, RGS 4, 9, and 17, based on their involvement in dopaminergic receptor signaling and 

overall functioning of metabtropic receptors in the brain. Further, there has been very little 

information regarding the involvement of RGS proteins in behavioral tests known to be highly 

related to the dopamine system, such as prepulse inhibition. Finally, analysis of RGS proteins 

will provide important information as to whether the G-protein may be coupling to the dopamine 

D2 receptor more efficiently in rats neonatally treated with quinpirole. To this point, the only 

method in which D2 receptor priming has been determined in our laboratory has been through the 

yawning behavioral test.

      Depending on their cellular localization and their specific interaction with the different Gα 

protein subunits or intracellular effectors, the RGS protein may specifically regulate certain 

receptor-mediated signaling cascades (Taymans et al., 2004). Relevant to this project, some G-

protein signaling receptors, such as dopamine receptors, may themselves regulate the expression 

of certain RGS proteins. Taymans et al. (2004) have shown that specific dopamine receptor 

agonists and antagonists can regulate RGS2 or RGS4 mRNA in the rat striatum. For example, an 
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up-regulation of RGS2 has been reported when a D1 agonist or D2 antagonist was administered, 

whereas a D1 antagonist or a D2 agonist causes a down regulation of RGS2 and concurrent up-

regulation of RGS4. Furthermore, they concluded that RGS2 and RGS4 have a large role in the 

enhancement of D1 and D2 receptor signaling cascades. Specifically, drugs that are D2 agonists, 

such as quinpirole, act on presynaptic D2 receptors to regulate RGS2 proteins and on 

postsynaptic D2 receptors to regulate RGS4 proteins (2004). Therefore, it can be concluded that 

RGS4 has an influence on the mechanism of the G-protein receptor coupling at dopamine 

receptors and can be altered by dopaminergic agents.

      Stanwood, Parlan, and Levitt, (2006) have suggested that RGS4 and RGS9 have an important 

role in the functioning of the dopamine system. After prenatal cocaine exposure, persistent 

increases in RGS9 were observed in the frontal cortex of the same mice when analyzed as adults. 

Specifically, RGS9 was found in higher densities in the striatal regions of brain, which include 

dorsal striatum, ventral striatum, and olfactory tubercle. The high levels of dopamine receptors 

expressed in these brain areas appear to indicate that RGS9 has an active role in the dopamine 

system (Rahman et al., 2003). Cabrera-Vera et al. (2004) describe RGS9 as a specific regulator 

of dopamine receptor-mediated signaling. Results from this study have shown that RGS9 

regulates the dopamine receptor by reducing D2 dopamine receptor modulation of calcium 

channels. Rahman et al. (2003) also concluded that an over expression of RGS9 decreases 

sensitivity to the behavioral effects of dopamine agonists, whereas a decrease of RGS9 

significantly increases sensitivity to the behavioral effects of dopamine agonists.

      Finally, RGS17 is a member of the RZ family, which is strongly expressed in cerebellum and 

other brain regions. All RZ family members reduce dopamine- D2/Gi-mediated inhibition of 

cyclic adenosine monophosphate (cAMP) formation and abolish thyrotropin-releasing hormone 
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receptor/Gq-mediated calcium mobilization (Mao et al., 2004). RGS17 is a new RZ member that 

preferentially inhibits receptor signaling via Gi/o, Gz, and Gq over Gs to enhance cAMP-dependent 

signaling and inhibit calcium signaling. However, all research that has been performed thus far 

analyzing RGS 17 has been done in vitro with tranfected cells, and there is not any data as to 

whether RGS 17 is co-localized with dopamine D2 receptors in vivo. Therefore, RGS17 is 

believed to have a general role in the overall coupling of the G-protein through the regulation of 

cAMP formation.

      Therefore, RGS transcripts, specifically RGS4, 9, and17, have been shown to have a role in 

G-protein and dopamine transmission through regulation of the G-protein receptor in specific 

areas of the brain. Researchers are now examining certain psychopathologies, such as 

schizophrenia, in which G-protein receptors are also activated because of irregular dopaminergic 

receptor signaling (Erdely, Tamminga, Robers, & Vogel, 2006). For example, findings have 

shown a significant increase in RGS4 in the central nervous system of schizophrenics (Erdely et 

al., 2006; Morris et al., 2004; Prasad et al., 2005; Williams et al., 2004). As previously 

mentioned, RGS proteins have an active role in the dopamine system and analysis of these 

proteins highly related to the dopaminegic system should provide information as a possible 

mechanism of G-protein coupling in rats neonatally treated with quinpirole.

Nicotine

      Nicotine also has a measurable effect on cognition and sensorimotor gating in humans with 

schizophrenia (Faraday, Rahman,  Scheufele, & Grunberg, 1998). Heishman (1994) has reported 

that chronic administration of nicotine enhanced attentional processes in humans as well as in 

rats with cognitive deficits. Humans with schizophrenia are known to exhibit cognitive 

impairment (Elvevag & Goldberg, 2000). Various studies have shown that approximately 80% of 



30

patients with schizophrenia smoke cigarettes as compared to 20% of the general population. 

Leonard et al.(1998) reported that 25% of the smokers in the United States were mentally ill. It 

has also been observed that people with schizophrenia appear to extract more nicotine from each 

cigarette than normal smokers, possibly because of different inhalation patterns (Olincy, Young, 

& Freedman, 1997). Researchers hypothesize that humans with schizophrenia are smoking as a 

form of self-medication for cognitive deficits (Kumari & Postma, 2005).

      Some researchers believe that an increase in smoking may be because of certain 

antipsychotic medication (McEvoy,, Freudenreich, Levin, & Rose, 1995). Smoking has been 

shown to increase the metabolism of the typical antipsychotic haloperidol; whereas, the atypical 

antipsychotic clozapine appears to decrease the craving to smoke (1995). A hypothesis to explain 

this difference makes the proposition that medications interact in different ways with the 

nicotinic receptor in the brain. Although there is not a clear consensus concerning the interaction 

of antipsychotics with nicotine, there are numerous studies of how nicotine interacts, during 

sensorimotor gating testing in people with schizophrenia that are non-medicated. In humans 

nicotine has been found to alleviate sensorimotor gating deficits via the α7 nicotine receptor 

subtype. This receptor is believed to be playing a role in filtering auditory stimuli, which plays a 

major role in sensorimotor gating as tested by PPI.

      Nicotine Receptor. Nicotinic receptors, or nicotinic acetylcholine receptors (nAChRs), are 

ionotropic receptors that open ion channels in the cells’ plasma membrane. Similar to other types 

of acetylcholine (Ach) receptors, their opening is triggered by the neurotransmitter acetylcholine, 

but they are also opened by the Ach agonist nicotine (Siegel et al., 1999). There are many 

different subunits of the nicotinic receptor. These subunits belong to a multigene family (16 

members in humans), which make different combinations to form different nAChRs. These 
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receptors with highly variable kinetic, electrophysiological, and pharmacological properties 

respond differently to nicotine at different concentrations. Nicotinic receptors can also be found 

post-synaptically, such as the muscular nicotinic receptor that always functions post-synaptically. 

However, in the brain, the receptor can be found both post-synaptically (involved in classical 

neurotransmission) and pre-synaptically, where they can influence the release of other 

neurotransmitters (Giniatullin, Nistri, & Yakel, 2005). Functionally, nAChRs in the CNS are 

considered to be of a more modulatory influence on general neurotransmission.

      Activation of nicotinic receptors produces an increase of several neurotransmitters including 

dopamine (Wonnacott, 1997). Although nicotinic receptors can be located both pre- and post-

synaptically, it is assumed that they aid in the release of dopamine pre-synaptically by increasing 

calcium influx into the cell. Calcium enters the cell through the calcium channel, which is 

opened by activation of the nicotinic receptor. This influx of calcium causes the neurosecretory 

vesicles to move closer to the plasma membrane. This is where the vesicles will fuse to the 

plasma membrane and then be released into the synaptic cleft (Berg & Conroy, 2002). 

Furthermore, nicotinic receptor interactions with dopaminergic neurotransmission in mesolimic 

and nigrostriatal pathways have been suggested to be responsible for locomotor sensitization to 

nicotine (Clarke, 1990; Richardson & Tizabi, 1994). Nicotine is believed to alleviate deficits in 

cognitive functioning in people with schizophrenia because nicotinic receptors in the 

hippocampus may be involved in cognitive functions such as attentional processes (Freedman et 

al., 1997) and working memory function (Elvevag & Goldberg, 2000). However, as noted 

earlier, nicotine is a mediator of downstream neurotransmission including an influx of dopamine 

that may play a role in cognition.
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       The nicotinic receptor is believed to have many different subunits; however, only a few 

major subtypes on nAChRs have been identified. These include the α4β2 nAChR, which is 

relatively abundant in the CNS and constitutes over 90% binding of high affinity [3 H ]-cytisine 

binding in the rat brain (Barik & Wonnacott, 2006). The other major subtype of neuronal nAChR 

comprises 7 subunits, which are generally thought to form homomeric nAChRs in the CNS and 

peripheral nervous system. Therefore, the 7 receptor is one of the two most abundant nicotinic 

receptors found in the brain. Furthermore, a high number of synaptic 7- nAChRs have been 

found in the rat hippocampus, which is important in memory formation and relies on glutamate 

for excitatory signals (Berg & Conroy, 2002).

      Researchers have shown that people with schizophrenia have a low number of 7 nicotinic 

receptors. That could hypothetically be a partial explanation of the deficits in sensorimotor 

gating (O’Neill, Rieger, Kem, & Stevens, 2003). Specifically, the ability to inhibit the response 

to the second auditory stimulus has been correlated with the number of α7 nicotinic receptors in 

the hippocampus in mice (2003).  In receptor autoradiographic studies, a low number of 7 

nicotinic receptors were found in the postmortem brain of humans with schizophrenia. This low 

affinity was an approximate 50% decrease as compared to normal brain tissue (Leonard et al., 

2000). The specific areas of the brain with these low affinities were the hippocampus, cortex, 

striatum, and thalamus, which are all important in sensorimotor gating and other schizophrenic 

deficits in behavior.  However, these results have been consistently varied depending on tested 

dose ranges or particular expression of the receptors in different strains of species and strains 

(Schreiber et al., 2002). What has been concluded is that the 7 receptors do have an important 

role in the effect of nicotine in sensorimotor gating; on the other hand, studies have shown that 
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more than one type of nicotinic receptor is playing a role in the mechanism of sensory gating in 

conjunction with nicotine administration, such as the 4/2 nicotinic receptor.

      The main differences in 7 and 4/2 subtypes are the different levels of affinity of nicotine 

that differently affects these receptors. Nicotine has a higher affinity for the 4/2-receptor 

subtype, while nicotine has a lower affinity for the 7 receptor (Court et al., 1998). It has been 

hypothesized that low doses of nicotine disrupt and high doses enhance PPI performance in rats 

and mice (Schreiber, Dalmus, & De Vry, 2002). Nicotine’s lower affinity for the 7 receptor 

would suggest that lower does of nicotine would be activating that receptor, which could cause 

PPI deficits in rats. High affinity binding sites, 4/2, are located in the striatum, substantia 

nigra, and presubiculum, and 4/2 subunits were found in high levels in all thalamic nuclei 

(thalamus) (Ryan & Loiacono, 2000). Furthermore, 7, which has a lower affinity for nicotine, is 

located in the cerebral cortex and the hippocampus but not in the thalamus. Thus, both receptors 

likely play a role in PPI but likely play different roles based on their location in the brain and 

also may play different roles based on the dose of nicotine that is administered.

Gender Differences in Schizophrenia

      Women with schizophrenia demonstrate a later age onset and higher premorbid and overall 

functioning (Goldstein, 1988; McGlashan & Bardestein, 1990; Symanski & Hertz-Picciotto, 

1995). Women more often express affective symptomology and are more vulnerable to paranoia 

and hallucinations (Andia et al., 1995). Men more frequently exhibit flat affect and suffer from 

other negative or deficit symptoms (Symanski & Hertz-Picciotto, 1995). Although there is ample 

research that demonstrates gender differences in schizophrenia, there is very little information 

concerning whether there are gender differences in the impact of substance abuse in the 

schizophrenic population. Results of a recent study suggests that the higher overall functioning 
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observed in women with schizophrenia disappears with substance abuse (Gearon & Bellack, 

2000), and there does not appear to be a difference in functioning between substance abusing 

women and men with schizophrenia. Research has further suggested that women with 

schizophrenia may be particularly vulnerable to the negative effects of substance abuse, a finding 

consistent with substance abuse in the general population (Le Duc & Mittleman, 1995).

Gender differences are also observed in behavioral testing such as PPI. Many past studies using 

PPI have only used males because female testing results have been observed to fluctuate with 

menstral cycles. Females demonstrate a deficit in PPI compared to males, with lowest level of 

PPI scores, during the midluteal phase of menstrual cycle (Swerdlow, Hartman, & Auerbach,

1997).  In healthy participants, women have lower PPI scores than men (Kumari & Postma, 

2005), therefore, resulting in lower scores. The same is found in people with schizophrenia, with 

women with schizophrenia having lower scores on average (Kumari & Postma). However, 

women with schizophrenia still vary in their scores throughout the month, again possibly because 

of the influx of estrogen and other hormones that could offer some protection against these 

sensorimotor gating deficits. Women with schizophrenia still exhibit significantly less PPI than 

women without schizophrenia (Swerdlow, 1997).

Statement of Problem

      There are several unanswered questions in the current literature on the interaction of nicotine 

and PPI. First, in most PPI studies nicotine has been analyzed after acute administration, and 

there has been very little information on the effects of chronic nicotine on PPI. Second, most 

studies do not behaviorally test PPI over several days but test PPI in one day of testing 

(Swerdlow et al., 2001). The problem with these past studies is that PPI performance does 

significantly change over days in control animals, at least suggesting there may be learning of the 
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association between the prepulse, and the startle stimulus as learning is defined as a change in 

behavior due to experience. If there are significant changes, a key question is whether nicotine 

will affect PPI in later days of testing as compared to earlier days of testing and how that may 

compare within a rodent model of schizophrenia. This project is designed to analyze the effects 

of nicotine on PPI in a rodent model of schizophrenia.

      The first question is: Does the nicotinic receptor mediate the effects of nicotine on PPI in D2-

primed male and female rats? From the information collected in the first experiment, it is known 

that nicotine has an affect on PPI performance; however, nicotine affects many different 

neurotransmitters through different receptors. Therefore, by using a specific nicotinic antagonist, 

mecamylamine, it will be possible to test the hypothesis that PPI performance at the nicotinic 

receptor by blocking the behavioral deficits caused by nicotine in PPI testing.

Furthermore, this study is designed to further understand the role of the D2 receptor in the D2

primed rodent model of schizophrenia by analyzing the RGS genetic transcripts in areas of the 

brain specific to dopamine functioning.

      The second question is: What are the changes in genetic transcripts that code for the G-

protein that couples to the D2 receptor related to neonatal and adulthood drug treatments? 

Previous literature has stated that neonatal drug treatments of quinpirole permanently change the 

dopamine system, specifically the D2 receptor (Brown et al., 2004). The D2 receptor is a G-

protein linked receptor, which is mediated by G-protein signaling protein RGS, which are 

proteins that negatively regulate G-protein signaling. RGS proteins accelerate the rate of GTP 

hydrolysis catalyzed by heterotrimic G-proteins (Traynor & Neubig, 2005). Specifically, studies 

have shown a significant increase in RGS4 in the central nervous system in schizophrenia 

(Erdely et al., 2006; Morris et al., 2004; Prasad et al., 2005; Williams et al., 2004) The RGS 7 
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transcript will be further significantly increased by adulthood nicotine treatment. Therefore by 

analyzing RGS transcripts, there will be more experimental support that quinpirole causes 

genetic changes in the dopamine system.

Hypotheses

      Hypothesis 1. Neonatal quinpirole treatment will result in a reduction in PPI performance.

      Hypothesis 2.Adulthood nicotine treatment will exacerbate PPI reduction in rats neonatally 

treated with quinpirole based on the fact that nicotine enhances dopamine function, increases in 

dopamine function has been shown to reduce PPI performance.

      Hypothesis 3. We predict that sex differences will exist in PPI, with male rats demonstrating 

increased PPI performance as compared to female rats regardless of neonatal drug treatment. 

This prediction is based on past studies that have generally shown an improvement in PPI of 

male rats administered nicotine as compared to females (Acri,1994a; Acri, Brown, Saah, & 

Grunberg, 1995; Acri, Grunberg, & Morse, 1991; Acri, Morse, Popke, & Grunberg, 1994b)

      Hypothesis 4.The nicotinic antagonist mecamylamine will block the effects of nicotine on 

PPI in D2 -primed and non D2-primed rats.

      Hypothesis 5.There will be an increase in expression of the RGS4 transcript in the striatum 

and frontal cortex of rats neonatally administered quinpirole. There will be a decrease in RGS9 

because RGS 9 has an important role with the D2 receptor. There will be an increase in RGS17 

because RGS17 has an inhibitory role in dopamine signaling.
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CHAPTER 2

METHOD

Main Experiment 

Subjects

      Four males and six female Sprague-Dawley rats were purchased from Harlan, Inc. 

(Indianapolis, IN). When received at East Tennessee State University (ETSU), each female was 

housed separately in a plastic polycarbonate cage with a male for approximately 7 days then 

separated. The offspring of each mating pair, a total of six litters, were the subjects in this 

experiment. There were six subjects in each group in the experiment, with one animal from each 

letter assigned to each of four drug treatment conditions. Animals were kept in an Association 

for Assessment and Accreditation of Laboratory Animal Care (AAALAC) accredited climate-

controlled animal colony with a 12-hour on/off light/dark cycle, and all testing was preformed 

during the light cycle. The University Committee on Animal Care at ETSU approved all 

procedures for this study.

Materials

      Drugs. For neonatal drug treatment and verification of D2 receptor priming, quinpirole HCI 

(Sigma-Aldrich, St. Louis, MO) was used. For neonatal drug treatment, a 100 g/kg dose was 

used. The dose in neonatal drug treatment has been shown to produce priming of the D2 receptor, 

and the 100 g/kg dose has been shown to be sufficient to produce a significant increase in 

yawning in D2 -primed rats. Nicotine was used first in adulthood drug treatment, and a dose of 

0.5 mg/kg free base was administered. This dose was chosen as the preponderance of the 

research literature has shown that 0.5 mg/kg free base dose of nicotine is sufficient to produce 

sensitization to nicotine (Le Foll, Diaz, & Sokoloff, 2003).  Second, a nicotine antagonist, 
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mecamylamine (1.0 mg/kg), or saline was administered to animals before nicotine or saline 

treatment.

     PPI Apparatus. The PPI testing was performed in two sound-attenuated chambers on 

temporary loan from Bowling Green State University, which were originally purchased from San 

Diego Instruments (San Diego Instruments, San Diego, CA). The rats were placed in a 

cylindrical Plexiglas cylinder that were 10 cm in diameter and mounted on a platform inside this 

chamber located 25 cm below a high-frequency loudspeaker. A 70 dB white noise provided the 

background auditory stimulus. The animal was placed within the cylinder for testing. The animal 

was not restrained in these cylinders, and the animal was able to move and turn around within 

these cylinders. The startle response of the animal was measured through a unit mounted 

underneath the Plexiglas cylinder that sent an analog piezoelectric signal to the computer that 

was digitized and stored on the computer. Calibrations were performed before behavioral testing 

to maintain accurate acoustic stimuli presentation and mechanical-vibration measures.

Design and Procedure

      For analysis of yawning behavior, a 2 x 2 ANOVA was used, with sex (between subjects 

variable: male, female), and neonatal drug treatment (between subject variable: quinpirole, 

saline) as the two factors. For both the mean startle response and PPI, performance was analyzed 

on days 1, 4, 7, and 10, identical to the data analyses used by Culm et al. (2004a; 2004b) that 

also used a 10-day PPI testing procedure. The mean startle response was analyzed using a 2 x 2 x 

2 x 4 ANOVA with sex (between subjects variable: male, female), neonatal drug treatment 

(Between subjects variable: quinpirole, saline), adulthood drug treatment (between subjects 

variable: nicotine, saline), and day of testing (within subject variable: day of testing, four levels) 

as the four factors. The PPI collective data of mean startle response was initially analyzed using 
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a 2 x 2 x 2 x 3 x 4 ANOVA with sex (between subjects variable: male, female), neonatal drug 

treatment (between subjects variable: quinpirole, saline), adulthood drug treatment (Between 

subjects variable: nicotine, saline), prepulse auditory intensity (within subjects variable: 73 dB, 

76 dB, 82 dB prepulse) and day of testing (within subject variable: day of testing, four levels).  If 

there were any significant effects involving gender, then males and females were analyzed 

separately.  Any significant interactions involving auditory intensity of the prepulse resulted in 

separate ANOVAs on each prepulse auditory intensity. Fisher's Least Significant Difference test 

was used for any post-hoc comparisons.

      Neonatal Drug Treatment. The day of birth was counted as post-natal day 0 (P0). Beginning 

on P1, the rats received once daily i.p. injections of either quinpirole (1mg/kg) or saline for the 

next 21 consecutive days (see Table 1).  All animals were weaned from the female dam at P21 

and socially housed, two to three per cage. Food and water was available ad libitum.

      Yawning Procedure. Yawning is a measurement of D2 receptor sensitivity, and increased 

yawning is considered a manifestation of dopamine D2 receptor activation as it is a D2 receptor 

mediated behavioral event (Cooper, Rusk, & Barber, 1989). Therefore, dopamine D2 receptor 

supersensitization was verified through a single i.p. injection of quinpirole (100mg/kg) at 

approximately P65, and yawning behavior was observed for 1 hour. Two observers recorded 

yawning and were blind to the group the animals were assigned. During the yawning test, 

animals were placed in a cage without bedding because animals tend to gnaw on the bedding, 

and this behavior interferes with yawning. The number of yawns were counted for each animal 

for 1-hour period (see Table 1).

      Adulthood Drug Treatment. Those animals assigned to the nicotine treatment group began 

nicotine treatment before PPI to become sensitized to the drug. This was done for 5 days to 
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alleviate the hypoactive initial behavioral response that is the characteristic response to initial 

administrations of nicotine (Dwoskin, Crooks, Teng, Green, & Bardo, 1999). Adulthood nicotine 

treatment before PPI testing began from P66-P70.  On each day of PPI behavioral testing, each 

animal received either an injection of nicotine (0.5 mg/kg free base) or saline 15 minutes before 

PPI testing. 

      Mecamylamine (1.0 mg/kg) was administered to the animal during the 5-day nicotine 

sensitization period. During behavioral testing, mecamylamine or saline was administered 15 

minutes before nicotine or saline treatment. Fifteen minutes later, the animal was placed into the 

PPI chambers and tested (see Table 1).
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Table 1

Complete Drug Treatment Regimen and Research Design.  

Neonatal 

Drug 

Treatment

Yawning 

Behavioral 

Test

Adulthood drug 

treatment pre-PPI 

Testing

Adulthood  drug treatment 

during PPI testing

Drug 
Group

P 1-21 P 65 P 66-70 P 71-80

Q-SS Quin

1mg/kg

Quin

100 g/kg

Saline Saline Saline Saline

Q-SN Quin

1mg/kg

Quin

100 g/kg

Saline Nicotine

0.5 

mg/kg

Saline Nicotine

0.5 mg/kg

Q-MN Quin

1mg/kg

Quin

100 g/kg

Mec

1mg/kg

Nicotine

0.5 

mg/kg

Mec

1mg/kg

Nicotine

0.5 mg/kg

S-SS Saline Quin

100 g/kg

Saline Saline Saline Saline

S-SN Saline Quin

100 g/kg

Saline Nicotine

0.5 

mg/kg

Saline Nicotine

0.5 mg/kg

S-MN Saline Quin

100 g/kg

Mec

1mg/kg

Nicotine

0.5 

mg/kg

Mec

1mg/kg

Nicotine

0.5 mg/kg

Abbreviations: Quinpirole (Quin); Mecamylamine (Mec); Postnatal day(P). Note: Brain tissue 
from Groups Q-SS and S-SS were harvested for analysis of RGS transcripts at P81.
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            PPI Procedure. PPI testing began 6 days later after verification of D2 supersensitization 

via the yawning behavioral test. We used a SR-LAB startle reflex system (San Diego 

Instruments, San Diego CA) to measure the startle response. At the beginning of each trial, all 

animals were placed into the cylindrical animal enclosure and then were exposed to a 70 dB 

white noise for a five-minute acclimation period. The acclimation period was then immediately 

followed by a test session consisting of the randomized presentation of 35 trials. Of these 35 

trials, the first 5 trials of each daily session were pulse trials, which were used to habituate the 

animal to the pulse. This was also done to eliminate large individual differences that exist 

because of initial presentation of the pulse trials (unpublished observations). After the 

presentation of the five pulse trials, 30 trials were presented in which 15 were pulse trials and 15 

were prepulse trials. A pulse trial consisted of a high intensity startle auditory stimulus that was 

115 dB in auditory intensity and persisted for 40-ms. There were 15 prepulse trials that consisted 

of a prepulse auditory stimulus of 73, 76, or 82 dB intensity that was 20-ms in length given 100-

ms before the 40-ms 115 dB pulse. The mean response after each pulse and prepulse trial was 

then recorded for 100 ms after the stimulus was administered.

      RGS analysis. After behavioral testing was complete, brain tissue was harvested and snap 

frozen in cold isopentane and stored in a -80oC freezer in our laboratory (So Low, Cincinnati, 

OH). Brain tissue was sent to Vanderbilt University and RGS transcripts were analyzed using in 

situ hybridization technique. RGS transcripts 4, 9, and 17 in the striatum, frontal cortex, and 

nucleus accumbens of rats only neonatally treated with quinpirole or saline were examined. 

These three different RGS transcripts have been shown to be important in regulating the G-

protein of both D1 and D2 dopamine receptors. Slides that were treated for in situ hydridization 

were sent back to our laboratory for densitometry analysis
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CHAPTER 3

RESULTS

Prepulse Inhibition Overall Results

      An initial 2 x 2 x 2 x 3 x 4 ANOVA was performed to analyze significant differences across 

all days of testing and all auditory intensities. This ANOVA revealed a significant main effect of 

neonatal drug treatment, F(1,48) = 4.1, p < .04, adulthood drug treatment F(2,48) = 5.68, p < 

.006, and auditory intensity, F(11,48) = 28.03, p < .001. Significant two-way (Adulthood Drug 

Treatment x Auditory Intensity) interactions F(22,48) = 1.69, p < .02 (Sex x Auditory Intensity) 

F(11,34) = 1.80, p < .04 and (Sex x Adulthood Drug Treatment), F(2, 48) = 6.19, p < .004. 

Based on the significant interactions with auditory intensity as well as sex, we decided to analyze 

the different auditory intensities separately for males and females, which are presented below.

73 dB Prepulse Trials: Males

      The 73 dB prepulse results for males are presented in Figure 1. A 2 x 3 x 4 ANOVA revealed 

a significant main effects of neonatal drug treatment, F(1,22) = 9.067, p < .006, adulthood drug 

treatment, F(2,22) = 6.583, p < .006, and day of testing, F(3,22) = 21.789, p < .0001 as well as a  

significant two-way (Adulthood Drug Treatment x Day of Testing Interaction) interaction, 

F(6,22) = 3.269, p < .007,and a significant three-way (Neonatal Drug Treatment x Adulthood 

Drug Treatment x Day of Testing) interaction, F(6,22) = 2.62, p < .02.  Neonatal quinpirole 

treatment produced a significant reduction in PPI at days 4, 7, and 10 and nicotine exacerbated 

reductions in PPI produced by neonatal quinpirole treatment at Day 10. Interestingly, the 

nicotinic receptor antagonist mecamylamine did not block the effects of nicotine at days 4 and 7 

but did block the effects of nicotine at day 10. These results indicate that neonatal quinpirole 

treatment produces a significant reduction in PPI that is exacerbated by nicotine treatment. The 
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fact that mecamylamine a nicotinic antagonist, only partially blocked the effects of nicotine 

appears to indicate that the nicotinic receptor may not be completely mediating the effects of 

nicotine on PPI, and side effects of nicotine may be involved in these effects.

Figure 1. Percentage of PPI by Day of Testing for 73dB for Males
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73 dB Prepulse Trials: Females

      The 73 dB prepulse trial results for females are presented in Figure 2. In female rats, a 2 x 3 x 

4 ANOVA revealed only a significant adulthood drug treatment main effect F(2,26) = 3.73, p < 

.04. Nicotine produced an overall significant increase in PPI as compared to controls.

Figure 2. Percentage of PPI by Day of Testing for 73dB for Females
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76 dB Prepulse Trials: Males

      The 76dB prepulse trials for males are presented in Figure 3. A 2 x 3 x 4 ANOVA revealed 

significant main effects of adulthood drug treatment, F(2,22) = 13.241, p < .0002, and day of 

testing, F(3,22) = 10.5, p < .0001, and the neonatal main effect approached significance p=.08. In 

male rats, nicotine produced a significant deficit as compared to controls, and this effect was not 

alleviated by pretreatment with the nicotinic receptor antagonist mecamlyamine.  Similar to the 

effects in 73 dB prepulse trials, mecamylamine did not completely alleviate the behavioral 

effects of nicotine, suggesting a side effect of this drug on PPI.

Figure 3. Percentage of PPI by Day of Testing for 76dB for Males
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76 dB Preulse Trials: Females

      The 76 dB prepulse trials for females are presented in Figure 4. No significant main effects 

or interactions were found for the 76dB prepulse trials in females. Unlike males, neonatal 

quinpirole treatment does not produce a significant reduction in PPI on 76 dB prepule trials in 

females, and nicotine also does not appear to affect PPI for this particular prepulse auditory 

intensity. This may in part be because of the relatively poor performance in female controls in 

PPI.

Figure 4. Percentage of PPI by Day of Testing for 76dB for Females
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82 dB Prepulse Trials: Males

      The 82 dB prepulse trials for males are presented in figure 5. A 2 x 3 x 4 ANOVA revealed 

significant main effects of adulthood drug treatment, F(2,22) = 6.036, p < .008, and day of 

testing, F(3,22) = 13.224, p < .0001, as well as significant  two-way (Neonatal Drug Treatment x 

Day of Testing) interaction, F(3,22) = 2.955, p < .038, and (Adulthood Drug Treatment x Day of 

Testing) F(6,22) = 2.852, p < .0157. In male rats, neonatal quinpirole produced a significant 

reduction in PPI at days 1, 7, and 10. Nicotine exacerbated reductions in PPI produced by 

neonatal quinpirole, at days 7 and 10, and in contrast to the 73 and 76 dB prepulse trials, 

mecamylamine blocked the effects of nicotine across all days of testing.

Figure 5. Percentage of PPI by Day of Testing for 82dB for Males
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82 dB Prepulse Trials: Female

      The 82 dB prepulse trials are presented in Figure 6. No significant main effects or 

interactions were revealed for 82 dB prepulse trials in females. Similar to the results of the 76 dB 

prepulse trials, neonatal quinpirole treatment does not produce a significant reduction in PPI on 

82 dB prepule trials in females, and nicotine also does not appear to affect PPI for this particular 

prepulse auditory intensity.

Figure 6. Percentage of PPI by Day of Testing for 82dB for Males

RGS Transcripts Results

      RGS transcripts were analyzed only in animals neonatally treated with quinpirole and 

administered saline in adulthood (Group Q-SS) and controls neonatally treated with saline 

neonatally and in adulthood (Group S-SS). RGS4 was only analyzed in the frontal cortex and 

caudate nucleus and not nucleus accumbens because densitometry readings were weak for RGS4 
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in nucleus accumbens and they could not be analyzed.  RGS transcript results are presented for 

RGS 4, 9, and 17 in Figures 7, 8, and 9. In situ hybridization revealed no significant change in 

microdensitometry readings for RGS4 in the frontal cortex, caudate nucleus. (see Figures 7a, b). 

There was no significant change in RGS9 due to neonatal drug treatment in the frontal cortex. 

However, neonatal quinpirole produced significant decreases in RGS9 as compared to controls in

the caudate nucleus, t(10) = 2.617, p < .028 and  the nucleus accumbens, t(10) = 3.653, p < .015 

(see Figures 8a, b, c) These results are especially important to our model, as this demonstrates 

that the regulatory mechanism for the G-protein that couples to the D2 receptor is reduced by 

neonatal quinpirole treatment, suggesting that the D2 receptor is indeed hyperactive in these 

animals in two brain areas known to be heavily innervated with dopamine. Regarding RGS17, 

rats that were neonatally treated with quinpirole demonstrated a significant increase in RGS17 

expression as compared to controls in the frontal cortex, t(10) = 3.34, p < .01, caudate nucleus, 

t(10) = 2.94, p < .02, and nucleus accumbens, t(9) = 2.61, p < .04 (see Figures 9a,b,c). Based on 

the fact that RGS17 has never been co-localized with the D2 receptor, this may be a 

compensatory mechanism in other systems in these brain areas relative to neonatal drug 

treatment.

Figure 7a.RGS4 Densitometry Readings in Frontal Cortex
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Figure 7b. RGS4 Densitometry Readings in Caudate Nucleus

Figure 8a. RGS9 Densitometry Readings in Frontal Cortex

Figure 8b.RGS9 Densitometry Readings in Caudate Nucleus
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Figure 8c. RGS9 Densitometry Readings in Nucleus Accumbens

Figure 9a. RGS17 Densitometry Readings in Frontal Cortex

Figure 9b. RGS17 Densitometry Readings in Caudate Nucleus
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Figure 9c. RGS17 Densitometry Readings in Nucleus Accumbens
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CHAPTER 4

DISCUSSION

      In the current study, significant reductions in PPI functioning were observed in rats 

neonatally treated with quinpirole. Male rats neonatally treated with quinpirole demonstrated 

significant reductions in PPI compared with controls on 73, 76, 82 dB prepulse trials, whereas 

females did not show a significant reduction in PPI because of neonatal drug treatment. This 

result supports the hypothesis that neonatal quinpirole would produce a significant reduction in 

PPI functioning, therefore, replicating past findings from this laboratory (Smith, Thompson, 

Thacker, Perna, & Brown, 2004). Additionally, nicotine exacerbated reductions in PPI at 

different points across the different auditory intensity, suggesting that nicotine further stimulates 

an already hyperactive dopaminergic system to produce significant reductions in PPI. 

Interestingly, the nicotinic antagonist mecamlyamine only partially blocked the effects of 

nicotine, suggesting that nicotine’s effects may be mediated by systems not mediated by the 

nicotinic receptor. Findings also revealed a significant sex difference in PPI, with males 

performing significantly better than females across all auditory intensities. This result supports 

past findings by Faraday et al. (1998) that have shown sex differences in PPI, but in this past 

study, animals were tested in 1 day. In the present study, animals were tested across 10 days of 

testing, but extended testing did not improve PPI performance in females. There was no 

significant difference between controls and experimental females possibly because of the overall 

poor performance of females.

      The results are in agreement with past literature that have shown activation of the dopamine 

D2  receptor results in significant reductions in PPI (Geyer et al., 2001; Swerdlow et al., 2001). 

Past studies from a collaborating laboratory have shown that neonatal quinpirole treatment 



55

permanently hypersenzitises the D2 pre and postsynaptic receptors in rats (Nowak et al., 2001,

2002). Increases in dopamine D2 sensitivity occurs in several clinical conditions that have been 

shown to produce reduction in PPI, including schizophrenia and ADHD (Geyer et al., 2001). It is 

known that the D2 receptor plays an important role in PPI as antipsychotic medications that block 

the D2 receptor also alleviate these reductions in PPI.  However, in the current study blockade of 

the D2 receptor was not analyzed, so it cannot be determined whether the reduction in PPI is 

because of priming of the D2, receptor because of neonatal quinpirole treatment, or some other 

side effects of this treatment. For example, past findings in this laboratory have shown that 

neonatal quinpirole treatment produces significant decreases of choline acetyltransferase (ChAT) 

and the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factor 

(BDNF) in the hippocampus of adult rats (Brown, et al., 2004). Reductions in cholinergic 

functioning have also been shown to reduce PPI performance (Jones & Shannon, 2000). 

Therefore, the effects reported here could be because of priming of the D2 receptor or some other 

modulatory effect of neonatal drug treatment.

      In the present study, nicotine actually exacerbated the reductions in PPI. This result is in 

contrast to past literature that has shown nicotine alleviates reductions in PPI in both humans and 

animals (Geyer et al., 2001; Leonard et al., 1998). However, a major methodological difference 

in past studies as compared to the current study was that subjects were only tested for 1 day. It is 

clear from the results presented here that there are changes in PPI performance across days of 

testing, and all groups increased PPI performance later in testing. Additionally, nicotine is known 

to produce significant increases in dopaminergic functioning, which, according to the literature 

should produce a reduction in PPI as drugs that increase dopaminergic function typically reduce 

PPI performance (Geyer et al., 2001, Swerdlow et al., 2000).  It appears that as animals 
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continued to sensitize the effects of nicotine, as performance worsened across all three auditory 

intensities with further testing.

Hypothesized Mechanism of Nicotine in D2-primed Rats

      The hypothesized mechanism of nicotine on the dopaminergic system in D2-primed rats is 

described in Figure 10. It can be hypothesized that the reduction in PPI produced by nicotine is 

caused by an increase of dopaminergic activity in the brain, (David & Abraini, 2001). It is well 

known that nicotine increases dopamine release by acting at the presynaptically located nicotinic 

receptors (nAChRs) (Brody et al., 2006). It has recently been discovered that nicotine also 

inhibits the functioning of the D2 autoreceptor (Harsing, Sershen, & Lajtha, 1992), which is 

responsible for inhibiting dopamine release at the synapse. Essentially, via this mechanism, 

nicotine allows dopamine to stay in the synaptic cleft, and this mediates the positive reinforcing 

effects of nicotine. When nicotine binds to the presynaptic nicotinic receptor, calcium is allowed 

to enter the presynaptic terminal, binding to the protein calmodulin and carrying synaptic 

vesicles containing dopamine to the cell membrane.
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Figure 10. Synapse Diagram of Nicotine’s Effect at D2 Receptor

      Dopamine is then released from these vesicles into the synapse, binding to primed dopamine 

D2 receptors, increasing the overall dopaminergic response in D2-primed rats given nicotine. The 

increase in overall dopaminergic response would presumably produce a significant reduction in 

PPI.

      Previous literature has shown that nicotine can affect many different neurotransmitters in the 

brain, therefore, causing different behavioral effects (Giniatullin et al., 2005). Therefore, to 

confirm that nicotine action at the nicotinic receptor is mediating the effects on PPI, animals in 

the present study were pre-treated with the nicotinic antagonist mecamylamine to block the 

effects of nicotine on PPI. Mecamylamine only partially blocked the effects of nicotine, 

suggesting a side effect of nicotine may be mediating its effects on PPI, or that nicotine’s effects 

on other neurotransmitter systems may be mediating these effects. On the other hand, it could be 

that the dose of mecamylamine was not high enough to completely block the effects of nicotine 
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throughout testing, although this dose has been used in the past to block nicotine locomotor 

sensitization (Miller, Wilkin, Bardo, Crooks, & Dwoskin, 2001).  The fact that mecamylamine 

did not produce a reduction on PPI in controls is consistent with the past literature that has 

shown a similar effect (Jones & Shannon, 2000).

      In the current study, RGS transcripts were analyzed using the in situ hybridization technique 

to investigate G-protein activity in dopamine D2 receptors as well as general G-protein activity in 

the brain. Microdensitometry readings revealed a significant relationship between RGS9 and 17 

levels and neonatal drug treatment. Rats neonatally treated with quinpirole demonstrated a 

significant decrease in RGS9 in the caudate and nucleus accumbens. RGS9 is described as a 

specific RGS for the regulation of the dopamine receptor because these proteins have been 

shown to be co-localized with dopamine D2 receptors (Cabrera-Vera et al., 2004). As previously 

mentioned, Rahman (2003) concluded that an increase in RGS9 occurs when there is a decrease 

in sensitivity of dopaminergic receptors. In the current study, RGS9 was significantly decreased

in these heavily innervated dopaminergic brain areas. Based on Rahman’s findings (2003), this 

decrease in RGS9 suggests an increase in dopamine D2 receptor activity. Past results have shown 

that neonatal quinpirole treatment produces a significant increase in D2 sensitivity but does not 

produce an overall increase in D2 receptor number (Kostrzewa et al., 1995). Therefore, this 

would appear to indicate that the G-protein might be coupling more efficiently with sensitized D2

receptors in rats neonatally treated with quinpirole. A future study will analyze whether G-

protein coupling is significantly increased using a more specific technique, the GTP-gamma-S 

assay, which is sensitive to increases in coupling of the G-protein.

      The RGS17 protein was significantly increased across all brain areas analyzed as compared 

to controls: the frontal cortex, caudate nucleus, and nucleus accumbens in rats neonatally treated 
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with quinpirole. There has been less research performed on RGS17. What is known is that the 

RGS17 protein is important for the inhibition of the second messenger system cAMP. Findings 

have shown that RGS17 is a general regulator of the G-protein throughout the brain and has been 

shown to be associated with metabotropic receptors other than dopamine D1 and D2 receptors

such as cholinergic muscarinic receptors (Mao et al., 2004). The significant increase in RGS17 

observed in animals neonatally treated with quinpirole could be the result of a change at the D2

receptor, but this change could be modulating other systems resulting in significant increases in 

the RGS17. For example, results from our laboratory have shown that neonatal quinpirole 

treatment results in significant decreases in the cholinergic system (Brown et al., 2004), and this 

result is consistent with those findings. However, there could be changes in other 

neurotransmitter systems that have not yet been analyzed that could also be producing this 

increase. Currently, no study has ever co-localized RGS17 with the D2 receptor in native tissue, 

and this will also be the focus of a future study.

      A main issue to keep in consideration in this study is that one neurotransmitter, such as 

dopamine, has not been the only neurotransmitter involved in PPI performance. As previously 

mentioned, other neurotransmitters, such as serotonin and norepinephrine, also have been shown 

to play a role in PPI and sensorimotor gating (Geyer et al., 2001; Swerdlow et al., 2001). 

Although quinpirole is a specific D2/D3 agonist, one cannot assume that other neurotransmitters 

and receptors are not being directly or indirectly influenced by priming of the D2 receptor via 

neonatal quinpirole treatment. However, in the current study the main focus is the examination of 

dopamine’s role in PPI functioning and the correlations that can be made to humans with 

schizophrenia, such as a supersensitized dopamine system (Einat et al., 1993). Although neonatal 

administration of quinpirole does not replicate all the brain abnormalities found in human with 
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schizophrenia, it can still be considered a valid model for information because it does model one 

aspect of the disease (Woodruff & Baisden, 1994). The current study supports findings that have 

shown neonatal quinpirole administration is a valid rodent model of schizophrenia via modeling 

replicating the supersensitized postsynaptic dopamine receptor and PPI deficits, which are both 

found in humans with schizophrenia.

      In the current study, nicotine exacerbated PPI deficits in a rodent model of schizophrenia. 

This finding contradicts studies that have shown nicotine enhanced PPI in human patients with 

chronic schizophrenia (Kumari & Postma, 2005; Leornard et al., 2000). The findings in these 

studies along with the fact that 80% of humans with schizophrenia smoke cigarettes led many 

researchers to believe that humans with schizophrenia may be smoking to self medicate their 

auditory sensorimotor gating deficits (Leonard et al.). One reason for the contradiction between 

the current study and previous literature could be that past studies have used a 1 day behavioral 

testing methodology in PPI, and initial effects of nicotine contrast to the drug’s effects after 

chronic administration (Geyer et al., 2001). Thus, these findings show that nicotine may be 

exacerbating these auditory sensorimotor gating deficits. Research has also suggested that 

schizophrenics may self-medicate because of cognitive deficits produced by the disorder 

(Elvevag & Goldberg, 2000). Cognitive deficits in schizophrenia have been suggested to be 

related to impairments in PPI (Geyer et al., 2001).  However, the current study sought to examine 

the effects of nicotine on a D2 primed rodent model of schizophrenia that exacerbated PPI 

deficits. In humans with schizophrenia, nicotine could be increasing dopamine, which could 

increase overall arousal, which may be causing them to feel better overall. Finally, it should also 

be considered that when humans with schizophrenia smoke cigarettes, they are inhaling many 

other chemicals in addition to nicotine that may be causing additional behavioral effects. The 
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current study gives valuable information into behavioral effects of nicotine given chronically in 

conjunction with a neonatal quinpirole induced rodent model of schizophrenia.

Future Studies

      There are many different studies that can be generated from the findings of the current study. 

One of the more interesting findings of the study is nicotine’s exacerbation of PPI deficits in a 

quinpirole-induced model of schizophrenia. A future study could focus on dopamine release in 

the dorsal caudate (also referred to as the striatum) using the microdialysis technique to analyze 

whether nicotine significantly increases dopamine in these animals. A second experiment could 

analyze whether mecamylamine, using the current dose of 1.0 mg/kg, blocks the effects of 

nicotine on dopamine release. If this were the case, then changes in other neurotransmitter 

systems may be implicated in nicotine effects on PPI. Another future experiment could analyze 

whether serotingergic, noradrenergic, or glutamatergic antagonists block the effects of nicotine 

on PPI more effectively than mecamylamine, which would implicate these other systems. Also, it 

may be useful to administer different dose ages of mecamylamine to determine an effective dose 

that would block nicotine’s effect on PPI testing. It may also be interesting to investigate the 

specific nicotinic receptor that is being affected by nicotine. As previously mentioned, nicotine 

works on different nicotinic receptors, and findings have shown that different nicotine receptors 

may be play differential roles in PPI (Leonard et al., 2002). This could be done by using a 

specific nicotinic receptor antagonists that are specific to the α7 or 4/2 nicotinic receptors. In 

terms of the findings of RGS transcripts, it would also be interesting to examine GTP-gamma-S 

in these different brain areas to determine whether the G-protein is indeed coupling more 

efficiently to the D2 receptor.
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      In conclusion, this study demonstrates a deleterious effect of nicotine utilizing a novel rodent 

model of schizophrenia. Although these findings are in contrast to the effects of nicotine on PPI 

in schizophrenia (Geyer et al., 2001; Swerdlow et al., 2002; Leonard et al., 2002), it must be 

emphasized that different behavioral methodologies could account for these differences. 

Additionally, these findings could be very important clinically, as it suggests that nicotine may 

not be therapeutic in schizophrenia when auditory sensorimotor gating is tested over several 

days. Thus, past findings may be erroneous that have suggested that nicotine can be self-

medication for reduction in PPI because of the lack of focus on persistent behavioral testing 

(Adler et al., 2002). As mentioned, a major issue is that the behavior of smoking cigarettes have 

been utilized in this clinical population and nicotine is not the only psychoactive substance in 

cigarettes. Finally, the findings of the changes in the RGS9 transcript suggests that the G-protein 

is more efficient in coupling to the dopamine D2 receptor.
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