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ABSTRACT

HIV Tat Protein Activates Endothelial Cells Through 

NF6B And MAP Kinase Pathways

by

Jason L. Henry

HIV infection has been shown to predispose patients to accelerated development of heart
disease.  One mechanism for this pathology may involve endothelial activation either by
HIV itself or by its secreted proteins, gp120 (a viral envelope protein) and tat (a protein
that upregulates transcription of viral genes).  We have studied the effects of gp120 and
tat on signaling and production of inflammatory cytokines by Human Pulmonary Artery
Endothelial Cells (HPAEC).  HPAEC were stimulated at varying time points with
combinations of gp120, tat, and monokines (IL-1$ and TNF").  Cell lysate fractions were
analyzed for MAP Kinase activity and NF6B activation, and culture supernatants were
assayed for inflammatory cytokines (IL-6 and IL-8).  The production of IL-6 and IL-8
was significantly enhanced by tat but not by gp120.  Both gp120 and tat, however,
induced significant morphological changes in HPAEC.  The only synergy noted was
between high levels of tat and TNF" acting on the production of IL-6.  When HPAEC
were stimulated with IL-1$ and TNF", peak phosphorylation of p38 MAP Kinase was
found at 45 minutes, while NF6B was maximally activated at two hours.  Both the
ERK1,2 and p38 cascades of MAP Kinase were activated by tat, and an increase in NF6B
phosphorylation and translocation was noted.  We conclude that the HIV tat protein could
be involved in inflammatory changes in endothelium leading to the accelerated
development of heart disease in HIV patients.
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CHAPTER 1

INTRODUCTION

Since the early days of the HIV epidemic it has been known that there are severe

effects of this virus on the immune system.  This is shown specifically by the deficit of

cell mediated immunity that results from active infection and the resulting opportunistic

infections by invading pathogens.  As more has been learned about the internal dynamics

of the virus and the mechanisms by which it infects cells, we have developed therapies

that block the progression of the disease.  However, as HIV patients are living longer,

they have become the fastest growing cardiovascular disease population in the world.

HIV is a close relative of other lentiviruses, most notably the Simian

Immunodeficiency Virus (SIV).  Interestingly, SIV infection results in the animal�s

developing an immune deficiency very much like AIDS in humans.  Though they have

very diverse genetic sequences, all primate lentiviruses share the common ability to bind

to the CD4 receptor of T helper lymphocytes.  Though it is far from being clear cut at this

point, it is believed that the close association of SIV infected nonhuman primates with

humans allowed zoonotic transmission of the virus.  This ultimately gave the virus a

foothold in the human species (Fields, 1998).

HIV has a mostly typical retroviral life cycle.  During the extracellular portion of

HIV�s life cycle, it travels as a virion.  While in this form, it has a protein core bearing

two copies of single stranded genomic RNA.  This core contains additional material

necessary for viral replication such as tRNA primers and reverse transcriptase.  The core
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is contained in an envelope originally derived from the previous host cell�s cell

membrane.  Before budding, however, viral proteins were inserted into this membrane. 

These proteins, gp41 and gp120, bind together and form a stalk that facilitates future

virion attachment to and entry into a new host cell.  This selection is determined by the

specificity of gp120 (Fields, 1998).  It is generally understood that gp120 recognizes the

CD4 receptor on CD4+ cells, but there is also strong evidence that there is further

specificity for coreceptors involved.  Early stages of HIV infection tend to actively infect

macrophages through an affinity toward the CCR5 receptor.  There then may be a shift

that causes the infection to become more serious.  This affinity toward CCR5 is replaced,

presumably through genetic drift, by a new preference for the CXCR4 receptor, which is

found only on CD4+ cells in vitro (O'Brien, 1998).  This shift signals the imminent

suppression of cell mediated immunity.

When the virion attaches to the CD4 receptor a conformational change in the

gp120/gp41 complex is initiated.  This change allows the virion to fuse with the target

cell�s membrane and results in virion internalization.  From here the viral proteins spill

into the cell and are ultimately incorporated into the cell�s genome by way of a Reverse

Transcriptase mediated pathway.  Now known as a latent provirus, the viral genetic code

requires a currently unknown impetus to initiate production of new viruses (Fields,

1998).

Endothelial dysfunction is a basic disturbance which can be associated with

numerous pathologies of the cardiovascular system.  It can involve small vessels and

cause disorders such as vasculitis, or it can involve larger vessels and result in problems
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as severe as aneurysms.  Endothelial dysfunction can also plague coronary arteries and

result in disorders of the heart itself affecting the pericardium, myocardium, or

endocardium.  One of the most clinically relevant consequences of endothelial

dysfunction is the development of atherosclerotic plaques.  These are believed to begin as

activated patches of endothelium.  This activation is characterized by endothelial

expression of many proteins involved in monocyte attraction and adhesion such as

ICAM, VCAM, IL-1, IL-8, and MCP-1.  These activated monocytes become resident

macrophages in the tissue and begin to ingest and accumulate cholesterol until they can

hold no more.  Now known as �foam cells,� these macrophages begin to release

cytokines such as TNF" that are toxic to the surrounding tissue.  A fibrous cap is also

formed which contains thrombogenic material at its core.  Interestingly, the rate of

formation of the fibrous cap is inhibited by IFN (, a product of activated T cells.  As this

process continues the plaque becomes more severe with the replacement of normal elastic

tissue with inelastic collagen, resulting in diminished contractility of the area (Libby,

2000).

Many articles exist relating HIV infection and disturbance in vascular function. 

Early reports associate small vessel lesions and an ocular microangiopathic syndrome

with HIV infection (Pepose, Holland, Nestor, Cochran, 1985).  Additionally, significant

arterial pathology was shown in pediatric HIV cases (Joshi, Sharer, Pawel, Connor,

Oleske, 1987).  Endothelial leakage and elevated endothelial permeability have been

reported by separate authors (Gariano, Rickman, Freeman, 1993; Rhodes 1991). 

Considering that disturbance in vascular function and endothelial activation is a
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fundamental aspect of atherogenesis, these changes could also result in the pathologies

observed with HIV in other studies, such as premature atherosclerosis (Tabib, Greenland,

Mercier, Loire, Mornex, 1992), venous thrombosis, and atheroembolism (Capron, Kim,

Laurien, Bruneval, Feissinger, 1992).

Regulatory mechanisms exist to maintain normal functioning of the endothelium. 

It has been shown that many HIV patients have these regulatory mechanisms disturbed. 

This can lead to an increase in concentrations of various markers in the serum, such as

von Willebrand Factor (vWF), soluble Thrombomodulin (sTM), Angiotensin Converting

Enzyme (ACE), E-selectin (ELAM-1), and endothelin (Schved et al., 1992; Seigneur et

al., 1997; Zietz et al., 1996).  For instance, when the endothelium is damaged it is known

to shed vWF, a protein that plays an important role in the coagulation cascade.  A

positive correlation between disease progression and vWF was shown in HIV positive

patients, though it was not proven conclusively that this was a direct result of HIV

(Lafeuillade et al. 1992).  This is believed to be a possible predisposing factor to

thrombus formation.  Other evidence also shows that endothelial damage is linked to HIV

infection.  sTM was shown to be negatively correlated with patients� CD4+ cell counts,

which decrease as the HIV infection progresses (Seigneur et al.).  In fact, this study

shows that vWF increases correlate with increases in inflammatory cytokines such as

Tumor Necrosis Factor " (TNF") and Interferon ( (IFN(), whereas sTM correlation with

these cytokines was poor.  This implies that sTM may be a more reliable indicator of

endothelial damage and vWF may reflect overall inflammatory conditions (Seigneur et

al.).  One of the most poignant studies on endothelial reaction in HIV patients shows
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numerous pathologies involved.  Zietz et al. examined aortic endothelium from HIV

patients and discovered a severely disturbed endothelial cell pattern when compared with

normal patients.  This study showed a significant increase in the number of leukocytes

attached to the endothelium.  This finding was bolstered by an increase in endothelial

expression of Vascular Cell Adhesion Molecule (VCAM-1) and Endothelial Leukocyte

Adhesion Molecule 1 (ELAM-1), which are necessary components in leukocyte

adherence.  Additionally, they found an increase in endothelial cell turnover rates.

Another group of proteins found in plasma are the soluble forms of Human

Leukocyte Antigen (HLA) types I and II.  These proteins circulate in plasma at low levels

in healthy patients.   HLA are involved in the presentation of non-self antigens to CD4+

and CD8+ T cells, binding to the T cell receptor (TCR) and either CD4 or CD8.  HLA-I

are found on most nucleated cells.  Generally, professional Antigen Presenting Cells

(APC) are the main population expressing HLA-II.  Under more adverse conditions, such

as inflammation, nonprofessional APC can also exhibit HLA-II proteins (Filaci et al.,

1995).   HLA-I is involved in presenting antigens derived from inside the cell.  As a

result, HLA-I is much more active during viral and intracellular infections.  HLA-II is the

protein that displays antigens which have been introduced into the cell through

endocytosis.  Therefore, HLA-II is more active during extracellular infections.  Puppo et

al. (1994) found that long term observation of HLA-I levels was a more accurate

predictor of conversion to AIDS than is checking beta 2: or neopterin levels, both

previously believed to be strong indicators.  Still, it was not as accurate as checking the

patients� CD4+ cell count.  This would seem logical as HIV patients have a primary
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retroviral infection, and possibly subclinical secondary viral infections.  Another study

discovered an increase in HLA-II in HIV patients.  In this study, HIV positive patients

displayed an HLA-II value over twice as high as the controls.  Those patients with full-

blown AIDS, interestingly, showed HLA-II values approaching eight times the controls. 

This could affect immune response by binding CD4 or TCR on circulating T cells and

blocking any further response from them (Filaci et al.).

Of profound importance to research studying this vasculopathy are two HIV

proteins, tat and gp120.  Typically, the tat (transactivator of transcription) protein is seen

as a vital transcription factor that is only active after a virus has infected a cell. The

normal role of gp120, on the other hand, is as a membrane bound protein that allows

attachment of the virion to the CD4 marker on CD4+ T cells (Fields, 1998).  These

proteins are usually seen as integral to the viral life cycle, not as rogue elements which

can alone act as cellular pathogens.  However, HIV patients have been shown to have

detectable levels of gp120 and tat circulating in their plasma (Ensoli et al., 1993; Oh et

al., 1992).  This shows us that the opportunity exists for these proteins to interact with

uninfected cells.  Naturally, one of the most predominant cell types to be highly exposed

to any plasma protein is the vascular endothelial cell.

Endothelial cells typically regulate the passage of various substances between the

blood and interstitium.  They are also important in maintenance of normal coagulation

and in the recruitment of leukocytes to inflamed areas of tissue.  This makes endothelium

highly important to the progression and outcome of various infectious and inflammatory

diseases (Krishnaswamy et al. 1998; Krishnaswamy, Kelley, Yara, Smith, Chi, 1999). 
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Some types of endothelial cells have been shown to react to these circulating HIV

proteins.  One study examined the effects of tat (100ng/mL) with a six-hour treatment on

the production of adhesion molecules in human umbilical vein endothelial cells.  The

study shows profound increases in expression of Intercellular Adhesion Molecule

(ICAM-1), VCAM-1, and ELAM-1, all important molecules in the movement of

leukocytes from the circulation to the tissue.  Additionally, the study showed that the

production of the adhesion molecules was completely blocked by addition of

cycloheximide, indicating that they are products of de novo synthesis (Dhawan et al.,

1997).  A different study reported the effects of tat (10 ng/mL) treatment on central

nervous system derived endothelial cells.  The HIV protein was shown to increase IL-6

production by two to three fold over control values (Zidovetzki, Wang, Chin, Jeyaseelan,

Hofman, 1998).  Others also report tat dependent alterations in endothelial cytokine

production such as increases in IL-2, IL-8, and Tumor Growth Factor $1 (TGF$1) (Cupp,

Taylor, Khalili, Amini, 1993; Hofman, Chen, Incardona, Zidovetzki, Hinton, 1999;

Westendorp, Li-Weber, Frank, Krammer, 1994). Aberrant cytokine production could not

only alter the immediate environment near the response, but could also influence the way

other endothelial cells respond to tat.  Fiorelli et al.(1999) showed that an increase in

ambient IFN( levels preceding tat treatment induced endothelial cells to respond by

proliferating and invading the extracellular matrix (possibly helping to explain an HIV

associated disease, Kaposi�s sarcoma).

The Nuclear Factor 6 B (NF6B) second messenger pathway is known to be

involved in many inflammatory responses.  The transcription factor, NF6B, is normally
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bound by a cytoplasmic inhibitor protein, Inhibitor 6 B (I6B).  When this pathway is

stimulated, I6B releases NF6B which then enters the nucleus and acts in regulation of

pro-inflammatory genes.  Though NF6B was known to be activated in the brains of HIV

infected children, it was not known by what mechanism this was occurring (Dollard et

al., 1995).  The tat protein has since been shown to activate the NF6B pathway in

astrocytes.  Studying U373 astrocytes, Nath, Conant, Chen, Scott, Major (1999) showed a

significant increase in activation of NF6B after incubation with 100 ng/mL of tat.  They

said this pathway was responsible for the release of IL-1 and IL-6 they were observing

from the same cells.  Because these same cytokines are often responsible for activating

NF6B in the first place, it is probable that a positive feedback loop was being set up

inducing a continuous amplification of cytokine production.

The Protein Kinase C PKC pathway is a second messenger system typically

associated with numerous cellular responses, from stress reactions to growth stimulation.

Activation of PKC has also been implicated in tat mediated cellular responses. Phorbol

myristate acetate (PMA), an activator of the PKC pathway, was shown to synergize with

tat in trans activating the HIV-1 Long Terminal Repeat (LTR) linked reporter gene

(Laurence, Sikder, Jhaveri, Salmon, 1990).  Also, PKC depletion was shown to degrade

tat�s ability to stimulate this same gene (Jakobovits, Rosenthal, Capon, 1990). 

Though it appears tat is very important in endothelial alterations, gp120 also

seems to have discernable effects. For example, gp120 treatment at a concentration of 0.1

:g/mL results in significant increases in monocyte adhesion to endothelium (Stefano,

Salzet, Bilfinger, 1998).  Interestingly, this report also showed that treatment of the
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gp120 to endothelium does not cause the secretion of nitric oxide (NO), usually

important in inflammatory processes.  Looking at brain endothelium, Annunziata, Cioni,

Toneatto, Paccagnini (1998) showed significant increases in endothelial albumin

permeability when exposed to concentrations of gp120 as low as 10 pM.  Again, the

report highlights a lack of NO involvement in gp120 stimulation, as they showed no

change in gp120 induced albumin permeability after blocking NO production with nitro-

L-arginine methyl ester (L-NAME), a NO synthase inhibitor.  Another report has

implicated apoptosis in the normal endothelial cell response to gp120.  Using human

umbilical vein endothelial cells, the group exposed gp120 at various doses and

discovered a biphasic response in cytotoxicity, peaking at both .01 ng/mL and 26 ng/mL. 

They followed this with morphology and DNA fragmentation studies and showed that

apoptotic programs are being activated (Huang, Krishnaswamy, Su, Xiao, Liu, 1999).

The Mitogen Activated Protein Kinase (MAP Kinase) pathway is a highly

branched second messenger pathway.  There are numerous effects of stimulation of this

pathway, from cell death to cell growth.  The effect depends on which section of the

cascade is activated.  Stimulation occurred during gp120 exposure in both the JNK and

ERK pathways of the MAP Kinase phosphorylation cascade in primary CNS cell cultures

consisting of astrocytes, fibroblasts, and microglial cells.  The JNK/p38 pathway is

classically considered to be associated with apoptosis, while the ERK pathway is

connected to cell growth and development.  These authors hypothesized that their results

show that a balance is necessary between activation of JNK/p38 and inhibition of ERK in

order for apoptosis to occur (Lannuzel et al., 1997).  A very similar result was achieved
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by an earlier group studying the balance between stress and growth factor activated MAP

Kinase pathways in pheochromocytoma cells (Xia, Dickens, Raingeaud, Davis,

Greenberg, 1995).  Considering this has now been shown in numerous cell lines, it is

probable that this is a highly conserved response across human cell types.

Endothelial activation as a feature of HIV infection may lead to vascular disease.  

Endothelial cell activation in HIV infection may be due to the virus itself,  inflammatory

cytokines (IL-1$ and TNF"), or secreted viral proteins gp120 and tat.  This study has

focused on these two HIV proteins as well as two cytokines, TNF" and IL-1$, and their

effect on endothelial cell activation.  We assessed endothelial cell signaling via the MAP

Kinase and the NF6B pathways, both critical pathways for gene expression.  We also

evaluated endothelial cell production of two inflammatory cytokines, IL-6 and IL-8,

capable of inducing the acute phase response, cellular chemotaxis, and leukocyte

recruitment- all features of vascular disease.
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CHAPTER 2

METHODS AND MATERIALS

Cell Culture

Human Pulmonary Artery Endothelial Cells (HPAEC) from

BioWhittaker/Clonetics (Walkersville, MD) were removed from liquid nitrogen storage

and cultured in 75 cm2 tissue culture flasks (Corning).  The growth medium was also

purchased from BioWhittaker/Clonetics as a kit consisting of Endothelial Base Media, 10

ng/mL Endothelial Growth Factor, 1 mg/mL Hydrocortisone, 50 mg/mL Gentamicin, 50

:g/mL Amphotericin B, 3 mg/mL Bovine Brain Extract, and 10% Fetal Bovine Serum. 

The medium was changed every 3-4 days.  HPAEC were grown in an incubator with a

steady atmosphere of 5% CO2 at 37° C.   Once the cells were near confluency, they were

removed from the flask by trypsinization and split to two new 75 cm2 flasks.

Trypan Blue Exclusion

When the HPAEC were to be plated for an experiment, the cells were removed by

trypsinization and centrifuged at 1000g for 10 minutes for concentration.  These cells

were resuspended in media, a small volume was removed, and Trypan Blue was added. 

The cells were then viewed on a hemocytometer.  This procedure allowed the cell

concentration and viability to be determined.  The appropriate number of cells could then

be transferred to the experimental well.  Cells were not used if viability was below 80%.
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HIV Protein Treatment

HPAEC were trypsinized and counted, then 200,000 cells were added to each

well in 12 well culture plates from Becton-Dickinson (Lincoln Park, New Jersey).  These

cells were allowed to attach and grow overnight.  The cells were then incubated for 24

hours with varying doses of tat and gp120, or with combinations of other proteins of

interest such as IL-1 or TNF". After this treatment, the supernatants were removed and

subjected to a short centrifugation to remove particulates.  Supernatants from this type of

experiment could then be frozen at -20° C until used for further testing.

Enzyme Linked Immunosorbent Assay (ELISA)

Supernatants were removed after the cells had completed a 24-hour treatment to

the agents of interest.  Samples were assayed immediately or stored at -20° C.  The

ELISA kits being used for this assay were purchased from R&D Systems (Minneapolis,

MN), where an antibody specific for a particular cytokine/ chemokine was bound to each

well in the plate.  These primary antibodies have been shown to react solely with the

protein of interest.  The assays were based on methods described by Voller, Bidwell,

Bartlett (1976).

Following manufacturer�s instructions, each serial dilution was pipetted into

duplicate wells.  The standard acted as a series of specific concentrations of the cytokine/

chemokine of interest.  The supernatants to be tested were then pipetted into the

remaining wells.  This entire series of wells was then incubated for two hours at room

temperature to allow binding between the cytokine/ chemokine of interest and the
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antibody attached to the well.

After the 2-hour incubation, the wells were emptied of their contents.  The wash

buffer was added to each well, and was then rinsed out.  This process was repeated five

times, resulting in the removal of all unbound material.  All that remained was the protein

that was bound to the antibody coated on the well.

When the wash was complete, a second solution was added to the wells consisting

of a secondary antibody.  The secondary antibody had an oxidative enzyme attached to

the Fc portion.  This protein binds its variable region to the cytokine or chemokine which

was bound to the primary antibody, resulting in a 1:1 ratio of protein to oxidative

enzyme.  Again, a series of five washes was used to remove all unbound secondary

antibody.

At that time, the substrate solution was added.  It reacts with the enzyme on the

secondary antibody to create a colored product.  Because these react for a set amount of

time at the same temperatures, the kinetics of the reactions are identical.  The only

variable that existed was the amount of enzyme present, and therefore the amount of the

cytokine or chemokine of interest.  The extent of color change was directly proportional

to the amount of the cytokine or chemokine.

The colored products were measured on a Dynatech MR5000 spectrophotometer

at a wavelength specific for that colored product (450 nm).  Data imported from this were

examined using BioLinx 2.22 software.  By reading the products in the serial dilution

wells, a standard curve could be developed from which the unknown sample

concentrations were determined.
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Determination of Protein Concentration

The protein concentrations in the solutions were determined by a commercial

BCA assay (Pierce Chemical Co., Rockford, IL)(Stoscheck, 1990).  BCA solution added

to the buffer (10% SDS solution for Western Blot, Buffer C for NF6B procedure) was

used as a zero standard, and solutions of known protein concentrations were used as

appropriate additional standards.

Western Blot

This procedure is modified from the earlier works of Harlow (1988) and Bollag

(1996).  After a 45-minute treatment the HPAEC were rinsed with 5 mL of cold PBS. 

The cytoplasmic proteins were isolated from cells by direct treatment with cold Triton X

and digitonin solution to lyse the cell membranes.  This mixture was allowed to sit on ice

before cells are scraped off the bottom using a rubber cell scraper.  This cell lysate and

Triton X solution was then stored at -20° C until the blot was run.

After the protein concentrations were determined using the BCA method, equal

amounts of protein were added to each well on an 8% acrylamide gel for electrophoresis. 

After the proteins have been separated by this method, the gel was placed against

nitrocellulose paper and the bands transferred to the paper by the application of current. 

The blot, as the paper is now referred to, has nonspecific binding sites blocked by

addition of blocking buffer, and was then incubated with a primary antibody.  This was

followed by the addition of a secondary antibody.  A chemiluminescent substrate was

added, and the blot was then exposed to film for 15-30 minutes.
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Nuclear Factor Kappa B Isolation and Measurement

The gel shift assay performed for NF6B measurement was based on published

methods (Li, Browder, Kao, 1999; Li et al., 2001).  The HPAEC were exposed for two

hours to the proteins under consideration.  The supernatant was removed and the cells

were scraped into 10 mL of cold PBS.  After centrifugation, the cell pellet was

resuspended in fresh PBS, moved to a microfuge tube,  and pelleted again.  The pellet

was left on ice for 15 minutes after which 25 :L of 10% Nonidet NP-40 was added.  This

solution was vortexed and centrifuged, and to the resulting pellet was added 50 :L of

high salt buffer (Buffer C).  After this solution was shaken for at least 15 minutes at 4° C,

the mixture was centrifuged.  The final supernatant contained the nuclear proteins.

After determining the protein concentration by BCA assay, the protein was

combined with a radioactive oligonucleotide.  This oligonucleotide was constructed by

combining [(-32P] ATP, an NF6B oligonucleotide, and a polynucleotide kinase.  This

reaction resulted in  a 32P labeled oligonucleotide product.  The NF6B and the

oligonucleotide were incubated together for 20 minutes, and the reaction was halted by

the addition of gel loading buffer.

A 4% acrylamide gel was constructed for the separation of the NF6B subunits. 

After the gel was run, it was dried on a gel drier with nitrocellulose paper pressed against

it.  X-ray film was then exposed to this paper for 10-15 hours.

RNA Isolation

RNA extraction and isolation was performed by an accepted procedure
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(Chomczynski, Sacchi, 1987).  After a 6-hour treatment with HPAECs, the cells were

rinsed with cold PBS and the cells are put on ice.  One mL of RNAzole was added to

each well containing cells.  This was pipetted to remove and break up cells, as well as to

digest the DNA, and then the solution was mixed with 0.1mL cold chloroform.  This was

centrifuged, and the top layer was removed.  To this layer was added cold phenol-

chloroform.  After vortexing this mixture was centrifuged.  The top layer was kept and

cold chloroform was added, again followed by vortexing and centrifugation.  The

previous step was repeated.  The top layer was retained and cold n-propanol was added. 

This mixture was then frozen overnight.  On the second day this mixture was thawed and

centrifuged.  The RNA pellets at the bottom, and the remaining liquid was removed.  The

RNA was then washed with 0.1% DEPC and was then allowed to dry at room

temperature.  RNA was then resuspended in 20 :L 0.1% DEPC H20.  The concentration

of the RNA was determined by using a spectrophotometer set at 260nm and 280nm.  The

260/280 nm ratio determined the quality of the RNA.  The 260 nm reading alone could be

used to calculate the concentration of RNA (260x20,000 =    X ng/:L RNA).  The RNA

was then stored at  -80° C.

Reverse Transcriptase Polymerase Chain Reaction

Initially, RNA was isolated, quantified, and stored as described above.  200 ng

RNA could then be combined with tubes of Reverse Transcriptase mix (Buffer, MgCL2,

dGTP, dATP, dCTP, dTTP, Oligonucleotide, RNAse Inhibitor, Reverse Transcriptase,

H2O) and run on a thermocycler (Perkin-Elmer DNA Thermocycler 480) at 42° C for 20
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minutes, 99° C for 10 minutes, and 5° C for 5 minutes.  This procedure yields cDNA

translated from the original RNA.

This DNA was then combined in a new tube with MgCl2, Buffer, H2O, and TAQ

Polymerase.  Then to the individual tubes were added the 3' and 5' primers for the genes

of interest.   Mineral oil was placed on top of this mixture to keep all of the aqueous

components together in the tube and prevent different rates of reaction.  This solution

was then run on the thermocycler for 45 cycles (though this number can be altered

depending on the gene being studied), each cycle consisting of 95° C for 45 seconds, 60°

C for 45 seconds, and 72° C for 90 seconds.

The product of this RTPCR was then put in the lanes of a 3% agarose gel and run

at no more than 80 V until completion.  The banding pattern of the DNA lines up with the

molecular weight markers consistent to the gene being amplified.  Differences in

expression are seen by variations in band density (Huang, Krishnaswamy, Su, Xiao, Liu,

1994; Krishnaswamy et al., 1993).

HIV Proteins Tat and Gp120

The recombinant HIV-1 tat protein was produced in E. coli and was obtained

through the AIDS Research and Reagent Program, NIAID, NIH. from Dr. John Brady

(Bohan et al., 1992; Gutekunst, Kashanchi, Brady, Bednarik, 1993; Kashanchi, Duvall,

Brady, 1992; Kashanchi, et al. 1994; Kashanchi, Shibata, Ross, Brady, Martin, 1994).

The recombinant HIV-1 LAV gp120 was produced in the Baculovirus Expression

System and obtained from Immuno Diagnostics, Inc (Woburn, MA).
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CHAPTER 3

RESULTS

Cytokine Expression

This series of experiments was designed to highlight the development of

particular cytokines upon HPAEC exposure to tat or gp120.  The concentrations of tat

and gp120 were chosen based on results from other studies using endothelial cell lines

(Annunziata et al., 1998; Dhawan et al., 1997; Hofman et al. 1999; Huang, Hunter,

Bond, 1999; Zidovetzki, et al. 1998).  After the 24-hour incubation cell supernatants were

obtained and tested by ELISA for IL-6 and IL-8 concentrations (Figure 1).  Incubation of

HPAEC with tat (10, 100, and 500 ng/mL) showed no significant difference in IL-6 

production compared with the control IL-6 values.  However, IL-6 secretion was

significantly increased by tat at 250 ng/mL (p=.02).  Similarly, incubation of HPAEC

with gp120 showed no significant increases in the production of IL-6 over control. 

Treatment with both gp120 (250 ng/mL) and tat (100 ng/mL) showed no synergistic

activation of IL-6.

The tat incubations at levels of 10 ng/mL and 100 ng/mL showed no significant

increase over the control for secretion of IL-8 (Figure 1).  After treatment to tat at 250

ng/mL, however, the cells showed a dramatic increase (p=.03) in IL-8 secretion.  Also, a

500 ng/mL dose of tat resulted in significant depression in IL-8 values against the control

(p=.02).  The incubations with gp120 doses showed no significant differences in

secretion of IL-8 when compared with the control.  The combination of gp120 (250
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ng/mL) and tat (100 ng/mL) also showed no significant increase in IL-8 secretion

compared with baseline.
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Figure 1: This figure shows the IL-6 and IL-8 supernatant levels after a 24-hour
treatment with the HIV proteins at the concentrations indicated.  The experiment was
performed in triplicate.  Only tat (250 ng/mL) resulted in a significant increase in
production of both IL-6 (p=.02) and IL-8 (p=.03), and only tat (500 ng/mL) significantly
depressed the production of IL-8 (p=.02).
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IL-8 secretion was also tested after a treatment with tat, gp120, TNF", and IL-1. 

This experiment showed very little difference in secretion of IL-8 after stimulation with

TNF" or IL-1 treatment, with or without tat and gp120 (Figure 2).  When MIP1a was

assayed, however, a more interesting result was seen.  The IL-1 activated the cells to

secrete MIP1a, but the TNF" and HIV proteins did not change drastically from the

baseline (Figure 3).  When the IL-1 was combined with the tat and gp120, most of the

responses were similar to the IL-1 control.  But when tat (500 ng/mL) was added to the

IL-1, the MIP1a secretion was drastically reduced to levels very similar to the baseline. 

Also, the TNF" added to the HIV proteins had no significant effects except a decrease in

MIP1a secretion with gp120 (500ng/mL).  MCP1 secretion by the HPAEC�s was also

assayed in the same manner.  No significant differences were seen in MCP1 secretion as

any of the proteins were added (Figure 4).

The secretion of IL-6 is shown in Figure 5.  Though the gp120 treatments show

little difference in IL-6 secretion, the tat treatments show a significant increase at 250

ng/mL and even more profound increase at 500 ng/mL.  The IL-1 treatments result in IL-

6 secretion that is very similar to the control.  The gp120 treatments also show very little

change from the control.  The TNF and gp120 treatments show almost no alterations

from their baseline, but the TNF and tat treatments show a significant departure from this

trend.  At 10 and 100 ng/mL, the IL-6 production changes very little.  But at 250 ng/mL

the IL-6 secretion begins to rise, and at 500 ng/mL it shows an even higher value.
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Figure 2: Triplicate stimulation of HPAEC with different combinations of gp120
(shown as gp10 for gp120 (10 ng/mL), tat (shown as t10 for tat (10 ng/mL), TNF (100
units/mL), and IL-1 (10ng/mL).  The tat protein alone showed some interesting effects
on IL-8 production (see Figure 1), but neither gp120, TNF, or IL-1 caused any alteration
in IL-8 production compared to their respective control values.
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Figure 3: ELISA results of supernatant concentrations of MIP1a after a triplicate 24-
hour treatment to gp120 (listed as gp10 for gp120 (10ng/mL), gp100 for gp120 (100
ng/mL), etc.), tat (listed as t10 for tat (10 ng/mL), t100 for tat (100 ng/mL), etc), IL-1
(10ng/mL), and TNF" (100 units/mL).  The most significant changes result with IL-1 +
tat (500 ng/mL).  This costimulation returned MIP1a secretion to control values.  Also,
TNF" + tat (500 ng/mL) caused a decrease in secretion of MIP1a below the control
concentration.
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Figure 4: MCP1 concentrations after 24-hour treatment to proteins.  No combination of
protein caused any significant change from baseline in MCP1 secretion.
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Figure 5: IL-6 secretion by HPAEC.  An increase is seen in treatment with tat (250
ng/mL) followed by a large increase with tat (500 ng/mL).  Also, treatment with both
TNF" (100 U/mL) and tat (500 ng/mL) shows a synergistic increase in IL-6 secretion
when compared to other TNF" treatments.
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Second Messenger Pathway Involvement

The experiments detailing NF6B activity were designed to show the loss of

inhibition and, subsequently, the translocation to the nucleus of active NF6B.  Figure 6

shows the involvement of NF6B in the stimulation of HPAEC.  Because nuclear proteins

were isolated for this assay, the results reflect only protein that has translocated to the

nucleus.  Briefly, the cells were grown to near confluency in a T-75 flask and exposed to

the proteins of interest for two hours.  This time was chosen because earlier

experimentation showed a marked decrease in NF6B activity after four hours and a peak

at two hours (Figure 7).  After the two hour incubation the cells were rinsed with cold

PBS and scraped using a cell scraper.  The nuclear proteins were then isolated from the

resulting cell suspension.  These cells show only a 12% increase over control in

phosphorylation of NF6B after treatment to 250 ng/mL of gp120.  A 250 ng/mL dose of

tat, however, increases NF6B phosphorylation by 81%.  Because the p65/p50

heterodimer of NF6B shows a distinct band and the p50/p50 homodimer does not, only

the p65/p50 heterodimer band was measured.

Considering the importance of other second messenger pathways in cell signaling,

the involvement of the MAP kinase pathway was also assayed.  The experiments

studying MAP Kinase were made to determine time points and then determine rates and

amounts of phosphorylation of key MAP Kinase protein intermediates.  First, the amount

of time to reach peak phosphorylation of the MAP kinase proteins was determined.  This

was achieved through activation of the cells with cytokines known to induce MAP kinase

activity, TNF" and IL-1$ (Xia, et al. 1995).  HPAEC were exposed to TNF" and IL-1$ at
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Figure 6: Phosphorylation of NFkB shown as a percentage of negative control.  The
gp120 (250 ng/mL) 2-hour treatment resulted in only a 12% increase in phosphorylation. 
The tat (250 ng/mL) 2-hour treatment caused an 81% increase in NFkB phosphorylation. 
The TNF" is a positive control.

four different time points (15, 30, 45, and 60 mins.).  The cytoplasmic proteins were then
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NFkB Gel Shift Assay

Figure 7: Gel shift assay showing NFkB translocation in control (lane #1), TNF
(100 U/mL) at two hours (lane #2), tat (250 ng/mL) at two hours (lane #3), TNF
(100 U/mL) at four hours (lane #4), and tat (250 ng/mL) at four hours (lane #5). 
Equal amounts of protein were loaded to each lane.
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 isolated and assayed by western blot for p38 phosphorylation, a late MAP kinase

cascade protein known to be involved in cell stress responses and apoptosis (Figure 8)

(Lannuzel et al., 1997; Xia et al., 1995).  The 15 minute treatment showed an absence of

phosphorylation (Figure 9).  Thirty minutes showed an increase, and 45 minutes showed

a very strong band.  By 60 minutes the phosphorylation had started to diminish.  This

shows that the HPAEC MAP kinase p38 pathway is maximally stimulated at 45 minutes. 

The assay was then repeated for treatment with tat at 250 ng/mL, the only concentration

with significant effects on cytokine production and NF6B activity.

Figure 10 displays the band intensity for post treatment p38 phosphorylation.  The

graph shows the control value followed by the tat, IL-1, TNF, and IL-1 + TNF

treatments.  The lowest point on the histogram is the control.  The highest points are the

combinations of IL-1 and TNF stimulations.  Intermediate between the two is the

phosphorylation induced by tat.  This could indicate the tendency of tat to induce cells

toward a stress-like response.

ERK1,2 were also examined by Western blot. Little difference was seen between

the control and the tat 250 ng/mL (Figure 11).  Though some increase is seen in the third

lane (IL-1 10 ng/mL), the greatest increase in ERK1,2 phosphorylation is with TNF" 100

U/mL.  When TNF" and IL-1 are used together no synergy occurs.

Morphology

Figure 12 shows the effects of HIV protein treatment on HPAEC morphology. 

Changes in cellular morphology can in vitro can be indicative of in vivo alterations, and
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MAP Kinase Cascade Diagram

Figure 8: The interactions between many of the known MAP kinase cascade proteins. 
Both ERK1,2 and p38 are shown in the MAPK box. (Garrington, Johnson, 1999)
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MAP Kinase Activation (P38) In HPAEC

Figure 9: This figure shows the time course of phosphorylation of p38 after treatment
to IL-1 and TNF".  It increases until it peaks at 45 minutes and then begins to drop off
by 60 minutes.
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Figure 10: The band intensities of the Western Blot of proteins isolated after various
treatments.  The blot used a phospho-p38 specific antibody against cytoplasmic fractions
of endothelial cells.  Equal amounts of protein were loaded to each lane.
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ERK1,2 Phosphorylation By Western Blot

Figure 11: A Western blot showing HPAEC ERK1,2 phosphorylation after a 45-
minute incubation with control (left), tat 250 ng/mL (second lane), IL-1 10 ng/mL
(middle), TNF" 100 U/mL (fourth lane), TNF" 100 U/mL + IL-1 10 ng/mL (right
lane).  Equal amounts of protein were loaded to each lane.
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HPAEC Morphology

Figure 12: The uppermost picture shows the control morphology.  Additional pictures
were taken showing morphology after a 24-hour treatment to tat (250 ng/mL) and gp120
(250 ng/mL).  These later pictures show an increase in vesicle formation and areas of
cellular detachment.
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 these experiments would show if changes were occurring.  The control shows normal

morphology of attached HPAEC.  These cells show significant physical alterations when

exposed to tat at 250 ng/mL.  A similar phenomenon is seen when the cells are exposed

to a 250 ng/mL dose of gp120.  In both treatments the cells become elongated and show

signs of cytoskeletal rearrangement.  These changes could have considerable importance

to vascular pathology.

RNA Expression

After the RNA of a cell was harvested, it underwent RT-PCR to determine its

corresponding DNA sequence.  Exponential copying of these DNA sequences can then

show the presences or absence of the RNA in this experiment for particular cytokines. 

The RNA of the exposed cells was harvested and RT-PCR was performed on it, both as

described in Materials and Methods.  The primers for IL-6, IL-8, and $-actin were used

in this procedure to determine if any RNA was being produced for these proteins.  The

molecular weight markers are shown on both sides of the gel (Figure 13), and there are

three groups of six bands each between the ladders.  The group on the left is IL-6, the

group in the middle is IL-8, and the group on the right is $-actin.  The gel shows that all

of these treatments seem to induce similar production of RNA for all of these proteins. 

The single exception on this gel is the fourth band for $-actin, which is not present.  The

lack of a $-actin band is probably a result of the primer not annealing correctly.  $-actin

has a variable sequence, and the primer used most likely had a sequence which was only

complementary enough to usually work.  This would explain the presence of other bands,
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Expression of Selected Proteins and Inflammatory Genes

Figure 13: The gel shows the results of RT-PCR on DNA isolated from endothelial
cells.  Ladders are on both edges, MW: 1353, 1078, 603, 310, 234, 194; the gel is
stained with Ethidium Bromide.  Each group has RNA from six experiments (left to
right: Unstimulated, tat 100 ng/mL, tat 250 ng/mL, IL-1 10 ng/mL, TNF 100 U/mL,
TNF + IL-1 ).  The group on the left used a primer for IL-6, the group in the middle IL-
8, and the group on the right $-actin.

and yet the lack of this particular $-actin band. 
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CHAPTER 4

DISCUSSION

There are numerous effects of stimulation of the MAP Kinase pathway, from cell

death to cell growth.  The effect depends on which section of the cascade is activated. 

Stimulation occurred during gp120 exposure in both the JNK and ERK pathways of the

MAP Kinase phosphorylation cascade in primary CNS cell cultures consisting of

astrocytes, fibroblasts, and microglial cells.  The JNK/p38 pathway is classically

considered to be associated with apoptosis, while the ERK pathway is connected to cell

growth and development. 

Figure 1 is from an early experiment and shows the differences in IL-6 and IL-8

secretion from HPAEC after stimulation with the two HIV proteins, tat and gp120, at

four different concentrations.  Figure 2 through Figure 5 are all ELISA results from the

same treatment looking at different cytokines.   Looking at IL-6 secretion in Figure 1,

there are very steady levels across most of  the different stimulations.  However, the tat

(250 ng/mL) dose results in a significant increase in IL-6 secretion, which drops toward

normal levels at tat (500 ng/mL).  IL-8 secretion is very similar, showing a dramatic

increase at tat (250 ng/mL).  Interestingly, the drop in IL-8 secretion at tat (500 ng/mL) is

much more dramatic than what was seen with IL-6.  Initially the decrease in IL-8

secretion with tat (500 ng/mL) was thought to be the result of tat cytotoxicity, but that

belief is refuted by other ELISA results that show strong secretion of other cytokines at

the same tat concentration (i.e., Figure 4).  If the cells were killed, no secretion of these
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cytokines would occur.

Figure 2 shows IL-8 concentrations after stimulation by combinations of TNF",

IL-1, tat, and gp120.  The gp120 alone has no significant effects, though the tat alone

shows some alterations in cytokine profile (see Figure 1).  The combinations of tat and

gp120 with TNF" and IL-1 show no significant differences when compared with the

TNF" and IL-1 control values.  This implies that there is no synergistic effect of these

inflammatory proteins and HIV proteins in HPAEC on IL-8 secretion.  IL-8, an important

mediator in leukocyte recruitment and diapedesis as well as in angiogenesis, has been

shown to be present in atherectomy samples (Ishibashi et al., 1999; Kato, Matsubara,

Iida, Suzuki, Sato, 1999; Simonini et al., 2000).  This model shows that if stimulation of

these cells is a necessary precursor to plaque formation, the mechanism may not involve

IL-8 secretion at this early stage.  The presence of IL-8 in plaque may be from a different

source, such as invading macrophages and foam cells, or IL-8 may be secreted from

endothelial cells only after chronic inflammation.

Mip1a was also assayed as shown in Figure 3.  The cells showed no significant

differences in Mip1a production when exposed to only the different concentrations of tat

and gp120.  However, the production of this cytokine when exposed to IL-1 alone was

significant and the combination of IL-1 and the HIV proteins showed strong secretion. 

The IL-1 + gp120 showed very consistent stimulation similar to the IL-1 control.  The IL-

1 + gp120 showed results similar to the control, but the tat (250 ng/mL) showed a slight

decrease and the tat (500 ng/mL) showed a dramatic drop in Mip1a secretion almost to

background levels.  Again, it does not seem the cells were killed because secretion of
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MCP-1 remained consistent in the same experiment (see Figure 4).  Apparently the

combination of IL-1 and a high dose of tat depresses the secretion of MCP-1 in the

HPAEC.  The addition of TNF" alone and in combination with tat and gp120 resulted in

no significant increases in Mip1a secretion, though there did seem to be some decrease

with high doses of TNF" and tat.  This pattern shows HPAEC secretion of Mip1a is

sensitive to IL-1 but not to TNF", and that the addition of a high concentration of tat

could depress this secretion.  Considering Mip1a has been found to be an important HIV

suppressing factor from CD8+ T cells, the lack of stimulation by the HIV proteins could

be an important factor in plaque, and possibly disease,  progression (Cocchi et al., 1995).

The levels of secretion of MCP-1 are shown in Figure 4.  There was no increase

in MCP-1 secretion by any addition of HIV proteins, but the addition of IL-1 and TNF"

were both able to induce strong secretion of MCP-1.  When TNF" and IL-1 were added

to the HIV proteins, the resulting secretion of MCP-1 was consistently similar to the IL-1

and TNF" controls.  The secretion of MCP-1 by HPAEC seems to be almost �all or

nothing�.  When the cells are exposed to the acute phase proteins IL-1 and TNF", they

respond with very strong secretion of MCP-1, but when exposed to the viral proteins, the

secretion is very similar to the control.

Secreted IL-6 levels were also measured in the supernatants (Figure 5).  An

increase in the IL-6 production was seen from stimulation with tat (250 ng/mL), but an

even larger increase was seen in tat (500 ng/mL).  This was unexpected considering the

early results shown in Figure 1 looking at IL-6 secretion at tat (500 ng/mL) showed a

different trend.  The only other significant difference in production was after treatment to
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TNF" (100 U/mL) + tat (500 ng/mL).  This increase shows that there is most likely a

synergy between TNF" and high levels of tat in IL-6 secretion.

The ELISA results above show that treatment of the tat protein to HPAEC can

induce differential cytokine secretion.  It is surprising that such little response was seen

with the gp120 treatments considering there have been reports of up regulated endothelial

cell adhesion molecules and altered blood brain barrier permeability in response to gp120

(Annunziata et al., 1998; Toneatto, Finco, Putten, Abrignani, Annunziata, 1999). 

Differential cytokine secretion was seen with tat at 250 ng/mL, where there is a dramatic

increase in IL-8 production.  IL-8 secretion is not enhanced or depressed with

costimulation using HIV proteins and TNF" or IL-1.  Mip1a can be stimulated using IL-

1, but not TNF", and a surprising drop occurs in Mip1a secretion when IL-1 and high

levels of tat are used.  MCP-1, like IL-8, shows no difference in regulation when exposed

to IL-1 or TNF" and the HIV proteins, nor does any change occur when exposed to the

HIV proteins alone.  IL-6 levels were increased after treatment to tat (250 ng/mL), but

showed even more increase after treatment with tat (500 ng/mL).  Also, IL-6 levels

increased higher than controls when TNF" and tat (500 ng/mL) were both used.  

Considering IL-8 and IL-6 have both been present in atherosclerotic plaques it is worth

nothing that there seems to be a threshold of tat concentration that must be exceeded

before it stimulates production of these cytokines (Kato et al., 1999).  Considering these

high levels of tat protein are only to be found a very short distance away from areas

actively infected with HIV, it is possible that the IL-6 and IL-8 secretion which occurs at

the sites of plaque formation are the results of nearby HIV infection.  This is also
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dependent on numerous factors which can result in plaque formation, including other

subclinical infections such as chlamydia and some viruses, family history, lifestyle,

vascular flow, and medications.  These other conditions could alter the formation of

plaques by changing the response of endothelium in different conditions.

From the information above, two possibilities exist for the rapidly advancing state

of these plaques in HIV patients.  One possibility is that many HIV patients already have

a propensity toward plaque formation.  Indeed, most Americans have begun to develop

fatty streaks, the precursor to plaques, by age 10.  HIV patients may have these early

plaques subjected to high levels of tat protein by virtue of HIV infection in close

proximity to these predisposed areas.  This, in turn, could cause an increase in the

secretion of atherogenic cytokines, such as IL-6 and IL-8, from that patch of endothelium

and dramatically increase the rate of plaque formation.  The other possibility is again

dependent on the proclivity of the average person today toward heart disease.  If this

plaque is already forming, then the tendency for invasion of macrophages into the plaque

is already present.  Because macrophages are subject to infection by the M-tropic strains

of HIV through the CCR5 receptor, there is a substantial probability that a few HIV

infected macrophages could enter the plaque and become resident.  If this were to

happen, the concentration of tat protein in the plaque would be increased significantly. 

IL-6 and IL-8 secretion would increase as a result, and plaque formation may soon be

accelerated.  Though both theories can stand alone in accounting for the high rate of

atherogenesis, there is no reason that both mechanisms could not be involved

simultaneously.  Ultimately, these alterations could result through changes in oxidation
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states, changes in signaling response times, or even alteration of second messenger

pathways.  Because early results showed the greatest HPAEC response occurred at tat

250 ng/mL (see Figure 1), this concentration was used for further studies to elucidate the

second messenger pathways that may be involved in endothelial cell stimulation.

The first pathway analyzed was the NF6B pathway (Figure 6).  The results

showed that tat can stimulate NF6B to be phosphorylated and cross the nuclear

membrane.  Considering NF6B is involved in upregulation of genes which result in nitric

oxide, cell adhesion molecules, and I6B production, the results mean that tat can be

directly responsible for local inflammatory conditions and leukocyte recruitment.  The

production of inflammatory cytokines and attachment and diapedesis of leukocytes is a

necessary early step in plaque formation, and shows that this concentration of tat can be a

participant in atherogenesis.

Figure 9 shows MAP kinase p38 phosphorylation at different time points of

treatment to known activators of this pathway.  This was a necessary first step in

determining the amount of time necessary to activate phosphorylation of these proteins. 

Because the phosphorylation peaked at 45 minutes, this point was chosen for further

studies with tat 250 ng/mL.  Two important areas of the MAP Kinase cascade were then

examined, the p38 and ERK1,2 proteins.  The first western blot looked at p38

phosphorylation.  The proteins known to be strong activators of this pathway, IL-1 and

TNF, both showed significant elevation in band density over the control.  But this

experiment showed that tat (250 ng/mL) can also stimulate phosphorylation of p38,

though not to the extent that IL-1 and TNF can.  The other 45-minute treatment with tat
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looked at the phosphorylation of ERK1,2, a MAP kinase cascade protein important in

cell growth and differentiation (Figures 8,11).  The tat treatment (second lane) shows a

slight increase in phosphorylation when compared to the control (first lane).

These MAP Kinase results are surprising by what they do not show.  Generally,

these two pathways are thought of as being opposites: p38 is activated during cellular

stress and ERK1,2 is active during cell growth and differentiation.  Typically, it is a

balance between these two pathways that results in cells performing one way or the other. 

But this experiment does not show any results that buttress this theory.  Instead, it shows

that tat can be directly responsible for activating both pathways simultaneously.  In so

doing, it could explain the observations of Zietz et al. (1996) who saw the increased

turnover rate of endothelial cells.  If the ERK1,2 pathway is being stimulated by tat, the

cells could be undergoing a growth factor-like proliferation response while

simultaneously being induced into apoptosis through an activated p38 pathway.

Morphology was compared after tat and gp120 incubations (Figure 12).  The

control shows normal, attached endothelial cells.  After a 24-hour treatment to tat or

gp120, however, some changes are seen.  The endothelial cells show some detachment

from the well, especially at the narrow portions of the cell.  Additionally, the cells show

increased vacuole formation.  The detachment of the cells could be analogous to an

increase in permeability between cells seen in other experiments using tat.  This would

play a role in vascular ability to allow leukocyte diapedesis and, therefore, possibly be

important in plaque formation.

The RT-PCR results show qualitatively that RNA for these inflammatory proteins
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is being made, and, therefore, the proteins could be made de novo.  The missing $-actin

band in the fourth lane is probably the result of differential splicing of RNA.  By having a

slightly different copy of RNA, the primer would not bind and the amplification would

not occur.  The fact that the bands are very similar in density implies the PCR may have

run too many cycles.  This experiment used 45 cycles, and it is possible that it amplified

each well beyond the point where density differences are still detectable.  By running this

RT-PCR again with fewer cycles, the results may show a quantitative difference in RNA

production between each well.

This research shows that the HIV tat protein, but not gp120, can result in the

activation of HPAECs (Figure 14).  One way this is achieved is by inducing the

phosphorylation and translocation of NF6B.  Additionally, the induction of both the p38

and ERK1,2 MAP Kinase pathways could play a role in activation.  Once activated by

tat, the cells show increases in the secretion of de novo inflammatory proteins,

specifically IL-6 and IL-8.  As HIV patients are living for longer periods of time with

these circulating viral proteins the opportunity for interaction between tat and

endothelium increases.  The tat stimulated secretion of these atherogenic cytokines as

well as the production of cell adhesion molecules through the NF6B pathway could both

be of profound importance in the development of atherosclerotic plaques by inducing

small areas of chronic inflammation.  These regions could be associated with the

increased occurrence of atherosclerotic disease in HIV patients.  Further research into

this area could involve the use of NF6B and MAP Kinase inhibitors to see if their

involvement blocks the secretion of inflammatory cytokines.  If so, this would show that
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these pathways alone are able to respond to tat and result in endothelial activation. 

Ultimately, by decreasing the long term viral load in the patients the concentration of tat

in the circulation should also decrease. This may prove to be the best way to prevent HIV

related cardiovascular disease in this patient population.
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Figure 14: Proposed mechanism based on the findings of this research.  See text for
discussion.
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